bKNI®

ParenScript Manual

Manuel Odendahl

Contents

1 ParenScript Introduction
1.1 Introduction
12 Features
1.3 Getting ParenScript.

2 ParenScript Tutorial
2.1 ParenScript Tutorial
2.2 Setting up the ParenScript environment
2.3 Asimple embedded example
2.4 Adding aninline ParenScript
2.5 Generating a JavaScriptfile
2.6 A ParenScriptslideshow,
2.7 Customizing the slideshow

3 ParenScript Language Reference
3.1 ParenScript Language Reference
3.2 Statements and Expressions
33 Symbolconversion
331 Reserved Keywords
3.4 Literalvalues,
341 Numberliterals.
342 Stringliterals
343 Arrayliterals
344 Objectliterals
3.45 Regular Expression literals
34.6 Literalsymbols
35 Variables
3.6 Function calls and method calls
3.7 Operator Expressions
38 Bodyforms
3.9 Function Definition
310 Assignment
3.11 Single argument statements

3

oo U1 U1 Ut

O ©

11
12
14
19

3.12
3.13
3.14
3.15
3.16
3.17
3.18
3.19
3.20
3.21

CONTENTS

Single argument expression 32
Conditional Statements 33
Variable declaration 33
Iterationconstructs 34
The ‘CASE’ statement 36
The ‘WITH statement 36
The ‘“TRY’ statement 37
The HTML Generator 37
Macrology 38

The ParenScript Compiler 39

Chapter 1

ParenScript Introduction

1.1 Introduction

ParenScript is a simple language that looks a lot like Lisp, but actually is
JavaScript in disguise. Actually, it is JavaScript embedded in a host Lisp.
This way, JavaScript programs can be seamlessly integrated in a Lisp web
application. The programmer doesn’t have to resort to a different syntax,
and JavaScript code can easily be generated without having to resort to
complicated string generation or ‘FORMAT’ expressions.

An example is worth more than a thousand words. The following Lisp
expression is a call to the ParenScript “compiler”. The ParenScript “com-
piler” transforms the expression in ParenScript into an equivalent, human-
readable expression in JavaScript.

(js
(defun foobar (a b)
(return (+ a b))))

The resulting javascript is:

function foobar(a, b) {
return a + b;

}

Great care has been given to the indentation and overall readability of the
generated JavaScript code.

1.2 Features

ParenScript supports all the statements and expressions defined by the Ec-
maScript 262 standard. Lisp symbols are converted to camelcase, javascript-
compliant syntax. This idea is taken from Linj by Antonio Menezes Leitao.
Here are a few examples of Lisp symbol to JavaScript name conversion:

5

6 CHAPTER 1. PARENSCRIPT INTRODUCTION

(js-to-string ’foobar) => "foobar"
(js-to-string ’foo-bar) => "fooBar"
(js-to-string ’foo-b-@-r) => "fooBAtR"
(js-to-string ’foo-ber) => "fooBatr"

(js-to-string ’*array) => "Array"
(js—to-string ’#math.floor) => "Math.floor"

It also supports additional iteration constructs, relieving the programmer
of the burden of iterating over arrays. ‘for” loops can be written using the
customary ‘DO’ syntax.
(js
(do ((i O (incf 1))
(j (aref arr i) (aref arr i)))
((>=1 10))
(alert (+ "i is " i " and j is " j))))

; compiles to

for (var i = 0, j = arr[i]; 1 < 10; i = ++i, j = arr[i]) {
alert("i is " + i + " and j is " + j);

3

ParenScript uses the Lisp reader, allowing for reader macros. It also comes
with its own macro environment, allowing host macros and ParenScript to
coexist without interfering with each other. Furthermore, ParenScript uses
its own compiler macro system, allowing for an even further customization
of the generation of JavaScript. For example, the 1+ construct is imple-
mented using a ParenScript macro:

(defjsmacro 1+ (form)
‘(+ ,form 1))

ParenScript allows the creation of JavaScript objects in a Lispy way, using
keyword arguments.
(js
(create :foo "foo"
:bla "bla"))

; compiles to

{ foo : "foo",
bla : "bla" }

ParenScript features a HTML generator. Using the same syntax as the 'HTML-
GEN’ package of Franz, Inc., it can generate JavaScript string expressions.
This allows for a clean integration of HTML in ParenScript code, instead of
writing the tedious and error-prone string generation code generally found
in JavaScript.

1.2. FEATURES 7

(js
(defun add-div (name href link-text)
(document .write
(html ((:div :id name)
"The link is: "
((:a :href href) link-text))))))

; compiles to

function addDiv(name, href, linkText) {
document.write("<div id=\"" + name + "\">The link is: <a href=\""
+ href + n\u>u
+ linkText + "</div>");
}

In order to have a complete web application framework available in Lisp,
ParenScript also provides a sexp-based syntax for CSS files. Thus, a com-
plete web application featuring HTML, CSS and JavaScript documents can
be generated using Lisp syntax, allowing the programmer to use Lisp macros
to factor out the redundancies and complexities of Web syntax. For exam-
ple, to generate a CSS inline node in a HTML document:

(html-stream *standard-outputx*
(html
(:html
(:head
(css (* :border "1px solid black")
(div.blOrg :font-family "serif")
(("a:active" "a:hoover") :color "black" :size "200%"))))))

; which produces

<html><head><style type="text/css">

<I--
* o
border:1px solid black;
b
div.blorg {
font-family:serif;
3

a:active,a:hoover {
color:black;
size:200%;

-—>
</style>

8 CHAPTER 1. PARENSCRIPT INTRODUCTION

</head>
</html>
1.3 Getting ParenScript
ParenScript can be obtained from the BKNR subversion repository at
svn://bknr.net/trunk/bknr/src/js

ParenScript does not depend on any part of BKNR though. You can down-
load snapshots of ParenScript at the webpage

http://bknr.net/parenscript
or using asdf-install.
(asdf-install:install ’parenscript)

After downloading the ParenScript sourcecode, set up the ASDF central
registry by adding a symlink to “parenscript.asd”. Then use ASDF to load
ParenScript. You may want to edit the ASDF file to remove the dependency
on the Allegroserve HTMLGEN facility.

(asdf:oos ’asdf:load-op :parenscript)

ParenScript was written by Manuel Odendahl. He can be reached at

manuel@bknr.net

Chapter 2

ParenScript Tutorial

2.1 ParenScript Tutorial

This chapter is a short introductory tutorial to ParenScript. It hopefully will
give you an idea how ParenScript can be used in a Lisp web application.

2.2 Setting up the ParenScript environment

In this tutorial, we will use the Portable Allegroserve webserver to serve
the tutorial web application. We use the ASDF system to load both Alle-
groserve and ParenScript. I assume you have installed and downloaded
Allegroserve and Parenscript, and know how to setup the central registry
for ASDE.

(asdf:oos ’asdf:load-op :aserve)
; ... lots of compiler output ...
(asdf:oos ’asdf:load-op :parenscript)

; ... lots of compiler output ...

The tutorial will be placed in its own package, which we first have to define.

(defpackage :js-tutorial
(:use :common-lisp :net.aserve :js :net.html.generator))

(in-package :js-tutorial)
The next command starts the webserver on the port 8000.
(start :port 8000)

We are now ready to generate the first JavaScript-enabled webpages using
ParenScript.

10 CHAPTER 2. PARENSCRIPT TUTORIAL

2.3 A simple embedded example

The first document we will generate is a simple HTML document, which
features a single hyperlink. When clicking the hyperlink, a JavaScript han-
dler opens a popup alert window with the string “Hello world”. To facili-
tate the development, we will factor out the HTML generation to a separate
function, and setup a handler for the url “/tutoriall”, which will generate
HTTP headers and call the function “TUTORIAL1’. At first, our function
does nothing.

(defun tutoriall (req ent)
(declare (ignore req ent))
nil)

(publish :path "/tutoriall"
:content-type "text/html; charset=IS0-8859-1"
:function #’(lambda (req ent)
(with-http-response (req ent)
(with-http-body (req ent)
(tutoriall req ent)))))

Browsing “http:/ /localhost:8000/tutoriall” should return an empty HTML
page. It’s now time to fill this rather page with content. ParenScript features
a macro that generates a string that can be used as an attribute value of
HTML nodes.

(defun tutoriall (req ent)
(declare (ignore req ent))
(html
(:html
(:head (:title "ParenScript tutorial: 1st example"))
(:body (:hl "ParenScript tutorial: 1st example")
(:p "Please click the link below." :br
((:a :href "#" :onclick (js-inline
(alert "Hello World")))
"Hello World"))))))

Browsing “http:/ /localhost:8000/tutoriall” should return the following HTML:

ParenScript tutorial: 1st example

Please click the link below.
Hello World

Figure 2.1: Embedded ParenScript example

2.4. ADDING AN INLINE PARENSCRIPT 11

<html><head><title>ParenScript tutorial: 1st example</title>
</head>

<body><hi1>ParenScript tutorial: 1st example</h1>

<p>Please click the link below.

<a href="#"
onclick="javascript:alert("Hello World");">Hello World
</p>
</body>
</html>

24 Adding an inline ParenScript

Suppose we now want to have a general greeting function. One way to do
this is to add the javascript in a ‘SCRIPT” element at the top of the HTML
page. This is done using the ‘JS-SCRIPT” macro which will generate the
necessary XML and comment tricks to cleanly embed JavaScript. We will
redefine our “TUTORIAL1’ function and add a few links:

(defun tutoriall (req ent)
(declare (ignore req ent))

(html

(:html
(:head
(:title "ParenScript tutorial: 2nd example")
(js-script

(defun greeting-callback ()
(alert "Hello World"))))
(:body
(:hl "ParenScript tutorial: 2nd example")
(:p "Please click the link below." :br
((:a :href "#" :onclick (js-inline (greeting-callback)))
"Hello World")
:br "And maybe this link too." :br
((:a :href "#" :onclick (js-inline (greeting-callback)))
"Knock knock")
:br "And finally a third link." :br
((:a :href "#" :onclick (js-inline (greeting-callback)))
"Hello there"))))))

This will generate the following HTML page, with the embedded JavaScript
nicely sitting on top. Take note how ‘GREETING-CALLBACK” was con-
verted to camelcase, and how the lispy ‘DEFUN’ was converted to a JavaScript
function declaration.

<html><head><title>ParenScript tutorial: 2nd example</title>
<script type="text/javascript">

// <![CDATA[

function greetingCallback() {

12 CHAPTER 2. PARENSCRIPT TUTORIAL

ParenScript tutorial: 2nd example

Please click the link below.
Hello World

And maybe this link too.
Enock knock

And finally a third link.
Hello there

Figure 2.2: Inline ParenScript example

alert("Hello World");
}
/7 11>
</script>
</head>
<body><h1>ParenScript tutorial: 2nd example</h1>
<p>Please click the link below.

<a href="#"

onclick="javascript:greetingCallback();">Hello World

And maybe this link too.

<a href="#"

onclick="javascript:greetingCallback();">Knock knock

And finally a third link.

<a href="#"
onclick="javascript:greetingCallback();">Hello there
</p>
</body>
</html>

2.5 Generating a JavaScript file

The best way to integrate ParenScript into a Lisp application is to generate
a JavaScript file from ParenScript code. This file can be cached by interme-
diate proxies, and webbrowsers won’t have to reload the javascript code on
each pageview. A standalone JavaScript can be generated using the macro
‘JS-FILE’. We will publish the tutorial JavaScript under “/tutorial js”.

(defun tutoriall-file (req ent)
(declare (ignore req ent))
(js-file

(defun greeting-callback ()
(alert "Hello World"))))

2.5. GENERATING A JAVASCRIPT FILE 13

(publish :path "/tutoriall.js"
:content-type "text/javascript; charset=IS0-8859-1"
:function #’(lambda (req ent)
(with-http-response (req ent)
(with-http-body (req ent)
(tutoriall-file req ent)))))

(defun tutoriall (req ent)
(declare (ignore req ent))
(html
(:html
(:head
(:title "ParenScript tutorial: 3rd example")
((:script :language "JavaScript" :src "/tutoriall.js")))
(:body
(:hl "ParenScript tutorial: 3rd example")
(:p "Please click the link below." :br
((:a :href "#" :onclick (js-inline (greeting-callback)))
"Hello World")
:br "And maybe this link too." :br
((:a :href "#" :onclick (js-inline (greeting-callback)))
"Knock knock")
:br "And finally a third link." :br
((:a :href "#" :onclick (js-inline (greeting-callback)))
"Hello there"))))))

This will generate the following JavaScript code under “/tutoriall.js”:

function greetingCallback() {
alert("Hello World");
}

and the following HTML code:

<html><head><title>ParenScript tutorial: 3rd example</title>

<script language="JavaScript" src="/tutoriall.js"></script>

</head>

<body><hi>ParenScript tutorial: 3rd example</h1>

<p>Please click the link below.

Hello World

And maybe this link too.

Knock knock

And finally a third link.

Hello there
</p>

</body>

</html>

14 CHAPTER 2. PARENSCRIPT TUTORIAL

2.6 A ParenScript slideshow

While developing ParenScript, I used JavaScript programs from the web
and rewrote them using ParenScript. This is a nice slideshow example from

http://www.dynamicdrive.com/dynamicindex14/dhtmlslide.htm

The slideshow will be accessible under “/slideshow”, and will slide through
the images “photol.png”, “photo2.png” and “photo3.png”. The first Paren-
Script version will be very similar to the original JavaScript code. The sec-
ond version will then show how to integrate data from the Lisp environ-
ment into the ParenScript code, allowing us to customize the slideshow ap-
plication by supplying a list of image names. We first setup the slideshow

path.

(publish :path "/slideshow"
:content-type "text/html"
:function #’(lambda (req ent)
(with-http-response (req ent)
(with-http-body (req ent)
(slideshow req ent)))))

(publish :path "/slideshow.js"
:content-type "text/html"
:function #’(lambda (req ent)
(with-http-response (req ent)
(with-http-body (req ent)
(js-slideshow req ent)))))

The images are just random images I found on my harddrive. We will pub-
lish them by hand for now.

(publish-file :path "/photol.png"

:file "/home/manuel/bknr-sputnik.png")
(publish-file :path "/photo2.png"

:file "/home/manuel/bknrlogo_red648.png")
(publish-file :path "/photo3.png"

:file "/home/manuel/bknr-sputnik.png")

The function ‘SLIDESHOW’ generates the HTML code for the main slideshow
page. It also features little bits of ParenScript. These are the callbacks on the
links for the slideshow application. In this special case, the javascript gen-
erates the links itself by using ‘document.write” in a “SCRIPT” element.
Users that don’t have JavaScript enabled won’t see anything at all.
‘SLIDESHOW" also generates a static array called ‘PHOTOS” which holds
the links to the photos of the slideshow. This array is handled by the Paren-
Script code in “slideshow.js”. Note how the HTML code issued by the JavaScript

2.6. A PARENSCRIPT SLIDESHOW 15

is generated using the ‘"HTML' construct. In fact, we have two different
HTML generators in the example below, one is the standard Lisp HTML
generator, and the other is the JavaScript HTML generator, which gener-
ates a JavaScript expression.

(defun slideshow (req ent)
(declare (ignore req ent))
(html
(:html
(:head (:title "ParenScript slideshow")
((:script :language "JavaScript"
:src "/slideshow.js"))
(js-script
(defvar *linkornot* 0)
(defvar photos (array "photol.png"
"photo2.png"
"photo3.png"))))
(:body (:hl "ParenScript slideshow")
(:body (:h2 "Hello")
((:table :border O
:cellspacing 0
:cellpadding 0)
(:tr ((:td :width "100%" :colspan 2 :height 22)
(:center
(js-script
(let ((img
(html
((:img :src (aref photos 0)
:name "photoslider"
:style (+ "filter:"
(js (reveal-trans
(setf duration 2)
(setf transition 23))))
:border 0)))))
(document.write
(if (= *linkornot* 1)
(html ((:a :href "#"
ronclick (js-inline (transport)))
img))
img)))))))
(:tr ((:td :width "50%" :height "21")
(C:p :align "left")
((:a :href "#"
ronclick (js-inline (backward)
(return false)))
"Previous Slide")))
((:td :width "50%" :height "21")
(C:p :align "right")
((:a :href "#"

16 CHAPTER 2. PARENSCRIPT TUTORIAL

ronclick (js-inline (forward)
(return false)))
"Next Slide"))))))))))

‘SLIDESHOW’ generates the following HTML code (long lines have been
broken down):

<html><head><title>ParenScript slideshow</title>

<script language="JavaScript" src="/slideshow.js"></script>
<script type="text/javascript">

// <![CDATA[

var LINKORNOT = O;

var photos = ["photol.png", "photo2.png", "photo3.png"];
/7 11>

</script>

</head>

<body><h1>ParenScript slideshow</h1>

<body><h2>Hello</h2>

<table border="0" cellspacing="0" cellpadding="0">
<tr><td width="100%" colspan="2" height="22">
<center><script type="text/javascript">

// <![CDATA[

var img =

"<img src=\"" + photos[0]

+ "\" name=\"photoslider\"
style=\"filter:revealTrans(duration=2,transition=23)\"
border=\"0\">";

document .write (LINKORNOT == 1 7
"<a href=\"#\"

onclick=\"javascript:transport(O\">"

+ img + ""
1 oimg) ;

/7 11>

</script>

</center>

</td>

</tr>

<tr><td width="50%" height="21"><p align="left">

<a href="#"

onclick="javascript:backward(); return false;">Previous Slide

</p>
</td>
<td width="50%" height="21"><p align="right">
<a href="#"
onclick="javascript:forward(); return false;">Next Slide
</p>
</td>
</tr>
</table>

2.6. A PARENSCRIPT SLIDESHOW 17

</body>
</body>
</html>

ParenScript slideshow

Hello

Next Slide

Figure 2.3: ParenScript Slideshow

The actual slideshow application is generated by the function ‘JS-SLIDESHOW’,
which generates a ParenScript file. The code is pretty straightforward for a
lisp savy person. Symbols are converted to JavaScript variables, but the dot

“" 7

. is left as is. This enables us to access object “slots” without using the
‘SLOT-VALUE’ function all the time. However, when the object we are re-
ferring to is not a variable, but for example an element of an array, we have
to revert to ‘SLOT-VALUE'.

(defun js-slideshow (req ent)
(declare (ignore req ent))
(js-file
(defvar *preloaded-images* (make-array))
(defun preload-images (photos)
(dotimes (i photos.length)
(setf (aref *preloaded-images* i) (new *Image)
(slot-value (aref *preloaded-images* i) ’src)
(aref photos i))))

(defun apply-effect (O
(when (and document.all photoslider.filters)
(let ((trans photoslider.filters.reveal-trans))
(setf (slot-value trans ’*Transition)
(floor (* (random) 23)))
(trans.stop)
(trans.apply))))

(defun play-effect ()
(when (and document.all photoslider.filters)

18 CHAPTER 2. PARENSCRIPT TUTORIAL

(photoslider.filters.reveal-trans.play)))
(defvar *which* 0)

(defun keep-track ()
(setf window.status
(+ "Image " (1+ xwhich*) " of " photos.length)))

(defun backward ()
(when (> *whichx* 0)
(decf *whichx*)
(apply-effect)
(setf document.images.photoslider.src
(aref photos *whichx))
(play-effect)
(keep-track)))

(defun forward ()
(when (< *which* (1- photos.length))

(incf *whichx*)

(apply-effect)

(setf document.images.photoslider.src

(aref photos *whichx))

(play-effect)

(keep-track)))

(defun transport ()
(setf window.location (aref photoslink *whichx)))))

‘JS-SLIDESHOW' generates the following JavaScript code:

var PRELOADEDIMAGES = new Array();
function preloadImages(photos) {
for (var i = 0; i != photos.length; i = i++) {
PRELOADEDIMAGES[i] = new Image;
PRELOADEDIMAGES[i] .src = photos[i];
}
}
function applyEffect() {
if (document.all && photoslider.filters) {
var trans = photoslider.filters.revealTrans;
trans.Transition = Math.floor (Math.random() * 23);
trans.stop(Q);
trans.apply();
}
}
function playEffect() {
if (document.all && photoslider.filters) {
photoslider.filters.revealTrans.play();
}

2.7. CUSTOMIZING THE SLIDESHOW 19

¥
var WHICH = O;
function keepTrack() {
window.status = "Image " + (WHICH + 1) + " of " +
photos.length;
}
function backward() {
if (WHICH > 0) {
--WHICH;
applyEffect();
document .images.photoslider.src = photos[WHICH];
playEffect(;
keepTrack();
}
}
function forward() {
if (WHICH < photos.length - 1) {
++WHICH;
applyEffect);
document .images.photoslider.src = photos[WHICH];
playEffect();
keepTrack();
}
}

function transport() {
window.location = photoslink [WHICH];
}

2.7 Customizing the slideshow

For now, the slideshow has the path to all the slideshow images hardcoded
in the HTML code, as well as in the publish statements. We now want to
customize this by publishing a slideshow under a certain path, and giving
it a list of image urls and pathnames where those images can be found.
For this, we will create a function ‘PUBLISH-SLIDESHOW’ which takes a
prefix as argument, as well as a list of image pathnames to be published.

(defun publish-slideshow (prefix images)

(let* ((js-url (format nil "~“Aslideshow.js" prefix))
(html-url (format nil "~“Aslideshow" prefix))
(image-urls

(mapcar #’(lambda (image)
(format nil "“A"A.7A" prefix
(pathname-name image)
(pathname-type image)))
images)))
(publish :path html-url
:content-type "text/html"

20 CHAPTER 2. PARENSCRIPT TUTORIAL

:function #’(lambda (req ent)
(with-http-response (req ent)
(with-http-body (req ent)
(slideshow2 req ent image-urls)))))
(publish :path js-url
:content-type "text/html"
:function #’(lambda (req ent)
(with-http-response (req ent)
(with-http-body (req ent)
(js-slideshow req ent)))))
(map nil #’(lambda (image url)
(publish-file :path url
:file image))
images image-urls)))

(defun slideshow2 (req ent image-urls)
(declare (ignore req ent))
(html
(:html
(:head (:title "ParenScript slideshow")
((:script :language "JavaScript"
:src "/slideshow.js"))
((:script :type "text/javascript")
(:princ (format nil "~%// <![CDATA[~%"))
(:princ (js (defvar *linkornot* 0)))
(:princ (js-to-string ‘(defvar photos
(array ,@image-urls))))
(:princ (format nil "~%// 11>7%"))))
(:body (:hl "ParenScript slideshow")
(:body (:h2 "Hello")
((:table :border O
:cellspacing O
:cellpadding 0)
(:tr ((:td :width "100%" :colspan 2 :height 22)
(:center
(js-script
(let ((img
(html
((:img :src (aref photos 0)
:name "photoslider"
:style (+ "filter:"
(js (reveal-trans
(setf duration 2)
(setf transition 23))))
:border 0)))))
(document .write
(if (= *linkornot* 1)
(html ((:a :href "#"
tonclick (js-inline (transport)))

2.7.

CUSTOMIZING THE SLIDESHOW 21

img))
img)))))))
(:tr ((:td :width "50%" :height "21")
((:p :align "left")
((:a :href "#"
ronclick (js-inline (backward)
(return false)))
"Previous Slide")))
((:td :width "50%" :height "21")
((:p :align "right")
((:a :href "#"
ronclick (js-inline (forward)
(return false)))
"Next S1lide"))))))))))

We can now publish the same slideshow as before, under the “/bknr/”
prefix:

(publish-slideshow "/bknr/"
¢ ("/home/manuel/bknr-sputnik.png"
"/home/manuel /bknrlogo_red648.png"
"/home/manuel/screenshots/screenshot-14.03.2005-11.54.33.png"))

That’s it, we can now access our customized slideshow under

http://localhost:8000/bknr/slideshow

22

CHAPTER 2. PARENSCRIPT TUTORIAL

Chapter 3

ParenScript Language
Reference

3.1 ParenScript Language Reference

This chapters describes the core constructs of ParenScript, as well as its
compilation model. This chapter is aimed to be a comprehensive reference
for ParenScript developers. Programmers looking for how to tweak the
ParenScript compiler itself should turn to the ParenScript Internals chap-
ter.

3.2 Statements and Expressions

In contrast to Lisp, where everything is an expression, JavaScript makes the
difference between an expression, which evaluates to a value, and a state-
ment, which has no value. Examples for JavaScript statements are ‘for’,
‘with” and ‘while’. Most ParenScript forms are expression, but certain spe-
cial forms are not (the forms which are transformed to a JavaScript state-
ment). All ParenScript expressions are statements though. Certain forms,
like ‘IF” and '‘PROGN’, generate different JavaScript constructs whether
they are used in an expression context or a statement context. For exam-

ple:
+1i@Ef123)=>1i+@72:3)

(if 1 2 3)
=>if (1) {
2;
} else {
3;
}

23

24 CHAPTER 3. PARENSCRIPT LANGUAGE REFERENCE

3.3 Symbol conversion

Lisp symbols are converted to JavaScript symbols by following a few sim-
ple rules. Special characters ‘V, *?’, ‘#, ‘$’, ‘@', “%’, ’/’, "* and ‘+" get re-
placed by their written-out equivalents “bang”, “what”, “hash”, “dollar”,

“at”, “percent”, “slash”, “start” and “plus” respectively.

1 7#$0@% => bangwhathashdollaratpercent

The *-" is an indication that the following character should be converted to
uppercase. Thus, -" separated symbols are converted to camelcase. The *_’
character however is left untouched.

bla-foo-bar => blaFooBar

If you want a JavaScript symbol beginning with an uppercase, you can ei-
ther use a leading ‘-’, which can be misleading in a mathematical context,
or a leading .

*array => Array

The *.” character is left as is in symbols. This allows the ParenScript pro-
grammer to use a practical shortcut when accessing slots or methods of
JavaScript objects. Instead of writing

(slot-value foobar ’slot)

we can write

foobar.slot

A symbol beggining and ending with ‘+” or **" is converted to all uppercase,
to signify that this is a constant or a global variable.

global-array => GLOBALARRAY

global-array.length => GLOBALARRAY.length

3.3.1 Reserved Keywords

The following keywords and symbols are reserved in ParenScript, and should
not be used as variable names.

P 7t ==k [+ = << >> 55> <> K=>= == |= ==== I==§ ~ | & ||

¥= /= Y= += —-= <<= >>= >>>= §= "= |= 1- 1+

ABSTRACT AND AREF ARRAY BOOLEAN BREAK BYTE CASE CATCH CC-IF CHAR CLASS
COMMA CONST CONTINUE CREATE DEBUGGER DECF DEFAULT DEFUN DEFVAR DELETE
DO DOEACH DOLIST DOTIMES DOUBLE ELSE ENUM EQL EXPORT EXTENDS FALSE

3.4. LITERAL VALUES 25

FINAL FINALLY FLOAT FLOOR FOR FUNCTION GOTO IF IMPLEMENTS IMPORT IN INCF
INSTANCEQOF INT INTERFACE JS LAMBDA LET LISP LIST LONG MAKE-ARRAY NATIVE NEW
NIL NOT OR PACKAGE PRIVATE PROGN PROTECTED PUBLIC RANDOM REGEX RETURN

SETF SHORT SLOT-VALUE STATIC SUPER SWITCH SYMBOL-MACROLET SYNCHRONIZED T
THIS THROW THROWS TRANSIENT TRY TYPEOF UNDEFINED UNLESS VAR VOID VOLATILE
WHEN WHILE WITH WITH-SLOTS

3.4 Literal values
3.4.1 Number literals
; number ::= a Lisp number

ParenScript supports the standard JavaScript literal values. Numbers
are compiled into JavaScript numbers.

1 =1
123.123 => 123.123

Note that the base is not conserved between Lisp and JavaScript.

#x10 => 16

3.4.2 String literals

; string ::= a Lisp string
Lisp strings are converted into JavaScript literals.

"foobar" => "foobar"
"bratzel bub" => "bratzel bub"

Escapes in Lisp are not converted to JavaScript escapes. However, to avoid
having to use double backslashes when constructing a string, you can use
the CL-INTERPOL library by Edi Weitz.

3.4.3 Array literals

; (ARRAY {valuesl}x*)
; (MAKE-ARRAY {valuesl}*)
; (AREF array index)

; values ::= a ParenScript expression
; array ::= a ParenScript expression
; index = a ParenScript expression

Array literals can be created using the “ARRAY” form.

26 CHAPTER 3. PARENSCRIPT LANGUAGE REFERENCE

(array) => []
(array 1 2 3) => [1, 2, 3]

(array (array 2 3)
(array "foobar" "bratzel bub"))
= [[2, 3], ["foobar", "bratzel bub"]]

Arrays can also be created with a call to the “Array’ function using the
‘MAKE-ARRAY’. The two forms have the exact same semantic on the JavaScript
side.

(make-array) => new Array()
(make-array 1 2 3) => new Array(1l, 2, 3)

(make-array
(make-array 2 3)
(make-array "foobar" "bratzel bub"))
=> new Array(new Array(2, 3), new Array("foobar", "bratzel bub"))

Indexing arrays in ParenScript is done using the form “AREF’. Note that
JavaScript knows of no such thing as an array. Subscripting an array is in
fact reading a property from an object. So in a semantic sense, there is no
real difference between ‘AREF” and ‘SLOT-VALUE'".

3.4.4 Object literals

; (CREATE {name valuel}x*)
; (SLOT-VALUE object slot-name)
; (WITH-SLOTS ({slot-name}*) object body)

; name ::= a ParenScript symbol or a Lisp keyword
; value a ParenScript expression

; object ::= a ParenScript object expression

; slot-name ::= a quoted Lisp symbol

; body = a list of ParenScript statements

Object literals can be create using the ‘CREATE’ form. Arguments to the
‘CREATE’ form is a list of property names and values. To be more “lispy”,
the property names can be keywords.

(create :foo "bar" :blorg 1)
=> { foo : "bar",
blorg : 1 }

(create :foo "hihi"
:blorg (array 1 2 3)

3.4. LITERAL VALUES 27

:another-object (create :schtrunz 1))
=> { foo : "hihi",

blorg : [1, 2, 31,

anotherObject : { schtrunz : 1 } }

Object properties can be accessed using the ‘SLOT-VALUE’ form, which
takes an object and a slot-name.

(slot-value an-object ’foo) => anObject.foo

£“ 7

A programmer can also use the “.” symbol notation explained above.

an-object.foo => anObject.foo

The form “WITH-SLOTS’ can be used to bind the given slot-name symbols
to a macro that will expand into a ‘SLOT-VALUE’ form at expansion time.

(with-slots (a b c) this

(+ abc))
=> this.a + this.b + this.c

3.4.5 Regular Expression literals

; (REGEX regex)

; regex ::= a Lisp string

Regular expressions can be created by using the ‘/REGEX’ form. The regex
form actually does nothing at all to its argument, and prints it as is.

(regex "/foobar/i") => /foobar/i
Here CL-INTERPOL proves really useful.

(regex #7r"/(["\s]+)foobar/i") => /(["\s]+)foobar/i

3.4.6 Literal symbols

; T, FALSE, NIL, UNDEFINED, THIS

The Lisp symbols “T” and “FALSE’ are converted to their JavaScript boolean
equivalents ‘true” and ‘false’.

T => true
FALSE => false

The Lisp symbol ‘NIL" is converted to the JavaScript keyword ‘null’.

NIL => null

28 CHAPTER 3. PARENSCRIPT LANGUAGE REFERENCE

The Lisp symbol “‘UNDEFINED’ is converted to the JavaScript keyword
‘undefined’.

UNDEFINED => undefined
The Lisp symbol “THIS’ is converted to the JavaScript keyword ‘this’.

THIS => this

3.5 Variables

; variable ::= a Lisp symbol

All the other literal Lisp values that are not recognized as special forms
or symbol macros are converted to JavaScript variables. This extreme free-
dom is actually quite useful, as it allows the ParenScript programmer to be
flexible, as flexible as JavaScript itself.

variable => variable
a-variable => aVariable
*math => Math

*math.floor => Math.floor

3.6 Function calls and method calls

; (function {argumentl}*)
; (method object {argumentl}x)

; function ::= a ParenScript expression or a Lisp symbol
; method = a Lisp symbol beginning with .

; object = a ParenScript expression

; argument ::= a ParenScript expression

Any list passed to the JavaScript that is not recognized as a macro or a
special form (see “Macro Expansion” below) is interpreted as a function
call. The function call is converted to the normal JavaScript function call
representation, with the arguments given in paren after the function name.

(blorg 1 2) => blorg(l, 2)

(foobar (blorg 1 2) (blabla 3 4) (array 2 3 4))
=> foobar(blorg(l, 2), blabla(3, 4), [2, 3, 4 1)

((aref foo i) 1 2) => fool[il(1, 2)

3.7. OPERATOR EXPRESSIONS 29

A method call is a function call where the function name is a symbol and
begins with a “.” . In a method call, the name of the function is append
to its first argument, thus reflecting the method call syntax of JavaScript.

Please note that most method calls can be abbreviated using the “.” trick in
symbol names (see “Symbol Conversion” above).

(.blorg this 1 2) => this.blorg(l, 2)
(this.blorg 1 2) => this.blorg(l, 2)
(.blorg (aref foobar 1) NIL T)

=> foobar[1] .blorg(null, true)

3.7 Operator Expressions

; (operator {argument}x)
; (single-operator argument)

; operator ::= one of *, /, %, +, —, <<, >>, >>> < >, EQL,

; ==, I=, =, ===, I==, &, ~, |, &%, AND, ||, OR.
; single-operator ::= one of INCF, DECF, ++, --, NOT, !

; argument ::= a ParenScript expression

Operator forms are similar to function call forms, but have an operator as
function name.

Please note that ‘=" is converted to ‘=="in JavaScript. The ‘=" ParenScript
operator is not the assignment operator. Unlike JavaScript, ParenScript sup-
ports multiple arguments to the operators.

(*x12) =1 % 2
(=12 =1 == 2
(eql 1 2) => 1 == 2

Note that the resulting expression is correctly parenthized, according to the
JavaScript operator precedence that can be found in table form at:

http://www.codehouse.com/javascript/precedence/

(x1 (+234) 4 6T7))
= 1% (2+3+4) x4 (6/7)

The pre/post increment and decrement operators are also available. INCF
and ‘DECF’ are the pre-incrementing and pre-decrementing operators, and
‘++" and ‘'’ are the post-decrementing version of the operators. These op-
erators can take only one argument.

30 CHAPTER 3. PARENSCRIPT LANGUAGE REFERENCE

(++ 1) => i++
(-- i) = i--
(incf 1) => ++i
(decf i) => —-i
The “1+" and “1-’ operators are shortforms for adding and substracting 1.
1- i) =>i -1
(1+ 1) =>i+1

The ‘not” operator actually optimizes the code a bit. If not” is used on an-
other boolean-returning operator, the operator is reversed.

(not (< i 2)) =i >= 2

(not (eql i 2)) =>1i !=2

3.8 Body forms

; (PROGN {statement}*) in statement context
; (PROGN {expression}*) in expression context

; statement a ParenScript statement
; expression ::= a ParenScript expression

The ‘PROGN’ special form defines a sequence of statements when used in
a statement context, or sequence of expression when used in an expression
context. The PROGN’ special form is added implicitly around the branches
of conditional executions forms, function declarations and iteration con-
structs. For example, in a statement context:

(progn (blorg i) (blafoo i))
=> blorg(i);
blafoo(i);

In an expression context:

(+ i (progn (blorg i) (blafoo i)))
=> i + (blorg(i), blafoo(i))

A ‘PROGN’ form doesn’t lead to additional indentation or additional braces
around it’s body.

3.9. FUNCTION DEFINITION 31

3.9 Function Definition

; (DEFUN name ({argumentl}*) body)
; (LAMBDA ({argument}*) body)

; name a Lisp Symbol
; argument ::= a Lisp symbol
; body a list of ParenScript statements

As in Lisp, functions are defined using the ‘DEFUN" form, which takes a
name, a list of arguments, and a function body. An implicit ‘PROGN’ is
added around the body statements.

(defun a-function (a b)
(return (+ a b)))
=> function aFunction(a, b) {
return a + b;

3

Anonymous functions can be created using the ‘LAMBDA’ form, which
is the same as ‘DEFUN’, but without function name. In fact, ‘LAMBDA’
creates a ‘DEFUN’ with an empty function name.

(lambda (a b) (return (+ a b)))
=> function (a, b) {
return a + b;

3

3.10 Assignment

; (SETF {lhs rhs}x*)
; lhs ::
; rhs ::

a ParenScript left hand side expression
a ParenScript expression

Assignment is done using the ‘SETF’ form, which is transformed into a
series of assignments using the JavaScript ‘=" operator.

(setf a 1) => a =1

(setf a2b3cédx (+abc))

=> a = 2;
b = 3;
c = 4;
X =a+ b+ c;

The ‘SETF’ form can transform assignments of a variable with an operator
expression using this variable into a more “efficient” assignment operator
form. For example:

32 CHAPTER 3. PARENSCRIPT LANGUAGE REFERENCE

(setf a (1+ a)) => a++
(setf a (*x 234 a4 a)) =>a *x=2 %3 %4 *%x4 % a

(setf a (-1 a)) =a=1-a

3.11 Single argument statements

; (RETURN {valuel}?)
; (THROW {valuel}?)

value ::= a ParenScript expression
The single argument statements ‘return” and ‘throw” are generated by the
form ‘RETURN’ and ‘THROW’. ‘THROW” has to be used inside a “TRY”

form. ‘RETURN’ is used to return a value from a function call.

(return 1) => return 1

(throw "foobar") => throw "foobar"

3.12 Single argument expression

; (DELETE {value})
; (VOID {value})
; (TYPEOF {value})
; (INSTANCEOF {valuel})
; (NEW {valuel})
; value ::= a ParenScript expression

The single argument expressions ‘delete’, ‘void’, ‘typeof’, ‘instanceof” and
‘new’ are generated by the forms ‘DELETE’, “VOID’, “TYPEOF’, INSTANCEOF’
and ‘'NEW’. They all take a ParenScript expression.

(delete (new (*foobar 2 3 4))) => delete new Foobar(2, 3, 4)

(if (= (typeof blorg) *string)
(alert (+ "blorg is a string: " blorg))
(alert "blorg is not a string"))
=> if (typeof blorg == String) {
alert("blorg is a string: " + blorg);
} else {
alert("blorg is not a string");

}

3.13. CONDITIONAL STATEMENTS 33

3.13 Conditional Statements

; (IF conditional then {else})
; (WHEN condition then)
; (UNLESS condition then)

; condition ::= a ParenScript expression
; then a ParenScript statement in statement context, a
; ParenScript expression in expression context

; else a ParenScript statement in statement context, a
; ParenScript expression in expression context

The ‘IF” form compiles to the ‘if” javascript construct. An explicit ‘PROGN’
around the then branch and the else branch is needed if they consist of more
than one statement. When the ‘IF” form is used in an expression context, a

JavaScript ‘?’, *" operator form is generated.
(if (blorg.is-correct)
(progn (carry-on) (return i))
(alert "blorg is not correct!"))
=> if (blorg.isCorrect()) {
carryOnQ) ;
return i;
} else {

alert("blorg is not correct!");

}

(+ i (if (blorg.add-omne) 1 2))
=> i + (blorg.addOne() 7 1 : 2)

The “WHEN’ and “UNLESS’ forms can be used as shortcuts for the ‘IF’ form.

(when (blorg.is-correct)
(carry-on)
(return 1i))
=> if (blorg.isCorrect()) {
carryOn() ;
return i;

}

(unless (blorg.is-correct)
(alert "blorg is not correct!"))
=> if (!blorg.isCorrect()) {
alert("blorg is not correct!");

}

3.14 Variable declaration

; (DEFVAR var {valuel}?)
; (LET ({var | (var value)) body)

34 CHAPTER 3. PARENSCRIPT LANGUAGE REFERENCE

; var ::= a Lisp symbol
; value ::= a ParenScript expression
; body ::= a list of ParenScript statements

Variables (either local or global) can be declared using the “DEFVAR’ form,
which is similar to its equivalent form in Lisp. The “DEFVAR’ is converted
to “var ... = ...” form in JavaScript.

(defvar *a*x (array 1 2 3)) =>var A =[1, 2, 3]

if (=1 1)
(progn (defvar blorg "hallo")
(alert blorg))
(progn (defvar blorg "blitzel")
(alert blorg)))
=> if (1 == 1) {
var blorg = "hallo";
alert(blorg);
} else {
var blorg = "blitzel";
alert(blorg);
}

A more lispy way to declare local variable is to use the ‘LET” form, which
is similar to its Lisp form.

(if (=1 1
(let ((blorg "hallo"))
(alert blorg))
(let ((blorg "blitzel"))
(alert blorg)))
= if (1 == 1) {
var blorg = "hallo";
alert(blorg) ;
} else {
var blorg = "blitzel";
alert(blorg);
}

However, beware that scoping in Lisp and JavaScript are quite different.
For example, don’t rely on closures capturing local variables in the way
you’d think they would.

3.15 Iteration constructs

; (D0 ({var | (var {init}? {step}?)}*) (end-test) body)
; (DOTIMES (var numeric-form) body)

3.15. ITERATION CONSTRUCTS 35

; (DOLIST (var list-form) body)
; (DOEACH (var object) body)
; (WHILE end-test body)

; var ::= a Lisp symbol

; numeric-form ::= a ParenScript expression resulting in a number
; list-form ::= a ParenScript expression resulting in an array
; object a ParenScript expression resulting in an object
; init a ParenScript expression

; step a ParenScript expression

; end-test = a ParenScript expression

; body ::= a list of ParenScript statements

The ‘DO’ form, which is similar to its Lisp form, is transformed into a
JavaScript ‘for” statement. Note that the ParenScript ‘DO’ form does not
have a return value, that is because ‘for’ is a statement and not an expres-
sion in JavaScript.

(do ((1 0 (1+ 1))
(1 (aref blorg i) (aref blorg i)))
((or (= i blorg.length)
(eql 1 "Fumitastic")))
(document.write (+ "L is " 1)))
=> for (var i = 0, 1 = blorgl[il;
! (i == blorg.length || 1 == "Fumitastic");
i=1i+1, 1=blorglil) {
document.write("L is " + 1);

}

The ‘DOTIMES’ form, which lets a variable iterate from 0 upto an end
value, is a shortcut for ‘DO’.

(dotimes (i blorg.length)
(document.write (+ "L is " (aref blorg i))))
=> for (var i = 0; i != blorg.length; i = i++) {
document.write("L is " + blorgl[il);

}

The ‘DOLIST’ form is a shortcut for iterating over an array. Note that this
form creates temporary variables using a function called JS-GENSYM’,
which is similar to its Lisp counterpart ‘GENSYM'.

(dolist (1 blorg)
(document.write (+ "L is " 1)))
=> var tmpArrl = blorg;
for (var tmpI2 = 0; tmpI2 < tmpArrl.length;
tmpI2 = tmpI2++) {
var 1 = tmpArril[tmpI2];
document.write("L is " + 1);

}

36 CHAPTER 3. PARENSCRIPT LANGUAGE REFERENCE

The ‘DOEACH’ form is converted to a ‘for (var .. in ..)” form in JavaScript.
It is used to iterate over the enumerable properties of an object.

(doeach (i object)
(document.write (+ i " is " (aref object i))))
=> for (var i in object) {
document.write(i + " is " + object[i]);

3

The “‘WHILE’ form is transformed to the JavaScript form ‘while’, and loops
until a termination test evaluates to false.

(while (film.is-not-finished)
(this.eat (new *popcorn)))
=> while (film.isNotFinished()) {
this.eat (new Popcorn);

¥

3.16 The ‘CASE’ statement

; (CASE case-value clausex)

; clause (value body)

; case-value ::= a ParenScript expression

; value a ParenScript expression

; body a list of ParenScript statements

The Lisp ‘CASE’ form is transformed to a ‘switch’ statement in JavaScript.
Note that ‘CASE’ is not an expression in ParenScript. The default case is
not named “T” in ParenScript, but ‘DEFAULT’ instead.

(case (aref blorg i)
(1 (alert "one"))
(2 (alert "two"))
(default (alert "default clause")))
=> switch (blorgli]) {

case 1: alert("one");

case 2: alert("two");

default: alert("default clause");
}

3.17 The “WITH’ statement
; (WITH (object) body)

; object ::= a ParenScript expression evaluating to an object
; body a list of ParenScript statements

3.18. THE “TRY’ STATEMENT 37

The “WITH’ form is compiled to a JavaScript ‘with” statements, and adds
the object ‘object’” as an intermediary scope objects when executing the
body.

(with ((create :foo "foo" :i "i"))

(alert (+ "i is now intermediary scoped: " 1i)))
=> with ({ foo : "foo",
i nin }) {
alert("i is now intermediary scoped: " + i);
}

3.18 The ‘TRY’ statement
(TRY body {(:CATCH (var) body)}? {(:FINALLY body)}?)

; body ::= a list of ParenScript statements
; a Lisp symbol

var

The “TRY” form is converted to a JavaScript ‘try” statement, and can be used
to catch expressions thrown by the “THROW’ form. The body of the catch
clause is invoked when an exception is catched, and the body of the finally
is always invoked when leaving the body of the “TRY” form.

(try (throw "i")
(:catch (error)

(alert (+ "an error happened: " error)))
(:finally
(alert "Leaving the try form")))
=> try {
throw "i";
} catch (error) {
alert("an error happened: " + error);
} finally {
alert("Leaving the try form");
}

3.19 The HTML Generator

; (HTML html-expression)

The HTML generator of ParenScript is very similar to the HTML genera-
tor included in AllegroServe. It accepts the same input forms as the Alle-
groServer HTML generator. However, non-HTML construct are compiled
to JavaScript by the ParenScript compiler. The resulting expression is a
JavaScript expression.

38 CHAPTER 3. PARENSCRIPT LANGUAGE REFERENCE

(html ((:a :href "foobar") "blorg"))
=> "blorg"

(html ((:a :href (generate-a-link)) "blorg"))
=> "blorg"

We can recursively call the JS compiler in a HTML expression.

(document .write
(html ((:a :href "#"
ronclick (js-inline (transport))) "link")))
=> document.write("<a href=\"#\" onclick=\""
+ "javascript:transport();"
+ "\">link")

3.20 Macrology

; (DEFJSMACRO name lambda-list macro-body)

; (MACROLET ({name lambda-list macro-body}*) body)
; (SYMBOL-MACROLET ({name macro-body}*) body)

; (JS-GENSYM {string}?)

; name ::= a Lisp symbol

; lambda-list ::= a lambda list

; macro-body ::= a Lisp body evaluating to ParenScript code
; body ::= a list of ParenScript statements

; string ::= a string

ParenScript can be extended using macros, just like Lisp can be extended
using Lisp macros. Using the special Lisp form ‘DEFJSMACRO’, the Paren-
Script language can be extended. ‘DEFJSMACRO’ adds the new macro to
the toplevel macro environment, which is always accessible during Paren-
Script compilation. For example, the “1+" and “1-” operators are implemented
using macros.

(def jsmacro 1- (form)
‘(- ,form 1))

(def jsmacro 1+ (form)
“(+ ,form 1))

A more complicated ParenScript macro example is the implementation of
the ‘DOLIST’ form (note how ‘JS-GENSYM'’, the ParenScript of ‘'GENSYM’,
is used to generate new ParenScript variable names):

(defjsmacro dolist (i-array &rest body)
(let ((var (first i-array))

3.21. THE PARENSCRIPT COMPILER 39

(array (second i-array))

(arrvar (js-gensym "arr"))

(idx (js-gensym "i")))

‘(let ((,arrvar ,array))
(do ((,idx O (++ ,idx)))

((>= ,idx (slot-value ,arrvar ’length)))

(let ((,var (aref ,arrvar ,idx)))
,@body)))))

Macros can be added dynamically to the macro environment by using the
ParenScript ‘MACROLET” form (note that while 'DEFJSMACRO' is a Lisp
form, ‘'MACROLET” and ‘SYMBOL-MACROLET" are ParenScript forms).
ParenScript also supports symbol macros, which can be introduced using
the ParenScript form ‘SYMBOL-MACROLET’. A new macro environment
is created and added to the current macro environment list while compiling
the body of the ‘'SYMBOL-MACROLET’ form. For example, the ParenScript
‘WITH-SLOTS' is implemented using symbol macros.

(def jsmacro with-slots (slots object &rest body)
¢ (symbol-macrolet ,(mapcar #’(lambda (slot)
‘(,slot ’(slot-value ,object ’,slot)))
slots)
,@body))

3.21 The ParenScript Compiler

(JS-COMPILE expr)
(JS-TO-STRINGS compiled-expr position)
(JS-TO-STATEMENT-STRINGS compiled-expr position)

compiled-expr ::
position

a compiled ParenScript expression
a column number

; (JS-TO-STRING expression)

; (JS-TO-LINE expression)

; expression ::= a Lisp list of ParenScript code
; (JS body)

; (JS-INLINE body)

(JS-FILE body)
(JS-SCRIPT body)

; body ::= a list of ParenScript statements

The ParenScript compiler can be invoked from withing Lisp and from within
ParenScript itself. The primary API function is ‘JS-COMPILE’, which takes

40 CHAPTER 3. PARENSCRIPT LANGUAGE REFERENCE

a list of ParenScript, and returns an internal object representing the com-
piled ParenScript.

(js-compile ’(foobar 1 2))
=> #<JS::FUNCTION-CALL {584AA5DD}>

This internal object can be transformed to a string using the methods ‘JS-
TO-STRINGS’ and ‘JS-TO-STATEMENT-STRINGS’, which interpret the Paren-
Script in expression and in statement context respectively. They take an ad-
ditional parameter indicating the start-position on a line (please note that
the indentation code is not perfect, and this string interface will likely be
changed). They return a list of strings, where each string represents a new
line of JavaScript code. They can be joined together to form a single string.

(js-to-strings (js-compile ’(foobar 1 2)) 0)
=> ("foobar(1, 2)")

As a shortcut, ParenScript provides the functions ‘JS-TO-STRING” and ‘JS-
TO-LINE’, which return the JavaScript string of the compiled expression
passed as an argument.

(js-to-string ’ (foobar 1 2))
=> "foobar(1l, 2)"

For static ParenScript code, the macros ‘JS’, ‘JS-INLINE’, ‘JS-FILE” and ‘JS-
SCRIPT” avoid the need to quote the ParenScript expression. All these forms
add an implicit PROGN’ form around the body. ‘]S’ returns a string of the
compiled body, where the other expression return an expression that can be
embedded in a HTML generation construct using the AllegroServe HTML
generator. ‘JS-SCRIPT’ generates a “SCRIPT” node, ‘JS-INLINE’ generates a
string to be used in node attributs, and ‘JS-FILE’ prints the compiled Paren-
Script code to the HTML stream. These macros are also available inside
ParenScript itself, and generate strings that can be used inside ParenScript
code. Note that ‘JS-INLINE’ in ParenScript is not the same ‘JS-INLINE’
form as in Lisp, for example. The same goes for the other compilation
macros.

Index

AND, 29

anonymous function, 31

AREF, 25

ARRAY, 25

array, 25

array literal, 25
array traversal, 34
assignment, 31

assignment operator, 29, 31

binding, 33, 36
body form, 30
body statement, 30

CASE, 36

CATCH, 37
CL-INTERPOL, 27
closure, 31, 36
compiler, 38, 39

conditional statements, 33

conditionals, 33
CREATE, 26

DEFJSMACRO, 38
DEFUN, 31
DEFVAR, 33
DELETE, 32

DO, 34

DOEACH, 34
DOLIST, 34
DOTIMES, 34
dynamic scope, 36

EQL, 29

error handling, 37
exception, 37
expression, 23

41

FALSE, 27

FINALLY, 37

foobar, 9

function, 28, 31, 32
function call, 28
function definition, 31

HTML, 37
HTML generation, 37

IF, 33

INSTANCEOQFE, 32
iteration, 34

iteration construct, 34

JS, 39

JS-COMPILE, 39

JS-FILE, 39

JS-GENSYM, 38

JS-INLINE, 39

JS-SCRIPT, 39

JS-TO-LINE, 39
JS-TO-STATEMENT-STRINGS, 39
JS-TO-STRING, 39
JS-TO-STRINGS, 39

keyword, 24

LAMBDA, 31
LET, 33

literal symbols, 27
literal value, 25
loop, 34

macro, 38
MACROLET, 38
macrology, 38

42 INDEX

MAKE-ARRAY, 25 THIS, 27
method, 28, 31 THROW, 32
method call, 28 true, 27
TRY, 37

nested compilation, 39 TYPEOF, 32
NEW, 32
new, 32 UNDEFINED, 27
NIL, 27 UNLESS, 33
NOT, 29)
null 27 variable, 28, 33
nun;b or. 25 variable declaration, 33
number literal, 25 VOID, 32

. WHEN, 33
object, 26 WHILE, 34
object creation, 32
object deletion, 32 Vvtllggl SE OTS. 26
object literal, 26 i ’

object property, 26, 34
operator, 29

operator expression, 29
OR, 29

ParenScript compiler, 39
PROGN, 30
property, 26, 34

REGEX, 27

regular expression, 27
reserved keywords, 24
RETURN, 32

scoping, 33, 36

SETE, 31

single-argument expression, 32
single-argument statement, 32
SLOT-VALUE, 26

statement, 23

string, 25

string literal, 25

switch, 36

symbol, 24, 28

symbol conversion, 24
SYMBOL-MACROLET, 38

T, 27

