ca21ba2469bbf27a12d75a092ca477e130cee03b
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4 Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #include <stdio.h>
24 #include <limits.h> /* For CHAR_BIT. */
25
26 #ifdef ENABLE_CHECKING
27 #include <signal.h> /* For SIGABRT. */
28 #endif
29
30 #ifdef HAVE_PTHREAD
31 #include <pthread.h>
32 #endif
33
34 #include "lisp.h"
35 #include "process.h"
36 #include "intervals.h"
37 #include "puresize.h"
38 #include "character.h"
39 #include "buffer.h"
40 #include "window.h"
41 #include "keyboard.h"
42 #include "frame.h"
43 #include "blockinput.h"
44 #include "termhooks.h" /* For struct terminal. */
45
46 #include <verify.h>
47
48 #if (defined ENABLE_CHECKING \
49 && defined HAVE_VALGRIND_VALGRIND_H \
50 && !defined USE_VALGRIND)
51 # define USE_VALGRIND 1
52 #endif
53
54 #if USE_VALGRIND
55 #include <valgrind/valgrind.h>
56 #include <valgrind/memcheck.h>
57 static bool valgrind_p;
58 #endif
59
60 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
61 Doable only if GC_MARK_STACK. */
62 #if ! GC_MARK_STACK
63 # undef GC_CHECK_MARKED_OBJECTS
64 #endif
65
66 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
67 memory. Can do this only if using gmalloc.c and if not checking
68 marked objects. */
69
70 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
71 || defined GC_CHECK_MARKED_OBJECTS)
72 #undef GC_MALLOC_CHECK
73 #endif
74
75 #include <unistd.h>
76 #include <fcntl.h>
77
78 #ifdef USE_GTK
79 # include "gtkutil.h"
80 #endif
81 #ifdef WINDOWSNT
82 #include "w32.h"
83 #include "w32heap.h" /* for sbrk */
84 #endif
85
86 #ifdef DOUG_LEA_MALLOC
87
88 #include <malloc.h>
89
90 /* Specify maximum number of areas to mmap. It would be nice to use a
91 value that explicitly means "no limit". */
92
93 #define MMAP_MAX_AREAS 100000000
94
95 #endif /* not DOUG_LEA_MALLOC */
96
97 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
98 to a struct Lisp_String. */
99
100 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
101 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
102 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
103
104 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
105 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
106 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
107
108 /* Default value of gc_cons_threshold (see below). */
109
110 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
111
112 /* Global variables. */
113 struct emacs_globals globals;
114
115 /* Number of bytes of consing done since the last gc. */
116
117 EMACS_INT consing_since_gc;
118
119 /* Similar minimum, computed from Vgc_cons_percentage. */
120
121 EMACS_INT gc_relative_threshold;
122
123 /* Minimum number of bytes of consing since GC before next GC,
124 when memory is full. */
125
126 EMACS_INT memory_full_cons_threshold;
127
128 /* True during GC. */
129
130 bool gc_in_progress;
131
132 /* True means abort if try to GC.
133 This is for code which is written on the assumption that
134 no GC will happen, so as to verify that assumption. */
135
136 bool abort_on_gc;
137
138 /* Number of live and free conses etc. */
139
140 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
141 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
142 static EMACS_INT total_free_floats, total_floats;
143
144 /* Points to memory space allocated as "spare", to be freed if we run
145 out of memory. We keep one large block, four cons-blocks, and
146 two string blocks. */
147
148 static char *spare_memory[7];
149
150 /* Amount of spare memory to keep in large reserve block, or to see
151 whether this much is available when malloc fails on a larger request. */
152
153 #define SPARE_MEMORY (1 << 14)
154
155 /* Initialize it to a nonzero value to force it into data space
156 (rather than bss space). That way unexec will remap it into text
157 space (pure), on some systems. We have not implemented the
158 remapping on more recent systems because this is less important
159 nowadays than in the days of small memories and timesharing. */
160
161 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
162 #define PUREBEG (char *) pure
163
164 /* Pointer to the pure area, and its size. */
165
166 static char *purebeg;
167 static ptrdiff_t pure_size;
168
169 /* Number of bytes of pure storage used before pure storage overflowed.
170 If this is non-zero, this implies that an overflow occurred. */
171
172 static ptrdiff_t pure_bytes_used_before_overflow;
173
174 /* True if P points into pure space. */
175
176 #define PURE_POINTER_P(P) \
177 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
178
179 /* Index in pure at which next pure Lisp object will be allocated.. */
180
181 static ptrdiff_t pure_bytes_used_lisp;
182
183 /* Number of bytes allocated for non-Lisp objects in pure storage. */
184
185 static ptrdiff_t pure_bytes_used_non_lisp;
186
187 /* If nonzero, this is a warning delivered by malloc and not yet
188 displayed. */
189
190 const char *pending_malloc_warning;
191
192 /* Maximum amount of C stack to save when a GC happens. */
193
194 #ifndef MAX_SAVE_STACK
195 #define MAX_SAVE_STACK 16000
196 #endif
197
198 /* Buffer in which we save a copy of the C stack at each GC. */
199
200 #if MAX_SAVE_STACK > 0
201 static char *stack_copy;
202 static ptrdiff_t stack_copy_size;
203 #endif
204
205 static Lisp_Object Qconses;
206 static Lisp_Object Qsymbols;
207 static Lisp_Object Qmiscs;
208 static Lisp_Object Qstrings;
209 static Lisp_Object Qvectors;
210 static Lisp_Object Qfloats;
211 static Lisp_Object Qintervals;
212 static Lisp_Object Qbuffers;
213 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
214 static Lisp_Object Qgc_cons_threshold;
215 Lisp_Object Qautomatic_gc;
216 Lisp_Object Qchar_table_extra_slots;
217
218 /* Hook run after GC has finished. */
219
220 static Lisp_Object Qpost_gc_hook;
221
222 static void mark_terminals (void);
223 static void gc_sweep (void);
224 static Lisp_Object make_pure_vector (ptrdiff_t);
225 static void mark_buffer (struct buffer *);
226
227 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
228 static void refill_memory_reserve (void);
229 #endif
230 static void compact_small_strings (void);
231 static void free_large_strings (void);
232 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
233
234 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
235 what memory allocated via lisp_malloc and lisp_align_malloc is intended
236 for what purpose. This enumeration specifies the type of memory. */
237
238 enum mem_type
239 {
240 MEM_TYPE_NON_LISP,
241 MEM_TYPE_BUFFER,
242 MEM_TYPE_CONS,
243 MEM_TYPE_STRING,
244 MEM_TYPE_MISC,
245 MEM_TYPE_SYMBOL,
246 MEM_TYPE_FLOAT,
247 /* Since all non-bool pseudovectors are small enough to be
248 allocated from vector blocks, this memory type denotes
249 large regular vectors and large bool pseudovectors. */
250 MEM_TYPE_VECTORLIKE,
251 /* Special type to denote vector blocks. */
252 MEM_TYPE_VECTOR_BLOCK,
253 /* Special type to denote reserved memory. */
254 MEM_TYPE_SPARE
255 };
256
257 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
258
259 /* A unique object in pure space used to make some Lisp objects
260 on free lists recognizable in O(1). */
261
262 static Lisp_Object Vdead;
263 #define DEADP(x) EQ (x, Vdead)
264
265 #ifdef GC_MALLOC_CHECK
266
267 enum mem_type allocated_mem_type;
268
269 #endif /* GC_MALLOC_CHECK */
270
271 /* A node in the red-black tree describing allocated memory containing
272 Lisp data. Each such block is recorded with its start and end
273 address when it is allocated, and removed from the tree when it
274 is freed.
275
276 A red-black tree is a balanced binary tree with the following
277 properties:
278
279 1. Every node is either red or black.
280 2. Every leaf is black.
281 3. If a node is red, then both of its children are black.
282 4. Every simple path from a node to a descendant leaf contains
283 the same number of black nodes.
284 5. The root is always black.
285
286 When nodes are inserted into the tree, or deleted from the tree,
287 the tree is "fixed" so that these properties are always true.
288
289 A red-black tree with N internal nodes has height at most 2
290 log(N+1). Searches, insertions and deletions are done in O(log N).
291 Please see a text book about data structures for a detailed
292 description of red-black trees. Any book worth its salt should
293 describe them. */
294
295 struct mem_node
296 {
297 /* Children of this node. These pointers are never NULL. When there
298 is no child, the value is MEM_NIL, which points to a dummy node. */
299 struct mem_node *left, *right;
300
301 /* The parent of this node. In the root node, this is NULL. */
302 struct mem_node *parent;
303
304 /* Start and end of allocated region. */
305 void *start, *end;
306
307 /* Node color. */
308 enum {MEM_BLACK, MEM_RED} color;
309
310 /* Memory type. */
311 enum mem_type type;
312 };
313
314 /* Base address of stack. Set in main. */
315
316 Lisp_Object *stack_base;
317
318 /* Root of the tree describing allocated Lisp memory. */
319
320 static struct mem_node *mem_root;
321
322 /* Lowest and highest known address in the heap. */
323
324 static void *min_heap_address, *max_heap_address;
325
326 /* Sentinel node of the tree. */
327
328 static struct mem_node mem_z;
329 #define MEM_NIL &mem_z
330
331 static struct mem_node *mem_insert (void *, void *, enum mem_type);
332 static void mem_insert_fixup (struct mem_node *);
333 static void mem_rotate_left (struct mem_node *);
334 static void mem_rotate_right (struct mem_node *);
335 static void mem_delete (struct mem_node *);
336 static void mem_delete_fixup (struct mem_node *);
337 static struct mem_node *mem_find (void *);
338
339 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
340
341 #ifndef DEADP
342 # define DEADP(x) 0
343 #endif
344
345 /* Recording what needs to be marked for gc. */
346
347 struct gcpro *gcprolist;
348
349 /* Addresses of staticpro'd variables. Initialize it to a nonzero
350 value; otherwise some compilers put it into BSS. */
351
352 enum { NSTATICS = 2048 };
353 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
354
355 /* Index of next unused slot in staticvec. */
356
357 static int staticidx;
358
359 static void *pure_alloc (size_t, int);
360
361
362 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
363 ALIGNMENT must be a power of 2. */
364
365 #define ALIGN(ptr, ALIGNMENT) \
366 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
367 & ~ ((ALIGNMENT) - 1)))
368
369 static void
370 XFLOAT_INIT (Lisp_Object f, double n)
371 {
372 XFLOAT (f)->u.data = n;
373 }
374
375 \f
376 /************************************************************************
377 Malloc
378 ************************************************************************/
379
380 /* Function malloc calls this if it finds we are near exhausting storage. */
381
382 void
383 malloc_warning (const char *str)
384 {
385 pending_malloc_warning = str;
386 }
387
388
389 /* Display an already-pending malloc warning. */
390
391 void
392 display_malloc_warning (void)
393 {
394 call3 (intern ("display-warning"),
395 intern ("alloc"),
396 build_string (pending_malloc_warning),
397 intern ("emergency"));
398 pending_malloc_warning = 0;
399 }
400 \f
401 /* Called if we can't allocate relocatable space for a buffer. */
402
403 void
404 buffer_memory_full (ptrdiff_t nbytes)
405 {
406 /* If buffers use the relocating allocator, no need to free
407 spare_memory, because we may have plenty of malloc space left
408 that we could get, and if we don't, the malloc that fails will
409 itself cause spare_memory to be freed. If buffers don't use the
410 relocating allocator, treat this like any other failing
411 malloc. */
412
413 #ifndef REL_ALLOC
414 memory_full (nbytes);
415 #else
416 /* This used to call error, but if we've run out of memory, we could
417 get infinite recursion trying to build the string. */
418 xsignal (Qnil, Vmemory_signal_data);
419 #endif
420 }
421
422 /* A common multiple of the positive integers A and B. Ideally this
423 would be the least common multiple, but there's no way to do that
424 as a constant expression in C, so do the best that we can easily do. */
425 #define COMMON_MULTIPLE(a, b) \
426 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
427
428 #ifndef XMALLOC_OVERRUN_CHECK
429 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
430 #else
431
432 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
433 around each block.
434
435 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
436 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
437 block size in little-endian order. The trailer consists of
438 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
439
440 The header is used to detect whether this block has been allocated
441 through these functions, as some low-level libc functions may
442 bypass the malloc hooks. */
443
444 #define XMALLOC_OVERRUN_CHECK_SIZE 16
445 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
446 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
447
448 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
449 hold a size_t value and (2) the header size is a multiple of the
450 alignment that Emacs needs for C types and for USE_LSB_TAG. */
451 #define XMALLOC_BASE_ALIGNMENT \
452 alignof (union { long double d; intmax_t i; void *p; })
453
454 #if USE_LSB_TAG
455 # define XMALLOC_HEADER_ALIGNMENT \
456 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
457 #else
458 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
459 #endif
460 #define XMALLOC_OVERRUN_SIZE_SIZE \
461 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
462 + XMALLOC_HEADER_ALIGNMENT - 1) \
463 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
464 - XMALLOC_OVERRUN_CHECK_SIZE)
465
466 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
467 { '\x9a', '\x9b', '\xae', '\xaf',
468 '\xbf', '\xbe', '\xce', '\xcf',
469 '\xea', '\xeb', '\xec', '\xed',
470 '\xdf', '\xde', '\x9c', '\x9d' };
471
472 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
473 { '\xaa', '\xab', '\xac', '\xad',
474 '\xba', '\xbb', '\xbc', '\xbd',
475 '\xca', '\xcb', '\xcc', '\xcd',
476 '\xda', '\xdb', '\xdc', '\xdd' };
477
478 /* Insert and extract the block size in the header. */
479
480 static void
481 xmalloc_put_size (unsigned char *ptr, size_t size)
482 {
483 int i;
484 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
485 {
486 *--ptr = size & ((1 << CHAR_BIT) - 1);
487 size >>= CHAR_BIT;
488 }
489 }
490
491 static size_t
492 xmalloc_get_size (unsigned char *ptr)
493 {
494 size_t size = 0;
495 int i;
496 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
497 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
498 {
499 size <<= CHAR_BIT;
500 size += *ptr++;
501 }
502 return size;
503 }
504
505
506 /* Like malloc, but wraps allocated block with header and trailer. */
507
508 static void *
509 overrun_check_malloc (size_t size)
510 {
511 register unsigned char *val;
512 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
513 emacs_abort ();
514
515 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
516 if (val)
517 {
518 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
519 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
520 xmalloc_put_size (val, size);
521 memcpy (val + size, xmalloc_overrun_check_trailer,
522 XMALLOC_OVERRUN_CHECK_SIZE);
523 }
524 return val;
525 }
526
527
528 /* Like realloc, but checks old block for overrun, and wraps new block
529 with header and trailer. */
530
531 static void *
532 overrun_check_realloc (void *block, size_t size)
533 {
534 register unsigned char *val = (unsigned char *) block;
535 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
536 emacs_abort ();
537
538 if (val
539 && memcmp (xmalloc_overrun_check_header,
540 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
541 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
542 {
543 size_t osize = xmalloc_get_size (val);
544 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
545 XMALLOC_OVERRUN_CHECK_SIZE))
546 emacs_abort ();
547 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
548 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
549 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
550 }
551
552 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
553
554 if (val)
555 {
556 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
557 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
558 xmalloc_put_size (val, size);
559 memcpy (val + size, xmalloc_overrun_check_trailer,
560 XMALLOC_OVERRUN_CHECK_SIZE);
561 }
562 return val;
563 }
564
565 /* Like free, but checks block for overrun. */
566
567 static void
568 overrun_check_free (void *block)
569 {
570 unsigned char *val = (unsigned char *) block;
571
572 if (val
573 && memcmp (xmalloc_overrun_check_header,
574 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
575 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
576 {
577 size_t osize = xmalloc_get_size (val);
578 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
579 XMALLOC_OVERRUN_CHECK_SIZE))
580 emacs_abort ();
581 #ifdef XMALLOC_CLEAR_FREE_MEMORY
582 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
583 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
584 #else
585 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
586 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
587 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
588 #endif
589 }
590
591 free (val);
592 }
593
594 #undef malloc
595 #undef realloc
596 #undef free
597 #define malloc overrun_check_malloc
598 #define realloc overrun_check_realloc
599 #define free overrun_check_free
600 #endif
601
602 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
603 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
604 If that variable is set, block input while in one of Emacs's memory
605 allocation functions. There should be no need for this debugging
606 option, since signal handlers do not allocate memory, but Emacs
607 formerly allocated memory in signal handlers and this compile-time
608 option remains as a way to help debug the issue should it rear its
609 ugly head again. */
610 #ifdef XMALLOC_BLOCK_INPUT_CHECK
611 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
612 static void
613 malloc_block_input (void)
614 {
615 if (block_input_in_memory_allocators)
616 block_input ();
617 }
618 static void
619 malloc_unblock_input (void)
620 {
621 if (block_input_in_memory_allocators)
622 unblock_input ();
623 }
624 # define MALLOC_BLOCK_INPUT malloc_block_input ()
625 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
626 #else
627 # define MALLOC_BLOCK_INPUT ((void) 0)
628 # define MALLOC_UNBLOCK_INPUT ((void) 0)
629 #endif
630
631 #define MALLOC_PROBE(size) \
632 do { \
633 if (profiler_memory_running) \
634 malloc_probe (size); \
635 } while (0)
636
637
638 /* Like malloc but check for no memory and block interrupt input.. */
639
640 void *
641 xmalloc (size_t size)
642 {
643 void *val;
644
645 MALLOC_BLOCK_INPUT;
646 val = malloc (size);
647 MALLOC_UNBLOCK_INPUT;
648
649 if (!val && size)
650 memory_full (size);
651 MALLOC_PROBE (size);
652 return val;
653 }
654
655 /* Like the above, but zeroes out the memory just allocated. */
656
657 void *
658 xzalloc (size_t size)
659 {
660 void *val;
661
662 MALLOC_BLOCK_INPUT;
663 val = malloc (size);
664 MALLOC_UNBLOCK_INPUT;
665
666 if (!val && size)
667 memory_full (size);
668 memset (val, 0, size);
669 MALLOC_PROBE (size);
670 return val;
671 }
672
673 /* Like realloc but check for no memory and block interrupt input.. */
674
675 void *
676 xrealloc (void *block, size_t size)
677 {
678 void *val;
679
680 MALLOC_BLOCK_INPUT;
681 /* We must call malloc explicitly when BLOCK is 0, since some
682 reallocs don't do this. */
683 if (! block)
684 val = malloc (size);
685 else
686 val = realloc (block, size);
687 MALLOC_UNBLOCK_INPUT;
688
689 if (!val && size)
690 memory_full (size);
691 MALLOC_PROBE (size);
692 return val;
693 }
694
695
696 /* Like free but block interrupt input. */
697
698 void
699 xfree (void *block)
700 {
701 if (!block)
702 return;
703 MALLOC_BLOCK_INPUT;
704 free (block);
705 MALLOC_UNBLOCK_INPUT;
706 /* We don't call refill_memory_reserve here
707 because in practice the call in r_alloc_free seems to suffice. */
708 }
709
710
711 /* Other parts of Emacs pass large int values to allocator functions
712 expecting ptrdiff_t. This is portable in practice, but check it to
713 be safe. */
714 verify (INT_MAX <= PTRDIFF_MAX);
715
716
717 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
718 Signal an error on memory exhaustion, and block interrupt input. */
719
720 void *
721 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
722 {
723 eassert (0 <= nitems && 0 < item_size);
724 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
725 memory_full (SIZE_MAX);
726 return xmalloc (nitems * item_size);
727 }
728
729
730 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
731 Signal an error on memory exhaustion, and block interrupt input. */
732
733 void *
734 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
735 {
736 eassert (0 <= nitems && 0 < item_size);
737 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
738 memory_full (SIZE_MAX);
739 return xrealloc (pa, nitems * item_size);
740 }
741
742
743 /* Grow PA, which points to an array of *NITEMS items, and return the
744 location of the reallocated array, updating *NITEMS to reflect its
745 new size. The new array will contain at least NITEMS_INCR_MIN more
746 items, but will not contain more than NITEMS_MAX items total.
747 ITEM_SIZE is the size of each item, in bytes.
748
749 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
750 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
751 infinity.
752
753 If PA is null, then allocate a new array instead of reallocating
754 the old one.
755
756 Block interrupt input as needed. If memory exhaustion occurs, set
757 *NITEMS to zero if PA is null, and signal an error (i.e., do not
758 return).
759
760 Thus, to grow an array A without saving its old contents, do
761 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
762 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
763 and signals an error, and later this code is reexecuted and
764 attempts to free A. */
765
766 void *
767 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
768 ptrdiff_t nitems_max, ptrdiff_t item_size)
769 {
770 /* The approximate size to use for initial small allocation
771 requests. This is the largest "small" request for the GNU C
772 library malloc. */
773 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
774
775 /* If the array is tiny, grow it to about (but no greater than)
776 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
777 ptrdiff_t n = *nitems;
778 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
779 ptrdiff_t half_again = n >> 1;
780 ptrdiff_t incr_estimate = max (tiny_max, half_again);
781
782 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
783 NITEMS_MAX, and what the C language can represent safely. */
784 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
785 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
786 ? nitems_max : C_language_max);
787 ptrdiff_t nitems_incr_max = n_max - n;
788 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
789
790 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
791 if (! pa)
792 *nitems = 0;
793 if (nitems_incr_max < incr)
794 memory_full (SIZE_MAX);
795 n += incr;
796 pa = xrealloc (pa, n * item_size);
797 *nitems = n;
798 return pa;
799 }
800
801
802 /* Like strdup, but uses xmalloc. */
803
804 char *
805 xstrdup (const char *s)
806 {
807 ptrdiff_t size;
808 eassert (s);
809 size = strlen (s) + 1;
810 return memcpy (xmalloc (size), s, size);
811 }
812
813 /* Like above, but duplicates Lisp string to C string. */
814
815 char *
816 xlispstrdup (Lisp_Object string)
817 {
818 ptrdiff_t size = SBYTES (string) + 1;
819 return memcpy (xmalloc (size), SSDATA (string), size);
820 }
821
822 /* Like putenv, but (1) use the equivalent of xmalloc and (2) the
823 argument is a const pointer. */
824
825 void
826 xputenv (char const *string)
827 {
828 if (putenv ((char *) string) != 0)
829 memory_full (0);
830 }
831
832 /* Return a newly allocated memory block of SIZE bytes, remembering
833 to free it when unwinding. */
834 void *
835 record_xmalloc (size_t size)
836 {
837 void *p = xmalloc (size);
838 record_unwind_protect_ptr (xfree, p);
839 return p;
840 }
841
842
843 /* Like malloc but used for allocating Lisp data. NBYTES is the
844 number of bytes to allocate, TYPE describes the intended use of the
845 allocated memory block (for strings, for conses, ...). */
846
847 #if ! USE_LSB_TAG
848 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
849 #endif
850
851 static void *
852 lisp_malloc (size_t nbytes, enum mem_type type)
853 {
854 register void *val;
855
856 MALLOC_BLOCK_INPUT;
857
858 #ifdef GC_MALLOC_CHECK
859 allocated_mem_type = type;
860 #endif
861
862 val = malloc (nbytes);
863
864 #if ! USE_LSB_TAG
865 /* If the memory just allocated cannot be addressed thru a Lisp
866 object's pointer, and it needs to be,
867 that's equivalent to running out of memory. */
868 if (val && type != MEM_TYPE_NON_LISP)
869 {
870 Lisp_Object tem;
871 XSETCONS (tem, (char *) val + nbytes - 1);
872 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
873 {
874 lisp_malloc_loser = val;
875 free (val);
876 val = 0;
877 }
878 }
879 #endif
880
881 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
882 if (val && type != MEM_TYPE_NON_LISP)
883 mem_insert (val, (char *) val + nbytes, type);
884 #endif
885
886 MALLOC_UNBLOCK_INPUT;
887 if (!val && nbytes)
888 memory_full (nbytes);
889 MALLOC_PROBE (nbytes);
890 return val;
891 }
892
893 /* Free BLOCK. This must be called to free memory allocated with a
894 call to lisp_malloc. */
895
896 static void
897 lisp_free (void *block)
898 {
899 MALLOC_BLOCK_INPUT;
900 free (block);
901 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
902 mem_delete (mem_find (block));
903 #endif
904 MALLOC_UNBLOCK_INPUT;
905 }
906
907 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
908
909 /* The entry point is lisp_align_malloc which returns blocks of at most
910 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
911
912 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
913 #define USE_POSIX_MEMALIGN 1
914 #endif
915
916 /* BLOCK_ALIGN has to be a power of 2. */
917 #define BLOCK_ALIGN (1 << 10)
918
919 /* Padding to leave at the end of a malloc'd block. This is to give
920 malloc a chance to minimize the amount of memory wasted to alignment.
921 It should be tuned to the particular malloc library used.
922 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
923 posix_memalign on the other hand would ideally prefer a value of 4
924 because otherwise, there's 1020 bytes wasted between each ablocks.
925 In Emacs, testing shows that those 1020 can most of the time be
926 efficiently used by malloc to place other objects, so a value of 0 can
927 still preferable unless you have a lot of aligned blocks and virtually
928 nothing else. */
929 #define BLOCK_PADDING 0
930 #define BLOCK_BYTES \
931 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
932
933 /* Internal data structures and constants. */
934
935 #define ABLOCKS_SIZE 16
936
937 /* An aligned block of memory. */
938 struct ablock
939 {
940 union
941 {
942 char payload[BLOCK_BYTES];
943 struct ablock *next_free;
944 } x;
945 /* `abase' is the aligned base of the ablocks. */
946 /* It is overloaded to hold the virtual `busy' field that counts
947 the number of used ablock in the parent ablocks.
948 The first ablock has the `busy' field, the others have the `abase'
949 field. To tell the difference, we assume that pointers will have
950 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
951 is used to tell whether the real base of the parent ablocks is `abase'
952 (if not, the word before the first ablock holds a pointer to the
953 real base). */
954 struct ablocks *abase;
955 /* The padding of all but the last ablock is unused. The padding of
956 the last ablock in an ablocks is not allocated. */
957 #if BLOCK_PADDING
958 char padding[BLOCK_PADDING];
959 #endif
960 };
961
962 /* A bunch of consecutive aligned blocks. */
963 struct ablocks
964 {
965 struct ablock blocks[ABLOCKS_SIZE];
966 };
967
968 /* Size of the block requested from malloc or posix_memalign. */
969 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
970
971 #define ABLOCK_ABASE(block) \
972 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
973 ? (struct ablocks *)(block) \
974 : (block)->abase)
975
976 /* Virtual `busy' field. */
977 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
978
979 /* Pointer to the (not necessarily aligned) malloc block. */
980 #ifdef USE_POSIX_MEMALIGN
981 #define ABLOCKS_BASE(abase) (abase)
982 #else
983 #define ABLOCKS_BASE(abase) \
984 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
985 #endif
986
987 /* The list of free ablock. */
988 static struct ablock *free_ablock;
989
990 /* Allocate an aligned block of nbytes.
991 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
992 smaller or equal to BLOCK_BYTES. */
993 static void *
994 lisp_align_malloc (size_t nbytes, enum mem_type type)
995 {
996 void *base, *val;
997 struct ablocks *abase;
998
999 eassert (nbytes <= BLOCK_BYTES);
1000
1001 MALLOC_BLOCK_INPUT;
1002
1003 #ifdef GC_MALLOC_CHECK
1004 allocated_mem_type = type;
1005 #endif
1006
1007 if (!free_ablock)
1008 {
1009 int i;
1010 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1011
1012 #ifdef DOUG_LEA_MALLOC
1013 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1014 because mapped region contents are not preserved in
1015 a dumped Emacs. */
1016 mallopt (M_MMAP_MAX, 0);
1017 #endif
1018
1019 #ifdef USE_POSIX_MEMALIGN
1020 {
1021 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1022 if (err)
1023 base = NULL;
1024 abase = base;
1025 }
1026 #else
1027 base = malloc (ABLOCKS_BYTES);
1028 abase = ALIGN (base, BLOCK_ALIGN);
1029 #endif
1030
1031 if (base == 0)
1032 {
1033 MALLOC_UNBLOCK_INPUT;
1034 memory_full (ABLOCKS_BYTES);
1035 }
1036
1037 aligned = (base == abase);
1038 if (!aligned)
1039 ((void **) abase)[-1] = base;
1040
1041 #ifdef DOUG_LEA_MALLOC
1042 /* Back to a reasonable maximum of mmap'ed areas. */
1043 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1044 #endif
1045
1046 #if ! USE_LSB_TAG
1047 /* If the memory just allocated cannot be addressed thru a Lisp
1048 object's pointer, and it needs to be, that's equivalent to
1049 running out of memory. */
1050 if (type != MEM_TYPE_NON_LISP)
1051 {
1052 Lisp_Object tem;
1053 char *end = (char *) base + ABLOCKS_BYTES - 1;
1054 XSETCONS (tem, end);
1055 if ((char *) XCONS (tem) != end)
1056 {
1057 lisp_malloc_loser = base;
1058 free (base);
1059 MALLOC_UNBLOCK_INPUT;
1060 memory_full (SIZE_MAX);
1061 }
1062 }
1063 #endif
1064
1065 /* Initialize the blocks and put them on the free list.
1066 If `base' was not properly aligned, we can't use the last block. */
1067 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1068 {
1069 abase->blocks[i].abase = abase;
1070 abase->blocks[i].x.next_free = free_ablock;
1071 free_ablock = &abase->blocks[i];
1072 }
1073 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1074
1075 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1076 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1077 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1078 eassert (ABLOCKS_BASE (abase) == base);
1079 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1080 }
1081
1082 abase = ABLOCK_ABASE (free_ablock);
1083 ABLOCKS_BUSY (abase) =
1084 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1085 val = free_ablock;
1086 free_ablock = free_ablock->x.next_free;
1087
1088 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1089 if (type != MEM_TYPE_NON_LISP)
1090 mem_insert (val, (char *) val + nbytes, type);
1091 #endif
1092
1093 MALLOC_UNBLOCK_INPUT;
1094
1095 MALLOC_PROBE (nbytes);
1096
1097 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1098 return val;
1099 }
1100
1101 static void
1102 lisp_align_free (void *block)
1103 {
1104 struct ablock *ablock = block;
1105 struct ablocks *abase = ABLOCK_ABASE (ablock);
1106
1107 MALLOC_BLOCK_INPUT;
1108 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1109 mem_delete (mem_find (block));
1110 #endif
1111 /* Put on free list. */
1112 ablock->x.next_free = free_ablock;
1113 free_ablock = ablock;
1114 /* Update busy count. */
1115 ABLOCKS_BUSY (abase)
1116 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1117
1118 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1119 { /* All the blocks are free. */
1120 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1121 struct ablock **tem = &free_ablock;
1122 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1123
1124 while (*tem)
1125 {
1126 if (*tem >= (struct ablock *) abase && *tem < atop)
1127 {
1128 i++;
1129 *tem = (*tem)->x.next_free;
1130 }
1131 else
1132 tem = &(*tem)->x.next_free;
1133 }
1134 eassert ((aligned & 1) == aligned);
1135 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1136 #ifdef USE_POSIX_MEMALIGN
1137 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1138 #endif
1139 free (ABLOCKS_BASE (abase));
1140 }
1141 MALLOC_UNBLOCK_INPUT;
1142 }
1143
1144 \f
1145 /***********************************************************************
1146 Interval Allocation
1147 ***********************************************************************/
1148
1149 /* Number of intervals allocated in an interval_block structure.
1150 The 1020 is 1024 minus malloc overhead. */
1151
1152 #define INTERVAL_BLOCK_SIZE \
1153 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1154
1155 /* Intervals are allocated in chunks in the form of an interval_block
1156 structure. */
1157
1158 struct interval_block
1159 {
1160 /* Place `intervals' first, to preserve alignment. */
1161 struct interval intervals[INTERVAL_BLOCK_SIZE];
1162 struct interval_block *next;
1163 };
1164
1165 /* Current interval block. Its `next' pointer points to older
1166 blocks. */
1167
1168 static struct interval_block *interval_block;
1169
1170 /* Index in interval_block above of the next unused interval
1171 structure. */
1172
1173 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1174
1175 /* Number of free and live intervals. */
1176
1177 static EMACS_INT total_free_intervals, total_intervals;
1178
1179 /* List of free intervals. */
1180
1181 static INTERVAL interval_free_list;
1182
1183 /* Return a new interval. */
1184
1185 INTERVAL
1186 make_interval (void)
1187 {
1188 INTERVAL val;
1189
1190 MALLOC_BLOCK_INPUT;
1191
1192 if (interval_free_list)
1193 {
1194 val = interval_free_list;
1195 interval_free_list = INTERVAL_PARENT (interval_free_list);
1196 }
1197 else
1198 {
1199 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1200 {
1201 struct interval_block *newi
1202 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1203
1204 newi->next = interval_block;
1205 interval_block = newi;
1206 interval_block_index = 0;
1207 total_free_intervals += INTERVAL_BLOCK_SIZE;
1208 }
1209 val = &interval_block->intervals[interval_block_index++];
1210 }
1211
1212 MALLOC_UNBLOCK_INPUT;
1213
1214 consing_since_gc += sizeof (struct interval);
1215 intervals_consed++;
1216 total_free_intervals--;
1217 RESET_INTERVAL (val);
1218 val->gcmarkbit = 0;
1219 return val;
1220 }
1221
1222
1223 /* Mark Lisp objects in interval I. */
1224
1225 static void
1226 mark_interval (register INTERVAL i, Lisp_Object dummy)
1227 {
1228 /* Intervals should never be shared. So, if extra internal checking is
1229 enabled, GC aborts if it seems to have visited an interval twice. */
1230 eassert (!i->gcmarkbit);
1231 i->gcmarkbit = 1;
1232 mark_object (i->plist);
1233 }
1234
1235 /* Mark the interval tree rooted in I. */
1236
1237 #define MARK_INTERVAL_TREE(i) \
1238 do { \
1239 if (i && !i->gcmarkbit) \
1240 traverse_intervals_noorder (i, mark_interval, Qnil); \
1241 } while (0)
1242
1243 /***********************************************************************
1244 String Allocation
1245 ***********************************************************************/
1246
1247 /* Lisp_Strings are allocated in string_block structures. When a new
1248 string_block is allocated, all the Lisp_Strings it contains are
1249 added to a free-list string_free_list. When a new Lisp_String is
1250 needed, it is taken from that list. During the sweep phase of GC,
1251 string_blocks that are entirely free are freed, except two which
1252 we keep.
1253
1254 String data is allocated from sblock structures. Strings larger
1255 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1256 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1257
1258 Sblocks consist internally of sdata structures, one for each
1259 Lisp_String. The sdata structure points to the Lisp_String it
1260 belongs to. The Lisp_String points back to the `u.data' member of
1261 its sdata structure.
1262
1263 When a Lisp_String is freed during GC, it is put back on
1264 string_free_list, and its `data' member and its sdata's `string'
1265 pointer is set to null. The size of the string is recorded in the
1266 `n.nbytes' member of the sdata. So, sdata structures that are no
1267 longer used, can be easily recognized, and it's easy to compact the
1268 sblocks of small strings which we do in compact_small_strings. */
1269
1270 /* Size in bytes of an sblock structure used for small strings. This
1271 is 8192 minus malloc overhead. */
1272
1273 #define SBLOCK_SIZE 8188
1274
1275 /* Strings larger than this are considered large strings. String data
1276 for large strings is allocated from individual sblocks. */
1277
1278 #define LARGE_STRING_BYTES 1024
1279
1280 /* Struct or union describing string memory sub-allocated from an sblock.
1281 This is where the contents of Lisp strings are stored. */
1282
1283 #ifdef GC_CHECK_STRING_BYTES
1284
1285 typedef struct
1286 {
1287 /* Back-pointer to the string this sdata belongs to. If null, this
1288 structure is free, and the NBYTES member of the union below
1289 contains the string's byte size (the same value that STRING_BYTES
1290 would return if STRING were non-null). If non-null, STRING_BYTES
1291 (STRING) is the size of the data, and DATA contains the string's
1292 contents. */
1293 struct Lisp_String *string;
1294
1295 ptrdiff_t nbytes;
1296 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1297 } sdata;
1298
1299 #define SDATA_NBYTES(S) (S)->nbytes
1300 #define SDATA_DATA(S) (S)->data
1301 #define SDATA_SELECTOR(member) member
1302
1303 #else
1304
1305 typedef union
1306 {
1307 struct Lisp_String *string;
1308
1309 /* When STRING is non-null. */
1310 struct
1311 {
1312 struct Lisp_String *string;
1313 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1314 } u;
1315
1316 /* When STRING is null. */
1317 struct
1318 {
1319 struct Lisp_String *string;
1320 ptrdiff_t nbytes;
1321 } n;
1322 } sdata;
1323
1324 #define SDATA_NBYTES(S) (S)->n.nbytes
1325 #define SDATA_DATA(S) (S)->u.data
1326 #define SDATA_SELECTOR(member) u.member
1327
1328 #endif /* not GC_CHECK_STRING_BYTES */
1329
1330 #define SDATA_DATA_OFFSET offsetof (sdata, SDATA_SELECTOR (data))
1331
1332
1333 /* Structure describing a block of memory which is sub-allocated to
1334 obtain string data memory for strings. Blocks for small strings
1335 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1336 as large as needed. */
1337
1338 struct sblock
1339 {
1340 /* Next in list. */
1341 struct sblock *next;
1342
1343 /* Pointer to the next free sdata block. This points past the end
1344 of the sblock if there isn't any space left in this block. */
1345 sdata *next_free;
1346
1347 /* Start of data. */
1348 sdata first_data;
1349 };
1350
1351 /* Number of Lisp strings in a string_block structure. The 1020 is
1352 1024 minus malloc overhead. */
1353
1354 #define STRING_BLOCK_SIZE \
1355 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1356
1357 /* Structure describing a block from which Lisp_String structures
1358 are allocated. */
1359
1360 struct string_block
1361 {
1362 /* Place `strings' first, to preserve alignment. */
1363 struct Lisp_String strings[STRING_BLOCK_SIZE];
1364 struct string_block *next;
1365 };
1366
1367 /* Head and tail of the list of sblock structures holding Lisp string
1368 data. We always allocate from current_sblock. The NEXT pointers
1369 in the sblock structures go from oldest_sblock to current_sblock. */
1370
1371 static struct sblock *oldest_sblock, *current_sblock;
1372
1373 /* List of sblocks for large strings. */
1374
1375 static struct sblock *large_sblocks;
1376
1377 /* List of string_block structures. */
1378
1379 static struct string_block *string_blocks;
1380
1381 /* Free-list of Lisp_Strings. */
1382
1383 static struct Lisp_String *string_free_list;
1384
1385 /* Number of live and free Lisp_Strings. */
1386
1387 static EMACS_INT total_strings, total_free_strings;
1388
1389 /* Number of bytes used by live strings. */
1390
1391 static EMACS_INT total_string_bytes;
1392
1393 /* Given a pointer to a Lisp_String S which is on the free-list
1394 string_free_list, return a pointer to its successor in the
1395 free-list. */
1396
1397 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1398
1399 /* Return a pointer to the sdata structure belonging to Lisp string S.
1400 S must be live, i.e. S->data must not be null. S->data is actually
1401 a pointer to the `u.data' member of its sdata structure; the
1402 structure starts at a constant offset in front of that. */
1403
1404 #define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1405
1406
1407 #ifdef GC_CHECK_STRING_OVERRUN
1408
1409 /* We check for overrun in string data blocks by appending a small
1410 "cookie" after each allocated string data block, and check for the
1411 presence of this cookie during GC. */
1412
1413 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1414 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1415 { '\xde', '\xad', '\xbe', '\xef' };
1416
1417 #else
1418 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1419 #endif
1420
1421 /* Value is the size of an sdata structure large enough to hold NBYTES
1422 bytes of string data. The value returned includes a terminating
1423 NUL byte, the size of the sdata structure, and padding. */
1424
1425 #ifdef GC_CHECK_STRING_BYTES
1426
1427 #define SDATA_SIZE(NBYTES) \
1428 ((SDATA_DATA_OFFSET \
1429 + (NBYTES) + 1 \
1430 + sizeof (ptrdiff_t) - 1) \
1431 & ~(sizeof (ptrdiff_t) - 1))
1432
1433 #else /* not GC_CHECK_STRING_BYTES */
1434
1435 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1436 less than the size of that member. The 'max' is not needed when
1437 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1438 alignment code reserves enough space. */
1439
1440 #define SDATA_SIZE(NBYTES) \
1441 ((SDATA_DATA_OFFSET \
1442 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1443 ? NBYTES \
1444 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1445 + 1 \
1446 + sizeof (ptrdiff_t) - 1) \
1447 & ~(sizeof (ptrdiff_t) - 1))
1448
1449 #endif /* not GC_CHECK_STRING_BYTES */
1450
1451 /* Extra bytes to allocate for each string. */
1452
1453 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1454
1455 /* Exact bound on the number of bytes in a string, not counting the
1456 terminating null. A string cannot contain more bytes than
1457 STRING_BYTES_BOUND, nor can it be so long that the size_t
1458 arithmetic in allocate_string_data would overflow while it is
1459 calculating a value to be passed to malloc. */
1460 static ptrdiff_t const STRING_BYTES_MAX =
1461 min (STRING_BYTES_BOUND,
1462 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1463 - GC_STRING_EXTRA
1464 - offsetof (struct sblock, first_data)
1465 - SDATA_DATA_OFFSET)
1466 & ~(sizeof (EMACS_INT) - 1)));
1467
1468 /* Initialize string allocation. Called from init_alloc_once. */
1469
1470 static void
1471 init_strings (void)
1472 {
1473 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1474 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1475 }
1476
1477
1478 #ifdef GC_CHECK_STRING_BYTES
1479
1480 static int check_string_bytes_count;
1481
1482 /* Like STRING_BYTES, but with debugging check. Can be
1483 called during GC, so pay attention to the mark bit. */
1484
1485 ptrdiff_t
1486 string_bytes (struct Lisp_String *s)
1487 {
1488 ptrdiff_t nbytes =
1489 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1490
1491 if (!PURE_POINTER_P (s)
1492 && s->data
1493 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1494 emacs_abort ();
1495 return nbytes;
1496 }
1497
1498 /* Check validity of Lisp strings' string_bytes member in B. */
1499
1500 static void
1501 check_sblock (struct sblock *b)
1502 {
1503 sdata *from, *end, *from_end;
1504
1505 end = b->next_free;
1506
1507 for (from = &b->first_data; from < end; from = from_end)
1508 {
1509 /* Compute the next FROM here because copying below may
1510 overwrite data we need to compute it. */
1511 ptrdiff_t nbytes;
1512
1513 /* Check that the string size recorded in the string is the
1514 same as the one recorded in the sdata structure. */
1515 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1516 : SDATA_NBYTES (from));
1517 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1518 }
1519 }
1520
1521
1522 /* Check validity of Lisp strings' string_bytes member. ALL_P
1523 means check all strings, otherwise check only most
1524 recently allocated strings. Used for hunting a bug. */
1525
1526 static void
1527 check_string_bytes (bool all_p)
1528 {
1529 if (all_p)
1530 {
1531 struct sblock *b;
1532
1533 for (b = large_sblocks; b; b = b->next)
1534 {
1535 struct Lisp_String *s = b->first_data.string;
1536 if (s)
1537 string_bytes (s);
1538 }
1539
1540 for (b = oldest_sblock; b; b = b->next)
1541 check_sblock (b);
1542 }
1543 else if (current_sblock)
1544 check_sblock (current_sblock);
1545 }
1546
1547 #else /* not GC_CHECK_STRING_BYTES */
1548
1549 #define check_string_bytes(all) ((void) 0)
1550
1551 #endif /* GC_CHECK_STRING_BYTES */
1552
1553 #ifdef GC_CHECK_STRING_FREE_LIST
1554
1555 /* Walk through the string free list looking for bogus next pointers.
1556 This may catch buffer overrun from a previous string. */
1557
1558 static void
1559 check_string_free_list (void)
1560 {
1561 struct Lisp_String *s;
1562
1563 /* Pop a Lisp_String off the free-list. */
1564 s = string_free_list;
1565 while (s != NULL)
1566 {
1567 if ((uintptr_t) s < 1024)
1568 emacs_abort ();
1569 s = NEXT_FREE_LISP_STRING (s);
1570 }
1571 }
1572 #else
1573 #define check_string_free_list()
1574 #endif
1575
1576 /* Return a new Lisp_String. */
1577
1578 static struct Lisp_String *
1579 allocate_string (void)
1580 {
1581 struct Lisp_String *s;
1582
1583 MALLOC_BLOCK_INPUT;
1584
1585 /* If the free-list is empty, allocate a new string_block, and
1586 add all the Lisp_Strings in it to the free-list. */
1587 if (string_free_list == NULL)
1588 {
1589 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1590 int i;
1591
1592 b->next = string_blocks;
1593 string_blocks = b;
1594
1595 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1596 {
1597 s = b->strings + i;
1598 /* Every string on a free list should have NULL data pointer. */
1599 s->data = NULL;
1600 NEXT_FREE_LISP_STRING (s) = string_free_list;
1601 string_free_list = s;
1602 }
1603
1604 total_free_strings += STRING_BLOCK_SIZE;
1605 }
1606
1607 check_string_free_list ();
1608
1609 /* Pop a Lisp_String off the free-list. */
1610 s = string_free_list;
1611 string_free_list = NEXT_FREE_LISP_STRING (s);
1612
1613 MALLOC_UNBLOCK_INPUT;
1614
1615 --total_free_strings;
1616 ++total_strings;
1617 ++strings_consed;
1618 consing_since_gc += sizeof *s;
1619
1620 #ifdef GC_CHECK_STRING_BYTES
1621 if (!noninteractive)
1622 {
1623 if (++check_string_bytes_count == 200)
1624 {
1625 check_string_bytes_count = 0;
1626 check_string_bytes (1);
1627 }
1628 else
1629 check_string_bytes (0);
1630 }
1631 #endif /* GC_CHECK_STRING_BYTES */
1632
1633 return s;
1634 }
1635
1636
1637 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1638 plus a NUL byte at the end. Allocate an sdata structure for S, and
1639 set S->data to its `u.data' member. Store a NUL byte at the end of
1640 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1641 S->data if it was initially non-null. */
1642
1643 void
1644 allocate_string_data (struct Lisp_String *s,
1645 EMACS_INT nchars, EMACS_INT nbytes)
1646 {
1647 sdata *data, *old_data;
1648 struct sblock *b;
1649 ptrdiff_t needed, old_nbytes;
1650
1651 if (STRING_BYTES_MAX < nbytes)
1652 string_overflow ();
1653
1654 /* Determine the number of bytes needed to store NBYTES bytes
1655 of string data. */
1656 needed = SDATA_SIZE (nbytes);
1657 if (s->data)
1658 {
1659 old_data = SDATA_OF_STRING (s);
1660 old_nbytes = STRING_BYTES (s);
1661 }
1662 else
1663 old_data = NULL;
1664
1665 MALLOC_BLOCK_INPUT;
1666
1667 if (nbytes > LARGE_STRING_BYTES)
1668 {
1669 size_t size = offsetof (struct sblock, first_data) + needed;
1670
1671 #ifdef DOUG_LEA_MALLOC
1672 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1673 because mapped region contents are not preserved in
1674 a dumped Emacs.
1675
1676 In case you think of allowing it in a dumped Emacs at the
1677 cost of not being able to re-dump, there's another reason:
1678 mmap'ed data typically have an address towards the top of the
1679 address space, which won't fit into an EMACS_INT (at least on
1680 32-bit systems with the current tagging scheme). --fx */
1681 mallopt (M_MMAP_MAX, 0);
1682 #endif
1683
1684 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1685
1686 #ifdef DOUG_LEA_MALLOC
1687 /* Back to a reasonable maximum of mmap'ed areas. */
1688 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1689 #endif
1690
1691 b->next_free = &b->first_data;
1692 b->first_data.string = NULL;
1693 b->next = large_sblocks;
1694 large_sblocks = b;
1695 }
1696 else if (current_sblock == NULL
1697 || (((char *) current_sblock + SBLOCK_SIZE
1698 - (char *) current_sblock->next_free)
1699 < (needed + GC_STRING_EXTRA)))
1700 {
1701 /* Not enough room in the current sblock. */
1702 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1703 b->next_free = &b->first_data;
1704 b->first_data.string = NULL;
1705 b->next = NULL;
1706
1707 if (current_sblock)
1708 current_sblock->next = b;
1709 else
1710 oldest_sblock = b;
1711 current_sblock = b;
1712 }
1713 else
1714 b = current_sblock;
1715
1716 data = b->next_free;
1717 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1718
1719 MALLOC_UNBLOCK_INPUT;
1720
1721 data->string = s;
1722 s->data = SDATA_DATA (data);
1723 #ifdef GC_CHECK_STRING_BYTES
1724 SDATA_NBYTES (data) = nbytes;
1725 #endif
1726 s->size = nchars;
1727 s->size_byte = nbytes;
1728 s->data[nbytes] = '\0';
1729 #ifdef GC_CHECK_STRING_OVERRUN
1730 memcpy ((char *) data + needed, string_overrun_cookie,
1731 GC_STRING_OVERRUN_COOKIE_SIZE);
1732 #endif
1733
1734 /* Note that Faset may call to this function when S has already data
1735 assigned. In this case, mark data as free by setting it's string
1736 back-pointer to null, and record the size of the data in it. */
1737 if (old_data)
1738 {
1739 SDATA_NBYTES (old_data) = old_nbytes;
1740 old_data->string = NULL;
1741 }
1742
1743 consing_since_gc += needed;
1744 }
1745
1746
1747 /* Sweep and compact strings. */
1748
1749 static void
1750 sweep_strings (void)
1751 {
1752 struct string_block *b, *next;
1753 struct string_block *live_blocks = NULL;
1754
1755 string_free_list = NULL;
1756 total_strings = total_free_strings = 0;
1757 total_string_bytes = 0;
1758
1759 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1760 for (b = string_blocks; b; b = next)
1761 {
1762 int i, nfree = 0;
1763 struct Lisp_String *free_list_before = string_free_list;
1764
1765 next = b->next;
1766
1767 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1768 {
1769 struct Lisp_String *s = b->strings + i;
1770
1771 if (s->data)
1772 {
1773 /* String was not on free-list before. */
1774 if (STRING_MARKED_P (s))
1775 {
1776 /* String is live; unmark it and its intervals. */
1777 UNMARK_STRING (s);
1778
1779 /* Do not use string_(set|get)_intervals here. */
1780 s->intervals = balance_intervals (s->intervals);
1781
1782 ++total_strings;
1783 total_string_bytes += STRING_BYTES (s);
1784 }
1785 else
1786 {
1787 /* String is dead. Put it on the free-list. */
1788 sdata *data = SDATA_OF_STRING (s);
1789
1790 /* Save the size of S in its sdata so that we know
1791 how large that is. Reset the sdata's string
1792 back-pointer so that we know it's free. */
1793 #ifdef GC_CHECK_STRING_BYTES
1794 if (string_bytes (s) != SDATA_NBYTES (data))
1795 emacs_abort ();
1796 #else
1797 data->n.nbytes = STRING_BYTES (s);
1798 #endif
1799 data->string = NULL;
1800
1801 /* Reset the strings's `data' member so that we
1802 know it's free. */
1803 s->data = NULL;
1804
1805 /* Put the string on the free-list. */
1806 NEXT_FREE_LISP_STRING (s) = string_free_list;
1807 string_free_list = s;
1808 ++nfree;
1809 }
1810 }
1811 else
1812 {
1813 /* S was on the free-list before. Put it there again. */
1814 NEXT_FREE_LISP_STRING (s) = string_free_list;
1815 string_free_list = s;
1816 ++nfree;
1817 }
1818 }
1819
1820 /* Free blocks that contain free Lisp_Strings only, except
1821 the first two of them. */
1822 if (nfree == STRING_BLOCK_SIZE
1823 && total_free_strings > STRING_BLOCK_SIZE)
1824 {
1825 lisp_free (b);
1826 string_free_list = free_list_before;
1827 }
1828 else
1829 {
1830 total_free_strings += nfree;
1831 b->next = live_blocks;
1832 live_blocks = b;
1833 }
1834 }
1835
1836 check_string_free_list ();
1837
1838 string_blocks = live_blocks;
1839 free_large_strings ();
1840 compact_small_strings ();
1841
1842 check_string_free_list ();
1843 }
1844
1845
1846 /* Free dead large strings. */
1847
1848 static void
1849 free_large_strings (void)
1850 {
1851 struct sblock *b, *next;
1852 struct sblock *live_blocks = NULL;
1853
1854 for (b = large_sblocks; b; b = next)
1855 {
1856 next = b->next;
1857
1858 if (b->first_data.string == NULL)
1859 lisp_free (b);
1860 else
1861 {
1862 b->next = live_blocks;
1863 live_blocks = b;
1864 }
1865 }
1866
1867 large_sblocks = live_blocks;
1868 }
1869
1870
1871 /* Compact data of small strings. Free sblocks that don't contain
1872 data of live strings after compaction. */
1873
1874 static void
1875 compact_small_strings (void)
1876 {
1877 struct sblock *b, *tb, *next;
1878 sdata *from, *to, *end, *tb_end;
1879 sdata *to_end, *from_end;
1880
1881 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1882 to, and TB_END is the end of TB. */
1883 tb = oldest_sblock;
1884 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1885 to = &tb->first_data;
1886
1887 /* Step through the blocks from the oldest to the youngest. We
1888 expect that old blocks will stabilize over time, so that less
1889 copying will happen this way. */
1890 for (b = oldest_sblock; b; b = b->next)
1891 {
1892 end = b->next_free;
1893 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1894
1895 for (from = &b->first_data; from < end; from = from_end)
1896 {
1897 /* Compute the next FROM here because copying below may
1898 overwrite data we need to compute it. */
1899 ptrdiff_t nbytes;
1900 struct Lisp_String *s = from->string;
1901
1902 #ifdef GC_CHECK_STRING_BYTES
1903 /* Check that the string size recorded in the string is the
1904 same as the one recorded in the sdata structure. */
1905 if (s && string_bytes (s) != SDATA_NBYTES (from))
1906 emacs_abort ();
1907 #endif /* GC_CHECK_STRING_BYTES */
1908
1909 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1910 eassert (nbytes <= LARGE_STRING_BYTES);
1911
1912 nbytes = SDATA_SIZE (nbytes);
1913 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1914
1915 #ifdef GC_CHECK_STRING_OVERRUN
1916 if (memcmp (string_overrun_cookie,
1917 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1918 GC_STRING_OVERRUN_COOKIE_SIZE))
1919 emacs_abort ();
1920 #endif
1921
1922 /* Non-NULL S means it's alive. Copy its data. */
1923 if (s)
1924 {
1925 /* If TB is full, proceed with the next sblock. */
1926 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1927 if (to_end > tb_end)
1928 {
1929 tb->next_free = to;
1930 tb = tb->next;
1931 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1932 to = &tb->first_data;
1933 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1934 }
1935
1936 /* Copy, and update the string's `data' pointer. */
1937 if (from != to)
1938 {
1939 eassert (tb != b || to < from);
1940 memmove (to, from, nbytes + GC_STRING_EXTRA);
1941 to->string->data = SDATA_DATA (to);
1942 }
1943
1944 /* Advance past the sdata we copied to. */
1945 to = to_end;
1946 }
1947 }
1948 }
1949
1950 /* The rest of the sblocks following TB don't contain live data, so
1951 we can free them. */
1952 for (b = tb->next; b; b = next)
1953 {
1954 next = b->next;
1955 lisp_free (b);
1956 }
1957
1958 tb->next_free = to;
1959 tb->next = NULL;
1960 current_sblock = tb;
1961 }
1962
1963 void
1964 string_overflow (void)
1965 {
1966 error ("Maximum string size exceeded");
1967 }
1968
1969 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1970 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1971 LENGTH must be an integer.
1972 INIT must be an integer that represents a character. */)
1973 (Lisp_Object length, Lisp_Object init)
1974 {
1975 register Lisp_Object val;
1976 register unsigned char *p, *end;
1977 int c;
1978 EMACS_INT nbytes;
1979
1980 CHECK_NATNUM (length);
1981 CHECK_CHARACTER (init);
1982
1983 c = XFASTINT (init);
1984 if (ASCII_CHAR_P (c))
1985 {
1986 nbytes = XINT (length);
1987 val = make_uninit_string (nbytes);
1988 p = SDATA (val);
1989 end = p + SCHARS (val);
1990 while (p != end)
1991 *p++ = c;
1992 }
1993 else
1994 {
1995 unsigned char str[MAX_MULTIBYTE_LENGTH];
1996 int len = CHAR_STRING (c, str);
1997 EMACS_INT string_len = XINT (length);
1998
1999 if (string_len > STRING_BYTES_MAX / len)
2000 string_overflow ();
2001 nbytes = len * string_len;
2002 val = make_uninit_multibyte_string (string_len, nbytes);
2003 p = SDATA (val);
2004 end = p + nbytes;
2005 while (p != end)
2006 {
2007 memcpy (p, str, len);
2008 p += len;
2009 }
2010 }
2011
2012 *p = 0;
2013 return val;
2014 }
2015
2016 verify (sizeof (size_t) * CHAR_BIT == BITS_PER_SIZE_T);
2017 verify ((BITS_PER_SIZE_T & (BITS_PER_SIZE_T - 1)) == 0);
2018
2019 static ptrdiff_t
2020 bool_vector_payload_bytes (ptrdiff_t nr_bits,
2021 ptrdiff_t *exact_needed_bytes_out)
2022 {
2023 ptrdiff_t exact_needed_bytes;
2024 ptrdiff_t needed_bytes;
2025
2026 eassert_and_assume (nr_bits >= 0);
2027
2028 exact_needed_bytes = ROUNDUP ((size_t) nr_bits, CHAR_BIT) / CHAR_BIT;
2029 needed_bytes = ROUNDUP ((size_t) nr_bits, BITS_PER_SIZE_T) / CHAR_BIT;
2030
2031 if (needed_bytes == 0)
2032 {
2033 /* Always allocate at least one machine word of payload so that
2034 bool-vector operations in data.c don't need a special case
2035 for empty vectors. */
2036 needed_bytes = sizeof (size_t);
2037 }
2038
2039 if (exact_needed_bytes_out != NULL)
2040 *exact_needed_bytes_out = exact_needed_bytes;
2041
2042 return needed_bytes;
2043 }
2044
2045 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2046 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2047 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2048 (Lisp_Object length, Lisp_Object init)
2049 {
2050 register Lisp_Object val;
2051 struct Lisp_Bool_Vector *p;
2052 ptrdiff_t exact_payload_bytes;
2053 ptrdiff_t total_payload_bytes;
2054 ptrdiff_t needed_elements;
2055
2056 CHECK_NATNUM (length);
2057 if (PTRDIFF_MAX < XFASTINT (length))
2058 memory_full (SIZE_MAX);
2059
2060 total_payload_bytes = bool_vector_payload_bytes
2061 (XFASTINT (length), &exact_payload_bytes);
2062
2063 eassert_and_assume (exact_payload_bytes <= total_payload_bytes);
2064 eassert_and_assume (0 <= exact_payload_bytes);
2065
2066 needed_elements = ROUNDUP ((size_t) ((bool_header_size - header_size)
2067 + total_payload_bytes),
2068 word_size) / word_size;
2069
2070 p = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2071 XSETVECTOR (val, p);
2072 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2073
2074 p->size = XFASTINT (length);
2075 if (exact_payload_bytes)
2076 {
2077 memset (p->data, ! NILP (init) ? -1 : 0, exact_payload_bytes);
2078
2079 /* Clear any extraneous bits in the last byte. */
2080 p->data[exact_payload_bytes - 1]
2081 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2082 }
2083
2084 /* Clear padding at the end. */
2085 memset (p->data + exact_payload_bytes,
2086 0,
2087 total_payload_bytes - exact_payload_bytes);
2088
2089 return val;
2090 }
2091
2092
2093 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2094 of characters from the contents. This string may be unibyte or
2095 multibyte, depending on the contents. */
2096
2097 Lisp_Object
2098 make_string (const char *contents, ptrdiff_t nbytes)
2099 {
2100 register Lisp_Object val;
2101 ptrdiff_t nchars, multibyte_nbytes;
2102
2103 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2104 &nchars, &multibyte_nbytes);
2105 if (nbytes == nchars || nbytes != multibyte_nbytes)
2106 /* CONTENTS contains no multibyte sequences or contains an invalid
2107 multibyte sequence. We must make unibyte string. */
2108 val = make_unibyte_string (contents, nbytes);
2109 else
2110 val = make_multibyte_string (contents, nchars, nbytes);
2111 return val;
2112 }
2113
2114
2115 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2116
2117 Lisp_Object
2118 make_unibyte_string (const char *contents, ptrdiff_t length)
2119 {
2120 register Lisp_Object val;
2121 val = make_uninit_string (length);
2122 memcpy (SDATA (val), contents, length);
2123 return val;
2124 }
2125
2126
2127 /* Make a multibyte string from NCHARS characters occupying NBYTES
2128 bytes at CONTENTS. */
2129
2130 Lisp_Object
2131 make_multibyte_string (const char *contents,
2132 ptrdiff_t nchars, ptrdiff_t nbytes)
2133 {
2134 register Lisp_Object val;
2135 val = make_uninit_multibyte_string (nchars, nbytes);
2136 memcpy (SDATA (val), contents, nbytes);
2137 return val;
2138 }
2139
2140
2141 /* Make a string from NCHARS characters occupying NBYTES bytes at
2142 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2143
2144 Lisp_Object
2145 make_string_from_bytes (const char *contents,
2146 ptrdiff_t nchars, ptrdiff_t nbytes)
2147 {
2148 register Lisp_Object val;
2149 val = make_uninit_multibyte_string (nchars, nbytes);
2150 memcpy (SDATA (val), contents, nbytes);
2151 if (SBYTES (val) == SCHARS (val))
2152 STRING_SET_UNIBYTE (val);
2153 return val;
2154 }
2155
2156
2157 /* Make a string from NCHARS characters occupying NBYTES bytes at
2158 CONTENTS. The argument MULTIBYTE controls whether to label the
2159 string as multibyte. If NCHARS is negative, it counts the number of
2160 characters by itself. */
2161
2162 Lisp_Object
2163 make_specified_string (const char *contents,
2164 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2165 {
2166 Lisp_Object val;
2167
2168 if (nchars < 0)
2169 {
2170 if (multibyte)
2171 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2172 nbytes);
2173 else
2174 nchars = nbytes;
2175 }
2176 val = make_uninit_multibyte_string (nchars, nbytes);
2177 memcpy (SDATA (val), contents, nbytes);
2178 if (!multibyte)
2179 STRING_SET_UNIBYTE (val);
2180 return val;
2181 }
2182
2183
2184 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2185 occupying LENGTH bytes. */
2186
2187 Lisp_Object
2188 make_uninit_string (EMACS_INT length)
2189 {
2190 Lisp_Object val;
2191
2192 if (!length)
2193 return empty_unibyte_string;
2194 val = make_uninit_multibyte_string (length, length);
2195 STRING_SET_UNIBYTE (val);
2196 return val;
2197 }
2198
2199
2200 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2201 which occupy NBYTES bytes. */
2202
2203 Lisp_Object
2204 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2205 {
2206 Lisp_Object string;
2207 struct Lisp_String *s;
2208
2209 if (nchars < 0)
2210 emacs_abort ();
2211 if (!nbytes)
2212 return empty_multibyte_string;
2213
2214 s = allocate_string ();
2215 s->intervals = NULL;
2216 allocate_string_data (s, nchars, nbytes);
2217 XSETSTRING (string, s);
2218 string_chars_consed += nbytes;
2219 return string;
2220 }
2221
2222 /* Print arguments to BUF according to a FORMAT, then return
2223 a Lisp_String initialized with the data from BUF. */
2224
2225 Lisp_Object
2226 make_formatted_string (char *buf, const char *format, ...)
2227 {
2228 va_list ap;
2229 int length;
2230
2231 va_start (ap, format);
2232 length = vsprintf (buf, format, ap);
2233 va_end (ap);
2234 return make_string (buf, length);
2235 }
2236
2237 \f
2238 /***********************************************************************
2239 Float Allocation
2240 ***********************************************************************/
2241
2242 /* We store float cells inside of float_blocks, allocating a new
2243 float_block with malloc whenever necessary. Float cells reclaimed
2244 by GC are put on a free list to be reallocated before allocating
2245 any new float cells from the latest float_block. */
2246
2247 #define FLOAT_BLOCK_SIZE \
2248 (((BLOCK_BYTES - sizeof (struct float_block *) \
2249 /* The compiler might add padding at the end. */ \
2250 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2251 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2252
2253 #define GETMARKBIT(block,n) \
2254 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2255 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2256 & 1)
2257
2258 #define SETMARKBIT(block,n) \
2259 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2260 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2261
2262 #define UNSETMARKBIT(block,n) \
2263 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2264 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2265
2266 #define FLOAT_BLOCK(fptr) \
2267 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2268
2269 #define FLOAT_INDEX(fptr) \
2270 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2271
2272 struct float_block
2273 {
2274 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2275 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2276 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2277 struct float_block *next;
2278 };
2279
2280 #define FLOAT_MARKED_P(fptr) \
2281 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2282
2283 #define FLOAT_MARK(fptr) \
2284 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2285
2286 #define FLOAT_UNMARK(fptr) \
2287 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2288
2289 /* Current float_block. */
2290
2291 static struct float_block *float_block;
2292
2293 /* Index of first unused Lisp_Float in the current float_block. */
2294
2295 static int float_block_index = FLOAT_BLOCK_SIZE;
2296
2297 /* Free-list of Lisp_Floats. */
2298
2299 static struct Lisp_Float *float_free_list;
2300
2301 /* Return a new float object with value FLOAT_VALUE. */
2302
2303 Lisp_Object
2304 make_float (double float_value)
2305 {
2306 register Lisp_Object val;
2307
2308 MALLOC_BLOCK_INPUT;
2309
2310 if (float_free_list)
2311 {
2312 /* We use the data field for chaining the free list
2313 so that we won't use the same field that has the mark bit. */
2314 XSETFLOAT (val, float_free_list);
2315 float_free_list = float_free_list->u.chain;
2316 }
2317 else
2318 {
2319 if (float_block_index == FLOAT_BLOCK_SIZE)
2320 {
2321 struct float_block *new
2322 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2323 new->next = float_block;
2324 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2325 float_block = new;
2326 float_block_index = 0;
2327 total_free_floats += FLOAT_BLOCK_SIZE;
2328 }
2329 XSETFLOAT (val, &float_block->floats[float_block_index]);
2330 float_block_index++;
2331 }
2332
2333 MALLOC_UNBLOCK_INPUT;
2334
2335 XFLOAT_INIT (val, float_value);
2336 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2337 consing_since_gc += sizeof (struct Lisp_Float);
2338 floats_consed++;
2339 total_free_floats--;
2340 return val;
2341 }
2342
2343
2344 \f
2345 /***********************************************************************
2346 Cons Allocation
2347 ***********************************************************************/
2348
2349 /* We store cons cells inside of cons_blocks, allocating a new
2350 cons_block with malloc whenever necessary. Cons cells reclaimed by
2351 GC are put on a free list to be reallocated before allocating
2352 any new cons cells from the latest cons_block. */
2353
2354 #define CONS_BLOCK_SIZE \
2355 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2356 /* The compiler might add padding at the end. */ \
2357 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2358 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2359
2360 #define CONS_BLOCK(fptr) \
2361 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2362
2363 #define CONS_INDEX(fptr) \
2364 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2365
2366 struct cons_block
2367 {
2368 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2369 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2370 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2371 struct cons_block *next;
2372 };
2373
2374 #define CONS_MARKED_P(fptr) \
2375 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2376
2377 #define CONS_MARK(fptr) \
2378 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2379
2380 #define CONS_UNMARK(fptr) \
2381 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2382
2383 /* Current cons_block. */
2384
2385 static struct cons_block *cons_block;
2386
2387 /* Index of first unused Lisp_Cons in the current block. */
2388
2389 static int cons_block_index = CONS_BLOCK_SIZE;
2390
2391 /* Free-list of Lisp_Cons structures. */
2392
2393 static struct Lisp_Cons *cons_free_list;
2394
2395 /* Explicitly free a cons cell by putting it on the free-list. */
2396
2397 void
2398 free_cons (struct Lisp_Cons *ptr)
2399 {
2400 ptr->u.chain = cons_free_list;
2401 #if GC_MARK_STACK
2402 ptr->car = Vdead;
2403 #endif
2404 cons_free_list = ptr;
2405 consing_since_gc -= sizeof *ptr;
2406 total_free_conses++;
2407 }
2408
2409 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2410 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2411 (Lisp_Object car, Lisp_Object cdr)
2412 {
2413 register Lisp_Object val;
2414
2415 MALLOC_BLOCK_INPUT;
2416
2417 if (cons_free_list)
2418 {
2419 /* We use the cdr for chaining the free list
2420 so that we won't use the same field that has the mark bit. */
2421 XSETCONS (val, cons_free_list);
2422 cons_free_list = cons_free_list->u.chain;
2423 }
2424 else
2425 {
2426 if (cons_block_index == CONS_BLOCK_SIZE)
2427 {
2428 struct cons_block *new
2429 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2430 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2431 new->next = cons_block;
2432 cons_block = new;
2433 cons_block_index = 0;
2434 total_free_conses += CONS_BLOCK_SIZE;
2435 }
2436 XSETCONS (val, &cons_block->conses[cons_block_index]);
2437 cons_block_index++;
2438 }
2439
2440 MALLOC_UNBLOCK_INPUT;
2441
2442 XSETCAR (val, car);
2443 XSETCDR (val, cdr);
2444 eassert (!CONS_MARKED_P (XCONS (val)));
2445 consing_since_gc += sizeof (struct Lisp_Cons);
2446 total_free_conses--;
2447 cons_cells_consed++;
2448 return val;
2449 }
2450
2451 #ifdef GC_CHECK_CONS_LIST
2452 /* Get an error now if there's any junk in the cons free list. */
2453 void
2454 check_cons_list (void)
2455 {
2456 struct Lisp_Cons *tail = cons_free_list;
2457
2458 while (tail)
2459 tail = tail->u.chain;
2460 }
2461 #endif
2462
2463 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2464
2465 Lisp_Object
2466 list1 (Lisp_Object arg1)
2467 {
2468 return Fcons (arg1, Qnil);
2469 }
2470
2471 Lisp_Object
2472 list2 (Lisp_Object arg1, Lisp_Object arg2)
2473 {
2474 return Fcons (arg1, Fcons (arg2, Qnil));
2475 }
2476
2477
2478 Lisp_Object
2479 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2480 {
2481 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2482 }
2483
2484
2485 Lisp_Object
2486 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2487 {
2488 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2489 }
2490
2491
2492 Lisp_Object
2493 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2494 {
2495 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2496 Fcons (arg5, Qnil)))));
2497 }
2498
2499 /* Make a list of COUNT Lisp_Objects, where ARG is the
2500 first one. Allocate conses from pure space if TYPE
2501 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2502
2503 Lisp_Object
2504 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2505 {
2506 va_list ap;
2507 ptrdiff_t i;
2508 Lisp_Object val, *objp;
2509
2510 /* Change to SAFE_ALLOCA if you hit this eassert. */
2511 eassert (count <= MAX_ALLOCA / word_size);
2512
2513 objp = alloca (count * word_size);
2514 objp[0] = arg;
2515 va_start (ap, arg);
2516 for (i = 1; i < count; i++)
2517 objp[i] = va_arg (ap, Lisp_Object);
2518 va_end (ap);
2519
2520 for (val = Qnil, i = count - 1; i >= 0; i--)
2521 {
2522 if (type == CONSTYPE_PURE)
2523 val = pure_cons (objp[i], val);
2524 else if (type == CONSTYPE_HEAP)
2525 val = Fcons (objp[i], val);
2526 else
2527 emacs_abort ();
2528 }
2529 return val;
2530 }
2531
2532 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2533 doc: /* Return a newly created list with specified arguments as elements.
2534 Any number of arguments, even zero arguments, are allowed.
2535 usage: (list &rest OBJECTS) */)
2536 (ptrdiff_t nargs, Lisp_Object *args)
2537 {
2538 register Lisp_Object val;
2539 val = Qnil;
2540
2541 while (nargs > 0)
2542 {
2543 nargs--;
2544 val = Fcons (args[nargs], val);
2545 }
2546 return val;
2547 }
2548
2549
2550 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2551 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2552 (register Lisp_Object length, Lisp_Object init)
2553 {
2554 register Lisp_Object val;
2555 register EMACS_INT size;
2556
2557 CHECK_NATNUM (length);
2558 size = XFASTINT (length);
2559
2560 val = Qnil;
2561 while (size > 0)
2562 {
2563 val = Fcons (init, val);
2564 --size;
2565
2566 if (size > 0)
2567 {
2568 val = Fcons (init, val);
2569 --size;
2570
2571 if (size > 0)
2572 {
2573 val = Fcons (init, val);
2574 --size;
2575
2576 if (size > 0)
2577 {
2578 val = Fcons (init, val);
2579 --size;
2580
2581 if (size > 0)
2582 {
2583 val = Fcons (init, val);
2584 --size;
2585 }
2586 }
2587 }
2588 }
2589
2590 QUIT;
2591 }
2592
2593 return val;
2594 }
2595
2596
2597 \f
2598 /***********************************************************************
2599 Vector Allocation
2600 ***********************************************************************/
2601
2602 /* This value is balanced well enough to avoid too much internal overhead
2603 for the most common cases; it's not required to be a power of two, but
2604 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2605
2606 #define VECTOR_BLOCK_SIZE 4096
2607
2608 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2609 enum
2610 {
2611 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2612 };
2613
2614 /* Verify assumptions described above. */
2615 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2616 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2617
2618 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2619 #define vroundup_ct(x) ROUNDUP ((size_t) (x), roundup_size)
2620 /* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2621 #define vroundup(x) (assume ((x) >= 0), vroundup_ct (x))
2622
2623 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2624
2625 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2626
2627 /* Size of the minimal vector allocated from block. */
2628
2629 #define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2630
2631 /* Size of the largest vector allocated from block. */
2632
2633 #define VBLOCK_BYTES_MAX \
2634 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2635
2636 /* We maintain one free list for each possible block-allocated
2637 vector size, and this is the number of free lists we have. */
2638
2639 #define VECTOR_MAX_FREE_LIST_INDEX \
2640 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2641
2642 /* Common shortcut to advance vector pointer over a block data. */
2643
2644 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2645
2646 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2647
2648 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2649
2650 /* Common shortcut to setup vector on a free list. */
2651
2652 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2653 do { \
2654 (tmp) = ((nbytes - header_size) / word_size); \
2655 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2656 eassert ((nbytes) % roundup_size == 0); \
2657 (tmp) = VINDEX (nbytes); \
2658 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2659 v->u.next = vector_free_lists[tmp]; \
2660 vector_free_lists[tmp] = (v); \
2661 total_free_vector_slots += (nbytes) / word_size; \
2662 } while (0)
2663
2664 /* This internal type is used to maintain the list of large vectors
2665 which are allocated at their own, e.g. outside of vector blocks. */
2666
2667 struct large_vector
2668 {
2669 union {
2670 struct large_vector *vector;
2671 #if USE_LSB_TAG
2672 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2673 unsigned char c[vroundup_ct (sizeof (struct large_vector *))];
2674 #endif
2675 } next;
2676 struct Lisp_Vector v;
2677 };
2678
2679 /* This internal type is used to maintain an underlying storage
2680 for small vectors. */
2681
2682 struct vector_block
2683 {
2684 char data[VECTOR_BLOCK_BYTES];
2685 struct vector_block *next;
2686 };
2687
2688 /* Chain of vector blocks. */
2689
2690 static struct vector_block *vector_blocks;
2691
2692 /* Vector free lists, where NTH item points to a chain of free
2693 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2694
2695 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2696
2697 /* Singly-linked list of large vectors. */
2698
2699 static struct large_vector *large_vectors;
2700
2701 /* The only vector with 0 slots, allocated from pure space. */
2702
2703 Lisp_Object zero_vector;
2704
2705 /* Number of live vectors. */
2706
2707 static EMACS_INT total_vectors;
2708
2709 /* Total size of live and free vectors, in Lisp_Object units. */
2710
2711 static EMACS_INT total_vector_slots, total_free_vector_slots;
2712
2713 /* Get a new vector block. */
2714
2715 static struct vector_block *
2716 allocate_vector_block (void)
2717 {
2718 struct vector_block *block = xmalloc (sizeof *block);
2719
2720 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2721 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2722 MEM_TYPE_VECTOR_BLOCK);
2723 #endif
2724
2725 block->next = vector_blocks;
2726 vector_blocks = block;
2727 return block;
2728 }
2729
2730 /* Called once to initialize vector allocation. */
2731
2732 static void
2733 init_vectors (void)
2734 {
2735 zero_vector = make_pure_vector (0);
2736 }
2737
2738 /* Allocate vector from a vector block. */
2739
2740 static struct Lisp_Vector *
2741 allocate_vector_from_block (size_t nbytes)
2742 {
2743 struct Lisp_Vector *vector;
2744 struct vector_block *block;
2745 size_t index, restbytes;
2746
2747 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2748 eassert (nbytes % roundup_size == 0);
2749
2750 /* First, try to allocate from a free list
2751 containing vectors of the requested size. */
2752 index = VINDEX (nbytes);
2753 if (vector_free_lists[index])
2754 {
2755 vector = vector_free_lists[index];
2756 vector_free_lists[index] = vector->u.next;
2757 total_free_vector_slots -= nbytes / word_size;
2758 return vector;
2759 }
2760
2761 /* Next, check free lists containing larger vectors. Since
2762 we will split the result, we should have remaining space
2763 large enough to use for one-slot vector at least. */
2764 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2765 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2766 if (vector_free_lists[index])
2767 {
2768 /* This vector is larger than requested. */
2769 vector = vector_free_lists[index];
2770 vector_free_lists[index] = vector->u.next;
2771 total_free_vector_slots -= nbytes / word_size;
2772
2773 /* Excess bytes are used for the smaller vector,
2774 which should be set on an appropriate free list. */
2775 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2776 eassert (restbytes % roundup_size == 0);
2777 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2778 return vector;
2779 }
2780
2781 /* Finally, need a new vector block. */
2782 block = allocate_vector_block ();
2783
2784 /* New vector will be at the beginning of this block. */
2785 vector = (struct Lisp_Vector *) block->data;
2786
2787 /* If the rest of space from this block is large enough
2788 for one-slot vector at least, set up it on a free list. */
2789 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2790 if (restbytes >= VBLOCK_BYTES_MIN)
2791 {
2792 eassert (restbytes % roundup_size == 0);
2793 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2794 }
2795 return vector;
2796 }
2797
2798 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2799
2800 #define VECTOR_IN_BLOCK(vector, block) \
2801 ((char *) (vector) <= (block)->data \
2802 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2803
2804 /* Return the memory footprint of V in bytes. */
2805
2806 static ptrdiff_t
2807 vector_nbytes (struct Lisp_Vector *v)
2808 {
2809 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2810
2811 if (size & PSEUDOVECTOR_FLAG)
2812 {
2813 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2814 {
2815 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2816 ptrdiff_t payload_bytes =
2817 bool_vector_payload_bytes (bv->size, NULL);
2818
2819 eassert_and_assume (payload_bytes >= 0);
2820 size = bool_header_size + ROUNDUP (payload_bytes, word_size);
2821 }
2822 else
2823 size = (header_size
2824 + ((size & PSEUDOVECTOR_SIZE_MASK)
2825 + ((size & PSEUDOVECTOR_REST_MASK)
2826 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2827 }
2828 else
2829 size = header_size + size * word_size;
2830 return vroundup (size);
2831 }
2832
2833 /* Reclaim space used by unmarked vectors. */
2834
2835 static void
2836 sweep_vectors (void)
2837 {
2838 struct vector_block *block, **bprev = &vector_blocks;
2839 struct large_vector *lv, **lvprev = &large_vectors;
2840 struct Lisp_Vector *vector, *next;
2841
2842 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2843 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2844
2845 /* Looking through vector blocks. */
2846
2847 for (block = vector_blocks; block; block = *bprev)
2848 {
2849 bool free_this_block = 0;
2850 ptrdiff_t nbytes;
2851
2852 for (vector = (struct Lisp_Vector *) block->data;
2853 VECTOR_IN_BLOCK (vector, block); vector = next)
2854 {
2855 if (VECTOR_MARKED_P (vector))
2856 {
2857 VECTOR_UNMARK (vector);
2858 total_vectors++;
2859 nbytes = vector_nbytes (vector);
2860 total_vector_slots += nbytes / word_size;
2861 next = ADVANCE (vector, nbytes);
2862 }
2863 else
2864 {
2865 ptrdiff_t total_bytes;
2866
2867 nbytes = vector_nbytes (vector);
2868 total_bytes = nbytes;
2869 next = ADVANCE (vector, nbytes);
2870
2871 /* While NEXT is not marked, try to coalesce with VECTOR,
2872 thus making VECTOR of the largest possible size. */
2873
2874 while (VECTOR_IN_BLOCK (next, block))
2875 {
2876 if (VECTOR_MARKED_P (next))
2877 break;
2878 nbytes = vector_nbytes (next);
2879 total_bytes += nbytes;
2880 next = ADVANCE (next, nbytes);
2881 }
2882
2883 eassert (total_bytes % roundup_size == 0);
2884
2885 if (vector == (struct Lisp_Vector *) block->data
2886 && !VECTOR_IN_BLOCK (next, block))
2887 /* This block should be freed because all of it's
2888 space was coalesced into the only free vector. */
2889 free_this_block = 1;
2890 else
2891 {
2892 int tmp;
2893 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2894 }
2895 }
2896 }
2897
2898 if (free_this_block)
2899 {
2900 *bprev = block->next;
2901 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2902 mem_delete (mem_find (block->data));
2903 #endif
2904 xfree (block);
2905 }
2906 else
2907 bprev = &block->next;
2908 }
2909
2910 /* Sweep large vectors. */
2911
2912 for (lv = large_vectors; lv; lv = *lvprev)
2913 {
2914 vector = &lv->v;
2915 if (VECTOR_MARKED_P (vector))
2916 {
2917 VECTOR_UNMARK (vector);
2918 total_vectors++;
2919 if (vector->header.size & PSEUDOVECTOR_FLAG)
2920 {
2921 /* All non-bool pseudovectors are small enough to be allocated
2922 from vector blocks. This code should be redesigned if some
2923 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2924 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2925 total_vector_slots += vector_nbytes (vector) / word_size;
2926 }
2927 else
2928 total_vector_slots
2929 += header_size / word_size + vector->header.size;
2930 lvprev = &lv->next.vector;
2931 }
2932 else
2933 {
2934 *lvprev = lv->next.vector;
2935 lisp_free (lv);
2936 }
2937 }
2938 }
2939
2940 /* Value is a pointer to a newly allocated Lisp_Vector structure
2941 with room for LEN Lisp_Objects. */
2942
2943 static struct Lisp_Vector *
2944 allocate_vectorlike (ptrdiff_t len)
2945 {
2946 struct Lisp_Vector *p;
2947
2948 MALLOC_BLOCK_INPUT;
2949
2950 if (len == 0)
2951 p = XVECTOR (zero_vector);
2952 else
2953 {
2954 size_t nbytes = header_size + len * word_size;
2955
2956 #ifdef DOUG_LEA_MALLOC
2957 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2958 because mapped region contents are not preserved in
2959 a dumped Emacs. */
2960 mallopt (M_MMAP_MAX, 0);
2961 #endif
2962
2963 if (nbytes <= VBLOCK_BYTES_MAX)
2964 p = allocate_vector_from_block (vroundup (nbytes));
2965 else
2966 {
2967 struct large_vector *lv
2968 = lisp_malloc ((offsetof (struct large_vector, v.u.contents)
2969 + len * word_size),
2970 MEM_TYPE_VECTORLIKE);
2971 lv->next.vector = large_vectors;
2972 large_vectors = lv;
2973 p = &lv->v;
2974 }
2975
2976 #ifdef DOUG_LEA_MALLOC
2977 /* Back to a reasonable maximum of mmap'ed areas. */
2978 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2979 #endif
2980
2981 consing_since_gc += nbytes;
2982 vector_cells_consed += len;
2983 }
2984
2985 MALLOC_UNBLOCK_INPUT;
2986
2987 return p;
2988 }
2989
2990
2991 /* Allocate a vector with LEN slots. */
2992
2993 struct Lisp_Vector *
2994 allocate_vector (EMACS_INT len)
2995 {
2996 struct Lisp_Vector *v;
2997 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2998
2999 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3000 memory_full (SIZE_MAX);
3001 v = allocate_vectorlike (len);
3002 v->header.size = len;
3003 return v;
3004 }
3005
3006
3007 /* Allocate other vector-like structures. */
3008
3009 struct Lisp_Vector *
3010 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3011 {
3012 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3013 int i;
3014
3015 /* Catch bogus values. */
3016 eassert (tag <= PVEC_FONT);
3017 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3018 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3019
3020 /* Only the first lisplen slots will be traced normally by the GC. */
3021 for (i = 0; i < lisplen; ++i)
3022 v->u.contents[i] = Qnil;
3023
3024 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3025 return v;
3026 }
3027
3028 struct buffer *
3029 allocate_buffer (void)
3030 {
3031 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3032
3033 BUFFER_PVEC_INIT (b);
3034 /* Put B on the chain of all buffers including killed ones. */
3035 b->next = all_buffers;
3036 all_buffers = b;
3037 /* Note that the rest fields of B are not initialized. */
3038 return b;
3039 }
3040
3041 struct Lisp_Hash_Table *
3042 allocate_hash_table (void)
3043 {
3044 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3045 }
3046
3047 struct window *
3048 allocate_window (void)
3049 {
3050 struct window *w;
3051
3052 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3053 /* Users assumes that non-Lisp data is zeroed. */
3054 memset (&w->current_matrix, 0,
3055 sizeof (*w) - offsetof (struct window, current_matrix));
3056 return w;
3057 }
3058
3059 struct terminal *
3060 allocate_terminal (void)
3061 {
3062 struct terminal *t;
3063
3064 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3065 /* Users assumes that non-Lisp data is zeroed. */
3066 memset (&t->next_terminal, 0,
3067 sizeof (*t) - offsetof (struct terminal, next_terminal));
3068 return t;
3069 }
3070
3071 struct frame *
3072 allocate_frame (void)
3073 {
3074 struct frame *f;
3075
3076 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3077 /* Users assumes that non-Lisp data is zeroed. */
3078 memset (&f->face_cache, 0,
3079 sizeof (*f) - offsetof (struct frame, face_cache));
3080 return f;
3081 }
3082
3083 struct Lisp_Process *
3084 allocate_process (void)
3085 {
3086 struct Lisp_Process *p;
3087
3088 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3089 /* Users assumes that non-Lisp data is zeroed. */
3090 memset (&p->pid, 0,
3091 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3092 return p;
3093 }
3094
3095 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3096 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3097 See also the function `vector'. */)
3098 (register Lisp_Object length, Lisp_Object init)
3099 {
3100 Lisp_Object vector;
3101 register ptrdiff_t sizei;
3102 register ptrdiff_t i;
3103 register struct Lisp_Vector *p;
3104
3105 CHECK_NATNUM (length);
3106
3107 p = allocate_vector (XFASTINT (length));
3108 sizei = XFASTINT (length);
3109 for (i = 0; i < sizei; i++)
3110 p->u.contents[i] = init;
3111
3112 XSETVECTOR (vector, p);
3113 return vector;
3114 }
3115
3116
3117 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3118 doc: /* Return a newly created vector with specified arguments as elements.
3119 Any number of arguments, even zero arguments, are allowed.
3120 usage: (vector &rest OBJECTS) */)
3121 (ptrdiff_t nargs, Lisp_Object *args)
3122 {
3123 ptrdiff_t i;
3124 register Lisp_Object val = make_uninit_vector (nargs);
3125 register struct Lisp_Vector *p = XVECTOR (val);
3126
3127 for (i = 0; i < nargs; i++)
3128 p->u.contents[i] = args[i];
3129 return val;
3130 }
3131
3132 void
3133 make_byte_code (struct Lisp_Vector *v)
3134 {
3135 if (v->header.size > 1 && STRINGP (v->u.contents[1])
3136 && STRING_MULTIBYTE (v->u.contents[1]))
3137 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3138 earlier because they produced a raw 8-bit string for byte-code
3139 and now such a byte-code string is loaded as multibyte while
3140 raw 8-bit characters converted to multibyte form. Thus, now we
3141 must convert them back to the original unibyte form. */
3142 v->u.contents[1] = Fstring_as_unibyte (v->u.contents[1]);
3143 XSETPVECTYPE (v, PVEC_COMPILED);
3144 }
3145
3146 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3147 doc: /* Create a byte-code object with specified arguments as elements.
3148 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3149 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3150 and (optional) INTERACTIVE-SPEC.
3151 The first four arguments are required; at most six have any
3152 significance.
3153 The ARGLIST can be either like the one of `lambda', in which case the arguments
3154 will be dynamically bound before executing the byte code, or it can be an
3155 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3156 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3157 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3158 argument to catch the left-over arguments. If such an integer is used, the
3159 arguments will not be dynamically bound but will be instead pushed on the
3160 stack before executing the byte-code.
3161 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3162 (ptrdiff_t nargs, Lisp_Object *args)
3163 {
3164 ptrdiff_t i;
3165 register Lisp_Object val = make_uninit_vector (nargs);
3166 register struct Lisp_Vector *p = XVECTOR (val);
3167
3168 /* We used to purecopy everything here, if purify-flag was set. This worked
3169 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3170 dangerous, since make-byte-code is used during execution to build
3171 closures, so any closure built during the preload phase would end up
3172 copied into pure space, including its free variables, which is sometimes
3173 just wasteful and other times plainly wrong (e.g. those free vars may want
3174 to be setcar'd). */
3175
3176 for (i = 0; i < nargs; i++)
3177 p->u.contents[i] = args[i];
3178 make_byte_code (p);
3179 XSETCOMPILED (val, p);
3180 return val;
3181 }
3182
3183
3184 \f
3185 /***********************************************************************
3186 Symbol Allocation
3187 ***********************************************************************/
3188
3189 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3190 of the required alignment if LSB tags are used. */
3191
3192 union aligned_Lisp_Symbol
3193 {
3194 struct Lisp_Symbol s;
3195 #if USE_LSB_TAG
3196 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3197 & -GCALIGNMENT];
3198 #endif
3199 };
3200
3201 /* Each symbol_block is just under 1020 bytes long, since malloc
3202 really allocates in units of powers of two and uses 4 bytes for its
3203 own overhead. */
3204
3205 #define SYMBOL_BLOCK_SIZE \
3206 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3207
3208 struct symbol_block
3209 {
3210 /* Place `symbols' first, to preserve alignment. */
3211 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3212 struct symbol_block *next;
3213 };
3214
3215 /* Current symbol block and index of first unused Lisp_Symbol
3216 structure in it. */
3217
3218 static struct symbol_block *symbol_block;
3219 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3220
3221 /* List of free symbols. */
3222
3223 static struct Lisp_Symbol *symbol_free_list;
3224
3225 static void
3226 set_symbol_name (Lisp_Object sym, Lisp_Object name)
3227 {
3228 XSYMBOL (sym)->name = name;
3229 }
3230
3231 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3232 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3233 Its value is void, and its function definition and property list are nil. */)
3234 (Lisp_Object name)
3235 {
3236 register Lisp_Object val;
3237 register struct Lisp_Symbol *p;
3238
3239 CHECK_STRING (name);
3240
3241 MALLOC_BLOCK_INPUT;
3242
3243 if (symbol_free_list)
3244 {
3245 XSETSYMBOL (val, symbol_free_list);
3246 symbol_free_list = symbol_free_list->next;
3247 }
3248 else
3249 {
3250 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3251 {
3252 struct symbol_block *new
3253 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3254 new->next = symbol_block;
3255 symbol_block = new;
3256 symbol_block_index = 0;
3257 total_free_symbols += SYMBOL_BLOCK_SIZE;
3258 }
3259 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3260 symbol_block_index++;
3261 }
3262
3263 MALLOC_UNBLOCK_INPUT;
3264
3265 p = XSYMBOL (val);
3266 set_symbol_name (val, name);
3267 set_symbol_plist (val, Qnil);
3268 p->redirect = SYMBOL_PLAINVAL;
3269 SET_SYMBOL_VAL (p, Qunbound);
3270 set_symbol_function (val, Qnil);
3271 set_symbol_next (val, NULL);
3272 p->gcmarkbit = 0;
3273 p->interned = SYMBOL_UNINTERNED;
3274 p->constant = 0;
3275 p->declared_special = 0;
3276 consing_since_gc += sizeof (struct Lisp_Symbol);
3277 symbols_consed++;
3278 total_free_symbols--;
3279 return val;
3280 }
3281
3282
3283 \f
3284 /***********************************************************************
3285 Marker (Misc) Allocation
3286 ***********************************************************************/
3287
3288 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3289 the required alignment when LSB tags are used. */
3290
3291 union aligned_Lisp_Misc
3292 {
3293 union Lisp_Misc m;
3294 #if USE_LSB_TAG
3295 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3296 & -GCALIGNMENT];
3297 #endif
3298 };
3299
3300 /* Allocation of markers and other objects that share that structure.
3301 Works like allocation of conses. */
3302
3303 #define MARKER_BLOCK_SIZE \
3304 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3305
3306 struct marker_block
3307 {
3308 /* Place `markers' first, to preserve alignment. */
3309 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3310 struct marker_block *next;
3311 };
3312
3313 static struct marker_block *marker_block;
3314 static int marker_block_index = MARKER_BLOCK_SIZE;
3315
3316 static union Lisp_Misc *marker_free_list;
3317
3318 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3319
3320 static Lisp_Object
3321 allocate_misc (enum Lisp_Misc_Type type)
3322 {
3323 Lisp_Object val;
3324
3325 MALLOC_BLOCK_INPUT;
3326
3327 if (marker_free_list)
3328 {
3329 XSETMISC (val, marker_free_list);
3330 marker_free_list = marker_free_list->u_free.chain;
3331 }
3332 else
3333 {
3334 if (marker_block_index == MARKER_BLOCK_SIZE)
3335 {
3336 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3337 new->next = marker_block;
3338 marker_block = new;
3339 marker_block_index = 0;
3340 total_free_markers += MARKER_BLOCK_SIZE;
3341 }
3342 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3343 marker_block_index++;
3344 }
3345
3346 MALLOC_UNBLOCK_INPUT;
3347
3348 --total_free_markers;
3349 consing_since_gc += sizeof (union Lisp_Misc);
3350 misc_objects_consed++;
3351 XMISCANY (val)->type = type;
3352 XMISCANY (val)->gcmarkbit = 0;
3353 return val;
3354 }
3355
3356 /* Free a Lisp_Misc object. */
3357
3358 void
3359 free_misc (Lisp_Object misc)
3360 {
3361 XMISCANY (misc)->type = Lisp_Misc_Free;
3362 XMISC (misc)->u_free.chain = marker_free_list;
3363 marker_free_list = XMISC (misc);
3364 consing_since_gc -= sizeof (union Lisp_Misc);
3365 total_free_markers++;
3366 }
3367
3368 /* Verify properties of Lisp_Save_Value's representation
3369 that are assumed here and elsewhere. */
3370
3371 verify (SAVE_UNUSED == 0);
3372 verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3373 >> SAVE_SLOT_BITS)
3374 == 0);
3375
3376 /* Return Lisp_Save_Value objects for the various combinations
3377 that callers need. */
3378
3379 Lisp_Object
3380 make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3381 {
3382 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3383 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3384 p->save_type = SAVE_TYPE_INT_INT_INT;
3385 p->data[0].integer = a;
3386 p->data[1].integer = b;
3387 p->data[2].integer = c;
3388 return val;
3389 }
3390
3391 Lisp_Object
3392 make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3393 Lisp_Object d)
3394 {
3395 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3396 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3397 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3398 p->data[0].object = a;
3399 p->data[1].object = b;
3400 p->data[2].object = c;
3401 p->data[3].object = d;
3402 return val;
3403 }
3404
3405 #if defined HAVE_NS || defined HAVE_NTGUI
3406 Lisp_Object
3407 make_save_ptr (void *a)
3408 {
3409 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3410 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3411 p->save_type = SAVE_POINTER;
3412 p->data[0].pointer = a;
3413 return val;
3414 }
3415 #endif
3416
3417 Lisp_Object
3418 make_save_ptr_int (void *a, ptrdiff_t b)
3419 {
3420 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3421 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3422 p->save_type = SAVE_TYPE_PTR_INT;
3423 p->data[0].pointer = a;
3424 p->data[1].integer = b;
3425 return val;
3426 }
3427
3428 #if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3429 Lisp_Object
3430 make_save_ptr_ptr (void *a, void *b)
3431 {
3432 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3433 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3434 p->save_type = SAVE_TYPE_PTR_PTR;
3435 p->data[0].pointer = a;
3436 p->data[1].pointer = b;
3437 return val;
3438 }
3439 #endif
3440
3441 Lisp_Object
3442 make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3443 {
3444 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3445 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3446 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3447 p->data[0].funcpointer = a;
3448 p->data[1].pointer = b;
3449 p->data[2].object = c;
3450 return val;
3451 }
3452
3453 /* Return a Lisp_Save_Value object that represents an array A
3454 of N Lisp objects. */
3455
3456 Lisp_Object
3457 make_save_memory (Lisp_Object *a, ptrdiff_t n)
3458 {
3459 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3460 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3461 p->save_type = SAVE_TYPE_MEMORY;
3462 p->data[0].pointer = a;
3463 p->data[1].integer = n;
3464 return val;
3465 }
3466
3467 /* Free a Lisp_Save_Value object. Do not use this function
3468 if SAVE contains pointer other than returned by xmalloc. */
3469
3470 void
3471 free_save_value (Lisp_Object save)
3472 {
3473 xfree (XSAVE_POINTER (save, 0));
3474 free_misc (save);
3475 }
3476
3477 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3478
3479 Lisp_Object
3480 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3481 {
3482 register Lisp_Object overlay;
3483
3484 overlay = allocate_misc (Lisp_Misc_Overlay);
3485 OVERLAY_START (overlay) = start;
3486 OVERLAY_END (overlay) = end;
3487 set_overlay_plist (overlay, plist);
3488 XOVERLAY (overlay)->next = NULL;
3489 return overlay;
3490 }
3491
3492 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3493 doc: /* Return a newly allocated marker which does not point at any place. */)
3494 (void)
3495 {
3496 register Lisp_Object val;
3497 register struct Lisp_Marker *p;
3498
3499 val = allocate_misc (Lisp_Misc_Marker);
3500 p = XMARKER (val);
3501 p->buffer = 0;
3502 p->bytepos = 0;
3503 p->charpos = 0;
3504 p->next = NULL;
3505 p->insertion_type = 0;
3506 p->need_adjustment = 0;
3507 return val;
3508 }
3509
3510 /* Return a newly allocated marker which points into BUF
3511 at character position CHARPOS and byte position BYTEPOS. */
3512
3513 Lisp_Object
3514 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3515 {
3516 Lisp_Object obj;
3517 struct Lisp_Marker *m;
3518
3519 /* No dead buffers here. */
3520 eassert (BUFFER_LIVE_P (buf));
3521
3522 /* Every character is at least one byte. */
3523 eassert (charpos <= bytepos);
3524
3525 obj = allocate_misc (Lisp_Misc_Marker);
3526 m = XMARKER (obj);
3527 m->buffer = buf;
3528 m->charpos = charpos;
3529 m->bytepos = bytepos;
3530 m->insertion_type = 0;
3531 m->need_adjustment = 0;
3532 m->next = BUF_MARKERS (buf);
3533 BUF_MARKERS (buf) = m;
3534 return obj;
3535 }
3536
3537 /* Put MARKER back on the free list after using it temporarily. */
3538
3539 void
3540 free_marker (Lisp_Object marker)
3541 {
3542 unchain_marker (XMARKER (marker));
3543 free_misc (marker);
3544 }
3545
3546 \f
3547 /* Return a newly created vector or string with specified arguments as
3548 elements. If all the arguments are characters that can fit
3549 in a string of events, make a string; otherwise, make a vector.
3550
3551 Any number of arguments, even zero arguments, are allowed. */
3552
3553 Lisp_Object
3554 make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3555 {
3556 ptrdiff_t i;
3557
3558 for (i = 0; i < nargs; i++)
3559 /* The things that fit in a string
3560 are characters that are in 0...127,
3561 after discarding the meta bit and all the bits above it. */
3562 if (!INTEGERP (args[i])
3563 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3564 return Fvector (nargs, args);
3565
3566 /* Since the loop exited, we know that all the things in it are
3567 characters, so we can make a string. */
3568 {
3569 Lisp_Object result;
3570
3571 result = Fmake_string (make_number (nargs), make_number (0));
3572 for (i = 0; i < nargs; i++)
3573 {
3574 SSET (result, i, XINT (args[i]));
3575 /* Move the meta bit to the right place for a string char. */
3576 if (XINT (args[i]) & CHAR_META)
3577 SSET (result, i, SREF (result, i) | 0x80);
3578 }
3579
3580 return result;
3581 }
3582 }
3583
3584
3585 \f
3586 /************************************************************************
3587 Memory Full Handling
3588 ************************************************************************/
3589
3590
3591 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3592 there may have been size_t overflow so that malloc was never
3593 called, or perhaps malloc was invoked successfully but the
3594 resulting pointer had problems fitting into a tagged EMACS_INT. In
3595 either case this counts as memory being full even though malloc did
3596 not fail. */
3597
3598 void
3599 memory_full (size_t nbytes)
3600 {
3601 /* Do not go into hysterics merely because a large request failed. */
3602 bool enough_free_memory = 0;
3603 if (SPARE_MEMORY < nbytes)
3604 {
3605 void *p;
3606
3607 MALLOC_BLOCK_INPUT;
3608 p = malloc (SPARE_MEMORY);
3609 if (p)
3610 {
3611 free (p);
3612 enough_free_memory = 1;
3613 }
3614 MALLOC_UNBLOCK_INPUT;
3615 }
3616
3617 if (! enough_free_memory)
3618 {
3619 int i;
3620
3621 Vmemory_full = Qt;
3622
3623 memory_full_cons_threshold = sizeof (struct cons_block);
3624
3625 /* The first time we get here, free the spare memory. */
3626 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3627 if (spare_memory[i])
3628 {
3629 if (i == 0)
3630 free (spare_memory[i]);
3631 else if (i >= 1 && i <= 4)
3632 lisp_align_free (spare_memory[i]);
3633 else
3634 lisp_free (spare_memory[i]);
3635 spare_memory[i] = 0;
3636 }
3637 }
3638
3639 /* This used to call error, but if we've run out of memory, we could
3640 get infinite recursion trying to build the string. */
3641 xsignal (Qnil, Vmemory_signal_data);
3642 }
3643
3644 /* If we released our reserve (due to running out of memory),
3645 and we have a fair amount free once again,
3646 try to set aside another reserve in case we run out once more.
3647
3648 This is called when a relocatable block is freed in ralloc.c,
3649 and also directly from this file, in case we're not using ralloc.c. */
3650
3651 void
3652 refill_memory_reserve (void)
3653 {
3654 #ifndef SYSTEM_MALLOC
3655 if (spare_memory[0] == 0)
3656 spare_memory[0] = malloc (SPARE_MEMORY);
3657 if (spare_memory[1] == 0)
3658 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3659 MEM_TYPE_SPARE);
3660 if (spare_memory[2] == 0)
3661 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3662 MEM_TYPE_SPARE);
3663 if (spare_memory[3] == 0)
3664 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3665 MEM_TYPE_SPARE);
3666 if (spare_memory[4] == 0)
3667 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3668 MEM_TYPE_SPARE);
3669 if (spare_memory[5] == 0)
3670 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3671 MEM_TYPE_SPARE);
3672 if (spare_memory[6] == 0)
3673 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3674 MEM_TYPE_SPARE);
3675 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3676 Vmemory_full = Qnil;
3677 #endif
3678 }
3679 \f
3680 /************************************************************************
3681 C Stack Marking
3682 ************************************************************************/
3683
3684 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3685
3686 /* Conservative C stack marking requires a method to identify possibly
3687 live Lisp objects given a pointer value. We do this by keeping
3688 track of blocks of Lisp data that are allocated in a red-black tree
3689 (see also the comment of mem_node which is the type of nodes in
3690 that tree). Function lisp_malloc adds information for an allocated
3691 block to the red-black tree with calls to mem_insert, and function
3692 lisp_free removes it with mem_delete. Functions live_string_p etc
3693 call mem_find to lookup information about a given pointer in the
3694 tree, and use that to determine if the pointer points to a Lisp
3695 object or not. */
3696
3697 /* Initialize this part of alloc.c. */
3698
3699 static void
3700 mem_init (void)
3701 {
3702 mem_z.left = mem_z.right = MEM_NIL;
3703 mem_z.parent = NULL;
3704 mem_z.color = MEM_BLACK;
3705 mem_z.start = mem_z.end = NULL;
3706 mem_root = MEM_NIL;
3707 }
3708
3709
3710 /* Value is a pointer to the mem_node containing START. Value is
3711 MEM_NIL if there is no node in the tree containing START. */
3712
3713 static struct mem_node *
3714 mem_find (void *start)
3715 {
3716 struct mem_node *p;
3717
3718 if (start < min_heap_address || start > max_heap_address)
3719 return MEM_NIL;
3720
3721 /* Make the search always successful to speed up the loop below. */
3722 mem_z.start = start;
3723 mem_z.end = (char *) start + 1;
3724
3725 p = mem_root;
3726 while (start < p->start || start >= p->end)
3727 p = start < p->start ? p->left : p->right;
3728 return p;
3729 }
3730
3731
3732 /* Insert a new node into the tree for a block of memory with start
3733 address START, end address END, and type TYPE. Value is a
3734 pointer to the node that was inserted. */
3735
3736 static struct mem_node *
3737 mem_insert (void *start, void *end, enum mem_type type)
3738 {
3739 struct mem_node *c, *parent, *x;
3740
3741 if (min_heap_address == NULL || start < min_heap_address)
3742 min_heap_address = start;
3743 if (max_heap_address == NULL || end > max_heap_address)
3744 max_heap_address = end;
3745
3746 /* See where in the tree a node for START belongs. In this
3747 particular application, it shouldn't happen that a node is already
3748 present. For debugging purposes, let's check that. */
3749 c = mem_root;
3750 parent = NULL;
3751
3752 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3753
3754 while (c != MEM_NIL)
3755 {
3756 if (start >= c->start && start < c->end)
3757 emacs_abort ();
3758 parent = c;
3759 c = start < c->start ? c->left : c->right;
3760 }
3761
3762 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3763
3764 while (c != MEM_NIL)
3765 {
3766 parent = c;
3767 c = start < c->start ? c->left : c->right;
3768 }
3769
3770 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3771
3772 /* Create a new node. */
3773 #ifdef GC_MALLOC_CHECK
3774 x = malloc (sizeof *x);
3775 if (x == NULL)
3776 emacs_abort ();
3777 #else
3778 x = xmalloc (sizeof *x);
3779 #endif
3780 x->start = start;
3781 x->end = end;
3782 x->type = type;
3783 x->parent = parent;
3784 x->left = x->right = MEM_NIL;
3785 x->color = MEM_RED;
3786
3787 /* Insert it as child of PARENT or install it as root. */
3788 if (parent)
3789 {
3790 if (start < parent->start)
3791 parent->left = x;
3792 else
3793 parent->right = x;
3794 }
3795 else
3796 mem_root = x;
3797
3798 /* Re-establish red-black tree properties. */
3799 mem_insert_fixup (x);
3800
3801 return x;
3802 }
3803
3804
3805 /* Re-establish the red-black properties of the tree, and thereby
3806 balance the tree, after node X has been inserted; X is always red. */
3807
3808 static void
3809 mem_insert_fixup (struct mem_node *x)
3810 {
3811 while (x != mem_root && x->parent->color == MEM_RED)
3812 {
3813 /* X is red and its parent is red. This is a violation of
3814 red-black tree property #3. */
3815
3816 if (x->parent == x->parent->parent->left)
3817 {
3818 /* We're on the left side of our grandparent, and Y is our
3819 "uncle". */
3820 struct mem_node *y = x->parent->parent->right;
3821
3822 if (y->color == MEM_RED)
3823 {
3824 /* Uncle and parent are red but should be black because
3825 X is red. Change the colors accordingly and proceed
3826 with the grandparent. */
3827 x->parent->color = MEM_BLACK;
3828 y->color = MEM_BLACK;
3829 x->parent->parent->color = MEM_RED;
3830 x = x->parent->parent;
3831 }
3832 else
3833 {
3834 /* Parent and uncle have different colors; parent is
3835 red, uncle is black. */
3836 if (x == x->parent->right)
3837 {
3838 x = x->parent;
3839 mem_rotate_left (x);
3840 }
3841
3842 x->parent->color = MEM_BLACK;
3843 x->parent->parent->color = MEM_RED;
3844 mem_rotate_right (x->parent->parent);
3845 }
3846 }
3847 else
3848 {
3849 /* This is the symmetrical case of above. */
3850 struct mem_node *y = x->parent->parent->left;
3851
3852 if (y->color == MEM_RED)
3853 {
3854 x->parent->color = MEM_BLACK;
3855 y->color = MEM_BLACK;
3856 x->parent->parent->color = MEM_RED;
3857 x = x->parent->parent;
3858 }
3859 else
3860 {
3861 if (x == x->parent->left)
3862 {
3863 x = x->parent;
3864 mem_rotate_right (x);
3865 }
3866
3867 x->parent->color = MEM_BLACK;
3868 x->parent->parent->color = MEM_RED;
3869 mem_rotate_left (x->parent->parent);
3870 }
3871 }
3872 }
3873
3874 /* The root may have been changed to red due to the algorithm. Set
3875 it to black so that property #5 is satisfied. */
3876 mem_root->color = MEM_BLACK;
3877 }
3878
3879
3880 /* (x) (y)
3881 / \ / \
3882 a (y) ===> (x) c
3883 / \ / \
3884 b c a b */
3885
3886 static void
3887 mem_rotate_left (struct mem_node *x)
3888 {
3889 struct mem_node *y;
3890
3891 /* Turn y's left sub-tree into x's right sub-tree. */
3892 y = x->right;
3893 x->right = y->left;
3894 if (y->left != MEM_NIL)
3895 y->left->parent = x;
3896
3897 /* Y's parent was x's parent. */
3898 if (y != MEM_NIL)
3899 y->parent = x->parent;
3900
3901 /* Get the parent to point to y instead of x. */
3902 if (x->parent)
3903 {
3904 if (x == x->parent->left)
3905 x->parent->left = y;
3906 else
3907 x->parent->right = y;
3908 }
3909 else
3910 mem_root = y;
3911
3912 /* Put x on y's left. */
3913 y->left = x;
3914 if (x != MEM_NIL)
3915 x->parent = y;
3916 }
3917
3918
3919 /* (x) (Y)
3920 / \ / \
3921 (y) c ===> a (x)
3922 / \ / \
3923 a b b c */
3924
3925 static void
3926 mem_rotate_right (struct mem_node *x)
3927 {
3928 struct mem_node *y = x->left;
3929
3930 x->left = y->right;
3931 if (y->right != MEM_NIL)
3932 y->right->parent = x;
3933
3934 if (y != MEM_NIL)
3935 y->parent = x->parent;
3936 if (x->parent)
3937 {
3938 if (x == x->parent->right)
3939 x->parent->right = y;
3940 else
3941 x->parent->left = y;
3942 }
3943 else
3944 mem_root = y;
3945
3946 y->right = x;
3947 if (x != MEM_NIL)
3948 x->parent = y;
3949 }
3950
3951
3952 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3953
3954 static void
3955 mem_delete (struct mem_node *z)
3956 {
3957 struct mem_node *x, *y;
3958
3959 if (!z || z == MEM_NIL)
3960 return;
3961
3962 if (z->left == MEM_NIL || z->right == MEM_NIL)
3963 y = z;
3964 else
3965 {
3966 y = z->right;
3967 while (y->left != MEM_NIL)
3968 y = y->left;
3969 }
3970
3971 if (y->left != MEM_NIL)
3972 x = y->left;
3973 else
3974 x = y->right;
3975
3976 x->parent = y->parent;
3977 if (y->parent)
3978 {
3979 if (y == y->parent->left)
3980 y->parent->left = x;
3981 else
3982 y->parent->right = x;
3983 }
3984 else
3985 mem_root = x;
3986
3987 if (y != z)
3988 {
3989 z->start = y->start;
3990 z->end = y->end;
3991 z->type = y->type;
3992 }
3993
3994 if (y->color == MEM_BLACK)
3995 mem_delete_fixup (x);
3996
3997 #ifdef GC_MALLOC_CHECK
3998 free (y);
3999 #else
4000 xfree (y);
4001 #endif
4002 }
4003
4004
4005 /* Re-establish the red-black properties of the tree, after a
4006 deletion. */
4007
4008 static void
4009 mem_delete_fixup (struct mem_node *x)
4010 {
4011 while (x != mem_root && x->color == MEM_BLACK)
4012 {
4013 if (x == x->parent->left)
4014 {
4015 struct mem_node *w = x->parent->right;
4016
4017 if (w->color == MEM_RED)
4018 {
4019 w->color = MEM_BLACK;
4020 x->parent->color = MEM_RED;
4021 mem_rotate_left (x->parent);
4022 w = x->parent->right;
4023 }
4024
4025 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4026 {
4027 w->color = MEM_RED;
4028 x = x->parent;
4029 }
4030 else
4031 {
4032 if (w->right->color == MEM_BLACK)
4033 {
4034 w->left->color = MEM_BLACK;
4035 w->color = MEM_RED;
4036 mem_rotate_right (w);
4037 w = x->parent->right;
4038 }
4039 w->color = x->parent->color;
4040 x->parent->color = MEM_BLACK;
4041 w->right->color = MEM_BLACK;
4042 mem_rotate_left (x->parent);
4043 x = mem_root;
4044 }
4045 }
4046 else
4047 {
4048 struct mem_node *w = x->parent->left;
4049
4050 if (w->color == MEM_RED)
4051 {
4052 w->color = MEM_BLACK;
4053 x->parent->color = MEM_RED;
4054 mem_rotate_right (x->parent);
4055 w = x->parent->left;
4056 }
4057
4058 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4059 {
4060 w->color = MEM_RED;
4061 x = x->parent;
4062 }
4063 else
4064 {
4065 if (w->left->color == MEM_BLACK)
4066 {
4067 w->right->color = MEM_BLACK;
4068 w->color = MEM_RED;
4069 mem_rotate_left (w);
4070 w = x->parent->left;
4071 }
4072
4073 w->color = x->parent->color;
4074 x->parent->color = MEM_BLACK;
4075 w->left->color = MEM_BLACK;
4076 mem_rotate_right (x->parent);
4077 x = mem_root;
4078 }
4079 }
4080 }
4081
4082 x->color = MEM_BLACK;
4083 }
4084
4085
4086 /* Value is non-zero if P is a pointer to a live Lisp string on
4087 the heap. M is a pointer to the mem_block for P. */
4088
4089 static bool
4090 live_string_p (struct mem_node *m, void *p)
4091 {
4092 if (m->type == MEM_TYPE_STRING)
4093 {
4094 struct string_block *b = m->start;
4095 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4096
4097 /* P must point to the start of a Lisp_String structure, and it
4098 must not be on the free-list. */
4099 return (offset >= 0
4100 && offset % sizeof b->strings[0] == 0
4101 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4102 && ((struct Lisp_String *) p)->data != NULL);
4103 }
4104 else
4105 return 0;
4106 }
4107
4108
4109 /* Value is non-zero if P is a pointer to a live Lisp cons on
4110 the heap. M is a pointer to the mem_block for P. */
4111
4112 static bool
4113 live_cons_p (struct mem_node *m, void *p)
4114 {
4115 if (m->type == MEM_TYPE_CONS)
4116 {
4117 struct cons_block *b = m->start;
4118 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4119
4120 /* P must point to the start of a Lisp_Cons, not be
4121 one of the unused cells in the current cons block,
4122 and not be on the free-list. */
4123 return (offset >= 0
4124 && offset % sizeof b->conses[0] == 0
4125 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4126 && (b != cons_block
4127 || offset / sizeof b->conses[0] < cons_block_index)
4128 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4129 }
4130 else
4131 return 0;
4132 }
4133
4134
4135 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4136 the heap. M is a pointer to the mem_block for P. */
4137
4138 static bool
4139 live_symbol_p (struct mem_node *m, void *p)
4140 {
4141 if (m->type == MEM_TYPE_SYMBOL)
4142 {
4143 struct symbol_block *b = m->start;
4144 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4145
4146 /* P must point to the start of a Lisp_Symbol, not be
4147 one of the unused cells in the current symbol block,
4148 and not be on the free-list. */
4149 return (offset >= 0
4150 && offset % sizeof b->symbols[0] == 0
4151 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4152 && (b != symbol_block
4153 || offset / sizeof b->symbols[0] < symbol_block_index)
4154 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4155 }
4156 else
4157 return 0;
4158 }
4159
4160
4161 /* Value is non-zero if P is a pointer to a live Lisp float on
4162 the heap. M is a pointer to the mem_block for P. */
4163
4164 static bool
4165 live_float_p (struct mem_node *m, void *p)
4166 {
4167 if (m->type == MEM_TYPE_FLOAT)
4168 {
4169 struct float_block *b = m->start;
4170 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4171
4172 /* P must point to the start of a Lisp_Float and not be
4173 one of the unused cells in the current float block. */
4174 return (offset >= 0
4175 && offset % sizeof b->floats[0] == 0
4176 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4177 && (b != float_block
4178 || offset / sizeof b->floats[0] < float_block_index));
4179 }
4180 else
4181 return 0;
4182 }
4183
4184
4185 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4186 the heap. M is a pointer to the mem_block for P. */
4187
4188 static bool
4189 live_misc_p (struct mem_node *m, void *p)
4190 {
4191 if (m->type == MEM_TYPE_MISC)
4192 {
4193 struct marker_block *b = m->start;
4194 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4195
4196 /* P must point to the start of a Lisp_Misc, not be
4197 one of the unused cells in the current misc block,
4198 and not be on the free-list. */
4199 return (offset >= 0
4200 && offset % sizeof b->markers[0] == 0
4201 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4202 && (b != marker_block
4203 || offset / sizeof b->markers[0] < marker_block_index)
4204 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4205 }
4206 else
4207 return 0;
4208 }
4209
4210
4211 /* Value is non-zero if P is a pointer to a live vector-like object.
4212 M is a pointer to the mem_block for P. */
4213
4214 static bool
4215 live_vector_p (struct mem_node *m, void *p)
4216 {
4217 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4218 {
4219 /* This memory node corresponds to a vector block. */
4220 struct vector_block *block = m->start;
4221 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4222
4223 /* P is in the block's allocation range. Scan the block
4224 up to P and see whether P points to the start of some
4225 vector which is not on a free list. FIXME: check whether
4226 some allocation patterns (probably a lot of short vectors)
4227 may cause a substantial overhead of this loop. */
4228 while (VECTOR_IN_BLOCK (vector, block)
4229 && vector <= (struct Lisp_Vector *) p)
4230 {
4231 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4232 return 1;
4233 else
4234 vector = ADVANCE (vector, vector_nbytes (vector));
4235 }
4236 }
4237 else if (m->type == MEM_TYPE_VECTORLIKE
4238 && (char *) p == ((char *) m->start
4239 + offsetof (struct large_vector, v)))
4240 /* This memory node corresponds to a large vector. */
4241 return 1;
4242 return 0;
4243 }
4244
4245
4246 /* Value is non-zero if P is a pointer to a live buffer. M is a
4247 pointer to the mem_block for P. */
4248
4249 static bool
4250 live_buffer_p (struct mem_node *m, void *p)
4251 {
4252 /* P must point to the start of the block, and the buffer
4253 must not have been killed. */
4254 return (m->type == MEM_TYPE_BUFFER
4255 && p == m->start
4256 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4257 }
4258
4259 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4260
4261 #if GC_MARK_STACK
4262
4263 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4264
4265 /* Currently not used, but may be called from gdb. */
4266
4267 void dump_zombies (void) EXTERNALLY_VISIBLE;
4268
4269 /* Array of objects that are kept alive because the C stack contains
4270 a pattern that looks like a reference to them . */
4271
4272 #define MAX_ZOMBIES 10
4273 static Lisp_Object zombies[MAX_ZOMBIES];
4274
4275 /* Number of zombie objects. */
4276
4277 static EMACS_INT nzombies;
4278
4279 /* Number of garbage collections. */
4280
4281 static EMACS_INT ngcs;
4282
4283 /* Average percentage of zombies per collection. */
4284
4285 static double avg_zombies;
4286
4287 /* Max. number of live and zombie objects. */
4288
4289 static EMACS_INT max_live, max_zombies;
4290
4291 /* Average number of live objects per GC. */
4292
4293 static double avg_live;
4294
4295 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4296 doc: /* Show information about live and zombie objects. */)
4297 (void)
4298 {
4299 Lisp_Object args[8], zombie_list = Qnil;
4300 EMACS_INT i;
4301 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4302 zombie_list = Fcons (zombies[i], zombie_list);
4303 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4304 args[1] = make_number (ngcs);
4305 args[2] = make_float (avg_live);
4306 args[3] = make_float (avg_zombies);
4307 args[4] = make_float (avg_zombies / avg_live / 100);
4308 args[5] = make_number (max_live);
4309 args[6] = make_number (max_zombies);
4310 args[7] = zombie_list;
4311 return Fmessage (8, args);
4312 }
4313
4314 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4315
4316
4317 /* Mark OBJ if we can prove it's a Lisp_Object. */
4318
4319 static void
4320 mark_maybe_object (Lisp_Object obj)
4321 {
4322 void *po;
4323 struct mem_node *m;
4324
4325 #if USE_VALGRIND
4326 if (valgrind_p)
4327 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4328 #endif
4329
4330 if (INTEGERP (obj))
4331 return;
4332
4333 po = (void *) XPNTR (obj);
4334 m = mem_find (po);
4335
4336 if (m != MEM_NIL)
4337 {
4338 bool mark_p = 0;
4339
4340 switch (XTYPE (obj))
4341 {
4342 case Lisp_String:
4343 mark_p = (live_string_p (m, po)
4344 && !STRING_MARKED_P ((struct Lisp_String *) po));
4345 break;
4346
4347 case Lisp_Cons:
4348 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4349 break;
4350
4351 case Lisp_Symbol:
4352 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4353 break;
4354
4355 case Lisp_Float:
4356 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4357 break;
4358
4359 case Lisp_Vectorlike:
4360 /* Note: can't check BUFFERP before we know it's a
4361 buffer because checking that dereferences the pointer
4362 PO which might point anywhere. */
4363 if (live_vector_p (m, po))
4364 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4365 else if (live_buffer_p (m, po))
4366 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4367 break;
4368
4369 case Lisp_Misc:
4370 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4371 break;
4372
4373 default:
4374 break;
4375 }
4376
4377 if (mark_p)
4378 {
4379 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4380 if (nzombies < MAX_ZOMBIES)
4381 zombies[nzombies] = obj;
4382 ++nzombies;
4383 #endif
4384 mark_object (obj);
4385 }
4386 }
4387 }
4388
4389
4390 /* If P points to Lisp data, mark that as live if it isn't already
4391 marked. */
4392
4393 static void
4394 mark_maybe_pointer (void *p)
4395 {
4396 struct mem_node *m;
4397
4398 #if USE_VALGRIND
4399 if (valgrind_p)
4400 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4401 #endif
4402
4403 /* Quickly rule out some values which can't point to Lisp data.
4404 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4405 Otherwise, assume that Lisp data is aligned on even addresses. */
4406 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4407 return;
4408
4409 m = mem_find (p);
4410 if (m != MEM_NIL)
4411 {
4412 Lisp_Object obj = Qnil;
4413
4414 switch (m->type)
4415 {
4416 case MEM_TYPE_NON_LISP:
4417 case MEM_TYPE_SPARE:
4418 /* Nothing to do; not a pointer to Lisp memory. */
4419 break;
4420
4421 case MEM_TYPE_BUFFER:
4422 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4423 XSETVECTOR (obj, p);
4424 break;
4425
4426 case MEM_TYPE_CONS:
4427 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4428 XSETCONS (obj, p);
4429 break;
4430
4431 case MEM_TYPE_STRING:
4432 if (live_string_p (m, p)
4433 && !STRING_MARKED_P ((struct Lisp_String *) p))
4434 XSETSTRING (obj, p);
4435 break;
4436
4437 case MEM_TYPE_MISC:
4438 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4439 XSETMISC (obj, p);
4440 break;
4441
4442 case MEM_TYPE_SYMBOL:
4443 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4444 XSETSYMBOL (obj, p);
4445 break;
4446
4447 case MEM_TYPE_FLOAT:
4448 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4449 XSETFLOAT (obj, p);
4450 break;
4451
4452 case MEM_TYPE_VECTORLIKE:
4453 case MEM_TYPE_VECTOR_BLOCK:
4454 if (live_vector_p (m, p))
4455 {
4456 Lisp_Object tem;
4457 XSETVECTOR (tem, p);
4458 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4459 obj = tem;
4460 }
4461 break;
4462
4463 default:
4464 emacs_abort ();
4465 }
4466
4467 if (!NILP (obj))
4468 mark_object (obj);
4469 }
4470 }
4471
4472
4473 /* Alignment of pointer values. Use alignof, as it sometimes returns
4474 a smaller alignment than GCC's __alignof__ and mark_memory might
4475 miss objects if __alignof__ were used. */
4476 #define GC_POINTER_ALIGNMENT alignof (void *)
4477
4478 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4479 not suffice, which is the typical case. A host where a Lisp_Object is
4480 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4481 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4482 suffice to widen it to to a Lisp_Object and check it that way. */
4483 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4484 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4485 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4486 nor mark_maybe_object can follow the pointers. This should not occur on
4487 any practical porting target. */
4488 # error "MSB type bits straddle pointer-word boundaries"
4489 # endif
4490 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4491 pointer words that hold pointers ORed with type bits. */
4492 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4493 #else
4494 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4495 words that hold unmodified pointers. */
4496 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4497 #endif
4498
4499 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4500 or END+OFFSET..START. */
4501
4502 static void
4503 mark_memory (void *start, void *end)
4504 #if defined (__clang__) && defined (__has_feature)
4505 #if __has_feature(address_sanitizer)
4506 /* Do not allow -faddress-sanitizer to check this function, since it
4507 crosses the function stack boundary, and thus would yield many
4508 false positives. */
4509 __attribute__((no_address_safety_analysis))
4510 #endif
4511 #endif
4512 {
4513 void **pp;
4514 int i;
4515
4516 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4517 nzombies = 0;
4518 #endif
4519
4520 /* Make START the pointer to the start of the memory region,
4521 if it isn't already. */
4522 if (end < start)
4523 {
4524 void *tem = start;
4525 start = end;
4526 end = tem;
4527 }
4528
4529 /* Mark Lisp data pointed to. This is necessary because, in some
4530 situations, the C compiler optimizes Lisp objects away, so that
4531 only a pointer to them remains. Example:
4532
4533 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4534 ()
4535 {
4536 Lisp_Object obj = build_string ("test");
4537 struct Lisp_String *s = XSTRING (obj);
4538 Fgarbage_collect ();
4539 fprintf (stderr, "test `%s'\n", s->data);
4540 return Qnil;
4541 }
4542
4543 Here, `obj' isn't really used, and the compiler optimizes it
4544 away. The only reference to the life string is through the
4545 pointer `s'. */
4546
4547 for (pp = start; (void *) pp < end; pp++)
4548 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4549 {
4550 void *p = *(void **) ((char *) pp + i);
4551 mark_maybe_pointer (p);
4552 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4553 mark_maybe_object (XIL ((intptr_t) p));
4554 }
4555 }
4556
4557 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4558
4559 static bool setjmp_tested_p;
4560 static int longjmps_done;
4561
4562 #define SETJMP_WILL_LIKELY_WORK "\
4563 \n\
4564 Emacs garbage collector has been changed to use conservative stack\n\
4565 marking. Emacs has determined that the method it uses to do the\n\
4566 marking will likely work on your system, but this isn't sure.\n\
4567 \n\
4568 If you are a system-programmer, or can get the help of a local wizard\n\
4569 who is, please take a look at the function mark_stack in alloc.c, and\n\
4570 verify that the methods used are appropriate for your system.\n\
4571 \n\
4572 Please mail the result to <emacs-devel@gnu.org>.\n\
4573 "
4574
4575 #define SETJMP_WILL_NOT_WORK "\
4576 \n\
4577 Emacs garbage collector has been changed to use conservative stack\n\
4578 marking. Emacs has determined that the default method it uses to do the\n\
4579 marking will not work on your system. We will need a system-dependent\n\
4580 solution for your system.\n\
4581 \n\
4582 Please take a look at the function mark_stack in alloc.c, and\n\
4583 try to find a way to make it work on your system.\n\
4584 \n\
4585 Note that you may get false negatives, depending on the compiler.\n\
4586 In particular, you need to use -O with GCC for this test.\n\
4587 \n\
4588 Please mail the result to <emacs-devel@gnu.org>.\n\
4589 "
4590
4591
4592 /* Perform a quick check if it looks like setjmp saves registers in a
4593 jmp_buf. Print a message to stderr saying so. When this test
4594 succeeds, this is _not_ a proof that setjmp is sufficient for
4595 conservative stack marking. Only the sources or a disassembly
4596 can prove that. */
4597
4598 static void
4599 test_setjmp (void)
4600 {
4601 char buf[10];
4602 register int x;
4603 sys_jmp_buf jbuf;
4604
4605 /* Arrange for X to be put in a register. */
4606 sprintf (buf, "1");
4607 x = strlen (buf);
4608 x = 2 * x - 1;
4609
4610 sys_setjmp (jbuf);
4611 if (longjmps_done == 1)
4612 {
4613 /* Came here after the longjmp at the end of the function.
4614
4615 If x == 1, the longjmp has restored the register to its
4616 value before the setjmp, and we can hope that setjmp
4617 saves all such registers in the jmp_buf, although that
4618 isn't sure.
4619
4620 For other values of X, either something really strange is
4621 taking place, or the setjmp just didn't save the register. */
4622
4623 if (x == 1)
4624 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4625 else
4626 {
4627 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4628 exit (1);
4629 }
4630 }
4631
4632 ++longjmps_done;
4633 x = 2;
4634 if (longjmps_done == 1)
4635 sys_longjmp (jbuf, 1);
4636 }
4637
4638 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4639
4640
4641 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4642
4643 /* Abort if anything GCPRO'd doesn't survive the GC. */
4644
4645 static void
4646 check_gcpros (void)
4647 {
4648 struct gcpro *p;
4649 ptrdiff_t i;
4650
4651 for (p = gcprolist; p; p = p->next)
4652 for (i = 0; i < p->nvars; ++i)
4653 if (!survives_gc_p (p->var[i]))
4654 /* FIXME: It's not necessarily a bug. It might just be that the
4655 GCPRO is unnecessary or should release the object sooner. */
4656 emacs_abort ();
4657 }
4658
4659 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4660
4661 void
4662 dump_zombies (void)
4663 {
4664 int i;
4665
4666 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4667 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4668 {
4669 fprintf (stderr, " %d = ", i);
4670 debug_print (zombies[i]);
4671 }
4672 }
4673
4674 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4675
4676
4677 /* Mark live Lisp objects on the C stack.
4678
4679 There are several system-dependent problems to consider when
4680 porting this to new architectures:
4681
4682 Processor Registers
4683
4684 We have to mark Lisp objects in CPU registers that can hold local
4685 variables or are used to pass parameters.
4686
4687 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4688 something that either saves relevant registers on the stack, or
4689 calls mark_maybe_object passing it each register's contents.
4690
4691 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4692 implementation assumes that calling setjmp saves registers we need
4693 to see in a jmp_buf which itself lies on the stack. This doesn't
4694 have to be true! It must be verified for each system, possibly
4695 by taking a look at the source code of setjmp.
4696
4697 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4698 can use it as a machine independent method to store all registers
4699 to the stack. In this case the macros described in the previous
4700 two paragraphs are not used.
4701
4702 Stack Layout
4703
4704 Architectures differ in the way their processor stack is organized.
4705 For example, the stack might look like this
4706
4707 +----------------+
4708 | Lisp_Object | size = 4
4709 +----------------+
4710 | something else | size = 2
4711 +----------------+
4712 | Lisp_Object | size = 4
4713 +----------------+
4714 | ... |
4715
4716 In such a case, not every Lisp_Object will be aligned equally. To
4717 find all Lisp_Object on the stack it won't be sufficient to walk
4718 the stack in steps of 4 bytes. Instead, two passes will be
4719 necessary, one starting at the start of the stack, and a second
4720 pass starting at the start of the stack + 2. Likewise, if the
4721 minimal alignment of Lisp_Objects on the stack is 1, four passes
4722 would be necessary, each one starting with one byte more offset
4723 from the stack start. */
4724
4725 static void
4726 mark_stack (void)
4727 {
4728 void *end;
4729
4730 #ifdef HAVE___BUILTIN_UNWIND_INIT
4731 /* Force callee-saved registers and register windows onto the stack.
4732 This is the preferred method if available, obviating the need for
4733 machine dependent methods. */
4734 __builtin_unwind_init ();
4735 end = &end;
4736 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4737 #ifndef GC_SAVE_REGISTERS_ON_STACK
4738 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4739 union aligned_jmpbuf {
4740 Lisp_Object o;
4741 sys_jmp_buf j;
4742 } j;
4743 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4744 #endif
4745 /* This trick flushes the register windows so that all the state of
4746 the process is contained in the stack. */
4747 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4748 needed on ia64 too. See mach_dep.c, where it also says inline
4749 assembler doesn't work with relevant proprietary compilers. */
4750 #ifdef __sparc__
4751 #if defined (__sparc64__) && defined (__FreeBSD__)
4752 /* FreeBSD does not have a ta 3 handler. */
4753 asm ("flushw");
4754 #else
4755 asm ("ta 3");
4756 #endif
4757 #endif
4758
4759 /* Save registers that we need to see on the stack. We need to see
4760 registers used to hold register variables and registers used to
4761 pass parameters. */
4762 #ifdef GC_SAVE_REGISTERS_ON_STACK
4763 GC_SAVE_REGISTERS_ON_STACK (end);
4764 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4765
4766 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4767 setjmp will definitely work, test it
4768 and print a message with the result
4769 of the test. */
4770 if (!setjmp_tested_p)
4771 {
4772 setjmp_tested_p = 1;
4773 test_setjmp ();
4774 }
4775 #endif /* GC_SETJMP_WORKS */
4776
4777 sys_setjmp (j.j);
4778 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4779 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4780 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4781
4782 /* This assumes that the stack is a contiguous region in memory. If
4783 that's not the case, something has to be done here to iterate
4784 over the stack segments. */
4785 mark_memory (stack_base, end);
4786
4787 /* Allow for marking a secondary stack, like the register stack on the
4788 ia64. */
4789 #ifdef GC_MARK_SECONDARY_STACK
4790 GC_MARK_SECONDARY_STACK ();
4791 #endif
4792
4793 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4794 check_gcpros ();
4795 #endif
4796 }
4797
4798 #else /* GC_MARK_STACK == 0 */
4799
4800 #define mark_maybe_object(obj) emacs_abort ()
4801
4802 #endif /* GC_MARK_STACK != 0 */
4803
4804
4805 /* Determine whether it is safe to access memory at address P. */
4806 static int
4807 valid_pointer_p (void *p)
4808 {
4809 #ifdef WINDOWSNT
4810 return w32_valid_pointer_p (p, 16);
4811 #else
4812 int fd[2];
4813
4814 /* Obviously, we cannot just access it (we would SEGV trying), so we
4815 trick the o/s to tell us whether p is a valid pointer.
4816 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4817 not validate p in that case. */
4818
4819 if (emacs_pipe (fd) == 0)
4820 {
4821 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4822 emacs_close (fd[1]);
4823 emacs_close (fd[0]);
4824 return valid;
4825 }
4826
4827 return -1;
4828 #endif
4829 }
4830
4831 /* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4832 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4833 cannot validate OBJ. This function can be quite slow, so its primary
4834 use is the manual debugging. The only exception is print_object, where
4835 we use it to check whether the memory referenced by the pointer of
4836 Lisp_Save_Value object contains valid objects. */
4837
4838 int
4839 valid_lisp_object_p (Lisp_Object obj)
4840 {
4841 void *p;
4842 #if GC_MARK_STACK
4843 struct mem_node *m;
4844 #endif
4845
4846 if (INTEGERP (obj))
4847 return 1;
4848
4849 p = (void *) XPNTR (obj);
4850 if (PURE_POINTER_P (p))
4851 return 1;
4852
4853 if (p == &buffer_defaults || p == &buffer_local_symbols)
4854 return 2;
4855
4856 #if !GC_MARK_STACK
4857 return valid_pointer_p (p);
4858 #else
4859
4860 m = mem_find (p);
4861
4862 if (m == MEM_NIL)
4863 {
4864 int valid = valid_pointer_p (p);
4865 if (valid <= 0)
4866 return valid;
4867
4868 if (SUBRP (obj))
4869 return 1;
4870
4871 return 0;
4872 }
4873
4874 switch (m->type)
4875 {
4876 case MEM_TYPE_NON_LISP:
4877 case MEM_TYPE_SPARE:
4878 return 0;
4879
4880 case MEM_TYPE_BUFFER:
4881 return live_buffer_p (m, p) ? 1 : 2;
4882
4883 case MEM_TYPE_CONS:
4884 return live_cons_p (m, p);
4885
4886 case MEM_TYPE_STRING:
4887 return live_string_p (m, p);
4888
4889 case MEM_TYPE_MISC:
4890 return live_misc_p (m, p);
4891
4892 case MEM_TYPE_SYMBOL:
4893 return live_symbol_p (m, p);
4894
4895 case MEM_TYPE_FLOAT:
4896 return live_float_p (m, p);
4897
4898 case MEM_TYPE_VECTORLIKE:
4899 case MEM_TYPE_VECTOR_BLOCK:
4900 return live_vector_p (m, p);
4901
4902 default:
4903 break;
4904 }
4905
4906 return 0;
4907 #endif
4908 }
4909
4910
4911
4912 \f
4913 /***********************************************************************
4914 Pure Storage Management
4915 ***********************************************************************/
4916
4917 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4918 pointer to it. TYPE is the Lisp type for which the memory is
4919 allocated. TYPE < 0 means it's not used for a Lisp object. */
4920
4921 static void *
4922 pure_alloc (size_t size, int type)
4923 {
4924 void *result;
4925 #if USE_LSB_TAG
4926 size_t alignment = GCALIGNMENT;
4927 #else
4928 size_t alignment = alignof (EMACS_INT);
4929
4930 /* Give Lisp_Floats an extra alignment. */
4931 if (type == Lisp_Float)
4932 alignment = alignof (struct Lisp_Float);
4933 #endif
4934
4935 again:
4936 if (type >= 0)
4937 {
4938 /* Allocate space for a Lisp object from the beginning of the free
4939 space with taking account of alignment. */
4940 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4941 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4942 }
4943 else
4944 {
4945 /* Allocate space for a non-Lisp object from the end of the free
4946 space. */
4947 pure_bytes_used_non_lisp += size;
4948 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4949 }
4950 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4951
4952 if (pure_bytes_used <= pure_size)
4953 return result;
4954
4955 /* Don't allocate a large amount here,
4956 because it might get mmap'd and then its address
4957 might not be usable. */
4958 purebeg = xmalloc (10000);
4959 pure_size = 10000;
4960 pure_bytes_used_before_overflow += pure_bytes_used - size;
4961 pure_bytes_used = 0;
4962 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4963 goto again;
4964 }
4965
4966
4967 /* Print a warning if PURESIZE is too small. */
4968
4969 void
4970 check_pure_size (void)
4971 {
4972 if (pure_bytes_used_before_overflow)
4973 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4974 " bytes needed)"),
4975 pure_bytes_used + pure_bytes_used_before_overflow);
4976 }
4977
4978
4979 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4980 the non-Lisp data pool of the pure storage, and return its start
4981 address. Return NULL if not found. */
4982
4983 static char *
4984 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4985 {
4986 int i;
4987 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4988 const unsigned char *p;
4989 char *non_lisp_beg;
4990
4991 if (pure_bytes_used_non_lisp <= nbytes)
4992 return NULL;
4993
4994 /* Set up the Boyer-Moore table. */
4995 skip = nbytes + 1;
4996 for (i = 0; i < 256; i++)
4997 bm_skip[i] = skip;
4998
4999 p = (const unsigned char *) data;
5000 while (--skip > 0)
5001 bm_skip[*p++] = skip;
5002
5003 last_char_skip = bm_skip['\0'];
5004
5005 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5006 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5007
5008 /* See the comments in the function `boyer_moore' (search.c) for the
5009 use of `infinity'. */
5010 infinity = pure_bytes_used_non_lisp + 1;
5011 bm_skip['\0'] = infinity;
5012
5013 p = (const unsigned char *) non_lisp_beg + nbytes;
5014 start = 0;
5015 do
5016 {
5017 /* Check the last character (== '\0'). */
5018 do
5019 {
5020 start += bm_skip[*(p + start)];
5021 }
5022 while (start <= start_max);
5023
5024 if (start < infinity)
5025 /* Couldn't find the last character. */
5026 return NULL;
5027
5028 /* No less than `infinity' means we could find the last
5029 character at `p[start - infinity]'. */
5030 start -= infinity;
5031
5032 /* Check the remaining characters. */
5033 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5034 /* Found. */
5035 return non_lisp_beg + start;
5036
5037 start += last_char_skip;
5038 }
5039 while (start <= start_max);
5040
5041 return NULL;
5042 }
5043
5044
5045 /* Return a string allocated in pure space. DATA is a buffer holding
5046 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5047 means make the result string multibyte.
5048
5049 Must get an error if pure storage is full, since if it cannot hold
5050 a large string it may be able to hold conses that point to that
5051 string; then the string is not protected from gc. */
5052
5053 Lisp_Object
5054 make_pure_string (const char *data,
5055 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5056 {
5057 Lisp_Object string;
5058 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5059 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5060 if (s->data == NULL)
5061 {
5062 s->data = pure_alloc (nbytes + 1, -1);
5063 memcpy (s->data, data, nbytes);
5064 s->data[nbytes] = '\0';
5065 }
5066 s->size = nchars;
5067 s->size_byte = multibyte ? nbytes : -1;
5068 s->intervals = NULL;
5069 XSETSTRING (string, s);
5070 return string;
5071 }
5072
5073 /* Return a string allocated in pure space. Do not
5074 allocate the string data, just point to DATA. */
5075
5076 Lisp_Object
5077 make_pure_c_string (const char *data, ptrdiff_t nchars)
5078 {
5079 Lisp_Object string;
5080 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5081 s->size = nchars;
5082 s->size_byte = -1;
5083 s->data = (unsigned char *) data;
5084 s->intervals = NULL;
5085 XSETSTRING (string, s);
5086 return string;
5087 }
5088
5089 /* Return a cons allocated from pure space. Give it pure copies
5090 of CAR as car and CDR as cdr. */
5091
5092 Lisp_Object
5093 pure_cons (Lisp_Object car, Lisp_Object cdr)
5094 {
5095 Lisp_Object new;
5096 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5097 XSETCONS (new, p);
5098 XSETCAR (new, Fpurecopy (car));
5099 XSETCDR (new, Fpurecopy (cdr));
5100 return new;
5101 }
5102
5103
5104 /* Value is a float object with value NUM allocated from pure space. */
5105
5106 static Lisp_Object
5107 make_pure_float (double num)
5108 {
5109 Lisp_Object new;
5110 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5111 XSETFLOAT (new, p);
5112 XFLOAT_INIT (new, num);
5113 return new;
5114 }
5115
5116
5117 /* Return a vector with room for LEN Lisp_Objects allocated from
5118 pure space. */
5119
5120 static Lisp_Object
5121 make_pure_vector (ptrdiff_t len)
5122 {
5123 Lisp_Object new;
5124 size_t size = header_size + len * word_size;
5125 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5126 XSETVECTOR (new, p);
5127 XVECTOR (new)->header.size = len;
5128 return new;
5129 }
5130
5131
5132 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5133 doc: /* Make a copy of object OBJ in pure storage.
5134 Recursively copies contents of vectors and cons cells.
5135 Does not copy symbols. Copies strings without text properties. */)
5136 (register Lisp_Object obj)
5137 {
5138 if (NILP (Vpurify_flag))
5139 return obj;
5140
5141 if (PURE_POINTER_P (XPNTR (obj)))
5142 return obj;
5143
5144 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5145 {
5146 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5147 if (!NILP (tmp))
5148 return tmp;
5149 }
5150
5151 if (CONSP (obj))
5152 obj = pure_cons (XCAR (obj), XCDR (obj));
5153 else if (FLOATP (obj))
5154 obj = make_pure_float (XFLOAT_DATA (obj));
5155 else if (STRINGP (obj))
5156 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5157 SBYTES (obj),
5158 STRING_MULTIBYTE (obj));
5159 else if (COMPILEDP (obj) || VECTORP (obj))
5160 {
5161 register struct Lisp_Vector *vec;
5162 register ptrdiff_t i;
5163 ptrdiff_t size;
5164
5165 size = ASIZE (obj);
5166 if (size & PSEUDOVECTOR_FLAG)
5167 size &= PSEUDOVECTOR_SIZE_MASK;
5168 vec = XVECTOR (make_pure_vector (size));
5169 for (i = 0; i < size; i++)
5170 vec->u.contents[i] = Fpurecopy (AREF (obj, i));
5171 if (COMPILEDP (obj))
5172 {
5173 XSETPVECTYPE (vec, PVEC_COMPILED);
5174 XSETCOMPILED (obj, vec);
5175 }
5176 else
5177 XSETVECTOR (obj, vec);
5178 }
5179 else if (MARKERP (obj))
5180 error ("Attempt to copy a marker to pure storage");
5181 else
5182 /* Not purified, don't hash-cons. */
5183 return obj;
5184
5185 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5186 Fputhash (obj, obj, Vpurify_flag);
5187
5188 return obj;
5189 }
5190
5191
5192 \f
5193 /***********************************************************************
5194 Protection from GC
5195 ***********************************************************************/
5196
5197 /* Put an entry in staticvec, pointing at the variable with address
5198 VARADDRESS. */
5199
5200 void
5201 staticpro (Lisp_Object *varaddress)
5202 {
5203 if (staticidx >= NSTATICS)
5204 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5205 staticvec[staticidx++] = varaddress;
5206 }
5207
5208 \f
5209 /***********************************************************************
5210 Protection from GC
5211 ***********************************************************************/
5212
5213 /* Temporarily prevent garbage collection. */
5214
5215 ptrdiff_t
5216 inhibit_garbage_collection (void)
5217 {
5218 ptrdiff_t count = SPECPDL_INDEX ();
5219
5220 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5221 return count;
5222 }
5223
5224 /* Used to avoid possible overflows when
5225 converting from C to Lisp integers. */
5226
5227 static Lisp_Object
5228 bounded_number (EMACS_INT number)
5229 {
5230 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5231 }
5232
5233 /* Calculate total bytes of live objects. */
5234
5235 static size_t
5236 total_bytes_of_live_objects (void)
5237 {
5238 size_t tot = 0;
5239 tot += total_conses * sizeof (struct Lisp_Cons);
5240 tot += total_symbols * sizeof (struct Lisp_Symbol);
5241 tot += total_markers * sizeof (union Lisp_Misc);
5242 tot += total_string_bytes;
5243 tot += total_vector_slots * word_size;
5244 tot += total_floats * sizeof (struct Lisp_Float);
5245 tot += total_intervals * sizeof (struct interval);
5246 tot += total_strings * sizeof (struct Lisp_String);
5247 return tot;
5248 }
5249
5250 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5251 doc: /* Reclaim storage for Lisp objects no longer needed.
5252 Garbage collection happens automatically if you cons more than
5253 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5254 `garbage-collect' normally returns a list with info on amount of space in use,
5255 where each entry has the form (NAME SIZE USED FREE), where:
5256 - NAME is a symbol describing the kind of objects this entry represents,
5257 - SIZE is the number of bytes used by each one,
5258 - USED is the number of those objects that were found live in the heap,
5259 - FREE is the number of those objects that are not live but that Emacs
5260 keeps around for future allocations (maybe because it does not know how
5261 to return them to the OS).
5262 However, if there was overflow in pure space, `garbage-collect'
5263 returns nil, because real GC can't be done.
5264 See Info node `(elisp)Garbage Collection'. */)
5265 (void)
5266 {
5267 struct buffer *nextb;
5268 char stack_top_variable;
5269 ptrdiff_t i;
5270 bool message_p;
5271 ptrdiff_t count = SPECPDL_INDEX ();
5272 struct timespec start;
5273 Lisp_Object retval = Qnil;
5274 size_t tot_before = 0;
5275
5276 if (abort_on_gc)
5277 emacs_abort ();
5278
5279 /* Can't GC if pure storage overflowed because we can't determine
5280 if something is a pure object or not. */
5281 if (pure_bytes_used_before_overflow)
5282 return Qnil;
5283
5284 /* Record this function, so it appears on the profiler's backtraces. */
5285 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5286
5287 check_cons_list ();
5288
5289 /* Don't keep undo information around forever.
5290 Do this early on, so it is no problem if the user quits. */
5291 FOR_EACH_BUFFER (nextb)
5292 compact_buffer (nextb);
5293
5294 if (profiler_memory_running)
5295 tot_before = total_bytes_of_live_objects ();
5296
5297 start = current_timespec ();
5298
5299 /* In case user calls debug_print during GC,
5300 don't let that cause a recursive GC. */
5301 consing_since_gc = 0;
5302
5303 /* Save what's currently displayed in the echo area. */
5304 message_p = push_message ();
5305 record_unwind_protect_void (pop_message_unwind);
5306
5307 /* Save a copy of the contents of the stack, for debugging. */
5308 #if MAX_SAVE_STACK > 0
5309 if (NILP (Vpurify_flag))
5310 {
5311 char *stack;
5312 ptrdiff_t stack_size;
5313 if (&stack_top_variable < stack_bottom)
5314 {
5315 stack = &stack_top_variable;
5316 stack_size = stack_bottom - &stack_top_variable;
5317 }
5318 else
5319 {
5320 stack = stack_bottom;
5321 stack_size = &stack_top_variable - stack_bottom;
5322 }
5323 if (stack_size <= MAX_SAVE_STACK)
5324 {
5325 if (stack_copy_size < stack_size)
5326 {
5327 stack_copy = xrealloc (stack_copy, stack_size);
5328 stack_copy_size = stack_size;
5329 }
5330 memcpy (stack_copy, stack, stack_size);
5331 }
5332 }
5333 #endif /* MAX_SAVE_STACK > 0 */
5334
5335 if (garbage_collection_messages)
5336 message1_nolog ("Garbage collecting...");
5337
5338 block_input ();
5339
5340 shrink_regexp_cache ();
5341
5342 gc_in_progress = 1;
5343
5344 /* Mark all the special slots that serve as the roots of accessibility. */
5345
5346 mark_buffer (&buffer_defaults);
5347 mark_buffer (&buffer_local_symbols);
5348
5349 for (i = 0; i < staticidx; i++)
5350 mark_object (*staticvec[i]);
5351
5352 mark_specpdl ();
5353 mark_terminals ();
5354 mark_kboards ();
5355
5356 #ifdef USE_GTK
5357 xg_mark_data ();
5358 #endif
5359
5360 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5361 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5362 mark_stack ();
5363 #else
5364 {
5365 register struct gcpro *tail;
5366 for (tail = gcprolist; tail; tail = tail->next)
5367 for (i = 0; i < tail->nvars; i++)
5368 mark_object (tail->var[i]);
5369 }
5370 mark_byte_stack ();
5371 {
5372 struct catchtag *catch;
5373 struct handler *handler;
5374
5375 for (catch = catchlist; catch; catch = catch->next)
5376 {
5377 mark_object (catch->tag);
5378 mark_object (catch->val);
5379 }
5380 for (handler = handlerlist; handler; handler = handler->next)
5381 {
5382 mark_object (handler->handler);
5383 mark_object (handler->var);
5384 }
5385 }
5386 #endif
5387
5388 #ifdef HAVE_WINDOW_SYSTEM
5389 mark_fringe_data ();
5390 #endif
5391
5392 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5393 mark_stack ();
5394 #endif
5395
5396 /* Everything is now marked, except for the things that require special
5397 finalization, i.e. the undo_list.
5398 Look thru every buffer's undo list
5399 for elements that update markers that were not marked,
5400 and delete them. */
5401 FOR_EACH_BUFFER (nextb)
5402 {
5403 /* If a buffer's undo list is Qt, that means that undo is
5404 turned off in that buffer. Calling truncate_undo_list on
5405 Qt tends to return NULL, which effectively turns undo back on.
5406 So don't call truncate_undo_list if undo_list is Qt. */
5407 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5408 {
5409 Lisp_Object tail, prev;
5410 tail = nextb->INTERNAL_FIELD (undo_list);
5411 prev = Qnil;
5412 while (CONSP (tail))
5413 {
5414 if (CONSP (XCAR (tail))
5415 && MARKERP (XCAR (XCAR (tail)))
5416 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5417 {
5418 if (NILP (prev))
5419 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5420 else
5421 {
5422 tail = XCDR (tail);
5423 XSETCDR (prev, tail);
5424 }
5425 }
5426 else
5427 {
5428 prev = tail;
5429 tail = XCDR (tail);
5430 }
5431 }
5432 }
5433 /* Now that we have stripped the elements that need not be in the
5434 undo_list any more, we can finally mark the list. */
5435 mark_object (nextb->INTERNAL_FIELD (undo_list));
5436 }
5437
5438 gc_sweep ();
5439
5440 /* Clear the mark bits that we set in certain root slots. */
5441
5442 unmark_byte_stack ();
5443 VECTOR_UNMARK (&buffer_defaults);
5444 VECTOR_UNMARK (&buffer_local_symbols);
5445
5446 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5447 dump_zombies ();
5448 #endif
5449
5450 check_cons_list ();
5451
5452 gc_in_progress = 0;
5453
5454 unblock_input ();
5455
5456 consing_since_gc = 0;
5457 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5458 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5459
5460 gc_relative_threshold = 0;
5461 if (FLOATP (Vgc_cons_percentage))
5462 { /* Set gc_cons_combined_threshold. */
5463 double tot = total_bytes_of_live_objects ();
5464
5465 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5466 if (0 < tot)
5467 {
5468 if (tot < TYPE_MAXIMUM (EMACS_INT))
5469 gc_relative_threshold = tot;
5470 else
5471 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5472 }
5473 }
5474
5475 if (garbage_collection_messages)
5476 {
5477 if (message_p || minibuf_level > 0)
5478 restore_message ();
5479 else
5480 message1_nolog ("Garbage collecting...done");
5481 }
5482
5483 unbind_to (count, Qnil);
5484 {
5485 Lisp_Object total[11];
5486 int total_size = 10;
5487
5488 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5489 bounded_number (total_conses),
5490 bounded_number (total_free_conses));
5491
5492 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5493 bounded_number (total_symbols),
5494 bounded_number (total_free_symbols));
5495
5496 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5497 bounded_number (total_markers),
5498 bounded_number (total_free_markers));
5499
5500 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5501 bounded_number (total_strings),
5502 bounded_number (total_free_strings));
5503
5504 total[4] = list3 (Qstring_bytes, make_number (1),
5505 bounded_number (total_string_bytes));
5506
5507 total[5] = list3 (Qvectors,
5508 make_number (header_size + sizeof (Lisp_Object)),
5509 bounded_number (total_vectors));
5510
5511 total[6] = list4 (Qvector_slots, make_number (word_size),
5512 bounded_number (total_vector_slots),
5513 bounded_number (total_free_vector_slots));
5514
5515 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5516 bounded_number (total_floats),
5517 bounded_number (total_free_floats));
5518
5519 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5520 bounded_number (total_intervals),
5521 bounded_number (total_free_intervals));
5522
5523 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5524 bounded_number (total_buffers));
5525
5526 #ifdef DOUG_LEA_MALLOC
5527 total_size++;
5528 total[10] = list4 (Qheap, make_number (1024),
5529 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5530 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5531 #endif
5532 retval = Flist (total_size, total);
5533 }
5534
5535 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5536 {
5537 /* Compute average percentage of zombies. */
5538 double nlive
5539 = (total_conses + total_symbols + total_markers + total_strings
5540 + total_vectors + total_floats + total_intervals + total_buffers);
5541
5542 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5543 max_live = max (nlive, max_live);
5544 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5545 max_zombies = max (nzombies, max_zombies);
5546 ++ngcs;
5547 }
5548 #endif
5549
5550 if (!NILP (Vpost_gc_hook))
5551 {
5552 ptrdiff_t gc_count = inhibit_garbage_collection ();
5553 safe_run_hooks (Qpost_gc_hook);
5554 unbind_to (gc_count, Qnil);
5555 }
5556
5557 /* Accumulate statistics. */
5558 if (FLOATP (Vgc_elapsed))
5559 {
5560 struct timespec since_start = timespec_sub (current_timespec (), start);
5561 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5562 + timespectod (since_start));
5563 }
5564
5565 gcs_done++;
5566
5567 /* Collect profiling data. */
5568 if (profiler_memory_running)
5569 {
5570 size_t swept = 0;
5571 size_t tot_after = total_bytes_of_live_objects ();
5572 if (tot_before > tot_after)
5573 swept = tot_before - tot_after;
5574 malloc_probe (swept);
5575 }
5576
5577 return retval;
5578 }
5579
5580
5581 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5582 only interesting objects referenced from glyphs are strings. */
5583
5584 static void
5585 mark_glyph_matrix (struct glyph_matrix *matrix)
5586 {
5587 struct glyph_row *row = matrix->rows;
5588 struct glyph_row *end = row + matrix->nrows;
5589
5590 for (; row < end; ++row)
5591 if (row->enabled_p)
5592 {
5593 int area;
5594 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5595 {
5596 struct glyph *glyph = row->glyphs[area];
5597 struct glyph *end_glyph = glyph + row->used[area];
5598
5599 for (; glyph < end_glyph; ++glyph)
5600 if (STRINGP (glyph->object)
5601 && !STRING_MARKED_P (XSTRING (glyph->object)))
5602 mark_object (glyph->object);
5603 }
5604 }
5605 }
5606
5607
5608 /* Mark Lisp faces in the face cache C. */
5609
5610 static void
5611 mark_face_cache (struct face_cache *c)
5612 {
5613 if (c)
5614 {
5615 int i, j;
5616 for (i = 0; i < c->used; ++i)
5617 {
5618 struct face *face = FACE_FROM_ID (c->f, i);
5619
5620 if (face)
5621 {
5622 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5623 mark_object (face->lface[j]);
5624 }
5625 }
5626 }
5627 }
5628
5629
5630 \f
5631 /* Mark reference to a Lisp_Object.
5632 If the object referred to has not been seen yet, recursively mark
5633 all the references contained in it. */
5634
5635 #define LAST_MARKED_SIZE 500
5636 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5637 static int last_marked_index;
5638
5639 /* For debugging--call abort when we cdr down this many
5640 links of a list, in mark_object. In debugging,
5641 the call to abort will hit a breakpoint.
5642 Normally this is zero and the check never goes off. */
5643 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5644
5645 static void
5646 mark_vectorlike (struct Lisp_Vector *ptr)
5647 {
5648 ptrdiff_t size = ptr->header.size;
5649 ptrdiff_t i;
5650
5651 eassert (!VECTOR_MARKED_P (ptr));
5652 VECTOR_MARK (ptr); /* Else mark it. */
5653 if (size & PSEUDOVECTOR_FLAG)
5654 size &= PSEUDOVECTOR_SIZE_MASK;
5655
5656 /* Note that this size is not the memory-footprint size, but only
5657 the number of Lisp_Object fields that we should trace.
5658 The distinction is used e.g. by Lisp_Process which places extra
5659 non-Lisp_Object fields at the end of the structure... */
5660 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5661 mark_object (ptr->u.contents[i]);
5662 }
5663
5664 /* Like mark_vectorlike but optimized for char-tables (and
5665 sub-char-tables) assuming that the contents are mostly integers or
5666 symbols. */
5667
5668 static void
5669 mark_char_table (struct Lisp_Vector *ptr)
5670 {
5671 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5672 int i;
5673
5674 eassert (!VECTOR_MARKED_P (ptr));
5675 VECTOR_MARK (ptr);
5676 for (i = 0; i < size; i++)
5677 {
5678 Lisp_Object val = ptr->u.contents[i];
5679
5680 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5681 continue;
5682 if (SUB_CHAR_TABLE_P (val))
5683 {
5684 if (! VECTOR_MARKED_P (XVECTOR (val)))
5685 mark_char_table (XVECTOR (val));
5686 }
5687 else
5688 mark_object (val);
5689 }
5690 }
5691
5692 /* Mark the chain of overlays starting at PTR. */
5693
5694 static void
5695 mark_overlay (struct Lisp_Overlay *ptr)
5696 {
5697 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5698 {
5699 ptr->gcmarkbit = 1;
5700 mark_object (ptr->start);
5701 mark_object (ptr->end);
5702 mark_object (ptr->plist);
5703 }
5704 }
5705
5706 /* Mark Lisp_Objects and special pointers in BUFFER. */
5707
5708 static void
5709 mark_buffer (struct buffer *buffer)
5710 {
5711 /* This is handled much like other pseudovectors... */
5712 mark_vectorlike ((struct Lisp_Vector *) buffer);
5713
5714 /* ...but there are some buffer-specific things. */
5715
5716 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5717
5718 /* For now, we just don't mark the undo_list. It's done later in
5719 a special way just before the sweep phase, and after stripping
5720 some of its elements that are not needed any more. */
5721
5722 mark_overlay (buffer->overlays_before);
5723 mark_overlay (buffer->overlays_after);
5724
5725 /* If this is an indirect buffer, mark its base buffer. */
5726 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5727 mark_buffer (buffer->base_buffer);
5728 }
5729
5730 /* Remove killed buffers or items whose car is a killed buffer from
5731 LIST, and mark other items. Return changed LIST, which is marked. */
5732
5733 static Lisp_Object
5734 mark_discard_killed_buffers (Lisp_Object list)
5735 {
5736 Lisp_Object tail, *prev = &list;
5737
5738 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5739 tail = XCDR (tail))
5740 {
5741 Lisp_Object tem = XCAR (tail);
5742 if (CONSP (tem))
5743 tem = XCAR (tem);
5744 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5745 *prev = XCDR (tail);
5746 else
5747 {
5748 CONS_MARK (XCONS (tail));
5749 mark_object (XCAR (tail));
5750 prev = xcdr_addr (tail);
5751 }
5752 }
5753 mark_object (tail);
5754 return list;
5755 }
5756
5757 /* Determine type of generic Lisp_Object and mark it accordingly. */
5758
5759 void
5760 mark_object (Lisp_Object arg)
5761 {
5762 register Lisp_Object obj = arg;
5763 #ifdef GC_CHECK_MARKED_OBJECTS
5764 void *po;
5765 struct mem_node *m;
5766 #endif
5767 ptrdiff_t cdr_count = 0;
5768
5769 loop:
5770
5771 if (PURE_POINTER_P (XPNTR (obj)))
5772 return;
5773
5774 last_marked[last_marked_index++] = obj;
5775 if (last_marked_index == LAST_MARKED_SIZE)
5776 last_marked_index = 0;
5777
5778 /* Perform some sanity checks on the objects marked here. Abort if
5779 we encounter an object we know is bogus. This increases GC time
5780 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5781 #ifdef GC_CHECK_MARKED_OBJECTS
5782
5783 po = (void *) XPNTR (obj);
5784
5785 /* Check that the object pointed to by PO is known to be a Lisp
5786 structure allocated from the heap. */
5787 #define CHECK_ALLOCATED() \
5788 do { \
5789 m = mem_find (po); \
5790 if (m == MEM_NIL) \
5791 emacs_abort (); \
5792 } while (0)
5793
5794 /* Check that the object pointed to by PO is live, using predicate
5795 function LIVEP. */
5796 #define CHECK_LIVE(LIVEP) \
5797 do { \
5798 if (!LIVEP (m, po)) \
5799 emacs_abort (); \
5800 } while (0)
5801
5802 /* Check both of the above conditions. */
5803 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5804 do { \
5805 CHECK_ALLOCATED (); \
5806 CHECK_LIVE (LIVEP); \
5807 } while (0) \
5808
5809 #else /* not GC_CHECK_MARKED_OBJECTS */
5810
5811 #define CHECK_LIVE(LIVEP) (void) 0
5812 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5813
5814 #endif /* not GC_CHECK_MARKED_OBJECTS */
5815
5816 switch (XTYPE (obj))
5817 {
5818 case Lisp_String:
5819 {
5820 register struct Lisp_String *ptr = XSTRING (obj);
5821 if (STRING_MARKED_P (ptr))
5822 break;
5823 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5824 MARK_STRING (ptr);
5825 MARK_INTERVAL_TREE (ptr->intervals);
5826 #ifdef GC_CHECK_STRING_BYTES
5827 /* Check that the string size recorded in the string is the
5828 same as the one recorded in the sdata structure. */
5829 string_bytes (ptr);
5830 #endif /* GC_CHECK_STRING_BYTES */
5831 }
5832 break;
5833
5834 case Lisp_Vectorlike:
5835 {
5836 register struct Lisp_Vector *ptr = XVECTOR (obj);
5837 register ptrdiff_t pvectype;
5838
5839 if (VECTOR_MARKED_P (ptr))
5840 break;
5841
5842 #ifdef GC_CHECK_MARKED_OBJECTS
5843 m = mem_find (po);
5844 if (m == MEM_NIL && !SUBRP (obj))
5845 emacs_abort ();
5846 #endif /* GC_CHECK_MARKED_OBJECTS */
5847
5848 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5849 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5850 >> PSEUDOVECTOR_AREA_BITS);
5851 else
5852 pvectype = PVEC_NORMAL_VECTOR;
5853
5854 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5855 CHECK_LIVE (live_vector_p);
5856
5857 switch (pvectype)
5858 {
5859 case PVEC_BUFFER:
5860 #ifdef GC_CHECK_MARKED_OBJECTS
5861 {
5862 struct buffer *b;
5863 FOR_EACH_BUFFER (b)
5864 if (b == po)
5865 break;
5866 if (b == NULL)
5867 emacs_abort ();
5868 }
5869 #endif /* GC_CHECK_MARKED_OBJECTS */
5870 mark_buffer ((struct buffer *) ptr);
5871 break;
5872
5873 case PVEC_COMPILED:
5874 { /* We could treat this just like a vector, but it is better
5875 to save the COMPILED_CONSTANTS element for last and avoid
5876 recursion there. */
5877 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5878 int i;
5879
5880 VECTOR_MARK (ptr);
5881 for (i = 0; i < size; i++)
5882 if (i != COMPILED_CONSTANTS)
5883 mark_object (ptr->u.contents[i]);
5884 if (size > COMPILED_CONSTANTS)
5885 {
5886 obj = ptr->u.contents[COMPILED_CONSTANTS];
5887 goto loop;
5888 }
5889 }
5890 break;
5891
5892 case PVEC_FRAME:
5893 mark_vectorlike (ptr);
5894 mark_face_cache (((struct frame *) ptr)->face_cache);
5895 break;
5896
5897 case PVEC_WINDOW:
5898 {
5899 struct window *w = (struct window *) ptr;
5900
5901 mark_vectorlike (ptr);
5902
5903 /* Mark glyph matrices, if any. Marking window
5904 matrices is sufficient because frame matrices
5905 use the same glyph memory. */
5906 if (w->current_matrix)
5907 {
5908 mark_glyph_matrix (w->current_matrix);
5909 mark_glyph_matrix (w->desired_matrix);
5910 }
5911
5912 /* Filter out killed buffers from both buffer lists
5913 in attempt to help GC to reclaim killed buffers faster.
5914 We can do it elsewhere for live windows, but this is the
5915 best place to do it for dead windows. */
5916 wset_prev_buffers
5917 (w, mark_discard_killed_buffers (w->prev_buffers));
5918 wset_next_buffers
5919 (w, mark_discard_killed_buffers (w->next_buffers));
5920 }
5921 break;
5922
5923 case PVEC_HASH_TABLE:
5924 {
5925 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5926
5927 mark_vectorlike (ptr);
5928 mark_object (h->test.name);
5929 mark_object (h->test.user_hash_function);
5930 mark_object (h->test.user_cmp_function);
5931 /* If hash table is not weak, mark all keys and values.
5932 For weak tables, mark only the vector. */
5933 if (NILP (h->weak))
5934 mark_object (h->key_and_value);
5935 else
5936 VECTOR_MARK (XVECTOR (h->key_and_value));
5937 }
5938 break;
5939
5940 case PVEC_CHAR_TABLE:
5941 mark_char_table (ptr);
5942 break;
5943
5944 case PVEC_BOOL_VECTOR:
5945 /* No Lisp_Objects to mark in a bool vector. */
5946 VECTOR_MARK (ptr);
5947 break;
5948
5949 case PVEC_SUBR:
5950 break;
5951
5952 case PVEC_FREE:
5953 emacs_abort ();
5954
5955 default:
5956 mark_vectorlike (ptr);
5957 }
5958 }
5959 break;
5960
5961 case Lisp_Symbol:
5962 {
5963 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5964 struct Lisp_Symbol *ptrx;
5965
5966 if (ptr->gcmarkbit)
5967 break;
5968 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5969 ptr->gcmarkbit = 1;
5970 mark_object (ptr->function);
5971 mark_object (ptr->plist);
5972 switch (ptr->redirect)
5973 {
5974 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5975 case SYMBOL_VARALIAS:
5976 {
5977 Lisp_Object tem;
5978 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5979 mark_object (tem);
5980 break;
5981 }
5982 case SYMBOL_LOCALIZED:
5983 {
5984 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5985 Lisp_Object where = blv->where;
5986 /* If the value is set up for a killed buffer or deleted
5987 frame, restore it's global binding. If the value is
5988 forwarded to a C variable, either it's not a Lisp_Object
5989 var, or it's staticpro'd already. */
5990 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5991 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5992 swap_in_global_binding (ptr);
5993 mark_object (blv->where);
5994 mark_object (blv->valcell);
5995 mark_object (blv->defcell);
5996 break;
5997 }
5998 case SYMBOL_FORWARDED:
5999 /* If the value is forwarded to a buffer or keyboard field,
6000 these are marked when we see the corresponding object.
6001 And if it's forwarded to a C variable, either it's not
6002 a Lisp_Object var, or it's staticpro'd already. */
6003 break;
6004 default: emacs_abort ();
6005 }
6006 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6007 MARK_STRING (XSTRING (ptr->name));
6008 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6009
6010 ptr = ptr->next;
6011 if (ptr)
6012 {
6013 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6014 XSETSYMBOL (obj, ptrx);
6015 goto loop;
6016 }
6017 }
6018 break;
6019
6020 case Lisp_Misc:
6021 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6022
6023 if (XMISCANY (obj)->gcmarkbit)
6024 break;
6025
6026 switch (XMISCTYPE (obj))
6027 {
6028 case Lisp_Misc_Marker:
6029 /* DO NOT mark thru the marker's chain.
6030 The buffer's markers chain does not preserve markers from gc;
6031 instead, markers are removed from the chain when freed by gc. */
6032 XMISCANY (obj)->gcmarkbit = 1;
6033 break;
6034
6035 case Lisp_Misc_Save_Value:
6036 XMISCANY (obj)->gcmarkbit = 1;
6037 {
6038 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6039 /* If `save_type' is zero, `data[0].pointer' is the address
6040 of a memory area containing `data[1].integer' potential
6041 Lisp_Objects. */
6042 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6043 {
6044 Lisp_Object *p = ptr->data[0].pointer;
6045 ptrdiff_t nelt;
6046 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6047 mark_maybe_object (*p);
6048 }
6049 else
6050 {
6051 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6052 int i;
6053 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6054 if (save_type (ptr, i) == SAVE_OBJECT)
6055 mark_object (ptr->data[i].object);
6056 }
6057 }
6058 break;
6059
6060 case Lisp_Misc_Overlay:
6061 mark_overlay (XOVERLAY (obj));
6062 break;
6063
6064 default:
6065 emacs_abort ();
6066 }
6067 break;
6068
6069 case Lisp_Cons:
6070 {
6071 register struct Lisp_Cons *ptr = XCONS (obj);
6072 if (CONS_MARKED_P (ptr))
6073 break;
6074 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6075 CONS_MARK (ptr);
6076 /* If the cdr is nil, avoid recursion for the car. */
6077 if (EQ (ptr->u.cdr, Qnil))
6078 {
6079 obj = ptr->car;
6080 cdr_count = 0;
6081 goto loop;
6082 }
6083 mark_object (ptr->car);
6084 obj = ptr->u.cdr;
6085 cdr_count++;
6086 if (cdr_count == mark_object_loop_halt)
6087 emacs_abort ();
6088 goto loop;
6089 }
6090
6091 case Lisp_Float:
6092 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6093 FLOAT_MARK (XFLOAT (obj));
6094 break;
6095
6096 case_Lisp_Int:
6097 break;
6098
6099 default:
6100 emacs_abort ();
6101 }
6102
6103 #undef CHECK_LIVE
6104 #undef CHECK_ALLOCATED
6105 #undef CHECK_ALLOCATED_AND_LIVE
6106 }
6107 /* Mark the Lisp pointers in the terminal objects.
6108 Called by Fgarbage_collect. */
6109
6110 static void
6111 mark_terminals (void)
6112 {
6113 struct terminal *t;
6114 for (t = terminal_list; t; t = t->next_terminal)
6115 {
6116 eassert (t->name != NULL);
6117 #ifdef HAVE_WINDOW_SYSTEM
6118 /* If a terminal object is reachable from a stacpro'ed object,
6119 it might have been marked already. Make sure the image cache
6120 gets marked. */
6121 mark_image_cache (t->image_cache);
6122 #endif /* HAVE_WINDOW_SYSTEM */
6123 if (!VECTOR_MARKED_P (t))
6124 mark_vectorlike ((struct Lisp_Vector *)t);
6125 }
6126 }
6127
6128
6129
6130 /* Value is non-zero if OBJ will survive the current GC because it's
6131 either marked or does not need to be marked to survive. */
6132
6133 bool
6134 survives_gc_p (Lisp_Object obj)
6135 {
6136 bool survives_p;
6137
6138 switch (XTYPE (obj))
6139 {
6140 case_Lisp_Int:
6141 survives_p = 1;
6142 break;
6143
6144 case Lisp_Symbol:
6145 survives_p = XSYMBOL (obj)->gcmarkbit;
6146 break;
6147
6148 case Lisp_Misc:
6149 survives_p = XMISCANY (obj)->gcmarkbit;
6150 break;
6151
6152 case Lisp_String:
6153 survives_p = STRING_MARKED_P (XSTRING (obj));
6154 break;
6155
6156 case Lisp_Vectorlike:
6157 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6158 break;
6159
6160 case Lisp_Cons:
6161 survives_p = CONS_MARKED_P (XCONS (obj));
6162 break;
6163
6164 case Lisp_Float:
6165 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6166 break;
6167
6168 default:
6169 emacs_abort ();
6170 }
6171
6172 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6173 }
6174
6175
6176 \f
6177 /* Sweep: find all structures not marked, and free them. */
6178
6179 static void
6180 gc_sweep (void)
6181 {
6182 /* Remove or mark entries in weak hash tables.
6183 This must be done before any object is unmarked. */
6184 sweep_weak_hash_tables ();
6185
6186 sweep_strings ();
6187 check_string_bytes (!noninteractive);
6188
6189 /* Put all unmarked conses on free list */
6190 {
6191 register struct cons_block *cblk;
6192 struct cons_block **cprev = &cons_block;
6193 register int lim = cons_block_index;
6194 EMACS_INT num_free = 0, num_used = 0;
6195
6196 cons_free_list = 0;
6197
6198 for (cblk = cons_block; cblk; cblk = *cprev)
6199 {
6200 register int i = 0;
6201 int this_free = 0;
6202 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6203
6204 /* Scan the mark bits an int at a time. */
6205 for (i = 0; i < ilim; i++)
6206 {
6207 if (cblk->gcmarkbits[i] == -1)
6208 {
6209 /* Fast path - all cons cells for this int are marked. */
6210 cblk->gcmarkbits[i] = 0;
6211 num_used += BITS_PER_INT;
6212 }
6213 else
6214 {
6215 /* Some cons cells for this int are not marked.
6216 Find which ones, and free them. */
6217 int start, pos, stop;
6218
6219 start = i * BITS_PER_INT;
6220 stop = lim - start;
6221 if (stop > BITS_PER_INT)
6222 stop = BITS_PER_INT;
6223 stop += start;
6224
6225 for (pos = start; pos < stop; pos++)
6226 {
6227 if (!CONS_MARKED_P (&cblk->conses[pos]))
6228 {
6229 this_free++;
6230 cblk->conses[pos].u.chain = cons_free_list;
6231 cons_free_list = &cblk->conses[pos];
6232 #if GC_MARK_STACK
6233 cons_free_list->car = Vdead;
6234 #endif
6235 }
6236 else
6237 {
6238 num_used++;
6239 CONS_UNMARK (&cblk->conses[pos]);
6240 }
6241 }
6242 }
6243 }
6244
6245 lim = CONS_BLOCK_SIZE;
6246 /* If this block contains only free conses and we have already
6247 seen more than two blocks worth of free conses then deallocate
6248 this block. */
6249 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6250 {
6251 *cprev = cblk->next;
6252 /* Unhook from the free list. */
6253 cons_free_list = cblk->conses[0].u.chain;
6254 lisp_align_free (cblk);
6255 }
6256 else
6257 {
6258 num_free += this_free;
6259 cprev = &cblk->next;
6260 }
6261 }
6262 total_conses = num_used;
6263 total_free_conses = num_free;
6264 }
6265
6266 /* Put all unmarked floats on free list */
6267 {
6268 register struct float_block *fblk;
6269 struct float_block **fprev = &float_block;
6270 register int lim = float_block_index;
6271 EMACS_INT num_free = 0, num_used = 0;
6272
6273 float_free_list = 0;
6274
6275 for (fblk = float_block; fblk; fblk = *fprev)
6276 {
6277 register int i;
6278 int this_free = 0;
6279 for (i = 0; i < lim; i++)
6280 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6281 {
6282 this_free++;
6283 fblk->floats[i].u.chain = float_free_list;
6284 float_free_list = &fblk->floats[i];
6285 }
6286 else
6287 {
6288 num_used++;
6289 FLOAT_UNMARK (&fblk->floats[i]);
6290 }
6291 lim = FLOAT_BLOCK_SIZE;
6292 /* If this block contains only free floats and we have already
6293 seen more than two blocks worth of free floats then deallocate
6294 this block. */
6295 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6296 {
6297 *fprev = fblk->next;
6298 /* Unhook from the free list. */
6299 float_free_list = fblk->floats[0].u.chain;
6300 lisp_align_free (fblk);
6301 }
6302 else
6303 {
6304 num_free += this_free;
6305 fprev = &fblk->next;
6306 }
6307 }
6308 total_floats = num_used;
6309 total_free_floats = num_free;
6310 }
6311
6312 /* Put all unmarked intervals on free list */
6313 {
6314 register struct interval_block *iblk;
6315 struct interval_block **iprev = &interval_block;
6316 register int lim = interval_block_index;
6317 EMACS_INT num_free = 0, num_used = 0;
6318
6319 interval_free_list = 0;
6320
6321 for (iblk = interval_block; iblk; iblk = *iprev)
6322 {
6323 register int i;
6324 int this_free = 0;
6325
6326 for (i = 0; i < lim; i++)
6327 {
6328 if (!iblk->intervals[i].gcmarkbit)
6329 {
6330 set_interval_parent (&iblk->intervals[i], interval_free_list);
6331 interval_free_list = &iblk->intervals[i];
6332 this_free++;
6333 }
6334 else
6335 {
6336 num_used++;
6337 iblk->intervals[i].gcmarkbit = 0;
6338 }
6339 }
6340 lim = INTERVAL_BLOCK_SIZE;
6341 /* If this block contains only free intervals and we have already
6342 seen more than two blocks worth of free intervals then
6343 deallocate this block. */
6344 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6345 {
6346 *iprev = iblk->next;
6347 /* Unhook from the free list. */
6348 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6349 lisp_free (iblk);
6350 }
6351 else
6352 {
6353 num_free += this_free;
6354 iprev = &iblk->next;
6355 }
6356 }
6357 total_intervals = num_used;
6358 total_free_intervals = num_free;
6359 }
6360
6361 /* Put all unmarked symbols on free list */
6362 {
6363 register struct symbol_block *sblk;
6364 struct symbol_block **sprev = &symbol_block;
6365 register int lim = symbol_block_index;
6366 EMACS_INT num_free = 0, num_used = 0;
6367
6368 symbol_free_list = NULL;
6369
6370 for (sblk = symbol_block; sblk; sblk = *sprev)
6371 {
6372 int this_free = 0;
6373 union aligned_Lisp_Symbol *sym = sblk->symbols;
6374 union aligned_Lisp_Symbol *end = sym + lim;
6375
6376 for (; sym < end; ++sym)
6377 {
6378 /* Check if the symbol was created during loadup. In such a case
6379 it might be pointed to by pure bytecode which we don't trace,
6380 so we conservatively assume that it is live. */
6381 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6382
6383 if (!sym->s.gcmarkbit && !pure_p)
6384 {
6385 if (sym->s.redirect == SYMBOL_LOCALIZED)
6386 xfree (SYMBOL_BLV (&sym->s));
6387 sym->s.next = symbol_free_list;
6388 symbol_free_list = &sym->s;
6389 #if GC_MARK_STACK
6390 symbol_free_list->function = Vdead;
6391 #endif
6392 ++this_free;
6393 }
6394 else
6395 {
6396 ++num_used;
6397 if (!pure_p)
6398 UNMARK_STRING (XSTRING (sym->s.name));
6399 sym->s.gcmarkbit = 0;
6400 }
6401 }
6402
6403 lim = SYMBOL_BLOCK_SIZE;
6404 /* If this block contains only free symbols and we have already
6405 seen more than two blocks worth of free symbols then deallocate
6406 this block. */
6407 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6408 {
6409 *sprev = sblk->next;
6410 /* Unhook from the free list. */
6411 symbol_free_list = sblk->symbols[0].s.next;
6412 lisp_free (sblk);
6413 }
6414 else
6415 {
6416 num_free += this_free;
6417 sprev = &sblk->next;
6418 }
6419 }
6420 total_symbols = num_used;
6421 total_free_symbols = num_free;
6422 }
6423
6424 /* Put all unmarked misc's on free list.
6425 For a marker, first unchain it from the buffer it points into. */
6426 {
6427 register struct marker_block *mblk;
6428 struct marker_block **mprev = &marker_block;
6429 register int lim = marker_block_index;
6430 EMACS_INT num_free = 0, num_used = 0;
6431
6432 marker_free_list = 0;
6433
6434 for (mblk = marker_block; mblk; mblk = *mprev)
6435 {
6436 register int i;
6437 int this_free = 0;
6438
6439 for (i = 0; i < lim; i++)
6440 {
6441 if (!mblk->markers[i].m.u_any.gcmarkbit)
6442 {
6443 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6444 unchain_marker (&mblk->markers[i].m.u_marker);
6445 /* Set the type of the freed object to Lisp_Misc_Free.
6446 We could leave the type alone, since nobody checks it,
6447 but this might catch bugs faster. */
6448 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6449 mblk->markers[i].m.u_free.chain = marker_free_list;
6450 marker_free_list = &mblk->markers[i].m;
6451 this_free++;
6452 }
6453 else
6454 {
6455 num_used++;
6456 mblk->markers[i].m.u_any.gcmarkbit = 0;
6457 }
6458 }
6459 lim = MARKER_BLOCK_SIZE;
6460 /* If this block contains only free markers and we have already
6461 seen more than two blocks worth of free markers then deallocate
6462 this block. */
6463 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6464 {
6465 *mprev = mblk->next;
6466 /* Unhook from the free list. */
6467 marker_free_list = mblk->markers[0].m.u_free.chain;
6468 lisp_free (mblk);
6469 }
6470 else
6471 {
6472 num_free += this_free;
6473 mprev = &mblk->next;
6474 }
6475 }
6476
6477 total_markers = num_used;
6478 total_free_markers = num_free;
6479 }
6480
6481 /* Free all unmarked buffers */
6482 {
6483 register struct buffer *buffer, **bprev = &all_buffers;
6484
6485 total_buffers = 0;
6486 for (buffer = all_buffers; buffer; buffer = *bprev)
6487 if (!VECTOR_MARKED_P (buffer))
6488 {
6489 *bprev = buffer->next;
6490 lisp_free (buffer);
6491 }
6492 else
6493 {
6494 VECTOR_UNMARK (buffer);
6495 /* Do not use buffer_(set|get)_intervals here. */
6496 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6497 total_buffers++;
6498 bprev = &buffer->next;
6499 }
6500 }
6501
6502 sweep_vectors ();
6503 check_string_bytes (!noninteractive);
6504 }
6505
6506
6507
6508 \f
6509 /* Debugging aids. */
6510
6511 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6512 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6513 This may be helpful in debugging Emacs's memory usage.
6514 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6515 (void)
6516 {
6517 Lisp_Object end;
6518
6519 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6520
6521 return end;
6522 }
6523
6524 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6525 doc: /* Return a list of counters that measure how much consing there has been.
6526 Each of these counters increments for a certain kind of object.
6527 The counters wrap around from the largest positive integer to zero.
6528 Garbage collection does not decrease them.
6529 The elements of the value are as follows:
6530 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6531 All are in units of 1 = one object consed
6532 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6533 objects consed.
6534 MISCS include overlays, markers, and some internal types.
6535 Frames, windows, buffers, and subprocesses count as vectors
6536 (but the contents of a buffer's text do not count here). */)
6537 (void)
6538 {
6539 return listn (CONSTYPE_HEAP, 8,
6540 bounded_number (cons_cells_consed),
6541 bounded_number (floats_consed),
6542 bounded_number (vector_cells_consed),
6543 bounded_number (symbols_consed),
6544 bounded_number (string_chars_consed),
6545 bounded_number (misc_objects_consed),
6546 bounded_number (intervals_consed),
6547 bounded_number (strings_consed));
6548 }
6549
6550 /* Find at most FIND_MAX symbols which have OBJ as their value or
6551 function. This is used in gdbinit's `xwhichsymbols' command. */
6552
6553 Lisp_Object
6554 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6555 {
6556 struct symbol_block *sblk;
6557 ptrdiff_t gc_count = inhibit_garbage_collection ();
6558 Lisp_Object found = Qnil;
6559
6560 if (! DEADP (obj))
6561 {
6562 for (sblk = symbol_block; sblk; sblk = sblk->next)
6563 {
6564 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6565 int bn;
6566
6567 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6568 {
6569 struct Lisp_Symbol *sym = &aligned_sym->s;
6570 Lisp_Object val;
6571 Lisp_Object tem;
6572
6573 if (sblk == symbol_block && bn >= symbol_block_index)
6574 break;
6575
6576 XSETSYMBOL (tem, sym);
6577 val = find_symbol_value (tem);
6578 if (EQ (val, obj)
6579 || EQ (sym->function, obj)
6580 || (!NILP (sym->function)
6581 && COMPILEDP (sym->function)
6582 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6583 || (!NILP (val)
6584 && COMPILEDP (val)
6585 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6586 {
6587 found = Fcons (tem, found);
6588 if (--find_max == 0)
6589 goto out;
6590 }
6591 }
6592 }
6593 }
6594
6595 out:
6596 unbind_to (gc_count, Qnil);
6597 return found;
6598 }
6599
6600 #ifdef ENABLE_CHECKING
6601
6602 bool suppress_checking;
6603
6604 void
6605 die (const char *msg, const char *file, int line)
6606 {
6607 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6608 file, line, msg);
6609 terminate_due_to_signal (SIGABRT, INT_MAX);
6610 }
6611 #endif
6612 \f
6613 /* Initialization. */
6614
6615 void
6616 init_alloc_once (void)
6617 {
6618 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6619 purebeg = PUREBEG;
6620 pure_size = PURESIZE;
6621
6622 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6623 mem_init ();
6624 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6625 #endif
6626
6627 #ifdef DOUG_LEA_MALLOC
6628 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6629 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6630 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6631 #endif
6632 init_strings ();
6633 init_vectors ();
6634
6635 refill_memory_reserve ();
6636 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6637 }
6638
6639 void
6640 init_alloc (void)
6641 {
6642 gcprolist = 0;
6643 byte_stack_list = 0;
6644 #if GC_MARK_STACK
6645 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6646 setjmp_tested_p = longjmps_done = 0;
6647 #endif
6648 #endif
6649 Vgc_elapsed = make_float (0.0);
6650 gcs_done = 0;
6651
6652 #if USE_VALGRIND
6653 valgrind_p = RUNNING_ON_VALGRIND != 0;
6654 #endif
6655 }
6656
6657 void
6658 syms_of_alloc (void)
6659 {
6660 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6661 doc: /* Number of bytes of consing between garbage collections.
6662 Garbage collection can happen automatically once this many bytes have been
6663 allocated since the last garbage collection. All data types count.
6664
6665 Garbage collection happens automatically only when `eval' is called.
6666
6667 By binding this temporarily to a large number, you can effectively
6668 prevent garbage collection during a part of the program.
6669 See also `gc-cons-percentage'. */);
6670
6671 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6672 doc: /* Portion of the heap used for allocation.
6673 Garbage collection can happen automatically once this portion of the heap
6674 has been allocated since the last garbage collection.
6675 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6676 Vgc_cons_percentage = make_float (0.1);
6677
6678 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6679 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6680
6681 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6682 doc: /* Number of cons cells that have been consed so far. */);
6683
6684 DEFVAR_INT ("floats-consed", floats_consed,
6685 doc: /* Number of floats that have been consed so far. */);
6686
6687 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6688 doc: /* Number of vector cells that have been consed so far. */);
6689
6690 DEFVAR_INT ("symbols-consed", symbols_consed,
6691 doc: /* Number of symbols that have been consed so far. */);
6692
6693 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6694 doc: /* Number of string characters that have been consed so far. */);
6695
6696 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6697 doc: /* Number of miscellaneous objects that have been consed so far.
6698 These include markers and overlays, plus certain objects not visible
6699 to users. */);
6700
6701 DEFVAR_INT ("intervals-consed", intervals_consed,
6702 doc: /* Number of intervals that have been consed so far. */);
6703
6704 DEFVAR_INT ("strings-consed", strings_consed,
6705 doc: /* Number of strings that have been consed so far. */);
6706
6707 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6708 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6709 This means that certain objects should be allocated in shared (pure) space.
6710 It can also be set to a hash-table, in which case this table is used to
6711 do hash-consing of the objects allocated to pure space. */);
6712
6713 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6714 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6715 garbage_collection_messages = 0;
6716
6717 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6718 doc: /* Hook run after garbage collection has finished. */);
6719 Vpost_gc_hook = Qnil;
6720 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6721
6722 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6723 doc: /* Precomputed `signal' argument for memory-full error. */);
6724 /* We build this in advance because if we wait until we need it, we might
6725 not be able to allocate the memory to hold it. */
6726 Vmemory_signal_data
6727 = listn (CONSTYPE_PURE, 2, Qerror,
6728 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6729
6730 DEFVAR_LISP ("memory-full", Vmemory_full,
6731 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6732 Vmemory_full = Qnil;
6733
6734 DEFSYM (Qconses, "conses");
6735 DEFSYM (Qsymbols, "symbols");
6736 DEFSYM (Qmiscs, "miscs");
6737 DEFSYM (Qstrings, "strings");
6738 DEFSYM (Qvectors, "vectors");
6739 DEFSYM (Qfloats, "floats");
6740 DEFSYM (Qintervals, "intervals");
6741 DEFSYM (Qbuffers, "buffers");
6742 DEFSYM (Qstring_bytes, "string-bytes");
6743 DEFSYM (Qvector_slots, "vector-slots");
6744 DEFSYM (Qheap, "heap");
6745 DEFSYM (Qautomatic_gc, "Automatic GC");
6746
6747 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6748 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6749
6750 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6751 doc: /* Accumulated time elapsed in garbage collections.
6752 The time is in seconds as a floating point value. */);
6753 DEFVAR_INT ("gcs-done", gcs_done,
6754 doc: /* Accumulated number of garbage collections done. */);
6755
6756 defsubr (&Scons);
6757 defsubr (&Slist);
6758 defsubr (&Svector);
6759 defsubr (&Smake_byte_code);
6760 defsubr (&Smake_list);
6761 defsubr (&Smake_vector);
6762 defsubr (&Smake_string);
6763 defsubr (&Smake_bool_vector);
6764 defsubr (&Smake_symbol);
6765 defsubr (&Smake_marker);
6766 defsubr (&Spurecopy);
6767 defsubr (&Sgarbage_collect);
6768 defsubr (&Smemory_limit);
6769 defsubr (&Smemory_use_counts);
6770
6771 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6772 defsubr (&Sgc_status);
6773 #endif
6774 }
6775
6776 /* When compiled with GCC, GDB might say "No enum type named
6777 pvec_type" if we don't have at least one symbol with that type, and
6778 then xbacktrace could fail. Similarly for the other enums and
6779 their values. Some non-GCC compilers don't like these constructs. */
6780 #ifdef __GNUC__
6781 union
6782 {
6783 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6784 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6785 enum char_bits char_bits;
6786 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6787 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6788 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6789 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6790 enum Lisp_Bits Lisp_Bits;
6791 enum Lisp_Compiled Lisp_Compiled;
6792 enum maxargs maxargs;
6793 enum MAX_ALLOCA MAX_ALLOCA;
6794 enum More_Lisp_Bits More_Lisp_Bits;
6795 enum pvec_type pvec_type;
6796 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6797 #endif /* __GNUC__ */