;;; Guile VM code converters ;; Copyright (C) 2001, 2009, 2012, 2013 Free Software Foundation, Inc. ;;;; This library is free software; you can redistribute it and/or ;;;; modify it under the terms of the GNU Lesser General Public ;;;; License as published by the Free Software Foundation; either ;;;; version 3 of the License, or (at your option) any later version. ;;;; ;;;; This library is distributed in the hope that it will be useful, ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU ;;;; Lesser General Public License for more details. ;;;; ;;;; You should have received a copy of the GNU Lesser General Public ;;;; License along with this library; if not, write to the Free Software ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA ;;; Code: (define-module (language scheme decompile-tree-il) #:use-module (language tree-il) #:use-module (srfi srfi-1) #:use-module (srfi srfi-26) #:use-module (ice-9 receive) #:use-module (ice-9 vlist) #:use-module (ice-9 match) #:use-module (system base syntax) #:export (decompile-tree-il)) (define (decompile-tree-il e env opts) (apply do-decompile e env opts)) (define* (do-decompile e env #:key (use-derived-syntax? #t) (avoid-lambda? #t) (use-case? #t) (strip-numeric-suffixes? #f) #:allow-other-keys) (receive (output-name-table occurrence-count-table) (choose-output-names e use-derived-syntax? strip-numeric-suffixes?) (define (output-name s) (hashq-ref output-name-table s)) (define (occurrence-count s) (hashq-ref occurrence-count-table s)) (define (const x) (lambda (_) x)) (define (atom? x) (not (or (pair? x) (vector? x)))) (define (build-void) '(if #f #f)) (define (build-begin es) (match es (() (build-void)) ((e) e) (_ `(begin ,@es)))) (define (build-lambda-body e) (match e (('let () body ...) body) (('begin es ...) es) (_ (list e)))) (define (build-begin-body e) (match e (('begin es ...) es) (_ (list e)))) (define (build-define name e) (match e ((? (const avoid-lambda?) ('lambda formals body ...)) `(define (,name ,@formals) ,@body)) ((? (const avoid-lambda?) ('lambda* formals body ...)) `(define* (,name ,@formals) ,@body)) (_ `(define ,name ,e)))) (define (build-let names vals body) (match `(let ,(map list names vals) ,@(build-lambda-body body)) ((_ () e) e) ((_ (b) ('let* (bs ...) body ...)) `(let* (,b ,@bs) ,@body)) ((? (const use-derived-syntax?) (_ (b1) ('let (b2) body ...))) `(let* (,b1 ,b2) ,@body)) (e e))) (define (build-letrec in-order? names vals body) (match `(,(if in-order? 'letrec* 'letrec) ,(map list names vals) ,@(build-lambda-body body)) ((_ () e) e) ((_ () body ...) `(let () ,@body)) ((_ ((name ('lambda (formals ...) body ...))) (name args ...)) (=> failure) (if (= (length formals) (length args)) `(let ,name ,(map list formals args) ,@body) (failure))) ((? (const avoid-lambda?) ('letrec* _ body ...)) `(let () ,@(map build-define names vals) ,@body)) (e e))) (define (build-if test consequent alternate) (match alternate (('if #f _) `(if ,test ,consequent)) (_ `(if ,test ,consequent ,alternate)))) (define (build-and xs) (match xs (() #t) ((x) x) (_ `(and ,@xs)))) (define (build-or xs) (match xs (() #f) ((x) x) (_ `(or ,@xs)))) (define (case-test-var test) (match test (('memv (? atom? v) ('quote (datums ...))) v) (('eqv? (? atom? v) ('quote datum)) v) (_ #f))) (define (test->datums v test) (match (cons v test) ((v 'memv v ('quote (xs ...))) xs) ((v 'eqv? v ('quote x)) (list x)) (_ #f))) (define (build-else-tail e) (match e (('if #f _) '()) (('and xs ... x) `((,(build-and xs) ,@(build-begin-body x)) (else #f))) (_ `((else ,@(build-begin-body e)))))) (define (build-cond-else-tail e) (match e (('cond clauses ...) clauses) (_ (build-else-tail e)))) (define (build-case-else-tail v e) (match (cons v e) ((v 'case v clauses ...) clauses) ((v 'if ('memv v ('quote (xs ...))) consequent . alternate*) `((,xs ,@(build-begin-body consequent)) ,@(build-case-else-tail v (build-begin alternate*)))) ((v 'if ('eqv? v ('quote x)) consequent . alternate*) `(((,x) ,@(build-begin-body consequent)) ,@(build-case-else-tail v (build-begin alternate*)))) (_ (build-else-tail e)))) (define (clauses+tail clauses) (match clauses ((cs ... (and c ('else . _))) (values cs (list c))) (_ (values clauses '())))) (define (build-cond tests consequents alternate) (case (length tests) ((0) alternate) ((1) (build-if (car tests) (car consequents) alternate)) (else `(cond ,@(map (lambda (test consequent) `(,test ,@(build-begin-body consequent))) tests consequents) ,@(build-cond-else-tail alternate))))) (define (build-cond-or-case tests consequents alternate) (if (not use-case?) (build-cond tests consequents alternate) (let* ((v (and (not (null? tests)) (case-test-var (car tests)))) (datum-lists (take-while identity (map (cut test->datums v <>) tests))) (n (length datum-lists)) (tail (build-case-else-tail v (build-cond (drop tests n) (drop consequents n) alternate)))) (receive (clauses tail) (clauses+tail tail) (let ((n (+ n (length clauses))) (datum-lists (append datum-lists (map car clauses))) (consequents (append consequents (map build-begin (map cdr clauses))))) (if (< n 2) (build-cond tests consequents alternate) `(case ,v ,@(map cons datum-lists (map build-begin-body (take consequents n))) ,@tail))))))) (define (recurse e) (define (recurse-body e) (build-lambda-body (recurse e))) (record-case e (() (build-void)) (( exp) (if (and (self-evaluating? exp) (not (vector? exp))) exp `(quote ,exp))) (( exps) (build-begin (map recurse exps))) (( proc args) (match `(,(recurse proc) ,@(map recurse args)) ((('lambda (formals ...) body ...) args ...) (=> failure) (if (= (length formals) (length args)) (build-let formals args (build-begin body)) (failure))) (e e))) (( name) name) (( gensym) (output-name gensym)) (( gensym exp) `(set! ,(output-name gensym) ,(recurse exp))) (( mod name public?) `(,(if public? '@ '@@) ,mod ,name)) (( mod name public? exp) `(set! (,(if public? '@ '@@) ,mod ,name) ,(recurse exp))) (( name) name) (( name exp) `(set! ,name ,(recurse exp))) (( name exp) (build-define name (recurse exp))) (( meta body) (if body (let ((body (recurse body)) (doc (assq-ref meta 'documentation))) (if (not doc) body (match body (('lambda formals body ...) `(lambda ,formals ,doc ,@body)) (('lambda* formals body ...) `(lambda* ,formals ,doc ,@body)) (('case-lambda (formals body ...) clauses ...) `(case-lambda (,formals ,doc ,@body) ,@clauses)) (('case-lambda* (formals body ...) clauses ...) `(case-lambda* (,formals ,doc ,@body) ,@clauses)) (e e)))) '(case-lambda))) (( req opt rest kw inits gensyms body alternate) (let ((names (map output-name gensyms))) (cond ((and (not opt) (not kw) (not alternate)) `(lambda ,(if rest (apply cons* names) names) ,@(recurse-body body))) ((and (not opt) (not kw)) (let ((alt-expansion (recurse alternate)) (formals (if rest (apply cons* names) names))) (case (car alt-expansion) ((lambda) `(case-lambda (,formals ,@(recurse-body body)) ,(cdr alt-expansion))) ((lambda*) `(case-lambda* (,formals ,@(recurse-body body)) ,(cdr alt-expansion))) ((case-lambda) `(case-lambda (,formals ,@(recurse-body body)) ,@(cdr alt-expansion))) ((case-lambda*) `(case-lambda* (,formals ,@(recurse-body body)) ,@(cdr alt-expansion)))))) (else (let* ((alt-expansion (and alternate (recurse alternate))) (nreq (length req)) (nopt (if opt (length opt) 0)) (restargs (if rest (list-ref names (+ nreq nopt)) '())) (reqargs (list-head names nreq)) (optargs (if opt `(#:optional ,@(map list (list-head (list-tail names nreq) nopt) (map recurse (list-head inits nopt)))) '())) (kwargs (if kw `(#:key ,@(map list (map output-name (map caddr (cdr kw))) (map recurse (list-tail inits nopt)) (map car (cdr kw))) ,@(if (car kw) '(#:allow-other-keys) '())) '())) (formals `(,@reqargs ,@optargs ,@kwargs . ,restargs))) (if (not alt-expansion) `(lambda* ,formals ,@(recurse-body body)) (case (car alt-expansion) ((lambda lambda*) `(case-lambda* (,formals ,@(recurse-body body)) ,(cdr alt-expansion))) ((case-lambda case-lambda*) `(case-lambda* (,formals ,@(recurse-body body)) ,@(cdr alt-expansion)))))))))) (( test consequent alternate) (define (simplify-test e) (match e (('if ('eqv? (? atom? v) ('quote a)) #t ('eqv? v ('quote b))) `(memv ,v '(,a ,b))) (('if ('eqv? (? atom? v) ('quote a)) #t ('memv v ('quote (bs ...)))) `(memv ,v '(,a ,@bs))) (('case (? atom? v) ((datum) #t) ... ('else ('eqv? v ('quote last-datum)))) `(memv ,v '(,@datum ,last-datum))) (_ e))) (match `(if ,(simplify-test (recurse test)) ,(recurse consequent) ,@(if (void? alternate) '() (list (recurse alternate)))) (('if test ('if ('and xs ...) consequent)) (build-if (build-and (cons test xs)) consequent (build-void))) ((? (const use-derived-syntax?) ('if test1 ('if test2 consequent))) (build-if (build-and (list test1 test2)) consequent (build-void))) (('if (? atom? x) x ('or ys ...)) (build-or (cons x ys))) ((? (const use-derived-syntax?) ('if (? atom? x) x y)) (build-or (list x y))) (('if test consequent) `(if ,test ,consequent)) (('if test ('and xs ...) #f) (build-and (cons test xs))) ((? (const use-derived-syntax?) ('if test consequent #f)) (build-and (list test consequent))) ((? (const use-derived-syntax?) ('if test1 consequent1 ('if test2 consequent2 . alternate*))) (build-cond-or-case (list test1 test2) (list consequent1 consequent2) (build-begin alternate*))) (('if test consequent ('cond clauses ...)) `(cond (,test ,@(build-begin-body consequent)) ,@clauses)) (('if ('memv (? atom? v) ('quote (xs ...))) consequent ('case v clauses ...)) `(case ,v (,xs ,@(build-begin-body consequent)) ,@clauses)) (('if ('eqv? (? atom? v) ('quote x)) consequent ('case v clauses ...)) `(case ,v ((,x) ,@(build-begin-body consequent)) ,@clauses)) (e e))) (( gensyms vals body) (match (build-let (map output-name gensyms) (map recurse vals) (recurse body)) (('let ((v e)) ('or v xs ...)) (=> failure) (if (and (not (null? gensyms)) (= 3 (occurrence-count (car gensyms)))) `(or ,e ,@xs) (failure))) (('let ((v e)) ('case v clauses ...)) (=> failure) (if (and (not (null? gensyms)) ;; FIXME: This fails if any of the 'memv's were ;; optimized into multiple 'eqv?'s, because the ;; occurrence count will be higher than we expect. (= (occurrence-count (car gensyms)) (1+ (length (clauses+tail clauses))))) `(case ,e ,@clauses) (failure))) (e e))) (( in-order? gensyms vals body) (build-letrec in-order? (map output-name gensyms) (map recurse vals) (recurse body))) (( gensyms vals body) ;; not a typo, we really do translate back to letrec. use letrec* since it ;; doesn't matter, and the naive letrec* transformation does not require an ;; inner let. (build-letrec #t (map output-name gensyms) (map recurse vals) (recurse body))) (( exp body) `(call-with-values (lambda () ,@(recurse-body exp)) ,(recurse (make-lambda #f '() body)))) (( body winder unwinder) `(dynamic-wind ,(recurse winder) (lambda () ,@(recurse-body body)) ,(recurse unwinder))) (( fluids vals body) `(with-fluids ,(map list (map recurse fluids) (map recurse vals)) ,@(recurse-body body))) (( fluid) `(fluid-ref ,(recurse fluid))) (( fluid exp) `(fluid-set! ,(recurse fluid) ,(recurse exp))) (( tag body handler) `(call-with-prompt ,(recurse tag) (lambda () ,@(recurse-body body)) ,(recurse handler))) (( tag args tail) `(apply abort ,(recurse tag) ,@(map recurse args) ,(recurse tail))))) (values (recurse e) env))) ;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;;; ;; ;; Algorithm for choosing better variable names ;; ============================================ ;; ;; First we perform an analysis pass, collecting the following ;; information: ;; ;; * For each gensym: how many occurrences will occur in the output? ;; ;; * For each gensym A: which gensyms does A conflict with? Gensym A ;; and gensym B conflict if they have the same base name (usually the ;; same as the source name, but see below), and if giving them the ;; same name would cause a bad variable reference due to unintentional ;; variable capture. ;; ;; The occurrence counter is indexed by gensym and is global (within each ;; invocation of the algorithm), implemented using a hash table. We also ;; keep a global mapping from gensym to source name as provided by the ;; binding construct (we prefer not to trust the source names in the ;; lexical ref or set). ;; ;; As we recurse down into lexical binding forms, we keep track of a ;; mapping from base name to an ordered list of bindings, innermost ;; first. When we encounter a variable occurrence, we increment the ;; counter, look up the base name (preferring not to trust the 'name' in ;; the lexical ref or set), and then look up the bindings currently in ;; effect for that base name. Hopefully our gensym will be the first ;; (innermost) binding. If not, we register a conflict between the ;; referenced gensym and the other bound gensyms with the same base name ;; that shadow the binding we want. These are simply the gensyms on the ;; binding list that come before our gensym. ;; ;; Top-level bindings are treated specially. Whenever top-level ;; references are found, they conflict with every lexical binding ;; currently in effect with the same base name. They are guaranteed to ;; be assigned to their source names. For purposes of recording ;; conflicts (which are normally keyed on gensyms) top-level identifiers ;; are assigned a pseudo-gensym that is an interned pair of the form ;; (top-level . ). This allows them to be compared using 'eq?' ;; like other gensyms. ;; ;; The base name is normally just the source name. However, if the ;; source name has a suffix of the form "-N" (where N is a positive ;; integer without leading zeroes), then we strip that suffix (multiple ;; times if necessary) to form the base name. We must do this because ;; we add suffixes of that form in order to resolve conflicts, and we ;; must ensure that only identifiers with the same base name can ;; possibly conflict with each other. ;; ;; XXX FIXME: Currently, primitives are treated exactly like top-level ;; bindings. This handles conflicting lexical bindings properly, but ;; does _not_ handle the case where top-level bindings conflict with the ;; needed primitives. ;; ;; Also note that this requires that 'choose-output-names' be kept in ;; sync with 'tree-il->scheme'. Primitives that are introduced by ;; 'tree-il->scheme' must be anticipated by 'choose-output-name'. ;; ;; We also ensure that lexically-bound identifiers found in operator ;; position will never be assigned one of the standard primitive names. ;; This is needed because 'tree-il->scheme' recognizes primitive names ;; in operator position and assumes that they have the standard ;; bindings. ;; ;; ;; How we assign an output name to each gensym ;; =========================================== ;; ;; We process the gensyms in order of decreasing occurrence count, with ;; each gensym choosing the best output name possible, as long as it ;; isn't the same name as any of the previously-chosen output names of ;; conflicting gensyms. ;; ;; ;; 'choose-output-names' analyzes the top-level form e, chooses good ;; variable names that are as close as possible to the source names, ;; and returns two values: ;; ;; * a hash table mapping gensym to output name ;; * a hash table mapping gensym to number of occurrences ;; (define choose-output-names (let () (define primitive? ;; This is a list of primitives that 'tree-il->scheme' assumes ;; will have the standard bindings when found in operator ;; position. (let* ((primitives '(if quote @ @@ set! define define* begin let let* letrec letrec* and or cond case lambda lambda* case-lambda case-lambda* apply call-with-values dynamic-wind with-fluids fluid-ref fluid-set! call-with-prompt abort memv eqv?)) (table (make-hash-table (length primitives)))) (for-each (cut hashq-set! table <> #t) primitives) (lambda (name) (hashq-ref table name)))) ;; Repeatedly strip suffix of the form "-N", where N is a string ;; that could be produced by number->string given a positive ;; integer. In other words, the first digit of N may not be 0. (define compute-base-name (let ((digits (string->char-set "0123456789"))) (define (base-name-string str) (let ((i (string-skip-right str digits))) (if (and i (< (1+ i) (string-length str)) (eq? #\- (string-ref str i)) (not (eq? #\0 (string-ref str (1+ i))))) (base-name-string (substring str 0 i)) str))) (lambda (sym) (string->symbol (base-name-string (symbol->string sym)))))) ;; choose-output-names (lambda (e use-derived-syntax? strip-numeric-suffixes?) (define lexical-gensyms '()) (define top-level-intern! (let ((table (make-hash-table))) (lambda (name) (let ((h (hashq-create-handle! table name #f))) (or (cdr h) (begin (set-cdr! h (cons 'top-level name)) (cdr h))))))) (define (top-level? s) (pair? s)) (define (top-level-name s) (cdr s)) (define occurrence-count-table (make-hash-table)) (define (occurrence-count s) (or (hashq-ref occurrence-count-table s) 0)) (define (increment-occurrence-count! s) (let ((h (hashq-create-handle! occurrence-count-table s 0))) (if (zero? (cdr h)) (set! lexical-gensyms (cons s lexical-gensyms))) (set-cdr! h (1+ (cdr h))))) (define base-name (let ((table (make-hash-table))) (lambda (name) (let ((h (hashq-create-handle! table name #f))) (or (cdr h) (begin (set-cdr! h (compute-base-name name)) (cdr h))))))) (define source-name-table (make-hash-table)) (define (set-source-name! s name) (if (not (top-level? s)) (let ((name (if strip-numeric-suffixes? (base-name name) name))) (hashq-set! source-name-table s name)))) (define (source-name s) (if (top-level? s) (top-level-name s) (hashq-ref source-name-table s))) (define conflict-table (make-hash-table)) (define (conflicts s) (or (hashq-ref conflict-table s) '())) (define (add-conflict! a b) (define (add! a b) (if (not (top-level? a)) (let ((h (hashq-create-handle! conflict-table a '()))) (if (not (memq b (cdr h))) (set-cdr! h (cons b (cdr h))))))) (add! a b) (add! b a)) (let recurse-with-bindings ((e e) (bindings vlist-null)) (let recurse ((e e)) ;; We call this whenever we encounter a top-level ref or set (define (top-level name) (let ((bname (base-name name))) (let ((s (top-level-intern! name)) (conflicts (vhash-foldq* cons '() bname bindings))) (for-each (cut add-conflict! s <>) conflicts)))) ;; We call this whenever we encounter a primitive reference. ;; We must also call it for every primitive that might be ;; inserted by 'tree-il->scheme'. It is okay to call this ;; even when 'tree-il->scheme' will not insert the named ;; primitive; the worst that will happen is for a lexical ;; variable of the same name to be renamed unnecessarily. (define (primitive name) (top-level name)) ;; We call this whenever we encounter a lexical ref or set. (define (lexical s) (increment-occurrence-count! s) (let ((conflicts (take-while (lambda (s*) (not (eq? s s*))) (reverse! (vhash-foldq* cons '() (base-name (source-name s)) bindings))))) (for-each (cut add-conflict! s <>) conflicts))) (record-case e (() (primitive 'if)) ; (if #f #f) (() (primitive 'quote)) (( proc args) (if (lexical-ref? proc) (let* ((gensym (lexical-ref-gensym proc)) (name (source-name gensym))) ;; If the operator position contains a bare variable ;; reference with the same source name as a standard ;; primitive, we must ensure that it will be given a ;; different name, so that 'tree-il->scheme' will not ;; misinterpret the resulting expression. (if (primitive? name) (add-conflict! gensym (top-level-intern! name))))) (recurse proc) (for-each recurse args)) (( name) (primitive name)) (( gensym) (lexical gensym)) (( gensym exp) (primitive 'set!) (lexical gensym) (recurse exp)) (( public?) (primitive (if public? '@ '@@))) (( public? exp) (primitive 'set!) (primitive (if public? '@ '@@)) (recurse exp)) (( name) (top-level name)) (( name exp) (primitive 'set!) (top-level name) (recurse exp)) (( name exp) (top-level name) (recurse exp)) (( test consequent alternate) (cond (use-derived-syntax? (primitive 'and) (primitive 'or) (primitive 'cond) (primitive 'case) (primitive 'else) (primitive '=>))) (primitive 'if) (recurse test) (recurse consequent) (recurse alternate)) (( exps) (primitive 'begin) (for-each recurse exps)) (( body) (if body (recurse body))) (( req opt rest kw inits gensyms body alternate) (primitive 'lambda) (cond ((or opt kw alternate) (primitive 'lambda*) (primitive 'case-lambda) (primitive 'case-lambda*))) (primitive 'let) (if use-derived-syntax? (primitive 'let*)) (let* ((names (append req (or opt '()) (if rest (list rest) '()) (map cadr (if kw (cdr kw) '())))) (base-names (map base-name names)) (body-bindings (fold vhash-consq bindings base-names gensyms))) (for-each increment-occurrence-count! gensyms) (for-each set-source-name! gensyms names) (for-each recurse inits) (recurse-with-bindings body body-bindings) (if alternate (recurse alternate)))) (( names gensyms vals body) (primitive 'let) (cond (use-derived-syntax? (primitive 'let*) (primitive 'or))) (for-each increment-occurrence-count! gensyms) (for-each set-source-name! gensyms names) (for-each recurse vals) (recurse-with-bindings body (fold vhash-consq bindings (map base-name names) gensyms))) (( in-order? names gensyms vals body) (primitive 'let) (cond (use-derived-syntax? (primitive 'let*) (primitive 'or))) (primitive (if in-order? 'letrec* 'letrec)) (for-each increment-occurrence-count! gensyms) (for-each set-source-name! gensyms names) (let* ((base-names (map base-name names)) (bindings (fold vhash-consq bindings base-names gensyms))) (for-each (cut recurse-with-bindings <> bindings) vals) (recurse-with-bindings body bindings))) (( names gensyms vals body) (primitive 'let) (primitive 'letrec*) (cond (use-derived-syntax? (primitive 'let*) (primitive 'or))) (for-each increment-occurrence-count! gensyms) (for-each set-source-name! gensyms names) (let* ((base-names (map base-name names)) (bindings (fold vhash-consq bindings base-names gensyms))) (for-each (cut recurse-with-bindings <> bindings) vals) (recurse-with-bindings body bindings))) (( exp body) (primitive 'call-with-values) (recurse exp) (recurse body)) (( winder body unwinder) (primitive 'dynamic-wind) (recurse winder) (recurse body) (recurse unwinder)) (( fluids vals body) (primitive 'with-fluids) (for-each recurse fluids) (for-each recurse vals) (recurse body)) (( fluid) (primitive 'fluid-ref) (recurse fluid)) (( fluid exp) (primitive 'fluid-set!) (recurse fluid) (recurse exp)) (( tag body handler) (primitive 'call-with-prompt) (primitive 'lambda) (recurse tag) (recurse body) (recurse handler)) (( tag args tail) (primitive 'apply) (primitive 'abort) (recurse tag) (for-each recurse args) (recurse tail))))) (let () (define output-name-table (make-hash-table)) (define (set-output-name! s name) (hashq-set! output-name-table s name)) (define (output-name s) (if (top-level? s) (top-level-name s) (hashq-ref output-name-table s))) (define sorted-lexical-gensyms (sort-list lexical-gensyms (lambda (a b) (> (occurrence-count a) (occurrence-count b))))) (for-each (lambda (s) (set-output-name! s (let ((the-conflicts (conflicts s)) (the-source-name (source-name s))) (define (not-yet-taken? name) (not (any (lambda (s*) (and=> (output-name s*) (cut eq? name <>))) the-conflicts))) (if (not-yet-taken? the-source-name) the-source-name (let ((prefix (string-append (symbol->string the-source-name) "-"))) (let loop ((i 1) (name the-source-name)) (if (not-yet-taken? name) name (loop (+ i 1) (string->symbol (string-append prefix (number->string i))))))))))) sorted-lexical-gensyms) (values output-name-table occurrence-count-table)))))