New directory
[bpt/emacs.git] / src / regex.c
dissimilarity index 65%
index 8ddf63c..f55cc5a 100644 (file)
-/* Extended regular expression matching and search library,
-   version 0.12.
-   (Implements POSIX draft P10003.2/D11.2, except for
-   internationalization features.)
-
-   Copyright (C) 1993, 1994, 1995, 1996 Free Software Foundation, Inc.
-
-   This program is free software; you can redistribute it and/or modify
-   it under the terms of the GNU General Public License as published by
-   the Free Software Foundation; either version 2, or (at your option)
-   any later version.
-
-   This program is distributed in the hope that it will be useful,
-   but WITHOUT ANY WARRANTY; without even the implied warranty of
-   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
-   GNU General Public License for more details.
-
-   You should have received a copy of the GNU General Public License
-   along with this program; if not, write to the Free Software
-   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
-   USA.  */
-
-/* AIX requires this to be the first thing in the file. */
-#if defined (_AIX) && !defined (REGEX_MALLOC)
-  #pragma alloca
-#endif
-
-#undef _GNU_SOURCE
-#define _GNU_SOURCE
-
-#ifdef HAVE_CONFIG_H
-#include <config.h>
-#endif
-
-/* We need this for `regex.h', and perhaps for the Emacs include files.  */
-#include <sys/types.h>
-
-/* This is for other GNU distributions with internationalized messages.  */
-#if HAVE_LIBINTL_H || defined (_LIBC)
-# include <libintl.h>
-#else
-# define gettext(msgid) (msgid)
-#endif
-
-#ifndef gettext_noop
-/* This define is so xgettext can find the internationalizable
-   strings.  */
-#define gettext_noop(String) String
-#endif
-
-/* The `emacs' switch turns on certain matching commands
-   that make sense only in Emacs. */
-#ifdef emacs
-
-#include "lisp.h"
-#include "buffer.h"
-#include "syntax.h"
-
-#else  /* not emacs */
-
-/* If we are not linking with Emacs proper,
-   we can't use the relocating allocator
-   even if config.h says that we can.  */
-#undef REL_ALLOC
-
-#if defined (STDC_HEADERS) || defined (_LIBC)
-#include <stdlib.h>
-#else
-char *malloc ();
-char *realloc ();
-#endif
-
-/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
-   If nothing else has been done, use the method below.  */
-#ifdef INHIBIT_STRING_HEADER
-#if !(defined (HAVE_BZERO) && defined (HAVE_BCOPY))
-#if !defined (bzero) && !defined (bcopy)
-#undef INHIBIT_STRING_HEADER
-#endif
-#endif
-#endif
-
-/* This is the normal way of making sure we have a bcopy and a bzero.
-   This is used in most programs--a few other programs avoid this
-   by defining INHIBIT_STRING_HEADER.  */
-#ifndef INHIBIT_STRING_HEADER
-#if defined (HAVE_STRING_H) || defined (STDC_HEADERS) || defined (_LIBC)
-#include <string.h>
-#ifndef bcmp
-#define bcmp(s1, s2, n)        memcmp ((s1), (s2), (n))
-#endif
-#ifndef bcopy
-#define bcopy(s, d, n) memcpy ((d), (s), (n))
-#endif
-#ifndef bzero
-#define bzero(s, n)    memset ((s), 0, (n))
-#endif
-#else
-#include <strings.h>
-#endif
-#endif
-
-/* Define the syntax stuff for \<, \>, etc.  */
-
-/* This must be nonzero for the wordchar and notwordchar pattern
-   commands in re_match_2.  */
-#ifndef Sword
-#define Sword 1
-#endif
-
-#ifdef SWITCH_ENUM_BUG
-#define SWITCH_ENUM_CAST(x) ((int)(x))
-#else
-#define SWITCH_ENUM_CAST(x) (x)
-#endif
-
-#ifdef SYNTAX_TABLE
-
-extern char *re_syntax_table;
-
-#else /* not SYNTAX_TABLE */
-
-/* How many characters in the character set.  */
-#define CHAR_SET_SIZE 256
-
-static char re_syntax_table[CHAR_SET_SIZE];
-
-static void
-init_syntax_once ()
-{
-   register int c;
-   static int done = 0;
-
-   if (done)
-     return;
-
-   bzero (re_syntax_table, sizeof re_syntax_table);
-
-   for (c = 'a'; c <= 'z'; c++)
-     re_syntax_table[c] = Sword;
-
-   for (c = 'A'; c <= 'Z'; c++)
-     re_syntax_table[c] = Sword;
-
-   for (c = '0'; c <= '9'; c++)
-     re_syntax_table[c] = Sword;
-
-   re_syntax_table['_'] = Sword;
-
-   done = 1;
-}
-
-#endif /* not SYNTAX_TABLE */
-
-#define SYNTAX(c) re_syntax_table[c]
-
-#endif /* not emacs */
-\f
-/* Get the interface, including the syntax bits.  */
-#include "regex.h"
-
-/* isalpha etc. are used for the character classes.  */
-#include <ctype.h>
-
-/* Jim Meyering writes:
-
-   "... Some ctype macros are valid only for character codes that
-   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
-   using /bin/cc or gcc but without giving an ansi option).  So, all
-   ctype uses should be through macros like ISPRINT...  If
-   STDC_HEADERS is defined, then autoconf has verified that the ctype
-   macros don't need to be guarded with references to isascii. ...
-   Defining isascii to 1 should let any compiler worth its salt
-   eliminate the && through constant folding."  */
-
-#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
-#define ISASCII(c) 1
-#else
-#define ISASCII(c) isascii(c)
-#endif
-
-#ifdef isblank
-#define ISBLANK(c) (ISASCII (c) && isblank (c))
-#else
-#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
-#endif
-#ifdef isgraph
-#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
-#else
-#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
-#endif
-
-#define ISPRINT(c) (ISASCII (c) && isprint (c))
-#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
-#define ISALNUM(c) (ISASCII (c) && isalnum (c))
-#define ISALPHA(c) (ISASCII (c) && isalpha (c))
-#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
-#define ISLOWER(c) (ISASCII (c) && islower (c))
-#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
-#define ISSPACE(c) (ISASCII (c) && isspace (c))
-#define ISUPPER(c) (ISASCII (c) && isupper (c))
-#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
-
-#ifndef NULL
-#define NULL (void *)0
-#endif
-
-/* We remove any previous definition of `SIGN_EXTEND_CHAR',
-   since ours (we hope) works properly with all combinations of
-   machines, compilers, `char' and `unsigned char' argument types.
-   (Per Bothner suggested the basic approach.)  */
-#undef SIGN_EXTEND_CHAR
-#if __STDC__
-#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
-#else  /* not __STDC__ */
-/* As in Harbison and Steele.  */
-#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
-#endif
-\f
-/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
-   use `alloca' instead of `malloc'.  This is because using malloc in
-   re_search* or re_match* could cause memory leaks when C-g is used in
-   Emacs; also, malloc is slower and causes storage fragmentation.  On
-   the other hand, malloc is more portable, and easier to debug.
-
-   Because we sometimes use alloca, some routines have to be macros,
-   not functions -- `alloca'-allocated space disappears at the end of the
-   function it is called in.  */
-
-#ifdef REGEX_MALLOC
-
-#define REGEX_ALLOCATE malloc
-#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
-#define REGEX_FREE free
-
-#else /* not REGEX_MALLOC  */
-
-/* Emacs already defines alloca, sometimes.  */
-#ifndef alloca
-
-/* Make alloca work the best possible way.  */
-#ifdef __GNUC__
-#define alloca __builtin_alloca
-#else /* not __GNUC__ */
-#if HAVE_ALLOCA_H
-#include <alloca.h>
-#else /* not __GNUC__ or HAVE_ALLOCA_H */
-#if 0 /* It is a bad idea to declare alloca.  We always cast the result.  */
-#ifndef _AIX /* Already did AIX, up at the top.  */
-char *alloca ();
-#endif /* not _AIX */
-#endif
-#endif /* not HAVE_ALLOCA_H */
-#endif /* not __GNUC__ */
-
-#endif /* not alloca */
-
-#define REGEX_ALLOCATE alloca
-
-/* Assumes a `char *destination' variable.  */
-#define REGEX_REALLOCATE(source, osize, nsize)                         \
-  (destination = (char *) alloca (nsize),                              \
-   bcopy (source, destination, osize),                                 \
-   destination)
-
-/* No need to do anything to free, after alloca.  */
-#define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
-
-#endif /* not REGEX_MALLOC */
-
-/* Define how to allocate the failure stack.  */
-
-#if defined (REL_ALLOC) && defined (REGEX_MALLOC)
-
-#define REGEX_ALLOCATE_STACK(size)                             \
-  r_alloc (&failure_stack_ptr, (size))
-#define REGEX_REALLOCATE_STACK(source, osize, nsize)           \
-  r_re_alloc (&failure_stack_ptr, (nsize))
-#define REGEX_FREE_STACK(ptr)                                  \
-  r_alloc_free (&failure_stack_ptr)
-
-#else /* not using relocating allocator */
-
-#ifdef REGEX_MALLOC
-
-#define REGEX_ALLOCATE_STACK malloc
-#define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
-#define REGEX_FREE_STACK free
-
-#else /* not REGEX_MALLOC */
-
-#define REGEX_ALLOCATE_STACK alloca
-
-#define REGEX_REALLOCATE_STACK(source, osize, nsize)                   \
-   REGEX_REALLOCATE (source, osize, nsize)
-/* No need to explicitly free anything.  */
-#define REGEX_FREE_STACK(arg)
-
-#endif /* not REGEX_MALLOC */
-#endif /* not using relocating allocator */
-
-
-/* True if `size1' is non-NULL and PTR is pointing anywhere inside
-   `string1' or just past its end.  This works if PTR is NULL, which is
-   a good thing.  */
-#define FIRST_STRING_P(ptr)                                    \
-  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
-
-/* (Re)Allocate N items of type T using malloc, or fail.  */
-#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
-#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
-#define RETALLOC_IF(addr, n, t) \
-  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
-#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
-
-#define BYTEWIDTH 8 /* In bits.  */
-
-#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
-
-#undef MAX
-#undef MIN
-#define MAX(a, b) ((a) > (b) ? (a) : (b))
-#define MIN(a, b) ((a) < (b) ? (a) : (b))
-
-typedef char boolean;
-#define false 0
-#define true 1
-
-static int re_match_2_internal ();
-\f
-/* These are the command codes that appear in compiled regular
-   expressions.  Some opcodes are followed by argument bytes.  A
-   command code can specify any interpretation whatsoever for its
-   arguments.  Zero bytes may appear in the compiled regular expression.  */
-
-typedef enum
-{
-  no_op = 0,
-
-  /* Succeed right away--no more backtracking.  */
-  succeed,
-
-        /* Followed by one byte giving n, then by n literal bytes.  */
-  exactn,
-
-        /* Matches any (more or less) character.  */
-  anychar,
-
-        /* Matches any one char belonging to specified set.  First
-           following byte is number of bitmap bytes.  Then come bytes
-           for a bitmap saying which chars are in.  Bits in each byte
-           are ordered low-bit-first.  A character is in the set if its
-           bit is 1.  A character too large to have a bit in the map is
-           automatically not in the set.  */
-  charset,
-
-        /* Same parameters as charset, but match any character that is
-           not one of those specified.  */
-  charset_not,
-
-        /* Start remembering the text that is matched, for storing in a
-           register.  Followed by one byte with the register number, in
-           the range 0 to one less than the pattern buffer's re_nsub
-           field.  Then followed by one byte with the number of groups
-           inner to this one.  (This last has to be part of the
-           start_memory only because we need it in the on_failure_jump
-           of re_match_2.)  */
-  start_memory,
-
-        /* Stop remembering the text that is matched and store it in a
-           memory register.  Followed by one byte with the register
-           number, in the range 0 to one less than `re_nsub' in the
-           pattern buffer, and one byte with the number of inner groups,
-           just like `start_memory'.  (We need the number of inner
-           groups here because we don't have any easy way of finding the
-           corresponding start_memory when we're at a stop_memory.)  */
-  stop_memory,
-
-        /* Match a duplicate of something remembered. Followed by one
-           byte containing the register number.  */
-  duplicate,
-
-        /* Fail unless at beginning of line.  */
-  begline,
-
-        /* Fail unless at end of line.  */
-  endline,
-
-        /* Succeeds if at beginning of buffer (if emacs) or at beginning
-           of string to be matched (if not).  */
-  begbuf,
-
-        /* Analogously, for end of buffer/string.  */
-  endbuf,
-
-        /* Followed by two byte relative address to which to jump.  */
-  jump,
-
-       /* Same as jump, but marks the end of an alternative.  */
-  jump_past_alt,
-
-        /* Followed by two-byte relative address of place to resume at
-           in case of failure.  */
-  on_failure_jump,
-
-        /* Like on_failure_jump, but pushes a placeholder instead of the
-           current string position when executed.  */
-  on_failure_keep_string_jump,
-
-        /* Throw away latest failure point and then jump to following
-           two-byte relative address.  */
-  pop_failure_jump,
-
-        /* Change to pop_failure_jump if know won't have to backtrack to
-           match; otherwise change to jump.  This is used to jump
-           back to the beginning of a repeat.  If what follows this jump
-           clearly won't match what the repeat does, such that we can be
-           sure that there is no use backtracking out of repetitions
-           already matched, then we change it to a pop_failure_jump.
-           Followed by two-byte address.  */
-  maybe_pop_jump,
-
-        /* Jump to following two-byte address, and push a dummy failure
-           point. This failure point will be thrown away if an attempt
-           is made to use it for a failure.  A `+' construct makes this
-           before the first repeat.  Also used as an intermediary kind
-           of jump when compiling an alternative.  */
-  dummy_failure_jump,
-
-       /* Push a dummy failure point and continue.  Used at the end of
-          alternatives.  */
-  push_dummy_failure,
-
-        /* Followed by two-byte relative address and two-byte number n.
-           After matching N times, jump to the address upon failure.  */
-  succeed_n,
-
-        /* Followed by two-byte relative address, and two-byte number n.
-           Jump to the address N times, then fail.  */
-  jump_n,
-
-        /* Set the following two-byte relative address to the
-           subsequent two-byte number.  The address *includes* the two
-           bytes of number.  */
-  set_number_at,
-
-  wordchar,    /* Matches any word-constituent character.  */
-  notwordchar, /* Matches any char that is not a word-constituent.  */
-
-  wordbeg,     /* Succeeds if at word beginning.  */
-  wordend,     /* Succeeds if at word end.  */
-
-  wordbound,   /* Succeeds if at a word boundary.  */
-  notwordbound /* Succeeds if not at a word boundary.  */
-
-#ifdef emacs
-  ,before_dot, /* Succeeds if before point.  */
-  at_dot,      /* Succeeds if at point.  */
-  after_dot,   /* Succeeds if after point.  */
-
-       /* Matches any character whose syntax is specified.  Followed by
-           a byte which contains a syntax code, e.g., Sword.  */
-  syntaxspec,
-
-       /* Matches any character whose syntax is not that specified.  */
-  notsyntaxspec
-#endif /* emacs */
-} re_opcode_t;
-\f
-/* Common operations on the compiled pattern.  */
-
-/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
-
-#define STORE_NUMBER(destination, number)                              \
-  do {                                                                 \
-    (destination)[0] = (number) & 0377;                                        \
-    (destination)[1] = (number) >> 8;                                  \
-  } while (0)
-
-/* Same as STORE_NUMBER, except increment DESTINATION to
-   the byte after where the number is stored.  Therefore, DESTINATION
-   must be an lvalue.  */
-
-#define STORE_NUMBER_AND_INCR(destination, number)                     \
-  do {                                                                 \
-    STORE_NUMBER (destination, number);                                        \
-    (destination) += 2;                                                        \
-  } while (0)
-
-/* Put into DESTINATION a number stored in two contiguous bytes starting
-   at SOURCE.  */
-
-#define EXTRACT_NUMBER(destination, source)                            \
-  do {                                                                 \
-    (destination) = *(source) & 0377;                                  \
-    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;          \
-  } while (0)
-
-#ifdef DEBUG
-static void
-extract_number (dest, source)
-    int *dest;
-    unsigned char *source;
-{
-  int temp = SIGN_EXTEND_CHAR (*(source + 1));
-  *dest = *source & 0377;
-  *dest += temp << 8;
-}
-
-#ifndef EXTRACT_MACROS /* To debug the macros.  */
-#undef EXTRACT_NUMBER
-#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
-#endif /* not EXTRACT_MACROS */
-
-#endif /* DEBUG */
-
-/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
-   SOURCE must be an lvalue.  */
-
-#define EXTRACT_NUMBER_AND_INCR(destination, source)                   \
-  do {                                                                 \
-    EXTRACT_NUMBER (destination, source);                              \
-    (source) += 2;                                                     \
-  } while (0)
-
-#ifdef DEBUG
-static void
-extract_number_and_incr (destination, source)
-    int *destination;
-    unsigned char **source;
-{
-  extract_number (destination, *source);
-  *source += 2;
-}
-
-#ifndef EXTRACT_MACROS
-#undef EXTRACT_NUMBER_AND_INCR
-#define EXTRACT_NUMBER_AND_INCR(dest, src) \
-  extract_number_and_incr (&dest, &src)
-#endif /* not EXTRACT_MACROS */
-
-#endif /* DEBUG */
-\f
-/* If DEBUG is defined, Regex prints many voluminous messages about what
-   it is doing (if the variable `debug' is nonzero).  If linked with the
-   main program in `iregex.c', you can enter patterns and strings
-   interactively.  And if linked with the main program in `main.c' and
-   the other test files, you can run the already-written tests.  */
-
-#ifdef DEBUG
-
-/* We use standard I/O for debugging.  */
-#include <stdio.h>
-
-/* It is useful to test things that ``must'' be true when debugging.  */
-#include <assert.h>
-
-static int debug = 0;
-
-#define DEBUG_STATEMENT(e) e
-#define DEBUG_PRINT1(x) if (debug) printf (x)
-#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
-#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
-#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
-#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)                          \
-  if (debug) print_partial_compiled_pattern (s, e)
-#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)                 \
-  if (debug) print_double_string (w, s1, sz1, s2, sz2)
-
-
-/* Print the fastmap in human-readable form.  */
-
-void
-print_fastmap (fastmap)
-    char *fastmap;
-{
-  unsigned was_a_range = 0;
-  unsigned i = 0;
-
-  while (i < (1 << BYTEWIDTH))
-    {
-      if (fastmap[i++])
-       {
-         was_a_range = 0;
-          putchar (i - 1);
-          while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
-            {
-              was_a_range = 1;
-              i++;
-            }
-         if (was_a_range)
-            {
-              printf ("-");
-              putchar (i - 1);
-            }
-        }
-    }
-  putchar ('\n');
-}
-
-
-/* Print a compiled pattern string in human-readable form, starting at
-   the START pointer into it and ending just before the pointer END.  */
-
-void
-print_partial_compiled_pattern (start, end)
-    unsigned char *start;
-    unsigned char *end;
-{
-  int mcnt, mcnt2;
-  unsigned char *p = start;
-  unsigned char *pend = end;
-
-  if (start == NULL)
-    {
-      printf ("(null)\n");
-      return;
-    }
-
-  /* Loop over pattern commands.  */
-  while (p < pend)
-    {
-      printf ("%d:\t", p - start);
-
-      switch ((re_opcode_t) *p++)
-       {
-        case no_op:
-          printf ("/no_op");
-          break;
-
-       case exactn:
-         mcnt = *p++;
-          printf ("/exactn/%d", mcnt);
-          do
-           {
-              putchar ('/');
-             putchar (*p++);
-            }
-          while (--mcnt);
-          break;
-
-       case start_memory:
-          mcnt = *p++;
-          printf ("/start_memory/%d/%d", mcnt, *p++);
-          break;
-
-       case stop_memory:
-          mcnt = *p++;
-         printf ("/stop_memory/%d/%d", mcnt, *p++);
-          break;
-
-       case duplicate:
-         printf ("/duplicate/%d", *p++);
-         break;
-
-       case anychar:
-         printf ("/anychar");
-         break;
-
-       case charset:
-        case charset_not:
-          {
-            register int c, last = -100;
-           register int in_range = 0;
-
-           printf ("/charset [%s",
-                   (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
-
-            assert (p + *p < pend);
-
-            for (c = 0; c < 256; c++)
-             if (c / 8 < *p
-                 && (p[1 + (c/8)] & (1 << (c % 8))))
-               {
-                 /* Are we starting a range?  */
-                 if (last + 1 == c && ! in_range)
-                   {
-                     putchar ('-');
-                     in_range = 1;
-                   }
-                 /* Have we broken a range?  */
-                 else if (last + 1 != c && in_range)
-              {
-                     putchar (last);
-                     in_range = 0;
-                   }
-
-                 if (! in_range)
-                   putchar (c);
-
-                 last = c;
-              }
-
-           if (in_range)
-             putchar (last);
-
-           putchar (']');
-
-           p += 1 + *p;
-         }
-         break;
-
-       case begline:
-         printf ("/begline");
-          break;
-
-       case endline:
-          printf ("/endline");
-          break;
-
-       case on_failure_jump:
-          extract_number_and_incr (&mcnt, &p);
-         printf ("/on_failure_jump to %d", p + mcnt - start);
-          break;
-
-       case on_failure_keep_string_jump:
-          extract_number_and_incr (&mcnt, &p);
-         printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
-          break;
-
-       case dummy_failure_jump:
-          extract_number_and_incr (&mcnt, &p);
-         printf ("/dummy_failure_jump to %d", p + mcnt - start);
-          break;
-
-       case push_dummy_failure:
-          printf ("/push_dummy_failure");
-          break;
-
-        case maybe_pop_jump:
-          extract_number_and_incr (&mcnt, &p);
-         printf ("/maybe_pop_jump to %d", p + mcnt - start);
-         break;
-
-        case pop_failure_jump:
-         extract_number_and_incr (&mcnt, &p);
-         printf ("/pop_failure_jump to %d", p + mcnt - start);
-         break;
-
-        case jump_past_alt:
-         extract_number_and_incr (&mcnt, &p);
-         printf ("/jump_past_alt to %d", p + mcnt - start);
-         break;
-
-        case jump:
-         extract_number_and_incr (&mcnt, &p);
-         printf ("/jump to %d", p + mcnt - start);
-         break;
-
-        case succeed_n:
-          extract_number_and_incr (&mcnt, &p);
-          extract_number_and_incr (&mcnt2, &p);
-         printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
-          break;
-
-        case jump_n:
-          extract_number_and_incr (&mcnt, &p);
-          extract_number_and_incr (&mcnt2, &p);
-         printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
-          break;
-
-        case set_number_at:
-          extract_number_and_incr (&mcnt, &p);
-          extract_number_and_incr (&mcnt2, &p);
-         printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
-          break;
-
-        case wordbound:
-         printf ("/wordbound");
-         break;
-
-       case notwordbound:
-         printf ("/notwordbound");
-          break;
-
-       case wordbeg:
-         printf ("/wordbeg");
-         break;
-
-       case wordend:
-         printf ("/wordend");
-
-#ifdef emacs
-       case before_dot:
-         printf ("/before_dot");
-          break;
-
-       case at_dot:
-         printf ("/at_dot");
-          break;
-
-       case after_dot:
-         printf ("/after_dot");
-          break;
-
-       case syntaxspec:
-          printf ("/syntaxspec");
-         mcnt = *p++;
-         printf ("/%d", mcnt);
-          break;
-
-       case notsyntaxspec:
-          printf ("/notsyntaxspec");
-         mcnt = *p++;
-         printf ("/%d", mcnt);
-         break;
-#endif /* emacs */
-
-       case wordchar:
-         printf ("/wordchar");
-          break;
-
-       case notwordchar:
-         printf ("/notwordchar");
-          break;
-
-       case begbuf:
-         printf ("/begbuf");
-          break;
-
-       case endbuf:
-         printf ("/endbuf");
-          break;
-
-        default:
-          printf ("?%d", *(p-1));
-       }
-
-      putchar ('\n');
-    }
-
-  printf ("%d:\tend of pattern.\n", p - start);
-}
-
-
-void
-print_compiled_pattern (bufp)
-    struct re_pattern_buffer *bufp;
-{
-  unsigned char *buffer = bufp->buffer;
-
-  print_partial_compiled_pattern (buffer, buffer + bufp->used);
-  printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
-
-  if (bufp->fastmap_accurate && bufp->fastmap)
-    {
-      printf ("fastmap: ");
-      print_fastmap (bufp->fastmap);
-    }
-
-  printf ("re_nsub: %d\t", bufp->re_nsub);
-  printf ("regs_alloc: %d\t", bufp->regs_allocated);
-  printf ("can_be_null: %d\t", bufp->can_be_null);
-  printf ("newline_anchor: %d\n", bufp->newline_anchor);
-  printf ("no_sub: %d\t", bufp->no_sub);
-  printf ("not_bol: %d\t", bufp->not_bol);
-  printf ("not_eol: %d\t", bufp->not_eol);
-  printf ("syntax: %d\n", bufp->syntax);
-  /* Perhaps we should print the translate table?  */
-}
-
-
-void
-print_double_string (where, string1, size1, string2, size2)
-    const char *where;
-    const char *string1;
-    const char *string2;
-    int size1;
-    int size2;
-{
-  unsigned this_char;
-
-  if (where == NULL)
-    printf ("(null)");
-  else
-    {
-      if (FIRST_STRING_P (where))
-        {
-          for (this_char = where - string1; this_char < size1; this_char++)
-            putchar (string1[this_char]);
-
-          where = string2;
-        }
-
-      for (this_char = where - string2; this_char < size2; this_char++)
-        putchar (string2[this_char]);
-    }
-}
-
-#else /* not DEBUG */
-
-#undef assert
-#define assert(e)
-
-#define DEBUG_STATEMENT(e)
-#define DEBUG_PRINT1(x)
-#define DEBUG_PRINT2(x1, x2)
-#define DEBUG_PRINT3(x1, x2, x3)
-#define DEBUG_PRINT4(x1, x2, x3, x4)
-#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
-#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
-
-#endif /* not DEBUG */
-\f
-/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
-   also be assigned to arbitrarily: each pattern buffer stores its own
-   syntax, so it can be changed between regex compilations.  */
-/* This has no initializer because initialized variables in Emacs
-   become read-only after dumping.  */
-reg_syntax_t re_syntax_options;
-
-
-/* Specify the precise syntax of regexps for compilation.  This provides
-   for compatibility for various utilities which historically have
-   different, incompatible syntaxes.
-
-   The argument SYNTAX is a bit mask comprised of the various bits
-   defined in regex.h.  We return the old syntax.  */
-
-reg_syntax_t
-re_set_syntax (syntax)
-    reg_syntax_t syntax;
-{
-  reg_syntax_t ret = re_syntax_options;
-
-  re_syntax_options = syntax;
-  return ret;
-}
-\f
-/* This table gives an error message for each of the error codes listed
-   in regex.h.  Obviously the order here has to be same as there.
-   POSIX doesn't require that we do anything for REG_NOERROR,
-   but why not be nice?  */
-
-static const char *re_error_msgid[] =
-  {
-    gettext_noop ("Success"),  /* REG_NOERROR */
-    gettext_noop ("No match"), /* REG_NOMATCH */
-    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
-    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
-    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
-    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
-    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
-    gettext_noop ("Unmatched [ or [^"),        /* REG_EBRACK */
-    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
-    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
-    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
-    gettext_noop ("Invalid range end"),        /* REG_ERANGE */
-    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
-    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
-    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
-    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
-    gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
-  };
-\f
-/* Avoiding alloca during matching, to placate r_alloc.  */
-
-/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
-   searching and matching functions should not call alloca.  On some
-   systems, alloca is implemented in terms of malloc, and if we're
-   using the relocating allocator routines, then malloc could cause a
-   relocation, which might (if the strings being searched are in the
-   ralloc heap) shift the data out from underneath the regexp
-   routines.
-
-   Here's another reason to avoid allocation: Emacs
-   processes input from X in a signal handler; processing X input may
-   call malloc; if input arrives while a matching routine is calling
-   malloc, then we're scrod.  But Emacs can't just block input while
-   calling matching routines; then we don't notice interrupts when
-   they come in.  So, Emacs blocks input around all regexp calls
-   except the matching calls, which it leaves unprotected, in the
-   faith that they will not malloc.  */
-
-/* Normally, this is fine.  */
-#define MATCH_MAY_ALLOCATE
-
-/* When using GNU C, we are not REALLY using the C alloca, no matter
-   what config.h may say.  So don't take precautions for it.  */
-#ifdef __GNUC__
-#undef C_ALLOCA
-#endif
-
-/* The match routines may not allocate if (1) they would do it with malloc
-   and (2) it's not safe for them to use malloc.
-   Note that if REL_ALLOC is defined, matching would not use malloc for the
-   failure stack, but we would still use it for the register vectors;
-   so REL_ALLOC should not affect this.  */
-#if (defined (C_ALLOCA) || defined (REGEX_MALLOC)) && defined (emacs)
-#undef MATCH_MAY_ALLOCATE
-#endif
-
-\f
-/* Failure stack declarations and macros; both re_compile_fastmap and
-   re_match_2 use a failure stack.  These have to be macros because of
-   REGEX_ALLOCATE_STACK.  */
-
-
-/* Number of failure points for which to initially allocate space
-   when matching.  If this number is exceeded, we allocate more
-   space, so it is not a hard limit.  */
-#ifndef INIT_FAILURE_ALLOC
-#define INIT_FAILURE_ALLOC 5
-#endif
-
-/* Roughly the maximum number of failure points on the stack.  Would be
-   exactly that if always used MAX_FAILURE_ITEMS items each time we failed.
-   This is a variable only so users of regex can assign to it; we never
-   change it ourselves.  */
-#if defined (MATCH_MAY_ALLOCATE)
-/* 4400 was enough to cause a crash on Alpha OSF/1,
-   whose default stack limit is 2mb.  */
-int re_max_failures = 20000;
-#else
-int re_max_failures = 2000;
-#endif
-
-union fail_stack_elt
-{
-  unsigned char *pointer;
-  int integer;
-};
-
-typedef union fail_stack_elt fail_stack_elt_t;
-
-typedef struct
-{
-  fail_stack_elt_t *stack;
-  unsigned size;
-  unsigned avail;                      /* Offset of next open position.  */
-} fail_stack_type;
-
-#define FAIL_STACK_EMPTY()     (fail_stack.avail == 0)
-#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
-#define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
-
-
-/* Define macros to initialize and free the failure stack.
-   Do `return -2' if the alloc fails.  */
-
-#ifdef MATCH_MAY_ALLOCATE
-#define INIT_FAIL_STACK()                                              \
-  do {                                                                 \
-    fail_stack.stack = (fail_stack_elt_t *)                            \
-      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t));   \
-                                                                       \
-    if (fail_stack.stack == NULL)                                      \
-      return -2;                                                       \
-                                                                       \
-    fail_stack.size = INIT_FAILURE_ALLOC;                              \
-    fail_stack.avail = 0;                                              \
-  } while (0)
-
-#define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
-#else
-#define INIT_FAIL_STACK()                                              \
-  do {                                                                 \
-    fail_stack.avail = 0;                                              \
-  } while (0)
-
-#define RESET_FAIL_STACK()
-#endif
-
-
-/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
-
-   Return 1 if succeeds, and 0 if either ran out of memory
-   allocating space for it or it was already too large.
-
-   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
-
-#define DOUBLE_FAIL_STACK(fail_stack)                                  \
-  ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS             \
-   ? 0                                                                 \
-   : ((fail_stack).stack = (fail_stack_elt_t *)                                \
-        REGEX_REALLOCATE_STACK ((fail_stack).stack,                    \
-          (fail_stack).size * sizeof (fail_stack_elt_t),               \
-          ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)),       \
-                                                                       \
-      (fail_stack).stack == NULL                                       \
-      ? 0                                                              \
-      : ((fail_stack).size <<= 1,                                      \
-         1)))
-
-
-/* Push pointer POINTER on FAIL_STACK.
-   Return 1 if was able to do so and 0 if ran out of memory allocating
-   space to do so.  */
-#define PUSH_PATTERN_OP(POINTER, FAIL_STACK)                           \
-  ((FAIL_STACK_FULL ()                                                 \
-    && !DOUBLE_FAIL_STACK (FAIL_STACK))                                        \
-   ? 0                                                                 \
-   : ((FAIL_STACK).stack[(FAIL_STACK).avail++].pointer = POINTER,      \
-      1))
-
-/* Push a pointer value onto the failure stack.
-   Assumes the variable `fail_stack'.  Probably should only
-   be called from within `PUSH_FAILURE_POINT'.  */
-#define PUSH_FAILURE_POINTER(item)                                     \
-  fail_stack.stack[fail_stack.avail++].pointer = (unsigned char *) (item)
-
-/* This pushes an integer-valued item onto the failure stack.
-   Assumes the variable `fail_stack'.  Probably should only
-   be called from within `PUSH_FAILURE_POINT'.  */
-#define PUSH_FAILURE_INT(item)                                 \
-  fail_stack.stack[fail_stack.avail++].integer = (item)
-
-/* Push a fail_stack_elt_t value onto the failure stack.
-   Assumes the variable `fail_stack'.  Probably should only
-   be called from within `PUSH_FAILURE_POINT'.  */
-#define PUSH_FAILURE_ELT(item)                                 \
-  fail_stack.stack[fail_stack.avail++] =  (item)
-
-/* These three POP... operations complement the three PUSH... operations.
-   All assume that `fail_stack' is nonempty.  */
-#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
-#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
-#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
-
-/* Used to omit pushing failure point id's when we're not debugging.  */
-#ifdef DEBUG
-#define DEBUG_PUSH PUSH_FAILURE_INT
-#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_INT ()
-#else
-#define DEBUG_PUSH(item)
-#define DEBUG_POP(item_addr)
-#endif
-
-
-/* Push the information about the state we will need
-   if we ever fail back to it.
-
-   Requires variables fail_stack, regstart, regend, reg_info, and
-   num_regs be declared.  DOUBLE_FAIL_STACK requires `destination' be
-   declared.
-
-   Does `return FAILURE_CODE' if runs out of memory.  */
-
-#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code)  \
-  do {                                                                 \
-    char *destination;                                                 \
-    /* Must be int, so when we don't save any registers, the arithmetic        \
-       of 0 + -1 isn't done as unsigned.  */                           \
-    int this_reg;                                                      \
-                                                                       \
-    DEBUG_STATEMENT (failure_id++);                                    \
-    DEBUG_STATEMENT (nfailure_points_pushed++);                                \
-    DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id);          \
-    DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);\
-    DEBUG_PRINT2 ("                     size: %d\n", (fail_stack).size);\
-                                                                       \
-    DEBUG_PRINT2 ("  slots needed: %d\n", NUM_FAILURE_ITEMS);          \
-    DEBUG_PRINT2 ("     available: %d\n", REMAINING_AVAIL_SLOTS);      \
-                                                                       \
-    /* Ensure we have enough space allocated for what we will push.  */        \
-    while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS)                  \
-      {                                                                        \
-        if (!DOUBLE_FAIL_STACK (fail_stack))                           \
-          return failure_code;                                         \
-                                                                       \
-        DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n",             \
-                      (fail_stack).size);                              \
-        DEBUG_PRINT2 ("  slots available: %d\n", REMAINING_AVAIL_SLOTS);\
-      }                                                                        \
-                                                                       \
-    /* Push the info, starting with the registers.  */                 \
-    DEBUG_PRINT1 ("\n");                                               \
-                                                                       \
-    if (1)                                                             \
-      for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
-          this_reg++)                                                  \
-       {                                                               \
-         DEBUG_PRINT2 ("  Pushing reg: %d\n", this_reg);               \
-         DEBUG_STATEMENT (num_regs_pushed++);                          \
-                                                                       \
-         DEBUG_PRINT2 ("    start: 0x%x\n", regstart[this_reg]);       \
-         PUSH_FAILURE_POINTER (regstart[this_reg]);                    \
-                                                                       \
-         DEBUG_PRINT2 ("    end: 0x%x\n", regend[this_reg]);           \
-         PUSH_FAILURE_POINTER (regend[this_reg]);                      \
-                                                                       \
-         DEBUG_PRINT2 ("    info: 0x%x\n      ", reg_info[this_reg]);  \
-         DEBUG_PRINT2 (" match_null=%d",                               \
-                       REG_MATCH_NULL_STRING_P (reg_info[this_reg]));  \
-         DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg]));  \
-         DEBUG_PRINT2 (" matched_something=%d",                        \
-                       MATCHED_SOMETHING (reg_info[this_reg]));        \
-         DEBUG_PRINT2 (" ever_matched=%d",                             \
-                       EVER_MATCHED_SOMETHING (reg_info[this_reg]));   \
-         DEBUG_PRINT1 ("\n");                                          \
-         PUSH_FAILURE_ELT (reg_info[this_reg].word);                   \
-       }                                                               \
-                                                                       \
-    DEBUG_PRINT2 ("  Pushing  low active reg: %d\n", lowest_active_reg);\
-    PUSH_FAILURE_INT (lowest_active_reg);                              \
-                                                                       \
-    DEBUG_PRINT2 ("  Pushing high active reg: %d\n", highest_active_reg);\
-    PUSH_FAILURE_INT (highest_active_reg);                             \
-                                                                       \
-    DEBUG_PRINT2 ("  Pushing pattern 0x%x: ", pattern_place);          \
-    DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend);          \
-    PUSH_FAILURE_POINTER (pattern_place);                              \
-                                                                       \
-    DEBUG_PRINT2 ("  Pushing string 0x%x: `", string_place);           \
-    DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2,   \
-                                size2);                                \
-    DEBUG_PRINT1 ("'\n");                                              \
-    PUSH_FAILURE_POINTER (string_place);                               \
-                                                                       \
-    DEBUG_PRINT2 ("  Pushing failure id: %u\n", failure_id);           \
-    DEBUG_PUSH (failure_id);                                           \
-  } while (0)
-
-/* This is the number of items that are pushed and popped on the stack
-   for each register.  */
-#define NUM_REG_ITEMS  3
-
-/* Individual items aside from the registers.  */
-#ifdef DEBUG
-#define NUM_NONREG_ITEMS 5 /* Includes failure point id.  */
-#else
-#define NUM_NONREG_ITEMS 4
-#endif
-
-/* We push at most this many items on the stack.  */
-/* We used to use (num_regs - 1), which is the number of registers
-   this regexp will save; but that was changed to 5
-   to avoid stack overflow for a regexp with lots of parens.  */
-#define MAX_FAILURE_ITEMS (5 * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
-
-/* We actually push this many items.  */
-#define NUM_FAILURE_ITEMS                              \
-  (((0                                                 \
-     ? 0 : highest_active_reg - lowest_active_reg + 1) \
-    * NUM_REG_ITEMS)                                   \
-   + NUM_NONREG_ITEMS)
-
-/* How many items can still be added to the stack without overflowing it.  */
-#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
-
-
-/* Pops what PUSH_FAIL_STACK pushes.
-
-   We restore into the parameters, all of which should be lvalues:
-     STR -- the saved data position.
-     PAT -- the saved pattern position.
-     LOW_REG, HIGH_REG -- the highest and lowest active registers.
-     REGSTART, REGEND -- arrays of string positions.
-     REG_INFO -- array of information about each subexpression.
-
-   Also assumes the variables `fail_stack' and (if debugging), `bufp',
-   `pend', `string1', `size1', `string2', and `size2'.  */
-
-#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
-{                                                                      \
-  DEBUG_STATEMENT (fail_stack_elt_t failure_id;)                       \
-  int this_reg;                                                                \
-  const unsigned char *string_temp;                                    \
-                                                                       \
-  assert (!FAIL_STACK_EMPTY ());                                       \
-                                                                       \
-  /* Remove failure points and point to how many regs pushed.  */      \
-  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");                               \
-  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);   \
-  DEBUG_PRINT2 ("                    size: %d\n", fail_stack.size);    \
-                                                                       \
-  assert (fail_stack.avail >= NUM_NONREG_ITEMS);                       \
-                                                                       \
-  DEBUG_POP (&failure_id);                                             \
-  DEBUG_PRINT2 ("  Popping failure id: %u\n", failure_id);             \
-                                                                       \
-  /* If the saved string location is NULL, it came from an             \
-     on_failure_keep_string_jump opcode, and we want to throw away the \
-     saved NULL, thus retaining our current position in the string.  */        \
-  string_temp = POP_FAILURE_POINTER ();                                        \
-  if (string_temp != NULL)                                             \
-    str = (const char *) string_temp;                                  \
-                                                                       \
-  DEBUG_PRINT2 ("  Popping string 0x%x: `", str);                      \
-  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);     \
-  DEBUG_PRINT1 ("'\n");                                                        \
-                                                                       \
-  pat = (unsigned char *) POP_FAILURE_POINTER ();                      \
-  DEBUG_PRINT2 ("  Popping pattern 0x%x: ", pat);                      \
-  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);                      \
-                                                                       \
-  /* Restore register info.  */                                                \
-  high_reg = (unsigned) POP_FAILURE_INT ();                            \
-  DEBUG_PRINT2 ("  Popping high active reg: %d\n", high_reg);          \
-                                                                       \
-  low_reg = (unsigned) POP_FAILURE_INT ();                             \
-  DEBUG_PRINT2 ("  Popping  low active reg: %d\n", low_reg);           \
-                                                                       \
-  if (1)                                                               \
-    for (this_reg = high_reg; this_reg >= low_reg; this_reg--)         \
-      {                                                                        \
-       DEBUG_PRINT2 ("    Popping reg: %d\n", this_reg);               \
-                                                                       \
-       reg_info[this_reg].word = POP_FAILURE_ELT ();                   \
-       DEBUG_PRINT2 ("      info: 0x%x\n", reg_info[this_reg]);        \
-                                                                       \
-       regend[this_reg] = (const char *) POP_FAILURE_POINTER ();       \
-       DEBUG_PRINT2 ("      end: 0x%x\n", regend[this_reg]);           \
-                                                                       \
-       regstart[this_reg] = (const char *) POP_FAILURE_POINTER ();     \
-       DEBUG_PRINT2 ("      start: 0x%x\n", regstart[this_reg]);       \
-      }                                                                        \
-  else                                                                 \
-    {                                                                  \
-      for (this_reg = highest_active_reg; this_reg > high_reg; this_reg--) \
-       {                                                               \
-         reg_info[this_reg].word.integer = 0;                          \
-         regend[this_reg] = 0;                                         \
-         regstart[this_reg] = 0;                                       \
-       }                                                               \
-      highest_active_reg = high_reg;                                   \
-    }                                                                  \
-                                                                       \
-  set_regs_matched_done = 0;                                           \
-  DEBUG_STATEMENT (nfailure_points_popped++);                          \
-} /* POP_FAILURE_POINT */
-
-
-\f
-/* Structure for per-register (a.k.a. per-group) information.
-   Other register information, such as the
-   starting and ending positions (which are addresses), and the list of
-   inner groups (which is a bits list) are maintained in separate
-   variables.
-
-   We are making a (strictly speaking) nonportable assumption here: that
-   the compiler will pack our bit fields into something that fits into
-   the type of `word', i.e., is something that fits into one item on the
-   failure stack.  */
-
-typedef union
-{
-  fail_stack_elt_t word;
-  struct
-  {
-      /* This field is one if this group can match the empty string,
-         zero if not.  If not yet determined,  `MATCH_NULL_UNSET_VALUE'.  */
-#define MATCH_NULL_UNSET_VALUE 3
-    unsigned match_null_string_p : 2;
-    unsigned is_active : 1;
-    unsigned matched_something : 1;
-    unsigned ever_matched_something : 1;
-  } bits;
-} register_info_type;
-
-#define REG_MATCH_NULL_STRING_P(R)  ((R).bits.match_null_string_p)
-#define IS_ACTIVE(R)  ((R).bits.is_active)
-#define MATCHED_SOMETHING(R)  ((R).bits.matched_something)
-#define EVER_MATCHED_SOMETHING(R)  ((R).bits.ever_matched_something)
-
-
-/* Call this when have matched a real character; it sets `matched' flags
-   for the subexpressions which we are currently inside.  Also records
-   that those subexprs have matched.  */
-#define SET_REGS_MATCHED()                                             \
-  do                                                                   \
-    {                                                                  \
-      if (!set_regs_matched_done)                                      \
-       {                                                               \
-         unsigned r;                                                   \
-         set_regs_matched_done = 1;                                    \
-         for (r = lowest_active_reg; r <= highest_active_reg; r++)     \
-           {                                                           \
-             MATCHED_SOMETHING (reg_info[r])                           \
-               = EVER_MATCHED_SOMETHING (reg_info[r])                  \
-               = 1;                                                    \
-           }                                                           \
-       }                                                               \
-    }                                                                  \
-  while (0)
-
-/* Registers are set to a sentinel when they haven't yet matched.  */
-static char reg_unset_dummy;
-#define REG_UNSET_VALUE (&reg_unset_dummy)
-#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
-\f
-/* Subroutine declarations and macros for regex_compile.  */
-
-static void store_op1 (), store_op2 ();
-static void insert_op1 (), insert_op2 ();
-static boolean at_begline_loc_p (), at_endline_loc_p ();
-static boolean group_in_compile_stack ();
-static reg_errcode_t compile_range ();
-
-/* Fetch the next character in the uncompiled pattern---translating it
-   if necessary.  Also cast from a signed character in the constant
-   string passed to us by the user to an unsigned char that we can use
-   as an array index (in, e.g., `translate').  */
-#ifndef PATFETCH
-#define PATFETCH(c)                                                    \
-  do {if (p == pend) return REG_EEND;                                  \
-    c = (unsigned char) *p++;                                          \
-    if (translate) c = (unsigned char) translate[c];                   \
-  } while (0)
-#endif
-
-/* Fetch the next character in the uncompiled pattern, with no
-   translation.  */
-#define PATFETCH_RAW(c)                                                        \
-  do {if (p == pend) return REG_EEND;                                  \
-    c = (unsigned char) *p++;                                          \
-  } while (0)
-
-/* Go backwards one character in the pattern.  */
-#define PATUNFETCH p--
-
-
-/* If `translate' is non-null, return translate[D], else just D.  We
-   cast the subscript to translate because some data is declared as
-   `char *', to avoid warnings when a string constant is passed.  But
-   when we use a character as a subscript we must make it unsigned.  */
-#ifndef TRANSLATE
-#define TRANSLATE(d) \
-  (translate ? (char) translate[(unsigned char) (d)] : (d))
-#endif
-
-
-/* Macros for outputting the compiled pattern into `buffer'.  */
-
-/* If the buffer isn't allocated when it comes in, use this.  */
-#define INIT_BUF_SIZE  32
-
-/* Make sure we have at least N more bytes of space in buffer.  */
-#define GET_BUFFER_SPACE(n)                                            \
-    while (b - bufp->buffer + (n) > bufp->allocated)                   \
-      EXTEND_BUFFER ()
-
-/* Make sure we have one more byte of buffer space and then add C to it.  */
-#define BUF_PUSH(c)                                                    \
-  do {                                                                 \
-    GET_BUFFER_SPACE (1);                                              \
-    *b++ = (unsigned char) (c);                                                \
-  } while (0)
-
-
-/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
-#define BUF_PUSH_2(c1, c2)                                             \
-  do {                                                                 \
-    GET_BUFFER_SPACE (2);                                              \
-    *b++ = (unsigned char) (c1);                                       \
-    *b++ = (unsigned char) (c2);                                       \
-  } while (0)
-
-
-/* As with BUF_PUSH_2, except for three bytes.  */
-#define BUF_PUSH_3(c1, c2, c3)                                         \
-  do {                                                                 \
-    GET_BUFFER_SPACE (3);                                              \
-    *b++ = (unsigned char) (c1);                                       \
-    *b++ = (unsigned char) (c2);                                       \
-    *b++ = (unsigned char) (c3);                                       \
-  } while (0)
-
-
-/* Store a jump with opcode OP at LOC to location TO.  We store a
-   relative address offset by the three bytes the jump itself occupies.  */
-#define STORE_JUMP(op, loc, to) \
-  store_op1 (op, loc, (to) - (loc) - 3)
-
-/* Likewise, for a two-argument jump.  */
-#define STORE_JUMP2(op, loc, to, arg) \
-  store_op2 (op, loc, (to) - (loc) - 3, arg)
-
-/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
-#define INSERT_JUMP(op, loc, to) \
-  insert_op1 (op, loc, (to) - (loc) - 3, b)
-
-/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
-#define INSERT_JUMP2(op, loc, to, arg) \
-  insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
-
-
-/* This is not an arbitrary limit: the arguments which represent offsets
-   into the pattern are two bytes long.  So if 2^16 bytes turns out to
-   be too small, many things would have to change.  */
-#define MAX_BUF_SIZE (1L << 16)
-
-
-/* Extend the buffer by twice its current size via realloc and
-   reset the pointers that pointed into the old block to point to the
-   correct places in the new one.  If extending the buffer results in it
-   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
-#define EXTEND_BUFFER()                                                        \
-  do {                                                                         \
-    unsigned char *old_buffer = bufp->buffer;                          \
-    if (bufp->allocated == MAX_BUF_SIZE)                               \
-      return REG_ESIZE;                                                        \
-    bufp->allocated <<= 1;                                             \
-    if (bufp->allocated > MAX_BUF_SIZE)                                        \
-      bufp->allocated = MAX_BUF_SIZE;                                  \
-    bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
-    if (bufp->buffer == NULL)                                          \
-      return REG_ESPACE;                                               \
-    /* If the buffer moved, move all the pointers into it.  */         \
-    if (old_buffer != bufp->buffer)                                    \
-      {                                                                        \
-        b = (b - old_buffer) + bufp->buffer;                           \
-        begalt = (begalt - old_buffer) + bufp->buffer;                 \
-        if (fixup_alt_jump)                                            \
-          fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
-        if (laststart)                                                 \
-          laststart = (laststart - old_buffer) + bufp->buffer;         \
-        if (pending_exact)                                             \
-          pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
-      }                                                                        \
-  } while (0)
-
-
-/* Since we have one byte reserved for the register number argument to
-   {start,stop}_memory, the maximum number of groups we can report
-   things about is what fits in that byte.  */
-#define MAX_REGNUM 255
-
-/* But patterns can have more than `MAX_REGNUM' registers.  We just
-   ignore the excess.  */
-typedef unsigned regnum_t;
-
-
-/* Macros for the compile stack.  */
-
-/* Since offsets can go either forwards or backwards, this type needs to
-   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
-typedef int pattern_offset_t;
-
-typedef struct
-{
-  pattern_offset_t begalt_offset;
-  pattern_offset_t fixup_alt_jump;
-  pattern_offset_t inner_group_offset;
-  pattern_offset_t laststart_offset;
-  regnum_t regnum;
-} compile_stack_elt_t;
-
-
-typedef struct
-{
-  compile_stack_elt_t *stack;
-  unsigned size;
-  unsigned avail;                      /* Offset of next open position.  */
-} compile_stack_type;
-
-
-#define INIT_COMPILE_STACK_SIZE 32
-
-#define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
-#define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
-
-/* The next available element.  */
-#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
-
-
-/* Set the bit for character C in a list.  */
-#define SET_LIST_BIT(c)                               \
-  (b[((unsigned char) (c)) / BYTEWIDTH]               \
-   |= 1 << (((unsigned char) c) % BYTEWIDTH))
-
-
-/* Get the next unsigned number in the uncompiled pattern.  */
-#define GET_UNSIGNED_NUMBER(num)                                       \
-  { if (p != pend)                                                     \
-     {                                                                 \
-       PATFETCH (c);                                                   \
-       while (ISDIGIT (c))                                             \
-         {                                                             \
-           if (num < 0)                                                        \
-              num = 0;                                                 \
-           num = num * 10 + c - '0';                                   \
-           if (p == pend)                                              \
-              break;                                                   \
-           PATFETCH (c);                                               \
-         }                                                             \
-       }                                                               \
-    }
-
-#define CHAR_CLASS_MAX_LENGTH  6 /* Namely, `xdigit'.  */
-
-#define IS_CHAR_CLASS(string)                                          \
-   (STREQ (string, "alpha") || STREQ (string, "upper")                 \
-    || STREQ (string, "lower") || STREQ (string, "digit")              \
-    || STREQ (string, "alnum") || STREQ (string, "xdigit")             \
-    || STREQ (string, "space") || STREQ (string, "print")              \
-    || STREQ (string, "punct") || STREQ (string, "graph")              \
-    || STREQ (string, "cntrl") || STREQ (string, "blank"))
-\f
-#ifndef MATCH_MAY_ALLOCATE
-
-/* If we cannot allocate large objects within re_match_2_internal,
-   we make the fail stack and register vectors global.
-   The fail stack, we grow to the maximum size when a regexp
-   is compiled.
-   The register vectors, we adjust in size each time we
-   compile a regexp, according to the number of registers it needs.  */
-
-static fail_stack_type fail_stack;
-
-/* Size with which the following vectors are currently allocated.
-   That is so we can make them bigger as needed,
-   but never make them smaller.  */
-static int regs_allocated_size;
-
-static const char **     regstart, **     regend;
-static const char ** old_regstart, ** old_regend;
-static const char **best_regstart, **best_regend;
-static register_info_type *reg_info;
-static const char **reg_dummy;
-static register_info_type *reg_info_dummy;
-
-/* Make the register vectors big enough for NUM_REGS registers,
-   but don't make them smaller.  */
-
-static
-regex_grow_registers (num_regs)
-     int num_regs;
-{
-  if (num_regs > regs_allocated_size)
-    {
-      RETALLOC_IF (regstart,    num_regs, const char *);
-      RETALLOC_IF (regend,      num_regs, const char *);
-      RETALLOC_IF (old_regstart, num_regs, const char *);
-      RETALLOC_IF (old_regend,  num_regs, const char *);
-      RETALLOC_IF (best_regstart, num_regs, const char *);
-      RETALLOC_IF (best_regend,         num_regs, const char *);
-      RETALLOC_IF (reg_info,    num_regs, register_info_type);
-      RETALLOC_IF (reg_dummy,   num_regs, const char *);
-      RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
-
-      regs_allocated_size = num_regs;
-    }
-}
-
-#endif /* not MATCH_MAY_ALLOCATE */
-\f
-/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
-   Returns one of error codes defined in `regex.h', or zero for success.
-
-   Assumes the `allocated' (and perhaps `buffer') and `translate'
-   fields are set in BUFP on entry.
-
-   If it succeeds, results are put in BUFP (if it returns an error, the
-   contents of BUFP are undefined):
-     `buffer' is the compiled pattern;
-     `syntax' is set to SYNTAX;
-     `used' is set to the length of the compiled pattern;
-     `fastmap_accurate' is zero;
-     `re_nsub' is the number of subexpressions in PATTERN;
-     `not_bol' and `not_eol' are zero;
-
-   The `fastmap' and `newline_anchor' fields are neither
-   examined nor set.  */
-
-/* Return, freeing storage we allocated.  */
-#define FREE_STACK_RETURN(value)               \
-  return (free (compile_stack.stack), value)
-
-static reg_errcode_t
-regex_compile (pattern, size, syntax, bufp)
-     const char *pattern;
-     int size;
-     reg_syntax_t syntax;
-     struct re_pattern_buffer *bufp;
-{
-  /* We fetch characters from PATTERN here.  Even though PATTERN is
-     `char *' (i.e., signed), we declare these variables as unsigned, so
-     they can be reliably used as array indices.  */
-  register unsigned char c, c1;
-
-  /* A random temporary spot in PATTERN.  */
-  const char *p1;
-
-  /* Points to the end of the buffer, where we should append.  */
-  register unsigned char *b;
-
-  /* Keeps track of unclosed groups.  */
-  compile_stack_type compile_stack;
-
-  /* Points to the current (ending) position in the pattern.  */
-  const char *p = pattern;
-  const char *pend = pattern + size;
-
-  /* How to translate the characters in the pattern.  */
-  RE_TRANSLATE_TYPE translate = bufp->translate;
-
-  /* Address of the count-byte of the most recently inserted `exactn'
-     command.  This makes it possible to tell if a new exact-match
-     character can be added to that command or if the character requires
-     a new `exactn' command.  */
-  unsigned char *pending_exact = 0;
-
-  /* Address of start of the most recently finished expression.
-     This tells, e.g., postfix * where to find the start of its
-     operand.  Reset at the beginning of groups and alternatives.  */
-  unsigned char *laststart = 0;
-
-  /* Address of beginning of regexp, or inside of last group.  */
-  unsigned char *begalt;
-
-  /* Place in the uncompiled pattern (i.e., the {) to
-     which to go back if the interval is invalid.  */
-  const char *beg_interval;
-
-  /* Address of the place where a forward jump should go to the end of
-     the containing expression.  Each alternative of an `or' -- except the
-     last -- ends with a forward jump of this sort.  */
-  unsigned char *fixup_alt_jump = 0;
-
-  /* Counts open-groups as they are encountered.  Remembered for the
-     matching close-group on the compile stack, so the same register
-     number is put in the stop_memory as the start_memory.  */
-  regnum_t regnum = 0;
-
-#ifdef DEBUG
-  DEBUG_PRINT1 ("\nCompiling pattern: ");
-  if (debug)
-    {
-      unsigned debug_count;
-
-      for (debug_count = 0; debug_count < size; debug_count++)
-        putchar (pattern[debug_count]);
-      putchar ('\n');
-    }
-#endif /* DEBUG */
-
-  /* Initialize the compile stack.  */
-  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
-  if (compile_stack.stack == NULL)
-    return REG_ESPACE;
-
-  compile_stack.size = INIT_COMPILE_STACK_SIZE;
-  compile_stack.avail = 0;
-
-  /* Initialize the pattern buffer.  */
-  bufp->syntax = syntax;
-  bufp->fastmap_accurate = 0;
-  bufp->not_bol = bufp->not_eol = 0;
-
-  /* Set `used' to zero, so that if we return an error, the pattern
-     printer (for debugging) will think there's no pattern.  We reset it
-     at the end.  */
-  bufp->used = 0;
-
-  /* Always count groups, whether or not bufp->no_sub is set.  */
-  bufp->re_nsub = 0;
-
-#if !defined (emacs) && !defined (SYNTAX_TABLE)
-  /* Initialize the syntax table.  */
-   init_syntax_once ();
-#endif
-
-  if (bufp->allocated == 0)
-    {
-      if (bufp->buffer)
-       { /* If zero allocated, but buffer is non-null, try to realloc
-             enough space.  This loses if buffer's address is bogus, but
-             that is the user's responsibility.  */
-          RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
-        }
-      else
-        { /* Caller did not allocate a buffer.  Do it for them.  */
-          bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
-        }
-      if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
-
-      bufp->allocated = INIT_BUF_SIZE;
-    }
-
-  begalt = b = bufp->buffer;
-
-  /* Loop through the uncompiled pattern until we're at the end.  */
-  while (p != pend)
-    {
-      PATFETCH (c);
-
-      switch (c)
-        {
-        case '^':
-          {
-            if (   /* If at start of pattern, it's an operator.  */
-                   p == pattern + 1
-                   /* If context independent, it's an operator.  */
-                || syntax & RE_CONTEXT_INDEP_ANCHORS
-                   /* Otherwise, depends on what's come before.  */
-                || at_begline_loc_p (pattern, p, syntax))
-              BUF_PUSH (begline);
-            else
-              goto normal_char;
-          }
-          break;
-
-
-        case '$':
-          {
-            if (   /* If at end of pattern, it's an operator.  */
-                   p == pend
-                   /* If context independent, it's an operator.  */
-                || syntax & RE_CONTEXT_INDEP_ANCHORS
-                   /* Otherwise, depends on what's next.  */
-                || at_endline_loc_p (p, pend, syntax))
-               BUF_PUSH (endline);
-             else
-               goto normal_char;
-           }
-           break;
-
-
-       case '+':
-        case '?':
-          if ((syntax & RE_BK_PLUS_QM)
-              || (syntax & RE_LIMITED_OPS))
-            goto normal_char;
-        handle_plus:
-        case '*':
-          /* If there is no previous pattern... */
-          if (!laststart)
-            {
-              if (syntax & RE_CONTEXT_INVALID_OPS)
-                FREE_STACK_RETURN (REG_BADRPT);
-              else if (!(syntax & RE_CONTEXT_INDEP_OPS))
-                goto normal_char;
-            }
-
-          {
-            /* Are we optimizing this jump?  */
-            boolean keep_string_p = false;
-
-            /* 1 means zero (many) matches is allowed.  */
-            char zero_times_ok = 0, many_times_ok = 0;
-
-            /* If there is a sequence of repetition chars, collapse it
-               down to just one (the right one).  We can't combine
-               interval operators with these because of, e.g., `a{2}*',
-               which should only match an even number of `a's.  */
-
-            for (;;)
-              {
-                zero_times_ok |= c != '+';
-                many_times_ok |= c != '?';
-
-                if (p == pend)
-                  break;
-
-                PATFETCH (c);
-
-                if (c == '*'
-                    || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
-                  ;
-
-                else if (syntax & RE_BK_PLUS_QM  &&  c == '\\')
-                  {
-                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
-
-                    PATFETCH (c1);
-                    if (!(c1 == '+' || c1 == '?'))
-                      {
-                        PATUNFETCH;
-                        PATUNFETCH;
-                        break;
-                      }
-
-                    c = c1;
-                  }
-                else
-                  {
-                    PATUNFETCH;
-                    break;
-                  }
-
-                /* If we get here, we found another repeat character.  */
-               }
-
-            /* Star, etc. applied to an empty pattern is equivalent
-               to an empty pattern.  */
-            if (!laststart)
-              break;
-
-            /* Now we know whether or not zero matches is allowed
-               and also whether or not two or more matches is allowed.  */
-            if (many_times_ok)
-              { /* More than one repetition is allowed, so put in at the
-                   end a backward relative jump from `b' to before the next
-                   jump we're going to put in below (which jumps from
-                   laststart to after this jump).
-
-                   But if we are at the `*' in the exact sequence `.*\n',
-                   insert an unconditional jump backwards to the .,
-                   instead of the beginning of the loop.  This way we only
-                   push a failure point once, instead of every time
-                   through the loop.  */
-                assert (p - 1 > pattern);
-
-                /* Allocate the space for the jump.  */
-                GET_BUFFER_SPACE (3);
-
-                /* We know we are not at the first character of the pattern,
-                   because laststart was nonzero.  And we've already
-                   incremented `p', by the way, to be the character after
-                   the `*'.  Do we have to do something analogous here
-                   for null bytes, because of RE_DOT_NOT_NULL?  */
-                if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
-                   && zero_times_ok
-                    && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
-                    && !(syntax & RE_DOT_NEWLINE))
-                  { /* We have .*\n.  */
-                    STORE_JUMP (jump, b, laststart);
-                    keep_string_p = true;
-                  }
-                else
-                  /* Anything else.  */
-                  STORE_JUMP (maybe_pop_jump, b, laststart - 3);
-
-                /* We've added more stuff to the buffer.  */
-                b += 3;
-              }
-
-            /* On failure, jump from laststart to b + 3, which will be the
-               end of the buffer after this jump is inserted.  */
-            GET_BUFFER_SPACE (3);
-            INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
-                                       : on_failure_jump,
-                         laststart, b + 3);
-            pending_exact = 0;
-            b += 3;
-
-            if (!zero_times_ok)
-              {
-                /* At least one repetition is required, so insert a
-                   `dummy_failure_jump' before the initial
-                   `on_failure_jump' instruction of the loop. This
-                   effects a skip over that instruction the first time
-                   we hit that loop.  */
-                GET_BUFFER_SPACE (3);
-                INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
-                b += 3;
-              }
-            }
-         break;
-
-
-       case '.':
-          laststart = b;
-          BUF_PUSH (anychar);
-          break;
-
-
-        case '[':
-          {
-            boolean had_char_class = false;
-
-            if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
-
-            /* Ensure that we have enough space to push a charset: the
-               opcode, the length count, and the bitset; 34 bytes in all.  */
-           GET_BUFFER_SPACE (34);
-
-            laststart = b;
-
-            /* We test `*p == '^' twice, instead of using an if
-               statement, so we only need one BUF_PUSH.  */
-            BUF_PUSH (*p == '^' ? charset_not : charset);
-            if (*p == '^')
-              p++;
-
-            /* Remember the first position in the bracket expression.  */
-            p1 = p;
-
-            /* Push the number of bytes in the bitmap.  */
-            BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
-
-            /* Clear the whole map.  */
-            bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
-
-            /* charset_not matches newline according to a syntax bit.  */
-            if ((re_opcode_t) b[-2] == charset_not
-                && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
-              SET_LIST_BIT ('\n');
-
-            /* Read in characters and ranges, setting map bits.  */
-            for (;;)
-              {
-                if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
-
-                PATFETCH (c);
-
-                /* \ might escape characters inside [...] and [^...].  */
-                if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
-                  {
-                    if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
-
-                    PATFETCH (c1);
-                    SET_LIST_BIT (c1);
-                    continue;
-                  }
-
-                /* Could be the end of the bracket expression.  If it's
-                   not (i.e., when the bracket expression is `[]' so
-                   far), the ']' character bit gets set way below.  */
-                if (c == ']' && p != p1 + 1)
-                  break;
-
-                /* Look ahead to see if it's a range when the last thing
-                   was a character class.  */
-                if (had_char_class && c == '-' && *p != ']')
-                  FREE_STACK_RETURN (REG_ERANGE);
-
-                /* Look ahead to see if it's a range when the last thing
-                   was a character: if this is a hyphen not at the
-                   beginning or the end of a list, then it's the range
-                   operator.  */
-                if (c == '-'
-                    && !(p - 2 >= pattern && p[-2] == '[')
-                    && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
-                    && *p != ']')
-                  {
-                    reg_errcode_t ret
-                      = compile_range (&p, pend, translate, syntax, b);
-                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
-                  }
-
-                else if (p[0] == '-' && p[1] != ']')
-                  { /* This handles ranges made up of characters only.  */
-                    reg_errcode_t ret;
-
-                   /* Move past the `-'.  */
-                    PATFETCH (c1);
-
-                    ret = compile_range (&p, pend, translate, syntax, b);
-                    if (ret != REG_NOERROR) FREE_STACK_RETURN (ret);
-                  }
-
-                /* See if we're at the beginning of a possible character
-                   class.  */
-
-                else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
-                  { /* Leave room for the null.  */
-                    char str[CHAR_CLASS_MAX_LENGTH + 1];
-
-                    PATFETCH (c);
-                    c1 = 0;
-
-                    /* If pattern is `[[:'.  */
-                    if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
-
-                    for (;;)
-                      {
-                        PATFETCH (c);
-                        if (c == ':' || c == ']' || p == pend
-                            || c1 == CHAR_CLASS_MAX_LENGTH)
-                          break;
-                        str[c1++] = c;
-                      }
-                    str[c1] = '\0';
-
-                    /* If isn't a word bracketed by `[:' and:`]':
-                       undo the ending character, the letters, and leave
-                       the leading `:' and `[' (but set bits for them).  */
-                    if (c == ':' && *p == ']')
-                      {
-                        int ch;
-                        boolean is_alnum = STREQ (str, "alnum");
-                        boolean is_alpha = STREQ (str, "alpha");
-                        boolean is_blank = STREQ (str, "blank");
-                        boolean is_cntrl = STREQ (str, "cntrl");
-                        boolean is_digit = STREQ (str, "digit");
-                        boolean is_graph = STREQ (str, "graph");
-                        boolean is_lower = STREQ (str, "lower");
-                        boolean is_print = STREQ (str, "print");
-                        boolean is_punct = STREQ (str, "punct");
-                        boolean is_space = STREQ (str, "space");
-                        boolean is_upper = STREQ (str, "upper");
-                        boolean is_xdigit = STREQ (str, "xdigit");
-
-                        if (!IS_CHAR_CLASS (str))
-                         FREE_STACK_RETURN (REG_ECTYPE);
-
-                        /* Throw away the ] at the end of the character
-                           class.  */
-                        PATFETCH (c);
-
-                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
-
-                        for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
-                          {
-                           /* This was split into 3 if's to
-                              avoid an arbitrary limit in some compiler.  */
-                            if (   (is_alnum  && ISALNUM (ch))
-                                || (is_alpha  && ISALPHA (ch))
-                                || (is_blank  && ISBLANK (ch))
-                                || (is_cntrl  && ISCNTRL (ch)))
-                             SET_LIST_BIT (ch);
-                           if (   (is_digit  && ISDIGIT (ch))
-                                || (is_graph  && ISGRAPH (ch))
-                                || (is_lower  && ISLOWER (ch))
-                                || (is_print  && ISPRINT (ch)))
-                             SET_LIST_BIT (ch);
-                           if (   (is_punct  && ISPUNCT (ch))
-                                || (is_space  && ISSPACE (ch))
-                                || (is_upper  && ISUPPER (ch))
-                                || (is_xdigit && ISXDIGIT (ch)))
-                             SET_LIST_BIT (ch);
-                          }
-                        had_char_class = true;
-                      }
-                    else
-                      {
-                        c1++;
-                        while (c1--)
-                          PATUNFETCH;
-                        SET_LIST_BIT ('[');
-                        SET_LIST_BIT (':');
-                        had_char_class = false;
-                      }
-                  }
-                else
-                  {
-                    had_char_class = false;
-                    SET_LIST_BIT (c);
-                  }
-              }
-
-            /* Discard any (non)matching list bytes that are all 0 at the
-               end of the map.  Decrease the map-length byte too.  */
-            while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
-              b[-1]--;
-            b += b[-1];
-          }
-          break;
-
-
-       case '(':
-          if (syntax & RE_NO_BK_PARENS)
-            goto handle_open;
-          else
-            goto normal_char;
-
-
-        case ')':
-          if (syntax & RE_NO_BK_PARENS)
-            goto handle_close;
-          else
-            goto normal_char;
-
-
-        case '\n':
-          if (syntax & RE_NEWLINE_ALT)
-            goto handle_alt;
-          else
-            goto normal_char;
-
-
-       case '|':
-          if (syntax & RE_NO_BK_VBAR)
-            goto handle_alt;
-          else
-            goto normal_char;
-
-
-        case '{':
-           if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
-             goto handle_interval;
-           else
-             goto normal_char;
-
-
-        case '\\':
-          if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
-
-          /* Do not translate the character after the \, so that we can
-             distinguish, e.g., \B from \b, even if we normally would
-             translate, e.g., B to b.  */
-          PATFETCH_RAW (c);
-
-          switch (c)
-            {
-            case '(':
-              if (syntax & RE_NO_BK_PARENS)
-                goto normal_backslash;
-
-            handle_open:
-              bufp->re_nsub++;
-              regnum++;
-
-              if (COMPILE_STACK_FULL)
-                {
-                  RETALLOC (compile_stack.stack, compile_stack.size << 1,
-                            compile_stack_elt_t);
-                  if (compile_stack.stack == NULL) return REG_ESPACE;
-
-                  compile_stack.size <<= 1;
-                }
-
-              /* These are the values to restore when we hit end of this
-                 group.  They are all relative offsets, so that if the
-                 whole pattern moves because of realloc, they will still
-                 be valid.  */
-              COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
-              COMPILE_STACK_TOP.fixup_alt_jump
-                = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
-              COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
-              COMPILE_STACK_TOP.regnum = regnum;
-
-              /* We will eventually replace the 0 with the number of
-                 groups inner to this one.  But do not push a
-                 start_memory for groups beyond the last one we can
-                 represent in the compiled pattern.  */
-              if (regnum <= MAX_REGNUM)
-                {
-                  COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
-                  BUF_PUSH_3 (start_memory, regnum, 0);
-                }
-
-              compile_stack.avail++;
-
-              fixup_alt_jump = 0;
-              laststart = 0;
-              begalt = b;
-             /* If we've reached MAX_REGNUM groups, then this open
-                won't actually generate any code, so we'll have to
-                clear pending_exact explicitly.  */
-             pending_exact = 0;
-              break;
-
-
-            case ')':
-              if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
-
-              if (COMPILE_STACK_EMPTY)
-                if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
-                  goto normal_backslash;
-                else
-                  FREE_STACK_RETURN (REG_ERPAREN);
-
-            handle_close:
-              if (fixup_alt_jump)
-                { /* Push a dummy failure point at the end of the
-                     alternative for a possible future
-                     `pop_failure_jump' to pop.  See comments at
-                     `push_dummy_failure' in `re_match_2'.  */
-                  BUF_PUSH (push_dummy_failure);
-
-                  /* We allocated space for this jump when we assigned
-                     to `fixup_alt_jump', in the `handle_alt' case below.  */
-                  STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
-                }
-
-              /* See similar code for backslashed left paren above.  */
-              if (COMPILE_STACK_EMPTY)
-                if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
-                  goto normal_char;
-                else
-                  FREE_STACK_RETURN (REG_ERPAREN);
-
-              /* Since we just checked for an empty stack above, this
-                 ``can't happen''.  */
-              assert (compile_stack.avail != 0);
-              {
-                /* We don't just want to restore into `regnum', because
-                   later groups should continue to be numbered higher,
-                   as in `(ab)c(de)' -- the second group is #2.  */
-                regnum_t this_group_regnum;
-
-                compile_stack.avail--;
-                begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
-                fixup_alt_jump
-                  = COMPILE_STACK_TOP.fixup_alt_jump
-                    ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
-                    : 0;
-                laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
-                this_group_regnum = COMPILE_STACK_TOP.regnum;
-               /* If we've reached MAX_REGNUM groups, then this open
-                  won't actually generate any code, so we'll have to
-                  clear pending_exact explicitly.  */
-               pending_exact = 0;
-
-                /* We're at the end of the group, so now we know how many
-                   groups were inside this one.  */
-                if (this_group_regnum <= MAX_REGNUM)
-                  {
-                    unsigned char *inner_group_loc
-                      = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
-
-                    *inner_group_loc = regnum - this_group_regnum;
-                    BUF_PUSH_3 (stop_memory, this_group_regnum,
-                                regnum - this_group_regnum);
-                  }
-              }
-              break;
-
-
-            case '|':                                  /* `\|'.  */
-              if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
-                goto normal_backslash;
-            handle_alt:
-              if (syntax & RE_LIMITED_OPS)
-                goto normal_char;
-
-              /* Insert before the previous alternative a jump which
-                 jumps to this alternative if the former fails.  */
-              GET_BUFFER_SPACE (3);
-              INSERT_JUMP (on_failure_jump, begalt, b + 6);
-              pending_exact = 0;
-              b += 3;
-
-              /* The alternative before this one has a jump after it
-                 which gets executed if it gets matched.  Adjust that
-                 jump so it will jump to this alternative's analogous
-                 jump (put in below, which in turn will jump to the next
-                 (if any) alternative's such jump, etc.).  The last such
-                 jump jumps to the correct final destination.  A picture:
-                          _____ _____
-                          |   | |   |
-                          |   v |   v
-                         a | b   | c
-
-                 If we are at `b', then fixup_alt_jump right now points to a
-                 three-byte space after `a'.  We'll put in the jump, set
-                 fixup_alt_jump to right after `b', and leave behind three
-                 bytes which we'll fill in when we get to after `c'.  */
-
-              if (fixup_alt_jump)
-                STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
-
-              /* Mark and leave space for a jump after this alternative,
-                 to be filled in later either by next alternative or
-                 when know we're at the end of a series of alternatives.  */
-              fixup_alt_jump = b;
-              GET_BUFFER_SPACE (3);
-              b += 3;
-
-              laststart = 0;
-              begalt = b;
-              break;
-
-
-            case '{':
-              /* If \{ is a literal.  */
-              if (!(syntax & RE_INTERVALS)
-                     /* If we're at `\{' and it's not the open-interval
-                        operator.  */
-                  || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
-                  || (p - 2 == pattern  &&  p == pend))
-                goto normal_backslash;
-
-            handle_interval:
-              {
-                /* If got here, then the syntax allows intervals.  */
-
-                /* At least (most) this many matches must be made.  */
-                int lower_bound = -1, upper_bound = -1;
-
-                beg_interval = p - 1;
-
-                if (p == pend)
-                  {
-                    if (syntax & RE_NO_BK_BRACES)
-                      goto unfetch_interval;
-                    else
-                      FREE_STACK_RETURN (REG_EBRACE);
-                  }
-
-                GET_UNSIGNED_NUMBER (lower_bound);
-
-                if (c == ',')
-                  {
-                    GET_UNSIGNED_NUMBER (upper_bound);
-                    if (upper_bound < 0) upper_bound = RE_DUP_MAX;
-                  }
-                else
-                  /* Interval such as `{1}' => match exactly once. */
-                  upper_bound = lower_bound;
-
-                if (lower_bound < 0 || upper_bound > RE_DUP_MAX
-                    || lower_bound > upper_bound)
-                  {
-                    if (syntax & RE_NO_BK_BRACES)
-                      goto unfetch_interval;
-                    else
-                      FREE_STACK_RETURN (REG_BADBR);
-                  }
-
-                if (!(syntax & RE_NO_BK_BRACES))
-                  {
-                    if (c != '\\') FREE_STACK_RETURN (REG_EBRACE);
-
-                    PATFETCH (c);
-                  }
-
-                if (c != '}')
-                  {
-                    if (syntax & RE_NO_BK_BRACES)
-                      goto unfetch_interval;
-                    else
-                      FREE_STACK_RETURN (REG_BADBR);
-                  }
-
-                /* We just parsed a valid interval.  */
-
-                /* If it's invalid to have no preceding re.  */
-                if (!laststart)
-                  {
-                    if (syntax & RE_CONTEXT_INVALID_OPS)
-                      FREE_STACK_RETURN (REG_BADRPT);
-                    else if (syntax & RE_CONTEXT_INDEP_OPS)
-                      laststart = b;
-                    else
-                      goto unfetch_interval;
-                  }
-
-                /* If the upper bound is zero, don't want to succeed at
-                   all; jump from `laststart' to `b + 3', which will be
-                   the end of the buffer after we insert the jump.  */
-                 if (upper_bound == 0)
-                   {
-                     GET_BUFFER_SPACE (3);
-                     INSERT_JUMP (jump, laststart, b + 3);
-                     b += 3;
-                   }
-
-                 /* Otherwise, we have a nontrivial interval.  When
-                    we're all done, the pattern will look like:
-                      set_number_at <jump count> <upper bound>
-                      set_number_at <succeed_n count> <lower bound>
-                      succeed_n <after jump addr> <succeed_n count>
-                      <body of loop>
-                      jump_n <succeed_n addr> <jump count>
-                    (The upper bound and `jump_n' are omitted if
-                    `upper_bound' is 1, though.)  */
-                 else
-                   { /* If the upper bound is > 1, we need to insert
-                        more at the end of the loop.  */
-                     unsigned nbytes = 10 + (upper_bound > 1) * 10;
-
-                     GET_BUFFER_SPACE (nbytes);
-
-                     /* Initialize lower bound of the `succeed_n', even
-                        though it will be set during matching by its
-                        attendant `set_number_at' (inserted next),
-                        because `re_compile_fastmap' needs to know.
-                        Jump to the `jump_n' we might insert below.  */
-                     INSERT_JUMP2 (succeed_n, laststart,
-                                   b + 5 + (upper_bound > 1) * 5,
-                                   lower_bound);
-                     b += 5;
-
-                     /* Code to initialize the lower bound.  Insert
-                        before the `succeed_n'.  The `5' is the last two
-                        bytes of this `set_number_at', plus 3 bytes of
-                        the following `succeed_n'.  */
-                     insert_op2 (set_number_at, laststart, 5, lower_bound, b);
-                     b += 5;
-
-                     if (upper_bound > 1)
-                       { /* More than one repetition is allowed, so
-                            append a backward jump to the `succeed_n'
-                            that starts this interval.
-
-                            When we've reached this during matching,
-                            we'll have matched the interval once, so
-                            jump back only `upper_bound - 1' times.  */
-                         STORE_JUMP2 (jump_n, b, laststart + 5,
-                                      upper_bound - 1);
-                         b += 5;
-
-                         /* The location we want to set is the second
-                            parameter of the `jump_n'; that is `b-2' as
-                            an absolute address.  `laststart' will be
-                            the `set_number_at' we're about to insert;
-                            `laststart+3' the number to set, the source
-                            for the relative address.  But we are
-                            inserting into the middle of the pattern --
-                            so everything is getting moved up by 5.
-                            Conclusion: (b - 2) - (laststart + 3) + 5,
-                            i.e., b - laststart.
-
-                            We insert this at the beginning of the loop
-                            so that if we fail during matching, we'll
-                            reinitialize the bounds.  */
-                         insert_op2 (set_number_at, laststart, b - laststart,
-                                     upper_bound - 1, b);
-                         b += 5;
-                       }
-                   }
-                pending_exact = 0;
-                beg_interval = NULL;
-              }
-              break;
-
-            unfetch_interval:
-              /* If an invalid interval, match the characters as literals.  */
-               assert (beg_interval);
-               p = beg_interval;
-               beg_interval = NULL;
-
-               /* normal_char and normal_backslash need `c'.  */
-               PATFETCH (c);
-
-               if (!(syntax & RE_NO_BK_BRACES))
-                 {
-                   if (p > pattern  &&  p[-1] == '\\')
-                     goto normal_backslash;
-                 }
-               goto normal_char;
-
-#ifdef emacs
-            /* There is no way to specify the before_dot and after_dot
-               operators.  rms says this is ok.  --karl  */
-            case '=':
-              BUF_PUSH (at_dot);
-              break;
-
-            case 's':
-              laststart = b;
-              PATFETCH (c);
-              BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
-              break;
-
-            case 'S':
-              laststart = b;
-              PATFETCH (c);
-              BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
-              break;
-#endif /* emacs */
-
-
-            case 'w':
-              laststart = b;
-              BUF_PUSH (wordchar);
-              break;
-
-
-            case 'W':
-              laststart = b;
-              BUF_PUSH (notwordchar);
-              break;
-
-
-            case '<':
-              BUF_PUSH (wordbeg);
-              break;
-
-            case '>':
-              BUF_PUSH (wordend);
-              break;
-
-            case 'b':
-              BUF_PUSH (wordbound);
-              break;
-
-            case 'B':
-              BUF_PUSH (notwordbound);
-              break;
-
-            case '`':
-              BUF_PUSH (begbuf);
-              break;
-
-            case '\'':
-              BUF_PUSH (endbuf);
-              break;
-
-            case '1': case '2': case '3': case '4': case '5':
-            case '6': case '7': case '8': case '9':
-              if (syntax & RE_NO_BK_REFS)
-                goto normal_char;
-
-              c1 = c - '0';
-
-              if (c1 > regnum)
-                FREE_STACK_RETURN (REG_ESUBREG);
-
-              /* Can't back reference to a subexpression if inside of it.  */
-              if (group_in_compile_stack (compile_stack, c1))
-                goto normal_char;
-
-              laststart = b;
-              BUF_PUSH_2 (duplicate, c1);
-              break;
-
-
-            case '+':
-            case '?':
-              if (syntax & RE_BK_PLUS_QM)
-                goto handle_plus;
-              else
-                goto normal_backslash;
-
-            default:
-            normal_backslash:
-              /* You might think it would be useful for \ to mean
-                 not to translate; but if we don't translate it
-                 it will never match anything.  */
-              c = TRANSLATE (c);
-              goto normal_char;
-            }
-          break;
-
-
-       default:
-        /* Expects the character in `c'.  */
-       normal_char:
-             /* If no exactn currently being built.  */
-          if (!pending_exact
-
-              /* If last exactn not at current position.  */
-              || pending_exact + *pending_exact + 1 != b
-
-              /* We have only one byte following the exactn for the count.  */
-             || *pending_exact == (1 << BYTEWIDTH) - 1
-
-              /* If followed by a repetition operator.  */
-              || *p == '*' || *p == '^'
-             || ((syntax & RE_BK_PLUS_QM)
-                 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
-                 : (*p == '+' || *p == '?'))
-             || ((syntax & RE_INTERVALS)
-                  && ((syntax & RE_NO_BK_BRACES)
-                     ? *p == '{'
-                      : (p[0] == '\\' && p[1] == '{'))))
-           {
-             /* Start building a new exactn.  */
-
-              laststart = b;
-
-             BUF_PUSH_2 (exactn, 0);
-             pending_exact = b - 1;
-            }
-
-         BUF_PUSH (c);
-          (*pending_exact)++;
-         break;
-        } /* switch (c) */
-    } /* while p != pend */
-
-
-  /* Through the pattern now.  */
-
-  if (fixup_alt_jump)
-    STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
-
-  if (!COMPILE_STACK_EMPTY)
-    FREE_STACK_RETURN (REG_EPAREN);
-
-  /* If we don't want backtracking, force success
-     the first time we reach the end of the compiled pattern.  */
-  if (syntax & RE_NO_POSIX_BACKTRACKING)
-    BUF_PUSH (succeed);
-
-  free (compile_stack.stack);
-
-  /* We have succeeded; set the length of the buffer.  */
-  bufp->used = b - bufp->buffer;
-
-#ifdef DEBUG
-  if (debug)
-    {
-      DEBUG_PRINT1 ("\nCompiled pattern: \n");
-      print_compiled_pattern (bufp);
-    }
-#endif /* DEBUG */
-
-#ifndef MATCH_MAY_ALLOCATE
-  /* Initialize the failure stack to the largest possible stack.  This
-     isn't necessary unless we're trying to avoid calling alloca in
-     the search and match routines.  */
-  {
-    int num_regs = bufp->re_nsub + 1;
-
-    /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
-       is strictly greater than re_max_failures, the largest possible stack
-       is 2 * re_max_failures failure points.  */
-    if (fail_stack.size < (2 * re_max_failures * MAX_FAILURE_ITEMS))
-      {
-       fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
-
-#ifdef emacs
-       if (! fail_stack.stack)
-         fail_stack.stack
-           = (fail_stack_elt_t *) xmalloc (fail_stack.size
-                                           * sizeof (fail_stack_elt_t));
-       else
-         fail_stack.stack
-           = (fail_stack_elt_t *) xrealloc (fail_stack.stack,
-                                            (fail_stack.size
-                                             * sizeof (fail_stack_elt_t)));
-#else /* not emacs */
-       if (! fail_stack.stack)
-         fail_stack.stack
-           = (fail_stack_elt_t *) malloc (fail_stack.size
-                                          * sizeof (fail_stack_elt_t));
-       else
-         fail_stack.stack
-           = (fail_stack_elt_t *) realloc (fail_stack.stack,
-                                           (fail_stack.size
-                                            * sizeof (fail_stack_elt_t)));
-#endif /* not emacs */
-      }
-
-    regex_grow_registers (num_regs);
-  }
-#endif /* not MATCH_MAY_ALLOCATE */
-
-  return REG_NOERROR;
-} /* regex_compile */
-\f
-/* Subroutines for `regex_compile'.  */
-
-/* Store OP at LOC followed by two-byte integer parameter ARG.  */
-
-static void
-store_op1 (op, loc, arg)
-    re_opcode_t op;
-    unsigned char *loc;
-    int arg;
-{
-  *loc = (unsigned char) op;
-  STORE_NUMBER (loc + 1, arg);
-}
-
-
-/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
-
-static void
-store_op2 (op, loc, arg1, arg2)
-    re_opcode_t op;
-    unsigned char *loc;
-    int arg1, arg2;
-{
-  *loc = (unsigned char) op;
-  STORE_NUMBER (loc + 1, arg1);
-  STORE_NUMBER (loc + 3, arg2);
-}
-
-
-/* Copy the bytes from LOC to END to open up three bytes of space at LOC
-   for OP followed by two-byte integer parameter ARG.  */
-
-static void
-insert_op1 (op, loc, arg, end)
-    re_opcode_t op;
-    unsigned char *loc;
-    int arg;
-    unsigned char *end;
-{
-  register unsigned char *pfrom = end;
-  register unsigned char *pto = end + 3;
-
-  while (pfrom != loc)
-    *--pto = *--pfrom;
-
-  store_op1 (op, loc, arg);
-}
-
-
-/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
-
-static void
-insert_op2 (op, loc, arg1, arg2, end)
-    re_opcode_t op;
-    unsigned char *loc;
-    int arg1, arg2;
-    unsigned char *end;
-{
-  register unsigned char *pfrom = end;
-  register unsigned char *pto = end + 5;
-
-  while (pfrom != loc)
-    *--pto = *--pfrom;
-
-  store_op2 (op, loc, arg1, arg2);
-}
-
-
-/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
-   after an alternative or a begin-subexpression.  We assume there is at
-   least one character before the ^.  */
-
-static boolean
-at_begline_loc_p (pattern, p, syntax)
-    const char *pattern, *p;
-    reg_syntax_t syntax;
-{
-  const char *prev = p - 2;
-  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
-
-  return
-       /* After a subexpression?  */
-       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
-       /* After an alternative?  */
-    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
-}
-
-
-/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
-   at least one character after the $, i.e., `P < PEND'.  */
-
-static boolean
-at_endline_loc_p (p, pend, syntax)
-    const char *p, *pend;
-    int syntax;
-{
-  const char *next = p;
-  boolean next_backslash = *next == '\\';
-  const char *next_next = p + 1 < pend ? p + 1 : 0;
-
-  return
-       /* Before a subexpression?  */
-       (syntax & RE_NO_BK_PARENS ? *next == ')'
-        : next_backslash && next_next && *next_next == ')')
-       /* Before an alternative?  */
-    || (syntax & RE_NO_BK_VBAR ? *next == '|'
-        : next_backslash && next_next && *next_next == '|');
-}
-
-
-/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
-   false if it's not.  */
-
-static boolean
-group_in_compile_stack (compile_stack, regnum)
-    compile_stack_type compile_stack;
-    regnum_t regnum;
-{
-  int this_element;
-
-  for (this_element = compile_stack.avail - 1;
-       this_element >= 0;
-       this_element--)
-    if (compile_stack.stack[this_element].regnum == regnum)
-      return true;
-
-  return false;
-}
-
-
-/* Read the ending character of a range (in a bracket expression) from the
-   uncompiled pattern *P_PTR (which ends at PEND).  We assume the
-   starting character is in `P[-2]'.  (`P[-1]' is the character `-'.)
-   Then we set the translation of all bits between the starting and
-   ending characters (inclusive) in the compiled pattern B.
-
-   Return an error code.
-
-   We use these short variable names so we can use the same macros as
-   `regex_compile' itself.  */
-
-static reg_errcode_t
-compile_range (p_ptr, pend, translate, syntax, b)
-    const char **p_ptr, *pend;
-    RE_TRANSLATE_TYPE translate;
-    reg_syntax_t syntax;
-    unsigned char *b;
-{
-  unsigned this_char;
-
-  const char *p = *p_ptr;
-  int range_start, range_end;
-
-  if (p == pend)
-    return REG_ERANGE;
-
-  /* Even though the pattern is a signed `char *', we need to fetch
-     with unsigned char *'s; if the high bit of the pattern character
-     is set, the range endpoints will be negative if we fetch using a
-     signed char *.
-
-     We also want to fetch the endpoints without translating them; the
-     appropriate translation is done in the bit-setting loop below.  */
-  /* The SVR4 compiler on the 3B2 had trouble with unsigned const char *.  */
-  range_start = ((const unsigned char *) p)[-2];
-  range_end   = ((const unsigned char *) p)[0];
-
-  /* Have to increment the pointer into the pattern string, so the
-     caller isn't still at the ending character.  */
-  (*p_ptr)++;
-
-  /* If the start is after the end, the range is empty.  */
-  if (range_start > range_end)
-    return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
-
-  /* Here we see why `this_char' has to be larger than an `unsigned
-     char' -- the range is inclusive, so if `range_end' == 0xff
-     (assuming 8-bit characters), we would otherwise go into an infinite
-     loop, since all characters <= 0xff.  */
-  for (this_char = range_start; this_char <= range_end; this_char++)
-    {
-      SET_LIST_BIT (TRANSLATE (this_char));
-    }
-
-  return REG_NOERROR;
-}
-\f
-/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
-   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
-   characters can start a string that matches the pattern.  This fastmap
-   is used by re_search to skip quickly over impossible starting points.
-
-   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
-   area as BUFP->fastmap.
-
-   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
-   the pattern buffer.
-
-   Returns 0 if we succeed, -2 if an internal error.   */
-
-int
-re_compile_fastmap (bufp)
-     struct re_pattern_buffer *bufp;
-{
-  int j, k;
-#ifdef MATCH_MAY_ALLOCATE
-  fail_stack_type fail_stack;
-#endif
-#ifndef REGEX_MALLOC
-  char *destination;
-#endif
-  /* We don't push any register information onto the failure stack.  */
-  unsigned num_regs = 0;
-
-  register char *fastmap = bufp->fastmap;
-  unsigned char *pattern = bufp->buffer;
-  unsigned long size = bufp->used;
-  unsigned char *p = pattern;
-  register unsigned char *pend = pattern + size;
-
-  /* This holds the pointer to the failure stack, when
-     it is allocated relocatably.  */
-  fail_stack_elt_t *failure_stack_ptr;
-
-  /* Assume that each path through the pattern can be null until
-     proven otherwise.  We set this false at the bottom of switch
-     statement, to which we get only if a particular path doesn't
-     match the empty string.  */
-  boolean path_can_be_null = true;
-
-  /* We aren't doing a `succeed_n' to begin with.  */
-  boolean succeed_n_p = false;
-
-  assert (fastmap != NULL && p != NULL);
-
-  INIT_FAIL_STACK ();
-  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid.  */
-  bufp->fastmap_accurate = 1;      /* It will be when we're done.  */
-  bufp->can_be_null = 0;
-
-  while (1)
-    {
-      if (p == pend || *p == succeed)
-       {
-         /* We have reached the (effective) end of pattern.  */
-         if (!FAIL_STACK_EMPTY ())
-           {
-             bufp->can_be_null |= path_can_be_null;
-
-             /* Reset for next path.  */
-             path_can_be_null = true;
-
-             p = fail_stack.stack[--fail_stack.avail].pointer;
-
-             continue;
-           }
-         else
-           break;
-       }
-
-      /* We should never be about to go beyond the end of the pattern.  */
-      assert (p < pend);
-
-      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
-       {
-
-        /* I guess the idea here is to simply not bother with a fastmap
-           if a backreference is used, since it's too hard to figure out
-           the fastmap for the corresponding group.  Setting
-           `can_be_null' stops `re_search_2' from using the fastmap, so
-           that is all we do.  */
-       case duplicate:
-         bufp->can_be_null = 1;
-          goto done;
-
-
-      /* Following are the cases which match a character.  These end
-         with `break'.  */
-
-       case exactn:
-          fastmap[p[1]] = 1;
-         break;
-
-
-        case charset:
-          for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
-           if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
-              fastmap[j] = 1;
-         break;
-
-
-       case charset_not:
-         /* Chars beyond end of map must be allowed.  */
-         for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
-            fastmap[j] = 1;
-
-         for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
-           if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
-              fastmap[j] = 1;
-          break;
-
-
-       case wordchar:
-         for (j = 0; j < (1 << BYTEWIDTH); j++)
-           if (SYNTAX (j) == Sword)
-             fastmap[j] = 1;
-         break;
-
-
-       case notwordchar:
-         for (j = 0; j < (1 << BYTEWIDTH); j++)
-           if (SYNTAX (j) != Sword)
-             fastmap[j] = 1;
-         break;
-
-
-        case anychar:
-         {
-           int fastmap_newline = fastmap['\n'];
-
-           /* `.' matches anything ...  */
-           for (j = 0; j < (1 << BYTEWIDTH); j++)
-             fastmap[j] = 1;
-
-           /* ... except perhaps newline.  */
-           if (!(bufp->syntax & RE_DOT_NEWLINE))
-             fastmap['\n'] = fastmap_newline;
-
-           /* Return if we have already set `can_be_null'; if we have,
-              then the fastmap is irrelevant.  Something's wrong here.  */
-           else if (bufp->can_be_null)
-             goto done;
-
-           /* Otherwise, have to check alternative paths.  */
-           break;
-         }
-
-#ifdef emacs
-        case syntaxspec:
-         k = *p++;
-         for (j = 0; j < (1 << BYTEWIDTH); j++)
-           if (SYNTAX (j) == (enum syntaxcode) k)
-             fastmap[j] = 1;
-         break;
-
-
-       case notsyntaxspec:
-         k = *p++;
-         for (j = 0; j < (1 << BYTEWIDTH); j++)
-           if (SYNTAX (j) != (enum syntaxcode) k)
-             fastmap[j] = 1;
-         break;
-
-
-      /* All cases after this match the empty string.  These end with
-         `continue'.  */
-
-
-       case before_dot:
-       case at_dot:
-       case after_dot:
-          continue;
-#endif /* emacs */
-
-
-        case no_op:
-        case begline:
-        case endline:
-       case begbuf:
-       case endbuf:
-       case wordbound:
-       case notwordbound:
-       case wordbeg:
-       case wordend:
-        case push_dummy_failure:
-          continue;
-
-
-       case jump_n:
-        case pop_failure_jump:
-       case maybe_pop_jump:
-       case jump:
-        case jump_past_alt:
-       case dummy_failure_jump:
-          EXTRACT_NUMBER_AND_INCR (j, p);
-         p += j;
-         if (j > 0)
-           continue;
-
-          /* Jump backward implies we just went through the body of a
-             loop and matched nothing.  Opcode jumped to should be
-             `on_failure_jump' or `succeed_n'.  Just treat it like an
-             ordinary jump.  For a * loop, it has pushed its failure
-             point already; if so, discard that as redundant.  */
-          if ((re_opcode_t) *p != on_failure_jump
-             && (re_opcode_t) *p != succeed_n)
-           continue;
-
-          p++;
-          EXTRACT_NUMBER_AND_INCR (j, p);
-          p += j;
-
-          /* If what's on the stack is where we are now, pop it.  */
-          if (!FAIL_STACK_EMPTY ()
-             && fail_stack.stack[fail_stack.avail - 1].pointer == p)
-            fail_stack.avail--;
-
-          continue;
-
-
-        case on_failure_jump:
-        case on_failure_keep_string_jump:
-       handle_on_failure_jump:
-          EXTRACT_NUMBER_AND_INCR (j, p);
-
-          /* For some patterns, e.g., `(a?)?', `p+j' here points to the
-             end of the pattern.  We don't want to push such a point,
-             since when we restore it above, entering the switch will
-             increment `p' past the end of the pattern.  We don't need
-             to push such a point since we obviously won't find any more
-             fastmap entries beyond `pend'.  Such a pattern can match
-             the null string, though.  */
-          if (p + j < pend)
-            {
-              if (!PUSH_PATTERN_OP (p + j, fail_stack))
-               {
-                 RESET_FAIL_STACK ();
-                 return -2;
-               }
-            }
-          else
-            bufp->can_be_null = 1;
-
-          if (succeed_n_p)
-            {
-              EXTRACT_NUMBER_AND_INCR (k, p);  /* Skip the n.  */
-              succeed_n_p = false;
-           }
-
-          continue;
-
-
-       case succeed_n:
-          /* Get to the number of times to succeed.  */
-          p += 2;
-
-          /* Increment p past the n for when k != 0.  */
-          EXTRACT_NUMBER_AND_INCR (k, p);
-          if (k == 0)
-           {
-              p -= 4;
-             succeed_n_p = true;  /* Spaghetti code alert.  */
-              goto handle_on_failure_jump;
-            }
-          continue;
-
-
-       case set_number_at:
-          p += 4;
-          continue;
-
-
-       case start_memory:
-        case stop_memory:
-         p += 2;
-         continue;
-
-
-       default:
-          abort (); /* We have listed all the cases.  */
-        } /* switch *p++ */
-
-      /* Getting here means we have found the possible starting
-         characters for one path of the pattern -- and that the empty
-         string does not match.  We need not follow this path further.
-         Instead, look at the next alternative (remembered on the
-         stack), or quit if no more.  The test at the top of the loop
-         does these things.  */
-      path_can_be_null = false;
-      p = pend;
-    } /* while p */
-
-  /* Set `can_be_null' for the last path (also the first path, if the
-     pattern is empty).  */
-  bufp->can_be_null |= path_can_be_null;
-
- done:
-  RESET_FAIL_STACK ();
-  return 0;
-} /* re_compile_fastmap */
-\f
-/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
-   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
-   this memory for recording register information.  STARTS and ENDS
-   must be allocated using the malloc library routine, and must each
-   be at least NUM_REGS * sizeof (regoff_t) bytes long.
-
-   If NUM_REGS == 0, then subsequent matches should allocate their own
-   register data.
-
-   Unless this function is called, the first search or match using
-   PATTERN_BUFFER will allocate its own register data, without
-   freeing the old data.  */
-
-void
-re_set_registers (bufp, regs, num_regs, starts, ends)
-    struct re_pattern_buffer *bufp;
-    struct re_registers *regs;
-    unsigned num_regs;
-    regoff_t *starts, *ends;
-{
-  if (num_regs)
-    {
-      bufp->regs_allocated = REGS_REALLOCATE;
-      regs->num_regs = num_regs;
-      regs->start = starts;
-      regs->end = ends;
-    }
-  else
-    {
-      bufp->regs_allocated = REGS_UNALLOCATED;
-      regs->num_regs = 0;
-      regs->start = regs->end = (regoff_t *) 0;
-    }
-}
-\f
-/* Searching routines.  */
-
-/* Like re_search_2, below, but only one string is specified, and
-   doesn't let you say where to stop matching. */
-
-int
-re_search (bufp, string, size, startpos, range, regs)
-     struct re_pattern_buffer *bufp;
-     const char *string;
-     int size, startpos, range;
-     struct re_registers *regs;
-{
-  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
-                     regs, size);
-}
-
-
-/* Using the compiled pattern in BUFP->buffer, first tries to match the
-   virtual concatenation of STRING1 and STRING2, starting first at index
-   STARTPOS, then at STARTPOS + 1, and so on.
-
-   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
-
-   RANGE is how far to scan while trying to match.  RANGE = 0 means try
-   only at STARTPOS; in general, the last start tried is STARTPOS +
-   RANGE.
-
-   In REGS, return the indices of the virtual concatenation of STRING1
-   and STRING2 that matched the entire BUFP->buffer and its contained
-   subexpressions.
-
-   Do not consider matching one past the index STOP in the virtual
-   concatenation of STRING1 and STRING2.
-
-   We return either the position in the strings at which the match was
-   found, -1 if no match, or -2 if error (such as failure
-   stack overflow).  */
-
-int
-re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
-     struct re_pattern_buffer *bufp;
-     const char *string1, *string2;
-     int size1, size2;
-     int startpos;
-     int range;
-     struct re_registers *regs;
-     int stop;
-{
-  int val;
-  register char *fastmap = bufp->fastmap;
-  register RE_TRANSLATE_TYPE translate = bufp->translate;
-  int total_size = size1 + size2;
-  int endpos = startpos + range;
-
-  /* Check for out-of-range STARTPOS.  */
-  if (startpos < 0 || startpos > total_size)
-    return -1;
-
-  /* Fix up RANGE if it might eventually take us outside
-     the virtual concatenation of STRING1 and STRING2.
-     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
-  if (endpos < 0)
-    range = 0 - startpos;
-  else if (endpos > total_size)
-    range = total_size - startpos;
-
-  /* If the search isn't to be a backwards one, don't waste time in a
-     search for a pattern that must be anchored.  */
-  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
-    {
-      if (startpos > 0)
-       return -1;
-      else
-       range = 1;
-    }
-
-#ifdef emacs
-  /* In a forward search for something that starts with \=.
-     don't keep searching past point.  */
-  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
-    {
-      range = PT - startpos;
-      if (range <= 0)
-       return -1;
-    }
-#endif /* emacs */
-
-  /* Update the fastmap now if not correct already.  */
-  if (fastmap && !bufp->fastmap_accurate)
-    if (re_compile_fastmap (bufp) == -2)
-      return -2;
-
-  /* Loop through the string, looking for a place to start matching.  */
-  for (;;)
-    {
-      /* If a fastmap is supplied, skip quickly over characters that
-         cannot be the start of a match.  If the pattern can match the
-         null string, however, we don't need to skip characters; we want
-         the first null string.  */
-      if (fastmap && startpos < total_size && !bufp->can_be_null)
-       {
-         if (range > 0)        /* Searching forwards.  */
-           {
-             register const char *d;
-             register int lim = 0;
-             int irange = range;
-
-              if (startpos < size1 && startpos + range >= size1)
-                lim = range - (size1 - startpos);
-
-             d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
-
-              /* Written out as an if-else to avoid testing `translate'
-                 inside the loop.  */
-             if (translate)
-                while (range > lim
-                       && !fastmap[(unsigned char)
-                                  translate[(unsigned char) *d++]])
-                  range--;
-             else
-                while (range > lim && !fastmap[(unsigned char) *d++])
-                  range--;
-
-             startpos += irange - range;
-           }
-         else                          /* Searching backwards.  */
-           {
-             register char c = (size1 == 0 || startpos >= size1
-                                 ? string2[startpos - size1]
-                                 : string1[startpos]);
-
-             if (!fastmap[(unsigned char) TRANSLATE (c)])
-               goto advance;
-           }
-       }
-
-      /* If can't match the null string, and that's all we have left, fail.  */
-      if (range >= 0 && startpos == total_size && fastmap
-          && !bufp->can_be_null)
-       return -1;
-
-      val = re_match_2_internal (bufp, string1, size1, string2, size2,
-                                startpos, regs, stop);
-#ifndef REGEX_MALLOC
-#ifdef C_ALLOCA
-      alloca (0);
-#endif
-#endif
-
-      if (val >= 0)
-       return startpos;
-
-      if (val == -2)
-       return -2;
-
-    advance:
-      if (!range)
-        break;
-      else if (range > 0)
-        {
-          range--;
-          startpos++;
-        }
-      else
-        {
-          range++;
-          startpos--;
-        }
-    }
-  return -1;
-} /* re_search_2 */
-\f
-/* Declarations and macros for re_match_2.  */
-
-static int bcmp_translate ();
-static boolean alt_match_null_string_p (),
-               common_op_match_null_string_p (),
-               group_match_null_string_p ();
-
-/* This converts PTR, a pointer into one of the search strings `string1'
-   and `string2' into an offset from the beginning of that string.  */
-#define POINTER_TO_OFFSET(ptr)                 \
-  (FIRST_STRING_P (ptr)                                \
-   ? ((regoff_t) ((ptr) - string1))            \
-   : ((regoff_t) ((ptr) - string2 + size1)))
-
-/* Macros for dealing with the split strings in re_match_2.  */
-
-#define MATCHING_IN_FIRST_STRING  (dend == end_match_1)
-
-/* Call before fetching a character with *d.  This switches over to
-   string2 if necessary.  */
-#define PREFETCH()                                                     \
-  while (d == dend)                                                    \
-    {                                                                  \
-      /* End of string2 => fail.  */                                   \
-      if (dend == end_match_2)                                                 \
-        goto fail;                                                     \
-      /* End of string1 => advance to string2.  */                     \
-      d = string2;                                                     \
-      dend = end_match_2;                                              \
-    }
-
-
-/* Test if at very beginning or at very end of the virtual concatenation
-   of `string1' and `string2'.  If only one string, it's `string2'.  */
-#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
-#define AT_STRINGS_END(d) ((d) == end2)
-
-
-/* Test if D points to a character which is word-constituent.  We have
-   two special cases to check for: if past the end of string1, look at
-   the first character in string2; and if before the beginning of
-   string2, look at the last character in string1.  */
-#define WORDCHAR_P(d)                                                  \
-  (SYNTAX ((d) == end1 ? *string2                                      \
-           : (d) == string2 - 1 ? *(end1 - 1) : *(d))                  \
-   == Sword)
-
-/* Disabled due to a compiler bug -- see comment at case wordbound */
-#if 0
-/* Test if the character before D and the one at D differ with respect
-   to being word-constituent.  */
-#define AT_WORD_BOUNDARY(d)                                            \
-  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)                            \
-   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
-#endif
-
-/* Free everything we malloc.  */
-#ifdef MATCH_MAY_ALLOCATE
-#define FREE_VAR(var) if (var) then { REGEX_FREE (var); var = NULL; } else
-#define FREE_VARIABLES()                                               \
-  do {                                                                 \
-    REGEX_FREE_STACK (fail_stack.stack);                               \
-    FREE_VAR (regstart);                                               \
-    FREE_VAR (regend);                                                 \
-    FREE_VAR (old_regstart);                                           \
-    FREE_VAR (old_regend);                                             \
-    FREE_VAR (best_regstart);                                          \
-    FREE_VAR (best_regend);                                            \
-    FREE_VAR (reg_info);                                               \
-    FREE_VAR (reg_dummy);                                              \
-    FREE_VAR (reg_info_dummy);                                         \
-  } while (0)
-#else
-#define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning.  */
-#endif /* not MATCH_MAY_ALLOCATE */
-
-/* These values must meet several constraints.  They must not be valid
-   register values; since we have a limit of 255 registers (because
-   we use only one byte in the pattern for the register number), we can
-   use numbers larger than 255.  They must differ by 1, because of
-   NUM_FAILURE_ITEMS above.  And the value for the lowest register must
-   be larger than the value for the highest register, so we do not try
-   to actually save any registers when none are active.  */
-#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
-#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
-\f
-/* Matching routines.  */
-
-#ifndef emacs   /* Emacs never uses this.  */
-/* re_match is like re_match_2 except it takes only a single string.  */
-
-int
-re_match (bufp, string, size, pos, regs)
-     struct re_pattern_buffer *bufp;
-     const char *string;
-     int size, pos;
-     struct re_registers *regs;
-{
-  int result = re_match_2_internal (bufp, NULL, 0, string, size,
-                                   pos, regs, size);
-  alloca (0);
-  return result;
-}
-#endif /* not emacs */
-
-
-/* re_match_2 matches the compiled pattern in BUFP against the
-   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
-   and SIZE2, respectively).  We start matching at POS, and stop
-   matching at STOP.
-
-   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
-   store offsets for the substring each group matched in REGS.  See the
-   documentation for exactly how many groups we fill.
-
-   We return -1 if no match, -2 if an internal error (such as the
-   failure stack overflowing).  Otherwise, we return the length of the
-   matched substring.  */
-
-int
-re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
-     struct re_pattern_buffer *bufp;
-     const char *string1, *string2;
-     int size1, size2;
-     int pos;
-     struct re_registers *regs;
-     int stop;
-{
-  int result = re_match_2_internal (bufp, string1, size1, string2, size2,
-                                   pos, regs, stop);
-  alloca (0);
-  return result;
-}
-
-/* This is a separate function so that we can force an alloca cleanup
-   afterwards.  */
-static int
-re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
-     struct re_pattern_buffer *bufp;
-     const char *string1, *string2;
-     int size1, size2;
-     int pos;
-     struct re_registers *regs;
-     int stop;
-{
-  /* General temporaries.  */
-  int mcnt;
-  unsigned char *p1;
-
-  /* Just past the end of the corresponding string.  */
-  const char *end1, *end2;
-
-  /* Pointers into string1 and string2, just past the last characters in
-     each to consider matching.  */
-  const char *end_match_1, *end_match_2;
-
-  /* Where we are in the data, and the end of the current string.  */
-  const char *d, *dend;
-
-  /* Where we are in the pattern, and the end of the pattern.  */
-  unsigned char *p = bufp->buffer;
-  register unsigned char *pend = p + bufp->used;
-
-  /* Mark the opcode just after a start_memory, so we can test for an
-     empty subpattern when we get to the stop_memory.  */
-  unsigned char *just_past_start_mem = 0;
-
-  /* We use this to map every character in the string.  */
-  RE_TRANSLATE_TYPE translate = bufp->translate;
-
-  /* Failure point stack.  Each place that can handle a failure further
-     down the line pushes a failure point on this stack.  It consists of
-     restart, regend, and reg_info for all registers corresponding to
-     the subexpressions we're currently inside, plus the number of such
-     registers, and, finally, two char *'s.  The first char * is where
-     to resume scanning the pattern; the second one is where to resume
-     scanning the strings.  If the latter is zero, the failure point is
-     a ``dummy''; if a failure happens and the failure point is a dummy,
-     it gets discarded and the next next one is tried.  */
-#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
-  fail_stack_type fail_stack;
-#endif
-#ifdef DEBUG
-  static unsigned failure_id = 0;
-  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
-#endif
-
-  /* This holds the pointer to the failure stack, when
-     it is allocated relocatably.  */
-  fail_stack_elt_t *failure_stack_ptr;
-
-  /* We fill all the registers internally, independent of what we
-     return, for use in backreferences.  The number here includes
-     an element for register zero.  */
-  unsigned num_regs = bufp->re_nsub + 1;
-
-  /* The currently active registers.  */
-  unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
-  unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
-
-  /* Information on the contents of registers. These are pointers into
-     the input strings; they record just what was matched (on this
-     attempt) by a subexpression part of the pattern, that is, the
-     regnum-th regstart pointer points to where in the pattern we began
-     matching and the regnum-th regend points to right after where we
-     stopped matching the regnum-th subexpression.  (The zeroth register
-     keeps track of what the whole pattern matches.)  */
-#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
-  const char **regstart, **regend;
-#endif
-
-  /* If a group that's operated upon by a repetition operator fails to
-     match anything, then the register for its start will need to be
-     restored because it will have been set to wherever in the string we
-     are when we last see its open-group operator.  Similarly for a
-     register's end.  */
-#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
-  const char **old_regstart, **old_regend;
-#endif
-
-  /* The is_active field of reg_info helps us keep track of which (possibly
-     nested) subexpressions we are currently in. The matched_something
-     field of reg_info[reg_num] helps us tell whether or not we have
-     matched any of the pattern so far this time through the reg_num-th
-     subexpression.  These two fields get reset each time through any
-     loop their register is in.  */
-#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.  */
-  register_info_type *reg_info;
-#endif
-
-  /* The following record the register info as found in the above
-     variables when we find a match better than any we've seen before.
-     This happens as we backtrack through the failure points, which in
-     turn happens only if we have not yet matched the entire string. */
-  unsigned best_regs_set = false;
-#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
-  const char **best_regstart, **best_regend;
-#endif
-
-  /* Logically, this is `best_regend[0]'.  But we don't want to have to
-     allocate space for that if we're not allocating space for anything
-     else (see below).  Also, we never need info about register 0 for
-     any of the other register vectors, and it seems rather a kludge to
-     treat `best_regend' differently than the rest.  So we keep track of
-     the end of the best match so far in a separate variable.  We
-     initialize this to NULL so that when we backtrack the first time
-     and need to test it, it's not garbage.  */
-  const char *match_end = NULL;
-
-  /* This helps SET_REGS_MATCHED avoid doing redundant work.  */
-  int set_regs_matched_done = 0;
-
-  /* Used when we pop values we don't care about.  */
-#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
-  const char **reg_dummy;
-  register_info_type *reg_info_dummy;
-#endif
-
-#ifdef DEBUG
-  /* Counts the total number of registers pushed.  */
-  unsigned num_regs_pushed = 0;
-#endif
-
-  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
-
-  INIT_FAIL_STACK ();
-
-#ifdef MATCH_MAY_ALLOCATE
-  /* Do not bother to initialize all the register variables if there are
-     no groups in the pattern, as it takes a fair amount of time.  If
-     there are groups, we include space for register 0 (the whole
-     pattern), even though we never use it, since it simplifies the
-     array indexing.  We should fix this.  */
-  if (bufp->re_nsub)
-    {
-      regstart = REGEX_TALLOC (num_regs, const char *);
-      regend = REGEX_TALLOC (num_regs, const char *);
-      old_regstart = REGEX_TALLOC (num_regs, const char *);
-      old_regend = REGEX_TALLOC (num_regs, const char *);
-      best_regstart = REGEX_TALLOC (num_regs, const char *);
-      best_regend = REGEX_TALLOC (num_regs, const char *);
-      reg_info = REGEX_TALLOC (num_regs, register_info_type);
-      reg_dummy = REGEX_TALLOC (num_regs, const char *);
-      reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
-
-      if (!(regstart && regend && old_regstart && old_regend && reg_info
-            && best_regstart && best_regend && reg_dummy && reg_info_dummy))
-        {
-          FREE_VARIABLES ();
-          return -2;
-        }
-    }
-  else
-    {
-      /* We must initialize all our variables to NULL, so that
-         `FREE_VARIABLES' doesn't try to free them.  */
-      regstart = regend = old_regstart = old_regend = best_regstart
-        = best_regend = reg_dummy = NULL;
-      reg_info = reg_info_dummy = (register_info_type *) NULL;
-    }
-#endif /* MATCH_MAY_ALLOCATE */
-
-  /* The starting position is bogus.  */
-  if (pos < 0 || pos > size1 + size2)
-    {
-      FREE_VARIABLES ();
-      return -1;
-    }
-
-  /* Initialize subexpression text positions to -1 to mark ones that no
-     start_memory/stop_memory has been seen for. Also initialize the
-     register information struct.  */
-  for (mcnt = 1; mcnt < num_regs; mcnt++)
-    {
-      regstart[mcnt] = regend[mcnt]
-        = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
-
-      REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
-      IS_ACTIVE (reg_info[mcnt]) = 0;
-      MATCHED_SOMETHING (reg_info[mcnt]) = 0;
-      EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
-    }
-
-  /* We move `string1' into `string2' if the latter's empty -- but not if
-     `string1' is null.  */
-  if (size2 == 0 && string1 != NULL)
-    {
-      string2 = string1;
-      size2 = size1;
-      string1 = 0;
-      size1 = 0;
-    }
-  end1 = string1 + size1;
-  end2 = string2 + size2;
-
-  /* Compute where to stop matching, within the two strings.  */
-  if (stop <= size1)
-    {
-      end_match_1 = string1 + stop;
-      end_match_2 = string2;
-    }
-  else
-    {
-      end_match_1 = end1;
-      end_match_2 = string2 + stop - size1;
-    }
-
-  /* `p' scans through the pattern as `d' scans through the data.
-     `dend' is the end of the input string that `d' points within.  `d'
-     is advanced into the following input string whenever necessary, but
-     this happens before fetching; therefore, at the beginning of the
-     loop, `d' can be pointing at the end of a string, but it cannot
-     equal `string2'.  */
-  if (size1 > 0 && pos <= size1)
-    {
-      d = string1 + pos;
-      dend = end_match_1;
-    }
-  else
-    {
-      d = string2 + pos - size1;
-      dend = end_match_2;
-    }
-
-  DEBUG_PRINT1 ("The compiled pattern is: ");
-  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
-  DEBUG_PRINT1 ("The string to match is: `");
-  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
-  DEBUG_PRINT1 ("'\n");
-
-  /* This loops over pattern commands.  It exits by returning from the
-     function if the match is complete, or it drops through if the match
-     fails at this starting point in the input data.  */
-  for (;;)
-    {
-      DEBUG_PRINT2 ("\n0x%x: ", p);
-
-      if (p == pend)
-       { /* End of pattern means we might have succeeded.  */
-          DEBUG_PRINT1 ("end of pattern ... ");
-
-         /* If we haven't matched the entire string, and we want the
-             longest match, try backtracking.  */
-          if (d != end_match_2)
-           {
-             /* 1 if this match ends in the same string (string1 or string2)
-                as the best previous match.  */
-             boolean same_str_p = (FIRST_STRING_P (match_end)
-                                   == MATCHING_IN_FIRST_STRING);
-             /* 1 if this match is the best seen so far.  */
-             boolean best_match_p;
-
-             /* AIX compiler got confused when this was combined
-                with the previous declaration.  */
-             if (same_str_p)
-               best_match_p = d > match_end;
-             else
-               best_match_p = !MATCHING_IN_FIRST_STRING;
-
-              DEBUG_PRINT1 ("backtracking.\n");
-
-              if (!FAIL_STACK_EMPTY ())
-                { /* More failure points to try.  */
-
-                  /* If exceeds best match so far, save it.  */
-                  if (!best_regs_set || best_match_p)
-                    {
-                      best_regs_set = true;
-                      match_end = d;
-
-                      DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
-
-                      for (mcnt = 1; mcnt < num_regs; mcnt++)
-                        {
-                          best_regstart[mcnt] = regstart[mcnt];
-                          best_regend[mcnt] = regend[mcnt];
-                        }
-                    }
-                  goto fail;
-                }
-
-              /* If no failure points, don't restore garbage.  And if
-                 last match is real best match, don't restore second
-                 best one. */
-              else if (best_regs_set && !best_match_p)
-                {
-               restore_best_regs:
-                  /* Restore best match.  It may happen that `dend ==
-                     end_match_1' while the restored d is in string2.
-                     For example, the pattern `x.*y.*z' against the
-                     strings `x-' and `y-z-', if the two strings are
-                     not consecutive in memory.  */
-                  DEBUG_PRINT1 ("Restoring best registers.\n");
-
-                  d = match_end;
-                  dend = ((d >= string1 && d <= end1)
-                          ? end_match_1 : end_match_2);
-
-                 for (mcnt = 1; mcnt < num_regs; mcnt++)
-                   {
-                     regstart[mcnt] = best_regstart[mcnt];
-                     regend[mcnt] = best_regend[mcnt];
-                   }
-                }
-            } /* d != end_match_2 */
-
-       succeed_label:
-          DEBUG_PRINT1 ("Accepting match.\n");
-
-          /* If caller wants register contents data back, do it.  */
-          if (regs && !bufp->no_sub)
-           {
-              /* Have the register data arrays been allocated?  */
-              if (bufp->regs_allocated == REGS_UNALLOCATED)
-                { /* No.  So allocate them with malloc.  We need one
-                     extra element beyond `num_regs' for the `-1' marker
-                     GNU code uses.  */
-                  regs->num_regs = MAX (RE_NREGS, num_regs + 1);
-                  regs->start = TALLOC (regs->num_regs, regoff_t);
-                  regs->end = TALLOC (regs->num_regs, regoff_t);
-                  if (regs->start == NULL || regs->end == NULL)
-                   {
-                     FREE_VARIABLES ();
-                     return -2;
-                   }
-                  bufp->regs_allocated = REGS_REALLOCATE;
-                }
-              else if (bufp->regs_allocated == REGS_REALLOCATE)
-                { /* Yes.  If we need more elements than were already
-                     allocated, reallocate them.  If we need fewer, just
-                     leave it alone.  */
-                  if (regs->num_regs < num_regs + 1)
-                    {
-                      regs->num_regs = num_regs + 1;
-                      RETALLOC (regs->start, regs->num_regs, regoff_t);
-                      RETALLOC (regs->end, regs->num_regs, regoff_t);
-                      if (regs->start == NULL || regs->end == NULL)
-                       {
-                         FREE_VARIABLES ();
-                         return -2;
-                       }
-                    }
-                }
-              else
-               {
-                 /* These braces fend off a "empty body in an else-statement"
-                    warning under GCC when assert expands to nothing.  */
-                 assert (bufp->regs_allocated == REGS_FIXED);
-               }
-
-              /* Convert the pointer data in `regstart' and `regend' to
-                 indices.  Register zero has to be set differently,
-                 since we haven't kept track of any info for it.  */
-              if (regs->num_regs > 0)
-                {
-                  regs->start[0] = pos;
-                  regs->end[0] = (MATCHING_IN_FIRST_STRING
-                                 ? ((regoff_t) (d - string1))
-                                 : ((regoff_t) (d - string2 + size1)));
-                }
-
-              /* Go through the first `min (num_regs, regs->num_regs)'
-                 registers, since that is all we initialized.  */
-             for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
-               {
-                  if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
-                    regs->start[mcnt] = regs->end[mcnt] = -1;
-                  else
-                    {
-                     regs->start[mcnt]
-                       = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
-                      regs->end[mcnt]
-                       = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
-                    }
-               }
-
-              /* If the regs structure we return has more elements than
-                 were in the pattern, set the extra elements to -1.  If
-                 we (re)allocated the registers, this is the case,
-                 because we always allocate enough to have at least one
-                 -1 at the end.  */
-              for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
-                regs->start[mcnt] = regs->end[mcnt] = -1;
-           } /* regs && !bufp->no_sub */
-
-          DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
-                        nfailure_points_pushed, nfailure_points_popped,
-                        nfailure_points_pushed - nfailure_points_popped);
-          DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
-
-          mcnt = d - pos - (MATCHING_IN_FIRST_STRING
-                           ? string1
-                           : string2 - size1);
-
-          DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
-
-          FREE_VARIABLES ();
-          return mcnt;
-        }
-
-      /* Otherwise match next pattern command.  */
-      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
-       {
-        /* Ignore these.  Used to ignore the n of succeed_n's which
-           currently have n == 0.  */
-        case no_op:
-          DEBUG_PRINT1 ("EXECUTING no_op.\n");
-          break;
-
-       case succeed:
-          DEBUG_PRINT1 ("EXECUTING succeed.\n");
-         goto succeed_label;
-
-        /* Match the next n pattern characters exactly.  The following
-           byte in the pattern defines n, and the n bytes after that
-           are the characters to match.  */
-       case exactn:
-         mcnt = *p++;
-          DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
-
-          /* This is written out as an if-else so we don't waste time
-             testing `translate' inside the loop.  */
-          if (translate)
-           {
-             do
-               {
-                 PREFETCH ();
-                 if ((unsigned char) translate[(unsigned char) *d++]
-                     != (unsigned char) *p++)
-                    goto fail;
-               }
-             while (--mcnt);
-           }
-         else
-           {
-             do
-               {
-                 PREFETCH ();
-                 if (*d++ != (char) *p++) goto fail;
-               }
-             while (--mcnt);
-           }
-         SET_REGS_MATCHED ();
-          break;
-
-
-        /* Match any character except possibly a newline or a null.  */
-       case anychar:
-          DEBUG_PRINT1 ("EXECUTING anychar.\n");
-
-          PREFETCH ();
-
-          if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
-              || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
-           goto fail;
-
-          SET_REGS_MATCHED ();
-          DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
-          d++;
-         break;
-
-
-       case charset:
-       case charset_not:
-         {
-           register unsigned char c;
-           boolean not = (re_opcode_t) *(p - 1) == charset_not;
-
-            DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
-
-           PREFETCH ();
-           c = TRANSLATE (*d); /* The character to match.  */
-
-            /* Cast to `unsigned' instead of `unsigned char' in case the
-               bit list is a full 32 bytes long.  */
-           if (c < (unsigned) (*p * BYTEWIDTH)
-               && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
-             not = !not;
-
-           p += 1 + *p;
-
-           if (!not) goto fail;
-
-           SET_REGS_MATCHED ();
-            d++;
-           break;
-         }
-
-
-        /* The beginning of a group is represented by start_memory.
-           The arguments are the register number in the next byte, and the
-           number of groups inner to this one in the next.  The text
-           matched within the group is recorded (in the internal
-           registers data structure) under the register number.  */
-        case start_memory:
-         DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
-
-          /* Find out if this group can match the empty string.  */
-         p1 = p;               /* To send to group_match_null_string_p.  */
-
-          if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
-            REG_MATCH_NULL_STRING_P (reg_info[*p])
-              = group_match_null_string_p (&p1, pend, reg_info);
-
-          /* Save the position in the string where we were the last time
-             we were at this open-group operator in case the group is
-             operated upon by a repetition operator, e.g., with `(a*)*b'
-             against `ab'; then we want to ignore where we are now in
-             the string in case this attempt to match fails.  */
-          old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
-                             ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
-                             : regstart[*p];
-         DEBUG_PRINT2 ("  old_regstart: %d\n",
-                        POINTER_TO_OFFSET (old_regstart[*p]));
-
-          regstart[*p] = d;
-         DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
-
-          IS_ACTIVE (reg_info[*p]) = 1;
-          MATCHED_SOMETHING (reg_info[*p]) = 0;
-
-         /* Clear this whenever we change the register activity status.  */
-         set_regs_matched_done = 0;
-
-          /* This is the new highest active register.  */
-          highest_active_reg = *p;
-
-          /* If nothing was active before, this is the new lowest active
-             register.  */
-          if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
-            lowest_active_reg = *p;
-
-          /* Move past the register number and inner group count.  */
-          p += 2;
-         just_past_start_mem = p;
-
-          break;
-
-
-        /* The stop_memory opcode represents the end of a group.  Its
-           arguments are the same as start_memory's: the register
-           number, and the number of inner groups.  */
-       case stop_memory:
-         DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
-
-          /* We need to save the string position the last time we were at
-             this close-group operator in case the group is operated
-             upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
-             against `aba'; then we want to ignore where we are now in
-             the string in case this attempt to match fails.  */
-          old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
-                           ? REG_UNSET (regend[*p]) ? d : regend[*p]
-                          : regend[*p];
-         DEBUG_PRINT2 ("      old_regend: %d\n",
-                        POINTER_TO_OFFSET (old_regend[*p]));
-
-          regend[*p] = d;
-         DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
-
-          /* This register isn't active anymore.  */
-          IS_ACTIVE (reg_info[*p]) = 0;
-
-         /* Clear this whenever we change the register activity status.  */
-         set_regs_matched_done = 0;
-
-          /* If this was the only register active, nothing is active
-             anymore.  */
-          if (lowest_active_reg == highest_active_reg)
-            {
-              lowest_active_reg = NO_LOWEST_ACTIVE_REG;
-              highest_active_reg = NO_HIGHEST_ACTIVE_REG;
-            }
-          else
-            { /* We must scan for the new highest active register, since
-                 it isn't necessarily one less than now: consider
-                 (a(b)c(d(e)f)g).  When group 3 ends, after the f), the
-                 new highest active register is 1.  */
-              unsigned char r = *p - 1;
-              while (r > 0 && !IS_ACTIVE (reg_info[r]))
-                r--;
-
-              /* If we end up at register zero, that means that we saved
-                 the registers as the result of an `on_failure_jump', not
-                 a `start_memory', and we jumped to past the innermost
-                 `stop_memory'.  For example, in ((.)*) we save
-                 registers 1 and 2 as a result of the *, but when we pop
-                 back to the second ), we are at the stop_memory 1.
-                 Thus, nothing is active.  */
-             if (r == 0)
-                {
-                  lowest_active_reg = NO_LOWEST_ACTIVE_REG;
-                  highest_active_reg = NO_HIGHEST_ACTIVE_REG;
-                }
-              else
-                highest_active_reg = r;
-            }
-
-          /* If just failed to match something this time around with a
-             group that's operated on by a repetition operator, try to
-             force exit from the ``loop'', and restore the register
-             information for this group that we had before trying this
-             last match.  */
-          if ((!MATCHED_SOMETHING (reg_info[*p])
-               || just_past_start_mem == p - 1)
-             && (p + 2) < pend)
-            {
-              boolean is_a_jump_n = false;
-
-              p1 = p + 2;
-              mcnt = 0;
-              switch ((re_opcode_t) *p1++)
-                {
-                  case jump_n:
-                   is_a_jump_n = true;
-                  case pop_failure_jump:
-                 case maybe_pop_jump:
-                 case jump:
-                 case dummy_failure_jump:
-                    EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-                   if (is_a_jump_n)
-                     p1 += 2;
-                    break;
-
-                  default:
-                    /* do nothing */ ;
-                }
-             p1 += mcnt;
-
-              /* If the next operation is a jump backwards in the pattern
-                to an on_failure_jump right before the start_memory
-                 corresponding to this stop_memory, exit from the loop
-                 by forcing a failure after pushing on the stack the
-                 on_failure_jump's jump in the pattern, and d.  */
-              if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
-                  && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
-               {
-                  /* If this group ever matched anything, then restore
-                     what its registers were before trying this last
-                     failed match, e.g., with `(a*)*b' against `ab' for
-                     regstart[1], and, e.g., with `((a*)*(b*)*)*'
-                     against `aba' for regend[3].
-
-                     Also restore the registers for inner groups for,
-                     e.g., `((a*)(b*))*' against `aba' (register 3 would
-                     otherwise get trashed).  */
-
-                  if (EVER_MATCHED_SOMETHING (reg_info[*p]))
-                   {
-                     unsigned r;
-
-                      EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
-
-                     /* Restore this and inner groups' (if any) registers.  */
-                      for (r = *p; r < *p + *(p + 1); r++)
-                        {
-                          regstart[r] = old_regstart[r];
-
-                          /* xx why this test?  */
-                          if (old_regend[r] >= regstart[r])
-                            regend[r] = old_regend[r];
-                        }
-                    }
-                 p1++;
-                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-                  PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
-
-                  goto fail;
-                }
-            }
-
-          /* Move past the register number and the inner group count.  */
-          p += 2;
-          break;
-
-
-       /* \<digit> has been turned into a `duplicate' command which is
-           followed by the numeric value of <digit> as the register number.  */
-        case duplicate:
-         {
-           register const char *d2, *dend2;
-           int regno = *p++;   /* Get which register to match against.  */
-           DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
-
-           /* Can't back reference a group which we've never matched.  */
-            if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
-              goto fail;
-
-            /* Where in input to try to start matching.  */
-            d2 = regstart[regno];
-
-            /* Where to stop matching; if both the place to start and
-               the place to stop matching are in the same string, then
-               set to the place to stop, otherwise, for now have to use
-               the end of the first string.  */
-
-            dend2 = ((FIRST_STRING_P (regstart[regno])
-                     == FIRST_STRING_P (regend[regno]))
-                    ? regend[regno] : end_match_1);
-           for (;;)
-             {
-               /* If necessary, advance to next segment in register
-                   contents.  */
-               while (d2 == dend2)
-                 {
-                   if (dend2 == end_match_2) break;
-                   if (dend2 == regend[regno]) break;
-
-                    /* End of string1 => advance to string2. */
-                    d2 = string2;
-                    dend2 = regend[regno];
-                 }
-               /* At end of register contents => success */
-               if (d2 == dend2) break;
-
-               /* If necessary, advance to next segment in data.  */
-               PREFETCH ();
-
-               /* How many characters left in this segment to match.  */
-               mcnt = dend - d;
-
-               /* Want how many consecutive characters we can match in
-                   one shot, so, if necessary, adjust the count.  */
-                if (mcnt > dend2 - d2)
-                 mcnt = dend2 - d2;
-
-               /* Compare that many; failure if mismatch, else move
-                   past them.  */
-               if (translate
-                    ? bcmp_translate (d, d2, mcnt, translate)
-                    : bcmp (d, d2, mcnt))
-                 goto fail;
-               d += mcnt, d2 += mcnt;
-
-               /* Do this because we've match some characters.  */
-               SET_REGS_MATCHED ();
-             }
-         }
-         break;
-
-
-        /* begline matches the empty string at the beginning of the string
-           (unless `not_bol' is set in `bufp'), and, if
-           `newline_anchor' is set, after newlines.  */
-       case begline:
-          DEBUG_PRINT1 ("EXECUTING begline.\n");
-
-          if (AT_STRINGS_BEG (d))
-            {
-              if (!bufp->not_bol) break;
-            }
-          else if (d[-1] == '\n' && bufp->newline_anchor)
-            {
-              break;
-            }
-          /* In all other cases, we fail.  */
-          goto fail;
-
-
-        /* endline is the dual of begline.  */
-       case endline:
-          DEBUG_PRINT1 ("EXECUTING endline.\n");
-
-          if (AT_STRINGS_END (d))
-            {
-              if (!bufp->not_eol) break;
-            }
-
-          /* We have to ``prefetch'' the next character.  */
-          else if ((d == end1 ? *string2 : *d) == '\n'
-                   && bufp->newline_anchor)
-            {
-              break;
-            }
-          goto fail;
-
-
-       /* Match at the very beginning of the data.  */
-        case begbuf:
-          DEBUG_PRINT1 ("EXECUTING begbuf.\n");
-          if (AT_STRINGS_BEG (d))
-            break;
-          goto fail;
-
-
-       /* Match at the very end of the data.  */
-        case endbuf:
-          DEBUG_PRINT1 ("EXECUTING endbuf.\n");
-         if (AT_STRINGS_END (d))
-           break;
-          goto fail;
-
-
-        /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
-           pushes NULL as the value for the string on the stack.  Then
-           `pop_failure_point' will keep the current value for the
-           string, instead of restoring it.  To see why, consider
-           matching `foo\nbar' against `.*\n'.  The .* matches the foo;
-           then the . fails against the \n.  But the next thing we want
-           to do is match the \n against the \n; if we restored the
-           string value, we would be back at the foo.
-
-           Because this is used only in specific cases, we don't need to
-           check all the things that `on_failure_jump' does, to make
-           sure the right things get saved on the stack.  Hence we don't
-           share its code.  The only reason to push anything on the
-           stack at all is that otherwise we would have to change
-           `anychar's code to do something besides goto fail in this
-           case; that seems worse than this.  */
-        case on_failure_keep_string_jump:
-          DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
-
-          EXTRACT_NUMBER_AND_INCR (mcnt, p);
-          DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
-
-          PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
-          break;
-
-
-       /* Uses of on_failure_jump:
-
-           Each alternative starts with an on_failure_jump that points
-           to the beginning of the next alternative.  Each alternative
-           except the last ends with a jump that in effect jumps past
-           the rest of the alternatives.  (They really jump to the
-           ending jump of the following alternative, because tensioning
-           these jumps is a hassle.)
-
-           Repeats start with an on_failure_jump that points past both
-           the repetition text and either the following jump or
-           pop_failure_jump back to this on_failure_jump.  */
-       case on_failure_jump:
-        on_failure:
-          DEBUG_PRINT1 ("EXECUTING on_failure_jump");
-
-          EXTRACT_NUMBER_AND_INCR (mcnt, p);
-          DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
-
-          /* If this on_failure_jump comes right before a group (i.e.,
-             the original * applied to a group), save the information
-             for that group and all inner ones, so that if we fail back
-             to this point, the group's information will be correct.
-             For example, in \(a*\)*\1, we need the preceding group,
-             and in \(zz\(a*\)b*\)\2, we need the inner group.  */
-
-          /* We can't use `p' to check ahead because we push
-             a failure point to `p + mcnt' after we do this.  */
-          p1 = p;
-
-          /* We need to skip no_op's before we look for the
-             start_memory in case this on_failure_jump is happening as
-             the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
-             against aba.  */
-          while (p1 < pend && (re_opcode_t) *p1 == no_op)
-            p1++;
-
-          if (p1 < pend && (re_opcode_t) *p1 == start_memory)
-            {
-              /* We have a new highest active register now.  This will
-                 get reset at the start_memory we are about to get to,
-                 but we will have saved all the registers relevant to
-                 this repetition op, as described above.  */
-              highest_active_reg = *(p1 + 1) + *(p1 + 2);
-              if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
-                lowest_active_reg = *(p1 + 1);
-            }
-
-          DEBUG_PRINT1 (":\n");
-          PUSH_FAILURE_POINT (p + mcnt, d, -2);
-          break;
-
-
-        /* A smart repeat ends with `maybe_pop_jump'.
-          We change it to either `pop_failure_jump' or `jump'.  */
-        case maybe_pop_jump:
-          EXTRACT_NUMBER_AND_INCR (mcnt, p);
-          DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
-          {
-           register unsigned char *p2 = p;
-
-            /* Compare the beginning of the repeat with what in the
-               pattern follows its end. If we can establish that there
-               is nothing that they would both match, i.e., that we
-               would have to backtrack because of (as in, e.g., `a*a')
-               then we can change to pop_failure_jump, because we'll
-               never have to backtrack.
-
-               This is not true in the case of alternatives: in
-               `(a|ab)*' we do need to backtrack to the `ab' alternative
-               (e.g., if the string was `ab').  But instead of trying to
-               detect that here, the alternative has put on a dummy
-               failure point which is what we will end up popping.  */
-
-           /* Skip over open/close-group commands.
-              If what follows this loop is a ...+ construct,
-              look at what begins its body, since we will have to
-              match at least one of that.  */
-           while (1)
-             {
-               if (p2 + 2 < pend
-                   && ((re_opcode_t) *p2 == stop_memory
-                       || (re_opcode_t) *p2 == start_memory))
-                 p2 += 3;
-               else if (p2 + 6 < pend
-                        && (re_opcode_t) *p2 == dummy_failure_jump)
-                 p2 += 6;
-               else
-                 break;
-             }
-
-           p1 = p + mcnt;
-           /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
-              to the `maybe_finalize_jump' of this case.  Examine what
-              follows.  */
-
-            /* If we're at the end of the pattern, we can change.  */
-            if (p2 == pend)
-             {
-               /* Consider what happens when matching ":\(.*\)"
-                  against ":/".  I don't really understand this code
-                  yet.  */
-               p[-3] = (unsigned char) pop_failure_jump;
-                DEBUG_PRINT1
-                  ("  End of pattern: change to `pop_failure_jump'.\n");
-              }
-
-            else if ((re_opcode_t) *p2 == exactn
-                    || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
-             {
-               register unsigned char c
-                  = *p2 == (unsigned char) endline ? '\n' : p2[2];
-
-                if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
-                  {
-                   p[-3] = (unsigned char) pop_failure_jump;
-                    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
-                                  c, p1[5]);
-                  }
-
-               else if ((re_opcode_t) p1[3] == charset
-                        || (re_opcode_t) p1[3] == charset_not)
-                 {
-                   int not = (re_opcode_t) p1[3] == charset_not;
-
-                   if (c < (unsigned char) (p1[4] * BYTEWIDTH)
-                       && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
-                     not = !not;
-
-                    /* `not' is equal to 1 if c would match, which means
-                        that we can't change to pop_failure_jump.  */
-                   if (!not)
-                      {
-                       p[-3] = (unsigned char) pop_failure_jump;
-                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
-                      }
-                 }
-             }
-            else if ((re_opcode_t) *p2 == charset)
-             {
-#ifdef DEBUG
-               register unsigned char c
-                  = *p2 == (unsigned char) endline ? '\n' : p2[2];
-#endif
-
-                if ((re_opcode_t) p1[3] == exactn
-                   && ! ((int) p2[1] * BYTEWIDTH > (int) p1[5]
-                         && (p2[2 + p1[5] / BYTEWIDTH]
-                             & (1 << (p1[5] % BYTEWIDTH)))))
-                  {
-                   p[-3] = (unsigned char) pop_failure_jump;
-                    DEBUG_PRINT3 ("  %c != %c => pop_failure_jump.\n",
-                                  c, p1[5]);
-                  }
-
-               else if ((re_opcode_t) p1[3] == charset_not)
-                 {
-                   int idx;
-                   /* We win if the charset_not inside the loop
-                      lists every character listed in the charset after.  */
-                   for (idx = 0; idx < (int) p2[1]; idx++)
-                     if (! (p2[2 + idx] == 0
-                            || (idx < (int) p1[4]
-                                && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
-                       break;
-
-                   if (idx == p2[1])
-                      {
-                       p[-3] = (unsigned char) pop_failure_jump;
-                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
-                      }
-                 }
-               else if ((re_opcode_t) p1[3] == charset)
-                 {
-                   int idx;
-                   /* We win if the charset inside the loop
-                      has no overlap with the one after the loop.  */
-                   for (idx = 0;
-                        idx < (int) p2[1] && idx < (int) p1[4];
-                        idx++)
-                     if ((p2[2 + idx] & p1[5 + idx]) != 0)
-                       break;
-
-                   if (idx == p2[1] || idx == p1[4])
-                      {
-                       p[-3] = (unsigned char) pop_failure_jump;
-                        DEBUG_PRINT1 ("  No match => pop_failure_jump.\n");
-                      }
-                 }
-             }
-         }
-         p -= 2;               /* Point at relative address again.  */
-         if ((re_opcode_t) p[-1] != pop_failure_jump)
-           {
-             p[-1] = (unsigned char) jump;
-              DEBUG_PRINT1 ("  Match => jump.\n");
-             goto unconditional_jump;
-           }
-        /* Note fall through.  */
-
-
-       /* The end of a simple repeat has a pop_failure_jump back to
-           its matching on_failure_jump, where the latter will push a
-           failure point.  The pop_failure_jump takes off failure
-           points put on by this pop_failure_jump's matching
-           on_failure_jump; we got through the pattern to here from the
-           matching on_failure_jump, so didn't fail.  */
-        case pop_failure_jump:
-          {
-            /* We need to pass separate storage for the lowest and
-               highest registers, even though we don't care about the
-               actual values.  Otherwise, we will restore only one
-               register from the stack, since lowest will == highest in
-               `pop_failure_point'.  */
-            unsigned dummy_low_reg, dummy_high_reg;
-            unsigned char *pdummy;
-            const char *sdummy;
-
-            DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
-            POP_FAILURE_POINT (sdummy, pdummy,
-                               dummy_low_reg, dummy_high_reg,
-                               reg_dummy, reg_dummy, reg_info_dummy);
-          }
-          /* Note fall through.  */
-
-
-        /* Unconditionally jump (without popping any failure points).  */
-        case jump:
-       unconditional_jump:
-         EXTRACT_NUMBER_AND_INCR (mcnt, p);    /* Get the amount to jump.  */
-          DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
-         p += mcnt;                            /* Do the jump.  */
-          DEBUG_PRINT2 ("(to 0x%x).\n", p);
-         break;
-
-
-        /* We need this opcode so we can detect where alternatives end
-           in `group_match_null_string_p' et al.  */
-        case jump_past_alt:
-          DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
-          goto unconditional_jump;
-
-
-        /* Normally, the on_failure_jump pushes a failure point, which
-           then gets popped at pop_failure_jump.  We will end up at
-           pop_failure_jump, also, and with a pattern of, say, `a+', we
-           are skipping over the on_failure_jump, so we have to push
-           something meaningless for pop_failure_jump to pop.  */
-        case dummy_failure_jump:
-          DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
-          /* It doesn't matter what we push for the string here.  What
-             the code at `fail' tests is the value for the pattern.  */
-          PUSH_FAILURE_POINT (0, 0, -2);
-          goto unconditional_jump;
-
-
-        /* At the end of an alternative, we need to push a dummy failure
-           point in case we are followed by a `pop_failure_jump', because
-           we don't want the failure point for the alternative to be
-           popped.  For example, matching `(a|ab)*' against `aab'
-           requires that we match the `ab' alternative.  */
-        case push_dummy_failure:
-          DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
-          /* See comments just above at `dummy_failure_jump' about the
-             two zeroes.  */
-          PUSH_FAILURE_POINT (0, 0, -2);
-          break;
-
-        /* Have to succeed matching what follows at least n times.
-           After that, handle like `on_failure_jump'.  */
-        case succeed_n:
-          EXTRACT_NUMBER (mcnt, p + 2);
-          DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
-
-          assert (mcnt >= 0);
-          /* Originally, this is how many times we HAVE to succeed.  */
-          if (mcnt > 0)
-            {
-               mcnt--;
-              p += 2;
-               STORE_NUMBER_AND_INCR (p, mcnt);
-               DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p, mcnt);
-            }
-         else if (mcnt == 0)
-            {
-              DEBUG_PRINT2 ("  Setting two bytes from 0x%x to no_op.\n", p+2);
-             p[2] = (unsigned char) no_op;
-              p[3] = (unsigned char) no_op;
-              goto on_failure;
-            }
-          break;
-
-        case jump_n:
-          EXTRACT_NUMBER (mcnt, p + 2);
-          DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
-
-          /* Originally, this is how many times we CAN jump.  */
-          if (mcnt)
-            {
-               mcnt--;
-               STORE_NUMBER (p + 2, mcnt);
-              goto unconditional_jump;
-            }
-          /* If don't have to jump any more, skip over the rest of command.  */
-         else
-           p += 4;
-          break;
-
-       case set_number_at:
-         {
-            DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
-
-            EXTRACT_NUMBER_AND_INCR (mcnt, p);
-            p1 = p + mcnt;
-            EXTRACT_NUMBER_AND_INCR (mcnt, p);
-            DEBUG_PRINT3 ("  Setting 0x%x to %d.\n", p1, mcnt);
-           STORE_NUMBER (p1, mcnt);
-            break;
-          }
-
-#if 0
-       /* The DEC Alpha C compiler 3.x generates incorrect code for the
-          test  WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
-          AT_WORD_BOUNDARY, so this code is disabled.  Expanding the
-          macro and introducing temporary variables works around the bug.  */
-
-       case wordbound:
-         DEBUG_PRINT1 ("EXECUTING wordbound.\n");
-         if (AT_WORD_BOUNDARY (d))
-           break;
-         goto fail;
-
-       case notwordbound:
-         DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
-         if (AT_WORD_BOUNDARY (d))
-           goto fail;
-         break;
-#else
-       case wordbound:
-       {
-         boolean prevchar, thischar;
-
-         DEBUG_PRINT1 ("EXECUTING wordbound.\n");
-         if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
-           break;
-
-         prevchar = WORDCHAR_P (d - 1);
-         thischar = WORDCHAR_P (d);
-         if (prevchar != thischar)
-           break;
-         goto fail;
-       }
-
-      case notwordbound:
-       {
-         boolean prevchar, thischar;
-
-         DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
-         if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
-           goto fail;
-
-         prevchar = WORDCHAR_P (d - 1);
-         thischar = WORDCHAR_P (d);
-         if (prevchar != thischar)
-           goto fail;
-         break;
-       }
-#endif
-
-       case wordbeg:
-          DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
-         if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
-           break;
-          goto fail;
-
-       case wordend:
-          DEBUG_PRINT1 ("EXECUTING wordend.\n");
-         if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
-              && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
-           break;
-          goto fail;
-
-#ifdef emacs
-       case before_dot:
-          DEBUG_PRINT1 ("EXECUTING before_dot.\n");
-         if (PTR_CHAR_POS ((unsigned char *) d) >= point)
-           goto fail;
-         break;
-
-       case at_dot:
-          DEBUG_PRINT1 ("EXECUTING at_dot.\n");
-         if (PTR_CHAR_POS ((unsigned char *) d) != point)
-           goto fail;
-         break;
-
-       case after_dot:
-          DEBUG_PRINT1 ("EXECUTING after_dot.\n");
-          if (PTR_CHAR_POS ((unsigned char *) d) <= point)
-           goto fail;
-         break;
-
-       case syntaxspec:
-          DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
-         mcnt = *p++;
-         goto matchsyntax;
-
-        case wordchar:
-          DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
-         mcnt = (int) Sword;
-        matchsyntax:
-         PREFETCH ();
-         /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
-         d++;
-         if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
-           goto fail;
-          SET_REGS_MATCHED ();
-         break;
-
-       case notsyntaxspec:
-          DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
-         mcnt = *p++;
-         goto matchnotsyntax;
-
-        case notwordchar:
-          DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
-         mcnt = (int) Sword;
-        matchnotsyntax:
-         PREFETCH ();
-         /* Can't use *d++ here; SYNTAX may be an unsafe macro.  */
-         d++;
-         if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
-           goto fail;
-         SET_REGS_MATCHED ();
-          break;
-
-#else /* not emacs */
-       case wordchar:
-          DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
-         PREFETCH ();
-          if (!WORDCHAR_P (d))
-            goto fail;
-         SET_REGS_MATCHED ();
-          d++;
-         break;
-
-       case notwordchar:
-          DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
-         PREFETCH ();
-         if (WORDCHAR_P (d))
-            goto fail;
-          SET_REGS_MATCHED ();
-          d++;
-         break;
-#endif /* not emacs */
-
-        default:
-          abort ();
-       }
-      continue;  /* Successfully executed one pattern command; keep going.  */
-
-
-    /* We goto here if a matching operation fails. */
-    fail:
-      if (!FAIL_STACK_EMPTY ())
-       { /* A restart point is known.  Restore to that state.  */
-          DEBUG_PRINT1 ("\nFAIL:\n");
-          POP_FAILURE_POINT (d, p,
-                             lowest_active_reg, highest_active_reg,
-                             regstart, regend, reg_info);
-
-          /* If this failure point is a dummy, try the next one.  */
-          if (!p)
-           goto fail;
-
-          /* If we failed to the end of the pattern, don't examine *p.  */
-         assert (p <= pend);
-          if (p < pend)
-            {
-              boolean is_a_jump_n = false;
-
-              /* If failed to a backwards jump that's part of a repetition
-                 loop, need to pop this failure point and use the next one.  */
-              switch ((re_opcode_t) *p)
-                {
-                case jump_n:
-                  is_a_jump_n = true;
-                case maybe_pop_jump:
-                case pop_failure_jump:
-                case jump:
-                  p1 = p + 1;
-                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-                  p1 += mcnt;
-
-                  if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
-                      || (!is_a_jump_n
-                          && (re_opcode_t) *p1 == on_failure_jump))
-                    goto fail;
-                  break;
-                default:
-                  /* do nothing */ ;
-                }
-            }
-
-          if (d >= string1 && d <= end1)
-           dend = end_match_1;
-        }
-      else
-        break;   /* Matching at this starting point really fails.  */
-    } /* for (;;) */
-
-  if (best_regs_set)
-    goto restore_best_regs;
-
-  FREE_VARIABLES ();
-
-  return -1;                           /* Failure to match.  */
-} /* re_match_2 */
-\f
-/* Subroutine definitions for re_match_2.  */
-
-
-/* We are passed P pointing to a register number after a start_memory.
-
-   Return true if the pattern up to the corresponding stop_memory can
-   match the empty string, and false otherwise.
-
-   If we find the matching stop_memory, sets P to point to one past its number.
-   Otherwise, sets P to an undefined byte less than or equal to END.
-
-   We don't handle duplicates properly (yet).  */
-
-static boolean
-group_match_null_string_p (p, end, reg_info)
-    unsigned char **p, *end;
-    register_info_type *reg_info;
-{
-  int mcnt;
-  /* Point to after the args to the start_memory.  */
-  unsigned char *p1 = *p + 2;
-
-  while (p1 < end)
-    {
-      /* Skip over opcodes that can match nothing, and return true or
-        false, as appropriate, when we get to one that can't, or to the
-         matching stop_memory.  */
-
-      switch ((re_opcode_t) *p1)
-        {
-        /* Could be either a loop or a series of alternatives.  */
-        case on_failure_jump:
-          p1++;
-          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-
-          /* If the next operation is not a jump backwards in the
-            pattern.  */
-
-         if (mcnt >= 0)
-           {
-              /* Go through the on_failure_jumps of the alternatives,
-                 seeing if any of the alternatives cannot match nothing.
-                 The last alternative starts with only a jump,
-                 whereas the rest start with on_failure_jump and end
-                 with a jump, e.g., here is the pattern for `a|b|c':
-
-                 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
-                 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
-                 /exactn/1/c
-
-                 So, we have to first go through the first (n-1)
-                 alternatives and then deal with the last one separately.  */
-
-
-              /* Deal with the first (n-1) alternatives, which start
-                 with an on_failure_jump (see above) that jumps to right
-                 past a jump_past_alt.  */
-
-              while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
-                {
-                  /* `mcnt' holds how many bytes long the alternative
-                     is, including the ending `jump_past_alt' and
-                     its number.  */
-
-                  if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
-                                                     reg_info))
-                    return false;
-
-                  /* Move to right after this alternative, including the
-                    jump_past_alt.  */
-                  p1 += mcnt;
-
-                  /* Break if it's the beginning of an n-th alternative
-                     that doesn't begin with an on_failure_jump.  */
-                  if ((re_opcode_t) *p1 != on_failure_jump)
-                    break;
-
-                 /* Still have to check that it's not an n-th
-                    alternative that starts with an on_failure_jump.  */
-                 p1++;
-                  EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-                  if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
-                    {
-                     /* Get to the beginning of the n-th alternative.  */
-                      p1 -= 3;
-                      break;
-                    }
-                }
-
-              /* Deal with the last alternative: go back and get number
-                 of the `jump_past_alt' just before it.  `mcnt' contains
-                 the length of the alternative.  */
-              EXTRACT_NUMBER (mcnt, p1 - 2);
-
-              if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
-                return false;
-
-              p1 += mcnt;      /* Get past the n-th alternative.  */
-            } /* if mcnt > 0 */
-          break;
-
-
-        case stop_memory:
-         assert (p1[1] == **p);
-          *p = p1 + 2;
-          return true;
-
-
-        default:
-          if (!common_op_match_null_string_p (&p1, end, reg_info))
-            return false;
-        }
-    } /* while p1 < end */
-
-  return false;
-} /* group_match_null_string_p */
-
-
-/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
-   It expects P to be the first byte of a single alternative and END one
-   byte past the last. The alternative can contain groups.  */
-
-static boolean
-alt_match_null_string_p (p, end, reg_info)
-    unsigned char *p, *end;
-    register_info_type *reg_info;
-{
-  int mcnt;
-  unsigned char *p1 = p;
-
-  while (p1 < end)
-    {
-      /* Skip over opcodes that can match nothing, and break when we get
-         to one that can't.  */
-
-      switch ((re_opcode_t) *p1)
-        {
-       /* It's a loop.  */
-        case on_failure_jump:
-          p1++;
-          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-          p1 += mcnt;
-          break;
-
-       default:
-          if (!common_op_match_null_string_p (&p1, end, reg_info))
-            return false;
-        }
-    }  /* while p1 < end */
-
-  return true;
-} /* alt_match_null_string_p */
-
-
-/* Deals with the ops common to group_match_null_string_p and
-   alt_match_null_string_p.
-
-   Sets P to one after the op and its arguments, if any.  */
-
-static boolean
-common_op_match_null_string_p (p, end, reg_info)
-    unsigned char **p, *end;
-    register_info_type *reg_info;
-{
-  int mcnt;
-  boolean ret;
-  int reg_no;
-  unsigned char *p1 = *p;
-
-  switch ((re_opcode_t) *p1++)
-    {
-    case no_op:
-    case begline:
-    case endline:
-    case begbuf:
-    case endbuf:
-    case wordbeg:
-    case wordend:
-    case wordbound:
-    case notwordbound:
-#ifdef emacs
-    case before_dot:
-    case at_dot:
-    case after_dot:
-#endif
-      break;
-
-    case start_memory:
-      reg_no = *p1;
-      assert (reg_no > 0 && reg_no <= MAX_REGNUM);
-      ret = group_match_null_string_p (&p1, end, reg_info);
-
-      /* Have to set this here in case we're checking a group which
-         contains a group and a back reference to it.  */
-
-      if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
-        REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
-
-      if (!ret)
-        return false;
-      break;
-
-    /* If this is an optimized succeed_n for zero times, make the jump.  */
-    case jump:
-      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-      if (mcnt >= 0)
-        p1 += mcnt;
-      else
-        return false;
-      break;
-
-    case succeed_n:
-      /* Get to the number of times to succeed.  */
-      p1 += 2;
-      EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-
-      if (mcnt == 0)
-        {
-          p1 -= 4;
-          EXTRACT_NUMBER_AND_INCR (mcnt, p1);
-          p1 += mcnt;
-        }
-      else
-        return false;
-      break;
-
-    case duplicate:
-      if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
-        return false;
-      break;
-
-    case set_number_at:
-      p1 += 4;
-
-    default:
-      /* All other opcodes mean we cannot match the empty string.  */
-      return false;
-  }
-
-  *p = p1;
-  return true;
-} /* common_op_match_null_string_p */
-
-
-/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
-   bytes; nonzero otherwise.  */
-
-static int
-bcmp_translate (s1, s2, len, translate)
-     unsigned char *s1, *s2;
-     register int len;
-     RE_TRANSLATE_TYPE translate;
-{
-  register unsigned char *p1 = s1, *p2 = s2;
-  while (len)
-    {
-      if (translate[*p1++] != translate[*p2++]) return 1;
-      len--;
-    }
-  return 0;
-}
-\f
-/* Entry points for GNU code.  */
-
-/* re_compile_pattern is the GNU regular expression compiler: it
-   compiles PATTERN (of length SIZE) and puts the result in BUFP.
-   Returns 0 if the pattern was valid, otherwise an error string.
-
-   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
-   are set in BUFP on entry.
-
-   We call regex_compile to do the actual compilation.  */
-
-const char *
-re_compile_pattern (pattern, length, bufp)
-     const char *pattern;
-     int length;
-     struct re_pattern_buffer *bufp;
-{
-  reg_errcode_t ret;
-
-  /* GNU code is written to assume at least RE_NREGS registers will be set
-     (and at least one extra will be -1).  */
-  bufp->regs_allocated = REGS_UNALLOCATED;
-
-  /* And GNU code determines whether or not to get register information
-     by passing null for the REGS argument to re_match, etc., not by
-     setting no_sub.  */
-  bufp->no_sub = 0;
-
-  /* Match anchors at newline.  */
-  bufp->newline_anchor = 1;
-
-  ret = regex_compile (pattern, length, re_syntax_options, bufp);
-
-  if (!ret)
-    return NULL;
-  return gettext (re_error_msgid[(int) ret]);
-}
-\f
-/* Entry points compatible with 4.2 BSD regex library.  We don't define
-   them unless specifically requested.  */
-
-#if defined (_REGEX_RE_COMP) || defined (_LIBC)
-
-/* BSD has one and only one pattern buffer.  */
-static struct re_pattern_buffer re_comp_buf;
-
-char *
-#ifdef _LIBC
-/* Make these definitions weak in libc, so POSIX programs can redefine
-   these names if they don't use our functions, and still use
-   regcomp/regexec below without link errors.  */
-weak_function
-#endif
-re_comp (s)
-    const char *s;
-{
-  reg_errcode_t ret;
-
-  if (!s)
-    {
-      if (!re_comp_buf.buffer)
-       return gettext ("No previous regular expression");
-      return 0;
-    }
-
-  if (!re_comp_buf.buffer)
-    {
-      re_comp_buf.buffer = (unsigned char *) malloc (200);
-      if (re_comp_buf.buffer == NULL)
-        return gettext (re_error_msgid[(int) REG_ESPACE]);
-      re_comp_buf.allocated = 200;
-
-      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
-      if (re_comp_buf.fastmap == NULL)
-       return gettext (re_error_msgid[(int) REG_ESPACE]);
-    }
-
-  /* Since `re_exec' always passes NULL for the `regs' argument, we
-     don't need to initialize the pattern buffer fields which affect it.  */
-
-  /* Match anchors at newlines.  */
-  re_comp_buf.newline_anchor = 1;
-
-  ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
-
-  if (!ret)
-    return NULL;
-
-  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
-  return (char *) gettext (re_error_msgid[(int) ret]);
-}
-
-
-int
-#ifdef _LIBC
-weak_function
-#endif
-re_exec (s)
-    const char *s;
-{
-  const int len = strlen (s);
-  return
-    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
-}
-#endif /* _REGEX_RE_COMP */
-\f
-/* POSIX.2 functions.  Don't define these for Emacs.  */
-
-#ifndef emacs
-
-/* regcomp takes a regular expression as a string and compiles it.
-
-   PREG is a regex_t *.  We do not expect any fields to be initialized,
-   since POSIX says we shouldn't.  Thus, we set
-
-     `buffer' to the compiled pattern;
-     `used' to the length of the compiled pattern;
-     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
-       REG_EXTENDED bit in CFLAGS is set; otherwise, to
-       RE_SYNTAX_POSIX_BASIC;
-     `newline_anchor' to REG_NEWLINE being set in CFLAGS;
-     `fastmap' and `fastmap_accurate' to zero;
-     `re_nsub' to the number of subexpressions in PATTERN.
-
-   PATTERN is the address of the pattern string.
-
-   CFLAGS is a series of bits which affect compilation.
-
-     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
-     use POSIX basic syntax.
-
-     If REG_NEWLINE is set, then . and [^...] don't match newline.
-     Also, regexec will try a match beginning after every newline.
-
-     If REG_ICASE is set, then we considers upper- and lowercase
-     versions of letters to be equivalent when matching.
-
-     If REG_NOSUB is set, then when PREG is passed to regexec, that
-     routine will report only success or failure, and nothing about the
-     registers.
-
-   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
-   the return codes and their meanings.)  */
-
-int
-regcomp (preg, pattern, cflags)
-    regex_t *preg;
-    const char *pattern;
-    int cflags;
-{
-  reg_errcode_t ret;
-  unsigned syntax
-    = (cflags & REG_EXTENDED) ?
-      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
-
-  /* regex_compile will allocate the space for the compiled pattern.  */
-  preg->buffer = 0;
-  preg->allocated = 0;
-  preg->used = 0;
-
-  /* Don't bother to use a fastmap when searching.  This simplifies the
-     REG_NEWLINE case: if we used a fastmap, we'd have to put all the
-     characters after newlines into the fastmap.  This way, we just try
-     every character.  */
-  preg->fastmap = 0;
-
-  if (cflags & REG_ICASE)
-    {
-      unsigned i;
-
-      preg->translate
-       = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
-                                     * sizeof (*(RE_TRANSLATE_TYPE)0));
-      if (preg->translate == NULL)
-        return (int) REG_ESPACE;
-
-      /* Map uppercase characters to corresponding lowercase ones.  */
-      for (i = 0; i < CHAR_SET_SIZE; i++)
-        preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
-    }
-  else
-    preg->translate = NULL;
-
-  /* If REG_NEWLINE is set, newlines are treated differently.  */
-  if (cflags & REG_NEWLINE)
-    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
-      syntax &= ~RE_DOT_NEWLINE;
-      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
-      /* It also changes the matching behavior.  */
-      preg->newline_anchor = 1;
-    }
-  else
-    preg->newline_anchor = 0;
-
-  preg->no_sub = !!(cflags & REG_NOSUB);
-
-  /* POSIX says a null character in the pattern terminates it, so we
-     can use strlen here in compiling the pattern.  */
-  ret = regex_compile (pattern, strlen (pattern), syntax, preg);
-
-  /* POSIX doesn't distinguish between an unmatched open-group and an
-     unmatched close-group: both are REG_EPAREN.  */
-  if (ret == REG_ERPAREN) ret = REG_EPAREN;
-
-  return (int) ret;
-}
-
-
-/* regexec searches for a given pattern, specified by PREG, in the
-   string STRING.
-
-   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
-   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
-   least NMATCH elements, and we set them to the offsets of the
-   corresponding matched substrings.
-
-   EFLAGS specifies `execution flags' which affect matching: if
-   REG_NOTBOL is set, then ^ does not match at the beginning of the
-   string; if REG_NOTEOL is set, then $ does not match at the end.
-
-   We return 0 if we find a match and REG_NOMATCH if not.  */
-
-int
-regexec (preg, string, nmatch, pmatch, eflags)
-    const regex_t *preg;
-    const char *string;
-    size_t nmatch;
-    regmatch_t pmatch[];
-    int eflags;
-{
-  int ret;
-  struct re_registers regs;
-  regex_t private_preg;
-  int len = strlen (string);
-  boolean want_reg_info = !preg->no_sub && nmatch > 0;
-
-  private_preg = *preg;
-
-  private_preg.not_bol = !!(eflags & REG_NOTBOL);
-  private_preg.not_eol = !!(eflags & REG_NOTEOL);
-
-  /* The user has told us exactly how many registers to return
-     information about, via `nmatch'.  We have to pass that on to the
-     matching routines.  */
-  private_preg.regs_allocated = REGS_FIXED;
-
-  if (want_reg_info)
-    {
-      regs.num_regs = nmatch;
-      regs.start = TALLOC (nmatch, regoff_t);
-      regs.end = TALLOC (nmatch, regoff_t);
-      if (regs.start == NULL || regs.end == NULL)
-        return (int) REG_NOMATCH;
-    }
-
-  /* Perform the searching operation.  */
-  ret = re_search (&private_preg, string, len,
-                   /* start: */ 0, /* range: */ len,
-                   want_reg_info ? &regs : (struct re_registers *) 0);
-
-  /* Copy the register information to the POSIX structure.  */
-  if (want_reg_info)
-    {
-      if (ret >= 0)
-        {
-          unsigned r;
-
-          for (r = 0; r < nmatch; r++)
-            {
-              pmatch[r].rm_so = regs.start[r];
-              pmatch[r].rm_eo = regs.end[r];
-            }
-        }
-
-      /* If we needed the temporary register info, free the space now.  */
-      free (regs.start);
-      free (regs.end);
-    }
-
-  /* We want zero return to mean success, unlike `re_search'.  */
-  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
-}
-
-
-/* Returns a message corresponding to an error code, ERRCODE, returned
-   from either regcomp or regexec.   We don't use PREG here.  */
-
-size_t
-regerror (errcode, preg, errbuf, errbuf_size)
-    int errcode;
-    const regex_t *preg;
-    char *errbuf;
-    size_t errbuf_size;
-{
-  const char *msg;
-  size_t msg_size;
-
-  if (errcode < 0
-      || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
-    /* Only error codes returned by the rest of the code should be passed
-       to this routine.  If we are given anything else, or if other regex
-       code generates an invalid error code, then the program has a bug.
-       Dump core so we can fix it.  */
-    abort ();
-
-  msg = gettext (re_error_msgid[errcode]);
-
-  msg_size = strlen (msg) + 1; /* Includes the null.  */
-
-  if (errbuf_size != 0)
-    {
-      if (msg_size > errbuf_size)
-        {
-          strncpy (errbuf, msg, errbuf_size - 1);
-          errbuf[errbuf_size - 1] = 0;
-        }
-      else
-        strcpy (errbuf, msg);
-    }
-
-  return msg_size;
-}
-
-
-/* Free dynamically allocated space used by PREG.  */
-
-void
-regfree (preg)
-    regex_t *preg;
-{
-  if (preg->buffer != NULL)
-    free (preg->buffer);
-  preg->buffer = NULL;
-
-  preg->allocated = 0;
-  preg->used = 0;
-
-  if (preg->fastmap != NULL)
-    free (preg->fastmap);
-  preg->fastmap = NULL;
-  preg->fastmap_accurate = 0;
-
-  if (preg->translate != NULL)
-    free (preg->translate);
-  preg->translate = NULL;
-}
-
-#endif /* not emacs  */
+/* Extended regular expression matching and search library, version
+   0.12.  (Implements POSIX draft P1003.2/D11.2, except for some of the
+   internationalization features.)
+
+   Copyright (C) 1993,94,95,96,97,98,99,2000 Free Software Foundation, Inc.
+
+   This program is free software; you can redistribute it and/or modify
+   it under the terms of the GNU General Public License as published by
+   the Free Software Foundation; either version 2, or (at your option)
+   any later version.
+
+   This program is distributed in the hope that it will be useful,
+   but WITHOUT ANY WARRANTY; without even the implied warranty of
+   MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.         See the
+   GNU General Public License for more details.
+
+   You should have received a copy of the GNU General Public License
+   along with this program; if not, write to the Free Software
+   Foundation, Inc., 59 Temple Place - Suite 330, Boston, MA 02111-1307,
+   USA.         */
+
+/* TODO:
+   - structure the opcode space into opcode+flag.
+   - merge with glibc's regex.[ch].
+   - replace (succeed_n + jump_n + set_number_at) with something that doesn't
+     need to modify the compiled regexp so that re_match can be reentrant.
+   - get rid of on_failure_jump_smart by doing the optimization in re_comp
+     rather than at run-time, so that re_match can be reentrant.
+*/
+
+/* AIX requires this to be the first thing in the file. */
+#if defined _AIX && !defined REGEX_MALLOC
+  #pragma alloca
+#endif
+
+#ifdef HAVE_CONFIG_H
+# include <config.h>
+#endif
+
+#if defined STDC_HEADERS && !defined emacs
+# include <stddef.h>
+#else
+/* We need this for `regex.h', and perhaps for the Emacs include files.  */
+# include <sys/types.h>
+#endif
+
+/* Whether to use ISO C Amendment 1 wide char functions.
+   Those should not be used for Emacs since it uses its own.  */
+#if defined _LIBC
+#define WIDE_CHAR_SUPPORT 1
+#else
+#define WIDE_CHAR_SUPPORT \
+       (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
+#endif
+
+/* For platform which support the ISO C amendement 1 functionality we
+   support user defined character classes.  */
+#if WIDE_CHAR_SUPPORT
+/* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>.  */
+# include <wchar.h>
+# include <wctype.h>
+#endif
+
+#ifdef _LIBC
+/* We have to keep the namespace clean.  */
+# define regfree(preg) __regfree (preg)
+# define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
+# define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
+# define regerror(errcode, preg, errbuf, errbuf_size) \
+       __regerror(errcode, preg, errbuf, errbuf_size)
+# define re_set_registers(bu, re, nu, st, en) \
+       __re_set_registers (bu, re, nu, st, en)
+# define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
+       __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
+# define re_match(bufp, string, size, pos, regs) \
+       __re_match (bufp, string, size, pos, regs)
+# define re_search(bufp, string, size, startpos, range, regs) \
+       __re_search (bufp, string, size, startpos, range, regs)
+# define re_compile_pattern(pattern, length, bufp) \
+       __re_compile_pattern (pattern, length, bufp)
+# define re_set_syntax(syntax) __re_set_syntax (syntax)
+# define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
+       __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
+# define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
+
+/* Make sure we call libc's function even if the user overrides them.  */
+# define btowc __btowc
+# define iswctype __iswctype
+# define wctype __wctype
+
+# define WEAK_ALIAS(a,b) weak_alias (a, b)
+
+/* We are also using some library internals.  */
+# include <locale/localeinfo.h>
+# include <locale/elem-hash.h>
+# include <langinfo.h>
+#else
+# define WEAK_ALIAS(a,b)
+#endif
+
+/* This is for other GNU distributions with internationalized messages.  */
+#if HAVE_LIBINTL_H || defined _LIBC
+# include <libintl.h>
+#else
+# define gettext(msgid) (msgid)
+#endif
+
+#ifndef gettext_noop
+/* This define is so xgettext can find the internationalizable
+   strings.  */
+# define gettext_noop(String) String
+#endif
+
+/* The `emacs' switch turns on certain matching commands
+   that make sense only in Emacs. */
+#ifdef emacs
+
+# include "lisp.h"
+# include "buffer.h"
+
+/* Make syntax table lookup grant data in gl_state.  */
+# define SYNTAX_ENTRY_VIA_PROPERTY
+
+# include "syntax.h"
+# include "charset.h"
+# include "category.h"
+
+# ifdef malloc
+#  undef malloc
+# endif
+# define malloc xmalloc
+# ifdef realloc
+#  undef realloc
+# endif
+# define realloc xrealloc
+# ifdef free
+#  undef free
+# endif
+# define free xfree
+
+/* Converts the pointer to the char to BEG-based offset from the start.         */
+# define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
+# define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
+
+# define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
+# define RE_STRING_CHAR(p, s) \
+  (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
+# define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
+  (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
+
+/* Set C a (possibly multibyte) character before P.  P points into a
+   string which is the virtual concatenation of STR1 (which ends at
+   END1) or STR2 (which ends at END2).  */
+# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2)               \
+  do {                                                                 \
+    if (multibyte)                                                     \
+       {                                                               \
+        re_char *dtemp = (p) == (str2) ? (end1) : (p);                 \
+        re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
+        re_char *d0 = dtemp;                                           \
+        PREV_CHAR_BOUNDARY (d0, dlimit);                               \
+        c = STRING_CHAR (d0, dtemp - d0);                              \
+       }                                                               \
+     else                                                              \
+       (c = ((p) == (str2) ? (end1) : (p))[-1]);                       \
+  } while (0)
+
+
+#else  /* not emacs */
+
+/* If we are not linking with Emacs proper,
+   we can't use the relocating allocator
+   even if config.h says that we can.  */
+# undef REL_ALLOC
+
+# if defined STDC_HEADERS || defined _LIBC
+#  include <stdlib.h>
+# else
+char *malloc ();
+char *realloc ();
+# endif
+
+/* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
+   If nothing else has been done, use the method below.  */
+# ifdef INHIBIT_STRING_HEADER
+#  if !(defined HAVE_BZERO && defined HAVE_BCOPY)
+#   if !defined bzero && !defined bcopy
+#    undef INHIBIT_STRING_HEADER
+#   endif
+#  endif
+# endif
+
+/* This is the normal way of making sure we have memcpy, memcmp and bzero.
+   This is used in most programs--a few other programs avoid this
+   by defining INHIBIT_STRING_HEADER.  */
+# ifndef INHIBIT_STRING_HEADER
+#  if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
+#   include <string.h>
+#   ifndef bzero
+#    ifndef _LIBC
+#     define bzero(s, n)       (memset (s, '\0', n), (s))
+#    else
+#     define bzero(s, n)       __bzero (s, n)
+#    endif
+#   endif
+#  else
+#   include <strings.h>
+#   ifndef memcmp
+#    define memcmp(s1, s2, n)  bcmp (s1, s2, n)
+#   endif
+#   ifndef memcpy
+#    define memcpy(d, s, n)    (bcopy (s, d, n), (d))
+#   endif
+#  endif
+# endif
+
+/* Define the syntax stuff for \<, \>, etc.  */
+
+/* Sword must be nonzero for the wordchar pattern commands in re_match_2.  */
+enum syntaxcode { Swhitespace = 0, Sword = 1 };
+
+# ifdef SWITCH_ENUM_BUG
+#  define SWITCH_ENUM_CAST(x) ((int)(x))
+# else
+#  define SWITCH_ENUM_CAST(x) (x)
+# endif
+
+/* Dummy macros for non-Emacs environments.  */
+# define BASE_LEADING_CODE_P(c) (0)
+# define CHAR_CHARSET(c) 0
+# define CHARSET_LEADING_CODE_BASE(c) 0
+# define MAX_MULTIBYTE_LENGTH 1
+# define RE_MULTIBYTE_P(x) 0
+# define WORD_BOUNDARY_P(c1, c2) (0)
+# define CHAR_HEAD_P(p) (1)
+# define SINGLE_BYTE_CHAR_P(c) (1)
+# define SAME_CHARSET_P(c1, c2) (1)
+# define MULTIBYTE_FORM_LENGTH(p, s) (1)
+# define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
+# define STRING_CHAR(p, s) (*(p))
+# define RE_STRING_CHAR STRING_CHAR
+# define CHAR_STRING(c, s) (*(s) = (c), 1)
+# define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
+# define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
+# define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
+  (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
+# define MAKE_CHAR(charset, c1, c2) (c1)
+#endif /* not emacs */
+
+#ifndef RE_TRANSLATE
+# define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
+# define RE_TRANSLATE_P(TBL) (TBL)
+#endif
+\f
+/* Get the interface, including the syntax bits.  */
+#include "regex.h"
+
+/* isalpha etc. are used for the character classes.  */
+#include <ctype.h>
+
+#ifdef emacs
+
+/* 1 if C is an ASCII character.  */
+# define IS_REAL_ASCII(c) ((c) < 0200)
+
+/* 1 if C is a unibyte character.  */
+# define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
+
+/* The Emacs definitions should not be directly affected by locales.  */
+
+/* In Emacs, these are only used for single-byte characters.  */
+# define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
+# define ISCNTRL(c) ((c) < ' ')
+# define ISXDIGIT(c) (((c) >= '0' && (c) <= '9')               \
+                    || ((c) >= 'a' && (c) <= 'f')      \
+                    || ((c) >= 'A' && (c) <= 'F'))
+
+/* This is only used for single-byte characters.  */
+# define ISBLANK(c) ((c) == ' ' || (c) == '\t')
+
+/* The rest must handle multibyte characters.  */
+
+# define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c)                            \
+                   ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237)        \
+                   : 1)
+
+# define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c)                            \
+                   ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237)       \
+                   : 1)
+
+# define ISALNUM(c) (IS_REAL_ASCII (c)                 \
+                   ? (((c) >= 'a' && (c) <= 'z')       \
+                      || ((c) >= 'A' && (c) <= 'Z')    \
+                      || ((c) >= '0' && (c) <= '9'))   \
+                   : SYNTAX (c) == Sword)
+
+# define ISALPHA(c) (IS_REAL_ASCII (c)                 \
+                   ? (((c) >= 'a' && (c) <= 'z')       \
+                      || ((c) >= 'A' && (c) <= 'Z'))   \
+                   : SYNTAX (c) == Sword)
+
+# define ISLOWER(c) (LOWERCASEP (c))
+
+# define ISPUNCT(c) (IS_REAL_ASCII (c)                         \
+                   ? ((c) > ' ' && (c) < 0177                  \
+                      && !(((c) >= 'a' && (c) <= 'z')          \
+                           || ((c) >= 'A' && (c) <= 'Z')       \
+                           || ((c) >= '0' && (c) <= '9')))     \
+                   : SYNTAX (c) != Sword)
+
+# define ISSPACE(c) (SYNTAX (c) == Swhitespace)
+
+# define ISUPPER(c) (UPPERCASEP (c))
+
+# define ISWORD(c) (SYNTAX (c) == Sword)
+
+#else /* not emacs */
+
+/* Jim Meyering writes:
+
+   "... Some ctype macros are valid only for character codes that
+   isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
+   using /bin/cc or gcc but without giving an ansi option).  So, all
+   ctype uses should be through macros like ISPRINT...  If
+   STDC_HEADERS is defined, then autoconf has verified that the ctype
+   macros don't need to be guarded with references to isascii. ...
+   Defining isascii to 1 should let any compiler worth its salt
+   eliminate the && through constant folding."
+   Solaris defines some of these symbols so we must undefine them first.  */
+
+# undef ISASCII
+# if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
+#  define ISASCII(c) 1
+# else
+#  define ISASCII(c) isascii(c)
+# endif
+
+/* 1 if C is an ASCII character.  */
+# define IS_REAL_ASCII(c) ((c) < 0200)
+
+/* This distinction is not meaningful, except in Emacs.  */
+# define ISUNIBYTE(c) 1
+
+# ifdef isblank
+#  define ISBLANK(c) (ISASCII (c) && isblank (c))
+# else
+#  define ISBLANK(c) ((c) == ' ' || (c) == '\t')
+# endif
+# ifdef isgraph
+#  define ISGRAPH(c) (ISASCII (c) && isgraph (c))
+# else
+#  define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
+# endif
+
+# undef ISPRINT
+# define ISPRINT(c) (ISASCII (c) && isprint (c))
+# define ISDIGIT(c) (ISASCII (c) && isdigit (c))
+# define ISALNUM(c) (ISASCII (c) && isalnum (c))
+# define ISALPHA(c) (ISASCII (c) && isalpha (c))
+# define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
+# define ISLOWER(c) (ISASCII (c) && islower (c))
+# define ISPUNCT(c) (ISASCII (c) && ispunct (c))
+# define ISSPACE(c) (ISASCII (c) && isspace (c))
+# define ISUPPER(c) (ISASCII (c) && isupper (c))
+# define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
+
+# define ISWORD(c) ISALPHA(c)
+
+# ifdef _tolower
+#  define TOLOWER(c) _tolower(c)
+# else
+#  define TOLOWER(c) tolower(c)
+# endif
+
+/* How many characters in the character set.  */
+# define CHAR_SET_SIZE 256
+
+# ifdef SYNTAX_TABLE
+
+extern char *re_syntax_table;
+
+# else /* not SYNTAX_TABLE */
+
+static char re_syntax_table[CHAR_SET_SIZE];
+
+static void
+init_syntax_once ()
+{
+   register int c;
+   static int done = 0;
+
+   if (done)
+     return;
+
+   bzero (re_syntax_table, sizeof re_syntax_table);
+
+   for (c = 0; c < CHAR_SET_SIZE; ++c)
+     if (ISALNUM (c))
+       re_syntax_table[c] = Sword;
+
+   re_syntax_table['_'] = Sword;
+
+   done = 1;
+}
+
+# endif /* not SYNTAX_TABLE */
+
+# define SYNTAX(c) re_syntax_table[(c)]
+
+#endif /* not emacs */
+\f
+#ifndef NULL
+# define NULL (void *)0
+#endif
+
+/* We remove any previous definition of `SIGN_EXTEND_CHAR',
+   since ours (we hope) works properly with all combinations of
+   machines, compilers, `char' and `unsigned char' argument types.
+   (Per Bothner suggested the basic approach.)  */
+#undef SIGN_EXTEND_CHAR
+#if __STDC__
+# define SIGN_EXTEND_CHAR(c) ((signed char) (c))
+#else  /* not __STDC__ */
+/* As in Harbison and Steele.  */
+# define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
+#endif
+\f
+/* Should we use malloc or alloca?  If REGEX_MALLOC is not defined, we
+   use `alloca' instead of `malloc'.  This is because using malloc in
+   re_search* or re_match* could cause memory leaks when C-g is used in
+   Emacs; also, malloc is slower and causes storage fragmentation.  On
+   the other hand, malloc is more portable, and easier to debug.
+
+   Because we sometimes use alloca, some routines have to be macros,
+   not functions -- `alloca'-allocated space disappears at the end of the
+   function it is called in.  */
+
+#ifdef REGEX_MALLOC
+
+# define REGEX_ALLOCATE malloc
+# define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
+# define REGEX_FREE free
+
+#else /* not REGEX_MALLOC  */
+
+/* Emacs already defines alloca, sometimes.  */
+# ifndef alloca
+
+/* Make alloca work the best possible way.  */
+#  ifdef __GNUC__
+#   define alloca __builtin_alloca
+#  else /* not __GNUC__ */
+#   if HAVE_ALLOCA_H
+#    include <alloca.h>
+#   endif /* HAVE_ALLOCA_H */
+#  endif /* not __GNUC__ */
+
+# endif /* not alloca */
+
+# define REGEX_ALLOCATE alloca
+
+/* Assumes a `char *destination' variable.  */
+# define REGEX_REALLOCATE(source, osize, nsize)                                \
+  (destination = (char *) alloca (nsize),                              \
+   memcpy (destination, source, osize))
+
+/* No need to do anything to free, after alloca.  */
+# define REGEX_FREE(arg) ((void)0) /* Do nothing!  But inhibit gcc warning.  */
+
+#endif /* not REGEX_MALLOC */
+
+/* Define how to allocate the failure stack.  */
+
+#if defined REL_ALLOC && defined REGEX_MALLOC
+
+# define REGEX_ALLOCATE_STACK(size)                            \
+  r_alloc (&failure_stack_ptr, (size))
+# define REGEX_REALLOCATE_STACK(source, osize, nsize)          \
+  r_re_alloc (&failure_stack_ptr, (nsize))
+# define REGEX_FREE_STACK(ptr)                                 \
+  r_alloc_free (&failure_stack_ptr)
+
+#else /* not using relocating allocator */
+
+# ifdef REGEX_MALLOC
+
+#  define REGEX_ALLOCATE_STACK malloc
+#  define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
+#  define REGEX_FREE_STACK free
+
+# else /* not REGEX_MALLOC */
+
+#  define REGEX_ALLOCATE_STACK alloca
+
+#  define REGEX_REALLOCATE_STACK(source, osize, nsize)                 \
+   REGEX_REALLOCATE (source, osize, nsize)
+/* No need to explicitly free anything.         */
+#  define REGEX_FREE_STACK(arg) ((void)0)
+
+# endif /* not REGEX_MALLOC */
+#endif /* not using relocating allocator */
+
+
+/* True if `size1' is non-NULL and PTR is pointing anywhere inside
+   `string1' or just past its end.  This works if PTR is NULL, which is
+   a good thing.  */
+#define FIRST_STRING_P(ptr)                                    \
+  (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
+
+/* (Re)Allocate N items of type T using malloc, or fail.  */
+#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
+#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
+#define RETALLOC_IF(addr, n, t) \
+  if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
+#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
+
+#define BYTEWIDTH 8 /* In bits.  */
+
+#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
+
+#undef MAX
+#undef MIN
+#define MAX(a, b) ((a) > (b) ? (a) : (b))
+#define MIN(a, b) ((a) < (b) ? (a) : (b))
+
+/* Type of source-pattern and string chars.  */
+typedef const unsigned char re_char;
+
+typedef char boolean;
+#define false 0
+#define true 1
+
+static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
+                                       re_char *string1, int size1,
+                                       re_char *string2, int size2,
+                                       int pos,
+                                       struct re_registers *regs,
+                                       int stop));
+\f
+/* These are the command codes that appear in compiled regular
+   expressions.  Some opcodes are followed by argument bytes.  A
+   command code can specify any interpretation whatsoever for its
+   arguments.  Zero bytes may appear in the compiled regular expression.  */
+
+typedef enum
+{
+  no_op = 0,
+
+  /* Succeed right away--no more backtracking.  */
+  succeed,
+
+       /* Followed by one byte giving n, then by n literal bytes.  */
+  exactn,
+
+       /* Matches any (more or less) character.  */
+  anychar,
+
+       /* Matches any one char belonging to specified set.  First
+          following byte is number of bitmap bytes.  Then come bytes
+          for a bitmap saying which chars are in.  Bits in each byte
+          are ordered low-bit-first.  A character is in the set if its
+          bit is 1.  A character too large to have a bit in the map is
+          automatically not in the set.
+
+          If the length byte has the 0x80 bit set, then that stuff
+          is followed by a range table:
+              2 bytes of flags for character sets (low 8 bits, high 8 bits)
+                  See RANGE_TABLE_WORK_BITS below.
+              2 bytes, the number of pairs that follow (upto 32767)
+              pairs, each 2 multibyte characters,
+                  each multibyte character represented as 3 bytes.  */
+  charset,
+
+       /* Same parameters as charset, but match any character that is
+          not one of those specified.  */
+  charset_not,
+
+       /* Start remembering the text that is matched, for storing in a
+          register.  Followed by one byte with the register number, in
+          the range 0 to one less than the pattern buffer's re_nsub
+          field.  */
+  start_memory,
+
+       /* Stop remembering the text that is matched and store it in a
+          memory register.  Followed by one byte with the register
+          number, in the range 0 to one less than `re_nsub' in the
+          pattern buffer.  */
+  stop_memory,
+
+       /* Match a duplicate of something remembered. Followed by one
+          byte containing the register number.  */
+  duplicate,
+
+       /* Fail unless at beginning of line.  */
+  begline,
+
+       /* Fail unless at end of line.  */
+  endline,
+
+       /* Succeeds if at beginning of buffer (if emacs) or at beginning
+          of string to be matched (if not).  */
+  begbuf,
+
+       /* Analogously, for end of buffer/string.  */
+  endbuf,
+
+       /* Followed by two byte relative address to which to jump.  */
+  jump,
+
+       /* Followed by two-byte relative address of place to resume at
+          in case of failure.  */
+  on_failure_jump,
+
+       /* Like on_failure_jump, but pushes a placeholder instead of the
+          current string position when executed.  */
+  on_failure_keep_string_jump,
+
+       /* Just like `on_failure_jump', except that it checks that we
+          don't get stuck in an infinite loop (matching an empty string
+          indefinitely).  */
+  on_failure_jump_loop,
+
+       /* Just like `on_failure_jump_loop', except that it checks for
+          a different kind of loop (the kind that shows up with non-greedy
+          operators).  This operation has to be immediately preceded
+          by a `no_op'.  */
+  on_failure_jump_nastyloop,
+
+       /* A smart `on_failure_jump' used for greedy * and + operators.
+          It analyses the loop before which it is put and if the
+          loop does not require backtracking, it changes itself to
+          `on_failure_keep_string_jump' and short-circuits the loop,
+          else it just defaults to changing itself into `on_failure_jump'.
+          It assumes that it is pointing to just past a `jump'.  */
+  on_failure_jump_smart,
+
+       /* Followed by two-byte relative address and two-byte number n.
+          After matching N times, jump to the address upon failure.
+          Does not work if N starts at 0: use on_failure_jump_loop
+          instead.  */
+  succeed_n,
+
+       /* Followed by two-byte relative address, and two-byte number n.
+          Jump to the address N times, then fail.  */
+  jump_n,
+
+       /* Set the following two-byte relative address to the
+          subsequent two-byte number.  The address *includes* the two
+          bytes of number.  */
+  set_number_at,
+
+  wordbeg,     /* Succeeds if at word beginning.  */
+  wordend,     /* Succeeds if at word end.  */
+
+  wordbound,   /* Succeeds if at a word boundary.  */
+  notwordbound,        /* Succeeds if not at a word boundary.  */
+
+       /* Matches any character whose syntax is specified.  Followed by
+          a byte which contains a syntax code, e.g., Sword.  */
+  syntaxspec,
+
+       /* Matches any character whose syntax is not that specified.  */
+  notsyntaxspec
+
+#ifdef emacs
+  ,before_dot, /* Succeeds if before point.  */
+  at_dot,      /* Succeeds if at point.  */
+  after_dot,   /* Succeeds if after point.  */
+
+  /* Matches any character whose category-set contains the specified
+     category. The operator is followed by a byte which contains a
+     category code (mnemonic ASCII character). */
+  categoryspec,
+
+  /* Matches any character whose category-set does not contain the
+     specified category.  The operator is followed by a byte which
+     contains the category code (mnemonic ASCII character).  */
+  notcategoryspec
+#endif /* emacs */
+} re_opcode_t;
+\f
+/* Common operations on the compiled pattern.  */
+
+/* Store NUMBER in two contiguous bytes starting at DESTINATION.  */
+
+#define STORE_NUMBER(destination, number)                              \
+  do {                                                                 \
+    (destination)[0] = (number) & 0377;                                        \
+    (destination)[1] = (number) >> 8;                                  \
+  } while (0)
+
+/* Same as STORE_NUMBER, except increment DESTINATION to
+   the byte after where the number is stored.  Therefore, DESTINATION
+   must be an lvalue.  */
+
+#define STORE_NUMBER_AND_INCR(destination, number)                     \
+  do {                                                                 \
+    STORE_NUMBER (destination, number);                                        \
+    (destination) += 2;                                                        \
+  } while (0)
+
+/* Put into DESTINATION a number stored in two contiguous bytes starting
+   at SOURCE.  */
+
+#define EXTRACT_NUMBER(destination, source)                            \
+  do {                                                                 \
+    (destination) = *(source) & 0377;                                  \
+    (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8;          \
+  } while (0)
+
+#ifdef DEBUG
+static void extract_number _RE_ARGS ((int *dest, re_char *source));
+static void
+extract_number (dest, source)
+    int *dest;
+    re_char *source;
+{
+  int temp = SIGN_EXTEND_CHAR (*(source + 1));
+  *dest = *source & 0377;
+  *dest += temp << 8;
+}
+
+# ifndef EXTRACT_MACROS /* To debug the macros.  */
+#  undef EXTRACT_NUMBER
+#  define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
+# endif /* not EXTRACT_MACROS */
+
+#endif /* DEBUG */
+
+/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
+   SOURCE must be an lvalue.  */
+
+#define EXTRACT_NUMBER_AND_INCR(destination, source)                   \
+  do {                                                                 \
+    EXTRACT_NUMBER (destination, source);                              \
+    (source) += 2;                                                     \
+  } while (0)
+
+#ifdef DEBUG
+static void extract_number_and_incr _RE_ARGS ((int *destination,
+                                              re_char **source));
+static void
+extract_number_and_incr (destination, source)
+    int *destination;
+    re_char **source;
+{
+  extract_number (destination, *source);
+  *source += 2;
+}
+
+# ifndef EXTRACT_MACROS
+#  undef EXTRACT_NUMBER_AND_INCR
+#  define EXTRACT_NUMBER_AND_INCR(dest, src) \
+  extract_number_and_incr (&dest, &src)
+# endif /* not EXTRACT_MACROS */
+
+#endif /* DEBUG */
+\f
+/* Store a multibyte character in three contiguous bytes starting
+   DESTINATION, and increment DESTINATION to the byte after where the
+   character is stored.         Therefore, DESTINATION must be an lvalue.  */
+
+#define STORE_CHARACTER_AND_INCR(destination, character)       \
+  do {                                                         \
+    (destination)[0] = (character) & 0377;                     \
+    (destination)[1] = ((character) >> 8) & 0377;              \
+    (destination)[2] = (character) >> 16;                      \
+    (destination) += 3;                                                \
+  } while (0)
+
+/* Put into DESTINATION a character stored in three contiguous bytes
+   starting at SOURCE. */
+
+#define EXTRACT_CHARACTER(destination, source) \
+  do {                                         \
+    (destination) = ((source)[0]               \
+                    | ((source)[1] << 8)       \
+                    | ((source)[2] << 16));    \
+  } while (0)
+
+
+/* Macros for charset. */
+
+/* Size of bitmap of charset P in bytes.  P is a start of charset,
+   i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not.  */
+#define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
+
+/* Nonzero if charset P has range table.  */
+#define CHARSET_RANGE_TABLE_EXISTS_P(p)         ((p)[1] & 0x80)
+
+/* Return the address of range table of charset P.  But not the start
+   of table itself, but the before where the number of ranges is
+   stored.  `2 +' means to skip re_opcode_t and size of bitmap,
+   and the 2 bytes of flags at the start of the range table.  */
+#define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
+
+/* Extract the bit flags that start a range table.  */
+#define CHARSET_RANGE_TABLE_BITS(p)            \
+  ((p)[2 + CHARSET_BITMAP_SIZE (p)]            \
+   + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
+
+/* Test if C is listed in the bitmap of charset P.  */
+#define CHARSET_LOOKUP_BITMAP(p, c)                            \
+  ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH                   \
+   && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
+
+/* Return the address of end of RANGE_TABLE.  COUNT is number of
+   ranges (which is a pair of (start, end)) in the RANGE_TABLE.         `* 2'
+   is start of range and end of range. `* 3' is size of each start
+   and end.  */
+#define CHARSET_RANGE_TABLE_END(range_table, count)    \
+  ((range_table) + (count) * 2 * 3)
+
+/* Test if C is in RANGE_TABLE.         A flag NOT is negated if C is in.
+   COUNT is number of ranges in RANGE_TABLE.  */
+#define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count)     \
+  do                                                                   \
+    {                                                                  \
+      re_wchar_t range_start, range_end;                               \
+      re_char *p;                                                      \
+      re_char *range_table_end                                         \
+       = CHARSET_RANGE_TABLE_END ((range_table), (count));             \
+                                                                       \
+      for (p = (range_table); p < range_table_end; p += 2 * 3)         \
+       {                                                               \
+         EXTRACT_CHARACTER (range_start, p);                           \
+         EXTRACT_CHARACTER (range_end, p + 3);                         \
+                                                                       \
+         if (range_start <= (c) && (c) <= range_end)                   \
+           {                                                           \
+             (not) = !(not);                                           \
+             break;                                                    \
+           }                                                           \
+       }                                                               \
+    }                                                                  \
+  while (0)
+
+/* Test if C is in range table of CHARSET.  The flag NOT is negated if
+   C is listed in it.  */
+#define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset)                    \
+  do                                                                   \
+    {                                                                  \
+      /* Number of ranges in range table. */                           \
+      int count;                                                       \
+      re_char *range_table = CHARSET_RANGE_TABLE (charset);            \
+                                                                       \
+      EXTRACT_NUMBER_AND_INCR (count, range_table);                    \
+      CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
+    }                                                                  \
+  while (0)
+\f
+/* If DEBUG is defined, Regex prints many voluminous messages about what
+   it is doing (if the variable `debug' is nonzero).  If linked with the
+   main program in `iregex.c', you can enter patterns and strings
+   interactively.  And if linked with the main program in `main.c' and
+   the other test files, you can run the already-written tests.  */
+
+#ifdef DEBUG
+
+/* We use standard I/O for debugging.  */
+# include <stdio.h>
+
+/* It is useful to test things that ``must'' be true when debugging.  */
+# include <assert.h>
+
+static int debug = -100000;
+
+# define DEBUG_STATEMENT(e) e
+# define DEBUG_PRINT1(x) if (debug > 0) printf (x)
+# define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
+# define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
+# define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
+# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)                         \
+  if (debug > 0) print_partial_compiled_pattern (s, e)
+# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)                        \
+  if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
+
+
+/* Print the fastmap in human-readable form.  */
+
+void
+print_fastmap (fastmap)
+    char *fastmap;
+{
+  unsigned was_a_range = 0;
+  unsigned i = 0;
+
+  while (i < (1 << BYTEWIDTH))
+    {
+      if (fastmap[i++])
+       {
+         was_a_range = 0;
+         putchar (i - 1);
+         while (i < (1 << BYTEWIDTH)  &&  fastmap[i])
+           {
+             was_a_range = 1;
+             i++;
+           }
+         if (was_a_range)
+           {
+             printf ("-");
+             putchar (i - 1);
+           }
+       }
+    }
+  putchar ('\n');
+}
+
+
+/* Print a compiled pattern string in human-readable form, starting at
+   the START pointer into it and ending just before the pointer END.  */
+
+void
+print_partial_compiled_pattern (start, end)
+    re_char *start;
+    re_char *end;
+{
+  int mcnt, mcnt2;
+  re_char *p = start;
+  re_char *pend = end;
+
+  if (start == NULL)
+    {
+      fprintf (stderr, "(null)\n");
+      return;
+    }
+
+  /* Loop over pattern commands.  */
+  while (p < pend)
+    {
+      fprintf (stderr, "%d:\t", p - start);
+
+      switch ((re_opcode_t) *p++)
+       {
+       case no_op:
+         fprintf (stderr, "/no_op");
+         break;
+
+       case succeed:
+         fprintf (stderr, "/succeed");
+         break;
+
+       case exactn:
+         mcnt = *p++;
+         fprintf (stderr, "/exactn/%d", mcnt);
+         do
+           {
+             fprintf (stderr, "/%c", *p++);
+           }
+         while (--mcnt);
+         break;
+
+       case start_memory:
+         fprintf (stderr, "/start_memory/%d", *p++);
+         break;
+
+       case stop_memory:
+         fprintf (stderr, "/stop_memory/%d", *p++);
+         break;
+
+       case duplicate:
+         fprintf (stderr, "/duplicate/%d", *p++);
+         break;
+
+       case anychar:
+         fprintf (stderr, "/anychar");
+         break;
+
+       case charset:
+       case charset_not:
+         {
+           register int c, last = -100;
+           register int in_range = 0;
+           int length = CHARSET_BITMAP_SIZE (p - 1);
+           int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
+
+           fprintf (stderr, "/charset [%s",
+                   (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
+
+           assert (p + *p < pend);
+
+           for (c = 0; c < 256; c++)
+             if (c / 8 < length
+                 && (p[1 + (c/8)] & (1 << (c % 8))))
+               {
+                 /* Are we starting a range?  */
+                 if (last + 1 == c && ! in_range)
+                   {
+                     fprintf (stderr, "-");
+                     in_range = 1;
+                   }
+                 /* Have we broken a range?  */
+                 else if (last + 1 != c && in_range)
+                   {
+                     fprintf (stderr, "%c", last);
+                     in_range = 0;
+                   }
+
+                 if (! in_range)
+                   fprintf (stderr, "%c", c);
+
+                 last = c;
+             }
+
+           if (in_range)
+             fprintf (stderr, "%c", last);
+
+           fprintf (stderr, "]");
+
+           p += 1 + length;
+
+           if (has_range_table)
+             {
+               int count;
+               fprintf (stderr, "has-range-table");
+
+               /* ??? Should print the range table; for now, just skip it.  */
+               p += 2;         /* skip range table bits */
+               EXTRACT_NUMBER_AND_INCR (count, p);
+               p = CHARSET_RANGE_TABLE_END (p, count);
+             }
+         }
+         break;
+
+       case begline:
+         fprintf (stderr, "/begline");
+         break;
+
+       case endline:
+         fprintf (stderr, "/endline");
+         break;
+
+       case on_failure_jump:
+         extract_number_and_incr (&mcnt, &p);
+         fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
+         break;
+
+       case on_failure_keep_string_jump:
+         extract_number_and_incr (&mcnt, &p);
+         fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
+         break;
+
+       case on_failure_jump_nastyloop:
+         extract_number_and_incr (&mcnt, &p);
+         fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
+         break;
+
+       case on_failure_jump_loop:
+         extract_number_and_incr (&mcnt, &p);
+         fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
+         break;
+
+       case on_failure_jump_smart:
+         extract_number_and_incr (&mcnt, &p);
+         fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
+         break;
+
+       case jump:
+         extract_number_and_incr (&mcnt, &p);
+         fprintf (stderr, "/jump to %d", p + mcnt - start);
+         break;
+
+       case succeed_n:
+         extract_number_and_incr (&mcnt, &p);
+         extract_number_and_incr (&mcnt2, &p);
+         fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
+         break;
+
+       case jump_n:
+         extract_number_and_incr (&mcnt, &p);
+         extract_number_and_incr (&mcnt2, &p);
+         fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
+         break;
+
+       case set_number_at:
+         extract_number_and_incr (&mcnt, &p);
+         extract_number_and_incr (&mcnt2, &p);
+         fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
+         break;
+
+       case wordbound:
+         fprintf (stderr, "/wordbound");
+         break;
+
+       case notwordbound:
+         fprintf (stderr, "/notwordbound");
+         break;
+
+       case wordbeg:
+         fprintf (stderr, "/wordbeg");
+         break;
+
+       case wordend:
+         fprintf (stderr, "/wordend");
+
+       case syntaxspec:
+         fprintf (stderr, "/syntaxspec");
+         mcnt = *p++;
+         fprintf (stderr, "/%d", mcnt);
+         break;
+
+       case notsyntaxspec:
+         fprintf (stderr, "/notsyntaxspec");
+         mcnt = *p++;
+         fprintf (stderr, "/%d", mcnt);
+         break;
+
+# ifdef emacs
+       case before_dot:
+         fprintf (stderr, "/before_dot");
+         break;
+
+       case at_dot:
+         fprintf (stderr, "/at_dot");
+         break;
+
+       case after_dot:
+         fprintf (stderr, "/after_dot");
+         break;
+
+       case categoryspec:
+         fprintf (stderr, "/categoryspec");
+         mcnt = *p++;
+         fprintf (stderr, "/%d", mcnt);
+         break;
+
+       case notcategoryspec:
+         fprintf (stderr, "/notcategoryspec");
+         mcnt = *p++;
+         fprintf (stderr, "/%d", mcnt);
+         break;
+# endif /* emacs */
+
+       case begbuf:
+         fprintf (stderr, "/begbuf");
+         break;
+
+       case endbuf:
+         fprintf (stderr, "/endbuf");
+         break;
+
+       default:
+         fprintf (stderr, "?%d", *(p-1));
+       }
+
+      fprintf (stderr, "\n");
+    }
+
+  fprintf (stderr, "%d:\tend of pattern.\n", p - start);
+}
+
+
+void
+print_compiled_pattern (bufp)
+    struct re_pattern_buffer *bufp;
+{
+  re_char *buffer = bufp->buffer;
+
+  print_partial_compiled_pattern (buffer, buffer + bufp->used);
+  printf ("%ld bytes used/%ld bytes allocated.\n",
+         bufp->used, bufp->allocated);
+
+  if (bufp->fastmap_accurate && bufp->fastmap)
+    {
+      printf ("fastmap: ");
+      print_fastmap (bufp->fastmap);
+    }
+
+  printf ("re_nsub: %d\t", bufp->re_nsub);
+  printf ("regs_alloc: %d\t", bufp->regs_allocated);
+  printf ("can_be_null: %d\t", bufp->can_be_null);
+  printf ("no_sub: %d\t", bufp->no_sub);
+  printf ("not_bol: %d\t", bufp->not_bol);
+  printf ("not_eol: %d\t", bufp->not_eol);
+  printf ("syntax: %lx\n", bufp->syntax);
+  fflush (stdout);
+  /* Perhaps we should print the translate table?  */
+}
+
+
+void
+print_double_string (where, string1, size1, string2, size2)
+    re_char *where;
+    re_char *string1;
+    re_char *string2;
+    int size1;
+    int size2;
+{
+  int this_char;
+
+  if (where == NULL)
+    printf ("(null)");
+  else
+    {
+      if (FIRST_STRING_P (where))
+       {
+         for (this_char = where - string1; this_char < size1; this_char++)
+           putchar (string1[this_char]);
+
+         where = string2;
+       }
+
+      for (this_char = where - string2; this_char < size2; this_char++)
+       putchar (string2[this_char]);
+    }
+}
+
+#else /* not DEBUG */
+
+# undef assert
+# define assert(e)
+
+# define DEBUG_STATEMENT(e)
+# define DEBUG_PRINT1(x)
+# define DEBUG_PRINT2(x1, x2)
+# define DEBUG_PRINT3(x1, x2, x3)
+# define DEBUG_PRINT4(x1, x2, x3, x4)
+# define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
+# define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
+
+#endif /* not DEBUG */
+\f
+/* Set by `re_set_syntax' to the current regexp syntax to recognize.  Can
+   also be assigned to arbitrarily: each pattern buffer stores its own
+   syntax, so it can be changed between regex compilations.  */
+/* This has no initializer because initialized variables in Emacs
+   become read-only after dumping.  */
+reg_syntax_t re_syntax_options;
+
+
+/* Specify the precise syntax of regexps for compilation.  This provides
+   for compatibility for various utilities which historically have
+   different, incompatible syntaxes.
+
+   The argument SYNTAX is a bit mask comprised of the various bits
+   defined in regex.h.  We return the old syntax.  */
+
+reg_syntax_t
+re_set_syntax (syntax)
+    reg_syntax_t syntax;
+{
+  reg_syntax_t ret = re_syntax_options;
+
+  re_syntax_options = syntax;
+  return ret;
+}
+WEAK_ALIAS (__re_set_syntax, re_set_syntax)
+\f
+/* This table gives an error message for each of the error codes listed
+   in regex.h.  Obviously the order here has to be same as there.
+   POSIX doesn't require that we do anything for REG_NOERROR,
+   but why not be nice?  */
+
+static const char *re_error_msgid[] =
+  {
+    gettext_noop ("Success"),  /* REG_NOERROR */
+    gettext_noop ("No match"), /* REG_NOMATCH */
+    gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
+    gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
+    gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
+    gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
+    gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
+    gettext_noop ("Unmatched [ or [^"),        /* REG_EBRACK */
+    gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
+    gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
+    gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
+    gettext_noop ("Invalid range end"),        /* REG_ERANGE */
+    gettext_noop ("Memory exhausted"), /* REG_ESPACE */
+    gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
+    gettext_noop ("Premature end of regular expression"), /* REG_EEND */
+    gettext_noop ("Regular expression too big"), /* REG_ESIZE */
+    gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
+  };
+\f
+/* Avoiding alloca during matching, to placate r_alloc.  */
+
+/* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
+   searching and matching functions should not call alloca.  On some
+   systems, alloca is implemented in terms of malloc, and if we're
+   using the relocating allocator routines, then malloc could cause a
+   relocation, which might (if the strings being searched are in the
+   ralloc heap) shift the data out from underneath the regexp
+   routines.
+
+   Here's another reason to avoid allocation: Emacs
+   processes input from X in a signal handler; processing X input may
+   call malloc; if input arrives while a matching routine is calling
+   malloc, then we're scrod.  But Emacs can't just block input while
+   calling matching routines; then we don't notice interrupts when
+   they come in.  So, Emacs blocks input around all regexp calls
+   except the matching calls, which it leaves unprotected, in the
+   faith that they will not malloc.  */
+
+/* Normally, this is fine.  */
+#define MATCH_MAY_ALLOCATE
+
+/* When using GNU C, we are not REALLY using the C alloca, no matter
+   what config.h may say.  So don't take precautions for it.  */
+#ifdef __GNUC__
+# undef C_ALLOCA
+#endif
+
+/* The match routines may not allocate if (1) they would do it with malloc
+   and (2) it's not safe for them to use malloc.
+   Note that if REL_ALLOC is defined, matching would not use malloc for the
+   failure stack, but we would still use it for the register vectors;
+   so REL_ALLOC should not affect this.  */
+#if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
+# undef MATCH_MAY_ALLOCATE
+#endif
+
+\f
+/* Failure stack declarations and macros; both re_compile_fastmap and
+   re_match_2 use a failure stack.  These have to be macros because of
+   REGEX_ALLOCATE_STACK.  */
+
+
+/* Approximate number of failure points for which to initially allocate space
+   when matching.  If this number is exceeded, we allocate more
+   space, so it is not a hard limit.  */
+#ifndef INIT_FAILURE_ALLOC
+# define INIT_FAILURE_ALLOC 20
+#endif
+
+/* Roughly the maximum number of failure points on the stack.  Would be
+   exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
+   This is a variable only so users of regex can assign to it; we never
+   change it ourselves.  We always multiply it by TYPICAL_FAILURE_SIZE
+   before using it, so it should probably be a byte-count instead.  */
+# if defined MATCH_MAY_ALLOCATE
+/* Note that 4400 was enough to cause a crash on Alpha OSF/1,
+   whose default stack limit is 2mb.  In order for a larger
+   value to work reliably, you have to try to make it accord
+   with the process stack limit.  */
+size_t re_max_failures = 40000;
+# else
+size_t re_max_failures = 4000;
+# endif
+
+union fail_stack_elt
+{
+  re_char *pointer;
+  /* This should be the biggest `int' that's no bigger than a pointer.  */
+  long integer;
+};
+
+typedef union fail_stack_elt fail_stack_elt_t;
+
+typedef struct
+{
+  fail_stack_elt_t *stack;
+  size_t size;
+  size_t avail;        /* Offset of next open position.  */
+  size_t frame;        /* Offset of the cur constructed frame.  */
+} fail_stack_type;
+
+#define FAIL_STACK_EMPTY()     (fail_stack.frame == 0)
+#define FAIL_STACK_FULL()      (fail_stack.avail == fail_stack.size)
+
+
+/* Define macros to initialize and free the failure stack.
+   Do `return -2' if the alloc fails.  */
+
+#ifdef MATCH_MAY_ALLOCATE
+# define INIT_FAIL_STACK()                                             \
+  do {                                                                 \
+    fail_stack.stack = (fail_stack_elt_t *)                            \
+      REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE  \
+                           * sizeof (fail_stack_elt_t));               \
+                                                                       \
+    if (fail_stack.stack == NULL)                                      \
+      return -2;                                                       \
+                                                                       \
+    fail_stack.size = INIT_FAILURE_ALLOC;                              \
+    fail_stack.avail = 0;                                              \
+    fail_stack.frame = 0;                                              \
+  } while (0)
+
+# define RESET_FAIL_STACK()  REGEX_FREE_STACK (fail_stack.stack)
+#else
+# define INIT_FAIL_STACK()                                             \
+  do {                                                                 \
+    fail_stack.avail = 0;                                              \
+    fail_stack.frame = 0;                                              \
+  } while (0)
+
+# define RESET_FAIL_STACK() ((void)0)
+#endif
+
+
+/* Double the size of FAIL_STACK, up to a limit
+   which allows approximately `re_max_failures' items.
+
+   Return 1 if succeeds, and 0 if either ran out of memory
+   allocating space for it or it was already too large.
+
+   REGEX_REALLOCATE_STACK requires `destination' be declared.   */
+
+/* Factor to increase the failure stack size by
+   when we increase it.
+   This used to be 2, but 2 was too wasteful
+   because the old discarded stacks added up to as much space
+   were as ultimate, maximum-size stack.  */
+#define FAIL_STACK_GROWTH_FACTOR 4
+
+#define GROW_FAIL_STACK(fail_stack)                                    \
+  (((fail_stack).size * sizeof (fail_stack_elt_t)                      \
+    >= re_max_failures * TYPICAL_FAILURE_SIZE)                         \
+   ? 0                                                                 \
+   : ((fail_stack).stack                                               \
+      = (fail_stack_elt_t *)                                           \
+       REGEX_REALLOCATE_STACK ((fail_stack).stack,                     \
+         (fail_stack).size * sizeof (fail_stack_elt_t),                \
+         MIN (re_max_failures * TYPICAL_FAILURE_SIZE,                  \
+              ((fail_stack).size * sizeof (fail_stack_elt_t)           \
+               * FAIL_STACK_GROWTH_FACTOR))),                          \
+                                                                       \
+      (fail_stack).stack == NULL                                       \
+      ? 0                                                              \
+      : ((fail_stack).size                                             \
+        = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE,                \
+                ((fail_stack).size * sizeof (fail_stack_elt_t)         \
+                 * FAIL_STACK_GROWTH_FACTOR))                          \
+           / sizeof (fail_stack_elt_t)),                               \
+        1)))
+
+
+/* Push a pointer value onto the failure stack.
+   Assumes the variable `fail_stack'.  Probably should only
+   be called from within `PUSH_FAILURE_POINT'.  */
+#define PUSH_FAILURE_POINTER(item)                                     \
+  fail_stack.stack[fail_stack.avail++].pointer = (item)
+
+/* This pushes an integer-valued item onto the failure stack.
+   Assumes the variable `fail_stack'.  Probably should only
+   be called from within `PUSH_FAILURE_POINT'.  */
+#define PUSH_FAILURE_INT(item)                                 \
+  fail_stack.stack[fail_stack.avail++].integer = (item)
+
+/* Push a fail_stack_elt_t value onto the failure stack.
+   Assumes the variable `fail_stack'.  Probably should only
+   be called from within `PUSH_FAILURE_POINT'.  */
+#define PUSH_FAILURE_ELT(item)                                 \
+  fail_stack.stack[fail_stack.avail++] =  (item)
+
+/* These three POP... operations complement the three PUSH... operations.
+   All assume that `fail_stack' is nonempty.  */
+#define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
+#define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
+#define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
+
+/* Individual items aside from the registers.  */
+#define NUM_NONREG_ITEMS 3
+
+/* Used to examine the stack (to detect infinite loops).  */
+#define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
+#define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
+#define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
+#define TOP_FAILURE_HANDLE() fail_stack.frame
+
+
+#define ENSURE_FAIL_STACK(space)                                       \
+while (REMAINING_AVAIL_SLOTS <= space) {                               \
+  if (!GROW_FAIL_STACK (fail_stack))                                   \
+    return -2;                                                         \
+  DEBUG_PRINT2 ("\n  Doubled stack; size now: %d\n", (fail_stack).size);\
+  DEBUG_PRINT2 ("       slots available: %d\n", REMAINING_AVAIL_SLOTS);\
+}
+
+/* Push register NUM onto the stack.  */
+#define PUSH_FAILURE_REG(num)                                          \
+do {                                                                   \
+  char *destination;                                                   \
+  ENSURE_FAIL_STACK(3);                                                        \
+  DEBUG_PRINT4 ("    Push reg %d (spanning %p -> %p)\n",               \
+               num, regstart[num], regend[num]);                       \
+  PUSH_FAILURE_POINTER (regstart[num]);                                        \
+  PUSH_FAILURE_POINTER (regend[num]);                                  \
+  PUSH_FAILURE_INT (num);                                              \
+} while (0)
+
+/* Change the counter's value to VAL, but make sure that it will
+   be reset when backtracking.  */
+#define PUSH_NUMBER(ptr,val)                                           \
+do {                                                                   \
+  char *destination;                                                   \
+  int c;                                                               \
+  ENSURE_FAIL_STACK(3);                                                        \
+  EXTRACT_NUMBER (c, ptr);                                             \
+  DEBUG_PRINT4 ("    Push number %p = %d -> %d\n", ptr, c, val);       \
+  PUSH_FAILURE_INT (c);                                                        \
+  PUSH_FAILURE_POINTER (ptr);                                          \
+  PUSH_FAILURE_INT (-1);                                               \
+  STORE_NUMBER (ptr, val);                                             \
+} while (0)
+
+/* Pop a saved register off the stack.  */
+#define POP_FAILURE_REG_OR_COUNT()                                     \
+do {                                                                   \
+  int reg = POP_FAILURE_INT ();                                                \
+  if (reg == -1)                                                       \
+    {                                                                  \
+      /* It's a counter.  */                                           \
+      /* Here, we discard `const', making re_match non-reentrant.  */  \
+      unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER ();    \
+      reg = POP_FAILURE_INT ();                                                \
+      STORE_NUMBER (ptr, reg);                                         \
+      DEBUG_PRINT3 ("     Pop counter %p = %d\n", ptr, reg);           \
+    }                                                                  \
+  else                                                                 \
+    {                                                                  \
+      regend[reg] = POP_FAILURE_POINTER ();                            \
+      regstart[reg] = POP_FAILURE_POINTER ();                          \
+      DEBUG_PRINT4 ("     Pop reg %d (spanning %p -> %p)\n",           \
+                   reg, regstart[reg], regend[reg]);                   \
+    }                                                                  \
+} while (0)
+
+/* Check that we are not stuck in an infinite loop.  */
+#define CHECK_INFINITE_LOOP(pat_cur, string_place)                     \
+do {                                                                   \
+  int failure = TOP_FAILURE_HANDLE ();                                 \
+  /* Check for infinite matching loops */                              \
+  while (failure > 0                                                   \
+        && (FAILURE_STR (failure) == string_place                      \
+            || FAILURE_STR (failure) == NULL))                         \
+    {                                                                  \
+      assert (FAILURE_PAT (failure) >= bufp->buffer                    \
+             && FAILURE_PAT (failure) <= bufp->buffer + bufp->used);   \
+      if (FAILURE_PAT (failure) == pat_cur)                            \
+       {                                                               \
+         cycle = 1;                                                    \
+         break;                                                        \
+       }                                                               \
+      DEBUG_PRINT2 ("  Other pattern: %p\n", FAILURE_PAT (failure));   \
+      failure = NEXT_FAILURE_HANDLE(failure);                          \
+    }                                                                  \
+  DEBUG_PRINT2 ("  Other string: %p\n", FAILURE_STR (failure));                \
+} while (0)
+
+/* Push the information about the state we will need
+   if we ever fail back to it.
+
+   Requires variables fail_stack, regstart, regend and
+   num_regs be declared.  GROW_FAIL_STACK requires `destination' be
+   declared.
+
+   Does `return FAILURE_CODE' if runs out of memory.  */
+
+#define PUSH_FAILURE_POINT(pattern, string_place)                      \
+do {                                                                   \
+  char *destination;                                                   \
+  /* Must be int, so when we don't save any registers, the arithmetic  \
+     of 0 + -1 isn't done as unsigned.  */                             \
+                                                                       \
+  DEBUG_STATEMENT (nfailure_points_pushed++);                          \
+  DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n");                            \
+  DEBUG_PRINT2 ("  Before push, next avail: %d\n", (fail_stack).avail);        \
+  DEBUG_PRINT2 ("                      size: %d\n", (fail_stack).size);\
+                                                                       \
+  ENSURE_FAIL_STACK (NUM_NONREG_ITEMS);                                        \
+                                                                       \
+  DEBUG_PRINT1 ("\n");                                                 \
+                                                                       \
+  DEBUG_PRINT2 ("  Push frame index: %d\n", fail_stack.frame);         \
+  PUSH_FAILURE_INT (fail_stack.frame);                                 \
+                                                                       \
+  DEBUG_PRINT2 ("  Push string %p: `", string_place);                  \
+  DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
+  DEBUG_PRINT1 ("'\n");                                                        \
+  PUSH_FAILURE_POINTER (string_place);                                 \
+                                                                       \
+  DEBUG_PRINT2 ("  Push pattern %p: ", pattern);                       \
+  DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend);                  \
+  PUSH_FAILURE_POINTER (pattern);                                      \
+                                                                       \
+  /* Close the frame by moving the frame pointer past it.  */          \
+  fail_stack.frame = fail_stack.avail;                                 \
+} while (0)
+
+/* Estimate the size of data pushed by a typical failure stack entry.
+   An estimate is all we need, because all we use this for
+   is to choose a limit for how big to make the failure stack.  */
+/* BEWARE, the value `20' is hard-coded in emacs.c:main().  */
+#define TYPICAL_FAILURE_SIZE 20
+
+/* How many items can still be added to the stack without overflowing it.  */
+#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
+
+
+/* Pops what PUSH_FAIL_STACK pushes.
+
+   We restore into the parameters, all of which should be lvalues:
+     STR -- the saved data position.
+     PAT -- the saved pattern position.
+     REGSTART, REGEND -- arrays of string positions.
+
+   Also assumes the variables `fail_stack' and (if debugging), `bufp',
+   `pend', `string1', `size1', `string2', and `size2'. */
+
+#define POP_FAILURE_POINT(str, pat)                                     \
+do {                                                                   \
+  assert (!FAIL_STACK_EMPTY ());                                       \
+                                                                       \
+  /* Remove failure points and point to how many regs pushed.  */      \
+  DEBUG_PRINT1 ("POP_FAILURE_POINT:\n");                               \
+  DEBUG_PRINT2 ("  Before pop, next avail: %d\n", fail_stack.avail);   \
+  DEBUG_PRINT2 ("                   size: %d\n", fail_stack.size);     \
+                                                                       \
+  /* Pop the saved registers.  */                                      \
+  while (fail_stack.frame < fail_stack.avail)                          \
+    POP_FAILURE_REG_OR_COUNT ();                                       \
+                                                                       \
+  pat = POP_FAILURE_POINTER ();                                \
+  DEBUG_PRINT2 ("  Popping pattern %p: ", pat);                                \
+  DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend);                      \
+                                                                       \
+  /* If the saved string location is NULL, it came from an             \
+     on_failure_keep_string_jump opcode, and we want to throw away the \
+     saved NULL, thus retaining our current position in the string.  */        \
+  str = POP_FAILURE_POINTER ();                                                \
+  DEBUG_PRINT2 ("  Popping string %p: `", str);                                \
+  DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2);     \
+  DEBUG_PRINT1 ("'\n");                                                        \
+                                                                       \
+  fail_stack.frame = POP_FAILURE_INT ();                               \
+  DEBUG_PRINT2 ("  Popping  frame index: %d\n", fail_stack.frame);     \
+                                                                       \
+  assert (fail_stack.avail >= 0);                                      \
+  assert (fail_stack.frame <= fail_stack.avail);                       \
+                                                                       \
+  DEBUG_STATEMENT (nfailure_points_popped++);                          \
+} while (0) /* POP_FAILURE_POINT */
+
+
+\f
+/* Registers are set to a sentinel when they haven't yet matched.  */
+#define REG_UNSET(e) ((e) == NULL)
+\f
+/* Subroutine declarations and macros for regex_compile.  */
+
+static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
+                                             reg_syntax_t syntax,
+                                             struct re_pattern_buffer *bufp));
+static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
+static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
+                                int arg1, int arg2));
+static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
+                                 int arg, unsigned char *end));
+static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
+                                 int arg1, int arg2, unsigned char *end));
+static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
+                                          re_char *p,
+                                          reg_syntax_t syntax));
+static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
+                                          re_char *pend,
+                                          reg_syntax_t syntax));
+static re_char *skip_one_char _RE_ARGS ((re_char *p));
+static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
+                                   char *fastmap, const int multibyte));
+
+/* Fetch the next character in the uncompiled pattern, with no
+   translation.  */
+#define PATFETCH(c)                                                    \
+  do {                                                                 \
+    int len;                                                           \
+    if (p == pend) return REG_EEND;                                    \
+    c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len);                  \
+    p += len;                                                          \
+  } while (0)
+
+
+/* If `translate' is non-null, return translate[D], else just D.  We
+   cast the subscript to translate because some data is declared as
+   `char *', to avoid warnings when a string constant is passed.  But
+   when we use a character as a subscript we must make it unsigned.  */
+#ifndef TRANSLATE
+# define TRANSLATE(d) \
+  (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
+#endif
+
+
+/* Macros for outputting the compiled pattern into `buffer'.  */
+
+/* If the buffer isn't allocated when it comes in, use this.  */
+#define INIT_BUF_SIZE  32
+
+/* Make sure we have at least N more bytes of space in buffer.  */
+#define GET_BUFFER_SPACE(n)                                            \
+    while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated)                \
+      EXTEND_BUFFER ()
+
+/* Make sure we have one more byte of buffer space and then add C to it.  */
+#define BUF_PUSH(c)                                                    \
+  do {                                                                 \
+    GET_BUFFER_SPACE (1);                                              \
+    *b++ = (unsigned char) (c);                                                \
+  } while (0)
+
+
+/* Ensure we have two more bytes of buffer space and then append C1 and C2.  */
+#define BUF_PUSH_2(c1, c2)                                             \
+  do {                                                                 \
+    GET_BUFFER_SPACE (2);                                              \
+    *b++ = (unsigned char) (c1);                                       \
+    *b++ = (unsigned char) (c2);                                       \
+  } while (0)
+
+
+/* As with BUF_PUSH_2, except for three bytes.  */
+#define BUF_PUSH_3(c1, c2, c3)                                         \
+  do {                                                                 \
+    GET_BUFFER_SPACE (3);                                              \
+    *b++ = (unsigned char) (c1);                                       \
+    *b++ = (unsigned char) (c2);                                       \
+    *b++ = (unsigned char) (c3);                                       \
+  } while (0)
+
+
+/* Store a jump with opcode OP at LOC to location TO.  We store a
+   relative address offset by the three bytes the jump itself occupies.  */
+#define STORE_JUMP(op, loc, to) \
+  store_op1 (op, loc, (to) - (loc) - 3)
+
+/* Likewise, for a two-argument jump.  */
+#define STORE_JUMP2(op, loc, to, arg) \
+  store_op2 (op, loc, (to) - (loc) - 3, arg)
+
+/* Like `STORE_JUMP', but for inserting.  Assume `b' is the buffer end.  */
+#define INSERT_JUMP(op, loc, to) \
+  insert_op1 (op, loc, (to) - (loc) - 3, b)
+
+/* Like `STORE_JUMP2', but for inserting.  Assume `b' is the buffer end.  */
+#define INSERT_JUMP2(op, loc, to, arg) \
+  insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
+
+
+/* This is not an arbitrary limit: the arguments which represent offsets
+   into the pattern are two bytes long.  So if 2^16 bytes turns out to
+   be too small, many things would have to change.  */
+/* Any other compiler which, like MSC, has allocation limit below 2^16
+   bytes will have to use approach similar to what was done below for
+   MSC and drop MAX_BUF_SIZE a bit.  Otherwise you may end up
+   reallocating to 0 bytes.  Such thing is not going to work too well.
+   You have been warned!!  */
+#if defined _MSC_VER  && !defined WIN32
+/* Microsoft C 16-bit versions limit malloc to approx 65512 bytes.  */
+# define MAX_BUF_SIZE  65500L
+#else
+# define MAX_BUF_SIZE (1L << 16)
+#endif
+
+/* Extend the buffer by twice its current size via realloc and
+   reset the pointers that pointed into the old block to point to the
+   correct places in the new one.  If extending the buffer results in it
+   being larger than MAX_BUF_SIZE, then flag memory exhausted.  */
+#if __BOUNDED_POINTERS__
+# define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
+# define MOVE_BUFFER_POINTER(P) \
+  (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
+# define ELSE_EXTEND_BUFFER_HIGH_BOUND         \
+  else                                         \
+    {                                          \
+      SET_HIGH_BOUND (b);                      \
+      SET_HIGH_BOUND (begalt);                 \
+      if (fixup_alt_jump)                      \
+       SET_HIGH_BOUND (fixup_alt_jump);        \
+      if (laststart)                           \
+       SET_HIGH_BOUND (laststart);             \
+      if (pending_exact)                       \
+       SET_HIGH_BOUND (pending_exact);         \
+    }
+#else
+# define MOVE_BUFFER_POINTER(P) (P) += incr
+# define ELSE_EXTEND_BUFFER_HIGH_BOUND
+#endif
+#define EXTEND_BUFFER()                                                        \
+  do {                                                                 \
+    re_char *old_buffer = bufp->buffer;                                        \
+    if (bufp->allocated == MAX_BUF_SIZE)                               \
+      return REG_ESIZE;                                                        \
+    bufp->allocated <<= 1;                                             \
+    if (bufp->allocated > MAX_BUF_SIZE)                                        \
+      bufp->allocated = MAX_BUF_SIZE;                                  \
+    RETALLOC (bufp->buffer, bufp->allocated, unsigned char);           \
+    if (bufp->buffer == NULL)                                          \
+      return REG_ESPACE;                                               \
+    /* If the buffer moved, move all the pointers into it.  */         \
+    if (old_buffer != bufp->buffer)                                    \
+      {                                                                        \
+       int incr = bufp->buffer - old_buffer;                           \
+       MOVE_BUFFER_POINTER (b);                                        \
+       MOVE_BUFFER_POINTER (begalt);                                   \
+       if (fixup_alt_jump)                                             \
+         MOVE_BUFFER_POINTER (fixup_alt_jump);                         \
+       if (laststart)                                                  \
+         MOVE_BUFFER_POINTER (laststart);                              \
+       if (pending_exact)                                              \
+         MOVE_BUFFER_POINTER (pending_exact);                          \
+      }                                                                        \
+    ELSE_EXTEND_BUFFER_HIGH_BOUND                                      \
+  } while (0)
+
+
+/* Since we have one byte reserved for the register number argument to
+   {start,stop}_memory, the maximum number of groups we can report
+   things about is what fits in that byte.  */
+#define MAX_REGNUM 255
+
+/* But patterns can have more than `MAX_REGNUM' registers.  We just
+   ignore the excess.  */
+typedef int regnum_t;
+
+
+/* Macros for the compile stack.  */
+
+/* Since offsets can go either forwards or backwards, this type needs to
+   be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1.  */
+/* int may be not enough when sizeof(int) == 2.  */
+typedef long pattern_offset_t;
+
+typedef struct
+{
+  pattern_offset_t begalt_offset;
+  pattern_offset_t fixup_alt_jump;
+  pattern_offset_t laststart_offset;
+  regnum_t regnum;
+} compile_stack_elt_t;
+
+
+typedef struct
+{
+  compile_stack_elt_t *stack;
+  unsigned size;
+  unsigned avail;                      /* Offset of next open position.  */
+} compile_stack_type;
+
+
+#define INIT_COMPILE_STACK_SIZE 32
+
+#define COMPILE_STACK_EMPTY  (compile_stack.avail == 0)
+#define COMPILE_STACK_FULL  (compile_stack.avail == compile_stack.size)
+
+/* The next available element.  */
+#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
+
+/* Explicit quit checking is only used on NTemacs.  */
+#if defined WINDOWSNT && defined emacs && defined QUIT
+extern int immediate_quit;
+# define IMMEDIATE_QUIT_CHECK                  \
+    do {                                       \
+      if (immediate_quit) QUIT;                        \
+    } while (0)
+#else
+# define IMMEDIATE_QUIT_CHECK    ((void)0)
+#endif
+\f
+/* Structure to manage work area for range table.  */
+struct range_table_work_area
+{
+  int *table;                  /* actual work area.  */
+  int allocated;               /* allocated size for work area in bytes.  */
+  int used;                    /* actually used size in words.  */
+  int bits;                    /* flag to record character classes */
+};
+
+/* Make sure that WORK_AREA can hold more N multibyte characters.
+   This is used only in set_image_of_range and set_image_of_range_1.
+   It expects WORK_AREA to be a pointer.
+   If it can't get the space, it returns from the surrounding function.  */
+
+#define EXTEND_RANGE_TABLE(work_area, n)                               \
+  do {                                                                 \
+    if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
+      {                                                                        \
+        extend_range_table_work_area (work_area);                      \
+        if ((work_area)->table == 0)                                   \
+          return (REG_ESPACE);                                         \
+      }                                                                        \
+  } while (0)
+
+#define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit)          \
+  (work_area).bits |= (bit)
+
+/* Bits used to implement the multibyte-part of the various character classes
+   such as [:alnum:] in a charset's range table.  */
+#define BIT_WORD       0x1
+#define BIT_LOWER      0x2
+#define BIT_PUNCT      0x4
+#define BIT_SPACE      0x8
+#define BIT_UPPER      0x10
+#define BIT_MULTIBYTE  0x20
+
+/* Set a range START..END to WORK_AREA.
+   The range is passed through TRANSLATE, so START and END
+   should be untranslated.  */
+#define SET_RANGE_TABLE_WORK_AREA(work_area, start, end)               \
+  do {                                                                 \
+    int tem;                                                           \
+    tem = set_image_of_range (&work_area, start, end, translate);      \
+    if (tem > 0)                                                       \
+      FREE_STACK_RETURN (tem);                                         \
+  } while (0)
+
+/* Free allocated memory for WORK_AREA.         */
+#define FREE_RANGE_TABLE_WORK_AREA(work_area)  \
+  do {                                         \
+    if ((work_area).table)                     \
+      free ((work_area).table);                        \
+  } while (0)
+
+#define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
+#define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
+#define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
+#define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
+\f
+
+/* Set the bit for character C in a list.  */
+#define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
+
+
+/* Get the next unsigned number in the uncompiled pattern.  */
+#define GET_UNSIGNED_NUMBER(num)                                       \
+ do { if (p != pend)                                                   \
+     {                                                                 \
+       PATFETCH (c);                                                   \
+       if (c == ' ')                                                   \
+        FREE_STACK_RETURN (REG_BADBR);                                 \
+       while ('0' <= c && c <= '9')                                    \
+        {                                                              \
+           int prev;                                                   \
+          if (num < 0)                                                 \
+            num = 0;                                                   \
+          prev = num;                                                  \
+          num = num * 10 + c - '0';                                    \
+          if (num / 10 != prev)                                        \
+            FREE_STACK_RETURN (REG_BADBR);                             \
+          if (p == pend)                                               \
+            break;                                                     \
+          PATFETCH (c);                                                \
+        }                                                              \
+       if (c == ' ')                                                   \
+        FREE_STACK_RETURN (REG_BADBR);                                 \
+       }                                                               \
+    } while (0)
+\f
+#if WIDE_CHAR_SUPPORT
+/* The GNU C library provides support for user-defined character classes
+   and the functions from ISO C amendement 1.  */
+# ifdef CHARCLASS_NAME_MAX
+#  define CHAR_CLASS_MAX_LENGTH CHARCLASS_NAME_MAX
+# else
+/* This shouldn't happen but some implementation might still have this
+   problem.  Use a reasonable default value.  */
+#  define CHAR_CLASS_MAX_LENGTH 256
+# endif
+typedef wctype_t re_wctype_t;
+typedef wchar_t re_wchar_t;
+# define re_wctype wctype
+# define re_iswctype iswctype
+# define re_wctype_to_bit(cc) 0
+#else
+# define CHAR_CLASS_MAX_LENGTH  9 /* Namely, `multibyte'.  */
+# define btowc(c) c
+
+/* Character classes.  */
+typedef enum { RECC_ERROR = 0,
+              RECC_ALNUM, RECC_ALPHA, RECC_WORD,
+              RECC_GRAPH, RECC_PRINT,
+              RECC_LOWER, RECC_UPPER,
+              RECC_PUNCT, RECC_CNTRL,
+              RECC_DIGIT, RECC_XDIGIT,
+              RECC_BLANK, RECC_SPACE,
+              RECC_MULTIBYTE, RECC_NONASCII,
+              RECC_ASCII, RECC_UNIBYTE
+} re_wctype_t;
+
+typedef int re_wchar_t;
+
+/* Map a string to the char class it names (if any).  */
+static re_wctype_t
+re_wctype (str)
+     re_char *str;
+{
+  const char *string = str;
+  if      (STREQ (string, "alnum"))    return RECC_ALNUM;
+  else if (STREQ (string, "alpha"))    return RECC_ALPHA;
+  else if (STREQ (string, "word"))     return RECC_WORD;
+  else if (STREQ (string, "ascii"))    return RECC_ASCII;
+  else if (STREQ (string, "nonascii")) return RECC_NONASCII;
+  else if (STREQ (string, "graph"))    return RECC_GRAPH;
+  else if (STREQ (string, "lower"))    return RECC_LOWER;
+  else if (STREQ (string, "print"))    return RECC_PRINT;
+  else if (STREQ (string, "punct"))    return RECC_PUNCT;
+  else if (STREQ (string, "space"))    return RECC_SPACE;
+  else if (STREQ (string, "upper"))    return RECC_UPPER;
+  else if (STREQ (string, "unibyte"))  return RECC_UNIBYTE;
+  else if (STREQ (string, "multibyte"))        return RECC_MULTIBYTE;
+  else if (STREQ (string, "digit"))    return RECC_DIGIT;
+  else if (STREQ (string, "xdigit"))   return RECC_XDIGIT;
+  else if (STREQ (string, "cntrl"))    return RECC_CNTRL;
+  else if (STREQ (string, "blank"))    return RECC_BLANK;
+  else return 0;
+}
+
+/* True iff CH is in the char class CC.  */
+static boolean
+re_iswctype (ch, cc)
+     int ch;
+     re_wctype_t cc;
+{
+  switch (cc)
+    {
+    case RECC_ALNUM: return ISALNUM (ch);
+    case RECC_ALPHA: return ISALPHA (ch);
+    case RECC_BLANK: return ISBLANK (ch);
+    case RECC_CNTRL: return ISCNTRL (ch);
+    case RECC_DIGIT: return ISDIGIT (ch);
+    case RECC_GRAPH: return ISGRAPH (ch);
+    case RECC_LOWER: return ISLOWER (ch);
+    case RECC_PRINT: return ISPRINT (ch);
+    case RECC_PUNCT: return ISPUNCT (ch);
+    case RECC_SPACE: return ISSPACE (ch);
+    case RECC_UPPER: return ISUPPER (ch);
+    case RECC_XDIGIT: return ISXDIGIT (ch);
+    case RECC_ASCII: return IS_REAL_ASCII (ch);
+    case RECC_NONASCII: return !IS_REAL_ASCII (ch);
+    case RECC_UNIBYTE: return ISUNIBYTE (ch);
+    case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
+    case RECC_WORD: return ISWORD (ch);
+    case RECC_ERROR: return false;
+    default:
+      abort();
+    }
+}
+
+/* Return a bit-pattern to use in the range-table bits to match multibyte
+   chars of class CC.  */
+static int
+re_wctype_to_bit (cc)
+     re_wctype_t cc;
+{
+  switch (cc)
+    {
+    case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
+    case RECC_MULTIBYTE: return BIT_MULTIBYTE;
+    case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
+    case RECC_LOWER: return BIT_LOWER;
+    case RECC_UPPER: return BIT_UPPER;
+    case RECC_PUNCT: return BIT_PUNCT;
+    case RECC_SPACE: return BIT_SPACE;
+    case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
+    case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
+    default:
+      abort();
+    }
+}
+#endif
+\f
+/* Filling in the work area of a range.  */
+
+/* Actually extend the space in WORK_AREA.  */
+
+static void
+extend_range_table_work_area (work_area)
+     struct range_table_work_area *work_area;
+{
+  work_area->allocated += 16 * sizeof (int);
+  if (work_area->table)
+    work_area->table
+      = (int *) realloc (work_area->table, work_area->allocated);
+  else
+    work_area->table
+      = (int *) malloc (work_area->allocated);
+}
+
+#ifdef emacs
+
+/* Carefully find the ranges of codes that are equivalent
+   under case conversion to the range start..end when passed through
+   TRANSLATE.  Handle the case where non-letters can come in between
+   two upper-case letters (which happens in Latin-1).
+   Also handle the case of groups of more than 2 case-equivalent chars.
+
+   The basic method is to look at consecutive characters and see
+   if they can form a run that can be handled as one.
+
+   Returns -1 if successful, REG_ESPACE if ran out of space.  */
+
+static int
+set_image_of_range_1 (work_area, start, end, translate)
+     RE_TRANSLATE_TYPE translate;
+     struct range_table_work_area *work_area;
+     re_wchar_t start, end;
+{
+  /* `one_case' indicates a character, or a run of characters,
+     each of which is an isolate (no case-equivalents).
+     This includes all ASCII non-letters.
+
+     `two_case' indicates a character, or a run of characters,
+     each of which has two case-equivalent forms.
+     This includes all ASCII letters.
+
+     `strange' indicates a character that has more than one
+     case-equivalent.  */
+
+  enum case_type {one_case, two_case, strange};
+
+  /* Describe the run that is in progress,
+     which the next character can try to extend.
+     If run_type is strange, that means there really is no run.
+     If run_type is one_case, then run_start...run_end is the run.
+     If run_type is two_case, then the run is run_start...run_end,
+     and the case-equivalents end at run_eqv_end.  */
+
+  enum case_type run_type = strange;
+  int run_start, run_end, run_eqv_end;
+
+  Lisp_Object eqv_table;
+
+  if (!RE_TRANSLATE_P (translate))
+    {
+      EXTEND_RANGE_TABLE (work_area, 2);
+      work_area->table[work_area->used++] = (start);
+      work_area->table[work_area->used++] = (end);
+      return -1;
+    }
+
+  eqv_table = XCHAR_TABLE (translate)->extras[2];
+
+  for (; start <= end; start++)
+    {
+      enum case_type this_type;
+      int eqv = RE_TRANSLATE (eqv_table, start);
+      int minchar, maxchar;
+
+      /* Classify this character */
+      if (eqv == start)
+       this_type = one_case;
+      else if (RE_TRANSLATE (eqv_table, eqv) == start)
+       this_type = two_case;
+      else
+       this_type = strange;
+
+      if (start < eqv)
+       minchar = start, maxchar = eqv;
+      else
+       minchar = eqv, maxchar = start;
+
+      /* Can this character extend the run in progress?  */
+      if (this_type == strange || this_type != run_type
+         || !(minchar == run_end + 1
+              && (run_type == two_case
+                  ? maxchar == run_eqv_end + 1 : 1)))
+       {
+         /* No, end the run.
+            Record each of its equivalent ranges.  */
+         if (run_type == one_case)
+           {
+             EXTEND_RANGE_TABLE (work_area, 2);
+             work_area->table[work_area->used++] = run_start;
+             work_area->table[work_area->used++] = run_end;
+           }
+         else if (run_type == two_case)
+           {
+             EXTEND_RANGE_TABLE (work_area, 4);
+             work_area->table[work_area->used++] = run_start;
+             work_area->table[work_area->used++] = run_end;
+             work_area->table[work_area->used++]
+               = RE_TRANSLATE (eqv_table, run_start);
+             work_area->table[work_area->used++]
+               = RE_TRANSLATE (eqv_table, run_end);
+           }
+         run_type = strange;
+       }
+
+      if (this_type == strange)
+       {
+         /* For a strange character, add each of its equivalents, one
+            by one.  Don't start a range.  */
+         do
+           {
+             EXTEND_RANGE_TABLE (work_area, 2);
+             work_area->table[work_area->used++] = eqv;
+             work_area->table[work_area->used++] = eqv;
+             eqv = RE_TRANSLATE (eqv_table, eqv);
+           }
+         while (eqv != start);
+       }
+
+      /* Add this char to the run, or start a new run.  */
+      else if (run_type == strange)
+       {
+         /* Initialize a new range.  */
+         run_type = this_type;
+         run_start = start;
+         run_end = start;
+         run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
+       }
+      else
+       {
+         /* Extend a running range.  */
+         run_end = minchar;
+         run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
+       }
+    }
+
+  /* If a run is still in progress at the end, finish it now
+     by recording its equivalent ranges.  */
+  if (run_type == one_case)
+    {
+      EXTEND_RANGE_TABLE (work_area, 2);
+      work_area->table[work_area->used++] = run_start;
+      work_area->table[work_area->used++] = run_end;
+    }
+  else if (run_type == two_case)
+    {
+      EXTEND_RANGE_TABLE (work_area, 4);
+      work_area->table[work_area->used++] = run_start;
+      work_area->table[work_area->used++] = run_end;
+      work_area->table[work_area->used++]
+       = RE_TRANSLATE (eqv_table, run_start);
+      work_area->table[work_area->used++]
+       = RE_TRANSLATE (eqv_table, run_end);
+    }
+
+  return -1;
+}
+
+#endif /* emacs */
+
+/* Record the the image of the range start..end when passed through
+   TRANSLATE.  This is not necessarily TRANSLATE(start)..TRANSLATE(end)
+   and is not even necessarily contiguous.
+   Normally we approximate it with the smallest contiguous range that contains
+   all the chars we need.  However, for Latin-1 we go to extra effort
+   to do a better job.
+
+   This function is not called for ASCII ranges.
+
+   Returns -1 if successful, REG_ESPACE if ran out of space.  */
+
+static int
+set_image_of_range (work_area, start, end, translate)
+     RE_TRANSLATE_TYPE translate;
+     struct range_table_work_area *work_area;
+     re_wchar_t start, end;
+{
+  re_wchar_t cmin, cmax;
+
+#ifdef emacs
+  /* For Latin-1 ranges, use set_image_of_range_1
+     to get proper handling of ranges that include letters and nonletters.
+     For a range that includes the whole of Latin-1, this is not necessary.
+     For other character sets, we don't bother to get this right.  */
+  if (RE_TRANSLATE_P (translate) && start < 04400
+      && !(start < 04200 && end >= 04377))
+    {
+      int newend;
+      int tem;
+      newend = end;
+      if (newend > 04377)
+       newend = 04377;
+      tem = set_image_of_range_1 (work_area, start, newend, translate);
+      if (tem > 0)
+       return tem;
+
+      start = 04400;
+      if (end < 04400)
+       return -1;
+    }
+#endif
+
+  EXTEND_RANGE_TABLE (work_area, 2);
+  work_area->table[work_area->used++] = (start);
+  work_area->table[work_area->used++] = (end);
+
+  cmin = -1, cmax = -1;
+
+  if (RE_TRANSLATE_P (translate))
+    {
+      int ch;
+
+      for (ch = start; ch <= end; ch++)
+       {
+         re_wchar_t c = TRANSLATE (ch);
+         if (! (start <= c && c <= end))
+           {
+             if (cmin == -1)
+               cmin = c, cmax = c;
+             else
+               {
+                 cmin = MIN (cmin, c);
+                 cmax = MAX (cmax, c);
+               }
+           }
+       }
+
+      if (cmin != -1)
+       {
+         EXTEND_RANGE_TABLE (work_area, 2);
+         work_area->table[work_area->used++] = (cmin);
+         work_area->table[work_area->used++] = (cmax);
+       }
+    }
+
+  return -1;
+}
+\f
+#ifndef MATCH_MAY_ALLOCATE
+
+/* If we cannot allocate large objects within re_match_2_internal,
+   we make the fail stack and register vectors global.
+   The fail stack, we grow to the maximum size when a regexp
+   is compiled.
+   The register vectors, we adjust in size each time we
+   compile a regexp, according to the number of registers it needs.  */
+
+static fail_stack_type fail_stack;
+
+/* Size with which the following vectors are currently allocated.
+   That is so we can make them bigger as needed,
+   but never make them smaller.  */
+static int regs_allocated_size;
+
+static re_char **     regstart, **     regend;
+static re_char **best_regstart, **best_regend;
+
+/* Make the register vectors big enough for NUM_REGS registers,
+   but don't make them smaller.  */
+
+static
+regex_grow_registers (num_regs)
+     int num_regs;
+{
+  if (num_regs > regs_allocated_size)
+    {
+      RETALLOC_IF (regstart,    num_regs, re_char *);
+      RETALLOC_IF (regend,      num_regs, re_char *);
+      RETALLOC_IF (best_regstart, num_regs, re_char *);
+      RETALLOC_IF (best_regend,         num_regs, re_char *);
+
+      regs_allocated_size = num_regs;
+    }
+}
+
+#endif /* not MATCH_MAY_ALLOCATE */
+\f
+static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
+                                                compile_stack,
+                                                regnum_t regnum));
+
+/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
+   Returns one of error codes defined in `regex.h', or zero for success.
+
+   Assumes the `allocated' (and perhaps `buffer') and `translate'
+   fields are set in BUFP on entry.
+
+   If it succeeds, results are put in BUFP (if it returns an error, the
+   contents of BUFP are undefined):
+     `buffer' is the compiled pattern;
+     `syntax' is set to SYNTAX;
+     `used' is set to the length of the compiled pattern;
+     `fastmap_accurate' is zero;
+     `re_nsub' is the number of subexpressions in PATTERN;
+     `not_bol' and `not_eol' are zero;
+
+   The `fastmap' field is neither examined nor set.  */
+
+/* Insert the `jump' from the end of last alternative to "here".
+   The space for the jump has already been allocated. */
+#define FIXUP_ALT_JUMP()                                               \
+do {                                                                   \
+  if (fixup_alt_jump)                                                  \
+    STORE_JUMP (jump, fixup_alt_jump, b);                              \
+} while (0)
+
+
+/* Return, freeing storage we allocated.  */
+#define FREE_STACK_RETURN(value)               \
+  do {                                                 \
+    FREE_RANGE_TABLE_WORK_AREA (range_table_work);     \
+    free (compile_stack.stack);                                \
+    return value;                                      \
+  } while (0)
+
+static reg_errcode_t
+regex_compile (pattern, size, syntax, bufp)
+     re_char *pattern;
+     size_t size;
+     reg_syntax_t syntax;
+     struct re_pattern_buffer *bufp;
+{
+  /* We fetch characters from PATTERN here.  */
+  register re_wchar_t c, c1;
+
+  /* A random temporary spot in PATTERN.  */
+  re_char *p1;
+
+  /* Points to the end of the buffer, where we should append.  */
+  register unsigned char *b;
+
+  /* Keeps track of unclosed groups.  */
+  compile_stack_type compile_stack;
+
+  /* Points to the current (ending) position in the pattern.  */
+#ifdef AIX
+  /* `const' makes AIX compiler fail.  */
+  unsigned char *p = pattern;
+#else
+  re_char *p = pattern;
+#endif
+  re_char *pend = pattern + size;
+
+  /* How to translate the characters in the pattern.  */
+  RE_TRANSLATE_TYPE translate = bufp->translate;
+
+  /* Address of the count-byte of the most recently inserted `exactn'
+     command.  This makes it possible to tell if a new exact-match
+     character can be added to that command or if the character requires
+     a new `exactn' command.  */
+  unsigned char *pending_exact = 0;
+
+  /* Address of start of the most recently finished expression.
+     This tells, e.g., postfix * where to find the start of its
+     operand.  Reset at the beginning of groups and alternatives.  */
+  unsigned char *laststart = 0;
+
+  /* Address of beginning of regexp, or inside of last group.  */
+  unsigned char *begalt;
+
+  /* Place in the uncompiled pattern (i.e., the {) to
+     which to go back if the interval is invalid.  */
+  re_char *beg_interval;
+
+  /* Address of the place where a forward jump should go to the end of
+     the containing expression.         Each alternative of an `or' -- except the
+     last -- ends with a forward jump of this sort.  */
+  unsigned char *fixup_alt_jump = 0;
+
+  /* Counts open-groups as they are encountered.  Remembered for the
+     matching close-group on the compile stack, so the same register
+     number is put in the stop_memory as the start_memory.  */
+  regnum_t regnum = 0;
+
+  /* Work area for range table of charset.  */
+  struct range_table_work_area range_table_work;
+
+  /* If the object matched can contain multibyte characters.  */
+  const boolean multibyte = RE_MULTIBYTE_P (bufp);
+
+#ifdef DEBUG
+  debug++;
+  DEBUG_PRINT1 ("\nCompiling pattern: ");
+  if (debug > 0)
+    {
+      unsigned debug_count;
+
+      for (debug_count = 0; debug_count < size; debug_count++)
+       putchar (pattern[debug_count]);
+      putchar ('\n');
+    }
+#endif /* DEBUG */
+
+  /* Initialize the compile stack.  */
+  compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
+  if (compile_stack.stack == NULL)
+    return REG_ESPACE;
+
+  compile_stack.size = INIT_COMPILE_STACK_SIZE;
+  compile_stack.avail = 0;
+
+  range_table_work.table = 0;
+  range_table_work.allocated = 0;
+
+  /* Initialize the pattern buffer.  */
+  bufp->syntax = syntax;
+  bufp->fastmap_accurate = 0;
+  bufp->not_bol = bufp->not_eol = 0;
+
+  /* Set `used' to zero, so that if we return an error, the pattern
+     printer (for debugging) will think there's no pattern.  We reset it
+     at the end.  */
+  bufp->used = 0;
+
+  /* Always count groups, whether or not bufp->no_sub is set.  */
+  bufp->re_nsub = 0;
+
+#if !defined emacs && !defined SYNTAX_TABLE
+  /* Initialize the syntax table.  */
+   init_syntax_once ();
+#endif
+
+  if (bufp->allocated == 0)
+    {
+      if (bufp->buffer)
+       { /* If zero allocated, but buffer is non-null, try to realloc
+            enough space.  This loses if buffer's address is bogus, but
+            that is the user's responsibility.  */
+         RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
+       }
+      else
+       { /* Caller did not allocate a buffer.  Do it for them.  */
+         bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
+       }
+      if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
+
+      bufp->allocated = INIT_BUF_SIZE;
+    }
+
+  begalt = b = bufp->buffer;
+
+  /* Loop through the uncompiled pattern until we're at the end.  */
+  while (p != pend)
+    {
+      PATFETCH (c);
+
+      switch (c)
+       {
+       case '^':
+         {
+           if (   /* If at start of pattern, it's an operator.  */
+                  p == pattern + 1
+                  /* If context independent, it's an operator.  */
+               || syntax & RE_CONTEXT_INDEP_ANCHORS
+                  /* Otherwise, depends on what's come before.  */
+               || at_begline_loc_p (pattern, p, syntax))
+             BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
+           else
+             goto normal_char;
+         }
+         break;
+
+
+       case '$':
+         {
+           if (   /* If at end of pattern, it's an operator.  */
+                  p == pend
+                  /* If context independent, it's an operator.  */
+               || syntax & RE_CONTEXT_INDEP_ANCHORS
+                  /* Otherwise, depends on what's next.  */
+               || at_endline_loc_p (p, pend, syntax))
+              BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
+            else
+              goto normal_char;
+          }
+          break;
+
+
+       case '+':
+       case '?':
+         if ((syntax & RE_BK_PLUS_QM)
+             || (syntax & RE_LIMITED_OPS))
+           goto normal_char;
+       handle_plus:
+       case '*':
+         /* If there is no previous pattern... */
+         if (!laststart)
+           {
+             if (syntax & RE_CONTEXT_INVALID_OPS)
+               FREE_STACK_RETURN (REG_BADRPT);
+             else if (!(syntax & RE_CONTEXT_INDEP_OPS))
+               goto normal_char;
+           }
+
+         {
+           /* 1 means zero (many) matches is allowed.  */
+           boolean zero_times_ok = 0, many_times_ok = 0;
+           boolean greedy = 1;
+
+           /* If there is a sequence of repetition chars, collapse it
+              down to just one (the right one).  We can't combine
+              interval operators with these because of, e.g., `a{2}*',
+              which should only match an even number of `a's.  */
+
+           for (;;)
+             {
+               if ((syntax & RE_FRUGAL)
+                   && c == '?' && (zero_times_ok || many_times_ok))
+                 greedy = 0;
+               else
+                 {
+                   zero_times_ok |= c != '+';
+                   many_times_ok |= c != '?';
+                 }
+
+               if (p == pend)
+                 break;
+               else if (*p == '*'
+                        || (!(syntax & RE_BK_PLUS_QM)
+                            && (*p == '+' || *p == '?')))
+                 ;
+               else if (syntax & RE_BK_PLUS_QM  && *p == '\\')
+                 {
+                   if (p+1 == pend)
+                     FREE_STACK_RETURN (REG_EESCAPE);
+                   if (p[1] == '+' || p[1] == '?')
+                     PATFETCH (c); /* Gobble up the backslash.  */
+                   else
+                     break;
+                 }
+               else
+                 break;
+               /* If we get here, we found another repeat character.  */
+               PATFETCH (c);
+              }
+
+           /* Star, etc. applied to an empty pattern is equivalent
+              to an empty pattern.  */
+           if (!laststart || laststart == b)
+             break;
+
+           /* Now we know whether or not zero matches is allowed
+              and also whether or not two or more matches is allowed.  */
+           if (greedy)
+             {
+               if (many_times_ok)
+                 {
+                   boolean simple = skip_one_char (laststart) == b;
+                   unsigned int startoffset = 0;
+                   re_opcode_t ofj =
+                     /* Check if the loop can match the empty string.  */
+                     (simple || !analyse_first (laststart, b, NULL, 0))
+                     ? on_failure_jump : on_failure_jump_loop;
+                   assert (skip_one_char (laststart) <= b);
+
+                   if (!zero_times_ok && simple)
+                     { /* Since simple * loops can be made faster by using
+                          on_failure_keep_string_jump, we turn simple P+
+                          into PP* if P is simple.  */
+                       unsigned char *p1, *p2;
+                       startoffset = b - laststart;
+                       GET_BUFFER_SPACE (startoffset);
+                       p1 = b; p2 = laststart;
+                       while (p2 < p1)
+                         *b++ = *p2++;
+                       zero_times_ok = 1;
+                     }
+
+                   GET_BUFFER_SPACE (6);
+                   if (!zero_times_ok)
+                     /* A + loop.  */
+                     STORE_JUMP (ofj, b, b + 6);
+                   else
+                     /* Simple * loops can use on_failure_keep_string_jump
+                        depending on what follows.  But since we don't know
+                        that yet, we leave the decision up to
+                        on_failure_jump_smart.  */
+                     INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
+                                  laststart + startoffset, b + 6);
+                   b += 3;
+                   STORE_JUMP (jump, b, laststart + startoffset);
+                   b += 3;
+                 }
+               else
+                 {
+                   /* A simple ? pattern.  */
+                   assert (zero_times_ok);
+                   GET_BUFFER_SPACE (3);
+                   INSERT_JUMP (on_failure_jump, laststart, b + 3);
+                   b += 3;
+                 }
+             }
+           else                /* not greedy */
+             { /* I wish the greedy and non-greedy cases could be merged. */
+
+               GET_BUFFER_SPACE (7); /* We might use less.  */
+               if (many_times_ok)
+                 {
+                   boolean emptyp = analyse_first (laststart, b, NULL, 0);
+
+                   /* The non-greedy multiple match looks like
+                      a repeat..until: we only need a conditional jump
+                      at the end of the loop.  */
+                   if (emptyp) BUF_PUSH (no_op);
+                   STORE_JUMP (emptyp ? on_failure_jump_nastyloop
+                               : on_failure_jump, b, laststart);
+                   b += 3;
+                   if (zero_times_ok)
+                     {
+                       /* The repeat...until naturally matches one or more.
+                          To also match zero times, we need to first jump to
+                          the end of the loop (its conditional jump).  */
+                       INSERT_JUMP (jump, laststart, b);
+                       b += 3;
+                     }
+                 }
+               else
+                 {
+                   /* non-greedy a?? */
+                   INSERT_JUMP (jump, laststart, b + 3);
+                   b += 3;
+                   INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
+                   b += 3;
+                 }
+             }
+         }
+         pending_exact = 0;
+         break;
+
+
+       case '.':
+         laststart = b;
+         BUF_PUSH (anychar);
+         break;
+
+
+       case '[':
+         {
+           CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
+
+           if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+           /* Ensure that we have enough space to push a charset: the
+              opcode, the length count, and the bitset; 34 bytes in all.  */
+           GET_BUFFER_SPACE (34);
+
+           laststart = b;
+
+           /* We test `*p == '^' twice, instead of using an if
+              statement, so we only need one BUF_PUSH.  */
+           BUF_PUSH (*p == '^' ? charset_not : charset);
+           if (*p == '^')
+             p++;
+
+           /* Remember the first position in the bracket expression.  */
+           p1 = p;
+
+           /* Push the number of bytes in the bitmap.  */
+           BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
+
+           /* Clear the whole map.  */
+           bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
+
+           /* charset_not matches newline according to a syntax bit.  */
+           if ((re_opcode_t) b[-2] == charset_not
+               && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
+             SET_LIST_BIT ('\n');
+
+           /* Read in characters and ranges, setting map bits.  */
+           for (;;)
+             {
+               boolean escaped_char = false;
+               const unsigned char *p2 = p;
+
+               if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+               /* Don't translate yet.  The range TRANSLATE(X..Y) cannot
+                  always be determined from TRANSLATE(X) and TRANSLATE(Y)
+                  So the translation is done later in a loop.  Example:
+                  (let ((case-fold-search t)) (string-match "[A-_]" "A"))  */
+               PATFETCH (c);
+
+               /* \ might escape characters inside [...] and [^...].  */
+               if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
+                 {
+                   if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+
+                   PATFETCH (c);
+                   escaped_char = true;
+                 }
+               else
+                 {
+                   /* Could be the end of the bracket expression.      If it's
+                      not (i.e., when the bracket expression is `[]' so
+                      far), the ']' character bit gets set way below.  */
+                   if (c == ']' && p2 != p1)
+                     break;
+                 }
+
+               /* What should we do for the character which is
+                  greater than 0x7F, but not BASE_LEADING_CODE_P?
+                  XXX */
+
+               /* See if we're at the beginning of a possible character
+                  class.  */
+
+               if (!escaped_char &&
+                   syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
+                 {
+                   /* Leave room for the null.  */
+                   unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
+                   const unsigned char *class_beg;
+
+                   PATFETCH (c);
+                   c1 = 0;
+                   class_beg = p;
+
+                   /* If pattern is `[[:'.  */
+                   if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+                   for (;;)
+                     {
+                       PATFETCH (c);
+                       if ((c == ':' && *p == ']') || p == pend)
+                         break;
+                       if (c1 < CHAR_CLASS_MAX_LENGTH)
+                         str[c1++] = c;
+                       else
+                         /* This is in any case an invalid class name.  */
+                         str[0] = '\0';
+                     }
+                   str[c1] = '\0';
+
+                   /* If isn't a word bracketed by `[:' and `:]':
+                      undo the ending character, the letters, and
+                      leave the leading `:' and `[' (but set bits for
+                      them).  */
+                   if (c == ':' && *p == ']')
+                     {
+                       re_wchar_t ch;
+                       re_wctype_t cc;
+
+                       cc = re_wctype (str);
+
+                       if (cc == 0)
+                         FREE_STACK_RETURN (REG_ECTYPE);
+
+                        /* Throw away the ] at the end of the character
+                           class.  */
+                        PATFETCH (c);
+
+                        if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
+
+                       /* Most character classes in a multibyte match
+                          just set a flag.  Exceptions are is_blank,
+                          is_digit, is_cntrl, and is_xdigit, since
+                          they can only match ASCII characters.  We
+                          don't need to handle them for multibyte.
+                          They are distinguished by a negative wctype.  */
+
+                       if (multibyte)
+                         SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
+                                                        re_wctype_to_bit (cc));
+
+                        for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
+                         {
+                           int translated = TRANSLATE (ch);
+                           if (re_iswctype (btowc (ch), cc))
+                             SET_LIST_BIT (translated);
+                         }
+
+                       /* Repeat the loop. */
+                       continue;
+                     }
+                   else
+                     {
+                       /* Go back to right after the "[:".  */
+                       p = class_beg;
+                       SET_LIST_BIT ('[');
+
+                       /* Because the `:' may starts the range, we
+                          can't simply set bit and repeat the loop.
+                          Instead, just set it to C and handle below.  */
+                       c = ':';
+                     }
+                 }
+
+               if (p < pend && p[0] == '-' && p[1] != ']')
+                 {
+
+                   /* Discard the `-'. */
+                   PATFETCH (c1);
+
+                   /* Fetch the character which ends the range. */
+                   PATFETCH (c1);
+
+                   if (SINGLE_BYTE_CHAR_P (c))
+                     {
+                       if (! SINGLE_BYTE_CHAR_P (c1))
+                         {
+                           /* Handle a range starting with a
+                              character of less than 256, and ending
+                              with a character of not less than 256.
+                              Split that into two ranges, the low one
+                              ending at 0377, and the high one
+                              starting at the smallest character in
+                              the charset of C1 and ending at C1.  */
+                           int charset = CHAR_CHARSET (c1);
+                           re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
+
+                           SET_RANGE_TABLE_WORK_AREA (range_table_work,
+                                                      c2, c1);
+                           c1 = 0377;
+                         }
+                     }
+                   else if (!SAME_CHARSET_P (c, c1))
+                     FREE_STACK_RETURN (REG_ERANGE);
+                 }
+               else
+                 /* Range from C to C. */
+                 c1 = c;
+
+               /* Set the range ... */
+               if (SINGLE_BYTE_CHAR_P (c))
+                 /* ... into bitmap.  */
+                 {
+                   re_wchar_t this_char;
+                   re_wchar_t range_start = c, range_end = c1;
+
+                   /* If the start is after the end, the range is empty.  */
+                   if (range_start > range_end)
+                     {
+                       if (syntax & RE_NO_EMPTY_RANGES)
+                         FREE_STACK_RETURN (REG_ERANGE);
+                       /* Else, repeat the loop.  */
+                     }
+                   else
+                     {
+                       for (this_char = range_start; this_char <= range_end;
+                            this_char++)
+                         SET_LIST_BIT (TRANSLATE (this_char));
+                     }
+                 }
+               else
+                 /* ... into range table.  */
+                 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
+             }
+
+           /* Discard any (non)matching list bytes that are all 0 at the
+              end of the map.  Decrease the map-length byte too.  */
+           while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
+             b[-1]--;
+           b += b[-1];
+
+           /* Build real range table from work area.  */
+           if (RANGE_TABLE_WORK_USED (range_table_work)
+               || RANGE_TABLE_WORK_BITS (range_table_work))
+             {
+               int i;
+               int used = RANGE_TABLE_WORK_USED (range_table_work);
+
+               /* Allocate space for COUNT + RANGE_TABLE.  Needs two
+                  bytes for flags, two for COUNT, and three bytes for
+                  each character. */
+               GET_BUFFER_SPACE (4 + used * 3);
+
+               /* Indicate the existence of range table.  */
+               laststart[1] |= 0x80;
+
+               /* Store the character class flag bits into the range table.
+                  If not in emacs, these flag bits are always 0.  */
+               *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
+               *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
+
+               STORE_NUMBER_AND_INCR (b, used / 2);
+               for (i = 0; i < used; i++)
+                 STORE_CHARACTER_AND_INCR
+                   (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
+             }
+         }
+         break;
+
+
+       case '(':
+         if (syntax & RE_NO_BK_PARENS)
+           goto handle_open;
+         else
+           goto normal_char;
+
+
+       case ')':
+         if (syntax & RE_NO_BK_PARENS)
+           goto handle_close;
+         else
+           goto normal_char;
+
+
+       case '\n':
+         if (syntax & RE_NEWLINE_ALT)
+           goto handle_alt;
+         else
+           goto normal_char;
+
+
+       case '|':
+         if (syntax & RE_NO_BK_VBAR)
+           goto handle_alt;
+         else
+           goto normal_char;
+
+
+       case '{':
+          if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
+            goto handle_interval;
+          else
+            goto normal_char;
+
+
+       case '\\':
+         if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
+
+         /* Do not translate the character after the \, so that we can
+            distinguish, e.g., \B from \b, even if we normally would
+            translate, e.g., B to b.  */
+         PATFETCH (c);
+
+         switch (c)
+           {
+           case '(':
+             if (syntax & RE_NO_BK_PARENS)
+               goto normal_backslash;
+
+           handle_open:
+             {
+               int shy = 0;
+               if (p+1 < pend)
+                 {
+                   /* Look for a special (?...) construct */
+                   if ((syntax & RE_SHY_GROUPS) && *p == '?')
+                     {
+                       PATFETCH (c); /* Gobble up the '?'.  */
+                       PATFETCH (c);
+                       switch (c)
+                         {
+                         case ':': shy = 1; break;
+                         default:
+                           /* Only (?:...) is supported right now. */
+                           FREE_STACK_RETURN (REG_BADPAT);
+                         }
+                     }
+                 }
+
+               if (!shy)
+                 {
+                   bufp->re_nsub++;
+                   regnum++;
+                 }
+
+               if (COMPILE_STACK_FULL)
+                 {
+                   RETALLOC (compile_stack.stack, compile_stack.size << 1,
+                             compile_stack_elt_t);
+                   if (compile_stack.stack == NULL) return REG_ESPACE;
+
+                   compile_stack.size <<= 1;
+                 }
+
+               /* These are the values to restore when we hit end of this
+                  group.        They are all relative offsets, so that if the
+                  whole pattern moves because of realloc, they will still
+                  be valid.  */
+               COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
+               COMPILE_STACK_TOP.fixup_alt_jump
+                 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
+               COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
+               COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
+
+               /* Do not push a
+                  start_memory for groups beyond the last one we can
+                  represent in the compiled pattern.  */
+               if (regnum <= MAX_REGNUM && !shy)
+                 BUF_PUSH_2 (start_memory, regnum);
+
+               compile_stack.avail++;
+
+               fixup_alt_jump = 0;
+               laststart = 0;
+               begalt = b;
+               /* If we've reached MAX_REGNUM groups, then this open
+                  won't actually generate any code, so we'll have to
+                  clear pending_exact explicitly.  */
+               pending_exact = 0;
+               break;
+             }
+
+           case ')':
+             if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
+
+             if (COMPILE_STACK_EMPTY)
+               {
+                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+                   goto normal_backslash;
+                 else
+                   FREE_STACK_RETURN (REG_ERPAREN);
+               }
+
+           handle_close:
+             FIXUP_ALT_JUMP ();
+
+             /* See similar code for backslashed left paren above.  */
+             if (COMPILE_STACK_EMPTY)
+               {
+                 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
+                   goto normal_char;
+                 else
+                   FREE_STACK_RETURN (REG_ERPAREN);
+               }
+
+             /* Since we just checked for an empty stack above, this
+                ``can't happen''.  */
+             assert (compile_stack.avail != 0);
+             {
+               /* We don't just want to restore into `regnum', because
+                  later groups should continue to be numbered higher,
+                  as in `(ab)c(de)' -- the second group is #2.  */
+               regnum_t this_group_regnum;
+
+               compile_stack.avail--;
+               begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
+               fixup_alt_jump
+                 = COMPILE_STACK_TOP.fixup_alt_jump
+                   ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
+                   : 0;
+               laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
+               this_group_regnum = COMPILE_STACK_TOP.regnum;
+               /* If we've reached MAX_REGNUM groups, then this open
+                  won't actually generate any code, so we'll have to
+                  clear pending_exact explicitly.  */
+               pending_exact = 0;
+
+               /* We're at the end of the group, so now we know how many
+                  groups were inside this one.  */
+               if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
+                 BUF_PUSH_2 (stop_memory, this_group_regnum);
+             }
+             break;
+
+
+           case '|':                                   /* `\|'.  */
+             if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
+               goto normal_backslash;
+           handle_alt:
+             if (syntax & RE_LIMITED_OPS)
+               goto normal_char;
+
+             /* Insert before the previous alternative a jump which
+                jumps to this alternative if the former fails.  */
+             GET_BUFFER_SPACE (3);
+             INSERT_JUMP (on_failure_jump, begalt, b + 6);
+             pending_exact = 0;
+             b += 3;
+
+             /* The alternative before this one has a jump after it
+                which gets executed if it gets matched.  Adjust that
+                jump so it will jump to this alternative's analogous
+                jump (put in below, which in turn will jump to the next
+                (if any) alternative's such jump, etc.).  The last such
+                jump jumps to the correct final destination.  A picture:
+                         _____ _____
+                         |   | |   |
+                         |   v |   v
+                        a | b   | c
+
+                If we are at `b', then fixup_alt_jump right now points to a
+                three-byte space after `a'.  We'll put in the jump, set
+                fixup_alt_jump to right after `b', and leave behind three
+                bytes which we'll fill in when we get to after `c'.  */
+
+             FIXUP_ALT_JUMP ();
+
+             /* Mark and leave space for a jump after this alternative,
+                to be filled in later either by next alternative or
+                when know we're at the end of a series of alternatives.  */
+             fixup_alt_jump = b;
+             GET_BUFFER_SPACE (3);
+             b += 3;
+
+             laststart = 0;
+             begalt = b;
+             break;
+
+
+           case '{':
+             /* If \{ is a literal.  */
+             if (!(syntax & RE_INTERVALS)
+                    /* If we're at `\{' and it's not the open-interval
+                       operator.  */
+                 || (syntax & RE_NO_BK_BRACES))
+               goto normal_backslash;
+
+           handle_interval:
+             {
+               /* If got here, then the syntax allows intervals.  */
+
+               /* At least (most) this many matches must be made.  */
+               int lower_bound = 0, upper_bound = -1;
+
+               beg_interval = p;
+
+               if (p == pend)
+                 FREE_STACK_RETURN (REG_EBRACE);
+
+               GET_UNSIGNED_NUMBER (lower_bound);
+
+               if (c == ',')
+                 GET_UNSIGNED_NUMBER (upper_bound);
+               else
+                 /* Interval such as `{1}' => match exactly once. */
+                 upper_bound = lower_bound;
+
+               if (lower_bound < 0 || upper_bound > RE_DUP_MAX
+                   || (upper_bound >= 0 && lower_bound > upper_bound))
+                 FREE_STACK_RETURN (REG_BADBR);
+
+               if (!(syntax & RE_NO_BK_BRACES))
+                 {
+                   if (c != '\\')
+                     FREE_STACK_RETURN (REG_BADBR);
+
+                   PATFETCH (c);
+                 }
+
+               if (c != '}')
+                 FREE_STACK_RETURN (REG_BADBR);
+
+               /* We just parsed a valid interval.  */
+
+               /* If it's invalid to have no preceding re.  */
+               if (!laststart)
+                 {
+                   if (syntax & RE_CONTEXT_INVALID_OPS)
+                     FREE_STACK_RETURN (REG_BADRPT);
+                   else if (syntax & RE_CONTEXT_INDEP_OPS)
+                     laststart = b;
+                   else
+                     goto unfetch_interval;
+                 }
+
+               if (upper_bound == 0)
+                 /* If the upper bound is zero, just drop the sub pattern
+                    altogether.  */
+                 b = laststart;
+               else if (lower_bound == 1 && upper_bound == 1)
+                 /* Just match it once: nothing to do here.  */
+                 ;
+
+               /* Otherwise, we have a nontrivial interval.  When
+                  we're all done, the pattern will look like:
+                  set_number_at <jump count> <upper bound>
+                  set_number_at <succeed_n count> <lower bound>
+                  succeed_n <after jump addr> <succeed_n count>
+                  <body of loop>
+                  jump_n <succeed_n addr> <jump count>
+                  (The upper bound and `jump_n' are omitted if
+                  `upper_bound' is 1, though.)  */
+               else
+                 { /* If the upper bound is > 1, we need to insert
+                      more at the end of the loop.  */
+                   unsigned int nbytes = (upper_bound < 0 ? 3
+                                          : upper_bound > 1 ? 5 : 0);
+                   unsigned int startoffset = 0;
+
+                   GET_BUFFER_SPACE (20); /* We might use less.  */
+
+                   if (lower_bound == 0)
+                     {
+                       /* A succeed_n that starts with 0 is really a
+                          a simple on_failure_jump_loop.  */
+                       INSERT_JUMP (on_failure_jump_loop, laststart,
+                                    b + 3 + nbytes);
+                       b += 3;
+                     }
+                   else
+                     {
+                       /* Initialize lower bound of the `succeed_n', even
+                          though it will be set during matching by its
+                          attendant `set_number_at' (inserted next),
+                          because `re_compile_fastmap' needs to know.
+                          Jump to the `jump_n' we might insert below.  */
+                       INSERT_JUMP2 (succeed_n, laststart,
+                                     b + 5 + nbytes,
+                                     lower_bound);
+                       b += 5;
+
+                       /* Code to initialize the lower bound.  Insert
+                          before the `succeed_n'.       The `5' is the last two
+                          bytes of this `set_number_at', plus 3 bytes of
+                          the following `succeed_n'.  */
+                       insert_op2 (set_number_at, laststart, 5, lower_bound, b);
+                       b += 5;
+                       startoffset += 5;
+                     }
+
+                   if (upper_bound < 0)
+                     {
+                       /* A negative upper bound stands for infinity,
+                          in which case it degenerates to a plain jump.  */
+                       STORE_JUMP (jump, b, laststart + startoffset);
+                       b += 3;
+                     }
+                   else if (upper_bound > 1)
+                     { /* More than one repetition is allowed, so
+                          append a backward jump to the `succeed_n'
+                          that starts this interval.
+
+                          When we've reached this during matching,
+                          we'll have matched the interval once, so
+                          jump back only `upper_bound - 1' times.  */
+                       STORE_JUMP2 (jump_n, b, laststart + startoffset,
+                                    upper_bound - 1);
+                       b += 5;
+
+                       /* The location we want to set is the second
+                          parameter of the `jump_n'; that is `b-2' as
+                          an absolute address.  `laststart' will be
+                          the `set_number_at' we're about to insert;
+                          `laststart+3' the number to set, the source
+                          for the relative address.  But we are
+                          inserting into the middle of the pattern --
+                          so everything is getting moved up by 5.
+                          Conclusion: (b - 2) - (laststart + 3) + 5,
+                          i.e., b - laststart.
+
+                          We insert this at the beginning of the loop
+                          so that if we fail during matching, we'll
+                          reinitialize the bounds.  */
+                       insert_op2 (set_number_at, laststart, b - laststart,
+                                   upper_bound - 1, b);
+                       b += 5;
+                     }
+                 }
+               pending_exact = 0;
+               beg_interval = NULL;
+             }
+             break;
+
+           unfetch_interval:
+             /* If an invalid interval, match the characters as literals.  */
+              assert (beg_interval);
+              p = beg_interval;
+              beg_interval = NULL;
+
+              /* normal_char and normal_backslash need `c'.  */
+              c = '{';
+
+              if (!(syntax & RE_NO_BK_BRACES))
+                {
+                  assert (p > pattern && p[-1] == '\\');
+                  goto normal_backslash;
+                }
+              else
+                goto normal_char;
+
+#ifdef emacs
+           /* There is no way to specify the before_dot and after_dot
+              operators.  rms says this is ok.  --karl  */
+           case '=':
+             BUF_PUSH (at_dot);
+             break;
+
+           case 's':
+             laststart = b;
+             PATFETCH (c);
+             BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
+             break;
+
+           case 'S':
+             laststart = b;
+             PATFETCH (c);
+             BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
+             break;
+
+           case 'c':
+             laststart = b;
+             PATFETCH (c);
+             BUF_PUSH_2 (categoryspec, c);
+             break;
+
+           case 'C':
+             laststart = b;
+             PATFETCH (c);
+             BUF_PUSH_2 (notcategoryspec, c);
+             break;
+#endif /* emacs */
+
+
+           case 'w':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+             laststart = b;
+             BUF_PUSH_2 (syntaxspec, Sword);
+             break;
+
+
+           case 'W':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+             laststart = b;
+             BUF_PUSH_2 (notsyntaxspec, Sword);
+             break;
+
+
+           case '<':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+             BUF_PUSH (wordbeg);
+             break;
+
+           case '>':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+             BUF_PUSH (wordend);
+             break;
+
+           case 'b':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+             BUF_PUSH (wordbound);
+             break;
+
+           case 'B':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+             BUF_PUSH (notwordbound);
+             break;
+
+           case '`':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+             BUF_PUSH (begbuf);
+             break;
+
+           case '\'':
+             if (syntax & RE_NO_GNU_OPS)
+               goto normal_char;
+             BUF_PUSH (endbuf);
+             break;
+
+           case '1': case '2': case '3': case '4': case '5':
+           case '6': case '7': case '8': case '9':
+             {
+               regnum_t reg;
+
+               if (syntax & RE_NO_BK_REFS)
+                 goto normal_backslash;
+
+               reg = c - '0';
+
+               /* Can't back reference to a subexpression before its end.  */
+               if (reg > regnum || group_in_compile_stack (compile_stack, reg))
+                 FREE_STACK_RETURN (REG_ESUBREG);
+
+               laststart = b;
+               BUF_PUSH_2 (duplicate, reg);
+             }
+             break;
+
+
+           case '+':
+           case '?':
+             if (syntax & RE_BK_PLUS_QM)
+               goto handle_plus;
+             else
+               goto normal_backslash;
+
+           default:
+           normal_backslash:
+             /* You might think it would be useful for \ to mean
+                not to translate; but if we don't translate it
+                it will never match anything.  */
+             goto normal_char;
+           }
+         break;
+
+
+       default:
+       /* Expects the character in `c'.  */
+       normal_char:
+         /* If no exactn currently being built.  */
+         if (!pending_exact
+
+             /* If last exactn not at current position.  */
+             || pending_exact + *pending_exact + 1 != b
+
+             /* We have only one byte following the exactn for the count.  */
+             || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
+
+             /* If followed by a repetition operator.  */
+             || (p != pend && (*p == '*' || *p == '^'))
+             || ((syntax & RE_BK_PLUS_QM)
+                 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
+                 : p != pend && (*p == '+' || *p == '?'))
+             || ((syntax & RE_INTERVALS)
+                 && ((syntax & RE_NO_BK_BRACES)
+                     ? p != pend && *p == '{'
+                     : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
+           {
+             /* Start building a new exactn.  */
+
+             laststart = b;
+
+             BUF_PUSH_2 (exactn, 0);
+             pending_exact = b - 1;
+           }
+
+         GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
+         {
+           int len;
+
+           c = TRANSLATE (c);
+           if (multibyte)
+             len = CHAR_STRING (c, b);
+           else
+             *b = c, len = 1;
+           b += len;
+           (*pending_exact) += len;
+         }
+
+         break;
+       } /* switch (c) */
+    } /* while p != pend */
+
+
+  /* Through the pattern now.  */
+
+  FIXUP_ALT_JUMP ();
+
+  if (!COMPILE_STACK_EMPTY)
+    FREE_STACK_RETURN (REG_EPAREN);
+
+  /* If we don't want backtracking, force success
+     the first time we reach the end of the compiled pattern.  */
+  if (syntax & RE_NO_POSIX_BACKTRACKING)
+    BUF_PUSH (succeed);
+
+  free (compile_stack.stack);
+
+  /* We have succeeded; set the length of the buffer.  */
+  bufp->used = b - bufp->buffer;
+
+#ifdef DEBUG
+  if (debug > 0)
+    {
+      re_compile_fastmap (bufp);
+      DEBUG_PRINT1 ("\nCompiled pattern: \n");
+      print_compiled_pattern (bufp);
+    }
+  debug--;
+#endif /* DEBUG */
+
+#ifndef MATCH_MAY_ALLOCATE
+  /* Initialize the failure stack to the largest possible stack.  This
+     isn't necessary unless we're trying to avoid calling alloca in
+     the search and match routines.  */
+  {
+    int num_regs = bufp->re_nsub + 1;
+
+    if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
+      {
+       fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
+
+       if (! fail_stack.stack)
+         fail_stack.stack
+           = (fail_stack_elt_t *) malloc (fail_stack.size
+                                          * sizeof (fail_stack_elt_t));
+       else
+         fail_stack.stack
+           = (fail_stack_elt_t *) realloc (fail_stack.stack,
+                                           (fail_stack.size
+                                            * sizeof (fail_stack_elt_t)));
+      }
+
+    regex_grow_registers (num_regs);
+  }
+#endif /* not MATCH_MAY_ALLOCATE */
+
+  return REG_NOERROR;
+} /* regex_compile */
+\f
+/* Subroutines for `regex_compile'.  */
+
+/* Store OP at LOC followed by two-byte integer parameter ARG. */
+
+static void
+store_op1 (op, loc, arg)
+    re_opcode_t op;
+    unsigned char *loc;
+    int arg;
+{
+  *loc = (unsigned char) op;
+  STORE_NUMBER (loc + 1, arg);
+}
+
+
+/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2.  */
+
+static void
+store_op2 (op, loc, arg1, arg2)
+    re_opcode_t op;
+    unsigned char *loc;
+    int arg1, arg2;
+{
+  *loc = (unsigned char) op;
+  STORE_NUMBER (loc + 1, arg1);
+  STORE_NUMBER (loc + 3, arg2);
+}
+
+
+/* Copy the bytes from LOC to END to open up three bytes of space at LOC
+   for OP followed by two-byte integer parameter ARG.  */
+
+static void
+insert_op1 (op, loc, arg, end)
+    re_opcode_t op;
+    unsigned char *loc;
+    int arg;
+    unsigned char *end;
+{
+  register unsigned char *pfrom = end;
+  register unsigned char *pto = end + 3;
+
+  while (pfrom != loc)
+    *--pto = *--pfrom;
+
+  store_op1 (op, loc, arg);
+}
+
+
+/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2.  */
+
+static void
+insert_op2 (op, loc, arg1, arg2, end)
+    re_opcode_t op;
+    unsigned char *loc;
+    int arg1, arg2;
+    unsigned char *end;
+{
+  register unsigned char *pfrom = end;
+  register unsigned char *pto = end + 5;
+
+  while (pfrom != loc)
+    *--pto = *--pfrom;
+
+  store_op2 (op, loc, arg1, arg2);
+}
+
+
+/* P points to just after a ^ in PATTERN.  Return true if that ^ comes
+   after an alternative or a begin-subexpression.  We assume there is at
+   least one character before the ^.  */
+
+static boolean
+at_begline_loc_p (pattern, p, syntax)
+    re_char *pattern, *p;
+    reg_syntax_t syntax;
+{
+  re_char *prev = p - 2;
+  boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
+
+  return
+       /* After a subexpression?  */
+       (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
+       /* After an alternative?         */
+    || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
+       /* After a shy subexpression?  */
+    || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
+       && prev[-1] == '?' && prev[-2] == '('
+       && (syntax & RE_NO_BK_PARENS
+           || (prev - 3 >= pattern && prev[-3] == '\\')));
+}
+
+
+/* The dual of at_begline_loc_p.  This one is for $.  We assume there is
+   at least one character after the $, i.e., `P < PEND'.  */
+
+static boolean
+at_endline_loc_p (p, pend, syntax)
+    re_char *p, *pend;
+    reg_syntax_t syntax;
+{
+  re_char *next = p;
+  boolean next_backslash = *next == '\\';
+  re_char *next_next = p + 1 < pend ? p + 1 : 0;
+
+  return
+       /* Before a subexpression?  */
+       (syntax & RE_NO_BK_PARENS ? *next == ')'
+       : next_backslash && next_next && *next_next == ')')
+       /* Before an alternative?  */
+    || (syntax & RE_NO_BK_VBAR ? *next == '|'
+       : next_backslash && next_next && *next_next == '|');
+}
+
+
+/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
+   false if it's not.  */
+
+static boolean
+group_in_compile_stack (compile_stack, regnum)
+    compile_stack_type compile_stack;
+    regnum_t regnum;
+{
+  int this_element;
+
+  for (this_element = compile_stack.avail - 1;
+       this_element >= 0;
+       this_element--)
+    if (compile_stack.stack[this_element].regnum == regnum)
+      return true;
+
+  return false;
+}
+\f
+/* analyse_first.
+   If fastmap is non-NULL, go through the pattern and fill fastmap
+   with all the possible leading chars.  If fastmap is NULL, don't
+   bother filling it up (obviously) and only return whether the
+   pattern could potentially match the empty string.
+
+   Return 1  if p..pend might match the empty string.
+   Return 0  if p..pend matches at least one char.
+   Return -1 if fastmap was not updated accurately.  */
+
+static int
+analyse_first (p, pend, fastmap, multibyte)
+     re_char *p, *pend;
+     char *fastmap;
+     const int multibyte;
+{
+  int j, k;
+  boolean not;
+
+  /* If all elements for base leading-codes in fastmap is set, this
+     flag is set true. */
+  boolean match_any_multibyte_characters = false;
+
+  assert (p);
+
+  /* The loop below works as follows:
+     - It has a working-list kept in the PATTERN_STACK and which basically
+       starts by only containing a pointer to the first operation.
+     - If the opcode we're looking at is a match against some set of
+       chars, then we add those chars to the fastmap and go on to the
+       next work element from the worklist (done via `break').
+     - If the opcode is a control operator on the other hand, we either
+       ignore it (if it's meaningless at this point, such as `start_memory')
+       or execute it (if it's a jump).  If the jump has several destinations
+       (i.e. `on_failure_jump'), then we push the other destination onto the
+       worklist.
+     We guarantee termination by ignoring backward jumps (more or less),
+     so that `p' is monotonically increasing.  More to the point, we
+     never set `p' (or push) anything `<= p1'.  */
+
+  while (p < pend)
+    {
+      /* `p1' is used as a marker of how far back a `on_failure_jump'
+        can go without being ignored.  It is normally equal to `p'
+        (which prevents any backward `on_failure_jump') except right
+        after a plain `jump', to allow patterns such as:
+           0: jump 10
+           3..9: <body>
+           10: on_failure_jump 3
+        as used for the *? operator.  */
+      re_char *p1 = p;
+
+      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
+       {
+       case succeed:
+         return 1;
+         continue;
+
+       case duplicate:
+         /* If the first character has to match a backreference, that means
+            that the group was empty (since it already matched).  Since this
+            is the only case that interests us here, we can assume that the
+            backreference must match the empty string.  */
+         p++;
+         continue;
+
+
+      /* Following are the cases which match a character.  These end
+        with `break'.  */
+
+       case exactn:
+         if (fastmap)
+           {
+             int c = RE_STRING_CHAR (p + 1, pend - p);
+
+             if (SINGLE_BYTE_CHAR_P (c))
+               fastmap[c] = 1;
+             else
+               fastmap[p[1]] = 1;
+           }
+         break;
+
+
+       case anychar:
+         /* We could put all the chars except for \n (and maybe \0)
+            but we don't bother since it is generally not worth it.  */
+         if (!fastmap) break;
+         return -1;
+
+
+       case charset_not:
+         /* Chars beyond end of bitmap are possible matches.
+            All the single-byte codes can occur in multibyte buffers.
+            So any that are not listed in the charset
+            are possible matches, even in multibyte buffers.  */
+         if (!fastmap) break;
+         for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
+              j < (1 << BYTEWIDTH); j++)
+           fastmap[j] = 1;
+         /* Fallthrough */
+       case charset:
+         if (!fastmap) break;
+         not = (re_opcode_t) *(p - 1) == charset_not;
+         for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
+              j >= 0; j--)
+           if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
+             fastmap[j] = 1;
+
+         if ((not && multibyte)
+             /* Any character set can possibly contain a character
+                which doesn't match the specified set of characters.  */
+             || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
+                 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
+           /* If we can match a character class, we can match
+              any character set.  */
+           {
+           set_fastmap_for_multibyte_characters:
+             if (match_any_multibyte_characters == false)
+               {
+                 for (j = 0x80; j < 0xA0; j++) /* XXX */
+                   if (BASE_LEADING_CODE_P (j))
+                     fastmap[j] = 1;
+                 match_any_multibyte_characters = true;
+               }
+           }
+
+         else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
+                  && match_any_multibyte_characters == false)
+           {
+             /* Set fastmap[I] 1 where I is a base leading code of each
+                multibyte character in the range table. */
+             int c, count;
+
+             /* Make P points the range table.  `+ 2' is to skip flag
+                bits for a character class.  */
+             p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
+
+             /* Extract the number of ranges in range table into COUNT.  */
+             EXTRACT_NUMBER_AND_INCR (count, p);
+             for (; count > 0; count--, p += 2 * 3) /* XXX */
+               {
+                 /* Extract the start of each range.  */
+                 EXTRACT_CHARACTER (c, p);
+                 j = CHAR_CHARSET (c);
+                 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
+               }
+           }
+         break;
+
+       case syntaxspec:
+       case notsyntaxspec:
+         if (!fastmap) break;
+#ifndef emacs
+         not = (re_opcode_t)p[-1] == notsyntaxspec;
+         k = *p++;
+         for (j = 0; j < (1 << BYTEWIDTH); j++)
+           if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
+             fastmap[j] = 1;
+         break;
+#else  /* emacs */
+         /* This match depends on text properties.  These end with
+            aborting optimizations.  */
+         return -1;
+
+       case categoryspec:
+       case notcategoryspec:
+         if (!fastmap) break;
+         not = (re_opcode_t)p[-1] == notcategoryspec;
+         k = *p++;
+         for (j = 0; j < (1 << BYTEWIDTH); j++)
+           if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
+             fastmap[j] = 1;
+
+         if (multibyte)
+           /* Any character set can possibly contain a character
+              whose category is K (or not).  */
+           goto set_fastmap_for_multibyte_characters;
+         break;
+
+      /* All cases after this match the empty string.  These end with
+        `continue'.  */
+
+       case before_dot:
+       case at_dot:
+       case after_dot:
+#endif /* !emacs */
+       case no_op:
+       case begline:
+       case endline:
+       case begbuf:
+       case endbuf:
+       case wordbound:
+       case notwordbound:
+       case wordbeg:
+       case wordend:
+         continue;
+
+
+       case jump:
+         EXTRACT_NUMBER_AND_INCR (j, p);
+         if (j < 0)
+           /* Backward jumps can only go back to code that we've already
+              visited.  `re_compile' should make sure this is true.  */
+           break;
+         p += j;
+         switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
+           {
+           case on_failure_jump:
+           case on_failure_keep_string_jump:
+           case on_failure_jump_loop:
+           case on_failure_jump_nastyloop:
+           case on_failure_jump_smart:
+             p++;
+             break;
+           default:
+             continue;
+           };
+         /* Keep `p1' to allow the `on_failure_jump' we are jumping to
+            to jump back to "just after here".  */
+         /* Fallthrough */
+
+       case on_failure_jump:
+       case on_failure_keep_string_jump:
+       case on_failure_jump_nastyloop:
+       case on_failure_jump_loop:
+       case on_failure_jump_smart:
+         EXTRACT_NUMBER_AND_INCR (j, p);
+         if (p + j <= p1)
+           ; /* Backward jump to be ignored.  */
+         else
+           { /* We have to look down both arms.
+                We first go down the "straight" path so as to minimize
+                stack usage when going through alternatives.  */
+             int r = analyse_first (p, pend, fastmap, multibyte);
+             if (r) return r;
+             p += j;
+           }
+         continue;
+
+
+       case jump_n:
+         /* This code simply does not properly handle forward jump_n.  */
+         DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
+         p += 4;
+         /* jump_n can either jump or fall through.  The (backward) jump
+            case has already been handled, so we only need to look at the
+            fallthrough case.  */
+         continue;
+
+       case succeed_n:
+         /* If N == 0, it should be an on_failure_jump_loop instead.  */
+         DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
+         p += 4;
+         /* We only care about one iteration of the loop, so we don't
+            need to consider the case where this behaves like an
+            on_failure_jump.  */
+         continue;
+
+
+       case set_number_at:
+         p += 4;
+         continue;
+
+
+       case start_memory:
+       case stop_memory:
+         p += 1;
+         continue;
+
+
+       default:
+         abort (); /* We have listed all the cases.  */
+       } /* switch *p++ */
+
+      /* Getting here means we have found the possible starting
+        characters for one path of the pattern -- and that the empty
+        string does not match.  We need not follow this path further.  */
+      return 0;
+    } /* while p */
+
+  /* We reached the end without matching anything.  */
+  return 1;
+
+} /* analyse_first */
+\f
+/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
+   BUFP.  A fastmap records which of the (1 << BYTEWIDTH) possible
+   characters can start a string that matches the pattern.  This fastmap
+   is used by re_search to skip quickly over impossible starting points.
+
+   Character codes above (1 << BYTEWIDTH) are not represented in the
+   fastmap, but the leading codes are represented.  Thus, the fastmap
+   indicates which character sets could start a match.
+
+   The caller must supply the address of a (1 << BYTEWIDTH)-byte data
+   area as BUFP->fastmap.
+
+   We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
+   the pattern buffer.
+
+   Returns 0 if we succeed, -2 if an internal error.   */
+
+int
+re_compile_fastmap (bufp)
+     struct re_pattern_buffer *bufp;
+{
+  char *fastmap = bufp->fastmap;
+  int analysis;
+
+  assert (fastmap && bufp->buffer);
+
+  bzero (fastmap, 1 << BYTEWIDTH);  /* Assume nothing's valid. */
+  bufp->fastmap_accurate = 1;      /* It will be when we're done.  */
+
+  analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
+                           fastmap, RE_MULTIBYTE_P (bufp));
+  bufp->can_be_null = (analysis != 0);
+  return 0;
+} /* re_compile_fastmap */
+\f
+/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
+   ENDS.  Subsequent matches using PATTERN_BUFFER and REGS will use
+   this memory for recording register information.  STARTS and ENDS
+   must be allocated using the malloc library routine, and must each
+   be at least NUM_REGS * sizeof (regoff_t) bytes long.
+
+   If NUM_REGS == 0, then subsequent matches should allocate their own
+   register data.
+
+   Unless this function is called, the first search or match using
+   PATTERN_BUFFER will allocate its own register data, without
+   freeing the old data.  */
+
+void
+re_set_registers (bufp, regs, num_regs, starts, ends)
+    struct re_pattern_buffer *bufp;
+    struct re_registers *regs;
+    unsigned num_regs;
+    regoff_t *starts, *ends;
+{
+  if (num_regs)
+    {
+      bufp->regs_allocated = REGS_REALLOCATE;
+      regs->num_regs = num_regs;
+      regs->start = starts;
+      regs->end = ends;
+    }
+  else
+    {
+      bufp->regs_allocated = REGS_UNALLOCATED;
+      regs->num_regs = 0;
+      regs->start = regs->end = (regoff_t *) 0;
+    }
+}
+WEAK_ALIAS (__re_set_registers, re_set_registers)
+\f
+/* Searching routines. */
+
+/* Like re_search_2, below, but only one string is specified, and
+   doesn't let you say where to stop matching. */
+
+int
+re_search (bufp, string, size, startpos, range, regs)
+     struct re_pattern_buffer *bufp;
+     const char *string;
+     int size, startpos, range;
+     struct re_registers *regs;
+{
+  return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
+                     regs, size);
+}
+WEAK_ALIAS (__re_search, re_search)
+
+/* Head address of virtual concatenation of string.  */
+#define HEAD_ADDR_VSTRING(P)           \
+  (((P) >= size1 ? string2 : string1))
+
+/* End address of virtual concatenation of string.  */
+#define STOP_ADDR_VSTRING(P)                           \
+  (((P) >= size1 ? string2 + size2 : string1 + size1))
+
+/* Address of POS in the concatenation of virtual string. */
+#define POS_ADDR_VSTRING(POS)                                  \
+  (((POS) >= size1 ? string2 - size1 : string1) + (POS))
+
+/* Using the compiled pattern in BUFP->buffer, first tries to match the
+   virtual concatenation of STRING1 and STRING2, starting first at index
+   STARTPOS, then at STARTPOS + 1, and so on.
+
+   STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
+
+   RANGE is how far to scan while trying to match.  RANGE = 0 means try
+   only at STARTPOS; in general, the last start tried is STARTPOS +
+   RANGE.
+
+   In REGS, return the indices of the virtual concatenation of STRING1
+   and STRING2 that matched the entire BUFP->buffer and its contained
+   subexpressions.
+
+   Do not consider matching one past the index STOP in the virtual
+   concatenation of STRING1 and STRING2.
+
+   We return either the position in the strings at which the match was
+   found, -1 if no match, or -2 if error (such as failure
+   stack overflow).  */
+
+int
+re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
+     struct re_pattern_buffer *bufp;
+     const char *str1, *str2;
+     int size1, size2;
+     int startpos;
+     int range;
+     struct re_registers *regs;
+     int stop;
+{
+  int val;
+  re_char *string1 = (re_char*) str1;
+  re_char *string2 = (re_char*) str2;
+  register char *fastmap = bufp->fastmap;
+  register RE_TRANSLATE_TYPE translate = bufp->translate;
+  int total_size = size1 + size2;
+  int endpos = startpos + range;
+  boolean anchored_start;
+
+  /* Nonzero if we have to concern multibyte character.         */
+  const boolean multibyte = RE_MULTIBYTE_P (bufp);
+
+  /* Check for out-of-range STARTPOS.  */
+  if (startpos < 0 || startpos > total_size)
+    return -1;
+
+  /* Fix up RANGE if it might eventually take us outside
+     the virtual concatenation of STRING1 and STRING2.
+     Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE.  */
+  if (endpos < 0)
+    range = 0 - startpos;
+  else if (endpos > total_size)
+    range = total_size - startpos;
+
+  /* If the search isn't to be a backwards one, don't waste time in a
+     search for a pattern anchored at beginning of buffer.  */
+  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
+    {
+      if (startpos > 0)
+       return -1;
+      else
+       range = 0;
+    }
+
+#ifdef emacs
+  /* In a forward search for something that starts with \=.
+     don't keep searching past point.  */
+  if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
+    {
+      range = PT_BYTE - BEGV_BYTE - startpos;
+      if (range < 0)
+       return -1;
+    }
+#endif /* emacs */
+
+  /* Update the fastmap now if not correct already.  */
+  if (fastmap && !bufp->fastmap_accurate)
+    re_compile_fastmap (bufp);
+
+  /* See whether the pattern is anchored.  */
+  anchored_start = (bufp->buffer[0] == begline);
+
+#ifdef emacs
+  gl_state.object = re_match_object;
+  {
+    int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
+
+    SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
+  }
+#endif
+
+  /* Loop through the string, looking for a place to start matching.  */
+  for (;;)
+    {
+      /* If the pattern is anchored,
+        skip quickly past places we cannot match.
+        We don't bother to treat startpos == 0 specially
+        because that case doesn't repeat.  */
+      if (anchored_start && startpos > 0)
+       {
+         if (! ((startpos <= size1 ? string1[startpos - 1]
+                 : string2[startpos - size1 - 1])
+                == '\n'))
+           goto advance;
+       }
+
+      /* If a fastmap is supplied, skip quickly over characters that
+        cannot be the start of a match.  If the pattern can match the
+        null string, however, we don't need to skip characters; we want
+        the first null string.  */
+      if (fastmap && startpos < total_size && !bufp->can_be_null)
+       {
+         register re_char *d;
+         register re_wchar_t buf_ch;
+
+         d = POS_ADDR_VSTRING (startpos);
+
+         if (range > 0)        /* Searching forwards.  */
+           {
+             register int lim = 0;
+             int irange = range;
+
+             if (startpos < size1 && startpos + range >= size1)
+               lim = range - (size1 - startpos);
+
+             /* Written out as an if-else to avoid testing `translate'
+                inside the loop.  */
+             if (RE_TRANSLATE_P (translate))
+               {
+                 if (multibyte)
+                   while (range > lim)
+                     {
+                       int buf_charlen;
+
+                       buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
+                                                        buf_charlen);
+
+                       buf_ch = RE_TRANSLATE (translate, buf_ch);
+                       if (buf_ch >= 0400
+                           || fastmap[buf_ch])
+                         break;
+
+                       range -= buf_charlen;
+                       d += buf_charlen;
+                     }
+                 else
+                   while (range > lim
+                          && !fastmap[RE_TRANSLATE (translate, *d)])
+                     {
+                       d++;
+                       range--;
+                     }
+               }
+             else
+               while (range > lim && !fastmap[*d])
+                 {
+                   d++;
+                   range--;
+                 }
+
+             startpos += irange - range;
+           }
+         else                          /* Searching backwards.  */
+           {
+             int room = (startpos >= size1
+                         ? size2 + size1 - startpos
+                         : size1 - startpos);
+             buf_ch = RE_STRING_CHAR (d, room);
+             buf_ch = TRANSLATE (buf_ch);
+
+             if (! (buf_ch >= 0400
+                    || fastmap[buf_ch]))
+               goto advance;
+           }
+       }
+
+      /* If can't match the null string, and that's all we have left, fail.  */
+      if (range >= 0 && startpos == total_size && fastmap
+         && !bufp->can_be_null)
+       return -1;
+
+      val = re_match_2_internal (bufp, string1, size1, string2, size2,
+                                startpos, regs, stop);
+#ifndef REGEX_MALLOC
+# ifdef C_ALLOCA
+      alloca (0);
+# endif
+#endif
+
+      if (val >= 0)
+       return startpos;
+
+      if (val == -2)
+       return -2;
+
+    advance:
+      if (!range)
+       break;
+      else if (range > 0)
+       {
+         /* Update STARTPOS to the next character boundary.  */
+         if (multibyte)
+           {
+             re_char *p = POS_ADDR_VSTRING (startpos);
+             re_char *pend = STOP_ADDR_VSTRING (startpos);
+             int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
+
+             range -= len;
+             if (range < 0)
+               break;
+             startpos += len;
+           }
+         else
+           {
+             range--;
+             startpos++;
+           }
+       }
+      else
+       {
+         range++;
+         startpos--;
+
+         /* Update STARTPOS to the previous character boundary.  */
+         if (multibyte)
+           {
+             re_char *p = POS_ADDR_VSTRING (startpos) + 1;
+             re_char *p0 = p;
+             re_char *phead = HEAD_ADDR_VSTRING (startpos);
+
+             /* Find the head of multibyte form.  */
+             PREV_CHAR_BOUNDARY (p, phead);
+             range += p0 - 1 - p;
+             if (range > 0)
+               break;
+
+             startpos -= p0 - 1 - p;
+           }
+       }
+    }
+  return -1;
+} /* re_search_2 */
+WEAK_ALIAS (__re_search_2, re_search_2)
+\f
+/* Declarations and macros for re_match_2.  */
+
+static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
+                                   register int len,
+                                   RE_TRANSLATE_TYPE translate,
+                                   const int multibyte));
+
+/* This converts PTR, a pointer into one of the search strings `string1'
+   and `string2' into an offset from the beginning of that string.  */
+#define POINTER_TO_OFFSET(ptr)                 \
+  (FIRST_STRING_P (ptr)                                \
+   ? ((regoff_t) ((ptr) - string1))            \
+   : ((regoff_t) ((ptr) - string2 + size1)))
+
+/* Call before fetching a character with *d.  This switches over to
+   string2 if necessary.
+   Check re_match_2_internal for a discussion of why end_match_2 might
+   not be within string2 (but be equal to end_match_1 instead).  */
+#define PREFETCH()                                                     \
+  while (d == dend)                                                    \
+    {                                                                  \
+      /* End of string2 => fail.  */                                   \
+      if (dend == end_match_2)                                         \
+       goto fail;                                                      \
+      /* End of string1 => advance to string2.  */                     \
+      d = string2;                                                     \
+      dend = end_match_2;                                              \
+    }
+
+/* Call before fetching a char with *d if you already checked other limits.
+   This is meant for use in lookahead operations like wordend, etc..
+   where we might need to look at parts of the string that might be
+   outside of the LIMITs (i.e past `stop').  */
+#define PREFETCH_NOLIMIT()                                             \
+  if (d == end1)                                                       \
+     {                                                                 \
+       d = string2;                                                    \
+       dend = end_match_2;                                             \
+     }                                                                 \
+
+/* Test if at very beginning or at very end of the virtual concatenation
+   of `string1' and `string2'. If only one string, it's `string2'.  */
+#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
+#define AT_STRINGS_END(d) ((d) == end2)
+
+
+/* Test if D points to a character which is word-constituent.  We have
+   two special cases to check for: if past the end of string1, look at
+   the first character in string2; and if before the beginning of
+   string2, look at the last character in string1.  */
+#define WORDCHAR_P(d)                                                  \
+  (SYNTAX ((d) == end1 ? *string2                                      \
+          : (d) == string2 - 1 ? *(end1 - 1) : *(d))                   \
+   == Sword)
+
+/* Disabled due to a compiler bug -- see comment at case wordbound */
+
+/* The comment at case wordbound is following one, but we don't use
+   AT_WORD_BOUNDARY anymore to support multibyte form.
+
+   The DEC Alpha C compiler 3.x generates incorrect code for the
+   test         WORDCHAR_P (d - 1) != WORDCHAR_P (d)  in the expansion of
+   AT_WORD_BOUNDARY, so this code is disabled. Expanding the
+   macro and introducing temporary variables works around the bug.  */
+
+#if 0
+/* Test if the character before D and the one at D differ with respect
+   to being word-constituent.  */
+#define AT_WORD_BOUNDARY(d)                                            \
+  (AT_STRINGS_BEG (d) || AT_STRINGS_END (d)                            \
+   || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
+#endif
+
+/* Free everything we malloc.  */
+#ifdef MATCH_MAY_ALLOCATE
+# define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
+# define FREE_VARIABLES()                                              \
+  do {                                                                 \
+    REGEX_FREE_STACK (fail_stack.stack);                               \
+    FREE_VAR (regstart);                                               \
+    FREE_VAR (regend);                                                 \
+    FREE_VAR (best_regstart);                                          \
+    FREE_VAR (best_regend);                                            \
+  } while (0)
+#else
+# define FREE_VARIABLES() ((void)0) /* Do nothing!  But inhibit gcc warning.  */
+#endif /* not MATCH_MAY_ALLOCATE */
+
+\f
+/* Optimization routines.  */
+
+/* If the operation is a match against one or more chars,
+   return a pointer to the next operation, else return NULL.  */
+static re_char *
+skip_one_char (p)
+     re_char *p;
+{
+  switch (SWITCH_ENUM_CAST (*p++))
+    {
+    case anychar:
+      break;
+
+    case exactn:
+      p += *p + 1;
+      break;
+
+    case charset_not:
+    case charset:
+      if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
+       {
+         int mcnt;
+         p = CHARSET_RANGE_TABLE (p - 1);
+         EXTRACT_NUMBER_AND_INCR (mcnt, p);
+         p = CHARSET_RANGE_TABLE_END (p, mcnt);
+       }
+      else
+       p += 1 + CHARSET_BITMAP_SIZE (p - 1);
+      break;
+
+    case syntaxspec:
+    case notsyntaxspec:
+#ifdef emacs
+    case categoryspec:
+    case notcategoryspec:
+#endif /* emacs */
+      p++;
+      break;
+
+    default:
+      p = NULL;
+    }
+  return p;
+}
+
+
+/* Jump over non-matching operations.  */
+static unsigned char *
+skip_noops (p, pend)
+     unsigned char *p, *pend;
+{
+  int mcnt;
+  while (p < pend)
+    {
+      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
+       {
+       case start_memory:
+       case stop_memory:
+         p += 2; break;
+       case no_op:
+         p += 1; break;
+       case jump:
+         p += 1;
+         EXTRACT_NUMBER_AND_INCR (mcnt, p);
+         p += mcnt;
+         break;
+       default:
+         return p;
+       }
+    }
+  assert (p == pend);
+  return p;
+}
+
+/* Non-zero if "p1 matches something" implies "p2 fails".  */
+static int
+mutually_exclusive_p (bufp, p1, p2)
+     struct re_pattern_buffer *bufp;
+     unsigned char *p1, *p2;
+{
+  re_opcode_t op2;
+  const boolean multibyte = RE_MULTIBYTE_P (bufp);
+  unsigned char *pend = bufp->buffer + bufp->used;
+
+  assert (p1 >= bufp->buffer && p1 < pend
+         && p2 >= bufp->buffer && p2 <= pend);
+
+  /* Skip over open/close-group commands.
+     If what follows this loop is a ...+ construct,
+     look at what begins its body, since we will have to
+     match at least one of that.  */
+  p2 = skip_noops (p2, pend);
+  /* The same skip can be done for p1, except that this function
+     is only used in the case where p1 is a simple match operator.  */
+  /* p1 = skip_noops (p1, pend); */
+
+  assert (p1 >= bufp->buffer && p1 < pend
+         && p2 >= bufp->buffer && p2 <= pend);
+
+  op2 = p2 == pend ? succeed : *p2;
+
+  switch (SWITCH_ENUM_CAST (op2))
+    {
+    case succeed:
+    case endbuf:
+      /* If we're at the end of the pattern, we can change.  */
+      if (skip_one_char (p1))
+       {
+         DEBUG_PRINT1 ("  End of pattern: fast loop.\n");
+         return 1;
+       }
+      break;
+
+    case endline:
+    case exactn:
+      {
+       register re_wchar_t c
+         = (re_opcode_t) *p2 == endline ? '\n'
+         : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
+
+       if ((re_opcode_t) *p1 == exactn)
+         {
+           if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
+             {
+               DEBUG_PRINT3 ("  '%c' != '%c' => fast loop.\n", c, p1[2]);
+               return 1;
+             }
+         }
+
+       else if ((re_opcode_t) *p1 == charset
+                || (re_opcode_t) *p1 == charset_not)
+         {
+           int not = (re_opcode_t) *p1 == charset_not;
+
+           /* Test if C is listed in charset (or charset_not)
+              at `p1'.  */
+           if (SINGLE_BYTE_CHAR_P (c))
+             {
+               if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
+                   && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+                 not = !not;
+             }
+           else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
+             CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
+
+           /* `not' is equal to 1 if c would match, which means
+              that we can't change to pop_failure_jump.  */
+           if (!not)
+             {
+               DEBUG_PRINT1 ("  No match => fast loop.\n");
+               return 1;
+             }
+         }
+       else if ((re_opcode_t) *p1 == anychar
+                && c == '\n')
+         {
+           DEBUG_PRINT1 ("   . != \\n => fast loop.\n");
+           return 1;
+         }
+      }
+      break;
+
+    case charset:
+      {
+       if ((re_opcode_t) *p1 == exactn)
+         /* Reuse the code above.  */
+         return mutually_exclusive_p (bufp, p2, p1);
+
+      /* It is hard to list up all the character in charset
+        P2 if it includes multibyte character.  Give up in
+        such case.  */
+      else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
+       {
+         /* Now, we are sure that P2 has no range table.
+            So, for the size of bitmap in P2, `p2[1]' is
+            enough.    But P1 may have range table, so the
+            size of bitmap table of P1 is extracted by
+            using macro `CHARSET_BITMAP_SIZE'.
+
+            Since we know that all the character listed in
+            P2 is ASCII, it is enough to test only bitmap
+            table of P1.  */
+
+         if ((re_opcode_t) *p1 == charset)
+           {
+             int idx;
+             /* We win if the charset inside the loop
+                has no overlap with the one after the loop.  */
+             for (idx = 0;
+                  (idx < (int) p2[1]
+                   && idx < CHARSET_BITMAP_SIZE (p1));
+                  idx++)
+               if ((p2[2 + idx] & p1[2 + idx]) != 0)
+                 break;
+
+             if (idx == p2[1]
+                 || idx == CHARSET_BITMAP_SIZE (p1))
+               {
+                 DEBUG_PRINT1 ("        No match => fast loop.\n");
+                 return 1;
+               }
+           }
+         else if ((re_opcode_t) *p1 == charset_not)
+           {
+             int idx;
+             /* We win if the charset_not inside the loop lists
+                every character listed in the charset after.    */
+             for (idx = 0; idx < (int) p2[1]; idx++)
+               if (! (p2[2 + idx] == 0
+                      || (idx < CHARSET_BITMAP_SIZE (p1)
+                          && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
+                 break;
+
+               if (idx == p2[1])
+                 {
+                   DEBUG_PRINT1 ("      No match => fast loop.\n");
+                   return 1;
+                 }
+             }
+         }
+      }
+      break;
+
+    case charset_not:
+      switch (SWITCH_ENUM_CAST (*p1))
+       {
+       case exactn:
+       case charset:
+         /* Reuse the code above.  */
+         return mutually_exclusive_p (bufp, p2, p1);
+       case charset_not:
+         /* When we have two charset_not, it's very unlikely that
+            they don't overlap.  The union of the two sets of excluded
+            chars should cover all possible chars, which, as a matter of
+            fact, is virtually impossible in multibyte buffers.  */
+         break;
+       }
+      break;
+
+    case wordend:
+    case notsyntaxspec:
+      return ((re_opcode_t) *p1 == syntaxspec
+             && p1[1] == (op2 == wordend ? Sword : p2[1]));
+
+    case wordbeg:
+    case syntaxspec:
+      return ((re_opcode_t) *p1 == notsyntaxspec
+             && p1[1] == (op2 == wordend ? Sword : p2[1]));
+
+    case wordbound:
+      return (((re_opcode_t) *p1 == notsyntaxspec
+              || (re_opcode_t) *p1 == syntaxspec)
+             && p1[1] == Sword);
+
+#ifdef emacs
+    case categoryspec:
+      return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
+    case notcategoryspec:
+      return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
+#endif /* emacs */
+
+    default:
+      ;
+    }
+
+  /* Safe default.  */
+  return 0;
+}
+
+\f
+/* Matching routines.  */
+
+#ifndef emacs  /* Emacs never uses this.  */
+/* re_match is like re_match_2 except it takes only a single string.  */
+
+int
+re_match (bufp, string, size, pos, regs)
+     struct re_pattern_buffer *bufp;
+     const char *string;
+     int size, pos;
+     struct re_registers *regs;
+{
+  int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
+                                   pos, regs, size);
+# if defined C_ALLOCA && !defined REGEX_MALLOC
+  alloca (0);
+# endif
+  return result;
+}
+WEAK_ALIAS (__re_match, re_match)
+#endif /* not emacs */
+
+#ifdef emacs
+/* In Emacs, this is the string or buffer in which we
+   are matching.  It is used for looking up syntax properties. */
+Lisp_Object re_match_object;
+#endif
+
+/* re_match_2 matches the compiled pattern in BUFP against the
+   the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
+   and SIZE2, respectively).  We start matching at POS, and stop
+   matching at STOP.
+
+   If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
+   store offsets for the substring each group matched in REGS. See the
+   documentation for exactly how many groups we fill.
+
+   We return -1 if no match, -2 if an internal error (such as the
+   failure stack overflowing). Otherwise, we return the length of the
+   matched substring.  */
+
+int
+re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
+     struct re_pattern_buffer *bufp;
+     const char *string1, *string2;
+     int size1, size2;
+     int pos;
+     struct re_registers *regs;
+     int stop;
+{
+  int result;
+
+#ifdef emacs
+  int charpos;
+  gl_state.object = re_match_object;
+  charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
+  SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
+#endif
+
+  result = re_match_2_internal (bufp, (re_char*) string1, size1,
+                               (re_char*) string2, size2,
+                               pos, regs, stop);
+#if defined C_ALLOCA && !defined REGEX_MALLOC
+  alloca (0);
+#endif
+  return result;
+}
+WEAK_ALIAS (__re_match_2, re_match_2)
+
+/* This is a separate function so that we can force an alloca cleanup
+   afterwards. */
+static int
+re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
+     struct re_pattern_buffer *bufp;
+     re_char *string1, *string2;
+     int size1, size2;
+     int pos;
+     struct re_registers *regs;
+     int stop;
+{
+  /* General temporaries.  */
+  int mcnt;
+  size_t reg;
+  boolean not;
+
+  /* Just past the end of the corresponding string.  */
+  re_char *end1, *end2;
+
+  /* Pointers into string1 and string2, just past the last characters in
+     each to consider matching.         */
+  re_char *end_match_1, *end_match_2;
+
+  /* Where we are in the data, and the end of the current string.  */
+  re_char *d, *dend;
+
+  /* Used sometimes to remember where we were before starting matching
+     an operator so that we can go back in case of failure.  This "atomic"
+     behavior of matching opcodes is indispensable to the correctness
+     of the on_failure_keep_string_jump optimization.  */
+  re_char *dfail;
+
+  /* Where we are in the pattern, and the end of the pattern.  */
+  re_char *p = bufp->buffer;
+  re_char *pend = p + bufp->used;
+
+  /* We use this to map every character in the string. */
+  RE_TRANSLATE_TYPE translate = bufp->translate;
+
+  /* Nonzero if we have to concern multibyte character.         */
+  const boolean multibyte = RE_MULTIBYTE_P (bufp);
+
+  /* Failure point stack.  Each place that can handle a failure further
+     down the line pushes a failure point on this stack.  It consists of
+     regstart, and regend for all registers corresponding to
+     the subexpressions we're currently inside, plus the number of such
+     registers, and, finally, two char *'s.  The first char * is where
+     to resume scanning the pattern; the second one is where to resume
+     scanning the strings.     */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global.         */
+  fail_stack_type fail_stack;
+#endif
+#ifdef DEBUG
+  unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
+#endif
+
+#if defined REL_ALLOC && defined REGEX_MALLOC
+  /* This holds the pointer to the failure stack, when
+     it is allocated relocatably.  */
+  fail_stack_elt_t *failure_stack_ptr;
+#endif
+
+  /* We fill all the registers internally, independent of what we
+     return, for use in backreferences.         The number here includes
+     an element for register zero.  */
+  size_t num_regs = bufp->re_nsub + 1;
+
+  /* Information on the contents of registers. These are pointers into
+     the input strings; they record just what was matched (on this
+     attempt) by a subexpression part of the pattern, that is, the
+     regnum-th regstart pointer points to where in the pattern we began
+     matching and the regnum-th regend points to right after where we
+     stopped matching the regnum-th subexpression.  (The zeroth register
+     keeps track of what the whole pattern matches.)  */
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
+  re_char **regstart, **regend;
+#endif
+
+  /* The following record the register info as found in the above
+     variables when we find a match better than any we've seen before.
+     This happens as we backtrack through the failure points, which in
+     turn happens only if we have not yet matched the entire string. */
+  unsigned best_regs_set = false;
+#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global.  */
+  re_char **best_regstart, **best_regend;
+#endif
+
+  /* Logically, this is `best_regend[0]'.  But we don't want to have to
+     allocate space for that if we're not allocating space for anything
+     else (see below). Also, we never need info about register 0 for
+     any of the other register vectors, and it seems rather a kludge to
+     treat `best_regend' differently than the rest.  So we keep track of
+     the end of the best match so far in a separate variable.  We
+     initialize this to NULL so that when we backtrack the first time
+     and need to test it, it's not garbage.  */
+  re_char *match_end = NULL;
+
+#ifdef DEBUG
+  /* Counts the total number of registers pushed.  */
+  unsigned num_regs_pushed = 0;
+#endif
+
+  DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
+
+  INIT_FAIL_STACK ();
+
+#ifdef MATCH_MAY_ALLOCATE
+  /* Do not bother to initialize all the register variables if there are
+     no groups in the pattern, as it takes a fair amount of time.  If
+     there are groups, we include space for register 0 (the whole
+     pattern), even though we never use it, since it simplifies the
+     array indexing.  We should fix this.  */
+  if (bufp->re_nsub)
+    {
+      regstart = REGEX_TALLOC (num_regs, re_char *);
+      regend = REGEX_TALLOC (num_regs, re_char *);
+      best_regstart = REGEX_TALLOC (num_regs, re_char *);
+      best_regend = REGEX_TALLOC (num_regs, re_char *);
+
+      if (!(regstart && regend && best_regstart && best_regend))
+       {
+         FREE_VARIABLES ();
+         return -2;
+       }
+    }
+  else
+    {
+      /* We must initialize all our variables to NULL, so that
+        `FREE_VARIABLES' doesn't try to free them.  */
+      regstart = regend = best_regstart = best_regend = NULL;
+    }
+#endif /* MATCH_MAY_ALLOCATE */
+
+  /* The starting position is bogus.  */
+  if (pos < 0 || pos > size1 + size2)
+    {
+      FREE_VARIABLES ();
+      return -1;
+    }
+
+  /* Initialize subexpression text positions to -1 to mark ones that no
+     start_memory/stop_memory has been seen for. Also initialize the
+     register information struct.  */
+  for (reg = 1; reg < num_regs; reg++)
+    regstart[reg] = regend[reg] = NULL;
+
+  /* We move `string1' into `string2' if the latter's empty -- but not if
+     `string1' is null.         */
+  if (size2 == 0 && string1 != NULL)
+    {
+      string2 = string1;
+      size2 = size1;
+      string1 = 0;
+      size1 = 0;
+    }
+  end1 = string1 + size1;
+  end2 = string2 + size2;
+
+  /* `p' scans through the pattern as `d' scans through the data.
+     `dend' is the end of the input string that `d' points within.  `d'
+     is advanced into the following input string whenever necessary, but
+     this happens before fetching; therefore, at the beginning of the
+     loop, `d' can be pointing at the end of a string, but it cannot
+     equal `string2'.  */
+  if (pos >= size1)
+    {
+      /* Only match within string2.  */
+      d = string2 + pos - size1;
+      dend = end_match_2 = string2 + stop - size1;
+      end_match_1 = end1;      /* Just to give it a value.  */
+    }
+  else
+    {
+      if (stop < size1)
+       {
+         /* Only match within string1.  */
+         end_match_1 = string1 + stop;
+         /* BEWARE!
+            When we reach end_match_1, PREFETCH normally switches to string2.
+            But in the present case, this means that just doing a PREFETCH
+            makes us jump from `stop' to `gap' within the string.
+            What we really want here is for the search to stop as
+            soon as we hit end_match_1.  That's why we set end_match_2
+            to end_match_1 (since PREFETCH fails as soon as we hit
+            end_match_2).  */
+         end_match_2 = end_match_1;
+       }
+      else
+       { /* It's important to use this code when stop == size so that
+            moving `d' from end1 to string2 will not prevent the d == dend
+            check from catching the end of string.  */
+         end_match_1 = end1;
+         end_match_2 = string2 + stop - size1;
+       }
+      d = string1 + pos;
+      dend = end_match_1;
+    }
+
+  DEBUG_PRINT1 ("The compiled pattern is: ");
+  DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
+  DEBUG_PRINT1 ("The string to match is: `");
+  DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
+  DEBUG_PRINT1 ("'\n");
+
+  /* This loops over pattern commands. It exits by returning from the
+     function if the match is complete, or it drops through if the match
+     fails at this starting point in the input data.  */
+  for (;;)
+    {
+      DEBUG_PRINT2 ("\n%p: ", p);
+
+      if (p == pend)
+       { /* End of pattern means we might have succeeded.  */
+         DEBUG_PRINT1 ("end of pattern ... ");
+
+         /* If we haven't matched the entire string, and we want the
+            longest match, try backtracking.  */
+         if (d != end_match_2)
+           {
+             /* 1 if this match ends in the same string (string1 or string2)
+                as the best previous match.  */
+             boolean same_str_p = (FIRST_STRING_P (match_end)
+                                   == FIRST_STRING_P (d));
+             /* 1 if this match is the best seen so far.  */
+             boolean best_match_p;
+
+             /* AIX compiler got confused when this was combined
+                with the previous declaration.  */
+             if (same_str_p)
+               best_match_p = d > match_end;
+             else
+               best_match_p = !FIRST_STRING_P (d);
+
+             DEBUG_PRINT1 ("backtracking.\n");
+
+             if (!FAIL_STACK_EMPTY ())
+               { /* More failure points to try.  */
+
+                 /* If exceeds best match so far, save it.  */
+                 if (!best_regs_set || best_match_p)
+                   {
+                     best_regs_set = true;
+                     match_end = d;
+
+                     DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
+
+                     for (reg = 1; reg < num_regs; reg++)
+                       {
+                         best_regstart[reg] = regstart[reg];
+                         best_regend[reg] = regend[reg];
+                       }
+                   }
+                 goto fail;
+               }
+
+             /* If no failure points, don't restore garbage.  And if
+                last match is real best match, don't restore second
+                best one. */
+             else if (best_regs_set && !best_match_p)
+               {
+               restore_best_regs:
+                 /* Restore best match.  It may happen that `dend ==
+                    end_match_1' while the restored d is in string2.
+                    For example, the pattern `x.*y.*z' against the
+                    strings `x-' and `y-z-', if the two strings are
+                    not consecutive in memory.  */
+                 DEBUG_PRINT1 ("Restoring best registers.\n");
+
+                 d = match_end;
+                 dend = ((d >= string1 && d <= end1)
+                          ? end_match_1 : end_match_2);
+
+                 for (reg = 1; reg < num_regs; reg++)
+                   {
+                     regstart[reg] = best_regstart[reg];
+                     regend[reg] = best_regend[reg];
+                   }
+               }
+           } /* d != end_match_2 */
+
+       succeed_label:
+         DEBUG_PRINT1 ("Accepting match.\n");
+
+         /* If caller wants register contents data back, do it.  */
+         if (regs && !bufp->no_sub)
+           {
+             /* Have the register data arrays been allocated?  */
+             if (bufp->regs_allocated == REGS_UNALLOCATED)
+               { /* No.  So allocate them with malloc.  We need one
+                    extra element beyond `num_regs' for the `-1' marker
+                    GNU code uses.  */
+                 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
+                 regs->start = TALLOC (regs->num_regs, regoff_t);
+                 regs->end = TALLOC (regs->num_regs, regoff_t);
+                 if (regs->start == NULL || regs->end == NULL)
+                   {
+                     FREE_VARIABLES ();
+                     return -2;
+                   }
+                 bufp->regs_allocated = REGS_REALLOCATE;
+               }
+             else if (bufp->regs_allocated == REGS_REALLOCATE)
+               { /* Yes.  If we need more elements than were already
+                    allocated, reallocate them.  If we need fewer, just
+                    leave it alone.  */
+                 if (regs->num_regs < num_regs + 1)
+                   {
+                     regs->num_regs = num_regs + 1;
+                     RETALLOC (regs->start, regs->num_regs, regoff_t);
+                     RETALLOC (regs->end, regs->num_regs, regoff_t);
+                     if (regs->start == NULL || regs->end == NULL)
+                       {
+                         FREE_VARIABLES ();
+                         return -2;
+                       }
+                   }
+               }
+             else
+               {
+                 /* These braces fend off a "empty body in an else-statement"
+                    warning under GCC when assert expands to nothing.  */
+                 assert (bufp->regs_allocated == REGS_FIXED);
+               }
+
+             /* Convert the pointer data in `regstart' and `regend' to
+                indices.  Register zero has to be set differently,
+                since we haven't kept track of any info for it.  */
+             if (regs->num_regs > 0)
+               {
+                 regs->start[0] = pos;
+                 regs->end[0] = POINTER_TO_OFFSET (d);
+               }
+
+             /* Go through the first `min (num_regs, regs->num_regs)'
+                registers, since that is all we initialized.  */
+             for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
+               {
+                 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
+                   regs->start[reg] = regs->end[reg] = -1;
+                 else
+                   {
+                     regs->start[reg]
+                       = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
+                     regs->end[reg]
+                       = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
+                   }
+               }
+
+             /* If the regs structure we return has more elements than
+                were in the pattern, set the extra elements to -1.  If
+                we (re)allocated the registers, this is the case,
+                because we always allocate enough to have at least one
+                -1 at the end.  */
+             for (reg = num_regs; reg < regs->num_regs; reg++)
+               regs->start[reg] = regs->end[reg] = -1;
+           } /* regs && !bufp->no_sub */
+
+         DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
+                       nfailure_points_pushed, nfailure_points_popped,
+                       nfailure_points_pushed - nfailure_points_popped);
+         DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
+
+         mcnt = POINTER_TO_OFFSET (d) - pos;
+
+         DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
+
+         FREE_VARIABLES ();
+         return mcnt;
+       }
+
+      /* Otherwise match next pattern command. */
+      switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
+       {
+       /* Ignore these.  Used to ignore the n of succeed_n's which
+          currently have n == 0.  */
+       case no_op:
+         DEBUG_PRINT1 ("EXECUTING no_op.\n");
+         break;
+
+       case succeed:
+         DEBUG_PRINT1 ("EXECUTING succeed.\n");
+         goto succeed_label;
+
+       /* Match the next n pattern characters exactly.  The following
+          byte in the pattern defines n, and the n bytes after that
+          are the characters to match.  */
+       case exactn:
+         mcnt = *p++;
+         DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
+
+         /* Remember the start point to rollback upon failure.  */
+         dfail = d;
+
+         /* This is written out as an if-else so we don't waste time
+            testing `translate' inside the loop.  */
+         if (RE_TRANSLATE_P (translate))
+           {
+             if (multibyte)
+               do
+                 {
+                   int pat_charlen, buf_charlen;
+                   unsigned int pat_ch, buf_ch;
+
+                   PREFETCH ();
+                   pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
+                   buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
+
+                   if (RE_TRANSLATE (translate, buf_ch)
+                       != pat_ch)
+                     {
+                       d = dfail;
+                       goto fail;
+                     }
+
+                   p += pat_charlen;
+                   d += buf_charlen;
+                   mcnt -= pat_charlen;
+                 }
+               while (mcnt > 0);
+             else
+               do
+                 {
+                   PREFETCH ();
+                   if (RE_TRANSLATE (translate, *d) != *p++)
+                     {
+                       d = dfail;
+                       goto fail;
+                     }
+                   d++;
+                 }
+               while (--mcnt);
+           }
+         else
+           {
+             do
+               {
+                 PREFETCH ();
+                 if (*d++ != *p++)
+                   {
+                     d = dfail;
+                     goto fail;
+                   }
+               }
+             while (--mcnt);
+           }
+         break;
+
+
+       /* Match any character except possibly a newline or a null.  */
+       case anychar:
+         {
+           int buf_charlen;
+           re_wchar_t buf_ch;
+
+           DEBUG_PRINT1 ("EXECUTING anychar.\n");
+
+           PREFETCH ();
+           buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
+           buf_ch = TRANSLATE (buf_ch);
+
+           if ((!(bufp->syntax & RE_DOT_NEWLINE)
+                && buf_ch == '\n')
+               || ((bufp->syntax & RE_DOT_NOT_NULL)
+                   && buf_ch == '\000'))
+             goto fail;
+
+           DEBUG_PRINT2 ("  Matched `%d'.\n", *d);
+           d += buf_charlen;
+         }
+         break;
+
+
+       case charset:
+       case charset_not:
+         {
+           register unsigned int c;
+           boolean not = (re_opcode_t) *(p - 1) == charset_not;
+           int len;
+
+           /* Start of actual range_table, or end of bitmap if there is no
+              range table.  */
+           re_char *range_table;
+
+           /* Nonzero if there is a range table.  */
+           int range_table_exists;
+
+           /* Number of ranges of range table.  This is not included
+              in the initial byte-length of the command.  */
+           int count = 0;
+
+           DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
+
+           range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
+
+           if (range_table_exists)
+             {
+               range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap.  */
+               EXTRACT_NUMBER_AND_INCR (count, range_table);
+             }
+
+           PREFETCH ();
+           c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
+           c = TRANSLATE (c); /* The character to match.  */
+
+           if (SINGLE_BYTE_CHAR_P (c))
+             {                 /* Lookup bitmap.  */
+               /* Cast to `unsigned' instead of `unsigned char' in
+                  case the bit list is a full 32 bytes long.  */
+               if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
+                   && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
+                 not = !not;
+             }
+#ifdef emacs
+           else if (range_table_exists)
+             {
+               int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
+
+               if (  (class_bits & BIT_LOWER && ISLOWER (c))
+                   | (class_bits & BIT_MULTIBYTE)
+                   | (class_bits & BIT_PUNCT && ISPUNCT (c))
+                   | (class_bits & BIT_SPACE && ISSPACE (c))
+                   | (class_bits & BIT_UPPER && ISUPPER (c))
+                   | (class_bits & BIT_WORD  && ISWORD (c)))
+                 not = !not;
+               else
+                 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
+             }
+#endif /* emacs */
+
+           if (range_table_exists)
+             p = CHARSET_RANGE_TABLE_END (range_table, count);
+           else
+             p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
+
+           if (!not) goto fail;
+
+           d += len;
+           break;
+         }
+
+
+       /* The beginning of a group is represented by start_memory.
+          The argument is the register number.  The text
+          matched within the group is recorded (in the internal
+          registers data structure) under the register number.  */
+       case start_memory:
+         DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
+
+         /* In case we need to undo this operation (via backtracking).  */
+         PUSH_FAILURE_REG ((unsigned int)*p);
+
+         regstart[*p] = d;
+         regend[*p] = NULL;    /* probably unnecessary.  -sm  */
+         DEBUG_PRINT2 ("  regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
+
+         /* Move past the register number and inner group count.  */
+         p += 1;
+         break;
+
+
+       /* The stop_memory opcode represents the end of a group.  Its
+          argument is the same as start_memory's: the register number.  */
+       case stop_memory:
+         DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
+
+         assert (!REG_UNSET (regstart[*p]));
+         /* Strictly speaking, there should be code such as:
+
+               assert (REG_UNSET (regend[*p]));
+               PUSH_FAILURE_REGSTOP ((unsigned int)*p);
+
+            But the only info to be pushed is regend[*p] and it is known to
+            be UNSET, so there really isn't anything to push.
+            Not pushing anything, on the other hand deprives us from the
+            guarantee that regend[*p] is UNSET since undoing this operation
+            will not reset its value properly.  This is not important since
+            the value will only be read on the next start_memory or at
+            the very end and both events can only happen if this stop_memory
+            is *not* undone.  */
+
+         regend[*p] = d;
+         DEBUG_PRINT2 ("      regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
+
+         /* Move past the register number and the inner group count.  */
+         p += 1;
+         break;
+
+
+       /* \<digit> has been turned into a `duplicate' command which is
+          followed by the numeric value of <digit> as the register number.  */
+       case duplicate:
+         {
+           register re_char *d2, *dend2;
+           int regno = *p++;   /* Get which register to match against.  */
+           DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
+
+           /* Can't back reference a group which we've never matched.  */
+           if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
+             goto fail;
+
+           /* Where in input to try to start matching.  */
+           d2 = regstart[regno];
+
+           /* Remember the start point to rollback upon failure.  */
+           dfail = d;
+
+           /* Where to stop matching; if both the place to start and
+              the place to stop matching are in the same string, then
+              set to the place to stop, otherwise, for now have to use
+              the end of the first string.  */
+
+           dend2 = ((FIRST_STRING_P (regstart[regno])
+                     == FIRST_STRING_P (regend[regno]))
+                    ? regend[regno] : end_match_1);
+           for (;;)
+             {
+               /* If necessary, advance to next segment in register
+                  contents.  */
+               while (d2 == dend2)
+                 {
+                   if (dend2 == end_match_2) break;
+                   if (dend2 == regend[regno]) break;
+
+                   /* End of string1 => advance to string2. */
+                   d2 = string2;
+                   dend2 = regend[regno];
+                 }
+               /* At end of register contents => success */
+               if (d2 == dend2) break;
+
+               /* If necessary, advance to next segment in data.  */
+               PREFETCH ();
+
+               /* How many characters left in this segment to match.  */
+               mcnt = dend - d;
+
+               /* Want how many consecutive characters we can match in
+                  one shot, so, if necessary, adjust the count.  */
+               if (mcnt > dend2 - d2)
+                 mcnt = dend2 - d2;
+
+               /* Compare that many; failure if mismatch, else move
+                  past them.  */
+               if (RE_TRANSLATE_P (translate)
+                   ? bcmp_translate (d, d2, mcnt, translate, multibyte)
+                   : memcmp (d, d2, mcnt))
+                 {
+                   d = dfail;
+                   goto fail;
+                 }
+               d += mcnt, d2 += mcnt;
+             }
+         }
+         break;
+
+
+       /* begline matches the empty string at the beginning of the string
+          (unless `not_bol' is set in `bufp'), and after newlines.  */
+       case begline:
+         DEBUG_PRINT1 ("EXECUTING begline.\n");
+
+         if (AT_STRINGS_BEG (d))
+           {
+             if (!bufp->not_bol) break;
+           }
+         else
+           {
+             unsigned char c;
+             GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
+             if (c == '\n')
+               break;
+           }
+         /* In all other cases, we fail.  */
+         goto fail;
+
+
+       /* endline is the dual of begline.  */
+       case endline:
+         DEBUG_PRINT1 ("EXECUTING endline.\n");
+
+         if (AT_STRINGS_END (d))
+           {
+             if (!bufp->not_eol) break;
+           }
+         else
+           {
+             PREFETCH_NOLIMIT ();
+             if (*d == '\n')
+               break;
+           }
+         goto fail;
+
+
+       /* Match at the very beginning of the data.  */
+       case begbuf:
+         DEBUG_PRINT1 ("EXECUTING begbuf.\n");
+         if (AT_STRINGS_BEG (d))
+           break;
+         goto fail;
+
+
+       /* Match at the very end of the data.  */
+       case endbuf:
+         DEBUG_PRINT1 ("EXECUTING endbuf.\n");
+         if (AT_STRINGS_END (d))
+           break;
+         goto fail;
+
+
+       /* on_failure_keep_string_jump is used to optimize `.*\n'.  It
+          pushes NULL as the value for the string on the stack.  Then
+          `POP_FAILURE_POINT' will keep the current value for the
+          string, instead of restoring it.  To see why, consider
+          matching `foo\nbar' against `.*\n'.  The .* matches the foo;
+          then the . fails against the \n.  But the next thing we want
+          to do is match the \n against the \n; if we restored the
+          string value, we would be back at the foo.
+
+          Because this is used only in specific cases, we don't need to
+          check all the things that `on_failure_jump' does, to make
+          sure the right things get saved on the stack.  Hence we don't
+          share its code.  The only reason to push anything on the
+          stack at all is that otherwise we would have to change
+          `anychar's code to do something besides goto fail in this
+          case; that seems worse than this.  */
+       case on_failure_keep_string_jump:
+         EXTRACT_NUMBER_AND_INCR (mcnt, p);
+         DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
+                       mcnt, p + mcnt);
+
+         PUSH_FAILURE_POINT (p - 3, NULL);
+         break;
+
+         /* A nasty loop is introduced by the non-greedy *? and +?.
+            With such loops, the stack only ever contains one failure point
+            at a time, so that a plain on_failure_jump_loop kind of
+            cycle detection cannot work.  Worse yet, such a detection
+            can not only fail to detect a cycle, but it can also wrongly
+            detect a cycle (between different instantiations of the same
+            loop).
+            So the method used for those nasty loops is a little different:
+            We use a special cycle-detection-stack-frame which is pushed
+            when the on_failure_jump_nastyloop failure-point is *popped*.
+            This special frame thus marks the beginning of one iteration
+            through the loop and we can hence easily check right here
+            whether something matched between the beginning and the end of
+            the loop.  */
+       case on_failure_jump_nastyloop:
+         EXTRACT_NUMBER_AND_INCR (mcnt, p);
+         DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
+                       mcnt, p + mcnt);
+
+         assert ((re_opcode_t)p[-4] == no_op);
+         {
+           int cycle = 0;
+           CHECK_INFINITE_LOOP (p - 4, d);
+           if (!cycle)
+             /* If there's a cycle, just continue without pushing
+                this failure point.  The failure point is the "try again"
+                option, which shouldn't be tried.
+                We want (x?)*?y\1z to match both xxyz and xxyxz.  */
+             PUSH_FAILURE_POINT (p - 3, d);
+         }
+         break;
+
+         /* Simple loop detecting on_failure_jump:  just check on the
+            failure stack if the same spot was already hit earlier.  */
+       case on_failure_jump_loop:
+       on_failure:
+         EXTRACT_NUMBER_AND_INCR (mcnt, p);
+         DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
+                       mcnt, p + mcnt);
+         {
+           int cycle = 0;
+           CHECK_INFINITE_LOOP (p - 3, d);
+           if (cycle)
+             /* If there's a cycle, get out of the loop, as if the matching
+                had failed.  We used to just `goto fail' here, but that was
+                aborting the search a bit too early: we want to keep the
+                empty-loop-match and keep matching after the loop.
+                We want (x?)*y\1z to match both xxyz and xxyxz.  */
+             p += mcnt;
+           else
+             PUSH_FAILURE_POINT (p - 3, d);
+         }
+         break;
+
+
+       /* Uses of on_failure_jump:
+
+          Each alternative starts with an on_failure_jump that points
+          to the beginning of the next alternative.  Each alternative
+          except the last ends with a jump that in effect jumps past
+          the rest of the alternatives.  (They really jump to the
+          ending jump of the following alternative, because tensioning
+          these jumps is a hassle.)
+
+          Repeats start with an on_failure_jump that points past both
+          the repetition text and either the following jump or
+          pop_failure_jump back to this on_failure_jump.  */
+       case on_failure_jump:
+         IMMEDIATE_QUIT_CHECK;
+         EXTRACT_NUMBER_AND_INCR (mcnt, p);
+         DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
+                       mcnt, p + mcnt);
+
+         PUSH_FAILURE_POINT (p -3, d);
+         break;
+
+       /* This operation is used for greedy *.
+          Compare the beginning of the repeat with what in the
+          pattern follows its end. If we can establish that there
+          is nothing that they would both match, i.e., that we
+          would have to backtrack because of (as in, e.g., `a*a')
+          then we can use a non-backtracking loop based on
+          on_failure_keep_string_jump instead of on_failure_jump.  */
+       case on_failure_jump_smart:
+         IMMEDIATE_QUIT_CHECK;
+         EXTRACT_NUMBER_AND_INCR (mcnt, p);
+         DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
+                       mcnt, p + mcnt);
+         {
+           re_char *p1 = p; /* Next operation.  */
+           /* Here, we discard `const', making re_match non-reentrant.  */
+           unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest.  */
+           unsigned char *p3 = (unsigned char*) p - 3; /* opcode location.  */
+
+           p -= 3;             /* Reset so that we will re-execute the
+                                  instruction once it's been changed. */
+
+           EXTRACT_NUMBER (mcnt, p2 - 2);
+
+           /* Ensure this is a indeed the trivial kind of loop
+              we are expecting.  */
+           assert (skip_one_char (p1) == p2 - 3);
+           assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
+           DEBUG_STATEMENT (debug += 2);
+           if (mutually_exclusive_p (bufp, p1, p2))
+             {
+               /* Use a fast `on_failure_keep_string_jump' loop.  */
+               DEBUG_PRINT1 ("  smart exclusive => fast loop.\n");
+               *p3 = (unsigned char) on_failure_keep_string_jump;
+               STORE_NUMBER (p2 - 2, mcnt + 3);
+             }
+           else
+             {
+               /* Default to a safe `on_failure_jump' loop.  */
+               DEBUG_PRINT1 ("  smart default => slow loop.\n");
+               *p3 = (unsigned char) on_failure_jump;
+             }
+           DEBUG_STATEMENT (debug -= 2);
+         }
+         break;
+
+       /* Unconditionally jump (without popping any failure points).  */
+       case jump:
+       unconditional_jump:
+         IMMEDIATE_QUIT_CHECK;
+         EXTRACT_NUMBER_AND_INCR (mcnt, p);    /* Get the amount to jump.  */
+         DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
+         p += mcnt;                            /* Do the jump.  */
+         DEBUG_PRINT2 ("(to %p).\n", p);
+         break;
+
+
+       /* Have to succeed matching what follows at least n times.
+          After that, handle like `on_failure_jump'.  */
+       case succeed_n:
+         /* Signedness doesn't matter since we only compare MCNT to 0.  */
+         EXTRACT_NUMBER (mcnt, p + 2);
+         DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
+
+         /* Originally, mcnt is how many times we HAVE to succeed.  */
+         if (mcnt != 0)
+           {
+             /* Here, we discard `const', making re_match non-reentrant.  */
+             unsigned char *p2 = (unsigned char*) p + 2; /* counter loc.  */
+             mcnt--;
+             p += 4;
+             PUSH_NUMBER (p2, mcnt);
+           }
+         else
+           /* The two bytes encoding mcnt == 0 are two no_op opcodes.  */
+           goto on_failure;
+         break;
+
+       case jump_n:
+         /* Signedness doesn't matter since we only compare MCNT to 0.  */
+         EXTRACT_NUMBER (mcnt, p + 2);
+         DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
+
+         /* Originally, this is how many times we CAN jump.  */
+         if (mcnt != 0)
+           {
+              /* Here, we discard `const', making re_match non-reentrant.  */
+             unsigned char *p2 = (unsigned char*) p + 2; /* counter loc.  */
+             mcnt--;
+             PUSH_NUMBER (p2, mcnt);
+             goto unconditional_jump;
+           }
+         /* If don't have to jump any more, skip over the rest of command.  */
+         else
+           p += 4;
+         break;
+
+       case set_number_at:
+         {
+           unsigned char *p2;  /* Location of the counter.  */
+           DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
+
+           EXTRACT_NUMBER_AND_INCR (mcnt, p);
+           /* Here, we discard `const', making re_match non-reentrant.  */
+           p2 = (unsigned char*) p + mcnt;
+           /* Signedness doesn't matter since we only copy MCNT's bits .  */
+           EXTRACT_NUMBER_AND_INCR (mcnt, p);
+           DEBUG_PRINT3 ("  Setting %p to %d.\n", p2, mcnt);
+           PUSH_NUMBER (p2, mcnt);
+           break;
+         }
+
+       case wordbound:
+       case notwordbound:
+         not = (re_opcode_t) *(p - 1) == notwordbound;
+         DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
+
+         /* We SUCCEED (or FAIL) in one of the following cases: */
+
+         /* Case 1: D is at the beginning or the end of string.  */
+         if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
+           not = !not;
+         else
+           {
+             /* C1 is the character before D, S1 is the syntax of C1, C2
+                is the character at D, and S2 is the syntax of C2.  */
+             re_wchar_t c1, c2;
+             int s1, s2;
+#ifdef emacs
+             int offset = PTR_TO_OFFSET (d - 1);
+             int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
+             UPDATE_SYNTAX_TABLE (charpos);
+#endif
+             GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+             s1 = SYNTAX (c1);
+#ifdef emacs
+             UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
+#endif
+             PREFETCH_NOLIMIT ();
+             c2 = RE_STRING_CHAR (d, dend - d);
+             s2 = SYNTAX (c2);
+
+             if (/* Case 2: Only one of S1 and S2 is Sword.  */
+                 ((s1 == Sword) != (s2 == Sword))
+                 /* Case 3: Both of S1 and S2 are Sword, and macro
+                    WORD_BOUNDARY_P (C1, C2) returns nonzero.  */
+                 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
+               not = !not;
+           }
+         if (not)
+           break;
+         else
+           goto fail;
+
+       case wordbeg:
+         DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
+
+         /* We FAIL in one of the following cases: */
+
+         /* Case 1: D is at the end of string.  */
+         if (AT_STRINGS_END (d))
+           goto fail;
+         else
+           {
+             /* C1 is the character before D, S1 is the syntax of C1, C2
+                is the character at D, and S2 is the syntax of C2.  */
+             re_wchar_t c1, c2;
+             int s1, s2;
+#ifdef emacs
+             int offset = PTR_TO_OFFSET (d);
+             int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
+             UPDATE_SYNTAX_TABLE (charpos);
+#endif
+             PREFETCH ();
+             c2 = RE_STRING_CHAR (d, dend - d);
+             s2 = SYNTAX (c2);
+
+             /* Case 2: S2 is not Sword. */
+             if (s2 != Sword)
+               goto fail;
+
+             /* Case 3: D is not at the beginning of string ... */
+             if (!AT_STRINGS_BEG (d))
+               {
+                 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+#ifdef emacs
+                 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
+#endif
+                 s1 = SYNTAX (c1);
+
+                 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
+                    returns 0.  */
+                 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
+                   goto fail;
+               }
+           }
+         break;
+
+       case wordend:
+         DEBUG_PRINT1 ("EXECUTING wordend.\n");
+
+         /* We FAIL in one of the following cases: */
+
+         /* Case 1: D is at the beginning of string.  */
+         if (AT_STRINGS_BEG (d))
+           goto fail;
+         else
+           {
+             /* C1 is the character before D, S1 is the syntax of C1, C2
+                is the character at D, and S2 is the syntax of C2.  */
+             re_wchar_t c1, c2;
+             int s1, s2;
+#ifdef emacs
+             int offset = PTR_TO_OFFSET (d) - 1;
+             int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
+             UPDATE_SYNTAX_TABLE (charpos);
+#endif
+             GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
+             s1 = SYNTAX (c1);
+
+             /* Case 2: S1 is not Sword.  */
+             if (s1 != Sword)
+               goto fail;
+
+             /* Case 3: D is not at the end of string ... */
+             if (!AT_STRINGS_END (d))
+               {
+                 PREFETCH_NOLIMIT ();
+                 c2 = RE_STRING_CHAR (d, dend - d);
+#ifdef emacs
+                 UPDATE_SYNTAX_TABLE_FORWARD (charpos);
+#endif
+                 s2 = SYNTAX (c2);
+
+                 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
+                    returns 0.  */
+                 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
+         goto fail;
+               }
+           }
+         break;
+
+       case syntaxspec:
+       case notsyntaxspec:
+         not = (re_opcode_t) *(p - 1) == notsyntaxspec;
+         mcnt = *p++;
+         DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
+         PREFETCH ();
+#ifdef emacs
+         {
+           int offset = PTR_TO_OFFSET (d);
+           int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
+           UPDATE_SYNTAX_TABLE (pos1);
+         }
+#endif
+         {
+           int len;
+           re_wchar_t c;
+
+           c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
+
+           if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
+             goto fail;
+           d += len;
+         }
+         break;
+
+#ifdef emacs
+       case before_dot:
+         DEBUG_PRINT1 ("EXECUTING before_dot.\n");
+         if (PTR_BYTE_POS (d) >= PT_BYTE)
+           goto fail;
+         break;
+
+       case at_dot:
+         DEBUG_PRINT1 ("EXECUTING at_dot.\n");
+         if (PTR_BYTE_POS (d) != PT_BYTE)
+           goto fail;
+         break;
+
+       case after_dot:
+         DEBUG_PRINT1 ("EXECUTING after_dot.\n");
+         if (PTR_BYTE_POS (d) <= PT_BYTE)
+           goto fail;
+         break;
+
+       case categoryspec:
+       case notcategoryspec:
+         not = (re_opcode_t) *(p - 1) == notcategoryspec;
+         mcnt = *p++;
+         DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
+         PREFETCH ();
+         {
+           int len;
+           re_wchar_t c;
+
+           c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
+
+           if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
+             goto fail;
+           d += len;
+         }
+         break;
+
+#endif /* emacs */
+
+       default:
+         abort ();
+       }
+      continue;  /* Successfully executed one pattern command; keep going.  */
+
+
+    /* We goto here if a matching operation fails. */
+    fail:
+      IMMEDIATE_QUIT_CHECK;
+      if (!FAIL_STACK_EMPTY ())
+       {
+         re_char *str, *pat;
+         /* A restart point is known.  Restore to that state.  */
+         DEBUG_PRINT1 ("\nFAIL:\n");
+         POP_FAILURE_POINT (str, pat);
+         switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
+           {
+           case on_failure_keep_string_jump:
+             assert (str == NULL);
+             goto continue_failure_jump;
+
+           case on_failure_jump_nastyloop:
+             assert ((re_opcode_t)pat[-2] == no_op);
+             PUSH_FAILURE_POINT (pat - 2, str);
+             /* Fallthrough */
+
+           case on_failure_jump_loop:
+           case on_failure_jump:
+           case succeed_n:
+             d = str;
+           continue_failure_jump:
+             EXTRACT_NUMBER_AND_INCR (mcnt, pat);
+             p = pat + mcnt;
+             break;
+
+           case no_op:
+             /* A special frame used for nastyloops. */
+             goto fail;
+
+           default:
+             abort();
+           }
+
+         assert (p >= bufp->buffer && p <= pend);
+
+         if (d >= string1 && d <= end1)
+           dend = end_match_1;
+       }
+      else
+       break;   /* Matching at this starting point really fails.  */
+    } /* for (;;) */
+
+  if (best_regs_set)
+    goto restore_best_regs;
+
+  FREE_VARIABLES ();
+
+  return -1;                           /* Failure to match.  */
+} /* re_match_2 */
+\f
+/* Subroutine definitions for re_match_2.  */
+
+/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
+   bytes; nonzero otherwise.  */
+
+static int
+bcmp_translate (s1, s2, len, translate, multibyte)
+     re_char *s1, *s2;
+     register int len;
+     RE_TRANSLATE_TYPE translate;
+     const int multibyte;
+{
+  register re_char *p1 = s1, *p2 = s2;
+  re_char *p1_end = s1 + len;
+  re_char *p2_end = s2 + len;
+
+  /* FIXME: Checking both p1 and p2 presumes that the two strings might have
+     different lengths, but relying on a single `len' would break this. -sm  */
+  while (p1 < p1_end && p2 < p2_end)
+    {
+      int p1_charlen, p2_charlen;
+      re_wchar_t p1_ch, p2_ch;
+
+      p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
+      p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
+
+      if (RE_TRANSLATE (translate, p1_ch)
+         != RE_TRANSLATE (translate, p2_ch))
+       return 1;
+
+      p1 += p1_charlen, p2 += p2_charlen;
+    }
+
+  if (p1 != p1_end || p2 != p2_end)
+    return 1;
+
+  return 0;
+}
+\f
+/* Entry points for GNU code.  */
+
+/* re_compile_pattern is the GNU regular expression compiler: it
+   compiles PATTERN (of length SIZE) and puts the result in BUFP.
+   Returns 0 if the pattern was valid, otherwise an error string.
+
+   Assumes the `allocated' (and perhaps `buffer') and `translate' fields
+   are set in BUFP on entry.
+
+   We call regex_compile to do the actual compilation.  */
+
+const char *
+re_compile_pattern (pattern, length, bufp)
+     const char *pattern;
+     size_t length;
+     struct re_pattern_buffer *bufp;
+{
+  reg_errcode_t ret;
+
+  /* GNU code is written to assume at least RE_NREGS registers will be set
+     (and at least one extra will be -1).  */
+  bufp->regs_allocated = REGS_UNALLOCATED;
+
+  /* And GNU code determines whether or not to get register information
+     by passing null for the REGS argument to re_match, etc., not by
+     setting no_sub.  */
+  bufp->no_sub = 0;
+
+  ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
+
+  if (!ret)
+    return NULL;
+  return gettext (re_error_msgid[(int) ret]);
+}
+WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
+\f
+/* Entry points compatible with 4.2 BSD regex library.  We don't define
+   them unless specifically requested.  */
+
+#if defined _REGEX_RE_COMP || defined _LIBC
+
+/* BSD has one and only one pattern buffer.  */
+static struct re_pattern_buffer re_comp_buf;
+
+char *
+# ifdef _LIBC
+/* Make these definitions weak in libc, so POSIX programs can redefine
+   these names if they don't use our functions, and still use
+   regcomp/regexec below without link errors.  */
+weak_function
+# endif
+re_comp (s)
+    const char *s;
+{
+  reg_errcode_t ret;
+
+  if (!s)
+    {
+      if (!re_comp_buf.buffer)
+       /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
+       return (char *) gettext ("No previous regular expression");
+      return 0;
+    }
+
+  if (!re_comp_buf.buffer)
+    {
+      re_comp_buf.buffer = (unsigned char *) malloc (200);
+      if (re_comp_buf.buffer == NULL)
+       /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
+       return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
+      re_comp_buf.allocated = 200;
+
+      re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
+      if (re_comp_buf.fastmap == NULL)
+       /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
+       return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
+    }
+
+  /* Since `re_exec' always passes NULL for the `regs' argument, we
+     don't need to initialize the pattern buffer fields which affect it.  */
+
+  ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
+
+  if (!ret)
+    return NULL;
+
+  /* Yes, we're discarding `const' here if !HAVE_LIBINTL.  */
+  return (char *) gettext (re_error_msgid[(int) ret]);
+}
+
+
+int
+# ifdef _LIBC
+weak_function
+# endif
+re_exec (s)
+    const char *s;
+{
+  const int len = strlen (s);
+  return
+    0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
+}
+#endif /* _REGEX_RE_COMP */
+\f
+/* POSIX.2 functions.  Don't define these for Emacs.  */
+
+#ifndef emacs
+
+/* regcomp takes a regular expression as a string and compiles it.
+
+   PREG is a regex_t *.  We do not expect any fields to be initialized,
+   since POSIX says we shouldn't.  Thus, we set
+
+     `buffer' to the compiled pattern;
+     `used' to the length of the compiled pattern;
+     `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
+       REG_EXTENDED bit in CFLAGS is set; otherwise, to
+       RE_SYNTAX_POSIX_BASIC;
+     `fastmap' to an allocated space for the fastmap;
+     `fastmap_accurate' to zero;
+     `re_nsub' to the number of subexpressions in PATTERN.
+
+   PATTERN is the address of the pattern string.
+
+   CFLAGS is a series of bits which affect compilation.
+
+     If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
+     use POSIX basic syntax.
+
+     If REG_NEWLINE is set, then . and [^...] don't match newline.
+     Also, regexec will try a match beginning after every newline.
+
+     If REG_ICASE is set, then we considers upper- and lowercase
+     versions of letters to be equivalent when matching.
+
+     If REG_NOSUB is set, then when PREG is passed to regexec, that
+     routine will report only success or failure, and nothing about the
+     registers.
+
+   It returns 0 if it succeeds, nonzero if it doesn't.  (See regex.h for
+   the return codes and their meanings.)  */
+
+int
+regcomp (preg, pattern, cflags)
+    regex_t *__restrict preg;
+    const char *__restrict pattern;
+    int cflags;
+{
+  reg_errcode_t ret;
+  reg_syntax_t syntax
+    = (cflags & REG_EXTENDED) ?
+      RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
+
+  /* regex_compile will allocate the space for the compiled pattern.  */
+  preg->buffer = 0;
+  preg->allocated = 0;
+  preg->used = 0;
+
+  /* Try to allocate space for the fastmap.  */
+  preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
+
+  if (cflags & REG_ICASE)
+    {
+      unsigned i;
+
+      preg->translate
+       = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
+                                     * sizeof (*(RE_TRANSLATE_TYPE)0));
+      if (preg->translate == NULL)
+       return (int) REG_ESPACE;
+
+      /* Map uppercase characters to corresponding lowercase ones.  */
+      for (i = 0; i < CHAR_SET_SIZE; i++)
+       preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
+    }
+  else
+    preg->translate = NULL;
+
+  /* If REG_NEWLINE is set, newlines are treated differently.  */
+  if (cflags & REG_NEWLINE)
+    { /* REG_NEWLINE implies neither . nor [^...] match newline.  */
+      syntax &= ~RE_DOT_NEWLINE;
+      syntax |= RE_HAT_LISTS_NOT_NEWLINE;
+    }
+  else
+    syntax |= RE_NO_NEWLINE_ANCHOR;
+
+  preg->no_sub = !!(cflags & REG_NOSUB);
+
+  /* POSIX says a null character in the pattern terminates it, so we
+     can use strlen here in compiling the pattern.  */
+  ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
+
+  /* POSIX doesn't distinguish between an unmatched open-group and an
+     unmatched close-group: both are REG_EPAREN.  */
+  if (ret == REG_ERPAREN)
+    ret = REG_EPAREN;
+
+  if (ret == REG_NOERROR && preg->fastmap)
+    { /* Compute the fastmap now, since regexec cannot modify the pattern
+        buffer.  */
+      re_compile_fastmap (preg);
+      if (preg->can_be_null)
+       { /* The fastmap can't be used anyway.  */
+         free (preg->fastmap);
+         preg->fastmap = NULL;
+       }
+    }
+  return (int) ret;
+}
+WEAK_ALIAS (__regcomp, regcomp)
+
+
+/* regexec searches for a given pattern, specified by PREG, in the
+   string STRING.
+
+   If NMATCH is zero or REG_NOSUB was set in the cflags argument to
+   `regcomp', we ignore PMATCH.  Otherwise, we assume PMATCH has at
+   least NMATCH elements, and we set them to the offsets of the
+   corresponding matched substrings.
+
+   EFLAGS specifies `execution flags' which affect matching: if
+   REG_NOTBOL is set, then ^ does not match at the beginning of the
+   string; if REG_NOTEOL is set, then $ does not match at the end.
+
+   We return 0 if we find a match and REG_NOMATCH if not.  */
+
+int
+regexec (preg, string, nmatch, pmatch, eflags)
+    const regex_t *__restrict preg;
+    const char *__restrict string;
+    size_t nmatch;
+    regmatch_t pmatch[__restrict_arr];
+    int eflags;
+{
+  int ret;
+  struct re_registers regs;
+  regex_t private_preg;
+  int len = strlen (string);
+  boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
+
+  private_preg = *preg;
+
+  private_preg.not_bol = !!(eflags & REG_NOTBOL);
+  private_preg.not_eol = !!(eflags & REG_NOTEOL);
+
+  /* The user has told us exactly how many registers to return
+     information about, via `nmatch'.  We have to pass that on to the
+     matching routines.  */
+  private_preg.regs_allocated = REGS_FIXED;
+
+  if (want_reg_info)
+    {
+      regs.num_regs = nmatch;
+      regs.start = TALLOC (nmatch * 2, regoff_t);
+      if (regs.start == NULL)
+       return (int) REG_NOMATCH;
+      regs.end = regs.start + nmatch;
+    }
+
+  /* Instead of using not_eol to implement REG_NOTEOL, we could simply
+     pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
+     was a little bit longer but still only matching the real part.
+     This works because the `endline' will check for a '\n' and will find a
+     '\0', correctly deciding that this is not the end of a line.
+     But it doesn't work out so nicely for REG_NOTBOL, since we don't have
+     a convenient '\0' there.  For all we know, the string could be preceded
+     by '\n' which would throw things off.  */
+
+  /* Perform the searching operation.  */
+  ret = re_search (&private_preg, string, len,
+                  /* start: */ 0, /* range: */ len,
+                  want_reg_info ? &regs : (struct re_registers *) 0);
+
+  /* Copy the register information to the POSIX structure.  */
+  if (want_reg_info)
+    {
+      if (ret >= 0)
+       {
+         unsigned r;
+
+         for (r = 0; r < nmatch; r++)
+           {
+             pmatch[r].rm_so = regs.start[r];
+             pmatch[r].rm_eo = regs.end[r];
+           }
+       }
+
+      /* If we needed the temporary register info, free the space now.  */
+      free (regs.start);
+    }
+
+  /* We want zero return to mean success, unlike `re_search'.  */
+  return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
+}
+WEAK_ALIAS (__regexec, regexec)
+
+
+/* Returns a message corresponding to an error code, ERRCODE, returned
+   from either regcomp or regexec.   We don't use PREG here.  */
+
+size_t
+regerror (errcode, preg, errbuf, errbuf_size)
+    int errcode;
+    const regex_t *preg;
+    char *errbuf;
+    size_t errbuf_size;
+{
+  const char *msg;
+  size_t msg_size;
+
+  if (errcode < 0
+      || errcode >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
+    /* Only error codes returned by the rest of the code should be passed
+       to this routine.  If we are given anything else, or if other regex
+       code generates an invalid error code, then the program has a bug.
+       Dump core so we can fix it.  */
+    abort ();
+
+  msg = gettext (re_error_msgid[errcode]);
+
+  msg_size = strlen (msg) + 1; /* Includes the null.  */
+
+  if (errbuf_size != 0)
+    {
+      if (msg_size > errbuf_size)
+       {
+         strncpy (errbuf, msg, errbuf_size - 1);
+         errbuf[errbuf_size - 1] = 0;
+       }
+      else
+       strcpy (errbuf, msg);
+    }
+
+  return msg_size;
+}
+WEAK_ALIAS (__regerror, regerror)
+
+
+/* Free dynamically allocated space used by PREG.  */
+
+void
+regfree (preg)
+    regex_t *preg;
+{
+  if (preg->buffer != NULL)
+    free (preg->buffer);
+  preg->buffer = NULL;
+
+  preg->allocated = 0;
+  preg->used = 0;
+
+  if (preg->fastmap != NULL)
+    free (preg->fastmap);
+  preg->fastmap = NULL;
+  preg->fastmap_accurate = 0;
+
+  if (preg->translate != NULL)
+    free (preg->translate);
+  preg->translate = NULL;
+}
+WEAK_ALIAS (__regfree, regfree)
+
+#endif /* not emacs  */