7ed1c8810306657665c1d5884f20bc471c81dbec
[clinton/Smoothieware.git] / src / libs / StepTicker.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8
9 #include "StepTicker.h"
10
11 using namespace std;
12 #include <vector>
13
14 #include "libs/nuts_bolts.h"
15 #include "libs/Module.h"
16 #include "libs/Kernel.h"
17 #include "StepperMotor.h"
18
19 #include "system_LPC17xx.h" // mbed.h lib
20
21 #include <mri.h>
22
23 // StepTicker handles the base frequency ticking for the Stepper Motors / Actuators
24 // It has a list of those, and calls their tick() functions at regular intervals
25 // They then do Bresenham stuff themselves
26
27 StepTicker* global_step_ticker;
28
29 StepTicker::StepTicker(){
30 global_step_ticker = this;
31
32 // Configure the timer
33 LPC_TIM0->MR0 = 10000000; // Initial dummy value for Match Register
34 LPC_TIM0->MCR = 3; // Match on MR0, reset on MR0, match on MR1
35 LPC_TIM0->TCR = 0; // Disable interrupt
36
37 LPC_SC->PCONP |= (1 << 2); // Power Ticker ON
38 LPC_TIM1->MR0 = 1000000;
39 LPC_TIM1->MCR = 1;
40 LPC_TIM1->TCR = 1; // Enable interrupt
41
42 // Default start values
43 this->moves_finished = false;
44 this->reset_step_pins = false;
45 this->set_frequency(0.001);
46 this->set_reset_delay(100);
47 this->last_duration = 0;
48 for (int i = 0; i < 12; i++){
49 this->active_motors[i] = NULL;
50 }
51 this->active_motor_bm = 0;
52
53 NVIC_EnableIRQ(TIMER0_IRQn); // Enable interrupt handler
54 NVIC_EnableIRQ(TIMER1_IRQn); // Enable interrupt handler
55 }
56
57 // Set the base stepping frequency
58 void StepTicker::set_frequency( float frequency ){
59 this->frequency = frequency;
60 this->period = int(floor((SystemCoreClock/4)/frequency)); // SystemCoreClock/4 = Timer increments in a second
61 LPC_TIM0->MR0 = this->period;
62 if( LPC_TIM0->TC > LPC_TIM0->MR0 ){
63 LPC_TIM0->TCR = 3; // Reset
64 LPC_TIM0->TCR = 1; // Reset
65 }
66 }
67
68 // Set the reset delay
69 void StepTicker::set_reset_delay( float seconds ){
70 LPC_TIM1->MR0 = int(floor(float(SystemCoreClock/4)*( seconds ))); // SystemCoreClock/4 = Timer increments in a second
71 }
72
73 // Add a stepper motor object to our list of steppers we must take care of
74 StepperMotor* StepTicker::add_stepper_motor(StepperMotor* stepper_motor){
75 this->stepper_motors.push_back(stepper_motor);
76 stepper_motor->step_ticker = this;
77 return stepper_motor;
78 }
79
80 // Call tick() on each active motor
81 inline void StepTicker::tick(){
82 _isr_context = true;
83 int i;
84 uint32_t bm = 1;
85 // We iterate over each active motor
86 for (i = 0; i < 12; i++, bm <<= 1){
87 if (this->active_motor_bm & bm){
88 this->active_motors[i]->tick();
89 }
90 }
91 _isr_context = false;
92 }
93
94 // Call signal_mode_finished() on each active motor that asked to be signaled. We do this instead of inside of tick() so that
95 // all tick()s are called before we do the move finishing
96 void StepTicker::signal_moves_finished(){
97 _isr_context = true;
98
99 uint16_t bitmask = 1;
100 for ( uint8_t motor = 0; motor < 12; motor++, bitmask <<= 1){
101 if (this->active_motor_bm & bitmask){
102 if(this->active_motors[motor]->is_move_finished){
103 this->active_motors[motor]->signal_move_finished();
104 if(this->active_motors[motor]->moving == false){
105 if (motor > 0){
106 motor--;
107 bitmask >>= 1;
108 }
109 }
110 }
111 }
112 }
113 this->moves_finished = false;
114
115 _isr_context = false;
116 }
117
118 // Reset step pins on all active motors
119 inline void StepTicker::reset_tick(){
120 _isr_context = true;
121
122 int i;
123 uint32_t bm;
124 for (i = 0, bm = 1; i < 12; i++, bm <<= 1)
125 {
126 if (this->active_motor_bm & bm)
127 this->active_motors[i]->unstep();
128 }
129
130 _isr_context = false;
131 }
132
133 extern "C" void TIMER1_IRQHandler (void){
134 LPC_TIM1->IR |= 1 << 0;
135 global_step_ticker->reset_tick();
136 }
137
138 // The actual interrupt handler where we do all the work
139 extern "C" void TIMER0_IRQHandler (void){
140
141 // Reset interrupt register
142 LPC_TIM0->IR |= 1 << 0;
143
144 // Step pins
145 uint16_t bitmask = 1;
146 for (uint8_t motor = 0; motor < 12; motor++, bitmask <<= 1){
147 if (global_step_ticker->active_motor_bm & bitmask){
148 global_step_ticker->active_motors[motor]->tick();
149 }
150 }
151
152 // We may have set a pin on in this tick, now we start the timer to set it off
153 if( global_step_ticker->reset_step_pins ){
154 LPC_TIM1->TCR = 3;
155 LPC_TIM1->TCR = 1;
156 global_step_ticker->reset_step_pins = false;
157 }else{
158 // Nothing happened, nothing after this really matters
159 // TODO : This could be a problem when we use Actuators instead of StepperMotors, because this flag is specific to step generation
160 LPC_TIM0->MR0 = global_step_ticker->period;
161 return;
162 }
163
164 // If a move finished in this tick, we have to tell the actuator to act accordingly
165 if( global_step_ticker->moves_finished ){
166
167 // Do not get out of here before everything is nice and tidy
168 LPC_TIM0->MR0 = 20000000;
169
170 global_step_ticker->signal_moves_finished();
171
172 // If we went over the duration an interrupt is supposed to last, we have a problem
173 // That can happen tipically when we change blocks, where more than usual computation is done
174 // This can be OK, if we take notice of it, which we do now
175 if( LPC_TIM0->TC > global_step_ticker->period ){ // TODO: remove the size condition
176
177 uint32_t start_tc = LPC_TIM0->TC;
178
179 // How many ticks we want to skip ( this does not include the current tick, but we add the time we spent doing this computation last time )
180 uint32_t ticks_to_skip = ( ( LPC_TIM0->TC + global_step_ticker->last_duration ) / global_step_ticker->period );
181
182 // Next step is now to reduce this to how many steps we can *actually* skip
183 uint32_t ticks_we_actually_can_skip = ticks_to_skip;
184
185 int i;
186 uint32_t bm;
187 for (i = 0, bm = 1; i < 12; i++, bm <<= 1)
188 {
189 if (global_step_ticker->active_motor_bm & bm)
190 ticks_we_actually_can_skip =
191 min(ticks_we_actually_can_skip,
192 (uint32_t)((uint64_t)( (uint64_t)global_step_ticker->active_motors[i]->fx_ticks_per_step - (uint64_t)global_step_ticker->active_motors[i]->fx_counter ) >> 32)
193 );
194 }
195
196 // Adding to MR0 for this time is not enough, we must also increment the counters ourself artificially
197 for (i = 0, bm = 1; i < 12; i++, bm <<= 1)
198 {
199 if (global_step_ticker->active_motor_bm & bm)
200 global_step_ticker->active_motors[i]->fx_counter += (uint64_t)((uint64_t)(ticks_we_actually_can_skip)<<32);
201 }
202
203 // When must we have our next MR0 ? ( +1 is here to account that we are actually doing a legit MR0 match here too, not only overtime )
204 LPC_TIM0->MR0 = ( ticks_to_skip + 1 ) * global_step_ticker->period;
205
206 // This is so that we know how long this computation takes, and we can take it into account next time
207 int difference = (int)(LPC_TIM0->TC) - (int)(start_tc);
208 if( difference > 0 ){ global_step_ticker->last_duration = (uint32_t)difference; }
209
210 }else{
211 LPC_TIM0->MR0 = global_step_ticker->period;
212 }
213
214 while( LPC_TIM0->TC > LPC_TIM0->MR0 ){
215 LPC_TIM0->MR0 += global_step_ticker->period;
216 }
217
218 }
219
220 }
221
222
223 // We make a list of steppers that want to be called so that we don't call them for nothing
224 void StepTicker::add_motor_to_active_list(StepperMotor* motor)
225 {
226 uint32_t bm;
227 int i;
228 for (i = 0, bm = 1; i < 12; i++, bm <<= 1)
229 {
230 if (this->active_motors[i] == motor)
231 {
232 this->active_motor_bm |= bm;
233 if( this->active_motor_bm != 0 ){
234 LPC_TIM0->TCR = 1; // Enable interrupt
235 }
236 return;
237 }
238 if (this->active_motors[i] == NULL)
239 {
240 this->active_motors[i] = motor;
241 this->active_motor_bm |= bm;
242 if( this->active_motor_bm != 0 ){
243 LPC_TIM0->TCR = 1; // Enable interrupt
244 }
245 return;
246 }
247 }
248 return;
249 }
250
251 // Remove a stepper from the list of active motors
252 void StepTicker::remove_motor_from_active_list(StepperMotor* motor)
253 {
254 uint32_t bm; int i;
255 for (i = 0, bm = 1; i < 12; i++, bm <<= 1)
256 {
257 if (this->active_motors[i] == motor)
258 {
259 this->active_motor_bm &= ~bm;
260 // If we have no motor to work on, disable the whole interrupt
261 if( this->active_motor_bm == 0 ){
262 LPC_TIM0->TCR = 0; // Disable interrupt
263 }
264 return;
265 }
266 }
267 }