e32964ae4a567c16f4a566182b4988049b089b48
[bpt/guile.git] / ice-9 / boot-9.scm
1 ;;; installed-scm-file
2
3 ;;;; Copyright (C) 1995,1996,1997,1998,1999,2000,2001,2002,2003,2004,2005,2006,2007
4 ;;;; Free Software Foundation, Inc.
5 ;;;;
6 ;;;; This library is free software; you can redistribute it and/or
7 ;;;; modify it under the terms of the GNU Lesser General Public
8 ;;;; License as published by the Free Software Foundation; either
9 ;;;; version 2.1 of the License, or (at your option) any later version.
10 ;;;;
11 ;;;; This library is distributed in the hope that it will be useful,
12 ;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
13 ;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
14 ;;;; Lesser General Public License for more details.
15 ;;;;
16 ;;;; You should have received a copy of the GNU Lesser General Public
17 ;;;; License along with this library; if not, write to the Free Software
18 ;;;; Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA
19 ;;;;
20
21 \f
22
23 ;;; Commentary:
24
25 ;;; This file is the first thing loaded into Guile. It adds many mundane
26 ;;; definitions and a few that are interesting.
27 ;;;
28 ;;; The module system (hence the hierarchical namespace) are defined in this
29 ;;; file.
30 ;;;
31
32 ;;; Code:
33
34 \f
35
36 ;;; {Features}
37 ;;;
38
39 (define (provide sym)
40 (if (not (memq sym *features*))
41 (set! *features* (cons sym *features*))))
42
43 ;; Return #t iff FEATURE is available to this Guile interpreter. In SLIB,
44 ;; provided? also checks to see if the module is available. We should do that
45 ;; too, but don't.
46
47 (define (provided? feature)
48 (and (memq feature *features*) #t))
49
50 ;; let format alias simple-format until the more complete version is loaded
51
52 (define format simple-format)
53
54 ;; this is scheme wrapping the C code so the final pred call is a tail call,
55 ;; per SRFI-13 spec
56 (define (string-any char_pred s . rest)
57 (let ((start (if (null? rest)
58 0 (car rest)))
59 (end (if (or (null? rest) (null? (cdr rest)))
60 (string-length s) (cadr rest))))
61 (if (and (procedure? char_pred)
62 (> end start)
63 (<= end (string-length s))) ;; let c-code handle range error
64 (or (string-any-c-code char_pred s start (1- end))
65 (char_pred (string-ref s (1- end))))
66 (string-any-c-code char_pred s start end))))
67
68 ;; this is scheme wrapping the C code so the final pred call is a tail call,
69 ;; per SRFI-13 spec
70 (define (string-every char_pred s . rest)
71 (let ((start (if (null? rest)
72 0 (car rest)))
73 (end (if (or (null? rest) (null? (cdr rest)))
74 (string-length s) (cadr rest))))
75 (if (and (procedure? char_pred)
76 (> end start)
77 (<= end (string-length s))) ;; let c-code handle range error
78 (and (string-every-c-code char_pred s start (1- end))
79 (char_pred (string-ref s (1- end))))
80 (string-every-c-code char_pred s start end))))
81
82 ;; A variant of string-fill! that we keep for compatability
83 ;;
84 (define (substring-fill! str start end fill)
85 (string-fill! str fill start end))
86
87 \f
88
89 ;;; {EVAL-CASE}
90 ;;;
91
92 ;; (eval-case ((situation*) forms)* (else forms)?)
93 ;;
94 ;; Evaluate certain code based on the situation that eval-case is used
95 ;; in. There are three situations defined. `load-toplevel' triggers for
96 ;; code evaluated at the top-level, for example from the REPL or when
97 ;; loading a file. `compile-toplevel' triggers for code compiled at the
98 ;; toplevel. `execute' triggers during execution of code not at the top
99 ;; level.
100
101 (define eval-case
102 (procedure->memoizing-macro
103 (lambda (exp env)
104 (define (toplevel-env? env)
105 (or (not (pair? env)) (not (pair? (car env)))))
106 (define (syntax)
107 (error "syntax error in eval-case"))
108 (let loop ((clauses (cdr exp)))
109 (cond
110 ((null? clauses)
111 #f)
112 ((not (list? (car clauses)))
113 (syntax))
114 ((eq? 'else (caar clauses))
115 (or (null? (cdr clauses))
116 (syntax))
117 (cons 'begin (cdar clauses)))
118 ((not (list? (caar clauses)))
119 (syntax))
120 ((and (toplevel-env? env)
121 (memq 'load-toplevel (caar clauses)))
122 (cons 'begin (cdar clauses)))
123 (else
124 (loop (cdr clauses))))))))
125
126 \f
127
128 ;; Before compiling, make sure any symbols are resolved in the (guile)
129 ;; module, the primary location of those symbols, rather than in
130 ;; (guile-user), the default module that we compile in.
131
132 (eval-case
133 ((compile-toplevel)
134 (set-current-module (resolve-module '(guile)))))
135
136 ;;; {Defmacros}
137 ;;;
138 ;;; Depends on: features, eval-case
139 ;;;
140
141 (define macro-table (make-weak-key-hash-table 61))
142 (define xformer-table (make-weak-key-hash-table 61))
143
144 (define (defmacro? m) (hashq-ref macro-table m))
145 (define (assert-defmacro?! m) (hashq-set! macro-table m #t))
146 (define (defmacro-transformer m) (hashq-ref xformer-table m))
147 (define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
148
149 (define defmacro:transformer
150 (lambda (f)
151 (let* ((xform (lambda (exp env)
152 (copy-tree (apply f (cdr exp)))))
153 (a (procedure->memoizing-macro xform)))
154 (assert-defmacro?! a)
155 (set-defmacro-transformer! a f)
156 a)))
157
158
159 (define defmacro
160 (let ((defmacro-transformer
161 (lambda (name parms . body)
162 (let ((transformer `(lambda ,parms ,@body)))
163 `(eval-case
164 ((load-toplevel compile-toplevel)
165 (define ,name (defmacro:transformer ,transformer)))
166 (else
167 (error "defmacro can only be used at the top level")))))))
168 (defmacro:transformer defmacro-transformer)))
169
170
171 ;; XXX - should the definition of the car really be looked up in the
172 ;; current module?
173
174 (define (macroexpand-1 e)
175 (cond
176 ((pair? e) (let* ((a (car e))
177 (val (and (symbol? a) (local-ref (list a)))))
178 (if (defmacro? val)
179 (apply (defmacro-transformer val) (cdr e))
180 e)))
181 (#t e)))
182
183 (define (macroexpand e)
184 (cond
185 ((pair? e) (let* ((a (car e))
186 (val (and (symbol? a) (local-ref (list a)))))
187 (if (defmacro? val)
188 (macroexpand (apply (defmacro-transformer val) (cdr e)))
189 e)))
190 (#t e)))
191
192 (provide 'defmacro)
193
194 \f
195
196 ;;; {Deprecation}
197 ;;;
198 ;;; Depends on: defmacro
199 ;;;
200
201 (defmacro begin-deprecated forms
202 (if (include-deprecated-features)
203 `(begin ,@forms)
204 (begin)))
205
206 \f
207
208 ;;; {R4RS compliance}
209 ;;;
210
211 (primitive-load-path "ice-9/r4rs")
212
213 \f
214
215 ;;; {Simple Debugging Tools}
216 ;;;
217
218 ;; peek takes any number of arguments, writes them to the
219 ;; current ouput port, and returns the last argument.
220 ;; It is handy to wrap around an expression to look at
221 ;; a value each time is evaluated, e.g.:
222 ;;
223 ;; (+ 10 (troublesome-fn))
224 ;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
225 ;;
226
227 (define (peek . stuff)
228 (newline)
229 (display ";;; ")
230 (write stuff)
231 (newline)
232 (car (last-pair stuff)))
233
234 (define pk peek)
235
236 (define (warn . stuff)
237 (with-output-to-port (current-error-port)
238 (lambda ()
239 (newline)
240 (display ";;; WARNING ")
241 (display stuff)
242 (newline)
243 (car (last-pair stuff)))))
244
245 \f
246
247 ;;; {Trivial Functions}
248 ;;;
249
250 (define (identity x) x)
251 (define (and=> value procedure) (and value (procedure value)))
252 (define call/cc call-with-current-continuation)
253
254 ;;; apply-to-args is functionally redundant with apply and, worse,
255 ;;; is less general than apply since it only takes two arguments.
256 ;;;
257 ;;; On the other hand, apply-to-args is a syntacticly convenient way to
258 ;;; perform binding in many circumstances when the "let" family of
259 ;;; of forms don't cut it. E.g.:
260 ;;;
261 ;;; (apply-to-args (return-3d-mouse-coords)
262 ;;; (lambda (x y z)
263 ;;; ...))
264 ;;;
265
266 (define (apply-to-args args fn) (apply fn args))
267
268 (defmacro false-if-exception (expr)
269 `(catch #t (lambda () ,expr)
270 (lambda args #f)))
271
272 \f
273
274 ;;; {General Properties}
275 ;;;
276
277 ;; This is a more modern interface to properties. It will replace all
278 ;; other property-like things eventually.
279
280 (define (make-object-property)
281 (let ((prop (primitive-make-property #f)))
282 (make-procedure-with-setter
283 (lambda (obj) (primitive-property-ref prop obj))
284 (lambda (obj val) (primitive-property-set! prop obj val)))))
285
286 \f
287
288 ;;; {Symbol Properties}
289 ;;;
290
291 (define (symbol-property sym prop)
292 (let ((pair (assoc prop (symbol-pref sym))))
293 (and pair (cdr pair))))
294
295 (define (set-symbol-property! sym prop val)
296 (let ((pair (assoc prop (symbol-pref sym))))
297 (if pair
298 (set-cdr! pair val)
299 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
300
301 (define (symbol-property-remove! sym prop)
302 (let ((pair (assoc prop (symbol-pref sym))))
303 (if pair
304 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
305
306 \f
307
308 ;;; {Arrays}
309 ;;;
310
311 (define (array-shape a)
312 (map (lambda (ind) (if (number? ind) (list 0 (+ -1 ind)) ind))
313 (array-dimensions a)))
314
315 \f
316
317 ;;; {Keywords}
318 ;;;
319
320 (define (kw-arg-ref args kw)
321 (let ((rem (member kw args)))
322 (and rem (pair? (cdr rem)) (cadr rem))))
323
324 \f
325
326 ;;; {Structs}
327 ;;;
328
329 (define (struct-layout s)
330 (struct-ref (struct-vtable s) vtable-index-layout))
331
332 \f
333
334 ;;; {Records}
335 ;;;
336
337 ;; Printing records: by default, records are printed as
338 ;;
339 ;; #<type-name field1: val1 field2: val2 ...>
340 ;;
341 ;; You can change that by giving a custom printing function to
342 ;; MAKE-RECORD-TYPE (after the list of field symbols). This function
343 ;; will be called like
344 ;;
345 ;; (<printer> object port)
346 ;;
347 ;; It should print OBJECT to PORT.
348
349 (define (inherit-print-state old-port new-port)
350 (if (get-print-state old-port)
351 (port-with-print-state new-port (get-print-state old-port))
352 new-port))
353
354 ;; 0: type-name, 1: fields
355 (define record-type-vtable
356 (make-vtable-vtable "prpr" 0
357 (lambda (s p)
358 (cond ((eq? s record-type-vtable)
359 (display "#<record-type-vtable>" p))
360 (else
361 (display "#<record-type " p)
362 (display (record-type-name s) p)
363 (display ">" p))))))
364
365 (define (record-type? obj)
366 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
367
368 (define (make-record-type type-name fields . opt)
369 (let ((printer-fn (and (pair? opt) (car opt))))
370 (let ((struct (make-struct record-type-vtable 0
371 (make-struct-layout
372 (apply string-append
373 (map (lambda (f) "pw") fields)))
374 (or printer-fn
375 (lambda (s p)
376 (display "#<" p)
377 (display type-name p)
378 (let loop ((fields fields)
379 (off 0))
380 (cond
381 ((not (null? fields))
382 (display " " p)
383 (display (car fields) p)
384 (display ": " p)
385 (display (struct-ref s off) p)
386 (loop (cdr fields) (+ 1 off)))))
387 (display ">" p)))
388 type-name
389 (copy-tree fields))))
390 ;; Temporary solution: Associate a name to the record type descriptor
391 ;; so that the object system can create a wrapper class for it.
392 (set-struct-vtable-name! struct (if (symbol? type-name)
393 type-name
394 (string->symbol type-name)))
395 struct)))
396
397 (define (record-type-name obj)
398 (if (record-type? obj)
399 (struct-ref obj vtable-offset-user)
400 (error 'not-a-record-type obj)))
401
402 (define (record-type-fields obj)
403 (if (record-type? obj)
404 (struct-ref obj (+ 1 vtable-offset-user))
405 (error 'not-a-record-type obj)))
406
407 (define (record-constructor rtd . opt)
408 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
409 (primitive-eval
410 `(lambda ,field-names
411 (make-struct ',rtd 0 ,@(map (lambda (f)
412 (if (memq f field-names)
413 f
414 #f))
415 (record-type-fields rtd)))))))
416
417 (define (record-predicate rtd)
418 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
419
420 (define (%record-type-error rtd obj) ;; private helper
421 (or (eq? rtd (record-type-descriptor obj))
422 (scm-error 'wrong-type-arg "%record-type-check"
423 "Wrong type record (want `~S'): ~S"
424 (list (record-type-name rtd) obj)
425 #f)))
426
427 (define (record-accessor rtd field-name)
428 (let ((pos (list-index (record-type-fields rtd) field-name)))
429 (if (not pos)
430 (error 'no-such-field field-name))
431 (lambda (obj)
432 (if (eq? (struct-vtable obj) rtd)
433 (struct-ref obj pos)
434 (%record-type-error rtd obj)))))
435
436 (define (record-modifier rtd field-name)
437 (let ((pos (list-index (record-type-fields rtd) field-name)))
438 (if (not pos)
439 (error 'no-such-field field-name))
440 (lambda (obj val)
441 (if (eq? (struct-vtable obj) rtd)
442 (struct-set! obj pos val)
443 (%record-type-error rtd obj)))))
444
445 (define (record? obj)
446 (and (struct? obj) (record-type? (struct-vtable obj))))
447
448 (define (record-type-descriptor obj)
449 (if (struct? obj)
450 (struct-vtable obj)
451 (error 'not-a-record obj)))
452
453 (provide 'record)
454
455 \f
456
457 ;;; {Booleans}
458 ;;;
459
460 (define (->bool x) (not (not x)))
461
462 \f
463
464 ;;; {Symbols}
465 ;;;
466
467 (define (symbol-append . args)
468 (string->symbol (apply string-append (map symbol->string args))))
469
470 (define (list->symbol . args)
471 (string->symbol (apply list->string args)))
472
473 (define (symbol . args)
474 (string->symbol (apply string args)))
475
476 \f
477
478 ;;; {Lists}
479 ;;;
480
481 (define (list-index l k)
482 (let loop ((n 0)
483 (l l))
484 (and (not (null? l))
485 (if (eq? (car l) k)
486 n
487 (loop (+ n 1) (cdr l))))))
488
489 \f
490
491 ;;; {and-map and or-map}
492 ;;;
493 ;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
494 ;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
495 ;;;
496
497 ;; and-map f l
498 ;;
499 ;; Apply f to successive elements of l until exhaustion or f returns #f.
500 ;; If returning early, return #f. Otherwise, return the last value returned
501 ;; by f. If f has never been called because l is empty, return #t.
502 ;;
503 (define (and-map f lst)
504 (let loop ((result #t)
505 (l lst))
506 (and result
507 (or (and (null? l)
508 result)
509 (loop (f (car l)) (cdr l))))))
510
511 ;; or-map f l
512 ;;
513 ;; Apply f to successive elements of l until exhaustion or while f returns #f.
514 ;; If returning early, return the return value of f.
515 ;;
516 (define (or-map f lst)
517 (let loop ((result #f)
518 (l lst))
519 (or result
520 (and (not (null? l))
521 (loop (f (car l)) (cdr l))))))
522
523 \f
524
525 (if (provided? 'posix)
526 (primitive-load-path "ice-9/posix"))
527
528 (if (provided? 'socket)
529 (primitive-load-path "ice-9/networking"))
530
531 ;; For reference, Emacs file-exists-p uses stat in this same way.
532 ;; ENHANCE-ME: Catching an exception from stat is a bit wasteful, do this in
533 ;; C where all that's needed is to inspect the return from stat().
534 (define file-exists?
535 (if (provided? 'posix)
536 (lambda (str)
537 (->bool (false-if-exception (stat str))))
538 (lambda (str)
539 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
540 (lambda args #f))))
541 (if port (begin (close-port port) #t)
542 #f)))))
543
544 (define file-is-directory?
545 (if (provided? 'posix)
546 (lambda (str)
547 (eq? (stat:type (stat str)) 'directory))
548 (lambda (str)
549 (let ((port (catch 'system-error
550 (lambda () (open-file (string-append str "/.")
551 OPEN_READ))
552 (lambda args #f))))
553 (if port (begin (close-port port) #t)
554 #f)))))
555
556 (define (has-suffix? str suffix)
557 (string-suffix? suffix str))
558
559 (define (system-error-errno args)
560 (if (eq? (car args) 'system-error)
561 (car (list-ref args 4))
562 #f))
563
564 \f
565
566 ;;; {Error Handling}
567 ;;;
568
569 (define (error . args)
570 (save-stack)
571 (if (null? args)
572 (scm-error 'misc-error #f "?" #f #f)
573 (let loop ((msg "~A")
574 (rest (cdr args)))
575 (if (not (null? rest))
576 (loop (string-append msg " ~S")
577 (cdr rest))
578 (scm-error 'misc-error #f msg args #f)))))
579
580 ;; bad-throw is the hook that is called upon a throw to a an unhandled
581 ;; key (unless the throw has four arguments, in which case
582 ;; it's usually interpreted as an error throw.)
583 ;; If the key has a default handler (a throw-handler-default property),
584 ;; it is applied to the throw.
585 ;;
586 (define (bad-throw key . args)
587 (let ((default (symbol-property key 'throw-handler-default)))
588 (or (and default (apply default key args))
589 (apply error "unhandled-exception:" key args))))
590
591 \f
592
593 (define (tm:sec obj) (vector-ref obj 0))
594 (define (tm:min obj) (vector-ref obj 1))
595 (define (tm:hour obj) (vector-ref obj 2))
596 (define (tm:mday obj) (vector-ref obj 3))
597 (define (tm:mon obj) (vector-ref obj 4))
598 (define (tm:year obj) (vector-ref obj 5))
599 (define (tm:wday obj) (vector-ref obj 6))
600 (define (tm:yday obj) (vector-ref obj 7))
601 (define (tm:isdst obj) (vector-ref obj 8))
602 (define (tm:gmtoff obj) (vector-ref obj 9))
603 (define (tm:zone obj) (vector-ref obj 10))
604
605 (define (set-tm:sec obj val) (vector-set! obj 0 val))
606 (define (set-tm:min obj val) (vector-set! obj 1 val))
607 (define (set-tm:hour obj val) (vector-set! obj 2 val))
608 (define (set-tm:mday obj val) (vector-set! obj 3 val))
609 (define (set-tm:mon obj val) (vector-set! obj 4 val))
610 (define (set-tm:year obj val) (vector-set! obj 5 val))
611 (define (set-tm:wday obj val) (vector-set! obj 6 val))
612 (define (set-tm:yday obj val) (vector-set! obj 7 val))
613 (define (set-tm:isdst obj val) (vector-set! obj 8 val))
614 (define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
615 (define (set-tm:zone obj val) (vector-set! obj 10 val))
616
617 (define (tms:clock obj) (vector-ref obj 0))
618 (define (tms:utime obj) (vector-ref obj 1))
619 (define (tms:stime obj) (vector-ref obj 2))
620 (define (tms:cutime obj) (vector-ref obj 3))
621 (define (tms:cstime obj) (vector-ref obj 4))
622
623 (define file-position ftell)
624 (define (file-set-position port offset . whence)
625 (let ((whence (if (eq? whence '()) SEEK_SET (car whence))))
626 (seek port offset whence)))
627
628 (define (move->fdes fd/port fd)
629 (cond ((integer? fd/port)
630 (dup->fdes fd/port fd)
631 (close fd/port)
632 fd)
633 (else
634 (primitive-move->fdes fd/port fd)
635 (set-port-revealed! fd/port 1)
636 fd/port)))
637
638 (define (release-port-handle port)
639 (let ((revealed (port-revealed port)))
640 (if (> revealed 0)
641 (set-port-revealed! port (- revealed 1)))))
642
643 (define (dup->port port/fd mode . maybe-fd)
644 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
645 mode)))
646 (if (pair? maybe-fd)
647 (set-port-revealed! port 1))
648 port))
649
650 (define (dup->inport port/fd . maybe-fd)
651 (apply dup->port port/fd "r" maybe-fd))
652
653 (define (dup->outport port/fd . maybe-fd)
654 (apply dup->port port/fd "w" maybe-fd))
655
656 (define (dup port/fd . maybe-fd)
657 (if (integer? port/fd)
658 (apply dup->fdes port/fd maybe-fd)
659 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
660
661 (define (duplicate-port port modes)
662 (dup->port port modes))
663
664 (define (fdes->inport fdes)
665 (let loop ((rest-ports (fdes->ports fdes)))
666 (cond ((null? rest-ports)
667 (let ((result (fdopen fdes "r")))
668 (set-port-revealed! result 1)
669 result))
670 ((input-port? (car rest-ports))
671 (set-port-revealed! (car rest-ports)
672 (+ (port-revealed (car rest-ports)) 1))
673 (car rest-ports))
674 (else
675 (loop (cdr rest-ports))))))
676
677 (define (fdes->outport fdes)
678 (let loop ((rest-ports (fdes->ports fdes)))
679 (cond ((null? rest-ports)
680 (let ((result (fdopen fdes "w")))
681 (set-port-revealed! result 1)
682 result))
683 ((output-port? (car rest-ports))
684 (set-port-revealed! (car rest-ports)
685 (+ (port-revealed (car rest-ports)) 1))
686 (car rest-ports))
687 (else
688 (loop (cdr rest-ports))))))
689
690 (define (port->fdes port)
691 (set-port-revealed! port (+ (port-revealed port) 1))
692 (fileno port))
693
694 (define (setenv name value)
695 (if value
696 (putenv (string-append name "=" value))
697 (putenv name)))
698
699 (define (unsetenv name)
700 "Remove the entry for NAME from the environment."
701 (putenv name))
702
703 \f
704
705 ;;; {Load Paths}
706 ;;;
707
708 ;;; Here for backward compatability
709 ;;
710 (define scheme-file-suffix (lambda () ".scm"))
711
712 (define (in-vicinity vicinity file)
713 (let ((tail (let ((len (string-length vicinity)))
714 (if (zero? len)
715 #f
716 (string-ref vicinity (- len 1))))))
717 (string-append vicinity
718 (if (or (not tail)
719 (eq? tail #\/))
720 ""
721 "/")
722 file)))
723
724 \f
725
726 ;;; {Help for scm_shell}
727 ;;;
728 ;;; The argument-processing code used by Guile-based shells generates
729 ;;; Scheme code based on the argument list. This page contains help
730 ;;; functions for the code it generates.
731 ;;;
732
733 (define (command-line) (program-arguments))
734
735 ;; This is mostly for the internal use of the code generated by
736 ;; scm_compile_shell_switches.
737
738 (define (turn-on-debugging)
739 (debug-enable 'debug)
740 (debug-enable 'backtrace)
741 (read-enable 'positions))
742
743 (define (load-user-init)
744 (let* ((home (or (getenv "HOME")
745 (false-if-exception (passwd:dir (getpwuid (getuid))))
746 "/")) ;; fallback for cygwin etc.
747 (init-file (in-vicinity home ".guile")))
748 (if (file-exists? init-file)
749 (primitive-load init-file))))
750
751 \f
752
753 ;;; {The interpreter stack}
754 ;;;
755
756 (defmacro start-stack (tag exp)
757 `(%start-stack ,tag (lambda () ,exp)))
758
759 \f
760
761 ;;; {Loading by paths}
762 ;;;
763
764 ;;; Load a Scheme source file named NAME, searching for it in the
765 ;;; directories listed in %load-path, and applying each of the file
766 ;;; name extensions listed in %load-extensions.
767 (define (load-from-path name)
768 (start-stack 'load-stack
769 (primitive-load-path name)))
770
771
772 \f
773
774 ;;; {Transcendental Functions}
775 ;;;
776 ;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
777 ;;; Written by Jerry D. Hedden, (C) FSF.
778 ;;; See the file `COPYING' for terms applying to this program.
779 ;;;
780
781 (define expt
782 (let ((integer-expt integer-expt))
783 (lambda (z1 z2)
784 (cond ((and (exact? z2) (integer? z2))
785 (integer-expt z1 z2))
786 ((and (real? z2) (real? z1) (>= z1 0))
787 ($expt z1 z2))
788 (else
789 (exp (* z2 (log z1))))))))
790
791 (define (sinh z)
792 (if (real? z) ($sinh z)
793 (let ((x (real-part z)) (y (imag-part z)))
794 (make-rectangular (* ($sinh x) ($cos y))
795 (* ($cosh x) ($sin y))))))
796 (define (cosh z)
797 (if (real? z) ($cosh z)
798 (let ((x (real-part z)) (y (imag-part z)))
799 (make-rectangular (* ($cosh x) ($cos y))
800 (* ($sinh x) ($sin y))))))
801 (define (tanh z)
802 (if (real? z) ($tanh z)
803 (let* ((x (* 2 (real-part z)))
804 (y (* 2 (imag-part z)))
805 (w (+ ($cosh x) ($cos y))))
806 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
807
808 (define (asinh z)
809 (if (real? z) ($asinh z)
810 (log (+ z (sqrt (+ (* z z) 1))))))
811
812 (define (acosh z)
813 (if (and (real? z) (>= z 1))
814 ($acosh z)
815 (log (+ z (sqrt (- (* z z) 1))))))
816
817 (define (atanh z)
818 (if (and (real? z) (> z -1) (< z 1))
819 ($atanh z)
820 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
821
822 (define (sin z)
823 (if (real? z) ($sin z)
824 (let ((x (real-part z)) (y (imag-part z)))
825 (make-rectangular (* ($sin x) ($cosh y))
826 (* ($cos x) ($sinh y))))))
827 (define (cos z)
828 (if (real? z) ($cos z)
829 (let ((x (real-part z)) (y (imag-part z)))
830 (make-rectangular (* ($cos x) ($cosh y))
831 (- (* ($sin x) ($sinh y)))))))
832 (define (tan z)
833 (if (real? z) ($tan z)
834 (let* ((x (* 2 (real-part z)))
835 (y (* 2 (imag-part z)))
836 (w (+ ($cos x) ($cosh y))))
837 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
838
839 (define (asin z)
840 (if (and (real? z) (>= z -1) (<= z 1))
841 ($asin z)
842 (* -i (asinh (* +i z)))))
843
844 (define (acos z)
845 (if (and (real? z) (>= z -1) (<= z 1))
846 ($acos z)
847 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
848
849 (define (atan z . y)
850 (if (null? y)
851 (if (real? z) ($atan z)
852 (/ (log (/ (- +i z) (+ +i z))) +2i))
853 ($atan2 z (car y))))
854
855 \f
856
857 ;;; {Reader Extensions}
858 ;;;
859 ;;; Reader code for various "#c" forms.
860 ;;;
861
862 (read-hash-extend #\' (lambda (c port)
863 (read port)))
864
865 (define read-eval? (make-fluid))
866 (fluid-set! read-eval? #f)
867 (read-hash-extend #\.
868 (lambda (c port)
869 (if (fluid-ref read-eval?)
870 (eval (read port) (interaction-environment))
871 (error
872 "#. read expansion found and read-eval? is #f."))))
873
874 \f
875
876 ;;; {Command Line Options}
877 ;;;
878
879 (define (get-option argv kw-opts kw-args return)
880 (cond
881 ((null? argv)
882 (return #f #f argv))
883
884 ((or (not (eq? #\- (string-ref (car argv) 0)))
885 (eq? (string-length (car argv)) 1))
886 (return 'normal-arg (car argv) (cdr argv)))
887
888 ((eq? #\- (string-ref (car argv) 1))
889 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
890 (string-length (car argv))))
891 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
892 (kw-opt? (member kw kw-opts))
893 (kw-arg? (member kw kw-args))
894 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
895 (substring (car argv)
896 (+ kw-arg-pos 1)
897 (string-length (car argv))))
898 (and kw-arg?
899 (begin (set! argv (cdr argv)) (car argv))))))
900 (if (or kw-opt? kw-arg?)
901 (return kw arg (cdr argv))
902 (return 'usage-error kw (cdr argv)))))
903
904 (else
905 (let* ((char (substring (car argv) 1 2))
906 (kw (symbol->keyword char)))
907 (cond
908
909 ((member kw kw-opts)
910 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
911 (new-argv (if (= 0 (string-length rest-car))
912 (cdr argv)
913 (cons (string-append "-" rest-car) (cdr argv)))))
914 (return kw #f new-argv)))
915
916 ((member kw kw-args)
917 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
918 (arg (if (= 0 (string-length rest-car))
919 (cadr argv)
920 rest-car))
921 (new-argv (if (= 0 (string-length rest-car))
922 (cddr argv)
923 (cdr argv))))
924 (return kw arg new-argv)))
925
926 (else (return 'usage-error kw argv)))))))
927
928 (define (for-next-option proc argv kw-opts kw-args)
929 (let loop ((argv argv))
930 (get-option argv kw-opts kw-args
931 (lambda (opt opt-arg argv)
932 (and opt (proc opt opt-arg argv loop))))))
933
934 (define (display-usage-report kw-desc)
935 (for-each
936 (lambda (kw)
937 (or (eq? (car kw) #t)
938 (eq? (car kw) 'else)
939 (let* ((opt-desc kw)
940 (help (cadr opt-desc))
941 (opts (car opt-desc))
942 (opts-proper (if (string? (car opts)) (cdr opts) opts))
943 (arg-name (if (string? (car opts))
944 (string-append "<" (car opts) ">")
945 ""))
946 (left-part (string-append
947 (with-output-to-string
948 (lambda ()
949 (map (lambda (x) (display (keyword->symbol x)) (display " "))
950 opts-proper)))
951 arg-name))
952 (middle-part (if (and (< (string-length left-part) 30)
953 (< (string-length help) 40))
954 (make-string (- 30 (string-length left-part)) #\ )
955 "\n\t")))
956 (display left-part)
957 (display middle-part)
958 (display help)
959 (newline))))
960 kw-desc))
961
962
963
964 (define (transform-usage-lambda cases)
965 (let* ((raw-usage (delq! 'else (map car cases)))
966 (usage-sans-specials (map (lambda (x)
967 (or (and (not (list? x)) x)
968 (and (symbol? (car x)) #t)
969 (and (boolean? (car x)) #t)
970 x))
971 raw-usage))
972 (usage-desc (delq! #t usage-sans-specials))
973 (kw-desc (map car usage-desc))
974 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
975 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
976 (transmogrified-cases (map (lambda (case)
977 (cons (let ((opts (car case)))
978 (if (or (boolean? opts) (eq? 'else opts))
979 opts
980 (cond
981 ((symbol? (car opts)) opts)
982 ((boolean? (car opts)) opts)
983 ((string? (caar opts)) (cdar opts))
984 (else (car opts)))))
985 (cdr case)))
986 cases)))
987 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
988 (lambda (%argv)
989 (let %next-arg ((%argv %argv))
990 (get-option %argv
991 ',kw-opts
992 ',kw-args
993 (lambda (%opt %arg %new-argv)
994 (case %opt
995 ,@ transmogrified-cases))))))))
996
997
998 \f
999
1000 ;;; {Low Level Modules}
1001 ;;;
1002 ;;; These are the low level data structures for modules.
1003 ;;;
1004 ;;; Every module object is of the type 'module-type', which is a record
1005 ;;; consisting of the following members:
1006 ;;;
1007 ;;; - eval-closure: the function that defines for its module the strategy that
1008 ;;; shall be followed when looking up symbols in the module.
1009 ;;;
1010 ;;; An eval-closure is a function taking two arguments: the symbol to be
1011 ;;; looked up and a boolean value telling whether a binding for the symbol
1012 ;;; should be created if it does not exist yet. If the symbol lookup
1013 ;;; succeeded (either because an existing binding was found or because a new
1014 ;;; binding was created), a variable object representing the binding is
1015 ;;; returned. Otherwise, the value #f is returned. Note that the eval
1016 ;;; closure does not take the module to be searched as an argument: During
1017 ;;; construction of the eval-closure, the eval-closure has to store the
1018 ;;; module it belongs to in its environment. This means, that any
1019 ;;; eval-closure can belong to only one module.
1020 ;;;
1021 ;;; The eval-closure of a module can be defined arbitrarily. However, three
1022 ;;; special cases of eval-closures are to be distinguished: During startup
1023 ;;; the module system is not yet activated. In this phase, no modules are
1024 ;;; defined and all bindings are automatically stored by the system in the
1025 ;;; pre-modules-obarray. Since no eval-closures exist at this time, the
1026 ;;; functions which require an eval-closure as their argument need to be
1027 ;;; passed the value #f.
1028 ;;;
1029 ;;; The other two special cases of eval-closures are the
1030 ;;; standard-eval-closure and the standard-interface-eval-closure. Both
1031 ;;; behave equally for the case that no new binding is to be created. The
1032 ;;; difference between the two comes in, when the boolean argument to the
1033 ;;; eval-closure indicates that a new binding shall be created if it is not
1034 ;;; found.
1035 ;;;
1036 ;;; Given that no new binding shall be created, both standard eval-closures
1037 ;;; define the following standard strategy of searching bindings in the
1038 ;;; module: First, the module's obarray is searched for the symbol. Second,
1039 ;;; if no binding for the symbol was found in the module's obarray, the
1040 ;;; module's binder procedure is exececuted. If this procedure did not
1041 ;;; return a binding for the symbol, the modules referenced in the module's
1042 ;;; uses list are recursively searched for a binding of the symbol. If the
1043 ;;; binding can not be found in these modules also, the symbol lookup has
1044 ;;; failed.
1045 ;;;
1046 ;;; If a new binding shall be created, the standard-interface-eval-closure
1047 ;;; immediately returns indicating failure. That is, it does not even try
1048 ;;; to look up the symbol. In contrast, the standard-eval-closure would
1049 ;;; first search the obarray, and if no binding was found there, would
1050 ;;; create a new binding in the obarray, therefore not calling the binder
1051 ;;; procedure or searching the modules in the uses list.
1052 ;;;
1053 ;;; The explanation of the following members obarray, binder and uses
1054 ;;; assumes that the symbol lookup follows the strategy that is defined in
1055 ;;; the standard-eval-closure and the standard-interface-eval-closure.
1056 ;;;
1057 ;;; - obarray: a hash table that maps symbols to variable objects. In this
1058 ;;; hash table, the definitions are found that are local to the module (that
1059 ;;; is, not imported from other modules). When looking up bindings in the
1060 ;;; module, this hash table is searched first.
1061 ;;;
1062 ;;; - binder: either #f or a function taking a module and a symbol argument.
1063 ;;; If it is a function it is called after the obarray has been
1064 ;;; unsuccessfully searched for a binding. It then can provide bindings
1065 ;;; that would otherwise not be found locally in the module.
1066 ;;;
1067 ;;; - uses: a list of modules from which non-local bindings can be inherited.
1068 ;;; These modules are the third place queried for bindings after the obarray
1069 ;;; has been unsuccessfully searched and the binder function did not deliver
1070 ;;; a result either.
1071 ;;;
1072 ;;; - transformer: either #f or a function taking a scheme expression as
1073 ;;; delivered by read. If it is a function, it will be called to perform
1074 ;;; syntax transformations (e. g. makro expansion) on the given scheme
1075 ;;; expression. The output of the transformer function will then be passed
1076 ;;; to Guile's internal memoizer. This means that the output must be valid
1077 ;;; scheme code. The only exception is, that the output may make use of the
1078 ;;; syntax extensions provided to identify the modules that a binding
1079 ;;; belongs to.
1080 ;;;
1081 ;;; - name: the name of the module. This is used for all kinds of printing
1082 ;;; outputs. In certain places the module name also serves as a way of
1083 ;;; identification. When adding a module to the uses list of another
1084 ;;; module, it is made sure that the new uses list will not contain two
1085 ;;; modules of the same name.
1086 ;;;
1087 ;;; - kind: classification of the kind of module. The value is (currently?)
1088 ;;; only used for printing. It has no influence on how a module is treated.
1089 ;;; Currently the following values are used when setting the module kind:
1090 ;;; 'module, 'directory, 'interface, 'custom-interface. If no explicit kind
1091 ;;; is set, it defaults to 'module.
1092 ;;;
1093 ;;; - duplicates-handlers: a list of procedures that get called to make a
1094 ;;; choice between two duplicate bindings when name clashes occur. See the
1095 ;;; `duplicate-handlers' global variable below.
1096 ;;;
1097 ;;; - observers: a list of procedures that get called when the module is
1098 ;;; modified.
1099 ;;;
1100 ;;; - weak-observers: a weak-key hash table of procedures that get called
1101 ;;; when the module is modified. See `module-observe-weak' for details.
1102 ;;;
1103 ;;; In addition, the module may (must?) contain a binding for
1104 ;;; `%module-public-interface'. This variable should be bound to a module
1105 ;;; representing the exported interface of a module. See the
1106 ;;; `module-public-interface' and `module-export!' procedures.
1107 ;;;
1108 ;;; !!! warning: The interface to lazy binder procedures is going
1109 ;;; to be changed in an incompatible way to permit all the basic
1110 ;;; module ops to be virtualized.
1111 ;;;
1112 ;;; (make-module size use-list lazy-binding-proc) => module
1113 ;;; module-{obarray,uses,binder}[|-set!]
1114 ;;; (module? obj) => [#t|#f]
1115 ;;; (module-locally-bound? module symbol) => [#t|#f]
1116 ;;; (module-bound? module symbol) => [#t|#f]
1117 ;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
1118 ;;; (module-symbol-interned? module symbol) => [#t|#f]
1119 ;;; (module-local-variable module symbol) => [#<variable ...> | #f]
1120 ;;; (module-variable module symbol) => [#<variable ...> | #f]
1121 ;;; (module-symbol-binding module symbol opt-value)
1122 ;;; => [ <obj> | opt-value | an error occurs ]
1123 ;;; (module-make-local-var! module symbol) => #<variable...>
1124 ;;; (module-add! module symbol var) => unspecified
1125 ;;; (module-remove! module symbol) => unspecified
1126 ;;; (module-for-each proc module) => unspecified
1127 ;;; (make-scm-module) => module ; a lazy copy of the symhash module
1128 ;;; (set-current-module module) => unspecified
1129 ;;; (current-module) => #<module...>
1130 ;;;
1131 ;;;
1132
1133 \f
1134
1135 ;;; {Printing Modules}
1136 ;;;
1137
1138 ;; This is how modules are printed. You can re-define it.
1139 ;; (Redefining is actually more complicated than simply redefining
1140 ;; %print-module because that would only change the binding and not
1141 ;; the value stored in the vtable that determines how record are
1142 ;; printed. Sigh.)
1143
1144 (define (%print-module mod port) ; unused args: depth length style table)
1145 (display "#<" port)
1146 (display (or (module-kind mod) "module") port)
1147 (let ((name (module-name mod)))
1148 (if name
1149 (begin
1150 (display " " port)
1151 (display name port))))
1152 (display " " port)
1153 (display (number->string (object-address mod) 16) port)
1154 (display ">" port))
1155
1156 ;; module-type
1157 ;;
1158 ;; A module is characterized by an obarray in which local symbols
1159 ;; are interned, a list of modules, "uses", from which non-local
1160 ;; bindings can be inherited, and an optional lazy-binder which
1161 ;; is a (CLOSURE module symbol) which, as a last resort, can provide
1162 ;; bindings that would otherwise not be found locally in the module.
1163 ;;
1164 ;; NOTE: If you change anything here, you also need to change
1165 ;; libguile/modules.h.
1166 ;;
1167 (define module-type
1168 (make-record-type 'module
1169 '(obarray uses binder eval-closure transformer name kind
1170 duplicates-handlers import-obarray
1171 observers weak-observers)
1172 %print-module))
1173
1174 ;; make-module &opt size uses binder
1175 ;;
1176 ;; Create a new module, perhaps with a particular size of obarray,
1177 ;; initial uses list, or binding procedure.
1178 ;;
1179 (define make-module
1180 (lambda args
1181
1182 (define (parse-arg index default)
1183 (if (> (length args) index)
1184 (list-ref args index)
1185 default))
1186
1187 (define %default-import-size
1188 ;; Typical number of imported bindings actually used by a module.
1189 600)
1190
1191 (if (> (length args) 3)
1192 (error "Too many args to make-module." args))
1193
1194 (let ((size (parse-arg 0 31))
1195 (uses (parse-arg 1 '()))
1196 (binder (parse-arg 2 #f)))
1197
1198 (if (not (integer? size))
1199 (error "Illegal size to make-module." size))
1200 (if (not (and (list? uses)
1201 (and-map module? uses)))
1202 (error "Incorrect use list." uses))
1203 (if (and binder (not (procedure? binder)))
1204 (error
1205 "Lazy-binder expected to be a procedure or #f." binder))
1206
1207 (let ((module (module-constructor (make-hash-table size)
1208 uses binder #f #f #f #f #f
1209 (make-hash-table %default-import-size)
1210 '()
1211 (make-weak-key-hash-table 31))))
1212
1213 ;; We can't pass this as an argument to module-constructor,
1214 ;; because we need it to close over a pointer to the module
1215 ;; itself.
1216 (set-module-eval-closure! module (standard-eval-closure module))
1217
1218 module))))
1219
1220 (define module-constructor (record-constructor module-type))
1221 (define module-obarray (record-accessor module-type 'obarray))
1222 (define set-module-obarray! (record-modifier module-type 'obarray))
1223 (define module-uses (record-accessor module-type 'uses))
1224 (define set-module-uses! (record-modifier module-type 'uses))
1225 (define module-binder (record-accessor module-type 'binder))
1226 (define set-module-binder! (record-modifier module-type 'binder))
1227
1228 ;; NOTE: This binding is used in libguile/modules.c.
1229 (define module-eval-closure (record-accessor module-type 'eval-closure))
1230
1231 (define module-transformer (record-accessor module-type 'transformer))
1232 (define set-module-transformer! (record-modifier module-type 'transformer))
1233 (define module-name (record-accessor module-type 'name))
1234 (define set-module-name! (record-modifier module-type 'name))
1235 (define module-kind (record-accessor module-type 'kind))
1236 (define set-module-kind! (record-modifier module-type 'kind))
1237 (define module-duplicates-handlers
1238 (record-accessor module-type 'duplicates-handlers))
1239 (define set-module-duplicates-handlers!
1240 (record-modifier module-type 'duplicates-handlers))
1241 (define module-observers (record-accessor module-type 'observers))
1242 (define set-module-observers! (record-modifier module-type 'observers))
1243 (define module-weak-observers (record-accessor module-type 'weak-observers))
1244 (define module? (record-predicate module-type))
1245
1246 (define module-import-obarray (record-accessor module-type 'import-obarray))
1247
1248 (define set-module-eval-closure!
1249 (let ((setter (record-modifier module-type 'eval-closure)))
1250 (lambda (module closure)
1251 (setter module closure)
1252 ;; Make it possible to lookup the module from the environment.
1253 ;; This implementation is correct since an eval closure can belong
1254 ;; to maximally one module.
1255 (set-procedure-property! closure 'module module))))
1256
1257 \f
1258
1259 ;;; {Observer protocol}
1260 ;;;
1261
1262 (define (module-observe module proc)
1263 (set-module-observers! module (cons proc (module-observers module)))
1264 (cons module proc))
1265
1266 (define (module-observe-weak module observer-id . proc)
1267 ;; Register PROC as an observer of MODULE under name OBSERVER-ID (which can
1268 ;; be any Scheme object). PROC is invoked and passed MODULE any time
1269 ;; MODULE is modified. PROC gets unregistered when OBSERVER-ID gets GC'd
1270 ;; (thus, it is never unregistered if OBSERVER-ID is an immediate value,
1271 ;; for instance).
1272
1273 ;; The two-argument version is kept for backward compatibility: when called
1274 ;; with two arguments, the observer gets unregistered when closure PROC
1275 ;; gets GC'd (making it impossible to use an anonymous lambda for PROC).
1276
1277 (let ((proc (if (null? proc) observer-id (car proc))))
1278 (hashq-set! (module-weak-observers module) observer-id proc)))
1279
1280 (define (module-unobserve token)
1281 (let ((module (car token))
1282 (id (cdr token)))
1283 (if (integer? id)
1284 (hash-remove! (module-weak-observers module) id)
1285 (set-module-observers! module (delq1! id (module-observers module)))))
1286 *unspecified*)
1287
1288 (define module-defer-observers #f)
1289 (define module-defer-observers-mutex (make-mutex))
1290 (define module-defer-observers-table (make-hash-table))
1291
1292 (define (module-modified m)
1293 (if module-defer-observers
1294 (hash-set! module-defer-observers-table m #t)
1295 (module-call-observers m)))
1296
1297 ;;; This function can be used to delay calls to observers so that they
1298 ;;; can be called once only in the face of massive updating of modules.
1299 ;;;
1300 (define (call-with-deferred-observers thunk)
1301 (dynamic-wind
1302 (lambda ()
1303 (lock-mutex module-defer-observers-mutex)
1304 (set! module-defer-observers #t))
1305 thunk
1306 (lambda ()
1307 (set! module-defer-observers #f)
1308 (hash-for-each (lambda (m dummy)
1309 (module-call-observers m))
1310 module-defer-observers-table)
1311 (hash-clear! module-defer-observers-table)
1312 (unlock-mutex module-defer-observers-mutex))))
1313
1314 (define (module-call-observers m)
1315 (for-each (lambda (proc) (proc m)) (module-observers m))
1316
1317 ;; We assume that weak observers don't (un)register themselves as they are
1318 ;; called since this would preclude proper iteration over the hash table
1319 ;; elements.
1320 (hash-for-each (lambda (id proc) (proc m)) (module-weak-observers m)))
1321
1322 \f
1323
1324 ;;; {Module Searching in General}
1325 ;;;
1326 ;;; We sometimes want to look for properties of a symbol
1327 ;;; just within the obarray of one module. If the property
1328 ;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1329 ;;; DISPLAY is locally rebound in the module `safe-guile'.''
1330 ;;;
1331 ;;;
1332 ;;; Other times, we want to test for a symbol property in the obarray
1333 ;;; of M and, if it is not found there, try each of the modules in the
1334 ;;; uses list of M. This is the normal way of testing for some
1335 ;;; property, so we state these properties without qualification as
1336 ;;; in: ``The symbol 'fnord is interned in module M because it is
1337 ;;; interned locally in module M2 which is a member of the uses list
1338 ;;; of M.''
1339 ;;;
1340
1341 ;; module-search fn m
1342 ;;
1343 ;; return the first non-#f result of FN applied to M and then to
1344 ;; the modules in the uses of m, and so on recursively. If all applications
1345 ;; return #f, then so does this function.
1346 ;;
1347 (define (module-search fn m v)
1348 (define (loop pos)
1349 (and (pair? pos)
1350 (or (module-search fn (car pos) v)
1351 (loop (cdr pos)))))
1352 (or (fn m v)
1353 (loop (module-uses m))))
1354
1355
1356 ;;; {Is a symbol bound in a module?}
1357 ;;;
1358 ;;; Symbol S in Module M is bound if S is interned in M and if the binding
1359 ;;; of S in M has been set to some well-defined value.
1360 ;;;
1361
1362 ;; module-locally-bound? module symbol
1363 ;;
1364 ;; Is a symbol bound (interned and defined) locally in a given module?
1365 ;;
1366 (define (module-locally-bound? m v)
1367 (let ((var (module-local-variable m v)))
1368 (and var
1369 (variable-bound? var))))
1370
1371 ;; module-bound? module symbol
1372 ;;
1373 ;; Is a symbol bound (interned and defined) anywhere in a given module
1374 ;; or its uses?
1375 ;;
1376 (define (module-bound? m v)
1377 (module-search module-locally-bound? m v))
1378
1379 ;;; {Is a symbol interned in a module?}
1380 ;;;
1381 ;;; Symbol S in Module M is interned if S occurs in
1382 ;;; of S in M has been set to some well-defined value.
1383 ;;;
1384 ;;; It is possible to intern a symbol in a module without providing
1385 ;;; an initial binding for the corresponding variable. This is done
1386 ;;; with:
1387 ;;; (module-add! module symbol (make-undefined-variable))
1388 ;;;
1389 ;;; In that case, the symbol is interned in the module, but not
1390 ;;; bound there. The unbound symbol shadows any binding for that
1391 ;;; symbol that might otherwise be inherited from a member of the uses list.
1392 ;;;
1393
1394 (define (module-obarray-get-handle ob key)
1395 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1396
1397 (define (module-obarray-ref ob key)
1398 ((if (symbol? key) hashq-ref hash-ref) ob key))
1399
1400 (define (module-obarray-set! ob key val)
1401 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1402
1403 (define (module-obarray-remove! ob key)
1404 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1405
1406 ;; module-symbol-locally-interned? module symbol
1407 ;;
1408 ;; is a symbol interned (not neccessarily defined) locally in a given module
1409 ;; or its uses? Interned symbols shadow inherited bindings even if
1410 ;; they are not themselves bound to a defined value.
1411 ;;
1412 (define (module-symbol-locally-interned? m v)
1413 (not (not (module-obarray-get-handle (module-obarray m) v))))
1414
1415 ;; module-symbol-interned? module symbol
1416 ;;
1417 ;; is a symbol interned (not neccessarily defined) anywhere in a given module
1418 ;; or its uses? Interned symbols shadow inherited bindings even if
1419 ;; they are not themselves bound to a defined value.
1420 ;;
1421 (define (module-symbol-interned? m v)
1422 (module-search module-symbol-locally-interned? m v))
1423
1424
1425 ;;; {Mapping modules x symbols --> variables}
1426 ;;;
1427
1428 ;; module-local-variable module symbol
1429 ;; return the local variable associated with a MODULE and SYMBOL.
1430 ;;
1431 ;;; This function is very important. It is the only function that can
1432 ;;; return a variable from a module other than the mutators that store
1433 ;;; new variables in modules. Therefore, this function is the location
1434 ;;; of the "lazy binder" hack.
1435 ;;;
1436 ;;; If symbol is defined in MODULE, and if the definition binds symbol
1437 ;;; to a variable, return that variable object.
1438 ;;;
1439 ;;; If the symbols is not found at first, but the module has a lazy binder,
1440 ;;; then try the binder.
1441 ;;;
1442 ;;; If the symbol is not found at all, return #f.
1443 ;;;
1444 ;;; (This is now written in C, see `modules.c'.)
1445 ;;;
1446
1447 ;;; {Mapping modules x symbols --> bindings}
1448 ;;;
1449 ;;; These are similar to the mapping to variables, except that the
1450 ;;; variable is dereferenced.
1451 ;;;
1452
1453 ;; module-symbol-binding module symbol opt-value
1454 ;;
1455 ;; return the binding of a variable specified by name within
1456 ;; a given module, signalling an error if the variable is unbound.
1457 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1458 ;; return OPT-VALUE.
1459 ;;
1460 (define (module-symbol-local-binding m v . opt-val)
1461 (let ((var (module-local-variable m v)))
1462 (if (and var (variable-bound? var))
1463 (variable-ref var)
1464 (if (not (null? opt-val))
1465 (car opt-val)
1466 (error "Locally unbound variable." v)))))
1467
1468 ;; module-symbol-binding module symbol opt-value
1469 ;;
1470 ;; return the binding of a variable specified by name within
1471 ;; a given module, signalling an error if the variable is unbound.
1472 ;; If the OPT-VALUE is passed, then instead of signalling an error,
1473 ;; return OPT-VALUE.
1474 ;;
1475 (define (module-symbol-binding m v . opt-val)
1476 (let ((var (module-variable m v)))
1477 (if (and var (variable-bound? var))
1478 (variable-ref var)
1479 (if (not (null? opt-val))
1480 (car opt-val)
1481 (error "Unbound variable." v)))))
1482
1483
1484 \f
1485
1486 ;;; {Adding Variables to Modules}
1487 ;;;
1488
1489 ;; module-make-local-var! module symbol
1490 ;;
1491 ;; ensure a variable for V in the local namespace of M.
1492 ;; If no variable was already there, then create a new and uninitialzied
1493 ;; variable.
1494 ;;
1495 ;; This function is used in modules.c.
1496 ;;
1497 (define (module-make-local-var! m v)
1498 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1499 (and (variable? b)
1500 (begin
1501 ;; Mark as modified since this function is called when
1502 ;; the standard eval closure defines a binding
1503 (module-modified m)
1504 b)))
1505
1506 ;; Create a new local variable.
1507 (let ((local-var (make-undefined-variable)))
1508 (module-add! m v local-var)
1509 local-var)))
1510
1511 ;; module-ensure-local-variable! module symbol
1512 ;;
1513 ;; Ensure that there is a local variable in MODULE for SYMBOL. If
1514 ;; there is no binding for SYMBOL, create a new uninitialized
1515 ;; variable. Return the local variable.
1516 ;;
1517 (define (module-ensure-local-variable! module symbol)
1518 (or (module-local-variable module symbol)
1519 (let ((var (make-undefined-variable)))
1520 (module-add! module symbol var)
1521 var)))
1522
1523 ;; module-add! module symbol var
1524 ;;
1525 ;; ensure a particular variable for V in the local namespace of M.
1526 ;;
1527 (define (module-add! m v var)
1528 (if (not (variable? var))
1529 (error "Bad variable to module-add!" var))
1530 (module-obarray-set! (module-obarray m) v var)
1531 (module-modified m))
1532
1533 ;; module-remove!
1534 ;;
1535 ;; make sure that a symbol is undefined in the local namespace of M.
1536 ;;
1537 (define (module-remove! m v)
1538 (module-obarray-remove! (module-obarray m) v)
1539 (module-modified m))
1540
1541 (define (module-clear! m)
1542 (hash-clear! (module-obarray m))
1543 (module-modified m))
1544
1545 ;; MODULE-FOR-EACH -- exported
1546 ;;
1547 ;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1548 ;;
1549 (define (module-for-each proc module)
1550 (hash-for-each proc (module-obarray module)))
1551
1552 (define (module-map proc module)
1553 (hash-map->list proc (module-obarray module)))
1554
1555 \f
1556
1557 ;;; {Low Level Bootstrapping}
1558 ;;;
1559
1560 ;; make-root-module
1561
1562 ;; A root module uses the pre-modules-obarray as its obarray. This
1563 ;; special obarray accumulates all bindings that have been established
1564 ;; before the module system is fully booted.
1565 ;;
1566 ;; (The obarray continues to be used by code that has been closed over
1567 ;; before the module system has been booted.)
1568
1569 (define (make-root-module)
1570 (let ((m (make-module 0)))
1571 (set-module-obarray! m (%get-pre-modules-obarray))
1572 m))
1573
1574 ;; make-scm-module
1575
1576 ;; The root interface is a module that uses the same obarray as the
1577 ;; root module. It does not allow new definitions, tho.
1578
1579 (define (make-scm-module)
1580 (let ((m (make-module 0)))
1581 (set-module-obarray! m (%get-pre-modules-obarray))
1582 (set-module-eval-closure! m (standard-interface-eval-closure m))
1583 m))
1584
1585
1586 \f
1587
1588 ;;; {Module-based Loading}
1589 ;;;
1590
1591 (define (save-module-excursion thunk)
1592 (let ((inner-module (current-module))
1593 (outer-module #f))
1594 (dynamic-wind (lambda ()
1595 (set! outer-module (current-module))
1596 (set-current-module inner-module)
1597 (set! inner-module #f))
1598 thunk
1599 (lambda ()
1600 (set! inner-module (current-module))
1601 (set-current-module outer-module)
1602 (set! outer-module #f)))))
1603
1604 (define basic-load load)
1605
1606 (define (load-module filename . reader)
1607 (save-module-excursion
1608 (lambda ()
1609 (let ((oldname (and (current-load-port)
1610 (port-filename (current-load-port)))))
1611 (apply basic-load
1612 (if (and oldname
1613 (> (string-length filename) 0)
1614 (not (char=? (string-ref filename 0) #\/))
1615 (not (string=? (dirname oldname) ".")))
1616 (string-append (dirname oldname) "/" filename)
1617 filename)
1618 reader)))))
1619
1620
1621 \f
1622
1623 ;;; {MODULE-REF -- exported}
1624 ;;;
1625
1626 ;; Returns the value of a variable called NAME in MODULE or any of its
1627 ;; used modules. If there is no such variable, then if the optional third
1628 ;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1629 ;;
1630 (define (module-ref module name . rest)
1631 (let ((variable (module-variable module name)))
1632 (if (and variable (variable-bound? variable))
1633 (variable-ref variable)
1634 (if (null? rest)
1635 (error "No variable named" name 'in module)
1636 (car rest) ; default value
1637 ))))
1638
1639 ;; MODULE-SET! -- exported
1640 ;;
1641 ;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1642 ;; to VALUE; if there is no such variable, an error is signaled.
1643 ;;
1644 (define (module-set! module name value)
1645 (let ((variable (module-variable module name)))
1646 (if variable
1647 (variable-set! variable value)
1648 (error "No variable named" name 'in module))))
1649
1650 ;; MODULE-DEFINE! -- exported
1651 ;;
1652 ;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1653 ;; variable, it is added first.
1654 ;;
1655 (define (module-define! module name value)
1656 (let ((variable (module-local-variable module name)))
1657 (if variable
1658 (begin
1659 (variable-set! variable value)
1660 (module-modified module))
1661 (let ((variable (make-variable value)))
1662 (module-add! module name variable)))))
1663
1664 ;; MODULE-DEFINED? -- exported
1665 ;;
1666 ;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1667 ;; uses)
1668 ;;
1669 (define (module-defined? module name)
1670 (let ((variable (module-variable module name)))
1671 (and variable (variable-bound? variable))))
1672
1673 ;; MODULE-USE! module interface
1674 ;;
1675 ;; Add INTERFACE to the list of interfaces used by MODULE.
1676 ;;
1677 (define (module-use! module interface)
1678 (if (not (eq? module interface))
1679 (begin
1680 ;; Newly used modules must be appended rather than consed, so that
1681 ;; `module-variable' traverses the use list starting from the first
1682 ;; used module.
1683 (set-module-uses! module
1684 (append (filter (lambda (m)
1685 (not
1686 (equal? (module-name m)
1687 (module-name interface))))
1688 (module-uses module))
1689 (list interface)))
1690
1691 (module-modified module))))
1692
1693 ;; MODULE-USE-INTERFACES! module interfaces
1694 ;;
1695 ;; Same as MODULE-USE! but add multiple interfaces and check for duplicates
1696 ;;
1697 (define (module-use-interfaces! module interfaces)
1698 (set-module-uses! module
1699 (append (module-uses module) interfaces))
1700 (module-modified module))
1701
1702 \f
1703
1704 ;;; {Recursive Namespaces}
1705 ;;;
1706 ;;; A hierarchical namespace emerges if we consider some module to be
1707 ;;; root, and variables bound to modules as nested namespaces.
1708 ;;;
1709 ;;; The routines in this file manage variable names in hierarchical namespace.
1710 ;;; Each variable name is a list of elements, looked up in successively nested
1711 ;;; modules.
1712 ;;;
1713 ;;; (nested-ref some-root-module '(foo bar baz))
1714 ;;; => <value of a variable named baz in the module bound to bar in
1715 ;;; the module bound to foo in some-root-module>
1716 ;;;
1717 ;;;
1718 ;;; There are:
1719 ;;;
1720 ;;; ;; a-root is a module
1721 ;;; ;; name is a list of symbols
1722 ;;;
1723 ;;; nested-ref a-root name
1724 ;;; nested-set! a-root name val
1725 ;;; nested-define! a-root name val
1726 ;;; nested-remove! a-root name
1727 ;;;
1728 ;;;
1729 ;;; (current-module) is a natural choice for a-root so for convenience there are
1730 ;;; also:
1731 ;;;
1732 ;;; local-ref name == nested-ref (current-module) name
1733 ;;; local-set! name val == nested-set! (current-module) name val
1734 ;;; local-define! name val == nested-define! (current-module) name val
1735 ;;; local-remove! name == nested-remove! (current-module) name
1736 ;;;
1737
1738
1739 (define (nested-ref root names)
1740 (let loop ((cur root)
1741 (elts names))
1742 (cond
1743 ((null? elts) cur)
1744 ((not (module? cur)) #f)
1745 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1746
1747 (define (nested-set! root names val)
1748 (let loop ((cur root)
1749 (elts names))
1750 (if (null? (cdr elts))
1751 (module-set! cur (car elts) val)
1752 (loop (module-ref cur (car elts)) (cdr elts)))))
1753
1754 (define (nested-define! root names val)
1755 (let loop ((cur root)
1756 (elts names))
1757 (if (null? (cdr elts))
1758 (module-define! cur (car elts) val)
1759 (loop (module-ref cur (car elts)) (cdr elts)))))
1760
1761 (define (nested-remove! root names)
1762 (let loop ((cur root)
1763 (elts names))
1764 (if (null? (cdr elts))
1765 (module-remove! cur (car elts))
1766 (loop (module-ref cur (car elts)) (cdr elts)))))
1767
1768 (define (local-ref names) (nested-ref (current-module) names))
1769 (define (local-set! names val) (nested-set! (current-module) names val))
1770 (define (local-define names val) (nested-define! (current-module) names val))
1771 (define (local-remove names) (nested-remove! (current-module) names))
1772
1773
1774 \f
1775
1776 ;;; {The (%app) module}
1777 ;;;
1778 ;;; The root of conventionally named objects not directly in the top level.
1779 ;;;
1780 ;;; (%app modules)
1781 ;;; (%app modules guile)
1782 ;;;
1783 ;;; The directory of all modules and the standard root module.
1784 ;;;
1785
1786 ;; module-public-interface is defined in C.
1787 (define (set-module-public-interface! m i)
1788 (module-define! m '%module-public-interface i))
1789 (define (set-system-module! m s)
1790 (set-procedure-property! (module-eval-closure m) 'system-module s))
1791 (define the-root-module (make-root-module))
1792 (define the-scm-module (make-scm-module))
1793 (set-module-public-interface! the-root-module the-scm-module)
1794 (set-module-name! the-root-module '(guile))
1795 (set-module-name! the-scm-module '(guile))
1796 (set-module-kind! the-scm-module 'interface)
1797 (for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1798
1799 ;; NOTE: This binding is used in libguile/modules.c.
1800 ;;
1801 (define (make-modules-in module name)
1802 (if (null? name)
1803 module
1804 (cond
1805 ((module-ref module (car name) #f)
1806 => (lambda (m) (make-modules-in m (cdr name))))
1807 (else (let ((m (make-module 31)))
1808 (set-module-kind! m 'directory)
1809 (set-module-name! m (append (or (module-name module)
1810 '())
1811 (list (car name))))
1812 (module-define! module (car name) m)
1813 (make-modules-in m (cdr name)))))))
1814
1815 (define (beautify-user-module! module)
1816 (let ((interface (module-public-interface module)))
1817 (if (or (not interface)
1818 (eq? interface module))
1819 (let ((interface (make-module 31)))
1820 (set-module-name! interface (module-name module))
1821 (set-module-kind! interface 'interface)
1822 (set-module-public-interface! module interface))))
1823 (if (and (not (memq the-scm-module (module-uses module)))
1824 (not (eq? module the-root-module)))
1825 ;; Import the default set of bindings (from the SCM module) in MODULE.
1826 (module-use! module the-scm-module)))
1827
1828 ;; NOTE: This binding is used in libguile/modules.c.
1829 ;;
1830 (define resolve-module
1831 (let ((the-root-module the-root-module))
1832 (lambda (name . maybe-autoload)
1833 (if (equal? name '(guile))
1834 the-root-module
1835 (let ((full-name (append '(%app modules) name)))
1836 (let ((already (nested-ref the-root-module full-name)))
1837 (if already
1838 ;; The module already exists...
1839 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1840 (not (module-public-interface already)))
1841 ;; ...but we are told to load and it doesn't contain source, so
1842 (begin
1843 (try-load-module name)
1844 already)
1845 ;; simply return it.
1846 already)
1847 (begin
1848 ;; Try to autoload it if we are told so
1849 (if (or (null? maybe-autoload) (car maybe-autoload))
1850 (try-load-module name))
1851 ;; Get/create it.
1852 (make-modules-in (current-module) full-name)))))))))
1853
1854 ;; Cheat. These bindings are needed by modules.c, but we don't want
1855 ;; to move their real definition here because that would be unnatural.
1856 ;;
1857 (define try-module-autoload #f)
1858 (define process-define-module #f)
1859 (define process-use-modules #f)
1860 (define module-export! #f)
1861 (define default-duplicate-binding-procedures #f)
1862
1863 (define %app (make-module 31))
1864 (define app %app) ;; for backwards compatability
1865
1866 (local-define '(%app modules) (make-module 31))
1867 (local-define '(%app modules guile) the-root-module)
1868
1869 ;; This boots the module system. All bindings needed by modules.c
1870 ;; must have been defined by now.
1871 ;;
1872 (set-current-module the-root-module)
1873
1874 ;; (define-special-value '(%app modules new-ws) (lambda () (make-scm-module)))
1875
1876 (define (try-load-module name)
1877 (or (begin-deprecated (try-module-linked name))
1878 (try-module-autoload name)
1879 (begin-deprecated (try-module-dynamic-link name))))
1880
1881 (define (purify-module! module)
1882 "Removes bindings in MODULE which are inherited from the (guile) module."
1883 (let ((use-list (module-uses module)))
1884 (if (and (pair? use-list)
1885 (eq? (car (last-pair use-list)) the-scm-module))
1886 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1887
1888 ;; Return a module that is an interface to the module designated by
1889 ;; NAME.
1890 ;;
1891 ;; `resolve-interface' takes four keyword arguments:
1892 ;;
1893 ;; #:select SELECTION
1894 ;;
1895 ;; SELECTION is a list of binding-specs to be imported; A binding-spec
1896 ;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1897 ;; is the name in the used module and SEEN is the name in the using
1898 ;; module. Note that SEEN is also passed through RENAMER, below. The
1899 ;; default is to select all bindings. If you specify no selection but
1900 ;; a renamer, only the bindings that already exist in the used module
1901 ;; are made available in the interface. Bindings that are added later
1902 ;; are not picked up.
1903 ;;
1904 ;; #:hide BINDINGS
1905 ;;
1906 ;; BINDINGS is a list of bindings which should not be imported.
1907 ;;
1908 ;; #:prefix PREFIX
1909 ;;
1910 ;; PREFIX is a symbol that will be appended to each exported name.
1911 ;; The default is to not perform any renaming.
1912 ;;
1913 ;; #:renamer RENAMER
1914 ;;
1915 ;; RENAMER is a procedure that takes a symbol and returns its new
1916 ;; name. The default is not perform any renaming.
1917 ;;
1918 ;; Signal "no code for module" error if module name is not resolvable
1919 ;; or its public interface is not available. Signal "no binding"
1920 ;; error if selected binding does not exist in the used module.
1921 ;;
1922 (define (resolve-interface name . args)
1923
1924 (define (get-keyword-arg args kw def)
1925 (cond ((memq kw args)
1926 => (lambda (kw-arg)
1927 (if (null? (cdr kw-arg))
1928 (error "keyword without value: " kw))
1929 (cadr kw-arg)))
1930 (else
1931 def)))
1932
1933 (let* ((select (get-keyword-arg args #:select #f))
1934 (hide (get-keyword-arg args #:hide '()))
1935 (renamer (or (get-keyword-arg args #:renamer #f)
1936 (let ((prefix (get-keyword-arg args #:prefix #f)))
1937 (and prefix (symbol-prefix-proc prefix)))
1938 identity))
1939 (module (resolve-module name))
1940 (public-i (and module (module-public-interface module))))
1941 (and (or (not module) (not public-i))
1942 (error "no code for module" name))
1943 (if (and (not select) (null? hide) (eq? renamer identity))
1944 public-i
1945 (let ((selection (or select (module-map (lambda (sym var) sym)
1946 public-i)))
1947 (custom-i (make-module 31)))
1948 (set-module-kind! custom-i 'custom-interface)
1949 (set-module-name! custom-i name)
1950 ;; XXX - should use a lazy binder so that changes to the
1951 ;; used module are picked up automatically.
1952 (for-each (lambda (bspec)
1953 (let* ((direct? (symbol? bspec))
1954 (orig (if direct? bspec (car bspec)))
1955 (seen (if direct? bspec (cdr bspec)))
1956 (var (or (module-local-variable public-i orig)
1957 (module-local-variable module orig)
1958 (error
1959 ;; fixme: format manually for now
1960 (simple-format
1961 #f "no binding `~A' in module ~A"
1962 orig name)))))
1963 (if (memq orig hide)
1964 (set! hide (delq! orig hide))
1965 (module-add! custom-i
1966 (renamer seen)
1967 var))))
1968 selection)
1969 ;; Check that we are not hiding bindings which don't exist
1970 (for-each (lambda (binding)
1971 (if (not (module-local-variable public-i binding))
1972 (error
1973 (simple-format
1974 #f "no binding `~A' to hide in module ~A"
1975 binding name))))
1976 hide)
1977 custom-i))))
1978
1979 (define (symbol-prefix-proc prefix)
1980 (lambda (symbol)
1981 (symbol-append prefix symbol)))
1982
1983 ;; This function is called from "modules.c". If you change it, be
1984 ;; sure to update "modules.c" as well.
1985
1986 (define (process-define-module args)
1987 (let* ((module-id (car args))
1988 (module (resolve-module module-id #f))
1989 (kws (cdr args))
1990 (unrecognized (lambda (arg)
1991 (error "unrecognized define-module argument" arg))))
1992 (beautify-user-module! module)
1993 (let loop ((kws kws)
1994 (reversed-interfaces '())
1995 (exports '())
1996 (re-exports '())
1997 (replacements '())
1998 (autoloads '()))
1999
2000 (if (null? kws)
2001 (call-with-deferred-observers
2002 (lambda ()
2003 (module-use-interfaces! module (reverse reversed-interfaces))
2004 (module-export! module exports)
2005 (module-replace! module replacements)
2006 (module-re-export! module re-exports)
2007 (if (not (null? autoloads))
2008 (apply module-autoload! module autoloads))))
2009 (case (car kws)
2010 ((#:use-module #:use-syntax)
2011 (or (pair? (cdr kws))
2012 (unrecognized kws))
2013 (let* ((interface-args (cadr kws))
2014 (interface (apply resolve-interface interface-args)))
2015 (and (eq? (car kws) #:use-syntax)
2016 (or (symbol? (caar interface-args))
2017 (error "invalid module name for use-syntax"
2018 (car interface-args)))
2019 (set-module-transformer!
2020 module
2021 (module-ref interface
2022 (car (last-pair (car interface-args)))
2023 #f)))
2024 (loop (cddr kws)
2025 (cons interface reversed-interfaces)
2026 exports
2027 re-exports
2028 replacements
2029 autoloads)))
2030 ((#:autoload)
2031 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
2032 (unrecognized kws))
2033 (loop (cdddr kws)
2034 reversed-interfaces
2035 exports
2036 re-exports
2037 replacements
2038 (let ((name (cadr kws))
2039 (bindings (caddr kws)))
2040 (cons* name bindings autoloads))))
2041 ((#:no-backtrace)
2042 (set-system-module! module #t)
2043 (loop (cdr kws) reversed-interfaces exports re-exports
2044 replacements autoloads))
2045 ((#:pure)
2046 (purify-module! module)
2047 (loop (cdr kws) reversed-interfaces exports re-exports
2048 replacements autoloads))
2049 ((#:duplicates)
2050 (if (not (pair? (cdr kws)))
2051 (unrecognized kws))
2052 (set-module-duplicates-handlers!
2053 module
2054 (lookup-duplicates-handlers (cadr kws)))
2055 (loop (cddr kws) reversed-interfaces exports re-exports
2056 replacements autoloads))
2057 ((#:export #:export-syntax)
2058 (or (pair? (cdr kws))
2059 (unrecognized kws))
2060 (loop (cddr kws)
2061 reversed-interfaces
2062 (append (cadr kws) exports)
2063 re-exports
2064 replacements
2065 autoloads))
2066 ((#:re-export #:re-export-syntax)
2067 (or (pair? (cdr kws))
2068 (unrecognized kws))
2069 (loop (cddr kws)
2070 reversed-interfaces
2071 exports
2072 (append (cadr kws) re-exports)
2073 replacements
2074 autoloads))
2075 ((#:replace #:replace-syntax)
2076 (or (pair? (cdr kws))
2077 (unrecognized kws))
2078 (loop (cddr kws)
2079 reversed-interfaces
2080 exports
2081 re-exports
2082 (append (cadr kws) replacements)
2083 autoloads))
2084 (else
2085 (unrecognized kws)))))
2086 (run-hook module-defined-hook module)
2087 module))
2088
2089 ;; `module-defined-hook' is a hook that is run whenever a new module
2090 ;; is defined. Its members are called with one argument, the new
2091 ;; module.
2092 (define module-defined-hook (make-hook 1))
2093
2094 \f
2095
2096 ;;; {Autoload}
2097 ;;;
2098
2099 (define (make-autoload-interface module name bindings)
2100 (let ((b (lambda (a sym definep)
2101 (and (memq sym bindings)
2102 (let ((i (module-public-interface (resolve-module name))))
2103 (if (not i)
2104 (error "missing interface for module" name))
2105 (let ((autoload (memq a (module-uses module))))
2106 ;; Replace autoload-interface with actual interface if
2107 ;; that has not happened yet.
2108 (if (pair? autoload)
2109 (set-car! autoload i)))
2110 (module-local-variable i sym))))))
2111 (module-constructor (make-hash-table 0) '() b #f #f name 'autoload #f
2112 (make-hash-table 0) '() (make-weak-value-hash-table 31))))
2113
2114 (define (module-autoload! module . args)
2115 "Have @var{module} automatically load the module named @var{name} when one
2116 of the symbols listed in @var{bindings} is looked up. @var{args} should be a
2117 list of module-name/binding-list pairs, e.g., as in @code{(module-autoload!
2118 module '(ice-9 q) '(make-q q-length))}."
2119 (let loop ((args args))
2120 (cond ((null? args)
2121 #t)
2122 ((null? (cdr args))
2123 (error "invalid name+binding autoload list" args))
2124 (else
2125 (let ((name (car args))
2126 (bindings (cadr args)))
2127 (module-use! module (make-autoload-interface module
2128 name bindings))
2129 (loop (cddr args)))))))
2130
2131
2132 ;;; {Compiled module}
2133
2134 (if (not (defined? 'load-compiled))
2135 (define load-compiled #f))
2136
2137 \f
2138
2139 ;;; {Autoloading modules}
2140 ;;;
2141
2142 (define autoloads-in-progress '())
2143
2144 ;; This function is called from "modules.c". If you change it, be
2145 ;; sure to update "modules.c" as well.
2146
2147 (define (try-module-autoload module-name)
2148 (let* ((reverse-name (reverse module-name))
2149 (name (symbol->string (car reverse-name)))
2150 (dir-hint-module-name (reverse (cdr reverse-name)))
2151 (dir-hint (apply string-append
2152 (map (lambda (elt)
2153 (string-append (symbol->string elt) "/"))
2154 dir-hint-module-name))))
2155 (resolve-module dir-hint-module-name #f)
2156 (and (not (autoload-done-or-in-progress? dir-hint name))
2157 (let ((didit #f))
2158 (define (load-file proc file)
2159 (save-module-excursion (lambda () (proc file)))
2160 (set! didit #t))
2161 (dynamic-wind
2162 (lambda () (autoload-in-progress! dir-hint name))
2163 (lambda ()
2164 (let ((file (in-vicinity dir-hint name)))
2165 (let ((compiled (and load-compiled
2166 (%search-load-path
2167 (string-append file ".go"))))
2168 (source (%search-load-path file)))
2169 (cond ((and source
2170 (or (not compiled)
2171 (< (stat:mtime (stat compiled))
2172 (stat:mtime (stat source)))))
2173 (if compiled
2174 (warn "source file" source "newer than" compiled))
2175 (with-fluids ((current-reader #f))
2176 (load-file primitive-load source)))
2177 (compiled
2178 (load-file load-compiled compiled))))))
2179 (lambda () (set-autoloaded! dir-hint name didit)))
2180 didit))))
2181
2182 \f
2183
2184 ;;; {Dynamic linking of modules}
2185 ;;;
2186
2187 (define autoloads-done '((guile . guile)))
2188
2189 (define (autoload-done-or-in-progress? p m)
2190 (let ((n (cons p m)))
2191 (->bool (or (member n autoloads-done)
2192 (member n autoloads-in-progress)))))
2193
2194 (define (autoload-done! p m)
2195 (let ((n (cons p m)))
2196 (set! autoloads-in-progress
2197 (delete! n autoloads-in-progress))
2198 (or (member n autoloads-done)
2199 (set! autoloads-done (cons n autoloads-done)))))
2200
2201 (define (autoload-in-progress! p m)
2202 (let ((n (cons p m)))
2203 (set! autoloads-done
2204 (delete! n autoloads-done))
2205 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2206
2207 (define (set-autoloaded! p m done?)
2208 (if done?
2209 (autoload-done! p m)
2210 (let ((n (cons p m)))
2211 (set! autoloads-done (delete! n autoloads-done))
2212 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2213
2214 \f
2215
2216 ;;; {Run-time options}
2217 ;;;
2218
2219 (defmacro define-option-interface (option-group)
2220 (let* ((option-name car)
2221 (option-value cadr)
2222 (option-documentation caddr)
2223
2224 ;; Below follow the macros defining the run-time option interfaces.
2225
2226 (make-options (lambda (interface)
2227 `(lambda args
2228 (cond ((null? args) (,interface))
2229 ((list? (car args))
2230 (,interface (car args)) (,interface))
2231 (else (for-each
2232 (lambda (option)
2233 (display (option-name option))
2234 (if (< (string-length
2235 (symbol->string (option-name option)))
2236 8)
2237 (display #\tab))
2238 (display #\tab)
2239 (display (option-value option))
2240 (display #\tab)
2241 (display (option-documentation option))
2242 (newline))
2243 (,interface #t)))))))
2244
2245 (make-enable (lambda (interface)
2246 `(lambda flags
2247 (,interface (append flags (,interface)))
2248 (,interface))))
2249
2250 (make-disable (lambda (interface)
2251 `(lambda flags
2252 (let ((options (,interface)))
2253 (for-each (lambda (flag)
2254 (set! options (delq! flag options)))
2255 flags)
2256 (,interface options)
2257 (,interface))))))
2258 (let* ((interface (car option-group))
2259 (options/enable/disable (cadr option-group)))
2260 `(begin
2261 (define ,(car options/enable/disable)
2262 ,(make-options interface))
2263 (define ,(cadr options/enable/disable)
2264 ,(make-enable interface))
2265 (define ,(caddr options/enable/disable)
2266 ,(make-disable interface))
2267 (defmacro ,(caaddr option-group) (opt val)
2268 `(,',(car options/enable/disable)
2269 (append (,',(car options/enable/disable))
2270 (list ',opt ,val))))))))
2271
2272 (define-option-interface
2273 (eval-options-interface
2274 (eval-options eval-enable eval-disable)
2275 (eval-set!)))
2276
2277 (define-option-interface
2278 (debug-options-interface
2279 (debug-options debug-enable debug-disable)
2280 (debug-set!)))
2281
2282 (define-option-interface
2283 (evaluator-traps-interface
2284 (traps trap-enable trap-disable)
2285 (trap-set!)))
2286
2287 (define-option-interface
2288 (read-options-interface
2289 (read-options read-enable read-disable)
2290 (read-set!)))
2291
2292 (define-option-interface
2293 (print-options-interface
2294 (print-options print-enable print-disable)
2295 (print-set!)))
2296
2297 \f
2298
2299 ;;; {Running Repls}
2300 ;;;
2301
2302 (define (repl read evaler print)
2303 (let loop ((source (read (current-input-port))))
2304 (print (evaler source))
2305 (loop (read (current-input-port)))))
2306
2307 ;; A provisional repl that acts like the SCM repl:
2308 ;;
2309 (define scm-repl-silent #f)
2310 (define (assert-repl-silence v) (set! scm-repl-silent v))
2311
2312 (define *unspecified* (if #f #f))
2313 (define (unspecified? v) (eq? v *unspecified*))
2314
2315 (define scm-repl-print-unspecified #f)
2316 (define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2317
2318 (define scm-repl-verbose #f)
2319 (define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2320
2321 (define scm-repl-prompt "guile> ")
2322
2323 (define (set-repl-prompt! v) (set! scm-repl-prompt v))
2324
2325 (define (default-lazy-handler key . args)
2326 (save-stack lazy-handler-dispatch)
2327 (apply throw key args))
2328
2329 (define (lazy-handler-dispatch key . args)
2330 (apply default-lazy-handler key args))
2331
2332 (define abort-hook (make-hook))
2333
2334 ;; these definitions are used if running a script.
2335 ;; otherwise redefined in error-catching-loop.
2336 (define (set-batch-mode?! arg) #t)
2337 (define (batch-mode?) #t)
2338
2339 (define (error-catching-loop thunk)
2340 (let ((status #f)
2341 (interactive #t))
2342 (define (loop first)
2343 (let ((next
2344 (catch #t
2345
2346 (lambda ()
2347 (call-with-unblocked-asyncs
2348 (lambda ()
2349 (with-traps
2350 (lambda ()
2351 (first)
2352
2353 ;; This line is needed because mark
2354 ;; doesn't do closures quite right.
2355 ;; Unreferenced locals should be
2356 ;; collected.
2357 (set! first #f)
2358 (let loop ((v (thunk)))
2359 (loop (thunk)))
2360 #f)))))
2361
2362 (lambda (key . args)
2363 (case key
2364 ((quit)
2365 (set! status args)
2366 #f)
2367
2368 ((switch-repl)
2369 (apply throw 'switch-repl args))
2370
2371 ((abort)
2372 ;; This is one of the closures that require
2373 ;; (set! first #f) above
2374 ;;
2375 (lambda ()
2376 (run-hook abort-hook)
2377 (force-output (current-output-port))
2378 (display "ABORT: " (current-error-port))
2379 (write args (current-error-port))
2380 (newline (current-error-port))
2381 (if interactive
2382 (begin
2383 (if (and
2384 (not has-shown-debugger-hint?)
2385 (not (memq 'backtrace
2386 (debug-options-interface)))
2387 (stack? (fluid-ref the-last-stack)))
2388 (begin
2389 (newline (current-error-port))
2390 (display
2391 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2392 (current-error-port))
2393 (set! has-shown-debugger-hint? #t)))
2394 (force-output (current-error-port)))
2395 (begin
2396 (primitive-exit 1)))
2397 (set! stack-saved? #f)))
2398
2399 (else
2400 ;; This is the other cons-leak closure...
2401 (lambda ()
2402 (cond ((= (length args) 4)
2403 (apply handle-system-error key args))
2404 (else
2405 (apply bad-throw key args)))))))
2406
2407 ;; Note that having just `lazy-handler-dispatch'
2408 ;; here is connected with the mechanism that
2409 ;; produces a nice backtrace upon error. If, for
2410 ;; example, this is replaced with (lambda args
2411 ;; (apply lazy-handler-dispatch args)), the stack
2412 ;; cutting (in save-stack) goes wrong and ends up
2413 ;; saving no stack at all, so there is no
2414 ;; backtrace.
2415 lazy-handler-dispatch)))
2416
2417 (if next (loop next) status)))
2418 (set! set-batch-mode?! (lambda (arg)
2419 (cond (arg
2420 (set! interactive #f)
2421 (restore-signals))
2422 (#t
2423 (error "sorry, not implemented")))))
2424 (set! batch-mode? (lambda () (not interactive)))
2425 (call-with-blocked-asyncs
2426 (lambda () (loop (lambda () #t))))))
2427
2428 ;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2429 (define before-signal-stack (make-fluid))
2430 (define stack-saved? #f)
2431
2432 (define (save-stack . narrowing)
2433 (or stack-saved?
2434 (cond ((not (memq 'debug (debug-options-interface)))
2435 (fluid-set! the-last-stack #f)
2436 (set! stack-saved? #t))
2437 (else
2438 (fluid-set!
2439 the-last-stack
2440 (case (stack-id #t)
2441 ((repl-stack)
2442 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2443 ((load-stack)
2444 (apply make-stack #t save-stack 0 #t 0 narrowing))
2445 ((tk-stack)
2446 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2447 ((#t)
2448 (apply make-stack #t save-stack 0 1 narrowing))
2449 (else
2450 (let ((id (stack-id #t)))
2451 (and (procedure? id)
2452 (apply make-stack #t save-stack id #t 0 narrowing))))))
2453 (set! stack-saved? #t)))))
2454
2455 (define before-error-hook (make-hook))
2456 (define after-error-hook (make-hook))
2457 (define before-backtrace-hook (make-hook))
2458 (define after-backtrace-hook (make-hook))
2459
2460 (define has-shown-debugger-hint? #f)
2461
2462 (define (handle-system-error key . args)
2463 (let ((cep (current-error-port)))
2464 (cond ((not (stack? (fluid-ref the-last-stack))))
2465 ((memq 'backtrace (debug-options-interface))
2466 (let ((highlights (if (or (eq? key 'wrong-type-arg)
2467 (eq? key 'out-of-range))
2468 (list-ref args 3)
2469 '())))
2470 (run-hook before-backtrace-hook)
2471 (newline cep)
2472 (display "Backtrace:\n")
2473 (display-backtrace (fluid-ref the-last-stack) cep
2474 #f #f highlights)
2475 (newline cep)
2476 (run-hook after-backtrace-hook))))
2477 (run-hook before-error-hook)
2478 (apply display-error (fluid-ref the-last-stack) cep args)
2479 (run-hook after-error-hook)
2480 (force-output cep)
2481 (throw 'abort key)))
2482
2483 (define (quit . args)
2484 (apply throw 'quit args))
2485
2486 (define exit quit)
2487
2488 ;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2489
2490 ;; Replaced by C code:
2491 ;;(define (backtrace)
2492 ;; (if (fluid-ref the-last-stack)
2493 ;; (begin
2494 ;; (newline)
2495 ;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2496 ;; (newline)
2497 ;; (if (and (not has-shown-backtrace-hint?)
2498 ;; (not (memq 'backtrace (debug-options-interface))))
2499 ;; (begin
2500 ;; (display
2501 ;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2502 ;;automatically if an error occurs in the future.\n")
2503 ;; (set! has-shown-backtrace-hint? #t))))
2504 ;; (display "No backtrace available.\n")))
2505
2506 (define (error-catching-repl r e p)
2507 (error-catching-loop
2508 (lambda ()
2509 (call-with-values (lambda () (e (r)))
2510 (lambda the-values (for-each p the-values))))))
2511
2512 (define (gc-run-time)
2513 (cdr (assq 'gc-time-taken (gc-stats))))
2514
2515 (define before-read-hook (make-hook))
2516 (define after-read-hook (make-hook))
2517 (define before-eval-hook (make-hook 1))
2518 (define after-eval-hook (make-hook 1))
2519 (define before-print-hook (make-hook 1))
2520 (define after-print-hook (make-hook 1))
2521
2522 ;;; The default repl-reader function. We may override this if we've
2523 ;;; the readline library.
2524 (define repl-reader
2525 (lambda (prompt)
2526 (display (if (string? prompt) prompt (prompt)))
2527 (force-output)
2528 (run-hook before-read-hook)
2529 ((or (fluid-ref current-reader) read) (current-input-port))))
2530
2531 (define (scm-style-repl)
2532
2533 (letrec (
2534 (start-gc-rt #f)
2535 (start-rt #f)
2536 (repl-report-start-timing (lambda ()
2537 (set! start-gc-rt (gc-run-time))
2538 (set! start-rt (get-internal-run-time))))
2539 (repl-report (lambda ()
2540 (display ";;; ")
2541 (display (inexact->exact
2542 (* 1000 (/ (- (get-internal-run-time) start-rt)
2543 internal-time-units-per-second))))
2544 (display " msec (")
2545 (display (inexact->exact
2546 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2547 internal-time-units-per-second))))
2548 (display " msec in gc)\n")))
2549
2550 (consume-trailing-whitespace
2551 (lambda ()
2552 (let ((ch (peek-char)))
2553 (cond
2554 ((eof-object? ch))
2555 ((or (char=? ch #\space) (char=? ch #\tab))
2556 (read-char)
2557 (consume-trailing-whitespace))
2558 ((char=? ch #\newline)
2559 (read-char))))))
2560 (-read (lambda ()
2561 (let ((val
2562 (let ((prompt (cond ((string? scm-repl-prompt)
2563 scm-repl-prompt)
2564 ((thunk? scm-repl-prompt)
2565 (scm-repl-prompt))
2566 (scm-repl-prompt "> ")
2567 (else ""))))
2568 (repl-reader prompt))))
2569
2570 ;; As described in R4RS, the READ procedure updates the
2571 ;; port to point to the first character past the end of
2572 ;; the external representation of the object. This
2573 ;; means that it doesn't consume the newline typically
2574 ;; found after an expression. This means that, when
2575 ;; debugging Guile with GDB, GDB gets the newline, which
2576 ;; it often interprets as a "continue" command, making
2577 ;; breakpoints kind of useless. So, consume any
2578 ;; trailing newline here, as well as any whitespace
2579 ;; before it.
2580 ;; But not if EOF, for control-D.
2581 (if (not (eof-object? val))
2582 (consume-trailing-whitespace))
2583 (run-hook after-read-hook)
2584 (if (eof-object? val)
2585 (begin
2586 (repl-report-start-timing)
2587 (if scm-repl-verbose
2588 (begin
2589 (newline)
2590 (display ";;; EOF -- quitting")
2591 (newline)))
2592 (quit 0)))
2593 val)))
2594
2595 (-eval (lambda (sourc)
2596 (repl-report-start-timing)
2597 (run-hook before-eval-hook sourc)
2598 (let ((val (start-stack 'repl-stack
2599 ;; If you change this procedure
2600 ;; (primitive-eval), please also
2601 ;; modify the repl-stack case in
2602 ;; save-stack so that stack cutting
2603 ;; continues to work.
2604 (primitive-eval sourc))))
2605 (run-hook after-eval-hook sourc)
2606 val)))
2607
2608
2609 (-print (let ((maybe-print (lambda (result)
2610 (if (or scm-repl-print-unspecified
2611 (not (unspecified? result)))
2612 (begin
2613 (write result)
2614 (newline))))))
2615 (lambda (result)
2616 (if (not scm-repl-silent)
2617 (begin
2618 (run-hook before-print-hook result)
2619 (maybe-print result)
2620 (run-hook after-print-hook result)
2621 (if scm-repl-verbose
2622 (repl-report))
2623 (force-output))))))
2624
2625 (-quit (lambda (args)
2626 (if scm-repl-verbose
2627 (begin
2628 (display ";;; QUIT executed, repl exitting")
2629 (newline)
2630 (repl-report)))
2631 args))
2632
2633 (-abort (lambda ()
2634 (if scm-repl-verbose
2635 (begin
2636 (display ";;; ABORT executed.")
2637 (newline)
2638 (repl-report)))
2639 (repl -read -eval -print))))
2640
2641 (let ((status (error-catching-repl -read
2642 -eval
2643 -print)))
2644 (-quit status))))
2645
2646
2647 \f
2648
2649 ;;; {IOTA functions: generating lists of numbers}
2650 ;;;
2651
2652 (define (iota n)
2653 (let loop ((count (1- n)) (result '()))
2654 (if (< count 0) result
2655 (loop (1- count) (cons count result)))))
2656
2657 \f
2658
2659 ;;; {collect}
2660 ;;;
2661 ;;; Similar to `begin' but returns a list of the results of all constituent
2662 ;;; forms instead of the result of the last form.
2663 ;;; (The definition relies on the current left-to-right
2664 ;;; order of evaluation of operands in applications.)
2665 ;;;
2666
2667 (defmacro collect forms
2668 (cons 'list forms))
2669
2670 \f
2671
2672 ;;; {with-fluids}
2673 ;;;
2674
2675 ;; with-fluids is a convenience wrapper for the builtin procedure
2676 ;; `with-fluids*'. The syntax is just like `let':
2677 ;;
2678 ;; (with-fluids ((fluid val)
2679 ;; ...)
2680 ;; body)
2681
2682 (defmacro with-fluids (bindings . body)
2683 (let ((fluids (map car bindings))
2684 (values (map cadr bindings)))
2685 (if (and (= (length fluids) 1) (= (length values) 1))
2686 `(with-fluid* ,(car fluids) ,(car values) (lambda () ,@body))
2687 `(with-fluids* (list ,@fluids) (list ,@values)
2688 (lambda () ,@body)))))
2689
2690 \f
2691
2692 ;;; {Macros}
2693 ;;;
2694
2695 ;; actually....hobbit might be able to hack these with a little
2696 ;; coaxing
2697 ;;
2698
2699 (define (primitive-macro? m)
2700 (and (macro? m)
2701 (not (macro-transformer m))))
2702
2703 (defmacro define-macro (first . rest)
2704 (let ((name (if (symbol? first) first (car first)))
2705 (transformer
2706 (if (symbol? first)
2707 (car rest)
2708 `(lambda ,(cdr first) ,@rest))))
2709 `(eval-case
2710 ((load-toplevel compile-toplevel)
2711 (define ,name (defmacro:transformer ,transformer)))
2712 (else
2713 (error "define-macro can only be used at the top level")))))
2714
2715
2716 \f
2717
2718 ;;; {While}
2719 ;;;
2720 ;;; with `continue' and `break'.
2721 ;;;
2722
2723 ;; The inner `do' loop avoids re-establishing a catch every iteration,
2724 ;; that's only necessary if continue is actually used. A new key is
2725 ;; generated every time, so break and continue apply to their originating
2726 ;; `while' even when recursing.
2727 ;;
2728 ;; FIXME: This macro is unintentionally unhygienic with respect to let,
2729 ;; make-symbol, do, throw, catch, lambda, and not.
2730 ;;
2731 (define-macro (while cond . body)
2732 (let ((keyvar (make-symbol "while-keyvar")))
2733 `(let ((,keyvar (make-symbol "while-key")))
2734 (do ()
2735 ((catch ,keyvar
2736 (lambda ()
2737 (let ((break (lambda () (throw ,keyvar #t)))
2738 (continue (lambda () (throw ,keyvar #f))))
2739 (do ()
2740 ((not ,cond))
2741 ,@body)
2742 #t))
2743 (lambda (key arg)
2744 arg)))))))
2745
2746
2747 \f
2748
2749 ;;; {Module System Macros}
2750 ;;;
2751
2752 ;; Return a list of expressions that evaluate to the appropriate
2753 ;; arguments for resolve-interface according to SPEC.
2754
2755 (eval-case
2756 ((compile-toplevel)
2757 (if (memq 'prefix (read-options))
2758 (error "boot-9 must be compiled with #:kw, not :kw"))))
2759
2760 (define (compile-interface-spec spec)
2761 (define (make-keyarg sym key quote?)
2762 (cond ((or (memq sym spec)
2763 (memq key spec))
2764 => (lambda (rest)
2765 (if quote?
2766 (list key (list 'quote (cadr rest)))
2767 (list key (cadr rest)))))
2768 (else
2769 '())))
2770 (define (map-apply func list)
2771 (map (lambda (args) (apply func args)) list))
2772 (define keys
2773 ;; sym key quote?
2774 '((:select #:select #t)
2775 (:hide #:hide #t)
2776 (:prefix #:prefix #t)
2777 (:renamer #:renamer #f)))
2778 (if (not (pair? (car spec)))
2779 `(',spec)
2780 `(',(car spec)
2781 ,@(apply append (map-apply make-keyarg keys)))))
2782
2783 (define (keyword-like-symbol->keyword sym)
2784 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2785
2786 (define (compile-define-module-args args)
2787 ;; Just quote everything except #:use-module and #:use-syntax. We
2788 ;; need to know about all arguments regardless since we want to turn
2789 ;; symbols that look like keywords into real keywords, and the
2790 ;; keyword args in a define-module form are not regular
2791 ;; (i.e. no-backtrace doesn't take a value).
2792 (let loop ((compiled-args `((quote ,(car args))))
2793 (args (cdr args)))
2794 (cond ((null? args)
2795 (reverse! compiled-args))
2796 ;; symbol in keyword position
2797 ((symbol? (car args))
2798 (loop compiled-args
2799 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2800 ((memq (car args) '(#:no-backtrace #:pure))
2801 (loop (cons (car args) compiled-args)
2802 (cdr args)))
2803 ((null? (cdr args))
2804 (error "keyword without value:" (car args)))
2805 ((memq (car args) '(#:use-module #:use-syntax))
2806 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2807 (car args)
2808 compiled-args)
2809 (cddr args)))
2810 ((eq? (car args) #:autoload)
2811 (loop (cons* `(quote ,(caddr args))
2812 `(quote ,(cadr args))
2813 (car args)
2814 compiled-args)
2815 (cdddr args)))
2816 (else
2817 (loop (cons* `(quote ,(cadr args))
2818 (car args)
2819 compiled-args)
2820 (cddr args))))))
2821
2822 (defmacro define-module args
2823 `(eval-case
2824 ((load-toplevel compile-toplevel)
2825 (let ((m (process-define-module
2826 (list ,@(compile-define-module-args args)))))
2827 (set-current-module m)
2828 m))
2829 (else
2830 (error "define-module can only be used at the top level"))))
2831
2832 ;; The guts of the use-modules macro. Add the interfaces of the named
2833 ;; modules to the use-list of the current module, in order.
2834
2835 ;; This function is called by "modules.c". If you change it, be sure
2836 ;; to change scm_c_use_module as well.
2837
2838 (define (process-use-modules module-interface-args)
2839 (let ((interfaces (map (lambda (mif-args)
2840 (or (apply resolve-interface mif-args)
2841 (error "no such module" mif-args)))
2842 module-interface-args)))
2843 (call-with-deferred-observers
2844 (lambda ()
2845 (module-use-interfaces! (current-module) interfaces)))))
2846
2847 (defmacro use-modules modules
2848 `(eval-case
2849 ((load-toplevel compile-toplevel)
2850 (process-use-modules
2851 (list ,@(map (lambda (m)
2852 `(list ,@(compile-interface-spec m)))
2853 modules)))
2854 *unspecified*)
2855 (else
2856 (error "use-modules can only be used at the top level"))))
2857
2858 (defmacro use-syntax (spec)
2859 `(eval-case
2860 ((load-toplevel compile-toplevel)
2861 ,@(if (pair? spec)
2862 `((process-use-modules (list
2863 (list ,@(compile-interface-spec spec))))
2864 (set-module-transformer! (current-module)
2865 ,(car (last-pair spec))))
2866 `((set-module-transformer! (current-module) ,spec)))
2867 *unspecified*)
2868 (else
2869 (error "use-syntax can only be used at the top level"))))
2870
2871 ;; Dirk:FIXME:: This incorrect (according to R5RS) syntax needs to be changed
2872 ;; as soon as guile supports hygienic macros.
2873 (define define-private define)
2874
2875 (defmacro define-public args
2876 (define (syntax)
2877 (error "bad syntax" (list 'define-public args)))
2878 (define (defined-name n)
2879 (cond
2880 ((symbol? n) n)
2881 ((pair? n) (defined-name (car n)))
2882 (else (syntax))))
2883 (cond
2884 ((null? args)
2885 (syntax))
2886 (#t
2887 (let ((name (defined-name (car args))))
2888 `(begin
2889 (define-private ,@args)
2890 (eval-case ((load-toplevel compile-toplevel) (export ,name))))))))
2891
2892 (defmacro defmacro-public args
2893 (define (syntax)
2894 (error "bad syntax" (list 'defmacro-public args)))
2895 (define (defined-name n)
2896 (cond
2897 ((symbol? n) n)
2898 (else (syntax))))
2899 (cond
2900 ((null? args)
2901 (syntax))
2902 (#t
2903 (let ((name (defined-name (car args))))
2904 `(begin
2905 (eval-case ((load-toplevel compile-toplevel) (export-syntax ,name)))
2906 (defmacro ,@args))))))
2907
2908 ;; Export a local variable
2909
2910 ;; This function is called from "modules.c". If you change it, be
2911 ;; sure to update "modules.c" as well.
2912
2913 (define (module-export! m names)
2914 (let ((public-i (module-public-interface m)))
2915 (for-each (lambda (name)
2916 (let ((var (module-ensure-local-variable! m name)))
2917 (module-add! public-i name var)))
2918 names)))
2919
2920 (define (module-replace! m names)
2921 (let ((public-i (module-public-interface m)))
2922 (for-each (lambda (name)
2923 (let ((var (module-ensure-local-variable! m name)))
2924 (set-object-property! var 'replace #t)
2925 (module-add! public-i name var)))
2926 names)))
2927
2928 ;; Re-export a imported variable
2929 ;;
2930 (define (module-re-export! m names)
2931 (let ((public-i (module-public-interface m)))
2932 (for-each (lambda (name)
2933 (let ((var (module-variable m name)))
2934 (cond ((not var)
2935 (error "Undefined variable:" name))
2936 ((eq? var (module-local-variable m name))
2937 (error "re-exporting local variable:" name))
2938 (else
2939 (module-add! public-i name var)))))
2940 names)))
2941
2942 (defmacro export names
2943 `(eval-case
2944 ((load-toplevel compile-toplevel)
2945 (call-with-deferred-observers
2946 (lambda ()
2947 (module-export! (current-module) ',names))))
2948 (else
2949 (error "export can only be used at the top level"))))
2950
2951 (defmacro re-export names
2952 `(eval-case
2953 ((load-toplevel compile-toplevel)
2954 (call-with-deferred-observers
2955 (lambda ()
2956 (module-re-export! (current-module) ',names))))
2957 (else
2958 (error "re-export can only be used at the top level"))))
2959
2960 (defmacro export-syntax names
2961 `(export ,@names))
2962
2963 (defmacro re-export-syntax names
2964 `(re-export ,@names))
2965
2966 (define load load-module)
2967
2968 ;; The following macro allows one to write, for example,
2969 ;;
2970 ;; (@ (ice-9 pretty-print) pretty-print)
2971 ;;
2972 ;; to refer directly to the pretty-print variable in module (ice-9
2973 ;; pretty-print). It works by looking up the variable and inserting
2974 ;; it directly into the code. This is understood by the evaluator.
2975 ;; Indeed, all references to global variables are memoized into such
2976 ;; variable objects.
2977
2978 (define-macro (@ mod-name var-name)
2979 (let ((var (module-variable (resolve-interface mod-name) var-name)))
2980 (if (not var)
2981 (error "no such public variable" (list '@ mod-name var-name)))
2982 var))
2983
2984 ;; The '@@' macro is like '@' but it can also access bindings that
2985 ;; have not been explicitely exported.
2986
2987 (define-macro (@@ mod-name var-name)
2988 (let ((var (module-variable (resolve-module mod-name) var-name)))
2989 (if (not var)
2990 (error "no such variable" (list '@@ mod-name var-name)))
2991 var))
2992
2993 \f
2994
2995 ;;; {Compiler interface}
2996 ;;;
2997 ;;; The full compiler interface can be found in (system). Here we put a
2998 ;;; few useful procedures into the global namespace.
2999
3000 (module-autoload! the-scm-module
3001 '(system base compile)
3002 '(compile
3003 compile-time-environment))
3004
3005
3006 \f
3007
3008 ;;; {Parameters}
3009 ;;;
3010
3011 (define make-mutable-parameter
3012 (let ((make (lambda (fluid converter)
3013 (lambda args
3014 (if (null? args)
3015 (fluid-ref fluid)
3016 (fluid-set! fluid (converter (car args))))))))
3017 (lambda (init . converter)
3018 (let ((fluid (make-fluid))
3019 (converter (if (null? converter)
3020 identity
3021 (car converter))))
3022 (fluid-set! fluid (converter init))
3023 (make fluid converter)))))
3024
3025 \f
3026
3027 ;;; {Handling of duplicate imported bindings}
3028 ;;;
3029
3030 ;; Duplicate handlers take the following arguments:
3031 ;;
3032 ;; module importing module
3033 ;; name conflicting name
3034 ;; int1 old interface where name occurs
3035 ;; val1 value of binding in old interface
3036 ;; int2 new interface where name occurs
3037 ;; val2 value of binding in new interface
3038 ;; var previous resolution or #f
3039 ;; val value of previous resolution
3040 ;;
3041 ;; A duplicate handler can take three alternative actions:
3042 ;;
3043 ;; 1. return #f => leave responsibility to next handler
3044 ;; 2. exit with an error
3045 ;; 3. return a variable resolving the conflict
3046 ;;
3047
3048 (define duplicate-handlers
3049 (let ((m (make-module 7)))
3050
3051 (define (check module name int1 val1 int2 val2 var val)
3052 (scm-error 'misc-error
3053 #f
3054 "~A: `~A' imported from both ~A and ~A"
3055 (list (module-name module)
3056 name
3057 (module-name int1)
3058 (module-name int2))
3059 #f))
3060
3061 (define (warn module name int1 val1 int2 val2 var val)
3062 (format (current-error-port)
3063 "WARNING: ~A: `~A' imported from both ~A and ~A\n"
3064 (module-name module)
3065 name
3066 (module-name int1)
3067 (module-name int2))
3068 #f)
3069
3070 (define (replace module name int1 val1 int2 val2 var val)
3071 (let ((old (or (and var (object-property var 'replace) var)
3072 (module-variable int1 name)))
3073 (new (module-variable int2 name)))
3074 (if (object-property old 'replace)
3075 (and (or (eq? old new)
3076 (not (object-property new 'replace)))
3077 old)
3078 (and (object-property new 'replace)
3079 new))))
3080
3081 (define (warn-override-core module name int1 val1 int2 val2 var val)
3082 (and (eq? int1 the-scm-module)
3083 (begin
3084 (format (current-error-port)
3085 "WARNING: ~A: imported module ~A overrides core binding `~A'\n"
3086 (module-name module)
3087 (module-name int2)
3088 name)
3089 (module-local-variable int2 name))))
3090
3091 (define (first module name int1 val1 int2 val2 var val)
3092 (or var (module-local-variable int1 name)))
3093
3094 (define (last module name int1 val1 int2 val2 var val)
3095 (module-local-variable int2 name))
3096
3097 (define (noop module name int1 val1 int2 val2 var val)
3098 #f)
3099
3100 (set-module-name! m 'duplicate-handlers)
3101 (set-module-kind! m 'interface)
3102 (module-define! m 'check check)
3103 (module-define! m 'warn warn)
3104 (module-define! m 'replace replace)
3105 (module-define! m 'warn-override-core warn-override-core)
3106 (module-define! m 'first first)
3107 (module-define! m 'last last)
3108 (module-define! m 'merge-generics noop)
3109 (module-define! m 'merge-accessors noop)
3110 m))
3111
3112 (define (lookup-duplicates-handlers handler-names)
3113 (and handler-names
3114 (map (lambda (handler-name)
3115 (or (module-symbol-local-binding
3116 duplicate-handlers handler-name #f)
3117 (error "invalid duplicate handler name:"
3118 handler-name)))
3119 (if (list? handler-names)
3120 handler-names
3121 (list handler-names)))))
3122
3123 (define default-duplicate-binding-procedures
3124 (make-mutable-parameter #f))
3125
3126 (define default-duplicate-binding-handler
3127 (make-mutable-parameter '(replace warn-override-core warn last)
3128 (lambda (handler-names)
3129 (default-duplicate-binding-procedures
3130 (lookup-duplicates-handlers handler-names))
3131 handler-names)))
3132
3133 \f
3134
3135 ;;; {`cond-expand' for SRFI-0 support.}
3136 ;;;
3137 ;;; This syntactic form expands into different commands or
3138 ;;; definitions, depending on the features provided by the Scheme
3139 ;;; implementation.
3140 ;;;
3141 ;;; Syntax:
3142 ;;;
3143 ;;; <cond-expand>
3144 ;;; --> (cond-expand <cond-expand-clause>+)
3145 ;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
3146 ;;; <cond-expand-clause>
3147 ;;; --> (<feature-requirement> <command-or-definition>*)
3148 ;;; <feature-requirement>
3149 ;;; --> <feature-identifier>
3150 ;;; | (and <feature-requirement>*)
3151 ;;; | (or <feature-requirement>*)
3152 ;;; | (not <feature-requirement>)
3153 ;;; <feature-identifier>
3154 ;;; --> <a symbol which is the name or alias of a SRFI>
3155 ;;;
3156 ;;; Additionally, this implementation provides the
3157 ;;; <feature-identifier>s `guile' and `r5rs', so that programs can
3158 ;;; determine the implementation type and the supported standard.
3159 ;;;
3160 ;;; Currently, the following feature identifiers are supported:
3161 ;;;
3162 ;;; guile r5rs srfi-0 srfi-4 srfi-6 srfi-13 srfi-14 srfi-55 srfi-61
3163 ;;;
3164 ;;; Remember to update the features list when adding more SRFIs.
3165 ;;;
3166
3167 (define %cond-expand-features
3168 ;; Adjust the above comment when changing this.
3169 '(guile
3170 r5rs
3171 srfi-0 ;; cond-expand itself
3172 srfi-4 ;; homogenous numeric vectors
3173 srfi-6 ;; open-input-string etc, in the guile core
3174 srfi-13 ;; string library
3175 srfi-14 ;; character sets
3176 srfi-55 ;; require-extension
3177 srfi-61 ;; general cond clause
3178 ))
3179
3180 ;; This table maps module public interfaces to the list of features.
3181 ;;
3182 (define %cond-expand-table (make-hash-table 31))
3183
3184 ;; Add one or more features to the `cond-expand' feature list of the
3185 ;; module `module'.
3186 ;;
3187 (define (cond-expand-provide module features)
3188 (let ((mod (module-public-interface module)))
3189 (and mod
3190 (hashq-set! %cond-expand-table mod
3191 (append (hashq-ref %cond-expand-table mod '())
3192 features)))))
3193
3194 (define cond-expand
3195 (procedure->memoizing-macro
3196 (lambda (exp env)
3197 (let ((clauses (cdr exp))
3198 (syntax-error (lambda (cl)
3199 (error "invalid clause in `cond-expand'" cl))))
3200 (letrec
3201 ((test-clause
3202 (lambda (clause)
3203 (cond
3204 ((symbol? clause)
3205 (or (memq clause %cond-expand-features)
3206 (let lp ((uses (module-uses (env-module env))))
3207 (if (pair? uses)
3208 (or (memq clause
3209 (hashq-ref %cond-expand-table
3210 (car uses) '()))
3211 (lp (cdr uses)))
3212 #f))))
3213 ((pair? clause)
3214 (cond
3215 ((eq? 'and (car clause))
3216 (let lp ((l (cdr clause)))
3217 (cond ((null? l)
3218 #t)
3219 ((pair? l)
3220 (and (test-clause (car l)) (lp (cdr l))))
3221 (else
3222 (syntax-error clause)))))
3223 ((eq? 'or (car clause))
3224 (let lp ((l (cdr clause)))
3225 (cond ((null? l)
3226 #f)
3227 ((pair? l)
3228 (or (test-clause (car l)) (lp (cdr l))))
3229 (else
3230 (syntax-error clause)))))
3231 ((eq? 'not (car clause))
3232 (cond ((not (pair? (cdr clause)))
3233 (syntax-error clause))
3234 ((pair? (cddr clause))
3235 ((syntax-error clause))))
3236 (not (test-clause (cadr clause))))
3237 (else
3238 (syntax-error clause))))
3239 (else
3240 (syntax-error clause))))))
3241 (let lp ((c clauses))
3242 (cond
3243 ((null? c)
3244 (error "Unfulfilled `cond-expand'"))
3245 ((not (pair? c))
3246 (syntax-error c))
3247 ((not (pair? (car c)))
3248 (syntax-error (car c)))
3249 ((test-clause (caar c))
3250 `(begin ,@(cdar c)))
3251 ((eq? (caar c) 'else)
3252 (if (pair? (cdr c))
3253 (syntax-error c))
3254 `(begin ,@(cdar c)))
3255 (else
3256 (lp (cdr c))))))))))
3257
3258 ;; This procedure gets called from the startup code with a list of
3259 ;; numbers, which are the numbers of the SRFIs to be loaded on startup.
3260 ;;
3261 (define (use-srfis srfis)
3262 (process-use-modules
3263 (map (lambda (num)
3264 (list (list 'srfi (string->symbol
3265 (string-append "srfi-" (number->string num))))))
3266 srfis)))
3267
3268 \f
3269
3270 ;;; srfi-55: require-extension
3271 ;;;
3272
3273 (define-macro (require-extension extension-spec)
3274 ;; This macro only handles the srfi extension, which, at present, is
3275 ;; the only one defined by the standard.
3276 (if (not (pair? extension-spec))
3277 (scm-error 'wrong-type-arg "require-extension"
3278 "Not an extension: ~S" (list extension-spec) #f))
3279 (let ((extension (car extension-spec))
3280 (extension-args (cdr extension-spec)))
3281 (case extension
3282 ((srfi)
3283 (let ((use-list '()))
3284 (for-each
3285 (lambda (i)
3286 (if (not (integer? i))
3287 (scm-error 'wrong-type-arg "require-extension"
3288 "Invalid srfi name: ~S" (list i) #f))
3289 (let ((srfi-sym (string->symbol
3290 (string-append "srfi-" (number->string i)))))
3291 (if (not (memq srfi-sym %cond-expand-features))
3292 (set! use-list (cons `(use-modules (srfi ,srfi-sym))
3293 use-list)))))
3294 extension-args)
3295 (if (pair? use-list)
3296 ;; i.e. (begin (use-modules x) (use-modules y) (use-modules z))
3297 `(begin ,@(reverse! use-list)))))
3298 (else
3299 (scm-error
3300 'wrong-type-arg "require-extension"
3301 "Not a recognized extension type: ~S" (list extension) #f)))))
3302
3303 \f
3304
3305 ;;; {Load emacs interface support if emacs option is given.}
3306 ;;;
3307
3308 (define (named-module-use! user usee)
3309 (module-use! (resolve-module user) (resolve-interface usee)))
3310
3311 (define (load-emacs-interface)
3312 (and (provided? 'debug-extensions)
3313 (debug-enable 'backtrace))
3314 (named-module-use! '(guile-user) '(ice-9 emacs)))
3315
3316 \f
3317
3318 (define using-readline?
3319 (let ((using-readline? (make-fluid)))
3320 (make-procedure-with-setter
3321 (lambda () (fluid-ref using-readline?))
3322 (lambda (v) (fluid-set! using-readline? v)))))
3323
3324 (define (top-repl)
3325 (let ((guile-user-module (resolve-module '(guile-user))))
3326
3327 ;; Load emacs interface support if emacs option is given.
3328 (if (and (module-defined? guile-user-module 'use-emacs-interface)
3329 (module-ref guile-user-module 'use-emacs-interface))
3330 (load-emacs-interface))
3331
3332 ;; Use some convenient modules (in reverse order)
3333
3334 (set-current-module guile-user-module)
3335 (process-use-modules
3336 (append
3337 '(((ice-9 r5rs))
3338 ((ice-9 session))
3339 ((ice-9 debug)))
3340 (if (provided? 'regex)
3341 '(((ice-9 regex)))
3342 '())
3343 (if (provided? 'threads)
3344 '(((ice-9 threads)))
3345 '())))
3346 ;; load debugger on demand
3347 (module-autoload! guile-user-module '(ice-9 debugger) '(debug))
3348
3349 ;; Note: SIGFPE, SIGSEGV and SIGBUS are actually "query-only" (see
3350 ;; scmsigs.c scm_sigaction_for_thread), so the handlers setup here have
3351 ;; no effect.
3352 (let ((old-handlers #f)
3353 (start-repl (module-ref (resolve-interface '(system repl repl))
3354 'start-repl))
3355 (signals (if (provided? 'posix)
3356 `((,SIGINT . "User interrupt")
3357 (,SIGFPE . "Arithmetic error")
3358 (,SIGSEGV
3359 . "Bad memory access (Segmentation violation)"))
3360 '())))
3361 ;; no SIGBUS on mingw
3362 (if (defined? 'SIGBUS)
3363 (set! signals (acons SIGBUS "Bad memory access (bus error)"
3364 signals)))
3365
3366 (dynamic-wind
3367
3368 ;; call at entry
3369 (lambda ()
3370 (let ((make-handler (lambda (msg)
3371 (lambda (sig)
3372 ;; Make a backup copy of the stack
3373 (fluid-set! before-signal-stack
3374 (fluid-ref the-last-stack))
3375 (save-stack 2)
3376 (scm-error 'signal
3377 #f
3378 msg
3379 #f
3380 (list sig))))))
3381 (set! old-handlers
3382 (map (lambda (sig-msg)
3383 (sigaction (car sig-msg)
3384 (make-handler (cdr sig-msg))))
3385 signals))))
3386
3387 ;; the protected thunk.
3388 (lambda ()
3389 (let ((status (start-repl 'scheme)))
3390 (run-hook exit-hook)
3391 status))
3392
3393 ;; call at exit.
3394 (lambda ()
3395 (map (lambda (sig-msg old-handler)
3396 (if (not (car old-handler))
3397 ;; restore original C handler.
3398 (sigaction (car sig-msg) #f)
3399 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3400 (sigaction (car sig-msg)
3401 (car old-handler)
3402 (cdr old-handler))))
3403 signals old-handlers))))))
3404
3405 ;;; This hook is run at the very end of an interactive session.
3406 ;;;
3407 (define exit-hook (make-hook))
3408
3409 \f
3410
3411 ;;; {Deprecated stuff}
3412 ;;;
3413
3414 (begin-deprecated
3415 (define (feature? sym)
3416 (issue-deprecation-warning
3417 "`feature?' is deprecated. Use `provided?' instead.")
3418 (provided? sym)))
3419
3420 (begin-deprecated
3421 (primitive-load-path "ice-9/deprecated"))
3422
3423 \f
3424
3425 ;;; Place the user in the guile-user module.
3426 ;;;
3427
3428 (define-module (guile-user))
3429
3430 ;;; boot-9.scm ends here