Merge branch 'debian'
[hcoop/debian/exim4.git] / src / auths / auth-spa.c
1 /*************************************************
2 * Exim - an Internet mail transport agent *
3 *************************************************/
4
5 /*
6 * This file provides the necessary methods for authenticating with
7 * Microsoft's Secure Password Authentication.
8
9 * All the original code used here was torn by Marc Prud'hommeaux out of the
10 * Samba project (by Andrew Tridgell, Jeremy Allison, and others).
11
12 * Tom Kistner provided additional code, adding spa_build_auth_challenge() to
13 * support server authentication mode.
14
15 * Mark Lyda provided a patch to solve this problem:
16
17 - Exim is indicating in its Authentication Request message (Type 1) that it
18 can transmit text in either Unicode or OEM format.
19
20 - Microsoft's SMTP server (smtp.email.msn.com) is responding in its
21 Challenge message (Type 2) that it will be expecting the OEM format.
22
23 - Exim does not pay attention to the text format requested by Microsoft's
24 SMTP server and, instead, defaults to using the Unicode format.
25
26 * References:
27 * http://www.innovation.ch/java/ntlm.html
28 * http://www.kuro5hin.org/story/2002/4/28/1436/66154
29
30 * It seems that some systems have existing but different definitions of some
31 * of the following types. I received a complaint about "int16" causing
32 * compilation problems. So I (PH) have renamed them all, to be on the safe
33 * side, by adding 'x' on the end.
34
35 * typedef signed short int16;
36 * typedef unsigned short uint16;
37 * typedef unsigned uint32;
38 * typedef unsigned char uint8;
39
40 * The API is extremely simple:
41 * 1. Form a SPA authentication request based on the username
42 * and (optional) domain
43 * 2. Send the request to the server and get an SPA challenge
44 * 3. Build the challenge response and send it back.
45 *
46 * Example usage is as
47 * follows:
48 *
49 int main (int argc, char ** argv)
50 {
51 SPAAuthRequest request;
52 SPAAuthChallenge challenge;
53 SPAAuthResponse response;
54 char msgbuf[2048];
55 char buffer[512];
56 char *username, *password, *domain, *challenge_str;
57
58 if (argc < 3)
59 {
60 printf ("Usage: %s <username> <password> [SPA Challenge]\n",
61 argv [0]);
62 exit (1);
63 }
64
65 username = argv [1];
66 password = argv [2];
67 domain = 0;
68
69 spa_build_auth_request (&request, username, domain);
70
71 spa_bits_to_base64 (msgbuf, US &request,
72 spa_request_length(&request));
73
74 printf ("SPA Login request for username=%s:\n %s\n",
75 argv [1], msgbuf);
76
77 if (argc < 4)
78 {
79 printf ("Run: %s <username> <password> [NTLM Challenge] " \
80 "to complete authenitcation\n", argv [0]);
81 exit (0);
82 }
83
84 challenge_str = argv [3];
85
86 if (spa_base64_to_bits (CS &challenge, sizeof(challenge),
87 CCS (challenge_str))<0)
88 {
89 printf("bad base64 data in challenge: %s\n", challenge_str);
90 exit (1);
91 }
92
93 spa_build_auth_response (&challenge, &response, username, password);
94 spa_bits_to_base64 (msgbuf, US &response,
95 spa_request_length(&response));
96
97 printf ("SPA Response to challenge:\n %s\n for " \
98 "username=%s, password=%s:\n %s\n",
99 argv[3], argv [1], argv [2], msgbuf);
100 return 0;
101 }
102 *
103 *
104 * All the client code used here was torn by Marc Prud'hommeaux out of the
105 * Samba project (by Andrew Tridgell, Jeremy Allison, and others).
106 * Previous comments are below:
107 */
108
109 /*
110 Unix SMB/Netbios implementation.
111 Version 1.9.
112
113 a partial implementation of DES designed for use in the
114 SMB authentication protocol
115
116 Copyright (C) Andrew Tridgell 1998
117
118 This program is free software; you can redistribute it and/or modify
119 it under the terms of the GNU General Public License as published by
120 the Free Software Foundation; either version 2 of the License, or
121 (at your option) any later version.
122
123 This program is distributed in the hope that it will be useful,
124 but WITHOUT ANY WARRANTY; without even the implied warranty of
125 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
126 GNU General Public License for more details.
127
128 You should have received a copy of the GNU General Public License
129 along with this program; if not, write to the Free Software
130 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA.
131 */
132
133
134 /* NOTES:
135
136 This code makes no attempt to be fast! In fact, it is a very
137 slow implementation
138
139 This code is NOT a complete DES implementation. It implements only
140 the minimum necessary for SMB authentication, as used by all SMB
141 products (including every copy of Microsoft Windows95 ever sold)
142
143 In particular, it can only do a unchained forward DES pass. This
144 means it is not possible to use this code for encryption/decryption
145 of data, instead it is only useful as a "hash" algorithm.
146
147 There is no entry point into this code that allows normal DES operation.
148
149 I believe this means that this code does not come under ITAR
150 regulations but this is NOT a legal opinion. If you are concerned
151 about the applicability of ITAR regulations to this code then you
152 should confirm it for yourself (and maybe let me know if you come
153 up with a different answer to the one above)
154 */
155
156 #define DEBUG_X(a,b) ;
157
158 extern int DEBUGLEVEL;
159
160 #include "../exim.h"
161 #include "auth-spa.h"
162 #include <assert.h>
163
164
165 #ifndef _BYTEORDER_H
166 # define _BYTEORDER_H
167
168 # define RW_PCVAL(read,inbuf,outbuf,len) \
169 { if (read) { PCVAL (inbuf,0,outbuf,len); } \
170 else { PSCVAL(inbuf,0,outbuf,len); } }
171
172 # define RW_PIVAL(read,big_endian,inbuf,outbuf,len) \
173 { if (read) { if (big_endian) { RPIVAL(inbuf,0,outbuf,len); } else { PIVAL(inbuf,0,outbuf,len); } } \
174 else { if (big_endian) { RPSIVAL(inbuf,0,outbuf,len); } else { PSIVAL(inbuf,0,outbuf,len); } } }
175
176 # define RW_PSVAL(read,big_endian,inbuf,outbuf,len) \
177 { if (read) { if (big_endian) { RPSVAL(inbuf,0,outbuf,len); } else { PSVAL(inbuf,0,outbuf,len); } } \
178 else { if (big_endian) { RPSSVAL(inbuf,0,outbuf,len); } else { PSSVAL(inbuf,0,outbuf,len); } } }
179
180 # define RW_CVAL(read, inbuf, outbuf, offset) \
181 { if (read) { (outbuf) = CVAL (inbuf,offset); } \
182 else { SCVAL(inbuf,offset,outbuf); } }
183
184 # define RW_IVAL(read, big_endian, inbuf, outbuf, offset) \
185 { if (read) { (outbuf) = ((big_endian) ? RIVAL(inbuf,offset) : IVAL (inbuf,offset)); } \
186 else { if (big_endian) { RSIVAL(inbuf,offset,outbuf); } else { SIVAL(inbuf,offset,outbuf); } } }
187
188 # define RW_SVAL(read, big_endian, inbuf, outbuf, offset) \
189 { if (read) { (outbuf) = ((big_endian) ? RSVAL(inbuf,offset) : SVAL (inbuf,offset)); } \
190 else { if (big_endian) { RSSVAL(inbuf,offset,outbuf); } else { SSVAL(inbuf,offset,outbuf); } } }
191
192 # undef CAREFUL_ALIGNMENT
193
194 /* we know that the 386 can handle misalignment and has the "right"
195 byteorder */
196 # ifdef __i386__
197 # define CAREFUL_ALIGNMENT 0
198 # endif
199
200 # ifndef CAREFUL_ALIGNMENT
201 # define CAREFUL_ALIGNMENT 1
202 # endif
203
204 # define CVAL(buf,pos) ((US (buf))[pos])
205 # define PVAL(buf,pos) ((unsigned)CVAL(buf,pos))
206 # define SCVAL(buf,pos,val) (CVAL(buf,pos) = (val))
207
208
209 # if CAREFUL_ALIGNMENT
210
211 # define SVAL(buf,pos) (PVAL(buf,pos)|PVAL(buf,(pos)+1)<<8)
212 # define IVAL(buf,pos) (SVAL(buf,pos)|SVAL(buf,(pos)+2)<<16)
213 # define SSVALX(buf,pos,val) (CVAL(buf,pos)=(val)&0xFF,CVAL(buf,pos+1)=(val)>>8)
214 # define SIVALX(buf,pos,val) (SSVALX(buf,pos,val&0xFFFF),SSVALX(buf,pos+2,val>>16))
215 # define SVALS(buf,pos) ((int16x)SVAL(buf,pos))
216 # define IVALS(buf,pos) ((int32x)IVAL(buf,pos))
217 # define SSVAL(buf,pos,val) SSVALX((buf),(pos),((uint16x)(val)))
218 # define SIVAL(buf,pos,val) SIVALX((buf),(pos),((uint32x)(val)))
219 # define SSVALS(buf,pos,val) SSVALX((buf),(pos),((int16x)(val)))
220 # define SIVALS(buf,pos,val) SIVALX((buf),(pos),((int32x)(val)))
221
222 # else /* CAREFUL_ALIGNMENT */
223
224 /* this handles things for architectures like the 386 that can handle
225 alignment errors */
226 /*
227 WARNING: This section is dependent on the length of int16x and int32x
228 being correct
229 */
230
231 /* get single value from an SMB buffer */
232 # define SVAL(buf,pos) (*(uint16x *)(CS (buf) + (pos)))
233 # define IVAL(buf,pos) (*(uint32x *)(CS (buf) + (pos)))
234 # define SVALS(buf,pos) (*(int16x *)(CS (buf) + (pos)))
235 # define IVALS(buf,pos) (*(int32x *)(CS (buf) + (pos)))
236
237 /* store single value in an SMB buffer */
238 # define SSVAL(buf,pos,val) SVAL(buf,pos)=((uint16x)(val))
239 # define SIVAL(buf,pos,val) IVAL(buf,pos)=((uint32x)(val))
240 # define SSVALS(buf,pos,val) SVALS(buf,pos)=((int16x)(val))
241 # define SIVALS(buf,pos,val) IVALS(buf,pos)=((int32x)(val))
242
243 # endif /* CAREFUL_ALIGNMENT */
244
245 /* macros for reading / writing arrays */
246
247 # define SMBMACRO(macro,buf,pos,val,len,size) \
248 { int l; for (l = 0; l < (len); l++) (val)[l] = macro((buf), (pos) + (size)*l); }
249
250 # define SSMBMACRO(macro,buf,pos,val,len,size) \
251 { int l; for (l = 0; l < (len); l++) macro((buf), (pos) + (size)*l, (val)[l]); }
252
253 /* reads multiple data from an SMB buffer */
254 # define PCVAL(buf,pos,val,len) SMBMACRO(CVAL,buf,pos,val,len,1)
255 # define PSVAL(buf,pos,val,len) SMBMACRO(SVAL,buf,pos,val,len,2)
256 # define PIVAL(buf,pos,val,len) SMBMACRO(IVAL,buf,pos,val,len,4)
257 # define PCVALS(buf,pos,val,len) SMBMACRO(CVALS,buf,pos,val,len,1)
258 # define PSVALS(buf,pos,val,len) SMBMACRO(SVALS,buf,pos,val,len,2)
259 # define PIVALS(buf,pos,val,len) SMBMACRO(IVALS,buf,pos,val,len,4)
260
261 /* stores multiple data in an SMB buffer */
262 # define PSCVAL(buf,pos,val,len) SSMBMACRO(SCVAL,buf,pos,val,len,1)
263 # define PSSVAL(buf,pos,val,len) SSMBMACRO(SSVAL,buf,pos,val,len,2)
264 # define PSIVAL(buf,pos,val,len) SSMBMACRO(SIVAL,buf,pos,val,len,4)
265 # define PSCVALS(buf,pos,val,len) SSMBMACRO(SCVALS,buf,pos,val,len,1)
266 # define PSSVALS(buf,pos,val,len) SSMBMACRO(SSVALS,buf,pos,val,len,2)
267 # define PSIVALS(buf,pos,val,len) SSMBMACRO(SIVALS,buf,pos,val,len,4)
268
269
270 /* now the reverse routines - these are used in nmb packets (mostly) */
271 # define SREV(x) ((((x)&0xFF)<<8) | (((x)>>8)&0xFF))
272 # define IREV(x) ((SREV(x)<<16) | (SREV((x)>>16)))
273
274 # define RSVAL(buf,pos) SREV(SVAL(buf,pos))
275 # define RSVALS(buf,pos) SREV(SVALS(buf,pos))
276 # define RIVAL(buf,pos) IREV(IVAL(buf,pos))
277 # define RIVALS(buf,pos) IREV(IVALS(buf,pos))
278 # define RSSVAL(buf,pos,val) SSVAL(buf,pos,SREV(val))
279 # define RSSVALS(buf,pos,val) SSVALS(buf,pos,SREV(val))
280 # define RSIVAL(buf,pos,val) SIVAL(buf,pos,IREV(val))
281 # define RSIVALS(buf,pos,val) SIVALS(buf,pos,IREV(val))
282
283 /* reads multiple data from an SMB buffer (big-endian) */
284 # define RPSVAL(buf,pos,val,len) SMBMACRO(RSVAL,buf,pos,val,len,2)
285 # define RPIVAL(buf,pos,val,len) SMBMACRO(RIVAL,buf,pos,val,len,4)
286 # define RPSVALS(buf,pos,val,len) SMBMACRO(RSVALS,buf,pos,val,len,2)
287 # define RPIVALS(buf,pos,val,len) SMBMACRO(RIVALS,buf,pos,val,len,4)
288
289 /* stores multiple data in an SMB buffer (big-endian) */
290 # define RPSSVAL(buf,pos,val,len) SSMBMACRO(RSSVAL,buf,pos,val,len,2)
291 # define RPSIVAL(buf,pos,val,len) SSMBMACRO(RSIVAL,buf,pos,val,len,4)
292 # define RPSSVALS(buf,pos,val,len) SSMBMACRO(RSSVALS,buf,pos,val,len,2)
293 # define RPSIVALS(buf,pos,val,len) SSMBMACRO(RSIVALS,buf,pos,val,len,4)
294
295 # define DBG_RW_PCVAL(charmode,string,depth,base,read,inbuf,outbuf,len) \
296 { RW_PCVAL(read,inbuf,outbuf,len) \
297 DEBUG_X(5,("%s%04x %s: ", \
298 tab_depth(depth), base,string)); \
299 if (charmode) print_asc(5, US (outbuf), (len)); else \
300 { int idx; for (idx = 0; idx < len; idx++) { DEBUG_X(5,("%02x ", (outbuf)[idx])); } } \
301 DEBUG_X(5,("\n")); }
302
303 # define DBG_RW_PSVAL(charmode,string,depth,base,read,big_endian,inbuf,outbuf,len) \
304 { RW_PSVAL(read,big_endian,inbuf,outbuf,len) \
305 DEBUG_X(5,("%s%04x %s: ", \
306 tab_depth(depth), base,string)); \
307 if (charmode) print_asc(5, US (outbuf), 2*(len)); else \
308 { int idx; for (idx = 0; idx < len; idx++) { DEBUG_X(5,("%04x ", (outbuf)[idx])); } } \
309 DEBUG_X(5,("\n")); }
310
311 # define DBG_RW_PIVAL(charmode,string,depth,base,read,big_endian,inbuf,outbuf,len) \
312 { RW_PIVAL(read,big_endian,inbuf,outbuf,len) \
313 DEBUG_X(5,("%s%04x %s: ", \
314 tab_depth(depth), base,string)); \
315 if (charmode) print_asc(5, US (outbuf), 4*(len)); else \
316 { int idx; for (idx = 0; idx < len; idx++) { DEBUG_X(5,("%08x ", (outbuf)[idx])); } } \
317 DEBUG_X(5,("\n")); }
318
319 # define DBG_RW_CVAL(string,depth,base,read,inbuf,outbuf) \
320 { RW_CVAL(read,inbuf,outbuf,0) \
321 DEBUG_X(5,("%s%04x %s: %02x\n", \
322 tab_depth(depth), base, string, outbuf)); }
323
324 # define DBG_RW_SVAL(string,depth,base,read,big_endian,inbuf,outbuf) \
325 { RW_SVAL(read,big_endian,inbuf,outbuf,0) \
326 DEBUG_X(5,("%s%04x %s: %04x\n", \
327 tab_depth(depth), base, string, outbuf)); }
328
329 # define DBG_RW_IVAL(string,depth,base,read,big_endian,inbuf,outbuf) \
330 { RW_IVAL(read,big_endian,inbuf,outbuf,0) \
331 DEBUG_X(5,("%s%04x %s: %08x\n", \
332 tab_depth(depth), base, string, outbuf)); }
333
334 #endif /* _BYTEORDER_H */
335
336 void E_P16 (uschar *p14, uschar *p16);
337 void E_P24 (uschar *p21, uschar *c8, uschar *p24);
338 void D_P16 (uschar *p14, uschar *in, uschar *out);
339 void SMBOWFencrypt (uschar passwd[16], uschar * c8, uschar p24[24]);
340
341 void mdfour (uschar *out, uschar *in, int n);
342
343
344 /*
345 * base64.c -- base-64 conversion routines.
346 *
347 * For license terms, see the file COPYING in this directory.
348 *
349 * This base 64 encoding is defined in RFC2045 section 6.8,
350 * "Base64 Content-Transfer-Encoding", but lines must not be broken in the
351 * scheme used here.
352 */
353
354 static const char base64digits[] =
355 "ABCDEFGHIJKLMNOPQRSTUVWXYZabcdefghijklmnopqrstuvwxyz0123456789+/";
356
357 #define BAD (char) -1
358 static const char base64val[] = {
359 BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD,
360 BAD,
361 BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD,
362 BAD,
363 BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, BAD, 62, BAD, BAD, BAD,
364 63,
365 52, 53, 54, 55, 56, 57, 58, 59, 60, 61, BAD, BAD, BAD, BAD, BAD, BAD,
366 BAD, 0, 1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11, 12, 13, 14,
367 15, 16, 17, 18, 19, 20, 21, 22, 23, 24, 25, BAD, BAD, BAD, BAD, BAD,
368 BAD, 26, 27, 28, 29, 30, 31, 32, 33, 34, 35, 36, 37, 38, 39, 40,
369 41, 42, 43, 44, 45, 46, 47, 48, 49, 50, 51, BAD, BAD, BAD, BAD, BAD
370 };
371 #define DECODE64(c) (isascii(c) ? base64val[c] : BAD)
372
373 void
374 spa_bits_to_base64 (uschar *out, const uschar *in, int inlen)
375 /* raw bytes in quasi-big-endian order to base 64 string (NUL-terminated) */
376 {
377 for (; inlen >= 3; inlen -= 3)
378 {
379 *out++ = base64digits[in[0] >> 2];
380 *out++ = base64digits[((in[0] << 4) & 0x30) | (in[1] >> 4)];
381 *out++ = base64digits[((in[1] << 2) & 0x3c) | (in[2] >> 6)];
382 *out++ = base64digits[in[2] & 0x3f];
383 in += 3;
384 }
385 if (inlen > 0)
386 {
387 uschar fragment;
388
389 *out++ = base64digits[in[0] >> 2];
390 fragment = (in[0] << 4) & 0x30;
391 if (inlen > 1)
392 fragment |= in[1] >> 4;
393 *out++ = base64digits[fragment];
394 *out++ = (inlen < 2) ? '=' : base64digits[(in[1] << 2) & 0x3c];
395 *out++ = '=';
396 }
397 *out = '\0';
398 }
399
400
401 /* The outlength parameter was added by PH, December 2004 */
402
403 int
404 spa_base64_to_bits (char *out, int outlength, const char *in)
405 /* base 64 to raw bytes in quasi-big-endian order, returning count of bytes */
406 {
407 int len = 0;
408 register uschar digit1, digit2, digit3, digit4;
409
410 if (in[0] == '+' && in[1] == ' ')
411 in += 2;
412 if (*in == '\r')
413 return (0);
414
415 do
416 {
417 if (len >= outlength) /* Added by PH */
418 return (-1); /* Added by PH */
419 digit1 = in[0];
420 if (DECODE64 (digit1) == BAD)
421 return (-1);
422 digit2 = in[1];
423 if (DECODE64 (digit2) == BAD)
424 return (-1);
425 digit3 = in[2];
426 if (digit3 != '=' && DECODE64 (digit3) == BAD)
427 return (-1);
428 digit4 = in[3];
429 if (digit4 != '=' && DECODE64 (digit4) == BAD)
430 return (-1);
431 in += 4;
432 *out++ = (DECODE64 (digit1) << 2) | (DECODE64 (digit2) >> 4);
433 ++len;
434 if (digit3 != '=')
435 {
436 if (len >= outlength) /* Added by PH */
437 return (-1); /* Added by PH */
438 *out++ =
439 ((DECODE64 (digit2) << 4) & 0xf0) | (DECODE64 (digit3) >> 2);
440 ++len;
441 if (digit4 != '=')
442 {
443 if (len >= outlength) /* Added by PH */
444 return (-1); /* Added by PH */
445 *out++ = ((DECODE64 (digit3) << 6) & 0xc0) | DECODE64 (digit4);
446 ++len;
447 }
448 }
449 }
450 while (*in && *in != '\r' && digit4 != '=');
451
452 return (len);
453 }
454
455
456 static uschar perm1[56] = { 57, 49, 41, 33, 25, 17, 9,
457 1, 58, 50, 42, 34, 26, 18,
458 10, 2, 59, 51, 43, 35, 27,
459 19, 11, 3, 60, 52, 44, 36,
460 63, 55, 47, 39, 31, 23, 15,
461 7, 62, 54, 46, 38, 30, 22,
462 14, 6, 61, 53, 45, 37, 29,
463 21, 13, 5, 28, 20, 12, 4
464 };
465
466 static uschar perm2[48] = { 14, 17, 11, 24, 1, 5,
467 3, 28, 15, 6, 21, 10,
468 23, 19, 12, 4, 26, 8,
469 16, 7, 27, 20, 13, 2,
470 41, 52, 31, 37, 47, 55,
471 30, 40, 51, 45, 33, 48,
472 44, 49, 39, 56, 34, 53,
473 46, 42, 50, 36, 29, 32
474 };
475
476 static uschar perm3[64] = { 58, 50, 42, 34, 26, 18, 10, 2,
477 60, 52, 44, 36, 28, 20, 12, 4,
478 62, 54, 46, 38, 30, 22, 14, 6,
479 64, 56, 48, 40, 32, 24, 16, 8,
480 57, 49, 41, 33, 25, 17, 9, 1,
481 59, 51, 43, 35, 27, 19, 11, 3,
482 61, 53, 45, 37, 29, 21, 13, 5,
483 63, 55, 47, 39, 31, 23, 15, 7
484 };
485
486 static uschar perm4[48] = { 32, 1, 2, 3, 4, 5,
487 4, 5, 6, 7, 8, 9,
488 8, 9, 10, 11, 12, 13,
489 12, 13, 14, 15, 16, 17,
490 16, 17, 18, 19, 20, 21,
491 20, 21, 22, 23, 24, 25,
492 24, 25, 26, 27, 28, 29,
493 28, 29, 30, 31, 32, 1
494 };
495
496 static uschar perm5[32] = { 16, 7, 20, 21,
497 29, 12, 28, 17,
498 1, 15, 23, 26,
499 5, 18, 31, 10,
500 2, 8, 24, 14,
501 32, 27, 3, 9,
502 19, 13, 30, 6,
503 22, 11, 4, 25
504 };
505
506
507 static uschar perm6[64] = { 40, 8, 48, 16, 56, 24, 64, 32,
508 39, 7, 47, 15, 55, 23, 63, 31,
509 38, 6, 46, 14, 54, 22, 62, 30,
510 37, 5, 45, 13, 53, 21, 61, 29,
511 36, 4, 44, 12, 52, 20, 60, 28,
512 35, 3, 43, 11, 51, 19, 59, 27,
513 34, 2, 42, 10, 50, 18, 58, 26,
514 33, 1, 41, 9, 49, 17, 57, 25
515 };
516
517
518 static uschar sc[16] = { 1, 1, 2, 2, 2, 2, 2, 2, 1, 2, 2, 2, 2, 2, 2, 1 };
519
520 static uschar sbox[8][4][16] = {
521 {{14, 4, 13, 1, 2, 15, 11, 8, 3, 10, 6, 12, 5, 9, 0, 7},
522 {0, 15, 7, 4, 14, 2, 13, 1, 10, 6, 12, 11, 9, 5, 3, 8},
523 {4, 1, 14, 8, 13, 6, 2, 11, 15, 12, 9, 7, 3, 10, 5, 0},
524 {15, 12, 8, 2, 4, 9, 1, 7, 5, 11, 3, 14, 10, 0, 6, 13}},
525
526 {{15, 1, 8, 14, 6, 11, 3, 4, 9, 7, 2, 13, 12, 0, 5, 10},
527 {3, 13, 4, 7, 15, 2, 8, 14, 12, 0, 1, 10, 6, 9, 11, 5},
528 {0, 14, 7, 11, 10, 4, 13, 1, 5, 8, 12, 6, 9, 3, 2, 15},
529 {13, 8, 10, 1, 3, 15, 4, 2, 11, 6, 7, 12, 0, 5, 14, 9}},
530
531 {{10, 0, 9, 14, 6, 3, 15, 5, 1, 13, 12, 7, 11, 4, 2, 8},
532 {13, 7, 0, 9, 3, 4, 6, 10, 2, 8, 5, 14, 12, 11, 15, 1},
533 {13, 6, 4, 9, 8, 15, 3, 0, 11, 1, 2, 12, 5, 10, 14, 7},
534 {1, 10, 13, 0, 6, 9, 8, 7, 4, 15, 14, 3, 11, 5, 2, 12}},
535
536 {{7, 13, 14, 3, 0, 6, 9, 10, 1, 2, 8, 5, 11, 12, 4, 15},
537 {13, 8, 11, 5, 6, 15, 0, 3, 4, 7, 2, 12, 1, 10, 14, 9},
538 {10, 6, 9, 0, 12, 11, 7, 13, 15, 1, 3, 14, 5, 2, 8, 4},
539 {3, 15, 0, 6, 10, 1, 13, 8, 9, 4, 5, 11, 12, 7, 2, 14}},
540
541 {{2, 12, 4, 1, 7, 10, 11, 6, 8, 5, 3, 15, 13, 0, 14, 9},
542 {14, 11, 2, 12, 4, 7, 13, 1, 5, 0, 15, 10, 3, 9, 8, 6},
543 {4, 2, 1, 11, 10, 13, 7, 8, 15, 9, 12, 5, 6, 3, 0, 14},
544 {11, 8, 12, 7, 1, 14, 2, 13, 6, 15, 0, 9, 10, 4, 5, 3}},
545
546 {{12, 1, 10, 15, 9, 2, 6, 8, 0, 13, 3, 4, 14, 7, 5, 11},
547 {10, 15, 4, 2, 7, 12, 9, 5, 6, 1, 13, 14, 0, 11, 3, 8},
548 {9, 14, 15, 5, 2, 8, 12, 3, 7, 0, 4, 10, 1, 13, 11, 6},
549 {4, 3, 2, 12, 9, 5, 15, 10, 11, 14, 1, 7, 6, 0, 8, 13}},
550
551 {{4, 11, 2, 14, 15, 0, 8, 13, 3, 12, 9, 7, 5, 10, 6, 1},
552 {13, 0, 11, 7, 4, 9, 1, 10, 14, 3, 5, 12, 2, 15, 8, 6},
553 {1, 4, 11, 13, 12, 3, 7, 14, 10, 15, 6, 8, 0, 5, 9, 2},
554 {6, 11, 13, 8, 1, 4, 10, 7, 9, 5, 0, 15, 14, 2, 3, 12}},
555
556 {{13, 2, 8, 4, 6, 15, 11, 1, 10, 9, 3, 14, 5, 0, 12, 7},
557 {1, 15, 13, 8, 10, 3, 7, 4, 12, 5, 6, 11, 0, 14, 9, 2},
558 {7, 11, 4, 1, 9, 12, 14, 2, 0, 6, 10, 13, 15, 3, 5, 8},
559 {2, 1, 14, 7, 4, 10, 8, 13, 15, 12, 9, 0, 3, 5, 6, 11}}
560 };
561
562 static void
563 permute (char *out, char *in, uschar * p, int n)
564 {
565 int i;
566 for (i = 0; i < n; i++)
567 out[i] = in[p[i] - 1];
568 }
569
570 static void
571 lshift (char *d, int count, int n)
572 {
573 char out[64];
574 int i;
575 for (i = 0; i < n; i++)
576 out[i] = d[(i + count) % n];
577 for (i = 0; i < n; i++)
578 d[i] = out[i];
579 }
580
581 static void
582 concat (char *out, char *in1, char *in2, int l1, int l2)
583 {
584 while (l1--)
585 *out++ = *in1++;
586 while (l2--)
587 *out++ = *in2++;
588 }
589
590 static void
591 xor (char *out, char *in1, char *in2, int n)
592 {
593 int i;
594 for (i = 0; i < n; i++)
595 out[i] = in1[i] ^ in2[i];
596 }
597
598 static void
599 dohash (char *out, char *in, char *key, int forw)
600 {
601 int i, j, k;
602 char pk1[56];
603 char c[28];
604 char d[28];
605 char cd[56];
606 char ki[16][48];
607 char pd1[64];
608 char l[32], r[32];
609 char rl[64];
610
611 permute (pk1, key, perm1, 56);
612
613 for (i = 0; i < 28; i++)
614 c[i] = pk1[i];
615 for (i = 0; i < 28; i++)
616 d[i] = pk1[i + 28];
617
618 for (i = 0; i < 16; i++)
619 {
620 lshift (c, sc[i], 28);
621 lshift (d, sc[i], 28);
622
623 concat (cd, c, d, 28, 28);
624 permute (ki[i], cd, perm2, 48);
625 }
626
627 permute (pd1, in, perm3, 64);
628
629 for (j = 0; j < 32; j++)
630 {
631 l[j] = pd1[j];
632 r[j] = pd1[j + 32];
633 }
634
635 for (i = 0; i < 16; i++)
636 {
637 char er[48];
638 char erk[48];
639 char b[8][6];
640 char cb[32];
641 char pcb[32];
642 char r2[32];
643
644 permute (er, r, perm4, 48);
645
646 xor (erk, er, ki[forw ? i : 15 - i], 48);
647
648 for (j = 0; j < 8; j++)
649 for (k = 0; k < 6; k++)
650 b[j][k] = erk[j * 6 + k];
651
652 for (j = 0; j < 8; j++)
653 {
654 int m, n;
655 m = (b[j][0] << 1) | b[j][5];
656
657 n = (b[j][1] << 3) | (b[j][2] << 2) | (b[j][3] << 1) | b[j][4];
658
659 for (k = 0; k < 4; k++)
660 b[j][k] = (sbox[j][m][n] & (1 << (3 - k))) ? 1 : 0;
661 }
662
663 for (j = 0; j < 8; j++)
664 for (k = 0; k < 4; k++)
665 cb[j * 4 + k] = b[j][k];
666 permute (pcb, cb, perm5, 32);
667
668 xor (r2, l, pcb, 32);
669
670 for (j = 0; j < 32; j++)
671 l[j] = r[j];
672
673 for (j = 0; j < 32; j++)
674 r[j] = r2[j];
675 }
676
677 concat (rl, r, l, 32, 32);
678
679 permute (out, rl, perm6, 64);
680 }
681
682 static void
683 str_to_key (uschar *str, uschar *key)
684 {
685 int i;
686
687 key[0] = str[0] >> 1;
688 key[1] = ((str[0] & 0x01) << 6) | (str[1] >> 2);
689 key[2] = ((str[1] & 0x03) << 5) | (str[2] >> 3);
690 key[3] = ((str[2] & 0x07) << 4) | (str[3] >> 4);
691 key[4] = ((str[3] & 0x0F) << 3) | (str[4] >> 5);
692 key[5] = ((str[4] & 0x1F) << 2) | (str[5] >> 6);
693 key[6] = ((str[5] & 0x3F) << 1) | (str[6] >> 7);
694 key[7] = str[6] & 0x7F;
695 for (i = 0; i < 8; i++)
696 {
697 key[i] = (key[i] << 1);
698 }
699 }
700
701
702 static void
703 smbhash (uschar *out, uschar *in, uschar *key, int forw)
704 {
705 int i;
706 char outb[64];
707 char inb[64];
708 char keyb[64];
709 uschar key2[8];
710
711 str_to_key (key, key2);
712
713 for (i = 0; i < 64; i++)
714 {
715 inb[i] = (in[i / 8] & (1 << (7 - (i % 8)))) ? 1 : 0;
716 keyb[i] = (key2[i / 8] & (1 << (7 - (i % 8)))) ? 1 : 0;
717 outb[i] = 0;
718 }
719
720 dohash (outb, inb, keyb, forw);
721
722 for (i = 0; i < 8; i++)
723 {
724 out[i] = 0;
725 }
726
727 for (i = 0; i < 64; i++)
728 {
729 if (outb[i])
730 out[i / 8] |= (1 << (7 - (i % 8)));
731 }
732 }
733
734 void
735 E_P16 (uschar *p14, uschar *p16)
736 {
737 uschar sp8[8] = { 0x4b, 0x47, 0x53, 0x21, 0x40, 0x23, 0x24, 0x25 };
738 smbhash (p16, sp8, p14, 1);
739 smbhash (p16 + 8, sp8, p14 + 7, 1);
740 }
741
742 void
743 E_P24 (uschar *p21, uschar *c8, uschar *p24)
744 {
745 smbhash (p24, c8, p21, 1);
746 smbhash (p24 + 8, c8, p21 + 7, 1);
747 smbhash (p24 + 16, c8, p21 + 14, 1);
748 }
749
750 void
751 D_P16 (uschar *p14, uschar *in, uschar *out)
752 {
753 smbhash (out, in, p14, 0);
754 smbhash (out + 8, in + 8, p14 + 7, 0);
755 }
756
757 /****************************************************************************
758 Like strncpy but always null terminates. Make sure there is room!
759 The variable n should always be one less than the available size.
760 ****************************************************************************/
761
762 char *
763 StrnCpy (char *dest, const char *src, size_t n)
764 {
765 char *d = dest;
766 if (!dest)
767 return (NULL);
768 if (!src)
769 {
770 *dest = 0;
771 return (dest);
772 }
773 while (n-- && (*d++ = *src++));
774 *d = 0;
775 return (dest);
776 }
777
778 size_t
779 skip_multibyte_char (char c)
780 {
781 /* bogus if to get rid of unused compiler warning */
782 if (c)
783 return 0;
784 else
785 return 0;
786 }
787
788
789 /*******************************************************************
790 safe string copy into a known length string. maxlength does not
791 include the terminating zero.
792 ********************************************************************/
793
794 char *
795 safe_strcpy (char *dest, const char *src, size_t maxlength)
796 {
797 size_t len;
798
799 if (!dest)
800 {
801 DEBUG_X (0, ("ERROR: NULL dest in safe_strcpy\n"));
802 return NULL;
803 }
804
805 if (!src)
806 {
807 *dest = 0;
808 return dest;
809 }
810
811 len = strlen (src);
812
813 if (len > maxlength)
814 {
815 DEBUG_X (0, ("ERROR: string overflow by %d in safe_strcpy [%.50s]\n",
816 (int) (len - maxlength), src));
817 len = maxlength;
818 }
819
820 memcpy (dest, src, len);
821 dest[len] = 0;
822 return dest;
823 }
824
825
826 void
827 strupper (char *s)
828 {
829 while (*s)
830 {
831 {
832 size_t skip = skip_multibyte_char (*s);
833 if (skip != 0)
834 s += skip;
835 else
836 {
837 if (islower ((uschar)(*s)))
838 *s = toupper (*s);
839 s++;
840 }
841 }
842 }
843 }
844
845
846 /*
847 This implements the X/Open SMB password encryption
848 It takes a password, a 8 byte "crypt key" and puts 24 bytes of
849 encrypted password into p24
850 */
851
852 void
853 spa_smb_encrypt (uschar * passwd, uschar * c8, uschar * p24)
854 {
855 uschar p14[15], p21[21];
856
857 memset (p21, '\0', 21);
858 memset (p14, '\0', 14);
859 StrnCpy (CS p14, CS passwd, 14);
860
861 strupper (CS p14);
862 E_P16 (p14, p21);
863
864 SMBOWFencrypt (p21, c8, p24);
865
866 #ifdef DEBUG_PASSWORD
867 DEBUG_X (100, ("spa_smb_encrypt: lm#, challenge, response\n"));
868 dump_data (100, CS p21, 16);
869 dump_data (100, CS c8, 8);
870 dump_data (100, CS p24, 24);
871 #endif
872 }
873
874 /* Routines for Windows NT MD4 Hash functions. */
875 static int
876 _my_wcslen (int16x * str)
877 {
878 int len = 0;
879 while (*str++ != 0)
880 len++;
881 return len;
882 }
883
884 /*
885 * Convert a string into an NT UNICODE string.
886 * Note that regardless of processor type
887 * this must be in intel (little-endian)
888 * format.
889 */
890
891 static int
892 _my_mbstowcs (int16x * dst, uschar * src, int len)
893 {
894 int i;
895 int16x val;
896
897 for (i = 0; i < len; i++)
898 {
899 val = *src;
900 SSVAL (dst, 0, val);
901 dst++;
902 src++;
903 if (val == 0)
904 break;
905 }
906 return i;
907 }
908
909 /*
910 * Creates the MD4 Hash of the users password in NT UNICODE.
911 */
912
913 void
914 E_md4hash (uschar * passwd, uschar * p16)
915 {
916 int len;
917 int16x wpwd[129];
918
919 /* Password cannot be longer than 128 characters */
920 len = strlen (CS passwd);
921 if (len > 128)
922 len = 128;
923 /* Password must be converted to NT unicode */
924 _my_mbstowcs (wpwd, passwd, len);
925 wpwd[len] = 0; /* Ensure string is null terminated */
926 /* Calculate length in bytes */
927 len = _my_wcslen (wpwd) * sizeof (int16x);
928
929 mdfour (p16, US wpwd, len);
930 }
931
932 /* Does both the NT and LM owfs of a user's password */
933 void
934 nt_lm_owf_gen (char *pwd, uschar nt_p16[16], uschar p16[16])
935 {
936 char passwd[130];
937
938 memset (passwd, '\0', 130);
939 safe_strcpy (passwd, pwd, sizeof (passwd) - 1);
940
941 /* Calculate the MD4 hash (NT compatible) of the password */
942 memset (nt_p16, '\0', 16);
943 E_md4hash (US passwd, nt_p16);
944
945 #ifdef DEBUG_PASSWORD
946 DEBUG_X (100, ("nt_lm_owf_gen: pwd, nt#\n"));
947 dump_data (120, passwd, strlen (passwd));
948 dump_data (100, CS nt_p16, 16);
949 #endif
950
951 /* Mangle the passwords into Lanman format */
952 passwd[14] = '\0';
953 strupper (passwd);
954
955 /* Calculate the SMB (lanman) hash functions of the password */
956
957 memset (p16, '\0', 16);
958 E_P16 (US passwd, US p16);
959
960 #ifdef DEBUG_PASSWORD
961 DEBUG_X (100, ("nt_lm_owf_gen: pwd, lm#\n"));
962 dump_data (120, passwd, strlen (passwd));
963 dump_data (100, CS p16, 16);
964 #endif
965 /* clear out local copy of user's password (just being paranoid). */
966 memset (passwd, '\0', sizeof (passwd));
967 }
968
969 /* Does the des encryption from the NT or LM MD4 hash. */
970 void
971 SMBOWFencrypt (uschar passwd[16], uschar * c8, uschar p24[24])
972 {
973 uschar p21[21];
974
975 memset (p21, '\0', 21);
976
977 memcpy (p21, passwd, 16);
978 E_P24 (p21, c8, p24);
979 }
980
981 /* Does the des encryption from the FIRST 8 BYTES of the NT or LM MD4 hash. */
982 void
983 NTLMSSPOWFencrypt (uschar passwd[8], uschar * ntlmchalresp, uschar p24[24])
984 {
985 uschar p21[21];
986
987 memset (p21, '\0', 21);
988 memcpy (p21, passwd, 8);
989 memset (p21 + 8, 0xbd, 8);
990
991 E_P24 (p21, ntlmchalresp, p24);
992 #ifdef DEBUG_PASSWORD
993 DEBUG_X (100, ("NTLMSSPOWFencrypt: p21, c8, p24\n"));
994 dump_data (100, CS p21, 21);
995 dump_data (100, CS ntlmchalresp, 8);
996 dump_data (100, CS p24, 24);
997 #endif
998 }
999
1000
1001 /* Does the NT MD4 hash then des encryption. */
1002
1003 void
1004 spa_smb_nt_encrypt (uschar * passwd, uschar * c8, uschar * p24)
1005 {
1006 uschar p21[21];
1007
1008 memset (p21, '\0', 21);
1009
1010 E_md4hash (passwd, p21);
1011 SMBOWFencrypt (p21, c8, p24);
1012
1013 #ifdef DEBUG_PASSWORD
1014 DEBUG_X (100, ("spa_smb_nt_encrypt: nt#, challenge, response\n"));
1015 dump_data (100, CS p21, 16);
1016 dump_data (100, CS c8, 8);
1017 dump_data (100, CS p24, 24);
1018 #endif
1019 }
1020
1021 static uint32x A, B, C, D;
1022
1023 static uint32x
1024 F (uint32x X, uint32x Y, uint32x Z)
1025 {
1026 return (X & Y) | ((~X) & Z);
1027 }
1028
1029 static uint32x
1030 G (uint32x X, uint32x Y, uint32x Z)
1031 {
1032 return (X & Y) | (X & Z) | (Y & Z);
1033 }
1034
1035 static uint32x
1036 H (uint32x X, uint32x Y, uint32x Z)
1037 {
1038 return X ^ Y ^ Z;
1039 }
1040
1041 static uint32x
1042 lshift_a (uint32x x, int s)
1043 {
1044 x &= 0xFFFFFFFF;
1045 return ((x << s) & 0xFFFFFFFF) | (x >> (32 - s));
1046 }
1047
1048 #define ROUND1(a,b,c,d,k,s) a = lshift_a(a + F(b,c,d) + X[k], s)
1049 #define ROUND2(a,b,c,d,k,s) a = lshift_a(a + G(b,c,d) + X[k] + (uint32x)0x5A827999,s)
1050 #define ROUND3(a,b,c,d,k,s) a = lshift_a(a + H(b,c,d) + X[k] + (uint32x)0x6ED9EBA1,s)
1051
1052 /* this applies md4 to 64 byte chunks */
1053 static void
1054 spa_mdfour64 (uint32x * M)
1055 {
1056 int j;
1057 uint32x AA, BB, CC, DD;
1058 uint32x X[16];
1059
1060 for (j = 0; j < 16; j++)
1061 X[j] = M[j];
1062
1063 AA = A;
1064 BB = B;
1065 CC = C;
1066 DD = D;
1067
1068 ROUND1 (A, B, C, D, 0, 3);
1069 ROUND1 (D, A, B, C, 1, 7);
1070 ROUND1 (C, D, A, B, 2, 11);
1071 ROUND1 (B, C, D, A, 3, 19);
1072 ROUND1 (A, B, C, D, 4, 3);
1073 ROUND1 (D, A, B, C, 5, 7);
1074 ROUND1 (C, D, A, B, 6, 11);
1075 ROUND1 (B, C, D, A, 7, 19);
1076 ROUND1 (A, B, C, D, 8, 3);
1077 ROUND1 (D, A, B, C, 9, 7);
1078 ROUND1 (C, D, A, B, 10, 11);
1079 ROUND1 (B, C, D, A, 11, 19);
1080 ROUND1 (A, B, C, D, 12, 3);
1081 ROUND1 (D, A, B, C, 13, 7);
1082 ROUND1 (C, D, A, B, 14, 11);
1083 ROUND1 (B, C, D, A, 15, 19);
1084
1085 ROUND2 (A, B, C, D, 0, 3);
1086 ROUND2 (D, A, B, C, 4, 5);
1087 ROUND2 (C, D, A, B, 8, 9);
1088 ROUND2 (B, C, D, A, 12, 13);
1089 ROUND2 (A, B, C, D, 1, 3);
1090 ROUND2 (D, A, B, C, 5, 5);
1091 ROUND2 (C, D, A, B, 9, 9);
1092 ROUND2 (B, C, D, A, 13, 13);
1093 ROUND2 (A, B, C, D, 2, 3);
1094 ROUND2 (D, A, B, C, 6, 5);
1095 ROUND2 (C, D, A, B, 10, 9);
1096 ROUND2 (B, C, D, A, 14, 13);
1097 ROUND2 (A, B, C, D, 3, 3);
1098 ROUND2 (D, A, B, C, 7, 5);
1099 ROUND2 (C, D, A, B, 11, 9);
1100 ROUND2 (B, C, D, A, 15, 13);
1101
1102 ROUND3 (A, B, C, D, 0, 3);
1103 ROUND3 (D, A, B, C, 8, 9);
1104 ROUND3 (C, D, A, B, 4, 11);
1105 ROUND3 (B, C, D, A, 12, 15);
1106 ROUND3 (A, B, C, D, 2, 3);
1107 ROUND3 (D, A, B, C, 10, 9);
1108 ROUND3 (C, D, A, B, 6, 11);
1109 ROUND3 (B, C, D, A, 14, 15);
1110 ROUND3 (A, B, C, D, 1, 3);
1111 ROUND3 (D, A, B, C, 9, 9);
1112 ROUND3 (C, D, A, B, 5, 11);
1113 ROUND3 (B, C, D, A, 13, 15);
1114 ROUND3 (A, B, C, D, 3, 3);
1115 ROUND3 (D, A, B, C, 11, 9);
1116 ROUND3 (C, D, A, B, 7, 11);
1117 ROUND3 (B, C, D, A, 15, 15);
1118
1119 A += AA;
1120 B += BB;
1121 C += CC;
1122 D += DD;
1123
1124 A &= 0xFFFFFFFF;
1125 B &= 0xFFFFFFFF;
1126 C &= 0xFFFFFFFF;
1127 D &= 0xFFFFFFFF;
1128
1129 for (j = 0; j < 16; j++)
1130 X[j] = 0;
1131 }
1132
1133 static void
1134 copy64 (uint32x * M, uschar *in)
1135 {
1136 int i;
1137
1138 for (i = 0; i < 16; i++)
1139 M[i] = (in[i * 4 + 3] << 24) | (in[i * 4 + 2] << 16) |
1140 (in[i * 4 + 1] << 8) | (in[i * 4 + 0] << 0);
1141 }
1142
1143 static void
1144 copy4 (uschar *out, uint32x x)
1145 {
1146 out[0] = x & 0xFF;
1147 out[1] = (x >> 8) & 0xFF;
1148 out[2] = (x >> 16) & 0xFF;
1149 out[3] = (x >> 24) & 0xFF;
1150 }
1151
1152 /* produce a md4 message digest from data of length n bytes */
1153 void
1154 mdfour (uschar *out, uschar *in, int n)
1155 {
1156 uschar buf[128];
1157 uint32x M[16];
1158 uint32x b = n * 8;
1159 int i;
1160
1161 A = 0x67452301;
1162 B = 0xefcdab89;
1163 C = 0x98badcfe;
1164 D = 0x10325476;
1165
1166 while (n > 64)
1167 {
1168 copy64 (M, in);
1169 spa_mdfour64 (M);
1170 in += 64;
1171 n -= 64;
1172 }
1173
1174 for (i = 0; i < 128; i++)
1175 buf[i] = 0;
1176 memcpy (buf, in, n);
1177 buf[n] = 0x80;
1178
1179 if (n <= 55)
1180 {
1181 copy4 (buf + 56, b);
1182 copy64 (M, buf);
1183 spa_mdfour64 (M);
1184 }
1185 else
1186 {
1187 copy4 (buf + 120, b);
1188 copy64 (M, buf);
1189 spa_mdfour64 (M);
1190 copy64 (M, buf + 64);
1191 spa_mdfour64 (M);
1192 }
1193
1194 for (i = 0; i < 128; i++)
1195 buf[i] = 0;
1196 copy64 (M, buf);
1197
1198 copy4 (out, A);
1199 copy4 (out + 4, B);
1200 copy4 (out + 8, C);
1201 copy4 (out + 12, D);
1202
1203 A = B = C = D = 0;
1204 }
1205
1206 char versionString[] = "libntlm version 0.21";
1207
1208 /* Utility routines that handle NTLM auth structures. */
1209
1210 /* The [IS]VAL macros are to take care of byte order for non-Intel
1211 * Machines -- I think this file is OK, but it hasn't been tested.
1212 * The other files (the ones stolen from Samba) should be OK.
1213 */
1214
1215
1216 /* I am not crazy about these macros -- they seem to have gotten
1217 * a bit complex. A new scheme for handling string/buffer fields
1218 * in the structures probably needs to be designed
1219 */
1220
1221 #define spa_bytes_add(ptr, header, buf, count) \
1222 { \
1223 if (buf != NULL && count != 0) /* we hate -Wint-in-bool-contex */ \
1224 { \
1225 SSVAL(&ptr->header.len,0,count); \
1226 SSVAL(&ptr->header.maxlen,0,count); \
1227 SIVAL(&ptr->header.offset,0,((ptr->buffer - ((uint8x*)ptr)) + ptr->bufIndex)); \
1228 memcpy(ptr->buffer+ptr->bufIndex, buf, count); \
1229 ptr->bufIndex += count; \
1230 } \
1231 else \
1232 { \
1233 ptr->header.len = \
1234 ptr->header.maxlen = 0; \
1235 SIVAL(&ptr->header.offset,0,((ptr->buffer - ((uint8x*)ptr)) + ptr->bufIndex)); \
1236 } \
1237 }
1238
1239 #define spa_string_add(ptr, header, string) \
1240 { \
1241 char *p = string; \
1242 int len = 0; \
1243 if (p) len = strlen(p); \
1244 spa_bytes_add(ptr, header, (US p), len); \
1245 }
1246
1247 #define spa_unicode_add_string(ptr, header, string) \
1248 { \
1249 char *p = string; \
1250 uschar *b = NULL; \
1251 int len = 0; \
1252 if (p) \
1253 { \
1254 len = strlen(p); \
1255 b = strToUnicode(p); \
1256 } \
1257 spa_bytes_add(ptr, header, b, len*2); \
1258 }
1259
1260
1261 #define GetUnicodeString(structPtr, header) \
1262 unicodeToString(((char*)structPtr) + IVAL(&structPtr->header.offset,0) , SVAL(&structPtr->header.len,0)/2)
1263 #define GetString(structPtr, header) \
1264 toString(((CS structPtr) + IVAL(&structPtr->header.offset,0)), SVAL(&structPtr->header.len,0))
1265
1266 #ifdef notdef
1267
1268 #define DumpBuffer(fp, structPtr, header) \
1269 dumpRaw(fp,(US structPtr)+IVAL(&structPtr->header.offset,0),SVAL(&structPtr->header.len,0))
1270
1271
1272 static void
1273 dumpRaw (FILE * fp, uschar *buf, size_t len)
1274 {
1275 int i;
1276
1277 for (i = 0; i < len; ++i)
1278 fprintf (fp, "%02x ", buf[i]);
1279
1280 fprintf (fp, "\n");
1281 }
1282
1283 #endif
1284
1285 char *
1286 unicodeToString (char *p, size_t len)
1287 {
1288 int i;
1289 static char buf[1024];
1290
1291 assert (len + 1 < sizeof buf);
1292
1293 for (i = 0; i < len; ++i)
1294 {
1295 buf[i] = *p & 0x7f;
1296 p += 2;
1297 }
1298
1299 buf[i] = '\0';
1300 return buf;
1301 }
1302
1303 static uschar *
1304 strToUnicode (char *p)
1305 {
1306 static uschar buf[1024];
1307 size_t l = strlen (p);
1308 int i = 0;
1309
1310 assert (l * 2 < sizeof buf);
1311
1312 while (l--)
1313 {
1314 buf[i++] = *p++;
1315 buf[i++] = 0;
1316 }
1317
1318 return buf;
1319 }
1320
1321 static uschar *
1322 toString (char *p, size_t len)
1323 {
1324 static uschar buf[1024];
1325
1326 assert (len + 1 < sizeof buf);
1327
1328 memcpy (buf, p, len);
1329 buf[len] = 0;
1330 return buf;
1331 }
1332
1333 #ifdef notdef
1334
1335 void
1336 dumpSmbNtlmAuthRequest (FILE * fp, SPAAuthRequest * request)
1337 {
1338 fprintf (fp, "NTLM Request:\n");
1339 fprintf (fp, " Ident = %s\n", request->ident);
1340 fprintf (fp, " mType = %d\n", IVAL (&request->msgType, 0));
1341 fprintf (fp, " Flags = %08x\n", IVAL (&request->flags, 0));
1342 fprintf (fp, " User = %s\n", GetString (request, user));
1343 fprintf (fp, " Domain = %s\n", GetString (request, domain));
1344 }
1345
1346 void
1347 dumpSmbNtlmAuthChallenge (FILE * fp, SPAAuthChallenge * challenge)
1348 {
1349 fprintf (fp, "NTLM Challenge:\n");
1350 fprintf (fp, " Ident = %s\n", challenge->ident);
1351 fprintf (fp, " mType = %d\n", IVAL (&challenge->msgType, 0));
1352 fprintf (fp, " Domain = %s\n", GetUnicodeString (challenge, uDomain));
1353 fprintf (fp, " Flags = %08x\n", IVAL (&challenge->flags, 0));
1354 fprintf (fp, " Challenge = ");
1355 dumpRaw (fp, challenge->challengeData, 8);
1356 }
1357
1358 void
1359 dumpSmbNtlmAuthResponse (FILE * fp, SPAAuthResponse * response)
1360 {
1361 fprintf (fp, "NTLM Response:\n");
1362 fprintf (fp, " Ident = %s\n", response->ident);
1363 fprintf (fp, " mType = %d\n", IVAL (&response->msgType, 0));
1364 fprintf (fp, " LmResp = ");
1365 DumpBuffer (fp, response, lmResponse);
1366 fprintf (fp, " NTResp = ");
1367 DumpBuffer (fp, response, ntResponse);
1368 fprintf (fp, " Domain = %s\n", GetUnicodeString (response, uDomain));
1369 fprintf (fp, " User = %s\n", GetUnicodeString (response, uUser));
1370 fprintf (fp, " Wks = %s\n", GetUnicodeString (response, uWks));
1371 fprintf (fp, " sKey = ");
1372 DumpBuffer (fp, response, sessionKey);
1373 fprintf (fp, " Flags = %08x\n", IVAL (&response->flags, 0));
1374 }
1375 #endif
1376
1377 void
1378 spa_build_auth_request (SPAAuthRequest * request, char *user, char *domain)
1379 {
1380 char *u = strdup (user);
1381 char *p = strchr (u, '@');
1382
1383 if (p)
1384 {
1385 if (!domain)
1386 domain = p + 1;
1387 *p = '\0';
1388 }
1389
1390 request->bufIndex = 0;
1391 memcpy (request->ident, "NTLMSSP\0\0\0", 8);
1392 SIVAL (&request->msgType, 0, 1);
1393 SIVAL (&request->flags, 0, 0x0000b207); /* have to figure out what these mean */
1394 spa_string_add (request, user, u);
1395 spa_string_add (request, domain, domain);
1396 free (u);
1397 }
1398
1399
1400
1401 void
1402 spa_build_auth_challenge (SPAAuthRequest * request, SPAAuthChallenge * challenge)
1403 {
1404 char chalstr[8];
1405 int i;
1406 int p = (int)getpid();
1407 int random_seed = (int)time(NULL) ^ ((p << 16) | p);
1408
1409 request = request; /* Added by PH to stop compilers whinging */
1410
1411 /* Ensure challenge data is cleared, in case it isn't all used. This
1412 patch added by PH on suggestion of Russell King */
1413
1414 memset(challenge, 0, sizeof(SPAAuthChallenge));
1415
1416 challenge->bufIndex = 0;
1417 memcpy (challenge->ident, "NTLMSSP\0", 8);
1418 SIVAL (&challenge->msgType, 0, 2);
1419 SIVAL (&challenge->flags, 0, 0x00008201);
1420 SIVAL (&challenge->uDomain.len, 0, 0x0000);
1421 SIVAL (&challenge->uDomain.maxlen, 0, 0x0000);
1422 SIVAL (&challenge->uDomain.offset, 0, 0x00002800);
1423
1424 /* generate eight pseudo random bytes (method ripped from host.c) */
1425
1426 for(i=0;i<8;i++) {
1427 chalstr[i] = (uschar)(random_seed >> 16) % 256;
1428 random_seed = (1103515245 - (chalstr[i])) * random_seed + 12345;
1429 };
1430
1431 memcpy(challenge->challengeData,chalstr,8);
1432 }
1433
1434
1435
1436
1437 /* This is the original source of this function, preserved here for reference.
1438 The new version below was re-organized by PH following a patch and some further
1439 suggestions from Mark Lyda to fix the problem that is described at the head of
1440 this module. At the same time, I removed the untidiness in the code below that
1441 involves the "d" and "domain" variables. */
1442
1443 #ifdef NEVER
1444 void
1445 spa_build_auth_response (SPAAuthChallenge * challenge,
1446 SPAAuthResponse * response, char *user,
1447 char *password)
1448 {
1449 uint8x lmRespData[24];
1450 uint8x ntRespData[24];
1451 char *d = strdup (GetUnicodeString (challenge, uDomain));
1452 char *domain = d;
1453 char *u = strdup (user);
1454 char *p = strchr (u, '@');
1455
1456 if (p)
1457 {
1458 domain = p + 1;
1459 *p = '\0';
1460 }
1461
1462 spa_smb_encrypt (US password, challenge->challengeData, lmRespData);
1463 spa_smb_nt_encrypt (US password, challenge->challengeData, ntRespData);
1464
1465 response->bufIndex = 0;
1466 memcpy (response->ident, "NTLMSSP\0\0\0", 8);
1467 SIVAL (&response->msgType, 0, 3);
1468
1469 spa_bytes_add (response, lmResponse, lmRespData, 24);
1470 spa_bytes_add (response, ntResponse, ntRespData, 24);
1471 spa_unicode_add_string (response, uDomain, domain);
1472 spa_unicode_add_string (response, uUser, u);
1473 spa_unicode_add_string (response, uWks, u);
1474 spa_string_add (response, sessionKey, NULL);
1475
1476 response->flags = challenge->flags;
1477
1478 free (d);
1479 free (u);
1480 }
1481 #endif
1482
1483
1484 /* This is the re-organized version (see comments above) */
1485
1486 void
1487 spa_build_auth_response (SPAAuthChallenge * challenge,
1488 SPAAuthResponse * response, char *user,
1489 char *password)
1490 {
1491 uint8x lmRespData[24];
1492 uint8x ntRespData[24];
1493 uint32x cf = IVAL(&challenge->flags, 0);
1494 char *u = strdup (user);
1495 char *p = strchr (u, '@');
1496 char *d = NULL;
1497 char *domain;
1498
1499 if (p)
1500 {
1501 domain = p + 1;
1502 *p = '\0';
1503 }
1504
1505 else domain = d = strdup((cf & 0x1)?
1506 CCS GetUnicodeString(challenge, uDomain) :
1507 CCS GetString(challenge, uDomain));
1508
1509 spa_smb_encrypt (US password, challenge->challengeData, lmRespData);
1510 spa_smb_nt_encrypt (US password, challenge->challengeData, ntRespData);
1511
1512 response->bufIndex = 0;
1513 memcpy (response->ident, "NTLMSSP\0\0\0", 8);
1514 SIVAL (&response->msgType, 0, 3);
1515
1516 spa_bytes_add (response, lmResponse, lmRespData, (cf & 0x200) ? 24 : 0);
1517 spa_bytes_add (response, ntResponse, ntRespData, (cf & 0x8000) ? 24 : 0);
1518
1519 if (cf & 0x1) { /* Unicode Text */
1520 spa_unicode_add_string (response, uDomain, domain);
1521 spa_unicode_add_string (response, uUser, u);
1522 spa_unicode_add_string (response, uWks, u);
1523 } else { /* OEM Text */
1524 spa_string_add (response, uDomain, domain);
1525 spa_string_add (response, uUser, u);
1526 spa_string_add (response, uWks, u);
1527 }
1528
1529 spa_string_add (response, sessionKey, NULL);
1530 response->flags = challenge->flags;
1531
1532 if (d != NULL) free (d);
1533 free (u);
1534 }