Fixed nary comparison operators (ex: (< 1 2 3) should translate to (1
[clinton/parenscript.git] / docs / reference.lisp
CommitLineData
f037cd4c 1;;;# Parenscript Language Reference
8e198a08 2
d777a405
TC
3;;; Create a useful package for the code here...
4(in-package #:cl-user)
5(defpackage #:ps-ref (:use #:ps))
6(in-package #:ps-ref)
7
f037cd4c 8;;; This chapters describes the core constructs of Parenscript, as
8e198a08 9;;; well as its compilation model. This chapter is aimed to be a
f037cd4c
VS
10;;; comprehensive reference for Parenscript developers. Programmers
11;;; looking for how to tweak the Parenscript compiler itself should
12;;; turn to the Parenscript Internals chapter.
8e198a08
MB
13
14;;;# Statements and Expressions
15;;;t \index{statement}
16;;;t \index{expression}
17
18;;; In contrast to Lisp, where everything is an expression, JavaScript
19;;; makes the difference between an expression, which evaluates to a
20;;; value, and a statement, which has no value. Examples for
21;;; JavaScript statements are `for', `with' and `while'. Most
f037cd4c 22;;; Parenscript forms are expression, but certain special forms are
8e198a08 23;;; not (the forms which are transformed to a JavaScript
f037cd4c 24;;; statement). All Parenscript expressions are statements
8e198a08
MB
25;;; though. Certain forms, like `IF' and `PROGN', generate different
26;;; JavaScript constructs whether they are used in an expression
27;;; context or a statement context. For example:
28
5a69278c 29(+ i (if 1 2 3)) => i + (1 ? 2 : 3);
8e198a08
MB
30
31(if 1 2 3)
31c5dbde
TC
32=> if (1) {
33 2;
34 } else {
35 3;
5a69278c 36 };
8e198a08
MB
37
38;;;# Symbol conversion
39;;;t \index{symbol}
40;;;t \index{symbol conversion}
41
42;;; Lisp symbols are converted to JavaScript symbols by following a
3b238048 43;;; few simple rules. Special characters `!', `?', `#', `@', `%',
8e198a08 44;;; '/', `*' and `+' get replaced by their written-out equivalents
3b238048
HH
45;;; "bang", "what", "hash", "at", "percent", "slash",
46;;; "start" and "plus" respectively. The `$' character is untouched.
8e198a08 47
5a69278c 48!?#@% => bangwhathashatpercent;
8e198a08
MB
49
50;;; The `-' is an indication that the following character should be
51;;; converted to uppercase. Thus, `-' separated symbols are converted
52;;; to camelcase. The `_' character however is left untouched.
53
5a69278c 54bla-foo-bar => blaFooBar;
8e198a08
MB
55
56;;; If you want a JavaScript symbol beginning with an uppercase, you
57;;; can either use a leading `-', which can be misleading in a
58;;; mathematical context, or a leading `*'.
59
5a69278c 60*array => Array;
8e198a08 61
8e198a08
MB
62;;; A symbol beggining and ending with `+' or `*' is converted to all
63;;; uppercase, to signify that this is a constant or a global
64;;; variable.
65
5a69278c 66*global-array* => GLOBALARRAY;
8e198a08 67
8e198a08
MB
68;;;## Reserved Keywords
69;;;t \index{keyword}
70;;;t \index{reserved keywords}
71
f037cd4c 72;;; The following keywords and symbols are reserved in Parenscript,
8e198a08
MB
73;;; and should not be used as variable names.
74
58c4ef4f 75! ~ ++ -- * / % + - << >> >>> < > <= >= == != ==== !== & ^ | && || *=
5ffb1eba 76/= %= += -= <<= >>= >>>= &= ^= |= 1- 1+ @ ABSTRACT AND AREF ARRAY
58c4ef4f 77BOOLEAN BREAK BYTE CASE CATCH CC-IF CHAR CLASS COMMA CONST CONTINUE
d777a405
TC
78CREATE DEBUGGER DECF DEFAULT DEFUN DEFVAR DELETE DO DO* DOEACH DOLIST
79DOTIMES DOUBLE ELSE ENUM EQL EXPORT EXTENDS F FALSE FINAL FINALLY
80FLOAT FLOOR FOR FOR-IN FUNCTION GOTO IF IMPLEMENTS IMPORT IN INCF
5ffb1eba
VS
81INSTANCEOF INT INTERFACE JS LABELED-FOR LAMBDA LET LET* LISP LIST LONG
82MAKE-ARRAY NATIVE NEW NIL NOT OR PACKAGE PRIVATE PROGN PROTECTED
83PUBLIC RANDOM REGEX RETURN SETF SHORT SLOT-VALUE STATIC SUPER SWITCH
84SYMBOL-MACROLET SYNCHRONIZED T THIS THROW THROWS TRANSIENT TRY TYPEOF
85UNDEFINED UNLESS VAR VOID VOLATILE WHEN WHILE WITH WITH-SLOTS
8e198a08
MB
86
87;;;# Literal values
88;;;t \index{literal value}
89
90;;;## Number literals
91;;;t \index{number}
92;;;t \index{number literal}
93
94; number ::= a Lisp number
95
96;;;
f037cd4c 97;;; Parenscript supports the standard JavaScript literal
94a05cdf 98;;; values. Numbers are compiled into JavaScript numbers.
8e198a08 99
5a69278c 1001 => 1;
8e198a08 101
5a69278c 102123.123 => 123.123;
8e198a08
MB
103
104;;; Note that the base is not conserved between Lisp and JavaScript.
105
5a69278c 106#x10 => 16;
8e198a08
MB
107
108;;;## String literals
109;;;t \index{string}
110;;;t \index{string literal}
111
112; string ::= a Lisp string
113
114;;; Lisp strings are converted into JavaScript literals.
115
5a69278c 116"foobar" => 'foobar';
7a7d6c73 117
5a69278c 118"bratzel bub" => 'bratzel bub';
8e198a08 119
ed954200
VS
120;;; Special characters such as newline and backspace are converted
121;;; into their corresponding JavaScript escape sequences.
122
5a69278c 123" " => '\\t';
8e198a08
MB
124
125;;;## Array literals
126;;;t \index{array}
127;;;t \index{ARRAY}
128;;;t \index{MAKE-ARRAY}
129;;;t \index{AREF}
130;;;t \index{array literal}
131
132; (ARRAY {values}*)
133; (MAKE-ARRAY {values}*)
134; (AREF array index)
135;
f037cd4c
VS
136; values ::= a Parenscript expression
137; array ::= a Parenscript expression
138; index ::= a Parenscript expression
8e198a08
MB
139
140;;; Array literals can be created using the `ARRAY' form.
141
5a69278c 142(array) => [ ];
8e198a08 143
5a69278c 144(array 1 2 3) => [ 1, 2, 3 ];
8e198a08
MB
145
146(array (array 2 3)
147 (array "foobar" "bratzel bub"))
5a69278c 148=> [ [ 2, 3 ], [ 'foobar', 'bratzel bub' ] ];
8e198a08
MB
149
150;;; Arrays can also be created with a call to the `Array' function
151;;; using the `MAKE-ARRAY'. The two forms have the exact same semantic
152;;; on the JavaScript side.
153
5a69278c 154(make-array) => new Array();
8e198a08 155
5a69278c 156(make-array 1 2 3) => new Array(1, 2, 3);
8e198a08
MB
157
158(make-array
159 (make-array 2 3)
160 (make-array "foobar" "bratzel bub"))
5a69278c 161=> new Array(new Array(2, 3), new Array('foobar', 'bratzel bub'));
8e198a08 162
f037cd4c 163;;; Indexing arrays in Parenscript is done using the form `AREF'. Note
8e198a08
MB
164;;; that JavaScript knows of no such thing as an array. Subscripting
165;;; an array is in fact reading a property from an object. So in a
166;;; semantic sense, there is no real difference between `AREF' and
167;;; `SLOT-VALUE'.
168
169;;;## Object literals
170;;;t \index{CREATE}
171;;;t \index{SLOT-VALUE}
5ffb1eba 172;;;t \index{@}
8e198a08
MB
173;;;t \index{WITH-SLOTS}
174;;;t \index{object literal}
175;;;t \index{object}
176;;;t \index{object property}
177;;;t \index{property}
178
179; (CREATE {name value}*)
180; (SLOT-VALUE object slot-name)
181; (WITH-SLOTS ({slot-name}*) object body)
182;
f037cd4c
VS
183; name ::= a Parenscript symbol or a Lisp keyword
184; value ::= a Parenscript expression
185; object ::= a Parenscript object expression
8e198a08 186; slot-name ::= a quoted Lisp symbol
f037cd4c 187; body ::= a list of Parenscript statements
8e198a08
MB
188
189;;;
190;;; Object literals can be create using the `CREATE' form. Arguments
191;;; to the `CREATE' form is a list of property names and values. To be
192;;; more "lispy", the property names can be keywords.
193
194(create :foo "bar" :blorg 1)
5a69278c 195=> { foo : 'bar', blorg : 1 };
8e198a08
MB
196
197(create :foo "hihi"
198 :blorg (array 1 2 3)
199 :another-object (create :schtrunz 1))
31c5dbde
TC
200=> { foo : 'hihi',
201 blorg : [ 1, 2, 3 ],
5a69278c 202 anotherObject : { schtrunz : 1 } };
8e198a08
MB
203
204;;; Object properties can be accessed using the `SLOT-VALUE' form,
205;;; which takes an object and a slot-name.
206
5a69278c 207(slot-value an-object 'foo) => anObject.foo;
8e198a08 208
5ffb1eba
VS
209;;; The convenience macro `@' is provided to make multiple levels of
210;;; indirection easy to express
8e198a08 211
5a69278c 212(@ an-object foo bar) => anObject.foo.bar;
8e198a08
MB
213
214;;; The form `WITH-SLOTS' can be used to bind the given slot-name
215;;; symbols to a macro that will expand into a `SLOT-VALUE' form at
216;;; expansion time.
217
218(with-slots (a b c) this
219 (+ a b c))
31c5dbde 220=> this.a + this.b + this.c;
8e198a08
MB
221
222;;;## Regular Expression literals
223;;;t \index{REGEX}
224;;;t \index{regular expression}
225;;;t \index{CL-INTERPOL}
226
227; (REGEX regex)
228;
229; regex ::= a Lisp string
230
ca4fb762
HH
231;;; Regular expressions can be created by using the `REGEX' form. If
232;;; the argument does not start with a slash, it is surrounded by
233;;; slashes to make it a proper JavaScript regex. If the argument
234;;; starts with a slash it is left as it is. This makes it possible
235;;; to use modifiers such as slash-i (case-insensitive) or
236;;; slash-g (match-globally (all)).
237
5a69278c 238(regex "foobar") => /foobar/;
8e198a08 239
5a69278c 240(regex "/foobar/i") => /foobar/i;
8e198a08
MB
241
242;;; Here CL-INTERPOL proves really useful.
243
5a69278c 244(regex #?r"/([^\s]+)foobar/i") => /([^\s]+)foobar/i;
8e198a08
MB
245
246;;;## Literal symbols
247;;;t \index{T}
d777a405 248;;;t \index{F}
8e198a08
MB
249;;;t \index{FALSE}
250;;;t \index{NIL}
251;;;t \index{UNDEFINED}
252;;;t \index{THIS}
253;;;t \index{literal symbols}
254;;;t \index{null}
255;;;t \index{true}
256
d777a405 257; T, F, FALSE, NIL, UNDEFINED, THIS
8e198a08 258
d777a405
TC
259;;; The Lisp symbols `T' and `FALSE' (or `F') are converted to their
260;;; JavaScript boolean equivalents `true' and `false'.
8e198a08 261
5a69278c 262T => true;
7a7d6c73 263
5a69278c 264FALSE => false;
8e198a08 265
5a69278c 266F => false;
d777a405 267
8e198a08
MB
268;;; The Lisp symbol `NIL' is converted to the JavaScript keyword
269;;; `null'.
270
5a69278c 271NIL => null;
8e198a08
MB
272
273;;; The Lisp symbol `UNDEFINED' is converted to the JavaScript keyword
274;;; `undefined'.
275
5a69278c 276UNDEFINED => undefined;
8e198a08
MB
277
278;;; The Lisp symbol `THIS' is converted to the JavaScript keyword
279;;; `this'.
280
5a69278c 281THIS => this;
8e198a08
MB
282
283;;;# Variables
284;;;t \index{variable}
285;;;t \index{symbol}
286
287; variable ::= a Lisp symbol
288
289;;; All the other literal Lisp values that are not recognized as
290;;; special forms or symbol macros are converted to JavaScript
291;;; variables. This extreme freedom is actually quite useful, as it
f037cd4c 292;;; allows the Parenscript programmer to be flexible, as flexible as
8e198a08
MB
293;;; JavaScript itself.
294
5a69278c 295variable => variable;
8e198a08 296
5a69278c 297a-variable => aVariable;
8e198a08 298
5a69278c 299*math => Math;
8e198a08 300
8e198a08
MB
301;;;# Function calls and method calls
302;;;t \index{function}
303;;;t \index{function call}
304;;;t \index{method}
305;;;t \index{method call}
306
307; (function {argument}*)
efe8a33f 308
8e198a08 309;
f037cd4c 310; function ::= a Parenscript expression or a Lisp symbol
f037cd4c
VS
311; object ::= a Parenscript expression
312; argument ::= a Parenscript expression
8e198a08
MB
313
314;;; Any list passed to the JavaScript that is not recognized as a
315;;; macro or a special form (see "Macro Expansion" below) is
316;;; interpreted as a function call. The function call is converted to
317;;; the normal JavaScript function call representation, with the
318;;; arguments given in paren after the function name.
319
5a69278c 320(blorg 1 2) => blorg(1, 2);
8e198a08
MB
321
322(foobar (blorg 1 2) (blabla 3 4) (array 2 3 4))
5a69278c 323=> foobar(blorg(1, 2), blabla(3, 4), [ 2, 3, 4 ]);
8e198a08 324
5a69278c 325((slot-value this 'blorg) 1 2) => this.blorg(1, 2);
79630c82 326
5a69278c 327((aref foo i) 1 2) => foo[i](1, 2);
8e198a08 328
5a69278c 329((slot-value (aref foobar 1) 'blorg) NIL T) => foobar[1].blorg(null, true);
8e198a08 330
8e198a08
MB
331;;;# Operator Expressions
332;;;t \index{operator}
333;;;t \index{operator expression}
334;;;t \index{assignment operator}
335;;;t \index{EQL}
336;;;t \index{NOT}
337;;;t \index{AND}
338;;;t \index{OR}
339
340; (operator {argument}*)
341; (single-operator argument)
342;
343; operator ::= one of *, /, %, +, -, <<, >>, >>>, < >, EQL,
344; ==, !=, =, ===, !==, &, ^, |, &&, AND, ||, OR.
345; single-operator ::= one of INCF, DECF, ++, --, NOT, !
f037cd4c 346; argument ::= a Parenscript expression
8e198a08
MB
347
348;;; Operator forms are similar to function call forms, but have an
94a05cdf 349;;; operator as function name.
8e198a08
MB
350;;;
351;;; Please note that `=' is converted to `==' in JavaScript. The `='
a14fb2cb 352;;; Parenscript operator is not the assignment operator.
8e198a08 353
5a69278c 354(* 1 2) => 1 * 2;
8e198a08 355
5a69278c 356(= 1 2) => 1 == 2;
8e198a08 357
ecc3218c 358;;; Note that the resulting expression is correctly parenthesized,
8e198a08
MB
359;;; according to the JavaScript operator precedence that can be found
360;;; in table form at:
361
31c5dbde 362;;; http://www.codehouse.com/javascript/precedence/
8e198a08
MB
363
364(* 1 (+ 2 3 4) 4 (/ 6 7))
5a69278c 365=> 1 * (2 + 3 + 4) * 4 * (6 / 7);
8e198a08 366
f7c2734a 367;;; The pre increment and decrement operators are also
8e198a08 368;;; available. `INCF' and `DECF' are the pre-incrementing and
f7c2734a 369;;; pre-decrementing operators. These operators can
8e198a08
MB
370;;; take only one argument.
371
5a69278c 372(incf i) => ++i;
8e198a08 373
5a69278c 374(decf i) => --i;
8e198a08
MB
375
376;;; The `1+' and `1-' operators are shortforms for adding and
377;;; substracting 1.
378
5a69278c 379(1- i) => i - 1;
8e198a08 380
5a69278c 381(1+ i) => i + 1;
8e198a08 382
a14fb2cb
VS
383;;; If `not' is used on another boolean-returning operator, the
384;;; operator is reversed.
8e198a08 385
5a69278c 386(not (< i 2)) => i >= 2;
8e198a08 387
8e198a08
MB
388;;;# Body forms
389;;;t \index{body form}
390;;;t \index{PROGN}
391;;;t \index{body statement}
392
393; (PROGN {statement}*) in statement context
394; (PROGN {expression}*) in expression context
395;
f037cd4c
VS
396; statement ::= a Parenscript statement
397; expression ::= a Parenscript expression
8e198a08
MB
398
399;;; The `PROGN' special form defines a sequence of statements when
400;;; used in a statement context, or sequence of expression when used
401;;; in an expression context. The `PROGN' special form is added
402;;; implicitly around the branches of conditional executions forms,
403;;; function declarations and iteration constructs.
404
405;;; For example, in a statement context:
406
407(progn (blorg i) (blafoo i))
31c5dbde
TC
408=> blorg(i);
409 blafoo(i);
8e198a08
MB
410
411;;; In an expression context:
412
413(+ i (progn (blorg i) (blafoo i)))
5a69278c 414=> i + (blorg(i), blafoo(i));
8e198a08
MB
415
416;;; A `PROGN' form doesn't lead to additional indentation or
417;;; additional braces around it's body.
418
419;;;# Function Definition
420;;;t \index{function}
421;;;t \index{method}
422;;;t \index{function definition}
423;;;t \index{DEFUN}
424;;;t \index{LAMBDA}
425;;;t \index{closure}
426;;;t \index{anonymous function}
427
428; (DEFUN name ({argument}*) body)
429; (LAMBDA ({argument}*) body)
430;
431; name ::= a Lisp Symbol
432; argument ::= a Lisp symbol
f037cd4c 433; body ::= a list of Parenscript statements
8e198a08
MB
434
435;;; As in Lisp, functions are defined using the `DEFUN' form, which
436;;; takes a name, a list of arguments, and a function body. An
437;;; implicit `PROGN' is added around the body statements.
438
439(defun a-function (a b)
440 (return (+ a b)))
31c5dbde 441=> function aFunction(a, b) {
8e198a08 442 return a + b;
5a69278c 443 };
8e198a08
MB
444
445;;; Anonymous functions can be created using the `LAMBDA' form, which
446;;; is the same as `DEFUN', but without function name. In fact,
447;;; `LAMBDA' creates a `DEFUN' with an empty function name.
448
449(lambda (a b) (return (+ a b)))
31c5dbde 450=> function (a, b) {
8e198a08 451 return a + b;
5a69278c 452 };
8e198a08
MB
453
454;;;# Assignment
455;;;t \index{assignment}
456;;;t \index{SETF}
d777a405
TC
457;;;t \index{PSETF}
458;;;t \index{SETQ}
459;;;t \index{PSETQ}
a2a9eab0 460;;;t \index{DEFSETF}
8e198a08
MB
461;;;t \index{assignment operator}
462
463; (SETF {lhs rhs}*)
d777a405 464; (PSETF {lhs rhs}*)
8e198a08 465;
f037cd4c
VS
466; lhs ::= a Parenscript left hand side expression
467; rhs ::= a Parenscript expression
8e198a08 468
d777a405
TC
469; (SETQ {lhs rhs}*)
470; (PSETQ {lhs rhs}*)
471;
f037cd4c
VS
472; lhs ::= a Parenscript symbol
473; rhs ::= a Parenscript expression
d777a405
TC
474
475;;; Assignment is done using the `SETF', `PSETF', `SETQ', and `PSETQ'
476;;; forms, which are transformed into a series of assignments using
477;;; the JavaScript `=' operator.
8e198a08 478
72332f2a 479(setf a 1) => a = 1;
8e198a08
MB
480
481(setf a 2 b 3 c 4 x (+ a b c))
31c5dbde
TC
482=> a = 2;
483 b = 3;
484 c = 4;
485 x = a + b + c;
8e198a08
MB
486
487;;; The `SETF' form can transform assignments of a variable with an
488;;; operator expression using this variable into a more "efficient"
489;;; assignment operator form. For example:
490
72332f2a 491(setf a (+ a 2 3 4 a)) => a += 2 + 3 + 4 + a;
8e198a08 492
72332f2a 493(setf a (- 1 a)) => a = 1 - a;
8e198a08 494
d777a405
TC
495;;; The `PSETF' and `PSETQ' forms perform parallel assignment of
496;;; places or variables using a number of temporary variables created
497;;; by `PS-GENSYM'. For example:
498
5ffb1eba 499(let ((a 1) (b 2))
d777a405 500 (psetf a b b a))
16151f19
VS
501=> var a = 1;
502 var b = 2;
503 var _js1 = b;
504 var _js2 = a;
505 a = _js1;
506 b = _js2;
d777a405
TC
507
508;;; The `SETQ' and `PSETQ' forms operate identically to `SETF' and
509;;; `PSETF', but throw a compile-time error if the left-hand side form
510;;; is not a symbol. For example:
511
512(setq a 1) => a = 1;
513
514;; but...
515
516(setq (aref a 0) 1)
31c5dbde 517;; => ERROR: The value (AREF A 0) is not of type SYMBOL.
d777a405 518
a2a9eab0
VS
519;;; New types of setf places can be defined in one of two ways: using
520;;; `DEFSETF' or using `DEFUN' with a setf function name; both are
521;;; analogous to their Common Lisp counterparts.
522
523;;; `DEFSETF' supports both long and short forms, while `DEFUN' of a
524;;; setf place generates a JavaScript function name with the __setf_
525;;; prefix:
526
527(defun (setf color) (new-color el)
528 (setf (slot-value (slot-value el 'style) 'color) new-color))
31c5dbde 529=> function __setf_color(newColor, el) {
a2a9eab0 530 el.style.color = newColor;
31c5dbde 531 };
a2a9eab0
VS
532
533(setf (color some-div) (+ 23 "em"))
16151f19
VS
534=> var _js2 = someDiv;
535 var _js1 = 23 + 'em';
536 __setf_color(_js1, _js2);
a2a9eab0 537
a2a9eab0
VS
538;;; Note that temporary variables are generated to preserve evaluation
539;;; order of the arguments as they would be in Lisp.
540
541;;; The following example illustrates how setf places can be used to
542;;; provide a uniform protocol for positioning elements in HTML pages:
543
544(defsetf left (el) (offset)
31c5dbde 545 `(setf (slot-value (slot-value ,el 'style) 'left) ,offset))
5a69278c 546=> null;
a2a9eab0
VS
547
548(setf (left some-div) (+ 123 "px"))
16151f19
VS
549=> var _js2 = someDiv;
550 var _js1 = 123 + 'px';
551 _js2.style.left = _js1;
a2a9eab0 552
5a69278c
VS
553(macrolet ((left (el)
554 `(slot-value ,el 'offset-left)))
555 (left some-div))
31c5dbde 556=> someDiv.offsetLeft;
a2a9eab0 557
8e198a08
MB
558;;;# Single argument statements
559;;;t \index{single-argument statement}
560;;;t \index{RETURN}
561;;;t \index{THROW}
562;;;t \index{THROW}
563;;;t \index{function}
564
565; (RETURN {value}?)
566; (THROW {value}?)
567;
f037cd4c 568; value ::= a Parenscript expression
8e198a08
MB
569
570;;; The single argument statements `return' and `throw' are generated
571;;; by the form `RETURN' and `THROW'. `THROW' has to be used inside a
572;;; `TRY' form. `RETURN' is used to return a value from a function
573;;; call.
574
5a69278c 575(return 1) => return 1;
8e198a08 576
5a69278c 577(throw "foobar") => throw 'foobar';
8e198a08
MB
578
579;;;# Single argument expression
580;;;t \index{single-argument expression}
581;;;t \index{object creation}
582;;;t \index{object deletion}
583;;;t \index{DELETE}
584;;;t \index{VOID}
585;;;t \index{TYPEOF}
586;;;t \index{INSTANCEOF}
587;;;t \index{NEW}
588;;;t \index{new}
589
590; (DELETE {value})
591; (VOID {value})
592; (TYPEOF {value})
593; (INSTANCEOF {value})
594; (NEW {value})
595;
f037cd4c 596; value ::= a Parenscript expression
8e198a08
MB
597
598;;; The single argument expressions `delete', `void', `typeof',
599;;; `instanceof' and `new' are generated by the forms `DELETE',
600;;; `VOID', `TYPEOF', `INSTANCEOF' and `NEW'. They all take a
f037cd4c 601;;; Parenscript expression.
8e198a08 602
5a69278c 603(delete (new (*foobar 2 3 4))) => delete new Foobar(2, 3, 4);
8e198a08
MB
604
605(if (= (typeof blorg) *string)
606 (alert (+ "blorg is a string: " blorg))
607 (alert "blorg is not a string"))
31c5dbde 608=> if (typeof blorg == String) {
7a7d6c73 609 alert('blorg is a string: ' + blorg);
31c5dbde 610 } else {
7a7d6c73 611 alert('blorg is not a string');
5a69278c 612 };
8e198a08
MB
613
614;;;# Conditional Statements
615;;;t \index{conditional statements}
616;;;t \index{IF}
617;;;t \index{WHEN}
618;;;t \index{UNLESS}
619;;;t \index{conditionals}
620
621; (IF conditional then {else})
622; (WHEN condition then)
623; (UNLESS condition then)
624;
f037cd4c
VS
625; condition ::= a Parenscript expression
626; then ::= a Parenscript statement in statement context, a
627; Parenscript expression in expression context
628; else ::= a Parenscript statement in statement context, a
629; Parenscript expression in expression context
8e198a08
MB
630
631;;; The `IF' form compiles to the `if' javascript construct. An
632;;; explicit `PROGN' around the then branch and the else branch is
633;;; needed if they consist of more than one statement. When the `IF'
634;;; form is used in an expression context, a JavaScript `?', `:'
635;;; operator form is generated.
636
5ffb1eba 637(if ((@ blorg is-correct))
8e198a08
MB
638 (progn (carry-on) (return i))
639 (alert "blorg is not correct!"))
31c5dbde
TC
640=> if (blorg.isCorrect()) {
641 carryOn();
642 return i;
643 } else {
644 alert('blorg is not correct!');
5a69278c 645 };
8e198a08 646
5ffb1eba 647(+ i (if ((@ blorg add-one)) 1 2))
5a69278c 648=> i + (blorg.addOne() ? 1 : 2);
8e198a08
MB
649
650;;; The `WHEN' and `UNLESS' forms can be used as shortcuts for the
651;;; `IF' form.
652
5ffb1eba 653(when ((@ blorg is-correct))
8e198a08
MB
654 (carry-on)
655 (return i))
31c5dbde
TC
656=> if (blorg.isCorrect()) {
657 carryOn();
658 return i;
5a69278c 659 };
8e198a08 660
5ffb1eba 661(unless ((@ blorg is-correct))
8e198a08 662 (alert "blorg is not correct!"))
31c5dbde
TC
663=> if (!blorg.isCorrect()) {
664 alert('blorg is not correct!');
5a69278c 665 };
8e198a08
MB
666
667;;;# Variable declaration
668;;;t \index{variable}
669;;;t \index{variable declaration}
670;;;t \index{binding}
671;;;t \index{scoping}
672;;;t \index{DEFVAR}
58c4ef4f 673;;;t \index{VAR}
d777a405 674;;;t \index{LET}
58c4ef4f 675;;;t \index{LET*}
8e198a08
MB
676
677; (DEFVAR var {value}?)
58c4ef4f 678; (VAR var {value}?)
d777a405
TC
679; (LET ({var | (var value)}*) body)
680; (LET* ({var | (var value)}*) body)
8e198a08
MB
681;
682; var ::= a Lisp symbol
f037cd4c
VS
683; value ::= a Parenscript expression
684; body ::= a list of Parenscript statements
8e198a08 685
58c4ef4f
VS
686;;; Parenscript special variables can be declared using the `DEFVAR'
687;;; special form, which is similar to its equivalent form in
688;;; Lisp. Note that the result is undefined if `DEFVAR' is not used as
689;;; a top-level form.
8e198a08 690
5a69278c 691(defvar *a* (array 1 2 3)) => var A = [ 1, 2, 3 ];
8e198a08 692
58c4ef4f 693;;; One feature present in Parenscript that is not part of Common Lisp
bd363c96 694;;; are lexically-scoped global variables, which are declared using
58c4ef4f
VS
695;;; the `VAR' special form.
696
5ffb1eba
VS
697;;; Parenscript provides the `LET' and `LET*' special forms for
698;;; creating new variable bindings. Both special forms implement
699;;; lexical scope by renaming the provided variables via `GENSYM', and
700;;; implement dynamic binding using `TRY'-`FINALY'. Note that
701;;; top-level `LET' and `LET*' forms will create new global variables.
d777a405 702
5ffb1eba
VS
703;;; Moreover, beware that scoping rules in Lisp and JavaScript are
704;;; quite different. For example, don't rely on closures capturing
705;;; local variables in the way that you would normally expect.
d777a405 706
d777a405
TC
707
708;;; examples:
709
5ffb1eba
VS
710(progn
711 (defvar *a* 4)
712 (let ((x 1)
713 (*a* 2))
714 (let* ((y (+ x 1))
715 (x (+ x y)))
716 (+ *a* x y))))
717=> var A = 4;
16151f19
VS
718 var x = 1;
719 var A_TMPSTACK1;
5ffb1eba 720 try {
16151f19 721 A_TMPSTACK1 = A;
5ffb1eba 722 A = 2;
16151f19
VS
723 var y = x + 1;
724 var x2 = x + y;
725 A + x2 + y;
5ffb1eba 726 } finally {
16151f19 727 A = A_TMPSTACK1;
5ffb1eba 728 };
8e198a08
MB
729
730;;;# Iteration constructs
731;;;t \index{iteration}
732;;;t \index{iteration construct}
733;;;t \index{loop}
734;;;t \index{array traversal}
735;;;t \index{property}
736;;;t \index{object property}
737;;;t \index{DO}
738;;;t \index{DOTIMES}
739;;;t \index{DOLIST}
0ce67a33 740;;;t \index{FOR-IN}
8e198a08
MB
741;;;t \index{WHILE}
742
d777a405
TC
743; (DO ({var | (var {init}? {step}?)}*) (end-test {result}?) body)
744; (DO* ({var | (var {init}? {step}?)}*) (end-test {result}?) body)
745; (DOTIMES (var numeric-form {result}?) body)
746; (DOLIST (var list-form {result}?) body)
0ce67a33 747; (FOR-IN (var object) body)
8e198a08
MB
748; (WHILE end-test body)
749;
750; var ::= a Lisp symbol
f037cd4c
VS
751; numeric-form ::= a Parenscript expression resulting in a number
752; list-form ::= a Parenscript expression resulting in an array
753; object-form ::= a Parenscript expression resulting in an object
754; init ::= a Parenscript expression
755; step ::= a Parenscript expression
756; end-test ::= a Parenscript expression
757; result ::= a Parenscript expression
758; body ::= a list of Parenscript statements
8e198a08 759
d777a405
TC
760;;; All interation special forms are transformed into JavaScript `for'
761;;; statements and, if needed, lambda expressions.
8e198a08 762
d777a405
TC
763;;; `DO', `DO*', and `DOTIMES' carry the same semantics as their
764;;; Common Lisp equivalents.
8e198a08 765
d777a405 766;;; `DO*' (note the variety of possible init-forms:
8e198a08 767
d777a405
TC
768(do* ((a) b (c (array "a" "b" "c" "d" "e"))
769 (d 0 (1+ d))
770 (e (aref c d) (aref c d)))
a14fb2cb 771 ((or (= d (@ c length)) (== e "x")))
d777a405 772 (setf a d b e)
5ffb1eba 773 ((@ document write) (+ "a: " a " b: " b "<br/>")))
31c5dbde
TC
774=> for (var a = null, b = null, c = ['a', 'b', 'c', 'd', 'e'], d = 0, e = c[d]; !(d == c.length || e == 'x'); d += 1, e = c[d]) {
775 a = d;
776 b = e;
777 document.write('a: ' + a + ' b: ' + b + '<br/>');
778 };
8e198a08 779
5ffb1eba 780;;; `DO'
d777a405
TC
781
782(do ((i 0 (1+ i))
783 (s 0 (+ s i (1+ i))))
784 ((> i 10))
5ffb1eba 785 ((@ document write) (+ "i: " i " s: " s "<br/>")))
16151f19
VS
786=> var i = 0;
787 var s = 0;
788 for (; i <= 10; ) {
789 document.write('i: ' + i + ' s: ' + s + '<br/>');
790 var _js1 = i + 1;
791 var _js2 = s + i + (i + 1);
792 i = _js1;
793 s = _js2;
31c5dbde 794 };
d777a405
TC
795
796;;; compare to `DO*':
797
798(do* ((i 0 (1+ i))
799 (s 0 (+ s i (1- i))))
800 ((> i 10))
5ffb1eba 801 ((@ document write) (+ "i: " i " s: " s "<br/>")))
31c5dbde
TC
802=> for (var i = 0, s = 0; i <= 10; i += 1, s += i + (i - 1)) {
803 document.write('i: ' + i + ' s: ' + s + '<br/>');
804 };
d777a405
TC
805
806;;; `DOTIMES':
807
5ffb1eba
VS
808(let ((arr (array "a" "b" "c" "d" "e")))
809 (dotimes (i (@ arr length))
810 ((@ document write) (+ "i: " i " arr[i]: " (aref arr i) "<br/>"))))
16151f19
VS
811=> var arr = ['a', 'b', 'c', 'd', 'e'];
812 for (var i = 0; i < arr.length; i += 1) {
813 document.write('i: ' + i + ' arr[i]: ' + arr[i] + '<br/>');
31c5dbde 814 };
d777a405
TC
815
816;;; `DOTIMES' with return value:
817
5ffb1eba 818(let ((res 0))
d777a405
TC
819 (alert (+ "Summation to 10 is "
820 (dotimes (i 10 res)
821 (incf res (1+ i))))))
16151f19 822=> var res = 0;
31c5dbde
TC
823 alert('Summation to 10 is ' + (function () {
824 for (var i = 0; i < 10; i += 1) {
16151f19 825 res += i + 1;
31c5dbde 826 };
16151f19 827 return res;
31c5dbde 828 })());
d777a405
TC
829
830;;; `DOLIST' is like CL:DOLIST, but that it operates on numbered JS
831;;; arrays/vectors.
832
5ffb1eba 833(let ((l (list 1 2 4 8 16 32)))
d777a405 834 (dolist (c l)
5ffb1eba 835 ((@ document write) (+ "c: " c "<br/>"))))
16151f19
VS
836=> var l = [1, 2, 4, 8, 16, 32];
837 for (var c = null, _js_arrvar2 = l, _js_idx1 = 0; _js_idx1 < _js_arrvar2.length; _js_idx1 += 1) {
838 c = _js_arrvar2[_js_idx1];
31c5dbde
TC
839 document.write('c: ' + c + '<br/>');
840 };
d777a405 841
5ffb1eba
VS
842(let ((l '(1 2 4 8 16 32))
843 (s 0))
d777a405
TC
844 (alert (+ "Sum of " l " is: "
845 (dolist (c l s)
846 (incf s c)))))
16151f19
VS
847=> var l = [1, 2, 4, 8, 16, 32];
848 var s = 0;
849 alert('Sum of ' + l + ' is: ' + (function () {
850 for (var c = null, _js_arrvar2 = l, _js_idx1 = 0; _js_idx1 < _js_arrvar2.length; _js_idx1 += 1) {
851 c = _js_arrvar2[_js_idx1];
852 s += c;
31c5dbde 853 };
16151f19 854 return s;
31c5dbde 855 })());
d777a405 856
0ce67a33 857;;; `FOR-IN' is translated to the JS `for...in' statement.
d777a405 858
5ffb1eba 859(let ((obj (create :a 1 :b 2 :c 3)))
0ce67a33 860 (for-in (i obj)
5ffb1eba 861 ((@ document write) (+ i ": " (aref obj i) "<br/>"))))
16151f19
VS
862=> var obj = { a : 1, b : 2, c : 3 };
863 for (var i in obj) {
864 document.write(i + ': ' + obj[i] + '<br/>');
31c5dbde 865 };
d777a405 866
8e198a08
MB
867;;; The `WHILE' form is transformed to the JavaScript form `while',
868;;; and loops until a termination test evaluates to false.
869
5ffb1eba
VS
870(while ((@ film is-not-finished))
871 ((@ this eat) (new *popcorn)))
31c5dbde
TC
872=> while (film.isNotFinished()) {
873 this.eat(new Popcorn);
5a69278c 874 };
551080b7 875
8e198a08
MB
876;;;# The `CASE' statement
877;;;t \index{CASE}
3c393e09 878;;;t \index{SWITCH}
8e198a08
MB
879;;;t \index{switch}
880
881; (CASE case-value clause*)
882;
3c393e09 883; clause ::= (value body) | ((value*) body) | t-clause
f037cd4c
VS
884; case-value ::= a Parenscript expression
885; value ::= a Parenscript expression
3c393e09 886; t-clause ::= {t | otherwise | default} body
f037cd4c 887; body ::= a list of Parenscript statements
8e198a08
MB
888
889;;; The Lisp `CASE' form is transformed to a `switch' statement in
890;;; JavaScript. Note that `CASE' is not an expression in
f037cd4c 891;;; Parenscript.
8e198a08
MB
892
893(case (aref blorg i)
3c393e09 894 ((1 "one") (alert "one"))
8e198a08 895 (2 (alert "two"))
3c393e09 896 (t (alert "default clause")))
31c5dbde
TC
897=> switch (blorg[i]) {
898 case 1:
899 case 'one':
900 alert('one');
901 break;
902 case 2:
903 alert('two');
904 break;
905 default:
906 alert('default clause');
5a69278c 907 };
8e198a08 908
3c393e09
HH
909; (SWITCH case-value clause*)
910; clause ::= (value body) | (default body)
911
912;;; The `SWITCH' form is the equivalent to a javascript switch statement.
913;;; No break statements are inserted, and the default case is named `DEFAULT'.
914;;; The `CASE' form should be prefered in most cases.
915
916(switch (aref blorg i)
917 (1 (alert "If I get here"))
918 (2 (alert "I also get here"))
919 (default (alert "I always get here")))
31c5dbde
TC
920=> switch (blorg[i]) {
921 case 1: alert('If I get here');
922 case 2: alert('I also get here');
923 default: alert('I always get here');
5a69278c 924 };
3c393e09 925
8e198a08
MB
926;;;# The `WITH' statement
927;;;t \index{WITH}
928;;;t \index{dynamic scope}
929;;;t \index{binding}
930;;;t \index{scoping}
931;;;t \index{closure}
932
5d9cdcad 933; (WITH object body)
8e198a08 934;
f037cd4c
VS
935; object ::= a Parenscript expression evaluating to an object
936; body ::= a list of Parenscript statements
8e198a08
MB
937
938;;; The `WITH' form is compiled to a JavaScript `with' statements, and
939;;; adds the object `object' as an intermediary scope objects when
940;;; executing the body.
941
5d9cdcad 942(with (create :foo "foo" :i "i")
8e198a08 943 (alert (+ "i is now intermediary scoped: " i)))
31c5dbde
TC
944=> with ({ foo : 'foo', i : 'i' }) {
945 alert('i is now intermediary scoped: ' + i);
5a69278c 946 };
8e198a08
MB
947
948;;;# The `TRY' statement
949;;;t \index{TRY}
950;;;t \index{CATCH}
951;;;t \index{FINALLY}
952;;;t \index{exception}
953;;;t \index{error handling}
954
955; (TRY body {(:CATCH (var) body)}? {(:FINALLY body)}?)
956;
f037cd4c 957; body ::= a list of Parenscript statements
8e198a08
MB
958; var ::= a Lisp symbol
959
960;;; The `TRY' form is converted to a JavaScript `try' statement, and
961;;; can be used to catch expressions thrown by the `THROW'
962;;; form. The body of the catch clause is invoked when an exception
963;;; is catched, and the body of the finally is always invoked when
964;;; leaving the body of the `TRY' form.
965
94a05cdf 966(try (throw "i")
8e198a08
MB
967 (:catch (error)
968 (alert (+ "an error happened: " error)))
969 (:finally
970 (alert "Leaving the try form")))
31c5dbde
TC
971=> try {
972 throw 'i';
973 } catch (error) {
974 alert('an error happened: ' + error);
975 } finally {
976 alert('Leaving the try form');
5a69278c 977 };
8e198a08
MB
978
979;;;# The HTML Generator
ecc3218c 980;;;t \index{PS-HTML}
8e198a08
MB
981;;;t \index{HTML generation}
982
ecc3218c 983; (PS-HTML html-expression)
8e198a08 984
f037cd4c 985;;; The HTML generator of Parenscript is very similar to the htmlgen
8bb28ead
VS
986;;; HTML generator library included with AllegroServe. It accepts the
987;;; same input forms as the AllegroServer HTML generator. However,
f037cd4c 988;;; non-HTML construct are compiled to JavaScript by the Parenscript
8e198a08
MB
989;;; compiler. The resulting expression is a JavaScript expression.
990
8bb28ead 991(ps-html ((:a :href "foobar") "blorg"))
5a69278c 992=> '<A HREF=\"foobar\">blorg</A>';
8e198a08 993
8bb28ead 994(ps-html ((:a :href (generate-a-link)) "blorg"))
5a69278c 995=> '<A HREF=\"' + generateALink() + '\">blorg</A>';
8e198a08 996
f037cd4c 997;;; We can recursively call the Parenscript compiler in an HTML
ecc3218c 998;;; expression.
8e198a08 999
5ffb1eba 1000((@ document write)
8bb28ead 1001 (ps-html ((:a :href "#"
e69d0a12 1002 :onclick (ps-inline (transport))) "link")))
5a69278c 1003=> document.write('<A HREF=\"#\" ONCLICK=\"' + ('javascript:' + 'transport' + '(' + ')') + '\">link</A>');
8e198a08 1004
7abef5d4
HH
1005;;; Forms may be used in attribute lists to conditionally generate
1006;;; the next attribute. In this example the textarea is sometimes disabled.
1007
5ffb1eba 1008(let ((disabled nil)
7abef5d4 1009 (authorized t))
5ffb1eba 1010 (setf (@ element inner-h-t-m-l)
8bb28ead 1011 (ps-html ((:textarea (or disabled (not authorized)) :disabled "disabled")
7abef5d4 1012 "Edit me"))))
16151f19
VS
1013=> var disabled = null;
1014 var authorized = true;
31c5dbde 1015 element.innerHTML =
1937c30a 1016 '<TEXTAREA'
16151f19 1017 + (disabled || !authorized ? ' DISABLED=\"' + 'disabled' + '\"' : '')
1937c30a 1018 + '>Edit me</TEXTAREA>';
7abef5d4 1019
8e198a08
MB
1020;;;# Macrology
1021;;;t \index{macro}
1022;;;t \index{macrology}
ecc3218c 1023;;;t \index{DEFPSMACRO}
8cfc6fe9
VS
1024;;;t \index{DEFMACRO/PS}
1025;;;t \index{DEFMACRO+PS}
1026;;;t \index{DEFINE-PS-SYMBOL-MACRO}
1027;;;t \index{IMPORT-MACROS-FROM-LISP}
8e198a08
MB
1028;;;t \index{MACROLET}
1029;;;t \index{SYMBOL-MACROLET}
ecc3218c 1030;;;t \index{PS-GENSYM}
8e198a08
MB
1031;;;t \index{compiler}
1032
ecc3218c 1033; (DEFPSMACRO name lambda-list macro-body)
8cfc6fe9
VS
1034; (DEFPSMACRO/PS name lambda-list macro-body)
1035; (DEFPSMACRO+PS name lambda-list macro-body)
1036; (DEFINE-PS-SYMBOL-MACRO symbol expansion)
1037; (IMPORT-MACROS-FROM-LISP symbol*)
8e198a08
MB
1038; (MACROLET ({name lambda-list macro-body}*) body)
1039; (SYMBOL-MACROLET ({name macro-body}*) body)
49c50da4 1040; (PS-GENSYM {string})
8e198a08
MB
1041;
1042; name ::= a Lisp symbol
1043; lambda-list ::= a lambda list
f037cd4c
VS
1044; macro-body ::= a Lisp body evaluating to Parenscript code
1045; body ::= a list of Parenscript statements
8e198a08
MB
1046; string ::= a string
1047
f037cd4c 1048;;; Parenscript can be extended using macros, just like Lisp can be
8e198a08 1049;;; extended using Lisp macros. Using the special Lisp form
f037cd4c 1050;;; `DEFPSMACRO', the Parenscript language can be
ecc3218c 1051;;; extended. `DEFPSMACRO' adds the new macro to the toplevel macro
f037cd4c 1052;;; environment, which is always accessible during Parenscript
8e198a08
MB
1053;;; compilation. For example, the `1+' and `1-' operators are
1054;;; implemented using macros.
1055
ecc3218c 1056(defpsmacro 1- (form)
8e198a08
MB
1057 `(- ,form 1))
1058
ecc3218c 1059(defpsmacro 1+ (form)
8e198a08
MB
1060 `(+ ,form 1))
1061
f037cd4c
VS
1062;;; A more complicated Parenscript macro example is the implementation
1063;;; of the `DOLIST' form (note how `PS-GENSYM', the Parenscript of
1064;;; `GENSYM', is used to generate new Parenscript variable names):
8e198a08 1065
d777a405
TC
1066(defpsmacro dolist ((var array &optional (result nil result?)) &body body)
1067 (let ((idx (ps-gensym "_js_idx"))
1068 (arrvar (ps-gensym "_js_arrvar")))
1069 `(do* (,var
1070 (,arrvar ,array)
1071 (,idx 0 (1+ ,idx)))
1072 ((>= ,idx (slot-value ,arrvar 'length))
1073 ,@(when result? (list result)))
1074 (setq ,var (aref ,arrvar ,idx))
1075 ,@body)))
8e198a08 1076
f037cd4c
VS
1077;;; Macros can be defined in Parenscript code itself (as opposed to
1078;;; from Lisp) by using the Parenscript `MACROLET' and `DEFMACRO'
8cfc6fe9
VS
1079;;; forms. Note that macros defined this way are defined in a null
1080;;; lexical environment (ex - (let ((x 1)) (defmacro baz (y) `(+ ,y
1081;;; ,x))) will not work), since the surrounding Parenscript code is
1082;;; just translated to JavaScript and not actually evaluated.
1d9f472a 1083
f037cd4c 1084;;; Parenscript also supports the use of macros defined in the
ecc3218c 1085;;; underlying Lisp environment. Existing Lisp macros can be imported
f037cd4c 1086;;; into the Parenscript macro environment by
ecc3218c 1087;;; `IMPORT-MACROS-FROM-LISP'. This functionality enables code sharing
f037cd4c 1088;;; between Parenscript and Lisp, and is useful in debugging since the
ecc3218c
VS
1089;;; full power of Lisp macroexpanders, editors and other supporting
1090;;; facilities can be used. However, it is important to note that the
f037cd4c 1091;;; macroexpansion of Lisp macros and Parenscript macros takes place
ecc3218c
VS
1092;;; in their own respective environments, and many Lisp macros
1093;;; (especially those provided by the Lisp implementation) expand into
f037cd4c 1094;;; code that is not usable by Parenscript. To make it easy for users
ecc3218c 1095;;; to take advantage of these features, two additional macro
f037cd4c 1096;;; definition facilities are provided by Parenscript: `DEFMACRO/PS'
ecc3218c 1097;;; and `DEFMACRO+PS'. `DEFMACRO/PS' defines a Lisp macro and then
f037cd4c 1098;;; imports it into the Parenscript macro environment, while
ecc3218c 1099;;; `DEFMACRO+PS' defines two macros with the same name and expansion,
f037cd4c 1100;;; one in Parenscript and one in Lisp. `DEFMACRO+PS' is used when the
ecc3218c 1101;;; full 'macroexpand' of the Lisp macro yields code that cannot be
f037cd4c 1102;;; used by Parenscript.
8e198a08 1103
f037cd4c 1104;;; Parenscript also supports symbol macros, which can be introduced
8cfc6fe9
VS
1105;;; using the Parenscript form `SYMBOL-MACROLET' or defined in Lisp
1106;;; with `DEFINE-PS-SYMBOL-MACRO'. For example, the Parenscript
1107;;; `WITH-SLOTS' is implemented using symbol macros.
8e198a08 1108
8cfc6fe9 1109(defpsmacro with-slots (slots object &rest body)
8e198a08
MB
1110 `(symbol-macrolet ,(mapcar #'(lambda (slot)
1111 `(,slot '(slot-value ,object ',slot)))
1112 slots)
1113 ,@body))
1114
f037cd4c 1115;;;# The Parenscript namespace system
5e74b5ce
VS
1116;;;t \index{package}
1117;;;t \index{namespace}
1118;;;t \index{PS-PACKAGE-PREFIX}
1119
0c542be0 1120; (setf (PS-PACKAGE-PREFIX package-designator) string)
5e74b5ce
VS
1121
1122;;; Although JavaScript does not offer namespacing or a package
f037cd4c 1123;;; system, Parenscript does provide a namespace mechanism for
5e74b5ce 1124;;; generated JavaScript by integrating with the Common Lisp package
f037cd4c 1125;;; system. Since Parenscript code is normally read in by the Lisp
5e74b5ce
VS
1126;;; reader, all symbols (except for uninterned ones, ie - those
1127;;; specified with the #: reader macro) have a Lisp package. By
1128;;; default, no packages are prefixed. You can specify that symbols in
1129;;; a particular package receive a prefix when translated to
1130;;; JavaScript with the `PS-PACKAGE-PREFIX' place.
1131
7b8a74ee
VS
1132(defpackage "PS-REF.MY-LIBRARY"
1133 (:use "PARENSCRIPT"))
1134(setf (ps-package-prefix "PS-REF.MY-LIBRARY") "my_library_")
5e74b5ce 1135
7b8a74ee 1136(defun ps-ref.my-library::library-function (x y)
5e74b5ce 1137 (return (+ x y)))
0c542be0 1138 -> function my_library_libraryFunction(x, y) {
5e74b5ce 1139 return x + y;
5a69278c 1140 };
5e74b5ce 1141
0c542be0
VS
1142;;;# Identifier obfuscation
1143;;;t \index{obfuscation}
1144;;;t \index{identifiers}
1145;;;t \index{OBFUSCATE-PACKAGE}
1146;;;t \index{UNOBFUSCATE-PACKAGE}
1147
7b8a74ee 1148; (OBFUSCATE-PACKAGE package-designator &optional symbol-map)
0c542be0
VS
1149; (UNOBFUSCATE-PACKAGE package-designator)
1150
f037cd4c 1151;;; Similar to the namespace mechanism, Parenscript provides a
7b8a74ee
VS
1152;;; facility to generate obfuscated identifiers in specified CL
1153;;; packages. The function `OBFUSCATE-PACKAGE' may optionally be
1154;;; passed a hash-table or a closure that maps symbols to their
1155;;; obfuscated counterparts. By default, the mapping is done using
1156;;; `PS-GENSYM'.
1157
1158(defpackage "PS-REF.OBFUSCATE-ME")
1159(obfuscate-package "PS-REF.OBFUSCATE-ME"
1160 (let ((code-pt-counter #x8CF0)
1161 (symbol-map (make-hash-table)))
1162 (lambda (symbol)
1163 (or (gethash symbol symbol-map)
1164 (setf (gethash symbol symbol-map)
1165 (make-symbol (string (code-char (incf code-pt-counter)))))))))
1166
1167(defun ps-ref.obfuscate-me::a-function (a b ps-ref.obfuscate-me::foo)
1168 (+ a (ps-ref.my-library::library-function b ps-ref.obfuscate-me::foo)))
1169 -> function 賱(a, b, 賲) {
1170 a + my_library_libraryFunction(b, 賲);
5a69278c 1171 };
0c542be0
VS
1172
1173;;; The obfuscation and namespace facilities can be used on packages
1174;;; at the same time.
1175
f037cd4c 1176;;;# The Parenscript Compiler
8e198a08 1177;;;t \index{compiler}
f037cd4c 1178;;;t \index{Parenscript compiler}
ecc3218c
VS
1179;;;t \index{PS}
1180;;;t \index{PS*}
cb8f8e58 1181;;;t \index{PS1*}
ecc3218c 1182;;;t \index{PS-INLINE}
cb8f8e58 1183;;;t \index{PS-INLINE*}
ecc3218c 1184;;;t \index{LISP}
8e198a08 1185
ecc3218c
VS
1186; (PS &body body)
1187; (PS* &body body)
cb8f8e58
VS
1188; (PS1* parenscript-form)
1189; (PS-INLINE form &optional *js-string-delimiter*)
1190; (PS-INLINE* form &optional *js-string-delimiter*)
1191
1192; (LISP lisp-forms)
8e198a08 1193;
f037cd4c 1194; body ::= Parenscript statements comprising an implicit `PROGN'
ecc3218c 1195
f037cd4c 1196;;; For static Parenscript code, the macro `PS' compiles the provided
cb8f8e58
VS
1197;;; forms at Common Lisp macro-expansion time. `PS*' and `PS1*'
1198;;; evaluate their arguments and then compile them. All these forms
1199;;; except for `PS1*' treat the given forms as an implicit
1200;;; `PROGN'.
1201
f037cd4c 1202;;; `PS-INLINE' and `PS-INLINE*' take a single Parenscript form and
cb8f8e58
VS
1203;;; output a string starting with "javascript:" that can be used in
1204;;; HTML node attributes. As well, they provide an argument to bind
1205;;; the value of *js-string-delimiter* to control the value of the
1206;;; JavaScript string escape character to be compatible with whatever
1207;;; the HTML generation mechanism is used (for example, if HTML
1208;;; strings are delimited using #\', using #\" will avoid conflicts
1209;;; without requiring the output JavaScript code to be escaped). By
1210;;; default the value is taken from *js-inline-string-delimiter*.
1211
f037cd4c 1212;;; Parenscript can also call out to arbitrary Common Lisp code at
cb8f8e58
VS
1213;;; code output time using the special form `LISP'. The form provided
1214;;; to `LISP' is evaluated, and its result is compiled as though it
f037cd4c 1215;;; were Parenscript code. For `PS' and `PS-INLINE', the Parenscript
cb8f8e58
VS
1216;;; output code is generated at macro-expansion time, and the `LISP'
1217;;; statements are inserted inline and have access to the enclosing
1218;;; Common Lisp lexical environment. `PS*' and `PS1*' evaluate the
1219;;; `LISP' forms with eval, providing them access to the current
1220;;; dynamic environment only.