*** empty log message ***
[bpt/emacs.git] / lispref / sequences.texi
index 0982b19..9efd38e 100644 (file)
@@ -1,22 +1,22 @@
 @c -*-texinfo-*-
 @c This is part of the GNU Emacs Lisp Reference Manual.
-@c Copyright (C) 1990, 1991, 1992, 1993, 1994 Free Software Foundation, Inc. 
+@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2002, 2003,
+@c   2004, 2005, 2006 Free Software Foundation, Inc.
 @c See the file elisp.texi for copying conditions.
 @setfilename ../info/sequences
-@node Sequences Arrays Vectors, Symbols, Lists, Top
+@node Sequences Arrays Vectors, Hash Tables, Lists, Top
 @chapter Sequences, Arrays, and Vectors
 @cindex sequence
 
-  Recall that the @dfn{sequence} type is the union of three other Lisp
-types: lists, vectors, and strings.  In other words, any list is a
-sequence, any vector is a sequence, and any string is a sequence.  The
-common property that all sequences have is that each is an ordered
-collection of elements.
+  Recall that the @dfn{sequence} type is the union of two other Lisp
+types: lists and arrays.  In other words, any list is a sequence, and
+any array is a sequence.  The common property that all sequences have is
+that each is an ordered collection of elements.
 
   An @dfn{array} is a single primitive object that has a slot for each
-elements.  All the elements are accessible in constant time, but the
-length of an existing array cannot be changed.  Both strings and vectors
-are arrays.
+of its elements.  All the elements are accessible in constant time, but
+the length of an existing array cannot be changed.  Strings, vectors,
+char-tables and bool-vectors are the four types of arrays.
 
   A list is a sequence of elements, but it is not a single primitive
 object; it is made of cons cells, one cell per element.  Finding the
@@ -28,18 +28,22 @@ But it is possible to add elements to the list, or remove elements.
 
 @example
 @group
-          ___________________________________
-         |                                   |
-         |          Sequence                 |
-         |  ______   ______________________  |
-         | |      | |                      | |
-         | | List | |         Array        | |
-         | |      | |  ________   _______  | |   
-         | |______| | |        | |       | | |
-         |          | | String | | Vector| | |
-         |          | |________| |_______| | |
-         |          |______________________| |
-         |___________________________________|
+          _____________________________________________
+         |                                             |
+         |          Sequence                           |
+         |  ______   ________________________________  |
+         | |      | |                                | |
+         | | List | |             Array              | |
+         | |      | |    ________       ________     | |
+         | |______| |   |        |     |        |    | |
+         |          |   | Vector |     | String |    | |
+         |          |   |________|     |________|    | |
+         |          |  ____________   _____________  | |
+         |          | |            | |             | | |
+         |          | | Char-table | | Bool-vector | | |
+         |          | |____________| |_____________| | |
+         |          |________________________________| |
+         |_____________________________________________|
 @end group
 @end example
 
@@ -52,19 +56,103 @@ elements of strings are all characters.
 * Array Functions::       Functions specifically for arrays.
 * Vectors::               Special characteristics of Emacs Lisp vectors.
 * Vector Functions::      Functions specifically for vectors.
+* Char-Tables::           How to work with char-tables.
+* Bool-Vectors::          How to work with bool-vectors.
 @end menu
 
 @node Sequence Functions
 @section Sequences
 
-  In Emacs Lisp, a @dfn{sequence} is either a list, a vector or a
-string.  The common property that all sequences have is that each is an
-ordered collection of elements.  This section describes functions that
-accept any kind of sequence.
+  In Emacs Lisp, a @dfn{sequence} is either a list or an array.  The
+common property of all sequences is that they are ordered collections of
+elements.  This section describes functions that accept any kind of
+sequence.
 
 @defun sequencep object
-Returns @code{t} if @var{object} is a list, vector, or
-string, @code{nil} otherwise.
+Returns @code{t} if @var{object} is a list, vector, string,
+bool-vector, or char-table, @code{nil} otherwise.
+@end defun
+
+@defun length sequence
+@cindex string length
+@cindex list length
+@cindex vector length
+@cindex sequence length
+@cindex char-table length
+This function returns the number of elements in @var{sequence}.  If
+@var{sequence} is a dotted list, a @code{wrong-type-argument} error is
+signaled.  Circular lists may cause an infinite loop.  For a
+char-table, the value returned is always one more than the maximum
+Emacs character code.
+
+@xref{Definition of safe-length}, for the related function @code{safe-length}.
+
+@example
+@group
+(length '(1 2 3))
+    @result{} 3
+@end group
+@group
+(length ())
+    @result{} 0
+@end group
+@group
+(length "foobar")
+    @result{} 6
+@end group
+@group
+(length [1 2 3])
+    @result{} 3
+@end group
+@group
+(length (make-bool-vector 5 nil))
+    @result{} 5
+@end group
+@end example
+@end defun
+
+@defun string-bytes string
+@cindex string, number of bytes
+This function returns the number of bytes in @var{string}.
+If @var{string} is a multibyte string, this is greater than
+@code{(length @var{string})}.
+@end defun
+
+@defun elt sequence index
+@cindex elements of sequences
+This function returns the element of @var{sequence} indexed by
+@var{index}.  Legitimate values of @var{index} are integers ranging
+from 0 up to one less than the length of @var{sequence}.  If
+@var{sequence} is a list, out-of-range values behave as for
+@code{nth}.  @xref{Definition of nth}.  Otherwise, out-of-range values
+trigger an @code{args-out-of-range} error.
+
+@example
+@group
+(elt [1 2 3 4] 2)
+     @result{} 3
+@end group
+@group
+(elt '(1 2 3 4) 2)
+     @result{} 3
+@end group
+@group
+;; @r{We use @code{string} to show clearly which character @code{elt} returns.}
+(string (elt "1234" 2))
+     @result{} "3"
+@end group
+@group
+(elt [1 2 3 4] 4)
+     @error{} Args out of range: [1 2 3 4], 4
+@end group
+@group
+(elt [1 2 3 4] -1)
+     @error{} Args out of range: [1 2 3 4], -1
+@end group
+@end example
+
+This function generalizes @code{aref} (@pxref{Array Functions}) and
+@code{nth} (@pxref{Definition of nth}).
 @end defun
 
 @defun copy-sequence sequence
@@ -84,9 +172,12 @@ the copy is itself a copy, not shared with the original's property
 list.  However, the actual values of the properties are shared.
 @xref{Text Properties}.
 
+This function does not work for dotted lists.  Trying to copy a
+circular list may cause an infinite loop.
+
 See also @code{append} in @ref{Building Lists}, @code{concat} in
-@ref{Creating Strings}, and @code{vconcat} in @ref{Vectors}, for others
-ways to copy sequences.
+@ref{Creating Strings}, and @code{vconcat} in @ref{Vector Functions},
+for other ways to copy sequences.
 
 @example
 @group
@@ -131,71 +222,6 @@ y @result{} [foo (69 2)]
 @end example
 @end defun
 
-@defun length sequence
-@cindex string length
-@cindex list length
-@cindex vector length
-@cindex sequence length
-Returns the number of elements in @var{sequence}.  If @var{sequence} is
-a cons cell that is not a list (because the final @sc{cdr} is not
-@code{nil}), a @code{wrong-type-argument} error is signaled.
-
-@example
-@group
-(length '(1 2 3))
-    @result{} 3
-@end group
-@group
-(length ())
-    @result{} 0
-@end group
-@group
-(length "foobar")
-    @result{} 6
-@end group
-@group
-(length [1 2 3])
-    @result{} 3
-@end group
-@end example
-@end defun
-
-@defun elt sequence index
-@cindex elements of sequences
-This function returns the element of @var{sequence} indexed by
-@var{index}.  Legitimate values of @var{index} are integers ranging from
-0 up to one less than the length of @var{sequence}.  If @var{sequence}
-is a list, then out-of-range values of @var{index} return @code{nil};
-otherwise, they trigger an @code{args-out-of-range} error.
-
-@example
-@group
-(elt [1 2 3 4] 2)
-     @result{} 3
-@end group
-@group
-(elt '(1 2 3 4) 2)
-     @result{} 3
-@end group
-@group
-(char-to-string (elt "1234" 2))
-     @result{} "3"
-@end group
-@group
-(elt [1 2 3 4] 4)
-     @error{}Args out of range: [1 2 3 4], 4
-@end group
-@group
-(elt [1 2 3 4] -1)
-     @error{}Args out of range: [1 2 3 4], -1
-@end group
-@end example
-
-This function duplicates @code{aref} (@pxref{Array Functions}) and
-@code{nth} (@pxref{List Elements}), except that it works for any kind of
-sequence.
-@end defun
-
 @node Arrays
 @section Arrays
 @cindex array
@@ -206,20 +232,14 @@ be accessed in constant time.  In contrast, an element of a list
 requires access time that is proportional to the position of the element
 in the list.
 
-  When you create an array, you must specify how many elements it has.
-The amount of space allocated depends on the number of elements.
-Therefore, it is impossible to change the size of an array once it is
-created; you cannot add or remove elements.  However, you can replace an
-element with a different value.
-
-  Emacs defines two types of array, both of which are one-dimensional:
-@dfn{strings} and @dfn{vectors}.  A vector is a general array; its
-elements can be any Lisp objects.  A string is a specialized array; its
-elements must be characters (i.e., integers between 0 and 255).  Each
-type of array has its own read syntax.  @xref{String Type}, and
-@ref{Vector Type}.
+  Emacs defines four types of array, all one-dimensional: @dfn{strings},
+@dfn{vectors}, @dfn{bool-vectors} and @dfn{char-tables}.  A vector is a
+general array; its elements can be any Lisp objects.  A string is a
+specialized array; its elements must be characters.  Each type of array
+has its own read syntax.
+@xref{String Type}, and @ref{Vector Type}.
 
-  Both kinds of array share these characteristics:
+  All four kinds of array share these characteristics:
 
 @itemize @bullet
 @item
@@ -227,12 +247,24 @@ The first element of an array has index zero, the second element has
 index 1, and so on.  This is called @dfn{zero-origin} indexing.  For
 example, an array of four elements has indices 0, 1, 2, @w{and 3}.
 
+@item
+The length of the array is fixed once you create it; you cannot
+change the length of an existing array.
+
+@item
+For purposes of evaluation, the array is a constant---in other words,
+it evaluates to itself.
+
 @item
 The elements of an array may be referenced or changed with the functions
 @code{aref} and @code{aset}, respectively (@pxref{Array Functions}).
 @end itemize
 
-  In principle, if you wish to have an array of characters, you could use
+    When you create an array, other than a char-table, you must specify
+its length.  You cannot specify the length of a char-table, because that
+is determined by the range of character codes.
+
+  In principle, if you want an array of text characters, you could use
 either a string or a vector.  In practice, we always choose strings for
 such applications, for four reasons:
 
@@ -242,7 +274,7 @@ They occupy one-fourth the space of a vector of the same elements.
 
 @item
 Strings are printed in a way that shows the contents more clearly
-as characters.
+as text.
 
 @item
 Strings can hold text properties.  @xref{Text Properties}.
@@ -253,22 +285,29 @@ strings.  For example, you cannot insert a vector of characters into a
 buffer the way you can insert a string.  @xref{Strings and Characters}.
 @end itemize
 
+  By contrast, for an array of keyboard input characters (such as a key
+sequence), a vector may be necessary, because many keyboard input
+characters are outside the range that will fit in a string.  @xref{Key
+Sequence Input}.
+
 @node Array Functions
 @section Functions that Operate on Arrays
 
-  In this section, we describe the functions that accept both strings
-and vectors.
+  In this section, we describe the functions that accept all types of
+arrays.
 
 @defun arrayp object
-This function returns @code{t} if @var{object} is an array (i.e., either a
-vector or a string).
+This function returns @code{t} if @var{object} is an array (i.e., a
+vector, a string, a bool-vector or a char-table).
 
 @example
 @group
 (arrayp [a])
-@result{} t
+     @result{} t
 (arrayp "asdf")
-@result{} t
+     @result{} t
+(arrayp (syntax-table))    ;; @r{A char-table.}
+     @result{} t
 @end group
 @end example
 @end defun
@@ -284,13 +323,10 @@ first element is at index zero.
      @result{} [2 3 5 7 11 13]
 (aref primes 4)
      @result{} 11
-(elt primes 4)
-     @result{} 11
 @end group
-
 @group
 (aref "abcdefg" 1)
-     @result{} 98           ; @r{@samp{b} is @sc{ASCII} code 98.}
+     @result{} 98           ; @r{@samp{b} is @acronym{ASCII} code 98.}
 @end group
 @end example
 
@@ -322,7 +358,8 @@ x
 @end example
 
 If @var{array} is a string and @var{object} is not a character, a
-@code{wrong-type-argument} error results.
+@code{wrong-type-argument} error results.  The function converts a
+unibyte string to multibyte if necessary to insert a character.
 @end defun
 
 @defun fillarray array object
@@ -359,13 +396,12 @@ are often useful for objects known to be arrays.  @xref{Sequence Functions}.
 
   Arrays in Lisp, like arrays in most languages, are blocks of memory
 whose elements can be accessed in constant time.  A @dfn{vector} is a
-general-purpose array; its elements can be any Lisp objects.  (The other
-kind of array in Emacs Lisp is the @dfn{string}, whose elements must be
-characters.)  Vectors in Emacs serve as syntax tables (vectors of
-integers), as obarrays (vectors of symbols), and in keymaps (vectors of
-commands).  They are also used internally as part of the representation
-of a byte-compiled function; if you print such a function, you will see
-a vector in it.
+general-purpose array of specified length; its elements can be any Lisp
+objects.  (By contrast, a string can hold only characters as elements.)
+Vectors in Emacs are used for obarrays (vectors of symbols), and as part
+of keymaps (vectors of commands).  They are also used internally as part
+of the representation of a byte-compiled function; if you print such a
+function, you will see a vector in it.
 
   In Emacs Lisp, the indices of the elements of a vector start from zero
 and count up from there.
@@ -380,7 +416,7 @@ evaluation: the result of evaluating it is the same vector.  This does
 not evaluate or even examine the elements of the vector.
 @xref{Self-Evaluating Forms}.
 
-  Here are examples of these principles:
+  Here are examples illustrating these principles:
 
 @example
 @group
@@ -394,7 +430,7 @@ not evaluate or even examine the elements of the vector.
 @end example
 
 @node Vector Functions
-@section Functions That Operate on Vectors
+@section Functions for Vectors
 
   Here are some functions that relate to vectors:
 
@@ -440,9 +476,9 @@ each initialized to @var{object}.
 @defun vconcat &rest sequences
 @cindex copying vectors
 This function returns a new vector containing all the elements of the
-@var{sequences}.  The arguments @var{sequences} may be lists, vectors,
-or strings.  If no @var{sequences} are given, an empty vector is
-returned.
+@var{sequences}.  The arguments @var{sequences} may be true lists,
+vectors, strings or bool-vectors.  If no @var{sequences} are given, an
+empty vector is returned.
 
 The value is a newly constructed vector that is not @code{eq} to any
 existing vector.
@@ -462,14 +498,15 @@ existing vector.
 @end group
 @end example
 
-The @code{vconcat} function also allows integers as arguments.  It
-converts them to strings of digits, making up the decimal print
-representation of the integer, and then uses the strings instead of the
-original integers.  @strong{Don't use this feature; we plan to eliminate
-it.  If you already use this feature, change your programs now!}  The
-proper way to convert an integer to a decimal number in this way is with
-@code{format} (@pxref{Formatting Strings}) or @code{number-to-string}
-(@pxref{String Conversion}).
+The @code{vconcat} function also allows byte-code function objects as
+arguments.  This is a special feature to make it easy to access the entire
+contents of a byte-code function object.  @xref{Byte-Code Objects}.
+
+In Emacs versions before 21, the @code{vconcat} function allowed
+integers as arguments, converting them to strings of digits, but that
+feature has been eliminated.  The proper way to convert an integer to
+a decimal number in this way is with @code{format} (@pxref{Formatting
+Strings}) or @code{number-to-string} (@pxref{String Conversion}).
 
 For other concatenation functions, see @code{mapconcat} in @ref{Mapping
 Functions}, @code{concat} in @ref{Creating Strings}, and @code{append}
@@ -487,3 +524,215 @@ list with the same elements (@pxref{Building Lists}):
      @result{} (1 two (quote (three)) "four" [five])
 @end group
 @end example
+
+@node Char-Tables
+@section Char-Tables
+@cindex char-tables
+@cindex extra slots of char-table
+
+  A char-table is much like a vector, except that it is indexed by
+character codes.  Any valid character code, without modifiers, can be
+used as an index in a char-table.  You can access a char-table's
+elements with @code{aref} and @code{aset}, as with any array.  In
+addition, a char-table can have @dfn{extra slots} to hold additional
+data not associated with particular character codes.  Char-tables are
+constants when evaluated.
+
+@cindex subtype of char-table
+  Each char-table has a @dfn{subtype} which is a symbol.  The subtype
+has two purposes: to distinguish char-tables meant for different uses,
+and to control the number of extra slots.  For example, display tables
+are char-tables with @code{display-table} as the subtype, and syntax
+tables are char-tables with @code{syntax-table} as the subtype.  A valid
+subtype must have a @code{char-table-extra-slots} property which is an
+integer between 0 and 10.  This integer specifies the number of
+@dfn{extra slots} in the char-table.
+
+@cindex parent of char-table
+  A char-table can have a @dfn{parent}, which is another char-table.  If
+it does, then whenever the char-table specifies @code{nil} for a
+particular character @var{c}, it inherits the value specified in the
+parent.  In other words, @code{(aref @var{char-table} @var{c})} returns
+the value from the parent of @var{char-table} if @var{char-table} itself
+specifies @code{nil}.
+
+@cindex default value of char-table
+  A char-table can also have a @dfn{default value}.  If so, then
+@code{(aref @var{char-table} @var{c})} returns the default value
+whenever the char-table does not specify any other non-@code{nil} value.
+
+@defun make-char-table subtype &optional init
+Return a newly created char-table, with subtype @var{subtype}.  Each
+element is initialized to @var{init}, which defaults to @code{nil}.  You
+cannot alter the subtype of a char-table after the char-table is
+created.
+
+There is no argument to specify the length of the char-table, because
+all char-tables have room for any valid character code as an index.
+@end defun
+
+@defun char-table-p object
+This function returns @code{t} if @var{object} is a char-table,
+otherwise @code{nil}.
+@end defun
+
+@defun char-table-subtype char-table
+This function returns the subtype symbol of @var{char-table}.
+@end defun
+
+@defun set-char-table-default char-table char new-default
+This function sets the default value of generic character @var{char}
+in @var{char-table} to @var{new-default}.
+
+There is no special function to access default values in a char-table.
+To do that, use @code{char-table-range} (see below).
+@end defun
+
+@defun char-table-parent char-table
+This function returns the parent of @var{char-table}.  The parent is
+always either @code{nil} or another char-table.
+@end defun
+
+@defun set-char-table-parent char-table new-parent
+This function sets the parent of @var{char-table} to @var{new-parent}.
+@end defun
+
+@defun char-table-extra-slot char-table n
+This function returns the contents of extra slot @var{n} of
+@var{char-table}.  The number of extra slots in a char-table is
+determined by its subtype.
+@end defun
+
+@defun set-char-table-extra-slot char-table n value
+This function stores @var{value} in extra slot @var{n} of
+@var{char-table}.
+@end defun
+
+  A char-table can specify an element value for a single character code;
+it can also specify a value for an entire character set.
+
+@defun char-table-range char-table range
+This returns the value specified in @var{char-table} for a range of
+characters @var{range}.  Here are the possibilities for @var{range}:
+
+@table @asis
+@item @code{nil}
+Refers to the default value.
+
+@item @var{char}
+Refers to the element for character @var{char}
+(supposing @var{char} is a valid character code).
+
+@item @var{charset}
+Refers to the value specified for the whole character set
+@var{charset} (@pxref{Character Sets}).
+
+@item @var{generic-char}
+A generic character stands for a character set, or a row of a
+character set; specifying the generic character as argument is
+equivalent to specifying the character set name.  @xref{Splitting
+Characters}, for a description of generic characters.
+@end table
+@end defun
+
+@defun set-char-table-range char-table range value
+This function sets the value in @var{char-table} for a range of
+characters @var{range}.  Here are the possibilities for @var{range}:
+
+@table @asis
+@item @code{nil}
+Refers to the default value.
+
+@item @code{t}
+Refers to the whole range of character codes.
+
+@item @var{char}
+Refers to the element for character @var{char}
+(supposing @var{char} is a valid character code).
+
+@item @var{charset}
+Refers to the value specified for the whole character set
+@var{charset} (@pxref{Character Sets}).
+
+@item @var{generic-char}
+A generic character stands for a character set; specifying the generic
+character as argument is equivalent to specifying the character set
+name.  @xref{Splitting Characters}, for a description of generic characters.
+@end table
+@end defun
+
+@defun map-char-table function char-table
+This function calls @var{function} for each element of @var{char-table}.
+@var{function} is called with two arguments, a key and a value.  The key
+is a possible @var{range} argument for @code{char-table-range}---either
+a valid character or a generic character---and the value is
+@code{(char-table-range @var{char-table} @var{key})}.
+
+Overall, the key-value pairs passed to @var{function} describe all the
+values stored in @var{char-table}.
+
+The return value is always @code{nil}; to make this function useful,
+@var{function} should have side effects.  For example,
+here is how to examine each element of the syntax table:
+
+@example
+(let (accumulator)
+  (map-char-table
+   #'(lambda (key value)
+       (setq accumulator
+             (cons (list key value) accumulator)))
+   (syntax-table))
+  accumulator)
+@result{}
+((475008 nil) (474880 nil) (474752 nil) (474624 nil)
+ ... (5 (3)) (4 (3)) (3 (3)) (2 (3)) (1 (3)) (0 (3)))
+@end example
+@end defun
+
+@node Bool-Vectors
+@section Bool-vectors
+@cindex Bool-vectors
+
+  A bool-vector is much like a vector, except that it stores only the
+values @code{t} and @code{nil}.  If you try to store any non-@code{nil}
+value into an element of the bool-vector, the effect is to store
+@code{t} there.  As with all arrays, bool-vector indices start from 0,
+and the length cannot be changed once the bool-vector is created.
+Bool-vectors are constants when evaluated.
+
+  There are two special functions for working with bool-vectors; aside
+from that, you manipulate them with same functions used for other kinds
+of arrays.
+
+@defun make-bool-vector length initial
+Return a new bool-vector of @var{length} elements,
+each one initialized to @var{initial}.
+@end defun
+
+@defun bool-vector-p object
+This returns @code{t} if @var{object} is a bool-vector,
+and @code{nil} otherwise.
+@end defun
+
+  Here is an example of creating, examining, and updating a
+bool-vector.  Note that the printed form represents up to 8 boolean
+values as a single character.
+
+@example
+(setq bv (make-bool-vector 5 t))
+     @result{} #&5"^_"
+(aref bv 1)
+     @result{} t
+(aset bv 3 nil)
+     @result{} nil
+bv
+     @result{} #&5"^W"
+@end example
+
+@noindent
+These results make sense because the binary codes for control-_ and
+control-W are 11111 and 10111, respectively.
+
+@ignore
+   arch-tag: fcf1084a-cd29-4adc-9f16-68586935b386
+@end ignore