eaa45f3e7b205dbfe9570b160e14215fdeb2852a
[clinton/parenscript.git] / docs / reference.lisp
1 ;;;# ParenScript Language Reference
2
3 ;;; This chapters describes the core constructs of ParenScript, as
4 ;;; well as its compilation model. This chapter is aimed to be a
5 ;;; comprehensive reference for ParenScript developers. Programmers
6 ;;; looking for how to tweak the ParenScript compiler itself should
7 ;;; turn to the ParenScript Internals chapter.
8
9 ;;;# Statements and Expressions
10 ;;;t \index{statement}
11 ;;;t \index{expression}
12
13 ;;; In contrast to Lisp, where everything is an expression, JavaScript
14 ;;; makes the difference between an expression, which evaluates to a
15 ;;; value, and a statement, which has no value. Examples for
16 ;;; JavaScript statements are `for', `with' and `while'. Most
17 ;;; ParenScript forms are expression, but certain special forms are
18 ;;; not (the forms which are transformed to a JavaScript
19 ;;; statement). All ParenScript expressions are statements
20 ;;; though. Certain forms, like `IF' and `PROGN', generate different
21 ;;; JavaScript constructs whether they are used in an expression
22 ;;; context or a statement context. For example:
23
24 (+ i (if 1 2 3)) => i + (1 ? 2 : 3)
25
26 (if 1 2 3)
27 => if (1) {
28 2;
29 } else {
30 3;
31 }
32
33 ;;;# Symbol conversion
34 ;;;t \index{symbol}
35 ;;;t \index{symbol conversion}
36
37 ;;; Lisp symbols are converted to JavaScript symbols by following a
38 ;;; few simple rules. Special characters `!', `?', `#', `@', `%',
39 ;;; '/', `*' and `+' get replaced by their written-out equivalents
40 ;;; "bang", "what", "hash", "at", "percent", "slash",
41 ;;; "start" and "plus" respectively. The `$' character is untouched.
42
43 !?#@% => bangwhathashatpercent
44
45 ;;; The `-' is an indication that the following character should be
46 ;;; converted to uppercase. Thus, `-' separated symbols are converted
47 ;;; to camelcase. The `_' character however is left untouched.
48
49 bla-foo-bar => blaFooBar
50
51 ;;; If you want a JavaScript symbol beginning with an uppercase, you
52 ;;; can either use a leading `-', which can be misleading in a
53 ;;; mathematical context, or a leading `*'.
54
55 *array => Array
56
57 ;;; The `.' character is left as is in symbols. This allows the
58 ;;; ParenScript programmer to use a practical shortcut when accessing
59 ;;; slots or methods of JavaScript objects. Instead of writing
60
61 (slot-value foobar 'slot)
62
63 ;;; we can write
64
65 foobar.slot
66
67 ;;; A symbol beggining and ending with `+' or `*' is converted to all
68 ;;; uppercase, to signify that this is a constant or a global
69 ;;; variable.
70
71 *global-array* => GLOBALARRAY
72
73 *global-array*.length => GLOBALARRAY.length
74
75 ;;;## Reserved Keywords
76 ;;;t \index{keyword}
77 ;;;t \index{reserved keywords}
78
79 ;;; The following keywords and symbols are reserved in ParenScript,
80 ;;; and should not be used as variable names.
81
82 ! ~ ++ -- * / % + - << >> >>> < > <= >= == != ==== !== & ^ | && ||
83 *= /= %= += -= <<= >>= >>>= &= ^= |= 1- 1+
84 ABSTRACT AND AREF ARRAY BOOLEAN BREAK BYTE CASE CATCH CC-IF CHAR CLASS
85 COMMA CONST CONTINUE CREATE DEBUGGER DECF DEFAULT DEFUN DEFVAR DELETE
86 DO DOEACH DOLIST DOTIMES DOUBLE ELSE ENUM EQL EXPORT EXTENDS FALSE
87 FINAL FINALLY FLOAT FLOOR FOR FUNCTION GOTO IF IMPLEMENTS IMPORT IN INCF
88 INSTANCEOF INT INTERFACE JS LAMBDA LET LISP LIST LONG MAKE-ARRAY NATIVE NEW
89 NIL NOT OR PACKAGE PRIVATE PROGN PROTECTED PUBLIC RANDOM REGEX RETURN
90 SETF SHORT SLOT-VALUE STATIC SUPER SWITCH SYMBOL-MACROLET SYNCHRONIZED T
91 THIS THROW THROWS TRANSIENT TRY TYPEOF UNDEFINED UNLESS VAR VOID VOLATILE
92 WHEN WHILE WITH WITH-SLOTS
93
94 ;;;# Literal values
95 ;;;t \index{literal value}
96
97 ;;;## Number literals
98 ;;;t \index{number}
99 ;;;t \index{number literal}
100
101 ; number ::= a Lisp number
102
103 ;;;
104 ;;; ParenScript supports the standard JavaScript literal
105 ;;; values. Numbers are compiled into JavaScript numbers.
106
107 1 => 1
108
109 123.123 => 123.123
110
111 ;;; Note that the base is not conserved between Lisp and JavaScript.
112
113 #x10 => 16
114
115 ;;;## String literals
116 ;;;t \index{string}
117 ;;;t \index{string literal}
118
119 ; string ::= a Lisp string
120
121 ;;; Lisp strings are converted into JavaScript literals.
122
123 "foobar" => 'foobar'
124
125 "bratzel bub" => 'bratzel bub'
126
127 ;;; Escapes in Lisp are not converted to JavaScript escapes. However,
128 ;;; to avoid having to use double backslashes when constructing a
129 ;;; string, you can use the CL-INTERPOL library by Edi Weitz.
130
131 ;;;## Array literals
132 ;;;t \index{array}
133 ;;;t \index{ARRAY}
134 ;;;t \index{MAKE-ARRAY}
135 ;;;t \index{AREF}
136 ;;;t \index{array literal}
137
138 ; (ARRAY {values}*)
139 ; (MAKE-ARRAY {values}*)
140 ; (AREF array index)
141 ;
142 ; values ::= a ParenScript expression
143 ; array ::= a ParenScript expression
144 ; index ::= a ParenScript expression
145
146 ;;; Array literals can be created using the `ARRAY' form.
147
148 (array) => [ ]
149
150 (array 1 2 3) => [ 1, 2, 3 ]
151
152 (array (array 2 3)
153 (array "foobar" "bratzel bub"))
154 => [ [ 2, 3 ], [ 'foobar', 'bratzel bub' ] ]
155
156 ;;; Arrays can also be created with a call to the `Array' function
157 ;;; using the `MAKE-ARRAY'. The two forms have the exact same semantic
158 ;;; on the JavaScript side.
159
160 (make-array) => new Array()
161
162 (make-array 1 2 3) => new Array(1, 2, 3)
163
164 (make-array
165 (make-array 2 3)
166 (make-array "foobar" "bratzel bub"))
167 => new Array(new Array(2, 3), new Array('foobar', 'bratzel bub'))
168
169 ;;; Indexing arrays in ParenScript is done using the form `AREF'. Note
170 ;;; that JavaScript knows of no such thing as an array. Subscripting
171 ;;; an array is in fact reading a property from an object. So in a
172 ;;; semantic sense, there is no real difference between `AREF' and
173 ;;; `SLOT-VALUE'.
174
175 ;;;## Object literals
176 ;;;t \index{CREATE}
177 ;;;t \index{SLOT-VALUE}
178 ;;;t \index{WITH-SLOTS}
179 ;;;t \index{object literal}
180 ;;;t \index{object}
181 ;;;t \index{object property}
182 ;;;t \index{property}
183
184 ; (CREATE {name value}*)
185 ; (SLOT-VALUE object slot-name)
186 ; (WITH-SLOTS ({slot-name}*) object body)
187 ;
188 ; name ::= a ParenScript symbol or a Lisp keyword
189 ; value ::= a ParenScript expression
190 ; object ::= a ParenScript object expression
191 ; slot-name ::= a quoted Lisp symbol
192 ; body ::= a list of ParenScript statements
193
194 ;;;
195 ;;; Object literals can be create using the `CREATE' form. Arguments
196 ;;; to the `CREATE' form is a list of property names and values. To be
197 ;;; more "lispy", the property names can be keywords.
198
199 (create :foo "bar" :blorg 1)
200 => { foo : 'bar',
201 blorg : 1 }
202
203 (create :foo "hihi"
204 :blorg (array 1 2 3)
205 :another-object (create :schtrunz 1))
206 => { foo : 'hihi',
207 blorg : [ 1, 2, 3 ],
208 anotherObject : { schtrunz : 1 } }
209
210 ;;; Object properties can be accessed using the `SLOT-VALUE' form,
211 ;;; which takes an object and a slot-name.
212
213 (slot-value an-object 'foo) => anObject.foo
214
215 ;;; A programmer can also use the "." symbol notation explained above.
216
217 an-object.foo => anObject.foo
218
219 ;;; The form `WITH-SLOTS' can be used to bind the given slot-name
220 ;;; symbols to a macro that will expand into a `SLOT-VALUE' form at
221 ;;; expansion time.
222
223 (with-slots (a b c) this
224 (+ a b c))
225 => this.a + this.b + this.c;
226
227 ;;;## Regular Expression literals
228 ;;;t \index{REGEX}
229 ;;;t \index{regular expression}
230 ;;;t \index{CL-INTERPOL}
231
232 ; (REGEX regex)
233 ;
234 ; regex ::= a Lisp string
235
236 ;;; Regular expressions can be created by using the `REGEX' form. If
237 ;;; the argument does not start with a slash, it is surrounded by
238 ;;; slashes to make it a proper JavaScript regex. If the argument
239 ;;; starts with a slash it is left as it is. This makes it possible
240 ;;; to use modifiers such as slash-i (case-insensitive) or
241 ;;; slash-g (match-globally (all)).
242
243 (regex "foobar") => /foobar/
244
245 (regex "/foobar/i") => /foobar/i
246
247 ;;; Here CL-INTERPOL proves really useful.
248
249 (regex #?r"/([^\s]+)foobar/i") => /([^\s]+)foobar/i
250
251 ;;;## Literal symbols
252 ;;;t \index{T}
253 ;;;t \index{FALSE}
254 ;;;t \index{NIL}
255 ;;;t \index{UNDEFINED}
256 ;;;t \index{THIS}
257 ;;;t \index{literal symbols}
258 ;;;t \index{null}
259 ;;;t \index{true}
260
261 ; T, FALSE, NIL, UNDEFINED, THIS
262
263 ;;; The Lisp symbols `T' and `FALSE' are converted to their JavaScript
264 ;;; boolean equivalents `true' and `false'.
265
266 T => true
267
268 FALSE => false
269
270 ;;; The Lisp symbol `NIL' is converted to the JavaScript keyword
271 ;;; `null'.
272
273 NIL => null
274
275 ;;; The Lisp symbol `UNDEFINED' is converted to the JavaScript keyword
276 ;;; `undefined'.
277
278 UNDEFINED => undefined
279
280 ;;; The Lisp symbol `THIS' is converted to the JavaScript keyword
281 ;;; `this'.
282
283 THIS => this
284
285 ;;;# Variables
286 ;;;t \index{variable}
287 ;;;t \index{symbol}
288
289 ; variable ::= a Lisp symbol
290
291 ;;; All the other literal Lisp values that are not recognized as
292 ;;; special forms or symbol macros are converted to JavaScript
293 ;;; variables. This extreme freedom is actually quite useful, as it
294 ;;; allows the ParenScript programmer to be flexible, as flexible as
295 ;;; JavaScript itself.
296
297 variable => variable
298
299 a-variable => aVariable
300
301 *math => Math
302
303 *math.floor => Math.floor
304
305 ;;;# Function calls and method calls
306 ;;;t \index{function}
307 ;;;t \index{function call}
308 ;;;t \index{method}
309 ;;;t \index{method call}
310
311 ; (function {argument}*)
312 ; (method object {argument}*)
313 ;
314 ; function ::= a ParenScript expression or a Lisp symbol
315 ; method ::= a Lisp symbol beginning with .
316 ; object ::= a ParenScript expression
317 ; argument ::= a ParenScript expression
318
319 ;;; Any list passed to the JavaScript that is not recognized as a
320 ;;; macro or a special form (see "Macro Expansion" below) is
321 ;;; interpreted as a function call. The function call is converted to
322 ;;; the normal JavaScript function call representation, with the
323 ;;; arguments given in paren after the function name.
324
325 (blorg 1 2) => blorg(1, 2)
326
327 (foobar (blorg 1 2) (blabla 3 4) (array 2 3 4))
328 => foobar(blorg(1, 2), blabla(3, 4), [ 2, 3, 4 ])
329
330 ((aref foo i) 1 2) => foo[i](1, 2)
331
332 ;;; A method call is a function call where the function name is a
333 ;;; symbol and begins with a "." . In a method call, the name of the
334 ;;; function is append to its first argument, thus reflecting the
335 ;;; method call syntax of JavaScript. Please note that most method
336 ;;; calls can be abbreviated using the "." trick in symbol names (see
337 ;;; "Symbol Conversion" above).
338
339 (.blorg this 1 2) => this.blorg(1, 2)
340
341 (this.blorg 1 2) => this.blorg(1, 2)
342
343 (.blorg (aref foobar 1) NIL T)
344 => foobar[1].blorg(null, true)
345
346 ;;;# Operator Expressions
347 ;;;t \index{operator}
348 ;;;t \index{operator expression}
349 ;;;t \index{assignment operator}
350 ;;;t \index{EQL}
351 ;;;t \index{NOT}
352 ;;;t \index{AND}
353 ;;;t \index{OR}
354
355 ; (operator {argument}*)
356 ; (single-operator argument)
357 ;
358 ; operator ::= one of *, /, %, +, -, <<, >>, >>>, < >, EQL,
359 ; ==, !=, =, ===, !==, &, ^, |, &&, AND, ||, OR.
360 ; single-operator ::= one of INCF, DECF, ++, --, NOT, !
361 ; argument ::= a ParenScript expression
362
363 ;;; Operator forms are similar to function call forms, but have an
364 ;;; operator as function name.
365 ;;;
366 ;;; Please note that `=' is converted to `==' in JavaScript. The `='
367 ;;; ParenScript operator is not the assignment operator. Unlike
368 ;;; JavaScript, ParenScript supports multiple arguments to the
369 ;;; operators.
370
371 (* 1 2) => 1 * 2
372
373 (= 1 2) => 1 == 2
374
375 (eql 1 2) => 1 == 2
376
377 ;;; Note that the resulting expression is correctly parenthized,
378 ;;; according to the JavaScript operator precedence that can be found
379 ;;; in table form at:
380
381 http://www.codehouse.com/javascript/precedence/
382
383 (* 1 (+ 2 3 4) 4 (/ 6 7))
384 => 1 * (2 + 3 + 4) * 4 * (6 / 7)
385
386 ;;; The pre/post increment and decrement operators are also
387 ;;; available. `INCF' and `DECF' are the pre-incrementing and
388 ;;; pre-decrementing operators, and `++' and `--' are the
389 ;;; post-decrementing version of the operators. These operators can
390 ;;; take only one argument.
391
392 (++ i) => i++
393
394 (-- i) => i--
395
396 (incf i) => ++i
397
398 (decf i) => --i
399
400 ;;; The `1+' and `1-' operators are shortforms for adding and
401 ;;; substracting 1.
402
403 (1- i) => i - 1
404
405 (1+ i) => i + 1
406
407 ;;; The `not' operator actually optimizes the code a bit. If `not' is
408 ;;; used on another boolean-returning operator, the operator is
409 ;;; reversed.
410
411 (not (< i 2)) => i >= 2
412
413 (not (eql i 2)) => i != 2
414
415 ;;;# Body forms
416 ;;;t \index{body form}
417 ;;;t \index{PROGN}
418 ;;;t \index{body statement}
419
420 ; (PROGN {statement}*) in statement context
421 ; (PROGN {expression}*) in expression context
422 ;
423 ; statement ::= a ParenScript statement
424 ; expression ::= a ParenScript expression
425
426 ;;; The `PROGN' special form defines a sequence of statements when
427 ;;; used in a statement context, or sequence of expression when used
428 ;;; in an expression context. The `PROGN' special form is added
429 ;;; implicitly around the branches of conditional executions forms,
430 ;;; function declarations and iteration constructs.
431
432 ;;; For example, in a statement context:
433
434 (progn (blorg i) (blafoo i))
435 => blorg(i);
436 blafoo(i);
437
438 ;;; In an expression context:
439
440 (+ i (progn (blorg i) (blafoo i)))
441 => i + (blorg(i), blafoo(i))
442
443 ;;; A `PROGN' form doesn't lead to additional indentation or
444 ;;; additional braces around it's body.
445
446 ;;;# Function Definition
447 ;;;t \index{function}
448 ;;;t \index{method}
449 ;;;t \index{function definition}
450 ;;;t \index{DEFUN}
451 ;;;t \index{LAMBDA}
452 ;;;t \index{closure}
453 ;;;t \index{anonymous function}
454
455 ; (DEFUN name ({argument}*) body)
456 ; (LAMBDA ({argument}*) body)
457 ;
458 ; name ::= a Lisp Symbol
459 ; argument ::= a Lisp symbol
460 ; body ::= a list of ParenScript statements
461
462 ;;; As in Lisp, functions are defined using the `DEFUN' form, which
463 ;;; takes a name, a list of arguments, and a function body. An
464 ;;; implicit `PROGN' is added around the body statements.
465
466 (defun a-function (a b)
467 (return (+ a b)))
468 => function aFunction(a, b) {
469 return a + b;
470 }
471
472 ;;; Anonymous functions can be created using the `LAMBDA' form, which
473 ;;; is the same as `DEFUN', but without function name. In fact,
474 ;;; `LAMBDA' creates a `DEFUN' with an empty function name.
475
476 (lambda (a b) (return (+ a b)))
477 => function (a, b) {
478 return a + b;
479 }
480
481 ;;;# Assignment
482 ;;;t \index{assignment}
483 ;;;t \index{SETF}
484 ;;;t \index{assignment operator}
485
486 ; (SETF {lhs rhs}*)
487 ;
488 ; lhs ::= a ParenScript left hand side expression
489 ; rhs ::= a ParenScript expression
490
491 ;;; Assignment is done using the `SETF' form, which is transformed
492 ;;; into a series of assignments using the JavaScript `=' operator.
493
494 (setf a 1) => a = 1
495
496 (setf a 2 b 3 c 4 x (+ a b c))
497 => a = 2;
498 b = 3;
499 c = 4;
500 x = a + b + c;
501
502 ;;; The `SETF' form can transform assignments of a variable with an
503 ;;; operator expression using this variable into a more "efficient"
504 ;;; assignment operator form. For example:
505
506 (setf a (1+ a)) => a++
507
508 (setf a (+ a 2 3 4 a)) => a += 2 + 3 + 4 + a
509
510 (setf a (- 1 a)) => a = 1 - a
511
512 ;;;# Single argument statements
513 ;;;t \index{single-argument statement}
514 ;;;t \index{RETURN}
515 ;;;t \index{THROW}
516 ;;;t \index{THROW}
517 ;;;t \index{function}
518
519 ; (RETURN {value}?)
520 ; (THROW {value}?)
521 ;
522 ; value ::= a ParenScript expression
523
524 ;;; The single argument statements `return' and `throw' are generated
525 ;;; by the form `RETURN' and `THROW'. `THROW' has to be used inside a
526 ;;; `TRY' form. `RETURN' is used to return a value from a function
527 ;;; call.
528
529 (return 1) => return 1
530
531 (throw "foobar") => throw 'foobar'
532
533 ;;;# Single argument expression
534 ;;;t \index{single-argument expression}
535 ;;;t \index{object creation}
536 ;;;t \index{object deletion}
537 ;;;t \index{DELETE}
538 ;;;t \index{VOID}
539 ;;;t \index{TYPEOF}
540 ;;;t \index{INSTANCEOF}
541 ;;;t \index{NEW}
542 ;;;t \index{new}
543
544 ; (DELETE {value})
545 ; (VOID {value})
546 ; (TYPEOF {value})
547 ; (INSTANCEOF {value})
548 ; (NEW {value})
549 ;
550 ; value ::= a ParenScript expression
551
552 ;;; The single argument expressions `delete', `void', `typeof',
553 ;;; `instanceof' and `new' are generated by the forms `DELETE',
554 ;;; `VOID', `TYPEOF', `INSTANCEOF' and `NEW'. They all take a
555 ;;; ParenScript expression.
556
557 (delete (new (*foobar 2 3 4))) => delete new Foobar(2, 3, 4)
558
559 (if (= (typeof blorg) *string)
560 (alert (+ "blorg is a string: " blorg))
561 (alert "blorg is not a string"))
562 => if (typeof blorg == String) {
563 alert('blorg is a string: ' + blorg);
564 } else {
565 alert('blorg is not a string');
566 }
567
568 ;;;# Conditional Statements
569 ;;;t \index{conditional statements}
570 ;;;t \index{IF}
571 ;;;t \index{WHEN}
572 ;;;t \index{UNLESS}
573 ;;;t \index{conditionals}
574
575 ; (IF conditional then {else})
576 ; (WHEN condition then)
577 ; (UNLESS condition then)
578 ;
579 ; condition ::= a ParenScript expression
580 ; then ::= a ParenScript statement in statement context, a
581 ; ParenScript expression in expression context
582 ; else ::= a ParenScript statement in statement context, a
583 ; ParenScript expression in expression context
584
585 ;;; The `IF' form compiles to the `if' javascript construct. An
586 ;;; explicit `PROGN' around the then branch and the else branch is
587 ;;; needed if they consist of more than one statement. When the `IF'
588 ;;; form is used in an expression context, a JavaScript `?', `:'
589 ;;; operator form is generated.
590
591 (if (blorg.is-correct)
592 (progn (carry-on) (return i))
593 (alert "blorg is not correct!"))
594 => if (blorg.isCorrect()) {
595 carryOn();
596 return i;
597 } else {
598 alert('blorg is not correct!');
599 }
600
601 (+ i (if (blorg.add-one) 1 2))
602 => i + (blorg.addOne() ? 1 : 2)
603
604 ;;; The `WHEN' and `UNLESS' forms can be used as shortcuts for the
605 ;;; `IF' form.
606
607 (when (blorg.is-correct)
608 (carry-on)
609 (return i))
610 => if (blorg.isCorrect()) {
611 carryOn();
612 return i;
613 }
614
615 (unless (blorg.is-correct)
616 (alert "blorg is not correct!"))
617 => if (!blorg.isCorrect()) {
618 alert('blorg is not correct!');
619 }
620
621 ;;;# Variable declaration
622 ;;;t \index{variable}
623 ;;;t \index{variable declaration}
624 ;;;t \index{binding}
625 ;;;t \index{scoping}
626 ;;;t \index{DEFVAR}
627 ;;;t \index{LET}
628
629 ; (DEFVAR var {value}?)
630 ; (LET ({var | (var value)) body)
631 ;
632 ; var ::= a Lisp symbol
633 ; value ::= a ParenScript expression
634 ; body ::= a list of ParenScript statements
635
636 ;;; Variables (either local or global) can be declared using the
637 ;;; `DEFVAR' form, which is similar to its equivalent form in
638 ;;; Lisp. The `DEFVAR' is converted to "var ... = ..." form in
639 ;;; JavaScript.
640
641 (defvar *a* (array 1 2 3)) => var A = [ 1, 2, 3 ];
642
643 (if (= i 1)
644 (progn (defvar blorg "hallo")
645 (alert blorg))
646 (progn (defvar blorg "blitzel")
647 (alert blorg)))
648 => if (i == 1) {
649 var blorg = 'hallo';
650 alert(blorg);
651 } else {
652 var blorg = 'blitzel';
653 alert(blorg);
654 }
655
656 ;;; A more lispy way to declare local variable is to use the `LET'
657 ;;; form, which is similar to its Lisp form.
658
659 (if (= i 1)
660 (let ((blorg "hallo"))
661 (alert blorg))
662 (let ((blorg "blitzel"))
663 (alert blorg)))
664 => if (i == 1) {
665 var blorg = 'hallo';
666 alert(blorg);
667 } else {
668 var blorg = 'blitzel';
669 alert(blorg);
670 }
671
672 ;;; However, beware that scoping in Lisp and JavaScript are quite
673 ;;; different. For example, don't rely on closures capturing local
674 ;;; variables in the way you'd think they would.
675
676 ;;;# Iteration constructs
677 ;;;t \index{iteration}
678 ;;;t \index{iteration construct}
679 ;;;t \index{loop}
680 ;;;t \index{array traversal}
681 ;;;t \index{property}
682 ;;;t \index{object property}
683 ;;;t \index{DO}
684 ;;;t \index{DOTIMES}
685 ;;;t \index{DOLIST}
686 ;;;t \index{DOEACH}
687 ;;;t \index{WHILE}
688
689 ; (DO ({var | (var {init}? {step}?)}*) (end-test) body)
690 ; (DOTIMES (var numeric-form) body)
691 ; (DOLIST (var list-form) body)
692 ; (DOEACH (var object) body)
693 ; (WHILE end-test body)
694 ;
695 ; var ::= a Lisp symbol
696 ; numeric-form ::= a ParenScript expression resulting in a number
697 ; list-form ::= a ParenScript expression resulting in an array
698 ; object ::= a ParenScript expression resulting in an object
699 ; init ::= a ParenScript expression
700 ; step ::= a ParenScript expression
701 ; end-test ::= a ParenScript expression
702 ; body ::= a list of ParenScript statements
703
704 ;;; The `DO' form, which is similar to its Lisp form, is transformed
705 ;;; into a JavaScript `for' statement. Note that the ParenScript `DO'
706 ;;; form does not have a return value, that is because `for' is a
707 ;;; statement and not an expression in JavaScript.
708
709 (do ((i 0 (1+ i))
710 (l (aref blorg i) (aref blorg i)))
711 ((or (= i blorg.length)
712 (eql l "Fumitastic")))
713 (document.write (+ "L is " l)))
714 => for (var i = 0, l = blorg[i];
715 !(i == blorg.length || l == 'Fumitastic');
716 i = i + 1, l = blorg[i]) {
717 document.write('L is ' + l);
718 }
719
720 ;;; The `DOTIMES' form, which lets a variable iterate from 0 upto an
721 ;;; end value, is a shortcut for `DO'.
722
723 (dotimes (i blorg.length)
724 (document.write (+ "L is " (aref blorg i))))
725 => for (var i = 0; i < blorg.length; i = i + 1) {
726 document.write('L is ' + blorg[i]);
727 }
728
729 ;;; The `DOLIST' form is a shortcut for iterating over an array. Note
730 ;;; that this form creates temporary variables using a function called
731 ;;; `JS-GENSYM', which is similar to its Lisp counterpart `GENSYM'.
732
733 (dolist (l blorg)
734 (document.write (+ "L is " l)))
735 => {
736 var tmpArr1 = blorg;
737 for (var tmpI2 = 0; tmpI2 < tmpArr1.length;
738 tmpI2 = tmpI2 + 1) {
739 var l = tmpArr1[tmpI2];
740 document.write('L is ' + l);
741 };
742 }
743
744
745 ;;; The `DOEACH' form is converted to a `for (var .. in ..)' form in
746 ;;; JavaScript. It is used to iterate over the enumerable properties
747 ;;; of an object.
748
749 (doeach (i object)
750 (document.write (+ i " is " (aref object i))))
751 => for (var i in object) {
752 document.write(i + ' is ' + object[i]);
753 }
754
755 ;;; The `WHILE' form is transformed to the JavaScript form `while',
756 ;;; and loops until a termination test evaluates to false.
757
758 (while (film.is-not-finished)
759 (this.eat (new *popcorn)))
760 => while (film.isNotFinished()) {
761 this.eat(new Popcorn);
762 }
763
764 ;;;# The `CASE' statement
765 ;;;t \index{CASE}
766 ;;;t \index{SWITCH}
767 ;;;t \index{switch}
768
769 ; (CASE case-value clause*)
770 ;
771 ; clause ::= (value body) | ((value*) body) | t-clause
772 ; case-value ::= a ParenScript expression
773 ; value ::= a ParenScript expression
774 ; t-clause ::= {t | otherwise | default} body
775 ; body ::= a list of ParenScript statements
776
777 ;;; The Lisp `CASE' form is transformed to a `switch' statement in
778 ;;; JavaScript. Note that `CASE' is not an expression in
779 ;;; ParenScript.
780
781 (case (aref blorg i)
782 ((1 "one") (alert "one"))
783 (2 (alert "two"))
784 (t (alert "default clause")))
785 => switch (blorg[i]) {
786 case 1: ;
787 case 'one':
788 alert('one');
789 break;
790 case 2:
791 alert('two');
792 break;
793 default: alert('default clause');
794 }
795
796 ; (SWITCH case-value clause*)
797 ; clause ::= (value body) | (default body)
798
799 ;;; The `SWITCH' form is the equivalent to a javascript switch statement.
800 ;;; No break statements are inserted, and the default case is named `DEFAULT'.
801 ;;; The `CASE' form should be prefered in most cases.
802
803 (switch (aref blorg i)
804 (1 (alert "If I get here"))
805 (2 (alert "I also get here"))
806 (default (alert "I always get here")))
807 => switch (blorg[i]) {
808 case 1: alert('If I get here');
809 case 2: alert('I also get here');
810 default: alert('I always get here');
811 }
812
813
814 ;;;# The `WITH' statement
815 ;;;t \index{WITH}
816 ;;;t \index{dynamic scope}
817 ;;;t \index{binding}
818 ;;;t \index{scoping}
819 ;;;t \index{closure}
820
821 ; (WITH object body)
822 ;
823 ; object ::= a ParenScript expression evaluating to an object
824 ; body ::= a list of ParenScript statements
825
826 ;;; The `WITH' form is compiled to a JavaScript `with' statements, and
827 ;;; adds the object `object' as an intermediary scope objects when
828 ;;; executing the body.
829
830 (with (create :foo "foo" :i "i")
831 (alert (+ "i is now intermediary scoped: " i)))
832 => with ({ foo : 'foo',
833 i : 'i' }) {
834 alert('i is now intermediary scoped: ' + i);
835 }
836
837 ;;;# The `TRY' statement
838 ;;;t \index{TRY}
839 ;;;t \index{CATCH}
840 ;;;t \index{FINALLY}
841 ;;;t \index{exception}
842 ;;;t \index{error handling}
843
844 ; (TRY body {(:CATCH (var) body)}? {(:FINALLY body)}?)
845 ;
846 ; body ::= a list of ParenScript statements
847 ; var ::= a Lisp symbol
848
849 ;;; The `TRY' form is converted to a JavaScript `try' statement, and
850 ;;; can be used to catch expressions thrown by the `THROW'
851 ;;; form. The body of the catch clause is invoked when an exception
852 ;;; is catched, and the body of the finally is always invoked when
853 ;;; leaving the body of the `TRY' form.
854
855 (try (throw "i")
856 (:catch (error)
857 (alert (+ "an error happened: " error)))
858 (:finally
859 (alert "Leaving the try form")))
860 => try {
861 throw 'i';
862 } catch (error) {
863 alert('an error happened: ' + error);
864 } finally {
865 alert('Leaving the try form');
866 }
867
868 ;;;# The HTML Generator
869 ;;;t \index{HTML}
870 ;;;t \index{HTML generation}
871 ;;;t \index{CSS}
872 ;;;t \index{CSS generation}
873
874
875 ; (HTML html-expression)
876
877 ;;; The HTML generator of ParenScript is very similar to the HTML
878 ;;; generator included in AllegroServe. It accepts the same input
879 ;;; forms as the AllegroServer HTML generator. However, non-HTML
880 ;;; construct are compiled to JavaScript by the ParenScript
881 ;;; compiler. The resulting expression is a JavaScript expression.
882
883 (html ((:a :href "foobar") "blorg"))
884 => '<a href=\"foobar\">blorg</a>'
885
886 (html ((:a :href (generate-a-link)) "blorg"))
887 => '<a href=\"' + generateALink() + '\">blorg</a>'
888
889 ;;; We can recursively call the JS compiler in a HTML expression.
890
891 (document.write
892 (html ((:a :href "#"
893 :onclick (js-inline (transport))) "link")))
894 => document.write
895 ('<a href=\"#\" onclick=\"' + 'javascript:transport();' + '\">link</a>')
896
897 ; (CSS-INLINE css-expression)
898
899 ;;; Stylesheets can also be created in ParenScript.
900
901 (css-inline :color "red"
902 :font-size "x-small")
903 => 'color:red;font-size:x-small'
904
905 (defun make-color-div(color-name)
906 (return (html ((:div :style (css-inline :color color-name))
907 color-name " looks like this."))))
908 => function makeColorDiv(colorName) {
909 return '<div style=\"' + ('color:' + colorName) + '\">' + colorName
910 + ' looks like this.</div>';
911 }
912
913 ;;;# Macrology
914 ;;;t \index{macro}
915 ;;;t \index{macrology}
916 ;;;t \index{DEFJSMACRO}
917 ;;;t \index{MACROLET}
918 ;;;t \index{SYMBOL-MACROLET}
919 ;;;t \index{JS-GENSYM}
920 ;;;t \index{compiler}
921
922 ; (DEFJSMACRO name lambda-list macro-body)
923 ; (MACROLET ({name lambda-list macro-body}*) body)
924 ; (SYMBOL-MACROLET ({name macro-body}*) body)
925 ; (JS-GENSYM {string}?)
926 ;
927 ; name ::= a Lisp symbol
928 ; lambda-list ::= a lambda list
929 ; macro-body ::= a Lisp body evaluating to ParenScript code
930 ; body ::= a list of ParenScript statements
931 ; string ::= a string
932
933 ;;; ParenScript can be extended using macros, just like Lisp can be
934 ;;; extended using Lisp macros. Using the special Lisp form
935 ;;; `DEFJSMACRO', the ParenScript language can be
936 ;;; extended. `DEFJSMACRO' adds the new macro to the toplevel macro
937 ;;; environment, which is always accessible during ParenScript
938 ;;; compilation. For example, the `1+' and `1-' operators are
939 ;;; implemented using macros.
940
941 (defjsmacro 1- (form)
942 `(- ,form 1))
943
944 (defjsmacro 1+ (form)
945 `(+ ,form 1))
946
947 ;;; A more complicated ParenScript macro example is the implementation
948 ;;; of the `DOLIST' form (note how `JS-GENSYM', the ParenScript of
949 ;;; `GENSYM', is used to generate new ParenScript variable names):
950
951 (defjsmacro dolist (i-array &rest body)
952 (let ((var (first i-array))
953 (array (second i-array))
954 (arrvar (js-gensym "arr"))
955 (idx (js-gensym "i")))
956 `(let ((,arrvar ,array))
957 (do ((,idx 0 (++ ,idx)))
958 ((>= ,idx (slot-value ,arrvar 'length)))
959 (let ((,var (aref ,arrvar ,idx)))
960 ,@body)))))
961
962 ;;; Macros can be added dynamically to the macro environment by using
963 ;;; the ParenScript `MACROLET' form (note that while `DEFJSMACRO' is a
964 ;;; Lisp form, `MACROLET' and `SYMBOL-MACROLET' are ParenScript forms).
965
966 ;;; ParenScript also supports symbol macros, which can be introduced
967 ;;; using the ParenScript form `SYMBOL-MACROLET'. A new macro
968 ;;; environment is created and added to the current macro environment
969 ;;; list while compiling the body of the `SYMBOL-MACROLET' form. For
970 ;;; example, the ParenScript `WITH-SLOTS' is implemented using symbol
971 ;;; macros.
972
973 (defjsmacro with-slots (slots object &rest body)
974 `(symbol-macrolet ,(mapcar #'(lambda (slot)
975 `(,slot '(slot-value ,object ',slot)))
976 slots)
977 ,@body))
978
979 ;;;# The ParenScript Compiler
980 ;;;t \index{compiler}
981 ;;;t \index{ParenScript compiler}
982 ;;;t \index{JS-COMPILE}
983 ;;;t \index{JS-TO-STRINGS}
984 ;;;t \index{JS-TO-STATEMENT-STRINGS}
985 ;;;t \index{JS-TO-STRING}
986 ;;;t \index{JS-TO-LINE}
987 ;;;t \index{JS}
988 ;;;t \index{JS-INLINE}
989 ;;;t \index{JS-FILE}
990 ;;;t \index{JS-SCRIPT}
991 ;;;t \index{nested compilation}
992
993 ; (JS-COMPILE expr)
994 ; (JS-TO-STRINGS compiled-expr position)
995 ; (JS-TO-STATEMENT-STRINGS compiled-expr position)
996 ;
997 ; compiled-expr ::= a compiled ParenScript expression
998 ; position ::= a column number
999 ;
1000 ; (JS-TO-STRING expression)
1001 ; (JS-TO-LINE expression)
1002 ;
1003 ; expression ::= a Lisp list of ParenScript code
1004 ;
1005 ; (JS body)
1006 ; (JS-INLINE body)
1007 ; (JS-FILE body)
1008 ; (JS-SCRIPT body)
1009 ;
1010 ; body ::= a list of ParenScript statements
1011
1012 ;;; The ParenScript compiler can be invoked from withing Lisp and from
1013 ;;; within ParenScript itself. The primary API function is
1014 ;;; `JS-COMPILE', which takes a list of ParenScript, and returns an
1015 ;;; internal object representing the compiled ParenScript.
1016
1017 (js-compile '(foobar 1 2))
1018 => #<JS::FUNCTION-CALL {584AA5DD}>
1019
1020 ;;; This internal object can be transformed to a string using the
1021 ;;; methods `JS-TO-STRINGS' and `JS-TO-STATEMENT-STRINGS', which
1022 ;;; interpret the ParenScript in expression and in statement context
1023 ;;; respectively. They take an additional parameter indicating the
1024 ;;; start-position on a line (please note that the indentation code is
1025 ;;; not perfect, and this string interface will likely be
1026 ;;; changed). They return a list of strings, where each string
1027 ;;; represents a new line of JavaScript code. They can be joined
1028 ;;; together to form a single string.
1029
1030 (js-to-strings (js-compile '(foobar 1 2)) 0)
1031 => ("foobar(1, 2)")
1032
1033 ;;; As a shortcut, ParenScript provides the functions `JS-TO-STRING'
1034 ;;; and `JS-TO-LINE', which return the JavaScript string of the
1035 ;;; compiled expression passed as an argument.
1036
1037 (js-to-string '(foobar 1 2))
1038 => "foobar(1, 2)"
1039
1040 ;;; For static ParenScript code, the macros `JS', `JS-INLINE',
1041 ;;; `JS-FILE' and `JS-SCRIPT' avoid the need to quote the ParenScript
1042 ;;; expression. All these forms add an implicit `PROGN' form around
1043 ;;; the body. `JS' returns a string of the compiled body, where the
1044 ;;; other expression return an expression that can be embedded in a
1045 ;;; HTML generation construct using the AllegroServe HTML
1046 ;;; generator. `JS-SCRIPT' generates a "SCRIPT" node, `JS-INLINE'
1047 ;;; generates a string to be used in node attributs, and `JS-FILE'
1048 ;;; prints the compiled ParenScript code to the HTML stream.
1049
1050 ;;; These macros are also available inside ParenScript itself, and
1051 ;;; generate strings that can be used inside ParenScript code. Note
1052 ;;; that `JS-INLINE' in ParenScript is not the same `JS-INLINE' form
1053 ;;; as in Lisp, for example. The same goes for the other compilation
1054 ;;; macros.
1055