Merge branch 'debian' into hcoop_489
[hcoop/debian/exim4.git] / src / dane-openssl.c
CommitLineData
2813c06e
CE
1/*
2 * Author: Viktor Dukhovni
3 * License: THIS CODE IS IN THE PUBLIC DOMAIN.
4 *
5 * Copyright (c) The Exim Maintainers 2014 - 2016
6 */
7#include <stdio.h>
8#include <string.h>
9#include <stdint.h>
10
11#include <openssl/opensslv.h>
12#include <openssl/err.h>
13#include <openssl/crypto.h>
14#include <openssl/safestack.h>
15#include <openssl/objects.h>
16#include <openssl/x509.h>
17#include <openssl/x509v3.h>
18#include <openssl/evp.h>
19#include <openssl/bn.h>
20
21#if OPENSSL_VERSION_NUMBER < 0x1000000fL
22# error "OpenSSL 1.0.0 or higher required"
23#endif
24
25#if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
26# define X509_up_ref(x) CRYPTO_add(&((x)->references), 1, CRYPTO_LOCK_X509)
27#endif
28#if OPENSSL_VERSION_NUMBER >= 0x10100000L && !defined(LIBRESSL_VERSION_NUMBER)
29# define EXIM_HAVE_ASN1_MACROS
30# define EXIM_OPAQUE_X509
31#else
32# define X509_STORE_CTX_get_verify(ctx) (ctx)->verify
33# define X509_STORE_CTX_get_verify_cb(ctx) (ctx)->verify_cb
34# define X509_STORE_CTX_get0_cert(ctx) (ctx)->cert
35# define X509_STORE_CTX_get0_chain(ctx) (ctx)->chain
36# define X509_STORE_CTX_get0_untrusted(ctx) (ctx)->untrusted
37
38# define X509_STORE_CTX_set_verify(ctx, verify_chain) (ctx)->verify = (verify_chain)
39# define X509_STORE_CTX_set0_verified_chain(ctx, sk) (ctx)->chain = (sk)
40# define X509_STORE_CTX_set_error_depth(ctx, val) (ctx)->error_depth = (val)
41# define X509_STORE_CTX_set_current_cert(ctx, cert) (ctx)->current_cert = (cert)
42
43# define ASN1_STRING_get0_data ASN1_STRING_data
44# define X509_getm_notBefore X509_get_notBefore
45# define X509_getm_notAfter X509_get_notAfter
46
47# define CRYPTO_ONCE_STATIC_INIT 0
48# define CRYPTO_THREAD_run_once run_once
49typedef int CRYPTO_ONCE;
50#endif
51
52
53#include "danessl.h"
54
55#define DANESSL_F_ADD_SKID 100
56#define DANESSL_F_ADD_TLSA 101
57#define DANESSL_F_CHECK_END_ENTITY 102
58#define DANESSL_F_CTX_INIT 103
59#define DANESSL_F_GROW_CHAIN 104
60#define DANESSL_F_INIT 105
61#define DANESSL_F_LIBRARY_INIT 106
62#define DANESSL_F_LIST_ALLOC 107
63#define DANESSL_F_MATCH 108
64#define DANESSL_F_PUSH_EXT 109
65#define DANESSL_F_SET_TRUST_ANCHOR 110
66#define DANESSL_F_VERIFY_CERT 111
67#define DANESSL_F_WRAP_CERT 112
68#define DANESSL_F_DANESSL_VERIFY_CHAIN 113
69
70#define DANESSL_R_BAD_CERT 100
71#define DANESSL_R_BAD_CERT_PKEY 101
72#define DANESSL_R_BAD_DATA_LENGTH 102
73#define DANESSL_R_BAD_DIGEST 103
74#define DANESSL_R_BAD_NULL_DATA 104
75#define DANESSL_R_BAD_PKEY 105
76#define DANESSL_R_BAD_SELECTOR 106
77#define DANESSL_R_BAD_USAGE 107
78#define DANESSL_R_INIT 108
79#define DANESSL_R_LIBRARY_INIT 109
80#define DANESSL_R_NOSIGN_KEY 110
81#define DANESSL_R_SCTX_INIT 111
82#define DANESSL_R_SUPPORT 112
83
84#ifndef OPENSSL_NO_ERR
85#define DANESSL_F_PLACEHOLDER 0 /* FIRST! Value TBD */
86static ERR_STRING_DATA dane_str_functs[] = {
87 {DANESSL_F_PLACEHOLDER, "DANE library"}, /* FIRST!!! */
88 {DANESSL_F_ADD_SKID, "add_skid"},
89 {DANESSL_F_ADD_TLSA, "DANESSL_add_tlsa"},
90 {DANESSL_F_CHECK_END_ENTITY, "check_end_entity"},
91 {DANESSL_F_CTX_INIT, "DANESSL_CTX_init"},
92 {DANESSL_F_GROW_CHAIN, "grow_chain"},
93 {DANESSL_F_INIT, "DANESSL_init"},
94 {DANESSL_F_LIBRARY_INIT, "DANESSL_library_init"},
95 {DANESSL_F_LIST_ALLOC, "list_alloc"},
96 {DANESSL_F_MATCH, "match"},
97 {DANESSL_F_PUSH_EXT, "push_ext"},
98 {DANESSL_F_SET_TRUST_ANCHOR, "set_trust_anchor"},
99 {DANESSL_F_VERIFY_CERT, "verify_cert"},
100 {DANESSL_F_WRAP_CERT, "wrap_cert"},
101 {0, NULL}
102};
103static ERR_STRING_DATA dane_str_reasons[] = {
104 {DANESSL_R_BAD_CERT, "Bad TLSA record certificate"},
105 {DANESSL_R_BAD_CERT_PKEY, "Bad TLSA record certificate public key"},
106 {DANESSL_R_BAD_DATA_LENGTH, "Bad TLSA record digest length"},
107 {DANESSL_R_BAD_DIGEST, "Bad TLSA record digest"},
108 {DANESSL_R_BAD_NULL_DATA, "Bad TLSA record null data"},
109 {DANESSL_R_BAD_PKEY, "Bad TLSA record public key"},
110 {DANESSL_R_BAD_SELECTOR, "Bad TLSA record selector"},
111 {DANESSL_R_BAD_USAGE, "Bad TLSA record usage"},
112 {DANESSL_R_INIT, "DANESSL_init() required"},
113 {DANESSL_R_LIBRARY_INIT, "DANESSL_library_init() required"},
114 {DANESSL_R_NOSIGN_KEY, "Certificate usage 2 requires EC support"},
115 {DANESSL_R_SCTX_INIT, "DANESSL_CTX_init() required"},
116 {DANESSL_R_SUPPORT, "DANE library features not supported"},
117 {0, NULL}
118};
119#endif
120
121#define DANEerr(f, r) ERR_PUT_error(err_lib_dane, (f), (r), __FILE__, __LINE__)
122
123static int err_lib_dane = -1;
124static int dane_idx = -1;
125
126#ifdef X509_V_FLAG_PARTIAL_CHAIN /* OpenSSL >= 1.0.2 */
127static int wrap_to_root = 0;
128#else
129static int wrap_to_root = 1;
130#endif
131
132static void (*cert_free)(void *) = (void (*)(void *)) X509_free;
133static void (*pkey_free)(void *) = (void (*)(void *)) EVP_PKEY_free;
134
135typedef struct dane_list
136{
137 struct dane_list *next;
138 void *value;
139} *dane_list;
140
141#define LINSERT(h, e) do { (e)->next = (h); (h) = (e); } while (0)
142
143typedef struct dane_host_list
144{
145 struct dane_host_list *next;
146 char *value;
147} *dane_host_list;
148
149typedef struct dane_data
150{
151 size_t datalen;
152 unsigned char data[0];
153} *dane_data;
154
155typedef struct dane_data_list
156{
157 struct dane_data_list *next;
158 dane_data value;
159} *dane_data_list;
160
161typedef struct dane_mtype
162{
163 int mdlen;
164 const EVP_MD *md;
165 dane_data_list data;
166} *dane_mtype;
167
168typedef struct dane_mtype_list
169{
170 struct dane_mtype_list *next;
171 dane_mtype value;
172} *dane_mtype_list;
173
174typedef struct dane_selector
175{
176 uint8_t selector;
177 dane_mtype_list mtype;
178} *dane_selector;
179
180typedef struct dane_selector_list
181{
182 struct dane_selector_list *next;
183 dane_selector value;
184} *dane_selector_list;
185
186typedef struct dane_pkey_list
187{
188 struct dane_pkey_list *next;
189 EVP_PKEY *value;
190} *dane_pkey_list;
191
192typedef struct dane_cert_list
193{
194 struct dane_cert_list *next;
195 X509 *value;
196} *dane_cert_list;
197
198typedef struct ssl_dane
199{
200 int (*verify)(X509_STORE_CTX *);
201 STACK_OF(X509) *roots;
202 STACK_OF(X509) *chain;
203 X509 *match; /* Matched cert */
204 const char *thost; /* TLSA base domain */
205 char *mhost; /* Matched peer name */
206 dane_pkey_list pkeys;
207 dane_cert_list certs;
208 dane_host_list hosts;
209 dane_selector_list selectors[DANESSL_USAGE_LAST + 1];
210 int depth;
211 int mdpth; /* Depth of matched cert */
212 int multi; /* Multi-label wildcards? */
213 int count; /* Number of TLSA records */
214} ssl_dane;
215
216#ifndef X509_V_ERR_HOSTNAME_MISMATCH
217# define X509_V_ERR_HOSTNAME_MISMATCH X509_V_ERR_APPLICATION_VERIFICATION
218#endif
219
220
221
222static int
223match(dane_selector_list slist, X509 *cert, int depth)
224{
225int matched;
226
227/*
228 * Note, set_trust_anchor() needs to know whether the match was for a
229 * pkey digest or a certificate digest. We return MATCHED_PKEY or
230 * MATCHED_CERT accordingly.
231 */
232#define MATCHED_CERT (DANESSL_SELECTOR_CERT + 1)
233#define MATCHED_PKEY (DANESSL_SELECTOR_SPKI + 1)
234
235/*
236 * Loop over each selector, mtype, and associated data element looking
237 * for a match.
238 */
239for (matched = 0; !matched && slist; slist = slist->next)
240 {
241 dane_mtype_list m;
242 unsigned char mdbuf[EVP_MAX_MD_SIZE];
243 unsigned char *buf = NULL;
244 unsigned char *buf2;
245 unsigned int len = 0;
246
247 /*
248 * Extract ASN.1 DER form of certificate or public key.
249 */
250 switch(slist->value->selector)
251 {
252 case DANESSL_SELECTOR_CERT:
253 len = i2d_X509(cert, NULL);
254 buf2 = buf = (unsigned char *) OPENSSL_malloc(len);
255 if(buf) i2d_X509(cert, &buf2);
256 break;
257 case DANESSL_SELECTOR_SPKI:
258 len = i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), NULL);
259 buf2 = buf = (unsigned char *) OPENSSL_malloc(len);
260 if(buf) i2d_X509_PUBKEY(X509_get_X509_PUBKEY(cert), &buf2);
261 break;
262 }
263
264 if (!buf)
265 {
266 DANEerr(DANESSL_F_MATCH, ERR_R_MALLOC_FAILURE);
267 return 0;
268 }
269 OPENSSL_assert(buf2 - buf == len);
270
271 /*
272 * Loop over each mtype and data element
273 */
274 for (m = slist->value->mtype; !matched && m; m = m->next)
275 {
276 dane_data_list d;
277 unsigned char *cmpbuf = buf;
278 unsigned int cmplen = len;
279
280 /*
281 * If it is a digest, compute the corresponding digest of the
282 * DER data for comparison, otherwise, use the full object.
283 */
284 if (m->value->md)
285 {
286 cmpbuf = mdbuf;
287 if (!EVP_Digest(buf, len, cmpbuf, &cmplen, m->value->md, 0))
288 matched = -1;
289 }
290 for (d = m->value->data; !matched && d; d = d->next)
291 if ( cmplen == d->value->datalen
292 && memcmp(cmpbuf, d->value->data, cmplen) == 0)
293 matched = slist->value->selector + 1;
294 }
295
296 OPENSSL_free(buf);
297 }
298
299return matched;
300}
301
302static int
303push_ext(X509 *cert, X509_EXTENSION *ext)
304{
305if (ext)
306 {
307 if (X509_add_ext(cert, ext, -1))
308 return 1;
309 X509_EXTENSION_free(ext);
310 }
311DANEerr(DANESSL_F_PUSH_EXT, ERR_R_MALLOC_FAILURE);
312return 0;
313}
314
315static int
316add_ext(X509 *issuer, X509 *subject, int ext_nid, char *ext_val)
317{
318X509V3_CTX v3ctx;
319
320X509V3_set_ctx(&v3ctx, issuer, subject, 0, 0, 0);
321return push_ext(subject, X509V3_EXT_conf_nid(0, &v3ctx, ext_nid, ext_val));
322}
323
324static int
325set_serial(X509 *cert, AUTHORITY_KEYID *akid, X509 *subject)
326{
327int ret = 0;
328BIGNUM *bn;
329
330if (akid && akid->serial)
331 return (X509_set_serialNumber(cert, akid->serial));
332
333/*
334 * Add one to subject's serial to avoid collisions between TA serial and
335 * serial of signing root.
336 */
337if ( (bn = ASN1_INTEGER_to_BN(X509_get_serialNumber(subject), 0)) != 0
338 && BN_add_word(bn, 1)
339 && BN_to_ASN1_INTEGER(bn, X509_get_serialNumber(cert)))
340 ret = 1;
341
342if (bn)
343 BN_free(bn);
344return ret;
345}
346
347static int
348add_akid(X509 *cert, AUTHORITY_KEYID *akid)
349{
350int nid = NID_authority_key_identifier;
351ASN1_OCTET_STRING *id;
352unsigned char c = 0;
353int ret = 0;
354
355/*
356 * 0 will never be our subject keyid from a SHA-1 hash, but it could be
357 * our subject keyid if forced from child's akid. If so, set our
358 * authority keyid to 1. This way we are never self-signed, and thus
359 * exempt from any potential (off by default for now in OpenSSL)
360 * self-signature checks!
361 */
362id = akid && akid->keyid ? akid->keyid : 0;
363if (id && ASN1_STRING_length(id) == 1 && *ASN1_STRING_get0_data(id) == c)
364 c = 1;
365
366if ( (akid = AUTHORITY_KEYID_new()) != 0
367 && (akid->keyid = ASN1_OCTET_STRING_new()) != 0
368#ifdef EXIM_HAVE_ASN1_MACROS
369 && ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1)
370#else
371 && M_ASN1_OCTET_STRING_set(akid->keyid, (void *) &c, 1)
372#endif
373 && X509_add1_ext_i2d(cert, nid, akid, 0, X509V3_ADD_APPEND))
374 ret = 1;
375if (akid)
376 AUTHORITY_KEYID_free(akid);
377return ret;
378}
379
380static int
381add_skid(X509 *cert, AUTHORITY_KEYID *akid)
382{
383int nid = NID_subject_key_identifier;
384
385if (!akid || !akid->keyid)
386 return add_ext(0, cert, nid, "hash");
387return X509_add1_ext_i2d(cert, nid, akid->keyid, 0, X509V3_ADD_APPEND) > 0;
388}
389
390static X509_NAME *
391akid_issuer_name(AUTHORITY_KEYID *akid)
392{
393if (akid && akid->issuer)
394 {
395 int i;
396 GENERAL_NAMES *gens = akid->issuer;
397
398 for (i = 0; i < sk_GENERAL_NAME_num(gens); ++i)
399 {
400 GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
401
402 if (gn->type == GEN_DIRNAME)
403 return (gn->d.dirn);
404 }
405 }
406return 0;
407}
408
409static int
410set_issuer_name(X509 *cert, AUTHORITY_KEYID *akid)
411{
412X509_NAME *name = akid_issuer_name(akid);
413
414/*
415 * If subject's akid specifies an authority key identifer issuer name, we
416 * must use that.
417 */
418return X509_set_issuer_name(cert,
419 name ? name : X509_get_subject_name(cert));
420}
421
422static int
423grow_chain(ssl_dane *dane, int trusted, X509 *cert)
424{
425STACK_OF(X509) **xs = trusted ? &dane->roots : &dane->chain;
426static ASN1_OBJECT *serverAuth = 0;
427
428#define UNTRUSTED 0
429#define TRUSTED 1
430
431if ( trusted && !serverAuth
432 && !(serverAuth = OBJ_nid2obj(NID_server_auth)))
433 {
434 DANEerr(DANESSL_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
435 return 0;
436 }
437if (!*xs && !(*xs = sk_X509_new_null()))
438 {
439 DANEerr(DANESSL_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
440 return 0;
441 }
442
443if (cert)
444 {
445 if (trusted && !X509_add1_trust_object(cert, serverAuth))
446 return 0;
447#ifdef EXIM_OPAQUE_X509
448 X509_up_ref(cert);
449#else
450 CRYPTO_add(&cert->references, 1, CRYPTO_LOCK_X509);
451#endif
452 if (!sk_X509_push(*xs, cert))
453 {
454 X509_free(cert);
455 DANEerr(DANESSL_F_GROW_CHAIN, ERR_R_MALLOC_FAILURE);
456 return 0;
457 }
458 }
459return 1;
460}
461
462static int
463wrap_issuer(ssl_dane *dane, EVP_PKEY *key, X509 *subject, int depth, int top)
464{
465int ret = 1;
466X509 *cert = 0;
467AUTHORITY_KEYID *akid;
468X509_NAME *name = X509_get_issuer_name(subject);
469EVP_PKEY *newkey = key ? key : X509_get_pubkey(subject);
470
471#define WRAP_MID 0 /* Ensure intermediate. */
472#define WRAP_TOP 1 /* Ensure self-signed. */
473
474if (!name || !newkey || !(cert = X509_new()))
475 return 0;
476
477/*
478 * Record the depth of the trust-anchor certificate.
479 */
480if (dane->depth < 0)
481 dane->depth = depth + 1;
482
483/*
484 * XXX: Uncaught error condition:
485 *
486 * The return value is NULL both when the extension is missing, and when
487 * OpenSSL rans out of memory while parsing the extension.
488 */
489ERR_clear_error();
490akid = X509_get_ext_d2i(subject, NID_authority_key_identifier, 0, 0);
491/* XXX: Should we peek at the error stack here??? */
492
493/*
494 * If top is true generate a self-issued root CA, otherwise an
495 * intermediate CA and possibly its self-signed issuer.
496 *
497 * CA cert valid for +/- 30 days
498 */
499if ( !X509_set_version(cert, 2)
500 || !set_serial(cert, akid, subject)
501 || !set_issuer_name(cert, akid)
502 || !X509_gmtime_adj(X509_getm_notBefore(cert), -30 * 86400L)
503 || !X509_gmtime_adj(X509_getm_notAfter(cert), 30 * 86400L)
504 || !X509_set_subject_name(cert, name)
505 || !X509_set_pubkey(cert, newkey)
506 || !add_ext(0, cert, NID_basic_constraints, "CA:TRUE")
507 || (!top && !add_akid(cert, akid))
508 || !add_skid(cert, akid)
509 || ( !top && wrap_to_root
510 && !wrap_issuer(dane, newkey, cert, depth, WRAP_TOP)))
511 ret = 0;
512
513if (akid)
514 AUTHORITY_KEYID_free(akid);
515if (!key)
516 EVP_PKEY_free(newkey);
517if (ret)
518 ret = grow_chain(dane, !top && wrap_to_root ? UNTRUSTED : TRUSTED, cert);
519if (cert)
520 X509_free(cert);
521return ret;
522}
523
524static int
525wrap_cert(ssl_dane *dane, X509 *tacert, int depth)
526{
527if (dane->depth < 0)
528 dane->depth = depth + 1;
529
530/*
531 * If the TA certificate is self-issued, or need not be, use it directly.
532 * Otherwise, synthesize requisite ancestors.
533 */
534if ( !wrap_to_root
535 || X509_check_issued(tacert, tacert) == X509_V_OK)
536 return grow_chain(dane, TRUSTED, tacert);
537
538if (wrap_issuer(dane, 0, tacert, depth, WRAP_MID))
539 return grow_chain(dane, UNTRUSTED, tacert);
540return 0;
541}
542
543static int
544ta_signed(ssl_dane *dane, X509 *cert, int depth)
545{
546dane_cert_list x;
547dane_pkey_list k;
548EVP_PKEY *pk;
549int done = 0;
550
551/*
552 * First check whether issued and signed by a TA cert, this is cheaper
553 * than the bare-public key checks below, since we can determine whether
554 * the candidate TA certificate issued the certificate to be checked
555 * first (name comparisons), before we bother with signature checks
556 * (public key operations).
557 */
558for (x = dane->certs; !done && x; x = x->next)
559 {
560 if (X509_check_issued(x->value, cert) == X509_V_OK)
561 {
562 if (!(pk = X509_get_pubkey(x->value)))
563 {
564 /*
565 * The cert originally contained a valid pkey, which does
566 * not just vanish, so this is most likely a memory error.
567 */
568 done = -1;
569 break;
570 }
571 /* Check signature, since some other TA may work if not this. */
572 if (X509_verify(cert, pk) > 0)
573 done = wrap_cert(dane, x->value, depth) ? 1 : -1;
574 EVP_PKEY_free(pk);
575 }
576 }
577
578/*
579 * With bare TA public keys, we can't check whether the trust chain is
580 * issued by the key, but we can determine whether it is signed by the
581 * key, so we go with that.
582 *
583 * Ideally, the corresponding certificate was presented in the chain, and we
584 * matched it by its public key digest one level up. This code is here
585 * to handle adverse conditions imposed by sloppy administrators of
586 * receiving systems with poorly constructed chains.
587 *
588 * We'd like to optimize out keys that should not match when the cert's
589 * authority key id does not match the key id of this key computed via
590 * the RFC keyid algorithm (SHA-1 digest of public key bit-string sans
591 * ASN1 tag and length thus also excluding the unused bits field that is
592 * logically part of the length). However, some CAs have a non-standard
593 * authority keyid, so we lose. Too bad.
594 *
595 * This may push errors onto the stack when the certificate signature is
596 * not of the right type or length, throw these away,
597 */
598for (k = dane->pkeys; !done && k; k = k->next)
599 if (X509_verify(cert, k->value) > 0)
600 done = wrap_issuer(dane, k->value, cert, depth, WRAP_MID) ? 1 : -1;
601 else
602 ERR_clear_error();
603
604return done;
605}
606
607static int
608set_trust_anchor(X509_STORE_CTX *ctx, ssl_dane *dane, X509 *cert)
609{
610int matched = 0;
611int n;
612int i;
613int depth = 0;
614EVP_PKEY *takey;
615X509 *ca;
616STACK_OF(X509) *in = X509_STORE_CTX_get0_untrusted(ctx);
617
618if (!grow_chain(dane, UNTRUSTED, 0))
619 return -1;
620
621/*
622 * Accept a degenerate case: depth 0 self-signed trust-anchor.
623 */
624if (X509_check_issued(cert, cert) == X509_V_OK)
625 {
626 dane->depth = 0;
627 matched = match(dane->selectors[DANESSL_USAGE_DANE_TA], cert, 0);
628 if (matched > 0 && !grow_chain(dane, TRUSTED, cert))
629 matched = -1;
630 return matched;
631 }
632
633/* Make a shallow copy of the input untrusted chain. */
634if (!(in = sk_X509_dup(in)))
635 {
636 DANEerr(DANESSL_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
637 return -1;
638 }
639
640/*
641 * At each iteration we consume the issuer of the current cert. This
642 * reduces the length of the "in" chain by one. If no issuer is found,
643 * we are done. We also stop when a certificate matches a TA in the
644 * peer's TLSA RRset.
645 *
646 * Caller ensures that the initial certificate is not self-signed.
647 */
648for (n = sk_X509_num(in); n > 0; --n, ++depth)
649 {
650 for (i = 0; i < n; ++i)
651 if (X509_check_issued(sk_X509_value(in, i), cert) == X509_V_OK)
652 break;
653
654 /*
655 * Final untrusted element with no issuer in the peer's chain, it may
656 * however be signed by a pkey or cert obtained via a TLSA RR.
657 */
658 if (i == n)
659 break;
660
661 /* Peer's chain contains an issuer ca. */
662 ca = sk_X509_delete(in, i);
663
664 /* If not a trust anchor, record untrusted ca and continue. */
665 if ((matched = match(dane->selectors[DANESSL_USAGE_DANE_TA], ca,
666 depth + 1)) == 0)
667 {
668 if (grow_chain(dane, UNTRUSTED, ca))
669 {
670 if (X509_check_issued(ca, ca) != X509_V_OK)
671 {
672 /* Restart with issuer as subject */
673 cert = ca;
674 continue;
675 }
676 /* Final self-signed element, skip ta_signed() check. */
677 cert = 0;
678 }
679 else
680 matched = -1;
681 }
682 else if(matched == MATCHED_CERT)
683 {
684 if(!wrap_cert(dane, ca, depth))
685 matched = -1;
686 }
687 else if(matched == MATCHED_PKEY)
688 {
689 if ( !(takey = X509_get_pubkey(ca))
690 || !wrap_issuer(dane, takey, cert, depth, WRAP_MID))
691 {
692 if (takey)
693 EVP_PKEY_free(takey);
694 else
695 DANEerr(DANESSL_F_SET_TRUST_ANCHOR, ERR_R_MALLOC_FAILURE);
696 matched = -1;
697 }
698 }
699 break;
700 }
701
702/* Shallow free the duplicated input untrusted chain. */
703sk_X509_free(in);
704
705/*
706 * When the loop exits, if "cert" is set, it is not self-signed and has
707 * no issuer in the chain, we check for a possible signature via a DNS
708 * obtained TA cert or public key.
709 */
710if (matched == 0 && cert)
711 matched = ta_signed(dane, cert, depth);
712
713return matched;
714}
715
716static int
717check_end_entity(X509_STORE_CTX *ctx, ssl_dane *dane, X509 *cert)
718{
719int matched;
720
721matched = match(dane->selectors[DANESSL_USAGE_DANE_EE], cert, 0);
722if (matched > 0)
723 {
724 dane->mdpth = 0;
725 dane->match = cert;
726 X509_up_ref(cert);
727 if(!X509_STORE_CTX_get0_chain(ctx))
728 {
729 STACK_OF(X509) * sk = sk_X509_new_null();
730 if (sk && sk_X509_push(sk, cert))
731 {
732 X509_up_ref(cert);
733 X509_STORE_CTX_set0_verified_chain(ctx, sk);
734 }
735 else
736 {
737 if (sk) sk_X509_free(sk);
738 DANEerr(DANESSL_F_CHECK_END_ENTITY, ERR_R_MALLOC_FAILURE);
739 return -1;
740 }
741 }
742 }
743return matched;
744}
745
746static int
747match_name(const char *certid, ssl_dane *dane)
748{
749int multi = dane->multi;
750dane_host_list hosts;
751
752for (hosts = dane->hosts; hosts; hosts = hosts->next)
753 {
754 int match_subdomain = 0;
755 const char *domain = hosts->value;
756 const char *parent;
757 int idlen;
758 int domlen;
759
760 if (*domain == '.' && domain[1] != '\0')
761 {
762 ++domain;
763 match_subdomain = 1;
764 }
765
766 /*
767 * Sub-domain match: certid is any sub-domain of hostname.
768 */
769 if(match_subdomain)
770 {
771 if ( (idlen = strlen(certid)) > (domlen = strlen(domain)) + 1
772 && certid[idlen - domlen - 1] == '.'
773 && !strcasecmp(certid + (idlen - domlen), domain))
774 return 1;
775 else
776 continue;
777 }
778
779 /*
780 * Exact match and initial "*" match. The initial "*" in a certid
781 * matches one (if multi is false) or more hostname components under
782 * the condition that the certid contains multiple hostname components.
783 */
784 if ( !strcasecmp(certid, domain)
785 || ( certid[0] == '*' && certid[1] == '.' && certid[2] != 0
786 && (parent = strchr(domain, '.')) != 0
787 && (idlen = strlen(certid + 1)) <= (domlen = strlen(parent))
788 && strcasecmp(multi ? parent + domlen - idlen : parent, certid+1) == 0))
789 return 1;
790 }
791return 0;
792}
793
794static const char *
795check_name(const char *name, int len)
796{
797const char *cp = name + len;
798
799while (len > 0 && !*--cp)
800 --len; /* Ignore trailing NULs */
801if (len <= 0)
802 return 0;
803for (cp = name; *cp; cp++)
804 {
805 char c = *cp;
806 if (!((c >= 'a' && c <= 'z') ||
807 (c >= '0' && c <= '9') ||
808 (c >= 'A' && c <= 'Z') ||
809 (c == '.' || c == '-') ||
810 (c == '*')))
811 return 0; /* Only LDH, '.' and '*' */
812 }
813if (cp - name != len) /* Guard against internal NULs */
814 return 0;
815return name;
816}
817
818static const char *
819parse_dns_name(const GENERAL_NAME *gn)
820{
821if (gn->type != GEN_DNS)
822 return 0;
823if (ASN1_STRING_type(gn->d.ia5) != V_ASN1_IA5STRING)
824 return 0;
825return check_name((const char *) ASN1_STRING_get0_data(gn->d.ia5),
826 ASN1_STRING_length(gn->d.ia5));
827}
828
829static char *
830parse_subject_name(X509 *cert)
831{
832X509_NAME *name = X509_get_subject_name(cert);
833X509_NAME_ENTRY *entry;
834ASN1_STRING *entry_str;
835unsigned char *namebuf;
836int nid = NID_commonName;
837int len;
838int i;
839
840if (!name || (i = X509_NAME_get_index_by_NID(name, nid, -1)) < 0)
841 return 0;
842if (!(entry = X509_NAME_get_entry(name, i)))
843 return 0;
844if (!(entry_str = X509_NAME_ENTRY_get_data(entry)))
845 return 0;
846
847if ((len = ASN1_STRING_to_UTF8(&namebuf, entry_str)) < 0)
848 return 0;
849if (len <= 0 || check_name((char *) namebuf, len) == 0)
850 {
851 OPENSSL_free(namebuf);
852 return 0;
853 }
854return (char *) namebuf;
855}
856
857static int
858name_check(ssl_dane *dane, X509 *cert)
859{
860int matched = 0;
861BOOL got_altname = FALSE;
862GENERAL_NAMES *gens;
863
864gens = X509_get_ext_d2i(cert, NID_subject_alt_name, 0, 0);
865if (gens)
866 {
867 int n = sk_GENERAL_NAME_num(gens);
868 int i;
869
870 for (i = 0; i < n; ++i)
871 {
872 const GENERAL_NAME *gn = sk_GENERAL_NAME_value(gens, i);
873 const char *certid;
874
875 if (gn->type != GEN_DNS)
876 continue;
877 got_altname = TRUE;
878 certid = parse_dns_name(gn);
879 if (certid && *certid)
880 {
881 if ((matched = match_name(certid, dane)) == 0)
882 continue;
883 if (!(dane->mhost = OPENSSL_strdup(certid)))
884 matched = -1;
885 DEBUG(D_tls) debug_printf("Dane name_check: matched SAN %s\n", certid);
886 break;
887 }
888 }
889 GENERAL_NAMES_free(gens);
890 }
891
892/*
893 * XXX: Should the subjectName be skipped when *any* altnames are present,
894 * or only when DNS altnames are present?
895 */
896if (!got_altname)
897 {
898 char *certid = parse_subject_name(cert);
899 if (certid != 0 && *certid && (matched = match_name(certid, dane)) != 0)
900 {
901 DEBUG(D_tls) debug_printf("Dane name_check: matched SN %s\n", certid);
902 dane->mhost = OPENSSL_strdup(certid);
903 }
904 if (certid)
905 OPENSSL_free(certid);
906 }
907return matched;
908}
909
910static int
911verify_chain(X509_STORE_CTX *ctx)
912{
913int (*cb)(int, X509_STORE_CTX *) = X509_STORE_CTX_get_verify_cb(ctx);
914X509 *cert = X509_STORE_CTX_get0_cert(ctx);
915STACK_OF(X509) * chain = X509_STORE_CTX_get0_chain(ctx);
916int chain_length = sk_X509_num(chain);
917int ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
918SSL *ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx);
919ssl_dane *dane = SSL_get_ex_data(ssl, dane_idx);
920dane_selector_list issuer_rrs = dane->selectors[DANESSL_USAGE_PKIX_TA];
921dane_selector_list leaf_rrs = dane->selectors[DANESSL_USAGE_PKIX_EE];
922int matched = 0;
923
924DEBUG(D_tls) debug_printf("Dane verify_chain\n");
925
926/* Restore OpenSSL's internal_verify() as the signature check function */
927X509_STORE_CTX_set_verify(ctx, dane->verify);
928
929if ((matched = name_check(dane, cert)) < 0)
930 {
931 X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
932 return 0;
933 }
934
935if (!matched)
936 {
937 X509_STORE_CTX_set_error_depth(ctx, 0);
938 X509_STORE_CTX_set_current_cert(ctx, cert);
939 X509_STORE_CTX_set_error(ctx, X509_V_ERR_HOSTNAME_MISMATCH);
940 if (!cb(0, ctx))
941 return 0;
942 }
943matched = 0;
944
945/*
946 * Satisfy at least one usage 0 or 1 constraint, unless we've already
947 * matched a usage 2 trust anchor.
948 *
949 * XXX: internal_verify() doesn't callback with top certs that are not
950 * self-issued. This is fixed in OpenSSL 1.1.0.
951 */
952if (dane->roots && sk_X509_num(dane->roots))
953 {
954 X509 *top = sk_X509_value(chain, dane->depth);
955
956 dane->mdpth = dane->depth;
957 dane->match = top;
958 X509_up_ref(top);
959
960#if OPENSSL_VERSION_NUMBER < 0x10100000L
961 if (X509_check_issued(top, top) != X509_V_OK)
962 {
963 X509_STORE_CTX_set_error_depth(ctx, dane->depth);
964 X509_STORE_CTX_set_current_cert(ctx, top);
965 if (!cb(1, ctx))
966 return 0;
967 }
968#endif
969 /* Pop synthetic trust-anchor ancestors off the chain! */
970 while (--chain_length > dane->depth)
971 X509_free(sk_X509_pop(chain));
972 }
973else
974 {
975 int n = 0;
976 X509 *xn = cert;
977
978 /*
979 * Check for an EE match, then a CA match at depths > 0, and
980 * finally, if the EE cert is self-issued, for a depth 0 CA match.
981 */
982 if (leaf_rrs)
983 matched = match(leaf_rrs, xn, 0);
984 if (matched) DEBUG(D_tls) debug_printf("Dane verify_chain: matched EE\n");
985
986 if (!matched && issuer_rrs)
987 for (n = chain_length-1; !matched && n >= 0; --n)
988 {
989 xn = sk_X509_value(chain, n);
990 if (n > 0 || X509_check_issued(xn, xn) == X509_V_OK)
991 matched = match(issuer_rrs, xn, n);
992 }
993 if (matched) DEBUG(D_tls) debug_printf("Dane verify_chain: matched %s\n",
994 n>0 ? "CA" : "selfisssued EE");
995
996 if (!matched)
997 {
998 X509_STORE_CTX_set_error_depth(ctx, 0);
999 X509_STORE_CTX_set_current_cert(ctx, cert);
1000 X509_STORE_CTX_set_error(ctx, X509_V_ERR_CERT_UNTRUSTED);
1001 if (!cb(0, ctx))
1002 return 0;
1003 }
1004 else
1005 {
1006 dane->mdpth = n;
1007 dane->match = xn;
1008 X509_up_ref(xn);
1009 }
1010 }
1011
1012/* Tail recurse into OpenSSL's internal_verify */
1013return dane->verify(ctx);
1014}
1015
1016static void
1017dane_reset(ssl_dane *dane)
1018{
1019dane->depth = -1;
1020if (dane->mhost)
1021 {
1022 OPENSSL_free(dane->mhost);
1023 dane->mhost = 0;
1024 }
1025if (dane->roots)
1026 {
1027 sk_X509_pop_free(dane->roots, X509_free);
1028 dane->roots = 0;
1029 }
1030if (dane->chain)
1031 {
1032 sk_X509_pop_free(dane->chain, X509_free);
1033 dane->chain = 0;
1034 }
1035if (dane->match)
1036 {
1037 X509_free(dane->match);
1038 dane->match = 0;
1039 }
1040dane->mdpth = -1;
1041}
1042
1043static int
1044verify_cert(X509_STORE_CTX *ctx, void *unused_ctx)
1045{
1046static int ssl_idx = -1;
1047SSL *ssl;
1048ssl_dane *dane;
1049int (*cb)(int, X509_STORE_CTX *) = X509_STORE_CTX_get_verify_cb(ctx);
1050X509 *cert = X509_STORE_CTX_get0_cert(ctx);
1051int matched;
1052
1053DEBUG(D_tls) debug_printf("Dane verify_cert\n");
1054
1055if (ssl_idx < 0)
1056 ssl_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
1057if (dane_idx < 0)
1058 {
1059 DANEerr(DANESSL_F_VERIFY_CERT, ERR_R_MALLOC_FAILURE);
1060 return -1;
1061 }
1062
1063ssl = X509_STORE_CTX_get_ex_data(ctx, ssl_idx);
1064if (!(dane = SSL_get_ex_data(ssl, dane_idx)) || !cert)
1065 return X509_verify_cert(ctx);
1066
1067/* Reset for verification of a new chain, perhaps a renegotiation. */
1068dane_reset(dane);
1069
1070if (dane->selectors[DANESSL_USAGE_DANE_EE])
1071 {
1072 if ((matched = check_end_entity(ctx, dane, cert)) > 0)
1073 {
1074 X509_STORE_CTX_set_error_depth(ctx, 0);
1075 X509_STORE_CTX_set_current_cert(ctx, cert);
1076 return cb(1, ctx);
1077 }
1078 if (matched < 0)
1079 {
1080 X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
1081 return -1;
1082 }
1083 }
1084
1085 if (dane->selectors[DANESSL_USAGE_DANE_TA])
1086 {
1087 if ((matched = set_trust_anchor(ctx, dane, cert)) < 0)
1088 {
1089 X509_STORE_CTX_set_error(ctx, X509_V_ERR_OUT_OF_MEM);
1090 return -1;
1091 }
1092 if (matched)
1093 {
1094 /*
1095 * Check that setting the untrusted chain updates the expected
1096 * structure member at the expected offset.
1097 */
1098 X509_STORE_CTX_trusted_stack(ctx, dane->roots);
1099 X509_STORE_CTX_set_chain(ctx, dane->chain);
1100 OPENSSL_assert(dane->chain == X509_STORE_CTX_get0_untrusted(ctx));
1101 }
1102 }
1103
1104 /*
1105 * Name checks and usage 0/1 constraint enforcement are delayed until
1106 * X509_verify_cert() builds the full chain and calls our verify_chain()
1107 * wrapper.
1108 */
1109 dane->verify = X509_STORE_CTX_get_verify(ctx);
1110 X509_STORE_CTX_set_verify(ctx, verify_chain);
1111
1112 if (X509_verify_cert(ctx))
1113 return 1;
1114
1115 /*
1116 * If the chain is invalid, clear any matching cert or hostname, to
1117 * protect callers that might erroneously rely on these alone without
1118 * checking the validation status.
1119 */
1120 if (dane->match)
1121 {
1122 X509_free(dane->match);
1123 dane->match = 0;
1124 }
1125 if (dane->mhost)
1126 {
1127 OPENSSL_free(dane->mhost);
1128 dane->mhost = 0;
1129 }
1130 return 0;
1131}
1132
1133static dane_list
1134list_alloc(size_t vsize)
1135{
1136void *value = (void *) OPENSSL_malloc(vsize);
1137dane_list l;
1138
1139if (!value)
1140 {
1141 DANEerr(DANESSL_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
1142 return 0;
1143 }
1144if (!(l = (dane_list) OPENSSL_malloc(sizeof(*l))))
1145 {
1146 OPENSSL_free(value);
1147 DANEerr(DANESSL_F_LIST_ALLOC, ERR_R_MALLOC_FAILURE);
1148 return 0;
1149 }
1150l->next = 0;
1151l->value = value;
1152return l;
1153}
1154
1155static void
1156list_free(void *list, void (*f)(void *))
1157{
1158dane_list head;
1159dane_list next;
1160
1161for (head = (dane_list) list; head; head = next)
1162 {
1163 next = head->next;
1164 if (f && head->value)
1165 f(head->value);
1166 OPENSSL_free(head);
1167 }
1168}
1169
1170static void
1171ossl_free(void * p)
1172{
1173OPENSSL_free(p);
1174}
1175
1176static void
1177dane_mtype_free(void *p)
1178{
1179list_free(((dane_mtype) p)->data, ossl_free);
1180OPENSSL_free(p);
1181}
1182
1183static void
1184dane_selector_free(void *p)
1185{
1186list_free(((dane_selector) p)->mtype, dane_mtype_free);
1187OPENSSL_free(p);
1188}
1189
1190
1191
1192/*
1193
1194Tidy up once the connection is finished with.
1195
1196Arguments
1197 ssl The ssl connection handle
1198
1199=> Before calling SSL_free()
1200tls_close() and tls_getc() [the error path] are the obvious places.
1201Could we do it earlier - right after verification? In tls_client_start()
1202right after SSL_connect() returns, in that case.
1203
1204*/
1205
1206void
1207DANESSL_cleanup(SSL *ssl)
1208{
1209ssl_dane *dane;
1210int u;
1211
1212DEBUG(D_tls) debug_printf("Dane lib-cleanup\n");
1213
1214if (dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx)))
1215 return;
1216(void) SSL_set_ex_data(ssl, dane_idx, 0);
1217
1218dane_reset(dane);
1219if (dane->hosts)
1220 list_free(dane->hosts, ossl_free);
1221for (u = 0; u <= DANESSL_USAGE_LAST; ++u)
1222 if (dane->selectors[u])
1223 list_free(dane->selectors[u], dane_selector_free);
1224if (dane->pkeys)
1225 list_free(dane->pkeys, pkey_free);
1226if (dane->certs)
1227 list_free(dane->certs, cert_free);
1228OPENSSL_free(dane);
1229}
1230
1231static dane_host_list
1232host_list_init(const char **src)
1233{
1234dane_host_list head = NULL;
1235
1236while (*src)
1237 {
1238 dane_host_list elem = (dane_host_list) OPENSSL_malloc(sizeof(*elem));
1239 if (elem == 0)
1240 {
1241 list_free(head, ossl_free);
1242 return 0;
1243 }
1244 elem->value = OPENSSL_strdup(*src++);
1245 LINSERT(head, elem);
1246 }
1247return head;
1248}
1249
1250
1251int
1252DANESSL_get_match_cert(SSL *ssl, X509 **match, const char **mhost, int *depth)
1253{
1254ssl_dane *dane;
1255
1256if (dane_idx < 0 || (dane = SSL_get_ex_data(ssl, dane_idx)) == 0)
1257 {
1258 DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_INIT);
1259 return -1;
1260 }
1261
1262if (dane->match)
1263 {
1264 if (match)
1265 *match = dane->match;
1266 if (mhost)
1267 *mhost = dane->mhost;
1268 if (depth)
1269 *depth = dane->mdpth;
1270 }
1271
1272 return (dane->match != 0);
1273}
1274
1275
1276#ifdef never_called
1277int
1278DANESSL_verify_chain(SSL *ssl, STACK_OF(X509) *chain)
1279{
1280int ret;
1281X509 *cert;
1282X509_STORE_CTX * store_ctx;
1283SSL_CTX *ssl_ctx = SSL_get_SSL_CTX(ssl);
1284X509_STORE *store = SSL_CTX_get_cert_store(ssl_ctx);
1285int store_ctx_idx = SSL_get_ex_data_X509_STORE_CTX_idx();
1286
1287cert = sk_X509_value(chain, 0);
1288if (!(store_ctx = X509_STORE_CTX_new()))
1289 {
1290 DANEerr(DANESSL_F_DANESSL_VERIFY_CHAIN, ERR_R_MALLOC_FAILURE);
1291 return 0;
1292 }
1293if (!X509_STORE_CTX_init(store_ctx, store, cert, chain))
1294 {
1295 X509_STORE_CTX_free(store_ctx);
1296 return 0;
1297 }
1298X509_STORE_CTX_set_ex_data(store_ctx, store_ctx_idx, ssl);
1299
1300X509_STORE_CTX_set_default(store_ctx,
1301 SSL_is_server(ssl) ? "ssl_client" : "ssl_server");
1302X509_VERIFY_PARAM_set1(X509_STORE_CTX_get0_param(store_ctx),
1303 SSL_get0_param(ssl));
1304
1305if (SSL_get_verify_callback(ssl))
1306 X509_STORE_CTX_set_verify_cb(store_ctx, SSL_get_verify_callback(ssl));
1307
1308ret = verify_cert(store_ctx, NULL);
1309
1310SSL_set_verify_result(ssl, X509_STORE_CTX_get_error(store_ctx));
1311X509_STORE_CTX_cleanup(store_ctx);
1312
1313return (ret);
1314}
1315#endif
1316
1317
1318
1319
1320/*
1321
1322Call this for each TLSA record found for the target, after the
1323DANE setup has been done on the ssl connection handle.
1324
1325Arguments:
1326 ssl Connection handle
1327 usage TLSA record field
1328 selector TLSA record field
1329 mdname ??? message digest name?
1330 data ??? TLSA record megalump?
1331 dlen length of data
1332
1333Return
1334 -1 on error
1335 0 action not taken
1336 1 record accepted
1337*/
1338
1339int
1340DANESSL_add_tlsa(SSL *ssl, uint8_t usage, uint8_t selector, const char *mdname,
1341 unsigned const char *data, size_t dlen)
1342{
1343ssl_dane *dane;
1344dane_selector_list s = 0;
1345dane_mtype_list m = 0;
1346dane_data_list d = 0;
1347dane_cert_list xlist = 0;
1348dane_pkey_list klist = 0;
1349const EVP_MD *md = 0;
1350
1351DEBUG(D_tls) debug_printf("Dane add-tlsa: usage %u sel %u mdname \"%s\"\n",
1352 usage, selector, mdname);
1353
1354if(dane_idx < 0 || !(dane = SSL_get_ex_data(ssl, dane_idx)))
1355 {
1356 DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_INIT);
1357 return -1;
1358 }
1359
1360if (usage > DANESSL_USAGE_LAST)
1361 {
1362 DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_USAGE);
1363 return 0;
1364 }
1365if (selector > DANESSL_SELECTOR_LAST)
1366 {
1367 DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_SELECTOR);
1368 return 0;
1369 }
1370
1371 /* Support built-in standard one-digit mtypes */
1372 if (mdname && *mdname && mdname[1] == '\0')
1373 switch (*mdname - '0')
1374 {
1375 case DANESSL_MATCHING_FULL: mdname = 0; break;
1376 case DANESSL_MATCHING_2256: mdname = "sha256"; break;
1377 case DANESSL_MATCHING_2512: mdname = "sha512"; break;
1378 }
1379 if (mdname && *mdname && (md = EVP_get_digestbyname(mdname)) == 0)
1380 {
1381 DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_DIGEST);
1382 return 0;
1383 }
1384 if (mdname && *mdname && dlen != EVP_MD_size(md))
1385 {
1386 DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_DATA_LENGTH);
1387 return 0;
1388 }
1389 if (!data)
1390 {
1391 DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_NULL_DATA);
1392 return 0;
1393 }
1394
1395 /*
1396 * Full Certificate or Public Key when NULL or empty digest name
1397 */
1398 if (!mdname || !*mdname)
1399 {
1400 X509 *x = 0;
1401 EVP_PKEY *k = 0;
1402 const unsigned char *p = data;
1403
1404#define xklistinit(lvar, ltype, var, freeFunc) do { \
1405 (lvar) = (ltype) OPENSSL_malloc(sizeof(*(lvar))); \
1406 if ((lvar) == 0) { \
1407 DANEerr(DANESSL_F_ADD_TLSA, ERR_R_MALLOC_FAILURE); \
1408 freeFunc((var)); \
1409 return 0; \
1410 } \
1411 (lvar)->next = 0; \
1412 lvar->value = var; \
1413 } while (0)
1414#define xkfreeret(ret) do { \
1415 if (xlist) list_free(xlist, cert_free); \
1416 if (klist) list_free(klist, pkey_free); \
1417 return (ret); \
1418 } while (0)
1419
1420 switch (selector)
1421 {
1422 case DANESSL_SELECTOR_CERT:
1423 if (!d2i_X509(&x, &p, dlen) || dlen != p - data)
1424 {
1425 if (x)
1426 X509_free(x);
1427 DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_CERT);
1428 return 0;
1429 }
1430 k = X509_get_pubkey(x);
1431 EVP_PKEY_free(k);
1432 if (k == 0)
1433 {
1434 X509_free(x);
1435 DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_CERT_PKEY);
1436 return 0;
1437 }
1438 if (usage == DANESSL_USAGE_DANE_TA)
1439 xklistinit(xlist, dane_cert_list, x, X509_free);
1440 break;
1441
1442 case DANESSL_SELECTOR_SPKI:
1443 if (!d2i_PUBKEY(&k, &p, dlen) || dlen != p - data)
1444 {
1445 if (k)
1446 EVP_PKEY_free(k);
1447 DANEerr(DANESSL_F_ADD_TLSA, DANESSL_R_BAD_PKEY);
1448 return 0;
1449 }
1450 if (usage == DANESSL_USAGE_DANE_TA)
1451 xklistinit(klist, dane_pkey_list, k, EVP_PKEY_free);
1452 break;
1453 }
1454 }
1455
1456/* Find insertion point and don't add duplicate elements. */
1457for (s = dane->selectors[usage]; s; s = s->next)
1458 if (s->value->selector == selector)
1459 {
1460 for (m = s->value->mtype; m; m = m->next)
1461 if (m->value->md == md)
1462 {
1463 for (d = m->value->data; d; d = d->next)
1464 if ( d->value->datalen == dlen
1465 && memcmp(d->value->data, data, dlen) == 0)
1466 xkfreeret(1);
1467 break;
1468 }
1469 break;
1470 }
1471
1472if ((d = (dane_data_list) list_alloc(sizeof(*d->value) + dlen)) == 0)
1473 xkfreeret(0);
1474d->value->datalen = dlen;
1475memcpy(d->value->data, data, dlen);
1476if (!m)
1477 {
1478 if ((m = (dane_mtype_list) list_alloc(sizeof(*m->value))) == 0)
1479 {
1480 list_free(d, ossl_free);
1481 xkfreeret(0);
1482 }
1483 m->value->data = 0;
1484 if ((m->value->md = md) != 0)
1485 m->value->mdlen = dlen;
1486 if (!s)
1487 {
1488 if ((s = (dane_selector_list) list_alloc(sizeof(*s->value))) == 0)
1489 {
1490 list_free(m, dane_mtype_free);
1491 xkfreeret(0);
1492 }
1493 s->value->mtype = 0;
1494 s->value->selector = selector;
1495 LINSERT(dane->selectors[usage], s);
1496 }
1497 LINSERT(s->value->mtype, m);
1498 }
1499LINSERT(m->value->data, d);
1500
1501if (xlist)
1502 LINSERT(dane->certs, xlist);
1503else if (klist)
1504 LINSERT(dane->pkeys, klist);
1505++dane->count;
1506return 1;
1507}
1508
1509
1510
1511
1512/*
1513Call this once we have an ssl connection handle but before
1514making the TLS connection.
1515
1516=> In tls_client_start() after the call to SSL_new()
1517and before the call to SSL_connect(). Exactly where
1518probably does not matter.
1519We probably want to keep our existing SNI handling;
1520call this with NULL.
1521
1522Arguments:
1523 ssl Connection handle
1524 sni_domain Optional peer server name
1525 hostnames list of names to chack against peer cert
1526
1527Return
1528 -1 on fatal error
1529 0 nonfatal error
1530 1 success
1531*/
1532
1533int
1534DANESSL_init(SSL *ssl, const char *sni_domain, const char **hostnames)
1535{
1536ssl_dane *dane;
1537int i;
1538
1539DEBUG(D_tls) debug_printf("Dane ssl_init\n");
1540if (dane_idx < 0)
1541 {
1542 DANEerr(DANESSL_F_INIT, DANESSL_R_LIBRARY_INIT);
1543 return -1;
1544 }
1545
1546if (sni_domain && !SSL_set_tlsext_host_name(ssl, sni_domain))
1547 return 0;
1548
1549if ((dane = (ssl_dane *) OPENSSL_malloc(sizeof(ssl_dane))) == 0)
1550 {
1551 DANEerr(DANESSL_F_INIT, ERR_R_MALLOC_FAILURE);
1552 return 0;
1553 }
1554if (!SSL_set_ex_data(ssl, dane_idx, dane))
1555 {
1556 DANEerr(DANESSL_F_INIT, ERR_R_MALLOC_FAILURE);
1557 OPENSSL_free(dane);
1558 return 0;
1559 }
1560
1561dane->verify = 0;
1562dane->hosts = 0;
1563dane->thost = 0;
1564dane->pkeys = 0;
1565dane->certs = 0;
1566dane->chain = 0;
1567dane->match = 0;
1568dane->roots = 0;
1569dane->depth = -1;
1570dane->mhost = 0; /* Future SSL control interface */
1571dane->mdpth = 0; /* Future SSL control interface */
1572dane->multi = 0; /* Future SSL control interface */
1573dane->count = 0;
1574dane->hosts = 0;
1575
1576for (i = 0; i <= DANESSL_USAGE_LAST; ++i)
1577 dane->selectors[i] = 0;
1578
1579if (hostnames && (dane->hosts = host_list_init(hostnames)) == 0)
1580 {
1581 DANEerr(DANESSL_F_INIT, ERR_R_MALLOC_FAILURE);
1582 DANESSL_cleanup(ssl);
1583 return 0;
1584 }
1585
1586return 1;
1587}
1588
1589
1590/*
1591
1592Call this once we have a context to work with, but
1593before DANESSL_init()
1594
1595=> in tls_client_start(), after tls_init() call gives us the ctx,
1596if we decide we want to (policy) and can (TLSA records available)
1597replacing (? what about fallback) everything from testing tls_verify_hosts
1598down to just before calling SSL_new() for the conn handle.
1599
1600Arguments
1601 ctx SSL context
1602
1603Return
1604 -1 Error
1605 1 Success
1606*/
1607
1608int
1609DANESSL_CTX_init(SSL_CTX *ctx)
1610{
1611DEBUG(D_tls) debug_printf("Dane ctx-init\n");
1612if (dane_idx >= 0)
1613 {
1614 SSL_CTX_set_cert_verify_callback(ctx, verify_cert, 0);
1615 return 1;
1616 }
1617DANEerr(DANESSL_F_CTX_INIT, DANESSL_R_LIBRARY_INIT);
1618return -1;
1619}
1620
1621static void
1622dane_init(void)
1623{
1624/*
1625 * Store library id in zeroth function slot, used to locate the library
1626 * name. This must be done before we load the error strings.
1627 */
1628err_lib_dane = ERR_get_next_error_library();
1629
1630#ifndef OPENSSL_NO_ERR
1631if (err_lib_dane > 0)
1632 {
1633 dane_str_functs[0].error |= ERR_PACK(err_lib_dane, 0, 0);
1634 ERR_load_strings(err_lib_dane, dane_str_functs);
1635 ERR_load_strings(err_lib_dane, dane_str_reasons);
1636 }
1637#endif
1638
1639/*
1640 * Register SHA-2 digests, if implemented and not already registered.
1641 */
1642#if defined(LN_sha256) && defined(NID_sha256) && !defined(OPENSSL_NO_SHA256)
1643if (!EVP_get_digestbyname(LN_sha224)) EVP_add_digest(EVP_sha224());
1644if (!EVP_get_digestbyname(LN_sha256)) EVP_add_digest(EVP_sha256());
1645#endif
1646#if defined(LN_sha512) && defined(NID_sha512) && !defined(OPENSSL_NO_SHA512)
1647if (!EVP_get_digestbyname(LN_sha384)) EVP_add_digest(EVP_sha384());
1648if (!EVP_get_digestbyname(LN_sha512)) EVP_add_digest(EVP_sha512());
1649#endif
1650
1651/*
1652 * Register an SSL index for the connection-specific ssl_dane structure.
1653 * Using a separate index makes it possible to add DANE support to
1654 * existing OpenSSL releases that don't have a suitable pointer in the
1655 * SSL structure.
1656 */
1657dane_idx = SSL_get_ex_new_index(0, 0, 0, 0, 0);
1658}
1659
1660
1661#if OPENSSL_VERSION_NUMBER < 0x10100000L || defined(LIBRESSL_VERSION_NUMBER)
1662static void
1663run_once(volatile int * once, void (*init)(void))
1664{
1665int wlock = 0;
1666
1667CRYPTO_r_lock(CRYPTO_LOCK_SSL_CTX);
1668if (!*once)
1669 {
1670 CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
1671 CRYPTO_w_lock(CRYPTO_LOCK_SSL_CTX);
1672 wlock = 1;
1673 if (!*once)
1674 {
1675 *once = 1;
1676 init();
1677 }
1678 }
1679if (wlock)
1680 CRYPTO_w_unlock(CRYPTO_LOCK_SSL_CTX);
1681else
1682 CRYPTO_r_unlock(CRYPTO_LOCK_SSL_CTX);
1683}
1684#endif
1685
1686
1687
1688/*
1689
1690Call this once. Probably early in startup will do; may need
1691to be after SSL library init.
1692
1693=> put after call to tls_init() for now
1694
1695Return
1696 1 Success
1697 0 Fail
1698*/
1699
1700int
1701DANESSL_library_init(void)
1702{
1703static CRYPTO_ONCE once = CRYPTO_ONCE_STATIC_INIT;
1704
1705DEBUG(D_tls) debug_printf("Dane lib-init\n");
1706(void) CRYPTO_THREAD_run_once(&once, dane_init);
1707
1708#if defined(LN_sha256)
1709/* No DANE without SHA256 support */
1710if (dane_idx >= 0 && EVP_get_digestbyname(LN_sha256) != 0)
1711 return 1;
1712#endif
1713DANEerr(DANESSL_F_LIBRARY_INIT, DANESSL_R_SUPPORT);
1714return 0;
1715}
1716
1717
1718/* vi: aw ai sw=2
1719*/