Import Upstream version 4.84.2
[hcoop/debian/exim4.git] / src / pdkim / sha2.c
1 /*
2 * FIPS-180-2 compliant SHA-256 implementation
3 *
4 * Copyright (C) 2006-2010, Brainspark B.V.
5 *
6 * This file is part of PolarSSL (http://www.polarssl.org)
7 * Lead Maintainer: Paul Bakker <polarssl_maintainer at polarssl.org>
8 *
9 * All rights reserved.
10 *
11 * This program is free software; you can redistribute it and/or modify
12 * it under the terms of the GNU General Public License as published by
13 * the Free Software Foundation; either version 2 of the License, or
14 * (at your option) any later version.
15 *
16 * This program is distributed in the hope that it will be useful,
17 * but WITHOUT ANY WARRANTY; without even the implied warranty of
18 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
19 * GNU General Public License for more details.
20 *
21 * You should have received a copy of the GNU General Public License along
22 * with this program; if not, write to the Free Software Foundation, Inc.,
23 * 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
24 */
25 /*
26 * The SHA-256 Secure Hash Standard was published by NIST in 2002.
27 *
28 * http://csrc.nist.gov/publications/fips/fips180-2/fips180-2.pdf
29 */
30
31 #include "sha2.h"
32
33 #include <string.h>
34 #include <stdio.h>
35
36 /*
37 * 32-bit integer manipulation macros (big endian)
38 */
39 #ifndef GET_ULONG_BE
40 #define GET_ULONG_BE(n,b,i) \
41 { \
42 (n) = ( (unsigned long) (b)[(i) ] << 24 ) \
43 | ( (unsigned long) (b)[(i) + 1] << 16 ) \
44 | ( (unsigned long) (b)[(i) + 2] << 8 ) \
45 | ( (unsigned long) (b)[(i) + 3] ); \
46 }
47 #endif
48
49 #ifndef PUT_ULONG_BE
50 #define PUT_ULONG_BE(n,b,i) \
51 { \
52 (b)[(i) ] = (unsigned char) ( (n) >> 24 ); \
53 (b)[(i) + 1] = (unsigned char) ( (n) >> 16 ); \
54 (b)[(i) + 2] = (unsigned char) ( (n) >> 8 ); \
55 (b)[(i) + 3] = (unsigned char) ( (n) ); \
56 }
57 #endif
58
59 /*
60 * SHA-256 context setup
61 */
62 void sha2_starts( sha2_context *ctx, int is224 )
63 {
64 ctx->total[0] = 0;
65 ctx->total[1] = 0;
66
67 if( is224 == 0 )
68 {
69 /* SHA-256 */
70 ctx->state[0] = 0x6A09E667;
71 ctx->state[1] = 0xBB67AE85;
72 ctx->state[2] = 0x3C6EF372;
73 ctx->state[3] = 0xA54FF53A;
74 ctx->state[4] = 0x510E527F;
75 ctx->state[5] = 0x9B05688C;
76 ctx->state[6] = 0x1F83D9AB;
77 ctx->state[7] = 0x5BE0CD19;
78 }
79 else
80 {
81 /* SHA-224 */
82 ctx->state[0] = 0xC1059ED8;
83 ctx->state[1] = 0x367CD507;
84 ctx->state[2] = 0x3070DD17;
85 ctx->state[3] = 0xF70E5939;
86 ctx->state[4] = 0xFFC00B31;
87 ctx->state[5] = 0x68581511;
88 ctx->state[6] = 0x64F98FA7;
89 ctx->state[7] = 0xBEFA4FA4;
90 }
91
92 ctx->is224 = is224;
93 }
94
95 static void sha2_process( sha2_context *ctx, const unsigned char data[64] )
96 {
97 unsigned long temp1, temp2, W[64];
98 unsigned long A, B, C, D, E, F, G, H;
99
100 GET_ULONG_BE( W[ 0], data, 0 );
101 GET_ULONG_BE( W[ 1], data, 4 );
102 GET_ULONG_BE( W[ 2], data, 8 );
103 GET_ULONG_BE( W[ 3], data, 12 );
104 GET_ULONG_BE( W[ 4], data, 16 );
105 GET_ULONG_BE( W[ 5], data, 20 );
106 GET_ULONG_BE( W[ 6], data, 24 );
107 GET_ULONG_BE( W[ 7], data, 28 );
108 GET_ULONG_BE( W[ 8], data, 32 );
109 GET_ULONG_BE( W[ 9], data, 36 );
110 GET_ULONG_BE( W[10], data, 40 );
111 GET_ULONG_BE( W[11], data, 44 );
112 GET_ULONG_BE( W[12], data, 48 );
113 GET_ULONG_BE( W[13], data, 52 );
114 GET_ULONG_BE( W[14], data, 56 );
115 GET_ULONG_BE( W[15], data, 60 );
116
117 #define SHR(x,n) ((x & 0xFFFFFFFF) >> n)
118 #define ROTR(x,n) (SHR(x,n) | (x << (32 - n)))
119
120 #define S0(x) (ROTR(x, 7) ^ ROTR(x,18) ^ SHR(x, 3))
121 #define S1(x) (ROTR(x,17) ^ ROTR(x,19) ^ SHR(x,10))
122
123 #define S2(x) (ROTR(x, 2) ^ ROTR(x,13) ^ ROTR(x,22))
124 #define S3(x) (ROTR(x, 6) ^ ROTR(x,11) ^ ROTR(x,25))
125
126 #define F0(x,y,z) ((x & y) | (z & (x | y)))
127 #define F1(x,y,z) (z ^ (x & (y ^ z)))
128
129 #define R(t) \
130 ( \
131 W[t] = S1(W[t - 2]) + W[t - 7] + \
132 S0(W[t - 15]) + W[t - 16] \
133 )
134
135 #define P(a,b,c,d,e,f,g,h,x,K) \
136 { \
137 temp1 = h + S3(e) + F1(e,f,g) + K + x; \
138 temp2 = S2(a) + F0(a,b,c); \
139 d += temp1; h = temp1 + temp2; \
140 }
141
142 A = ctx->state[0];
143 B = ctx->state[1];
144 C = ctx->state[2];
145 D = ctx->state[3];
146 E = ctx->state[4];
147 F = ctx->state[5];
148 G = ctx->state[6];
149 H = ctx->state[7];
150
151 P( A, B, C, D, E, F, G, H, W[ 0], 0x428A2F98 );
152 P( H, A, B, C, D, E, F, G, W[ 1], 0x71374491 );
153 P( G, H, A, B, C, D, E, F, W[ 2], 0xB5C0FBCF );
154 P( F, G, H, A, B, C, D, E, W[ 3], 0xE9B5DBA5 );
155 P( E, F, G, H, A, B, C, D, W[ 4], 0x3956C25B );
156 P( D, E, F, G, H, A, B, C, W[ 5], 0x59F111F1 );
157 P( C, D, E, F, G, H, A, B, W[ 6], 0x923F82A4 );
158 P( B, C, D, E, F, G, H, A, W[ 7], 0xAB1C5ED5 );
159 P( A, B, C, D, E, F, G, H, W[ 8], 0xD807AA98 );
160 P( H, A, B, C, D, E, F, G, W[ 9], 0x12835B01 );
161 P( G, H, A, B, C, D, E, F, W[10], 0x243185BE );
162 P( F, G, H, A, B, C, D, E, W[11], 0x550C7DC3 );
163 P( E, F, G, H, A, B, C, D, W[12], 0x72BE5D74 );
164 P( D, E, F, G, H, A, B, C, W[13], 0x80DEB1FE );
165 P( C, D, E, F, G, H, A, B, W[14], 0x9BDC06A7 );
166 P( B, C, D, E, F, G, H, A, W[15], 0xC19BF174 );
167 P( A, B, C, D, E, F, G, H, R(16), 0xE49B69C1 );
168 P( H, A, B, C, D, E, F, G, R(17), 0xEFBE4786 );
169 P( G, H, A, B, C, D, E, F, R(18), 0x0FC19DC6 );
170 P( F, G, H, A, B, C, D, E, R(19), 0x240CA1CC );
171 P( E, F, G, H, A, B, C, D, R(20), 0x2DE92C6F );
172 P( D, E, F, G, H, A, B, C, R(21), 0x4A7484AA );
173 P( C, D, E, F, G, H, A, B, R(22), 0x5CB0A9DC );
174 P( B, C, D, E, F, G, H, A, R(23), 0x76F988DA );
175 P( A, B, C, D, E, F, G, H, R(24), 0x983E5152 );
176 P( H, A, B, C, D, E, F, G, R(25), 0xA831C66D );
177 P( G, H, A, B, C, D, E, F, R(26), 0xB00327C8 );
178 P( F, G, H, A, B, C, D, E, R(27), 0xBF597FC7 );
179 P( E, F, G, H, A, B, C, D, R(28), 0xC6E00BF3 );
180 P( D, E, F, G, H, A, B, C, R(29), 0xD5A79147 );
181 P( C, D, E, F, G, H, A, B, R(30), 0x06CA6351 );
182 P( B, C, D, E, F, G, H, A, R(31), 0x14292967 );
183 P( A, B, C, D, E, F, G, H, R(32), 0x27B70A85 );
184 P( H, A, B, C, D, E, F, G, R(33), 0x2E1B2138 );
185 P( G, H, A, B, C, D, E, F, R(34), 0x4D2C6DFC );
186 P( F, G, H, A, B, C, D, E, R(35), 0x53380D13 );
187 P( E, F, G, H, A, B, C, D, R(36), 0x650A7354 );
188 P( D, E, F, G, H, A, B, C, R(37), 0x766A0ABB );
189 P( C, D, E, F, G, H, A, B, R(38), 0x81C2C92E );
190 P( B, C, D, E, F, G, H, A, R(39), 0x92722C85 );
191 P( A, B, C, D, E, F, G, H, R(40), 0xA2BFE8A1 );
192 P( H, A, B, C, D, E, F, G, R(41), 0xA81A664B );
193 P( G, H, A, B, C, D, E, F, R(42), 0xC24B8B70 );
194 P( F, G, H, A, B, C, D, E, R(43), 0xC76C51A3 );
195 P( E, F, G, H, A, B, C, D, R(44), 0xD192E819 );
196 P( D, E, F, G, H, A, B, C, R(45), 0xD6990624 );
197 P( C, D, E, F, G, H, A, B, R(46), 0xF40E3585 );
198 P( B, C, D, E, F, G, H, A, R(47), 0x106AA070 );
199 P( A, B, C, D, E, F, G, H, R(48), 0x19A4C116 );
200 P( H, A, B, C, D, E, F, G, R(49), 0x1E376C08 );
201 P( G, H, A, B, C, D, E, F, R(50), 0x2748774C );
202 P( F, G, H, A, B, C, D, E, R(51), 0x34B0BCB5 );
203 P( E, F, G, H, A, B, C, D, R(52), 0x391C0CB3 );
204 P( D, E, F, G, H, A, B, C, R(53), 0x4ED8AA4A );
205 P( C, D, E, F, G, H, A, B, R(54), 0x5B9CCA4F );
206 P( B, C, D, E, F, G, H, A, R(55), 0x682E6FF3 );
207 P( A, B, C, D, E, F, G, H, R(56), 0x748F82EE );
208 P( H, A, B, C, D, E, F, G, R(57), 0x78A5636F );
209 P( G, H, A, B, C, D, E, F, R(58), 0x84C87814 );
210 P( F, G, H, A, B, C, D, E, R(59), 0x8CC70208 );
211 P( E, F, G, H, A, B, C, D, R(60), 0x90BEFFFA );
212 P( D, E, F, G, H, A, B, C, R(61), 0xA4506CEB );
213 P( C, D, E, F, G, H, A, B, R(62), 0xBEF9A3F7 );
214 P( B, C, D, E, F, G, H, A, R(63), 0xC67178F2 );
215
216 ctx->state[0] += A;
217 ctx->state[1] += B;
218 ctx->state[2] += C;
219 ctx->state[3] += D;
220 ctx->state[4] += E;
221 ctx->state[5] += F;
222 ctx->state[6] += G;
223 ctx->state[7] += H;
224 }
225
226 /*
227 * SHA-256 process buffer
228 */
229 void sha2_update( sha2_context *ctx, const unsigned char *input, int ilen )
230 {
231 int fill;
232 unsigned long left;
233
234 if( ilen <= 0 )
235 return;
236
237 left = ctx->total[0] & 0x3F;
238 fill = 64 - left;
239
240 ctx->total[0] += ilen;
241 ctx->total[0] &= 0xFFFFFFFF;
242
243 if( ctx->total[0] < (unsigned long) ilen )
244 ctx->total[1]++;
245
246 if( left && ilen >= fill )
247 {
248 memcpy( (void *) (ctx->buffer + left),
249 (void *) input, fill );
250 sha2_process( ctx, ctx->buffer );
251 input += fill;
252 ilen -= fill;
253 left = 0;
254 }
255
256 while( ilen >= 64 )
257 {
258 sha2_process( ctx, input );
259 input += 64;
260 ilen -= 64;
261 }
262
263 if( ilen > 0 )
264 {
265 memcpy( (void *) (ctx->buffer + left),
266 (void *) input, ilen );
267 }
268 }
269
270 static const unsigned char sha2_padding[64] =
271 {
272 0x80, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
273 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
274 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0,
275 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0, 0
276 };
277
278 /*
279 * SHA-256 final digest
280 */
281 void sha2_finish( sha2_context *ctx, unsigned char output[32] )
282 {
283 unsigned long last, padn;
284 unsigned long high, low;
285 unsigned char msglen[8];
286
287 high = ( ctx->total[0] >> 29 )
288 | ( ctx->total[1] << 3 );
289 low = ( ctx->total[0] << 3 );
290
291 PUT_ULONG_BE( high, msglen, 0 );
292 PUT_ULONG_BE( low, msglen, 4 );
293
294 last = ctx->total[0] & 0x3F;
295 padn = ( last < 56 ) ? ( 56 - last ) : ( 120 - last );
296
297 sha2_update( ctx, (unsigned char *) sha2_padding, padn );
298 sha2_update( ctx, msglen, 8 );
299
300 PUT_ULONG_BE( ctx->state[0], output, 0 );
301 PUT_ULONG_BE( ctx->state[1], output, 4 );
302 PUT_ULONG_BE( ctx->state[2], output, 8 );
303 PUT_ULONG_BE( ctx->state[3], output, 12 );
304 PUT_ULONG_BE( ctx->state[4], output, 16 );
305 PUT_ULONG_BE( ctx->state[5], output, 20 );
306 PUT_ULONG_BE( ctx->state[6], output, 24 );
307
308 if( ctx->is224 == 0 )
309 PUT_ULONG_BE( ctx->state[7], output, 28 );
310 }
311
312 /*
313 * output = SHA-256( input buffer )
314 */
315 void sha2( const unsigned char *input, int ilen,
316 unsigned char output[32], int is224 )
317 {
318 sha2_context ctx;
319
320 sha2_starts( &ctx, is224 );
321 sha2_update( &ctx, input, ilen );
322 sha2_finish( &ctx, output );
323
324 memset( &ctx, 0, sizeof( sha2_context ) );
325 }
326
327 /*
328 * output = SHA-256( file contents )
329 */
330 int sha2_file( const char *path, unsigned char output[32], int is224 )
331 {
332 FILE *f;
333 size_t n;
334 sha2_context ctx;
335 unsigned char buf[1024];
336
337 if( ( f = fopen( path, "rb" ) ) == NULL )
338 return( 1 );
339
340 sha2_starts( &ctx, is224 );
341
342 while( ( n = fread( buf, 1, sizeof( buf ), f ) ) > 0 )
343 sha2_update( &ctx, buf, (int) n );
344
345 sha2_finish( &ctx, output );
346
347 memset( &ctx, 0, sizeof( sha2_context ) );
348
349 if( ferror( f ) != 0 )
350 {
351 fclose( f );
352 return( 2 );
353 }
354
355 fclose( f );
356 return( 0 );
357 }
358
359 /*
360 * SHA-256 HMAC context setup
361 */
362 void sha2_hmac_starts( sha2_context *ctx, const unsigned char *key, int keylen,
363 int is224 )
364 {
365 int i;
366 unsigned char sum[32];
367
368 if( keylen > 64 )
369 {
370 sha2( key, keylen, sum, is224 );
371 keylen = ( is224 ) ? 28 : 32;
372 key = sum;
373 }
374
375 memset( ctx->ipad, 0x36, 64 );
376 memset( ctx->opad, 0x5C, 64 );
377
378 for( i = 0; i < keylen; i++ )
379 {
380 ctx->ipad[i] = (unsigned char)( ctx->ipad[i] ^ key[i] );
381 ctx->opad[i] = (unsigned char)( ctx->opad[i] ^ key[i] );
382 }
383
384 sha2_starts( ctx, is224 );
385 sha2_update( ctx, ctx->ipad, 64 );
386
387 memset( sum, 0, sizeof( sum ) );
388 }
389
390 /*
391 * SHA-256 HMAC process buffer
392 */
393 void sha2_hmac_update( sha2_context *ctx, const unsigned char *input, int ilen )
394 {
395 sha2_update( ctx, input, ilen );
396 }
397
398 /*
399 * SHA-256 HMAC final digest
400 */
401 void sha2_hmac_finish( sha2_context *ctx, unsigned char output[32] )
402 {
403 int is224, hlen;
404 unsigned char tmpbuf[32];
405
406 is224 = ctx->is224;
407 hlen = ( is224 == 0 ) ? 32 : 28;
408
409 sha2_finish( ctx, tmpbuf );
410 sha2_starts( ctx, is224 );
411 sha2_update( ctx, ctx->opad, 64 );
412 sha2_update( ctx, tmpbuf, hlen );
413 sha2_finish( ctx, output );
414
415 memset( tmpbuf, 0, sizeof( tmpbuf ) );
416 }
417
418 /*
419 * SHA-256 HMAC context reset
420 */
421 void sha2_hmac_reset( sha2_context *ctx )
422 {
423 sha2_starts( ctx, ctx->is224 );
424 sha2_update( ctx, ctx->ipad, 64 );
425 }
426
427 /*
428 * output = HMAC-SHA-256( hmac key, input buffer )
429 */
430 void sha2_hmac( const unsigned char *key, int keylen,
431 const unsigned char *input, int ilen,
432 unsigned char output[32], int is224 )
433 {
434 sha2_context ctx;
435
436 sha2_hmac_starts( &ctx, key, keylen, is224 );
437 sha2_hmac_update( &ctx, input, ilen );
438 sha2_hmac_finish( &ctx, output );
439
440 memset( &ctx, 0, sizeof( sha2_context ) );
441 }