;;; Continuation-passing style (CPS) intermediate language (IL) ;; Copyright (C) 2013, 2014 Free Software Foundation, Inc. ;;;; This library is free software; you can redistribute it and/or ;;;; modify it under the terms of the GNU Lesser General Public ;;;; License as published by the Free Software Foundation; either ;;;; version 3 of the License, or (at your option) any later version. ;;;; ;;;; This library is distributed in the hope that it will be useful, ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;;;; Lesser General Public License for more details. ;;;; ;;;; You should have received a copy of the GNU Lesser General Public ;;;; License along with this library; if not, write to the Free Software ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ;;; Commentary: ;;; ;;; Many passes rely on a local or global static analysis of a function. ;;; This module implements a simple data-flow graph (DFG) analysis, ;;; tracking the definitions and uses of variables and continuations. ;;; It also builds a table of continuations and scope links, to be able ;;; to easily determine if one continuation is in the scope of another, ;;; and to get to the expression inside a continuation. ;;; ;;; Note that the data-flow graph of continuation labels is a ;;; control-flow graph. ;;; ;;; We currently don't expose details of the DFG type outside this ;;; module, preferring to only expose accessors. That may change in the ;;; future but it seems to work for now. ;;; ;;; Code: (define-module (language cps dfg) #:use-module (ice-9 match) #:use-module (srfi srfi-1) #:use-module (srfi srfi-9) #:use-module (srfi srfi-26) #:use-module (language cps) #:export (build-cont-table lookup-cont compute-dfg dfg-cont-table dfg-min-label dfg-label-count dfg-min-var dfg-var-count with-fresh-name-state-from-dfg lookup-def lookup-uses lookup-predecessors lookup-successors lookup-block-scope find-call call-expression find-expression find-defining-expression find-constant-value continuation-bound-in? variable-free-in? constant-needs-allocation? control-point? lookup-bound-syms ;; Data flow analysis. compute-live-variables dfa-k-idx dfa-k-sym dfa-k-count dfa-k-in dfa-k-out dfa-var-idx dfa-var-sym dfa-var-count print-dfa)) ;; These definitions are here because currently we don't do cross-module ;; inlining. They can be removed once that restriction is gone. (define-inlinable (for-each f l) (unless (list? l) (scm-error 'wrong-type-arg "for-each" "Not a list: ~S" (list l) #f)) (let for-each1 ((l l)) (unless (null? l) (f (car l)) (for-each1 (cdr l))))) (define-inlinable (for-each/2 f l1 l2) (unless (= (length l1) (length l2)) (scm-error 'wrong-type-arg "for-each" "List of wrong length: ~S" (list l2) #f)) (let for-each2 ((l1 l1) (l2 l2)) (unless (null? l1) (f (car l1) (car l2)) (for-each2 (cdr l1) (cdr l2))))) (define (build-cont-table fun) (let ((max-k (fold-conts (lambda (k cont max-k) (max k max-k)) -1 fun))) (fold-conts (lambda (k cont table) (vector-set! table k cont) table) (make-vector (1+ max-k) #f) fun))) ;; Data-flow graph for CPS: both for values and continuations. (define-record-type $dfg (make-dfg conts preds defs uses scopes scope-levels min-label max-label label-count min-var max-var var-count) dfg? ;; vector of label -> $kif, $kargs, etc (conts dfg-cont-table) ;; vector of label -> (pred-label ...) (preds dfg-preds) ;; vector of var -> def-label (defs dfg-defs) ;; vector of var -> (use-label ...) (uses dfg-uses) ;; vector of label -> label (scopes dfg-scopes) ;; vector of label -> int (scope-levels dfg-scope-levels) (min-label dfg-min-label) (max-label dfg-max-label) (label-count dfg-label-count) (min-var dfg-min-var) (max-var dfg-max-var) (var-count dfg-var-count)) (define-inlinable (vector-push! vec idx val) (let ((v vec) (i idx)) (vector-set! v i (cons val (vector-ref v i))))) (define (compute-reachable dfg min-label label-count) "Compute and return the continuations that may be reached if flow reaches a continuation N. Returns a vector of bitvectors, whose first index corresponds to MIN-LABEL, and so on." (let (;; Vector of bitvectors, indicating that continuation N can ;; reach a set M... (reachable (make-vector label-count #f))) (define (label->idx label) (- label min-label)) ;; All continuations are reachable from themselves. (let lp ((n 0)) (when (< n label-count) (let ((bv (make-bitvector label-count #f))) (bitvector-set! bv n #t) (vector-set! reachable n bv) (lp (1+ n))))) ;; Iterate labels backwards, to converge quickly. (let ((tmp (make-bitvector label-count #f))) (define (add-reachable! succ) (bit-set*! tmp (vector-ref reachable (label->idx succ)) #t)) (let lp ((label (+ min-label label-count)) (changed? #f)) (cond ((= label min-label) (if changed? (lp (+ min-label label-count) #f) reachable)) (else (let* ((label (1- label)) (idx (label->idx label))) (bitvector-fill! tmp #f) (visit-cont-successors (case-lambda (() #t) ((succ0) (add-reachable! succ0)) ((succ0 succ1) (add-reachable! succ0) (add-reachable! succ1))) (lookup-cont label dfg)) (bitvector-set! tmp idx #t) (bit-set*! tmp (vector-ref reachable idx) #f) (cond ((bit-position #t tmp 0) (bit-set*! (vector-ref reachable idx) tmp #t) (lp label #t)) (else (lp label changed?)))))))))) (define (find-prompts dfg min-label label-count) "Find the prompts in DFG between MIN-LABEL and MIN-LABEL + LABEL-COUNT, and return them as a list of PROMPT-LABEL, HANDLER-LABEL pairs." (let lp ((label min-label) (prompts '())) (cond ((= label (+ min-label label-count)) (reverse prompts)) (else (match (lookup-cont label dfg) (($ $kargs names syms body) (match (find-expression body) (($ $prompt escape? tag handler) (lp (1+ label) (acons label handler prompts))) (_ (lp (1+ label) prompts)))) (_ (lp (1+ label) prompts))))))) (define (compute-interval reachable min-label label-count start end) "Compute and return the set of continuations that may be reached from START, inclusive, but not reached by END, exclusive. Returns a bitvector." (let ((body (make-bitvector label-count #f))) (bit-set*! body (vector-ref reachable (- start min-label)) #t) (bit-set*! body (vector-ref reachable (- end min-label)) #f) body)) (define (find-prompt-bodies dfg min-label label-count) "Find all the prompts in DFG from the LABEL-COUNT continuations starting at MIN-LABEL, and compute the set of continuations that is reachable from the prompt bodies but not from the corresponding handler. Returns a list of PROMPT, HANDLER, BODY lists, where the BODY is a bitvector." (match (find-prompts dfg min-label label-count) (() '()) (((prompt . handler) ...) (let ((reachable (compute-reachable dfg min-label label-count))) (map (lambda (prompt handler) ;; FIXME: It isn't correct to use all continuations ;; reachable from the prompt, because that includes ;; continuations outside the prompt body. This point is ;; moot if the handler's control flow joins with the the ;; body, as is usually but not always the case. ;; ;; One counter-example is when the handler contifies an ;; infinite loop; in that case we compute a too-large ;; prompt body. This error is currently innocuous, but we ;; should fix it at some point. ;; ;; The fix is to end the body at the corresponding "pop" ;; primcall, if any. (let ((body (compute-interval reachable min-label label-count prompt handler))) (list prompt handler body))) prompt handler))))) (define* (visit-prompt-control-flow dfg min-label label-count f #:key complete?) "For all prompts in DFG in the range [MIN-LABEL, MIN-LABEL + LABEL-COUNT), invoke F with arguments PROMPT, HANDLER, and BODY for each body continuation in the prompt." (define (label->idx label) (- label min-label)) (define (idx->label idx) (+ idx min-label)) (for-each (match-lambda ((prompt handler body) (define (out-or-back-edge? n) ;; Most uses of visit-prompt-control-flow don't need every body ;; continuation, and would be happy getting called only for ;; continuations that postdominate the rest of the body. Unless ;; you pass #:complete? #t, we only invoke F on continuations ;; that can leave the body, or on back-edges in loops. ;; ;; You would think that looking for the final "pop" primcall ;; would be sufficient, but that is incorrect; it's possible for ;; a loop in the prompt body to be contified, and that loop need ;; not continue to the pop if it never terminates. The pop could ;; even be removed by DCE, in that case. (or-map (lambda (succ) (let ((succ (label->idx succ))) (or (not (bitvector-ref body succ)) (<= succ n)))) (lookup-successors (idx->label n) dfg))) (let lp ((n 0)) (let ((n (bit-position #t body n))) (when n (when (or complete? (out-or-back-edge? n)) (f prompt handler (idx->label n))) (lp (1+ n))))))) (find-prompt-bodies dfg min-label label-count))) (define (analyze-reverse-control-flow fun dfg min-label label-count) (define (compute-reverse-control-flow-order ktail dfg) (let ((order (make-vector label-count #f)) (label-map (make-vector label-count #f)) (next -1)) (define (label->idx label) (- label min-label)) (define (idx->label idx) (+ idx min-label)) (let visit ((k ktail)) ;; Mark this label as visited. (vector-set! label-map (label->idx k) #t) (for-each (lambda (k) ;; Visit predecessors unless they are already visited. (unless (vector-ref label-map (label->idx k)) (visit k))) (lookup-predecessors k dfg)) ;; Add to reverse post-order chain. (vector-set! label-map (label->idx k) next) (set! next k)) (let lp ((n 0) (head next)) (if (< head 0) ;; Add nodes that are not reachable from the tail. (let lp ((n n) (m label-count)) (unless (= n label-count) (let find-unvisited ((m (1- m))) (if (vector-ref label-map m) (find-unvisited (1- m)) (begin (vector-set! label-map m n) (lp (1+ n) m)))))) ;; Pop the head off the chain, give it its ;; reverse-post-order numbering, and continue. (let ((next (vector-ref label-map (label->idx head)))) (vector-set! label-map (label->idx head) n) (lp (1+ n) next)))) (let lp ((n 0)) (when (< n label-count) (vector-set! order (vector-ref label-map n) (idx->label n)) (lp (1+ n)))) (values order label-map))) (define (convert-successors k-map) (define (idx->label idx) (+ idx min-label)) (define (renumber label) (vector-ref k-map (- label min-label))) (let ((succs (make-vector (vector-length k-map) #f))) (let lp ((n 0)) (when (< n (vector-length succs)) (vector-set! succs (vector-ref k-map n) (map renumber (lookup-successors (idx->label n) dfg))) (lp (1+ n)))) succs)) (match fun (($ $cont kfun ($ $kfun src meta self ($ $cont ktail tail))) (call-with-values (lambda () (compute-reverse-control-flow-order ktail dfg)) (lambda (order k-map) (let ((succs (convert-successors k-map))) ;; Any expression in the prompt body could cause an abort to ;; the handler. This code adds links from every block in the ;; prompt body to the handler. This causes all values used ;; by the handler to be seen as live in the prompt body, as ;; indeed they are. (visit-prompt-control-flow dfg min-label label-count (lambda (prompt handler body) (define (renumber label) (vector-ref k-map (- label min-label))) (vector-push! succs (renumber body) (renumber handler)))) (values k-map order succs))))))) ;; Dominator analysis. (define-record-type $dominator-analysis (make-dominator-analysis min-label idoms dom-levels loop-header irreducible) dominator-analysis? ;; Label corresponding to first entry in idoms, dom-levels, etc (min-label dominator-analysis-min-label) ;; Vector of k-idx -> k-idx (idoms dominator-analysis-idoms) ;; Vector of k-idx -> dom-level (dom-levels dominator-analysis-dom-levels) ;; Vector of k-idx -> k-idx or -1 (loop-header dominator-analysis-loop-header) ;; Vector of k-idx -> true or false value (irreducible dominator-analysis-irreducible)) (define (compute-dom-levels idoms) (let ((dom-levels (make-vector (vector-length idoms) #f))) (define (compute-dom-level n) (or (vector-ref dom-levels n) (let ((dom-level (1+ (compute-dom-level (vector-ref idoms n))))) (vector-set! dom-levels n dom-level) dom-level))) (vector-set! dom-levels 0 0) (let lp ((n 0)) (when (< n (vector-length idoms)) (compute-dom-level n) (lp (1+ n)))) dom-levels)) (define (compute-idoms preds min-label label-count) (define (label->idx label) (- label min-label)) (define (idx->label idx) (+ idx min-label)) (let ((idoms (make-vector label-count 0))) (define (common-idom d0 d1) ;; We exploit the fact that a reverse post-order is a topological ;; sort, and so the idom of a node is always numerically less than ;; the node itself. (cond ((= d0 d1) d0) ((< d0 d1) (common-idom d0 (vector-ref idoms d1))) (else (common-idom (vector-ref idoms d0) d1)))) (define (compute-idom preds) (match preds (() 0) ((pred . preds) (let lp ((idom (label->idx pred)) (preds preds)) (match preds (() idom) ((pred . preds) (lp (common-idom idom (label->idx pred)) preds))))))) ;; This is the iterative O(n^2) fixpoint algorithm, originally from ;; Allen and Cocke ("Graph-theoretic constructs for program flow ;; analysis", 1972). See the discussion in Cooper, Harvey, and ;; Kennedy's "A Simple, Fast Dominance Algorithm", 2001. (let iterate ((n 0) (changed? #f)) (cond ((< n label-count) (let ((idom (vector-ref idoms n)) (idom* (compute-idom (vector-ref preds (idx->label n))))) (cond ((eqv? idom idom*) (iterate (1+ n) changed?)) (else (vector-set! idoms n idom*) (iterate (1+ n) #t))))) (changed? (iterate 0 #f)) (else idoms))))) ;; Compute a vector containing, for each node, a list of the nodes that ;; it immediately dominates. These are the "D" edges in the DJ tree. (define (compute-dom-edges idoms) (let ((doms (make-vector (vector-length idoms) '()))) (let lp ((n 0)) (when (< n (vector-length idoms)) (let ((idom (vector-ref idoms n))) (vector-push! doms idom n)) (lp (1+ n)))) doms)) ;; Compute a vector containing, for each node, a list of the successors ;; of that node that are not dominated by that node. These are the "J" ;; edges in the DJ tree. (define (compute-join-edges preds min-label idoms) (define (dominates? n1 n2) (or (= n1 n2) (and (< n1 n2) (dominates? n1 (vector-ref idoms n2))))) (let ((joins (make-vector (vector-length idoms) '()))) (let lp ((n 0)) (when (< n (vector-length idoms)) (for-each (lambda (pred) (let ((pred (- pred min-label))) (unless (dominates? pred n) (vector-push! joins pred n)))) (vector-ref preds (+ n min-label))) (lp (1+ n)))) joins)) ;; Compute a vector containing, for each node, a list of the back edges ;; to that node. If a node is not the entry of a reducible loop, that ;; list is empty. (define (compute-reducible-back-edges joins idoms) (define (dominates? n1 n2) (or (= n1 n2) (and (< n1 n2) (dominates? n1 (vector-ref idoms n2))))) (let ((back-edges (make-vector (vector-length idoms) '()))) (let lp ((n 0)) (when (< n (vector-length joins)) (for-each (lambda (succ) (when (dominates? succ n) (vector-push! back-edges succ n))) (vector-ref joins n)) (lp (1+ n)))) back-edges)) ;; Compute the levels in the dominator tree at which there are ;; irreducible loops, as an integer. If a bit N is set in the integer, ;; that indicates that at level N in the dominator tree, there is at ;; least one irreducible loop. (define (compute-irreducible-dom-levels doms joins idoms dom-levels) (define (dominates? n1 n2) (or (= n1 n2) (and (< n1 n2) (dominates? n1 (vector-ref idoms n2))))) (let ((pre-order (make-vector (vector-length doms) #f)) (last-pre-order (make-vector (vector-length doms) #f)) (res 0) (count 0)) ;; Is MAYBE-PARENT an ancestor of N on the depth-first spanning tree ;; computed from the DJ graph? See Havlak 1997, "Nesting of ;; Reducible and Irreducible Loops". (define (ancestor? a b) (let ((w (vector-ref pre-order a)) (v (vector-ref pre-order b))) (and (<= w v) (<= v (vector-ref last-pre-order w))))) ;; Compute depth-first spanning tree of DJ graph. (define (recurse n) (unless (vector-ref pre-order n) (visit n))) (define (visit n) ;; Pre-order visitation index. (vector-set! pre-order n count) (set! count (1+ count)) (for-each recurse (vector-ref doms n)) (for-each recurse (vector-ref joins n)) ;; Pre-order visitation index of last descendant. (vector-set! last-pre-order (vector-ref pre-order n) (1- count))) (visit 0) (let lp ((n 0)) (when (< n (vector-length joins)) (for-each (lambda (succ) ;; If this join edge is not a loop back edge but it ;; does go to an ancestor on the DFST of the DJ ;; graph, then we have an irreducible loop. (when (and (not (dominates? succ n)) (ancestor? succ n)) (set! res (logior (ash 1 (vector-ref dom-levels succ)))))) (vector-ref joins n)) (lp (1+ n)))) res)) (define (compute-nodes-by-level dom-levels) (let* ((max-level (let lp ((n 0) (max-level 0)) (if (< n (vector-length dom-levels)) (lp (1+ n) (max (vector-ref dom-levels n) max-level)) max-level))) (nodes-by-level (make-vector (1+ max-level) '()))) (let lp ((n (1- (vector-length dom-levels)))) (when (>= n 0) (vector-push! nodes-by-level (vector-ref dom-levels n) n) (lp (1- n)))) nodes-by-level)) ;; Collect all predecessors to the back-nodes that are strictly ;; dominated by the loop header, and mark them as belonging to the loop. ;; If they already have a loop header, that means they are either in a ;; nested loop, or they have already been visited already. (define (mark-loop-body header back-nodes preds min-label idoms loop-headers) (define (strictly-dominates? n1 n2) (and (< n1 n2) (let ((idom (vector-ref idoms n2))) (or (= n1 idom) (strictly-dominates? n1 idom))))) (define (visit node) (when (strictly-dominates? header node) (cond ((vector-ref loop-headers node) => visit) (else (vector-set! loop-headers node header) (for-each (lambda (pred) (visit (- pred min-label))) (vector-ref preds (+ node min-label))))))) (for-each visit back-nodes)) (define (mark-irreducible-loops level idoms dom-levels loop-headers) ;; FIXME: Identify strongly-connected components that are >= LEVEL in ;; the dominator tree, and somehow mark them as irreducible. (warn 'irreducible-loops-at-level level)) ;; "Identifying Loops Using DJ Graphs" by Sreedhar, Gao, and Lee, ACAPS ;; Technical Memo 98, 1995. (define (identify-loops preds min-label idoms dom-levels) (let* ((doms (compute-dom-edges idoms)) (joins (compute-join-edges preds min-label idoms)) (back-edges (compute-reducible-back-edges joins idoms)) (irreducible-levels (compute-irreducible-dom-levels doms joins idoms dom-levels)) (loop-headers (make-vector (vector-length idoms) #f)) (nodes-by-level (compute-nodes-by-level dom-levels))) (let lp ((level (1- (vector-length nodes-by-level)))) (when (>= level 0) (for-each (lambda (n) (let ((edges (vector-ref back-edges n))) (unless (null? edges) (mark-loop-body n edges preds min-label idoms loop-headers)))) (vector-ref nodes-by-level level)) (when (logbit? level irreducible-levels) (mark-irreducible-loops level idoms dom-levels loop-headers)) (lp (1- level)))) loop-headers)) (define (analyze-dominators dfg min-label label-count) (let* ((idoms (compute-idoms (dfg-preds dfg) min-label label-count)) (dom-levels (compute-dom-levels idoms)) (loop-headers (identify-loops (dfg-preds dfg) min-label idoms dom-levels))) (make-dominator-analysis min-label idoms dom-levels loop-headers #f))) ;; Compute the maximum fixed point of the data-flow constraint problem. ;; ;; This always completes, as the graph is finite and the in and out sets ;; are complete semi-lattices. If the graph is reducible and the blocks ;; are sorted in reverse post-order, this completes in a maximum of LC + ;; 2 iterations, where LC is the loop connectedness number. See Hecht ;; and Ullman, "Analysis of a simple algorithm for global flow ;; problems", POPL 1973, or the recent summary in "Notes on graph ;; algorithms used in optimizing compilers", Offner 2013. (define (compute-maximum-fixed-point preds inv outv killv genv union?) (define (bitvector-copy! dst src) (bitvector-fill! dst #f) (bit-set*! dst src #t)) (define (bitvector-meet! accum src) (bit-set*! accum src union?)) (let lp ((n 0) (changed? #f)) (cond ((< n (vector-length preds)) (let ((in (vector-ref inv n)) (out (vector-ref outv n)) (kill (vector-ref killv n)) (gen (vector-ref genv n))) (let ((out-count (or changed? (bit-count #t out)))) (for-each (lambda (pred) (bitvector-meet! in (vector-ref outv pred))) (vector-ref preds n)) (bitvector-copy! out in) (for-each (cut bitvector-set! out <> #f) kill) (for-each (cut bitvector-set! out <> #t) gen) (lp (1+ n) (or changed? (not (eqv? out-count (bit-count #t out)))))))) (changed? (lp 0 #f))))) ;; Data-flow analysis. (define-record-type $dfa (make-dfa min-label k-map k-order min-var var-count in out) dfa? ;; Minimum label. (min-label dfa-min-label) ;; Vector of (k - min-label) -> k-idx (k-map dfa-k-map) ;; Vector of k-idx -> k-sym, in (possibly reversed) control-flow order (k-order dfa-k-order) ;; Minimum var in this function. (min-var dfa-min-var) ;; Minimum var in this function. (var-count dfa-var-count) ;; Vector of k-idx -> bitvector (in dfa-in) ;; Vector of k-idx -> bitvector (out dfa-out)) (define (dfa-k-idx dfa k) (vector-ref (dfa-k-map dfa) (- k (dfa-min-label dfa)))) (define (dfa-k-sym dfa idx) (vector-ref (dfa-k-order dfa) idx)) (define (dfa-k-count dfa) (vector-length (dfa-k-map dfa))) (define (dfa-var-idx dfa var) (let ((idx (- var (dfa-min-var dfa)))) (unless (< -1 idx (dfa-var-count dfa)) (error "var out of range" var)) idx)) (define (dfa-var-sym dfa idx) (unless (< -1 idx (dfa-var-count dfa)) (error "idx out of range" idx)) (+ idx (dfa-min-var dfa))) (define (dfa-k-in dfa idx) (vector-ref (dfa-in dfa) idx)) (define (dfa-k-out dfa idx) (vector-ref (dfa-out dfa) idx)) (define (compute-live-variables fun dfg) (unless (and (= (vector-length (dfg-uses dfg)) (dfg-var-count dfg)) (= (vector-length (dfg-cont-table dfg)) (dfg-label-count dfg))) (error "function needs renumbering")) (let* ((min-label (dfg-min-label dfg)) (nlabels (dfg-label-count dfg)) (min-var (dfg-min-var dfg)) (nvars (dfg-var-count dfg)) (usev (make-vector nlabels '())) (defv (make-vector nlabels '())) (live-in (make-vector nlabels #f)) (live-out (make-vector nlabels #f))) (call-with-values (lambda () (analyze-reverse-control-flow fun dfg min-label nlabels)) (lambda (k-map k-order succs) (define (var->idx var) (- var min-var)) (define (idx->var idx) (+ idx min-var)) (define (label->idx label) (vector-ref k-map (- label min-label))) ;; Initialize defv and usev. (let ((defs (dfg-defs dfg)) (uses (dfg-uses dfg))) (let lp ((n 0)) (when (< n (vector-length defs)) (let ((def (vector-ref defs n))) (unless def (error "internal error -- var array not packed")) (for-each (lambda (def) (vector-push! defv (label->idx def) n)) (lookup-predecessors def dfg)) (for-each (lambda (use) (vector-push! usev (label->idx use) n)) (vector-ref uses n)) (lp (1+ n)))))) ;; Initialize live-in and live-out sets. (let lp ((n 0)) (when (< n (vector-length live-out)) (vector-set! live-in n (make-bitvector nvars #f)) (vector-set! live-out n (make-bitvector nvars #f)) (lp (1+ n)))) ;; Liveness is a reverse data-flow problem, so we give ;; compute-maximum-fixed-point a reversed graph, swapping in for ;; out, usev for defv, and using successors instead of ;; predecessors. Continuation 0 is ktail. (compute-maximum-fixed-point succs live-out live-in defv usev #t) (make-dfa min-label k-map k-order min-var nvars live-in live-out))))) (define (print-dfa dfa) (match dfa (($ $dfa min-label k-map k-order min-var var-count in out) (define (print-var-set bv) (let lp ((n 0)) (let ((n (bit-position #t bv n))) (when n (format #t " ~A" (+ n min-var)) (lp (1+ n)))))) (let lp ((n 0)) (when (< n (vector-length k-order)) (format #t "~A:\n" (vector-ref k-order n)) (format #t " in:") (print-var-set (vector-ref in n)) (newline) (format #t " out:") (print-var-set (vector-ref out n)) (newline) (lp (1+ n))))))) (define (compute-label-and-var-ranges fun global?) (define (min* a b) (if b (min a b) a)) (define-syntax-rule (do-fold make-cont-folder) ((make-cont-folder min-label max-label label-count min-var max-var var-count) (lambda (label cont min-label max-label label-count min-var max-var var-count) (let ((min-label (min* label min-label)) (max-label (max label max-label))) (define (visit-letrec body min-var max-var var-count) (match body (($ $letk conts body) (visit-letrec body min-var max-var var-count)) (($ $letrec names vars funs body) (visit-letrec body (cond (min-var (fold min min-var vars)) ((pair? vars) (fold min (car vars) (cdr vars))) (else min-var)) (fold max max-var vars) (+ var-count (length vars)))) (($ $continue) (values min-var max-var var-count)))) (match cont (($ $kargs names vars body) (call-with-values (lambda () (if global? (visit-letrec body min-var max-var var-count) (values min-var max-var var-count))) (lambda (min-var max-var var-count) (values min-label max-label (1+ label-count) (cond (min-var (fold min min-var vars)) ((pair? vars) (fold min (car vars) (cdr vars))) (else min-var)) (fold max max-var vars) (+ var-count (length vars)))))) (($ $kfun src meta self) (values min-label max-label (1+ label-count) (min* self min-var) (max self max-var) (1+ var-count))) (_ (values min-label max-label (1+ label-count) min-var max-var var-count))))) fun #f -1 0 #f -1 0)) (if global? (do-fold make-global-cont-folder) (do-fold make-local-cont-folder))) (define* (compute-dfg fun #:key (global? #t)) (call-with-values (lambda () (compute-label-and-var-ranges fun global?)) (lambda (min-label max-label label-count min-var max-var var-count) (when (or (zero? label-count) (zero? var-count)) (error "internal error (no vars or labels for fun?)")) (let* ((nlabels (- (1+ max-label) min-label)) (nvars (- (1+ max-var) min-var)) (conts (make-vector nlabels #f)) (preds (make-vector nlabels '())) (defs (make-vector nvars #f)) (uses (make-vector nvars '())) (scopes (make-vector nlabels #f)) (scope-levels (make-vector nlabels #f))) (define (var->idx var) (- var min-var)) (define (label->idx label) (- label min-label)) (define (add-def! var def-k) (vector-set! defs (var->idx var) def-k)) (define (add-use! var use-k) (vector-push! uses (var->idx var) use-k)) (define* (declare-block! label cont parent #:optional (level (1+ (vector-ref scope-levels (label->idx parent))))) (vector-set! conts (label->idx label) cont) (vector-set! scopes (label->idx label) parent) (vector-set! scope-levels (label->idx label) level)) (define (link-blocks! pred succ) (vector-push! preds (label->idx succ) pred)) (define (visit-cont cont label) (match cont (($ $kargs names syms body) (for-each (cut add-def! <> label) syms) (visit-term body label)) (($ $kif kt kf) (link-blocks! label kt) (link-blocks! label kf)) (($ $kreceive arity k) (link-blocks! label k)))) (define (visit-term term label) (match term (($ $letk (($ $cont k cont) ...) body) ;; Set up recursive environment before visiting cont bodies. (for-each/2 (lambda (cont k) (declare-block! k cont label)) cont k) (for-each/2 visit-cont cont k) (visit-term body label)) (($ $letrec names syms funs body) (unless global? (error "$letrec should not be present when building a local DFG")) (for-each (cut add-def! <> label) syms) (for-each (lambda (fun) (match fun (($ $fun free body) (visit-fun body)))) funs) (visit-term body label)) (($ $continue k src exp) (link-blocks! label k) (visit-exp exp label)))) (define (visit-exp exp label) (define (use! sym) (add-use! sym label)) (match exp ((or ($ $void) ($ $const) ($ $prim)) #f) (($ $call proc args) (use! proc) (for-each use! args)) (($ $callk k proc args) (use! proc) (for-each use! args)) (($ $primcall name args) (for-each use! args)) (($ $values args) (for-each use! args)) (($ $prompt escape? tag handler) (use! tag) (link-blocks! label handler)) (($ $fun free body) (when global? (visit-fun body))))) (define (visit-clause clause kfun) (match clause (#f #t) (($ $cont kclause (and clause ($ $kclause arity ($ $cont kbody body) alternate))) (declare-block! kclause clause kfun) (link-blocks! kfun kclause) (declare-block! kbody body kclause) (link-blocks! kclause kbody) (visit-cont body kbody) (visit-clause alternate kfun)))) (define (visit-fun fun) (match fun (($ $cont kfun (and cont ($ $kfun src meta self ($ $cont ktail tail) clause))) (declare-block! kfun cont #f 0) (add-def! self kfun) (declare-block! ktail tail kfun) (visit-clause clause kfun)))) (visit-fun fun) (make-dfg conts preds defs uses scopes scope-levels min-label max-label label-count min-var max-var var-count))))) (define-syntax-rule (with-fresh-name-state-from-dfg dfg body ...) (parameterize ((label-counter (1+ (dfg-max-label dfg))) (var-counter (1+ (dfg-max-var dfg)))) body ...)) (define (lookup-cont label dfg) (let ((res (vector-ref (dfg-cont-table dfg) (- label (dfg-min-label dfg))))) (unless res (error "Unknown continuation!" label)) res)) (define (lookup-predecessors k dfg) (vector-ref (dfg-preds dfg) (- k (dfg-min-label dfg)))) (define (lookup-successors k dfg) (let ((cont (vector-ref (dfg-cont-table dfg) (- k (dfg-min-label dfg))))) (visit-cont-successors list cont))) (define (lookup-def var dfg) (vector-ref (dfg-defs dfg) (- var (dfg-min-var dfg)))) (define (lookup-uses var dfg) (vector-ref (dfg-uses dfg) (- var (dfg-min-var dfg)))) (define (lookup-block-scope k dfg) (vector-ref (dfg-scopes dfg) (- k (dfg-min-label dfg)))) (define (lookup-scope-level k dfg) (vector-ref (dfg-scope-levels dfg) (- k (dfg-min-label dfg)))) (define (find-defining-term sym dfg) (match (lookup-predecessors (lookup-def sym dfg) dfg) ((def-exp-k) (lookup-cont def-exp-k dfg)) (else #f))) (define (find-call term) (match term (($ $kargs names syms body) (find-call body)) (($ $letk conts body) (find-call body)) (($ $letrec names syms funs body) (find-call body)) (($ $continue) term))) (define (call-expression call) (match call (($ $continue k src exp) exp))) (define (find-expression term) (call-expression (find-call term))) (define (find-defining-expression sym dfg) (match (find-defining-term sym dfg) (#f #f) (($ $kreceive) #f) (($ $kclause) #f) (term (find-expression term)))) (define (find-constant-value sym dfg) (match (find-defining-expression sym dfg) (($ $const val) (values #t val)) (($ $continue k src ($ $void)) (values #t *unspecified*)) (else (values #f #f)))) (define (constant-needs-allocation? var val dfg) (define (immediate-u8? val) (and (integer? val) (exact? val) (<= 0 val 255))) (define (find-exp term) (match term (($ $kargs names vars body) (find-exp body)) (($ $letk conts body) (find-exp body)) (else term))) (or-map (lambda (use) (match (find-expression (lookup-cont use dfg)) (($ $call) #f) (($ $callk) #f) (($ $values) #f) (($ $primcall 'free-ref (closure slot)) (eq? var closure)) (($ $primcall 'free-set! (closure slot value)) (or (eq? var closure) (eq? var value))) (($ $primcall 'cache-current-module! (mod . _)) (eq? var mod)) (($ $primcall 'cached-toplevel-box _) #f) (($ $primcall 'cached-module-box _) #f) (($ $primcall 'resolve (name bound?)) (eq? var name)) (($ $primcall 'make-vector/immediate (len init)) (eq? var init)) (($ $primcall 'vector-ref/immediate (v i)) (eq? var v)) (($ $primcall 'vector-set!/immediate (v i x)) (or (eq? var v) (eq? var x))) (($ $primcall 'allocate-struct/immediate (vtable nfields)) (eq? var vtable)) (($ $primcall 'struct-ref/immediate (s n)) (eq? var s)) (($ $primcall 'struct-set!/immediate (s n x)) (or (eq? var s) (eq? var x))) (($ $primcall 'builtin-ref (idx)) #f) (_ #t))) (vector-ref (dfg-uses dfg) (- var (dfg-min-var dfg))))) (define (continuation-scope-contains? scope-k k dfg) (let ((scope-level (lookup-scope-level scope-k dfg))) (let lp ((k k)) (or (eq? scope-k k) (and (< scope-level (lookup-scope-level k dfg)) (lp (lookup-block-scope k dfg))))))) (define (continuation-bound-in? k use-k dfg) (continuation-scope-contains? (lookup-block-scope k dfg) use-k dfg)) (define (variable-free-in? var k dfg) (or-map (lambda (use) (continuation-scope-contains? k use dfg)) (lookup-uses var dfg))) ;; A continuation is a control point if it has multiple predecessors, or ;; if its single predecessor does not have a single successor. (define (control-point? k dfg) (match (lookup-predecessors k dfg) ((pred) (let ((cont (vector-ref (dfg-cont-table dfg) (- pred (dfg-min-label dfg))))) (visit-cont-successors (case-lambda (() #t) ((succ0) #f) ((succ1 succ2) #t)) cont))) (_ #t))) (define (lookup-bound-syms k dfg) (match (lookup-cont k dfg) (($ $kargs names syms body) syms)))