b1307743f0f77456f85bc2f33ed870bc2e3fecc6
[bpt/emacs.git] / src / regex.c
1 /* Extended regular expression matching and search library, version
2 0.12. (Implements POSIX draft P1003.2/D11.2, except for some of the
3 internationalization features.)
4
5 Copyright (C) 1993, 1994, 1995, 1996, 1997, 1998, 1999, 2000, 2001,
6 2002, 2003, 2004, 2005, 2006 Free Software Foundation, Inc.
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA 02110-1301,
21 USA. */
22
23 /* TODO:
24 - structure the opcode space into opcode+flag.
25 - merge with glibc's regex.[ch].
26 - replace (succeed_n + jump_n + set_number_at) with something that doesn't
27 need to modify the compiled regexp so that re_match can be reentrant.
28 - get rid of on_failure_jump_smart by doing the optimization in re_comp
29 rather than at run-time, so that re_match can be reentrant.
30 */
31
32 /* AIX requires this to be the first thing in the file. */
33 #if defined _AIX && !defined REGEX_MALLOC
34 #pragma alloca
35 #endif
36
37 #ifdef HAVE_CONFIG_H
38 # include <config.h>
39 #endif
40
41 #if defined STDC_HEADERS && !defined emacs
42 # include <stddef.h>
43 #else
44 /* We need this for `regex.h', and perhaps for the Emacs include files. */
45 # include <sys/types.h>
46 #endif
47
48 /* Whether to use ISO C Amendment 1 wide char functions.
49 Those should not be used for Emacs since it uses its own. */
50 #if defined _LIBC
51 #define WIDE_CHAR_SUPPORT 1
52 #else
53 #define WIDE_CHAR_SUPPORT \
54 (HAVE_WCTYPE_H && HAVE_WCHAR_H && HAVE_BTOWC && !emacs)
55 #endif
56
57 /* For platform which support the ISO C amendement 1 functionality we
58 support user defined character classes. */
59 #if WIDE_CHAR_SUPPORT
60 /* Solaris 2.5 has a bug: <wchar.h> must be included before <wctype.h>. */
61 # include <wchar.h>
62 # include <wctype.h>
63 #endif
64
65 #ifdef _LIBC
66 /* We have to keep the namespace clean. */
67 # define regfree(preg) __regfree (preg)
68 # define regexec(pr, st, nm, pm, ef) __regexec (pr, st, nm, pm, ef)
69 # define regcomp(preg, pattern, cflags) __regcomp (preg, pattern, cflags)
70 # define regerror(err_code, preg, errbuf, errbuf_size) \
71 __regerror(err_code, preg, errbuf, errbuf_size)
72 # define re_set_registers(bu, re, nu, st, en) \
73 __re_set_registers (bu, re, nu, st, en)
74 # define re_match_2(bufp, string1, size1, string2, size2, pos, regs, stop) \
75 __re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
76 # define re_match(bufp, string, size, pos, regs) \
77 __re_match (bufp, string, size, pos, regs)
78 # define re_search(bufp, string, size, startpos, range, regs) \
79 __re_search (bufp, string, size, startpos, range, regs)
80 # define re_compile_pattern(pattern, length, bufp) \
81 __re_compile_pattern (pattern, length, bufp)
82 # define re_set_syntax(syntax) __re_set_syntax (syntax)
83 # define re_search_2(bufp, st1, s1, st2, s2, startpos, range, regs, stop) \
84 __re_search_2 (bufp, st1, s1, st2, s2, startpos, range, regs, stop)
85 # define re_compile_fastmap(bufp) __re_compile_fastmap (bufp)
86
87 /* Make sure we call libc's function even if the user overrides them. */
88 # define btowc __btowc
89 # define iswctype __iswctype
90 # define wctype __wctype
91
92 # define WEAK_ALIAS(a,b) weak_alias (a, b)
93
94 /* We are also using some library internals. */
95 # include <locale/localeinfo.h>
96 # include <locale/elem-hash.h>
97 # include <langinfo.h>
98 #else
99 # define WEAK_ALIAS(a,b)
100 #endif
101
102 /* This is for other GNU distributions with internationalized messages. */
103 #if HAVE_LIBINTL_H || defined _LIBC
104 # include <libintl.h>
105 #else
106 # define gettext(msgid) (msgid)
107 #endif
108
109 #ifndef gettext_noop
110 /* This define is so xgettext can find the internationalizable
111 strings. */
112 # define gettext_noop(String) String
113 #endif
114
115 /* The `emacs' switch turns on certain matching commands
116 that make sense only in Emacs. */
117 #ifdef emacs
118
119 # include "lisp.h"
120 # include "buffer.h"
121
122 /* Make syntax table lookup grant data in gl_state. */
123 # define SYNTAX_ENTRY_VIA_PROPERTY
124
125 # include "syntax.h"
126 # include "charset.h"
127 # include "category.h"
128
129 # ifdef malloc
130 # undef malloc
131 # endif
132 # define malloc xmalloc
133 # ifdef realloc
134 # undef realloc
135 # endif
136 # define realloc xrealloc
137 # ifdef free
138 # undef free
139 # endif
140 # define free xfree
141
142 /* Converts the pointer to the char to BEG-based offset from the start. */
143 # define PTR_TO_OFFSET(d) POS_AS_IN_BUFFER (POINTER_TO_OFFSET (d))
144 # define POS_AS_IN_BUFFER(p) ((p) + (NILP (re_match_object) || BUFFERP (re_match_object)))
145
146 # define RE_MULTIBYTE_P(bufp) ((bufp)->multibyte)
147 # define RE_STRING_CHAR(p, s) \
148 (multibyte ? (STRING_CHAR (p, s)) : (*(p)))
149 # define RE_STRING_CHAR_AND_LENGTH(p, s, len) \
150 (multibyte ? (STRING_CHAR_AND_LENGTH (p, s, len)) : ((len) = 1, *(p)))
151
152 /* Set C a (possibly multibyte) character before P. P points into a
153 string which is the virtual concatenation of STR1 (which ends at
154 END1) or STR2 (which ends at END2). */
155 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
156 do { \
157 if (multibyte) \
158 { \
159 re_char *dtemp = (p) == (str2) ? (end1) : (p); \
160 re_char *dlimit = ((p) > (str2) && (p) <= (end2)) ? (str2) : (str1); \
161 re_char *d0 = dtemp; \
162 PREV_CHAR_BOUNDARY (d0, dlimit); \
163 c = STRING_CHAR (d0, dtemp - d0); \
164 } \
165 else \
166 (c = ((p) == (str2) ? (end1) : (p))[-1]); \
167 } while (0)
168
169
170 #else /* not emacs */
171
172 /* If we are not linking with Emacs proper,
173 we can't use the relocating allocator
174 even if config.h says that we can. */
175 # undef REL_ALLOC
176
177 # if defined STDC_HEADERS || defined _LIBC
178 # include <stdlib.h>
179 # else
180 char *malloc ();
181 char *realloc ();
182 # endif
183
184 /* When used in Emacs's lib-src, we need xmalloc and xrealloc. */
185
186 void *
187 xmalloc (size)
188 size_t size;
189 {
190 register void *val;
191 val = (void *) malloc (size);
192 if (!val && size)
193 {
194 write (2, "virtual memory exhausted\n", 25);
195 exit (1);
196 }
197 return val;
198 }
199
200 void *
201 xrealloc (block, size)
202 void *block;
203 size_t size;
204 {
205 register void *val;
206 /* We must call malloc explicitly when BLOCK is 0, since some
207 reallocs don't do this. */
208 if (! block)
209 val = (void *) malloc (size);
210 else
211 val = (void *) realloc (block, size);
212 if (!val && size)
213 {
214 write (2, "virtual memory exhausted\n", 25);
215 exit (1);
216 }
217 return val;
218 }
219
220 # ifdef malloc
221 # undef malloc
222 # endif
223 # define malloc xmalloc
224 # ifdef realloc
225 # undef realloc
226 # endif
227 # define realloc xrealloc
228
229 /* When used in Emacs's lib-src, we need to get bzero and bcopy somehow.
230 If nothing else has been done, use the method below. */
231 # ifdef INHIBIT_STRING_HEADER
232 # if !(defined HAVE_BZERO && defined HAVE_BCOPY)
233 # if !defined bzero && !defined bcopy
234 # undef INHIBIT_STRING_HEADER
235 # endif
236 # endif
237 # endif
238
239 /* This is the normal way of making sure we have memcpy, memcmp and bzero.
240 This is used in most programs--a few other programs avoid this
241 by defining INHIBIT_STRING_HEADER. */
242 # ifndef INHIBIT_STRING_HEADER
243 # if defined HAVE_STRING_H || defined STDC_HEADERS || defined _LIBC
244 # include <string.h>
245 # ifndef bzero
246 # ifndef _LIBC
247 # define bzero(s, n) (memset (s, '\0', n), (s))
248 # else
249 # define bzero(s, n) __bzero (s, n)
250 # endif
251 # endif
252 # else
253 # include <strings.h>
254 # ifndef memcmp
255 # define memcmp(s1, s2, n) bcmp (s1, s2, n)
256 # endif
257 # ifndef memcpy
258 # define memcpy(d, s, n) (bcopy (s, d, n), (d))
259 # endif
260 # endif
261 # endif
262
263 /* Define the syntax stuff for \<, \>, etc. */
264
265 /* Sword must be nonzero for the wordchar pattern commands in re_match_2. */
266 enum syntaxcode { Swhitespace = 0, Sword = 1, Ssymbol = 2 };
267
268 # ifdef SWITCH_ENUM_BUG
269 # define SWITCH_ENUM_CAST(x) ((int)(x))
270 # else
271 # define SWITCH_ENUM_CAST(x) (x)
272 # endif
273
274 /* Dummy macros for non-Emacs environments. */
275 # define BASE_LEADING_CODE_P(c) (0)
276 # define CHAR_CHARSET(c) 0
277 # define CHARSET_LEADING_CODE_BASE(c) 0
278 # define MAX_MULTIBYTE_LENGTH 1
279 # define RE_MULTIBYTE_P(x) 0
280 # define WORD_BOUNDARY_P(c1, c2) (0)
281 # define CHAR_HEAD_P(p) (1)
282 # define SINGLE_BYTE_CHAR_P(c) (1)
283 # define SAME_CHARSET_P(c1, c2) (1)
284 # define MULTIBYTE_FORM_LENGTH(p, s) (1)
285 # define PREV_CHAR_BOUNDARY(p, limit) ((p)--)
286 # define STRING_CHAR(p, s) (*(p))
287 # define RE_STRING_CHAR STRING_CHAR
288 # define CHAR_STRING(c, s) (*(s) = (c), 1)
289 # define STRING_CHAR_AND_LENGTH(p, s, actual_len) ((actual_len) = 1, *(p))
290 # define RE_STRING_CHAR_AND_LENGTH STRING_CHAR_AND_LENGTH
291 # define GET_CHAR_BEFORE_2(c, p, str1, end1, str2, end2) \
292 (c = ((p) == (str2) ? *((end1) - 1) : *((p) - 1)))
293 # define MAKE_CHAR(charset, c1, c2) (c1)
294 #endif /* not emacs */
295
296 #ifndef RE_TRANSLATE
297 # define RE_TRANSLATE(TBL, C) ((unsigned char)(TBL)[C])
298 # define RE_TRANSLATE_P(TBL) (TBL)
299 #endif
300 \f
301 /* Get the interface, including the syntax bits. */
302 #include "regex.h"
303
304 /* isalpha etc. are used for the character classes. */
305 #include <ctype.h>
306
307 #ifdef emacs
308
309 /* 1 if C is an ASCII character. */
310 # define IS_REAL_ASCII(c) ((c) < 0200)
311
312 /* 1 if C is a unibyte character. */
313 # define ISUNIBYTE(c) (SINGLE_BYTE_CHAR_P ((c)))
314
315 /* The Emacs definitions should not be directly affected by locales. */
316
317 /* In Emacs, these are only used for single-byte characters. */
318 # define ISDIGIT(c) ((c) >= '0' && (c) <= '9')
319 # define ISCNTRL(c) ((c) < ' ')
320 # define ISXDIGIT(c) (((c) >= '0' && (c) <= '9') \
321 || ((c) >= 'a' && (c) <= 'f') \
322 || ((c) >= 'A' && (c) <= 'F'))
323
324 /* This is only used for single-byte characters. */
325 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
326
327 /* The rest must handle multibyte characters. */
328
329 # define ISGRAPH(c) (SINGLE_BYTE_CHAR_P (c) \
330 ? (c) > ' ' && !((c) >= 0177 && (c) <= 0237) \
331 : 1)
332
333 # define ISPRINT(c) (SINGLE_BYTE_CHAR_P (c) \
334 ? (c) >= ' ' && !((c) >= 0177 && (c) <= 0237) \
335 : 1)
336
337 # define ISALNUM(c) (IS_REAL_ASCII (c) \
338 ? (((c) >= 'a' && (c) <= 'z') \
339 || ((c) >= 'A' && (c) <= 'Z') \
340 || ((c) >= '0' && (c) <= '9')) \
341 : SYNTAX (c) == Sword)
342
343 # define ISALPHA(c) (IS_REAL_ASCII (c) \
344 ? (((c) >= 'a' && (c) <= 'z') \
345 || ((c) >= 'A' && (c) <= 'Z')) \
346 : SYNTAX (c) == Sword)
347
348 # define ISLOWER(c) (LOWERCASEP (c))
349
350 # define ISPUNCT(c) (IS_REAL_ASCII (c) \
351 ? ((c) > ' ' && (c) < 0177 \
352 && !(((c) >= 'a' && (c) <= 'z') \
353 || ((c) >= 'A' && (c) <= 'Z') \
354 || ((c) >= '0' && (c) <= '9'))) \
355 : SYNTAX (c) != Sword)
356
357 # define ISSPACE(c) (SYNTAX (c) == Swhitespace)
358
359 # define ISUPPER(c) (UPPERCASEP (c))
360
361 # define ISWORD(c) (SYNTAX (c) == Sword)
362
363 #else /* not emacs */
364
365 /* Jim Meyering writes:
366
367 "... Some ctype macros are valid only for character codes that
368 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
369 using /bin/cc or gcc but without giving an ansi option). So, all
370 ctype uses should be through macros like ISPRINT... If
371 STDC_HEADERS is defined, then autoconf has verified that the ctype
372 macros don't need to be guarded with references to isascii. ...
373 Defining isascii to 1 should let any compiler worth its salt
374 eliminate the && through constant folding."
375 Solaris defines some of these symbols so we must undefine them first. */
376
377 # undef ISASCII
378 # if defined STDC_HEADERS || (!defined isascii && !defined HAVE_ISASCII)
379 # define ISASCII(c) 1
380 # else
381 # define ISASCII(c) isascii(c)
382 # endif
383
384 /* 1 if C is an ASCII character. */
385 # define IS_REAL_ASCII(c) ((c) < 0200)
386
387 /* This distinction is not meaningful, except in Emacs. */
388 # define ISUNIBYTE(c) 1
389
390 # ifdef isblank
391 # define ISBLANK(c) (ISASCII (c) && isblank (c))
392 # else
393 # define ISBLANK(c) ((c) == ' ' || (c) == '\t')
394 # endif
395 # ifdef isgraph
396 # define ISGRAPH(c) (ISASCII (c) && isgraph (c))
397 # else
398 # define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
399 # endif
400
401 # undef ISPRINT
402 # define ISPRINT(c) (ISASCII (c) && isprint (c))
403 # define ISDIGIT(c) (ISASCII (c) && isdigit (c))
404 # define ISALNUM(c) (ISASCII (c) && isalnum (c))
405 # define ISALPHA(c) (ISASCII (c) && isalpha (c))
406 # define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
407 # define ISLOWER(c) (ISASCII (c) && islower (c))
408 # define ISPUNCT(c) (ISASCII (c) && ispunct (c))
409 # define ISSPACE(c) (ISASCII (c) && isspace (c))
410 # define ISUPPER(c) (ISASCII (c) && isupper (c))
411 # define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
412
413 # define ISWORD(c) ISALPHA(c)
414
415 # ifdef _tolower
416 # define TOLOWER(c) _tolower(c)
417 # else
418 # define TOLOWER(c) tolower(c)
419 # endif
420
421 /* How many characters in the character set. */
422 # define CHAR_SET_SIZE 256
423
424 # ifdef SYNTAX_TABLE
425
426 extern char *re_syntax_table;
427
428 # else /* not SYNTAX_TABLE */
429
430 static char re_syntax_table[CHAR_SET_SIZE];
431
432 static void
433 init_syntax_once ()
434 {
435 register int c;
436 static int done = 0;
437
438 if (done)
439 return;
440
441 bzero (re_syntax_table, sizeof re_syntax_table);
442
443 for (c = 0; c < CHAR_SET_SIZE; ++c)
444 if (ISALNUM (c))
445 re_syntax_table[c] = Sword;
446
447 re_syntax_table['_'] = Ssymbol;
448
449 done = 1;
450 }
451
452 # endif /* not SYNTAX_TABLE */
453
454 # define SYNTAX(c) re_syntax_table[(c)]
455
456 #endif /* not emacs */
457 \f
458 #ifndef NULL
459 # define NULL (void *)0
460 #endif
461
462 /* We remove any previous definition of `SIGN_EXTEND_CHAR',
463 since ours (we hope) works properly with all combinations of
464 machines, compilers, `char' and `unsigned char' argument types.
465 (Per Bothner suggested the basic approach.) */
466 #undef SIGN_EXTEND_CHAR
467 #if __STDC__
468 # define SIGN_EXTEND_CHAR(c) ((signed char) (c))
469 #else /* not __STDC__ */
470 /* As in Harbison and Steele. */
471 # define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
472 #endif
473 \f
474 /* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
475 use `alloca' instead of `malloc'. This is because using malloc in
476 re_search* or re_match* could cause memory leaks when C-g is used in
477 Emacs; also, malloc is slower and causes storage fragmentation. On
478 the other hand, malloc is more portable, and easier to debug.
479
480 Because we sometimes use alloca, some routines have to be macros,
481 not functions -- `alloca'-allocated space disappears at the end of the
482 function it is called in. */
483
484 #ifdef REGEX_MALLOC
485
486 # define REGEX_ALLOCATE malloc
487 # define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
488 # define REGEX_FREE free
489
490 #else /* not REGEX_MALLOC */
491
492 /* Emacs already defines alloca, sometimes. */
493 # ifndef alloca
494
495 /* Make alloca work the best possible way. */
496 # ifdef __GNUC__
497 # define alloca __builtin_alloca
498 # else /* not __GNUC__ */
499 # if HAVE_ALLOCA_H
500 # include <alloca.h>
501 # endif /* HAVE_ALLOCA_H */
502 # endif /* not __GNUC__ */
503
504 # endif /* not alloca */
505
506 # define REGEX_ALLOCATE alloca
507
508 /* Assumes a `char *destination' variable. */
509 # define REGEX_REALLOCATE(source, osize, nsize) \
510 (destination = (char *) alloca (nsize), \
511 memcpy (destination, source, osize))
512
513 /* No need to do anything to free, after alloca. */
514 # define REGEX_FREE(arg) ((void)0) /* Do nothing! But inhibit gcc warning. */
515
516 #endif /* not REGEX_MALLOC */
517
518 /* Define how to allocate the failure stack. */
519
520 #if defined REL_ALLOC && defined REGEX_MALLOC
521
522 # define REGEX_ALLOCATE_STACK(size) \
523 r_alloc (&failure_stack_ptr, (size))
524 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
525 r_re_alloc (&failure_stack_ptr, (nsize))
526 # define REGEX_FREE_STACK(ptr) \
527 r_alloc_free (&failure_stack_ptr)
528
529 #else /* not using relocating allocator */
530
531 # ifdef REGEX_MALLOC
532
533 # define REGEX_ALLOCATE_STACK malloc
534 # define REGEX_REALLOCATE_STACK(source, osize, nsize) realloc (source, nsize)
535 # define REGEX_FREE_STACK free
536
537 # else /* not REGEX_MALLOC */
538
539 # define REGEX_ALLOCATE_STACK alloca
540
541 # define REGEX_REALLOCATE_STACK(source, osize, nsize) \
542 REGEX_REALLOCATE (source, osize, nsize)
543 /* No need to explicitly free anything. */
544 # define REGEX_FREE_STACK(arg) ((void)0)
545
546 # endif /* not REGEX_MALLOC */
547 #endif /* not using relocating allocator */
548
549
550 /* True if `size1' is non-NULL and PTR is pointing anywhere inside
551 `string1' or just past its end. This works if PTR is NULL, which is
552 a good thing. */
553 #define FIRST_STRING_P(ptr) \
554 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
555
556 /* (Re)Allocate N items of type T using malloc, or fail. */
557 #define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
558 #define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
559 #define RETALLOC_IF(addr, n, t) \
560 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
561 #define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
562
563 #define BYTEWIDTH 8 /* In bits. */
564
565 #define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
566
567 #undef MAX
568 #undef MIN
569 #define MAX(a, b) ((a) > (b) ? (a) : (b))
570 #define MIN(a, b) ((a) < (b) ? (a) : (b))
571
572 /* Type of source-pattern and string chars. */
573 typedef const unsigned char re_char;
574
575 typedef char boolean;
576 #define false 0
577 #define true 1
578
579 static int re_match_2_internal _RE_ARGS ((struct re_pattern_buffer *bufp,
580 re_char *string1, int size1,
581 re_char *string2, int size2,
582 int pos,
583 struct re_registers *regs,
584 int stop));
585 \f
586 /* These are the command codes that appear in compiled regular
587 expressions. Some opcodes are followed by argument bytes. A
588 command code can specify any interpretation whatsoever for its
589 arguments. Zero bytes may appear in the compiled regular expression. */
590
591 typedef enum
592 {
593 no_op = 0,
594
595 /* Succeed right away--no more backtracking. */
596 succeed,
597
598 /* Followed by one byte giving n, then by n literal bytes. */
599 exactn,
600
601 /* Matches any (more or less) character. */
602 anychar,
603
604 /* Matches any one char belonging to specified set. First
605 following byte is number of bitmap bytes. Then come bytes
606 for a bitmap saying which chars are in. Bits in each byte
607 are ordered low-bit-first. A character is in the set if its
608 bit is 1. A character too large to have a bit in the map is
609 automatically not in the set.
610
611 If the length byte has the 0x80 bit set, then that stuff
612 is followed by a range table:
613 2 bytes of flags for character sets (low 8 bits, high 8 bits)
614 See RANGE_TABLE_WORK_BITS below.
615 2 bytes, the number of pairs that follow (upto 32767)
616 pairs, each 2 multibyte characters,
617 each multibyte character represented as 3 bytes. */
618 charset,
619
620 /* Same parameters as charset, but match any character that is
621 not one of those specified. */
622 charset_not,
623
624 /* Start remembering the text that is matched, for storing in a
625 register. Followed by one byte with the register number, in
626 the range 0 to one less than the pattern buffer's re_nsub
627 field. */
628 start_memory,
629
630 /* Stop remembering the text that is matched and store it in a
631 memory register. Followed by one byte with the register
632 number, in the range 0 to one less than `re_nsub' in the
633 pattern buffer. */
634 stop_memory,
635
636 /* Match a duplicate of something remembered. Followed by one
637 byte containing the register number. */
638 duplicate,
639
640 /* Fail unless at beginning of line. */
641 begline,
642
643 /* Fail unless at end of line. */
644 endline,
645
646 /* Succeeds if at beginning of buffer (if emacs) or at beginning
647 of string to be matched (if not). */
648 begbuf,
649
650 /* Analogously, for end of buffer/string. */
651 endbuf,
652
653 /* Followed by two byte relative address to which to jump. */
654 jump,
655
656 /* Followed by two-byte relative address of place to resume at
657 in case of failure. */
658 on_failure_jump,
659
660 /* Like on_failure_jump, but pushes a placeholder instead of the
661 current string position when executed. */
662 on_failure_keep_string_jump,
663
664 /* Just like `on_failure_jump', except that it checks that we
665 don't get stuck in an infinite loop (matching an empty string
666 indefinitely). */
667 on_failure_jump_loop,
668
669 /* Just like `on_failure_jump_loop', except that it checks for
670 a different kind of loop (the kind that shows up with non-greedy
671 operators). This operation has to be immediately preceded
672 by a `no_op'. */
673 on_failure_jump_nastyloop,
674
675 /* A smart `on_failure_jump' used for greedy * and + operators.
676 It analyses the loop before which it is put and if the
677 loop does not require backtracking, it changes itself to
678 `on_failure_keep_string_jump' and short-circuits the loop,
679 else it just defaults to changing itself into `on_failure_jump'.
680 It assumes that it is pointing to just past a `jump'. */
681 on_failure_jump_smart,
682
683 /* Followed by two-byte relative address and two-byte number n.
684 After matching N times, jump to the address upon failure.
685 Does not work if N starts at 0: use on_failure_jump_loop
686 instead. */
687 succeed_n,
688
689 /* Followed by two-byte relative address, and two-byte number n.
690 Jump to the address N times, then fail. */
691 jump_n,
692
693 /* Set the following two-byte relative address to the
694 subsequent two-byte number. The address *includes* the two
695 bytes of number. */
696 set_number_at,
697
698 wordbeg, /* Succeeds if at word beginning. */
699 wordend, /* Succeeds if at word end. */
700
701 wordbound, /* Succeeds if at a word boundary. */
702 notwordbound, /* Succeeds if not at a word boundary. */
703
704 symbeg, /* Succeeds if at symbol beginning. */
705 symend, /* Succeeds if at symbol end. */
706
707 /* Matches any character whose syntax is specified. Followed by
708 a byte which contains a syntax code, e.g., Sword. */
709 syntaxspec,
710
711 /* Matches any character whose syntax is not that specified. */
712 notsyntaxspec
713
714 #ifdef emacs
715 ,before_dot, /* Succeeds if before point. */
716 at_dot, /* Succeeds if at point. */
717 after_dot, /* Succeeds if after point. */
718
719 /* Matches any character whose category-set contains the specified
720 category. The operator is followed by a byte which contains a
721 category code (mnemonic ASCII character). */
722 categoryspec,
723
724 /* Matches any character whose category-set does not contain the
725 specified category. The operator is followed by a byte which
726 contains the category code (mnemonic ASCII character). */
727 notcategoryspec
728 #endif /* emacs */
729 } re_opcode_t;
730 \f
731 /* Common operations on the compiled pattern. */
732
733 /* Store NUMBER in two contiguous bytes starting at DESTINATION. */
734
735 #define STORE_NUMBER(destination, number) \
736 do { \
737 (destination)[0] = (number) & 0377; \
738 (destination)[1] = (number) >> 8; \
739 } while (0)
740
741 /* Same as STORE_NUMBER, except increment DESTINATION to
742 the byte after where the number is stored. Therefore, DESTINATION
743 must be an lvalue. */
744
745 #define STORE_NUMBER_AND_INCR(destination, number) \
746 do { \
747 STORE_NUMBER (destination, number); \
748 (destination) += 2; \
749 } while (0)
750
751 /* Put into DESTINATION a number stored in two contiguous bytes starting
752 at SOURCE. */
753
754 #define EXTRACT_NUMBER(destination, source) \
755 do { \
756 (destination) = *(source) & 0377; \
757 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
758 } while (0)
759
760 #ifdef DEBUG
761 static void extract_number _RE_ARGS ((int *dest, re_char *source));
762 static void
763 extract_number (dest, source)
764 int *dest;
765 re_char *source;
766 {
767 int temp = SIGN_EXTEND_CHAR (*(source + 1));
768 *dest = *source & 0377;
769 *dest += temp << 8;
770 }
771
772 # ifndef EXTRACT_MACROS /* To debug the macros. */
773 # undef EXTRACT_NUMBER
774 # define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
775 # endif /* not EXTRACT_MACROS */
776
777 #endif /* DEBUG */
778
779 /* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
780 SOURCE must be an lvalue. */
781
782 #define EXTRACT_NUMBER_AND_INCR(destination, source) \
783 do { \
784 EXTRACT_NUMBER (destination, source); \
785 (source) += 2; \
786 } while (0)
787
788 #ifdef DEBUG
789 static void extract_number_and_incr _RE_ARGS ((int *destination,
790 re_char **source));
791 static void
792 extract_number_and_incr (destination, source)
793 int *destination;
794 re_char **source;
795 {
796 extract_number (destination, *source);
797 *source += 2;
798 }
799
800 # ifndef EXTRACT_MACROS
801 # undef EXTRACT_NUMBER_AND_INCR
802 # define EXTRACT_NUMBER_AND_INCR(dest, src) \
803 extract_number_and_incr (&dest, &src)
804 # endif /* not EXTRACT_MACROS */
805
806 #endif /* DEBUG */
807 \f
808 /* Store a multibyte character in three contiguous bytes starting
809 DESTINATION, and increment DESTINATION to the byte after where the
810 character is stored. Therefore, DESTINATION must be an lvalue. */
811
812 #define STORE_CHARACTER_AND_INCR(destination, character) \
813 do { \
814 (destination)[0] = (character) & 0377; \
815 (destination)[1] = ((character) >> 8) & 0377; \
816 (destination)[2] = (character) >> 16; \
817 (destination) += 3; \
818 } while (0)
819
820 /* Put into DESTINATION a character stored in three contiguous bytes
821 starting at SOURCE. */
822
823 #define EXTRACT_CHARACTER(destination, source) \
824 do { \
825 (destination) = ((source)[0] \
826 | ((source)[1] << 8) \
827 | ((source)[2] << 16)); \
828 } while (0)
829
830
831 /* Macros for charset. */
832
833 /* Size of bitmap of charset P in bytes. P is a start of charset,
834 i.e. *P is (re_opcode_t) charset or (re_opcode_t) charset_not. */
835 #define CHARSET_BITMAP_SIZE(p) ((p)[1] & 0x7F)
836
837 /* Nonzero if charset P has range table. */
838 #define CHARSET_RANGE_TABLE_EXISTS_P(p) ((p)[1] & 0x80)
839
840 /* Return the address of range table of charset P. But not the start
841 of table itself, but the before where the number of ranges is
842 stored. `2 +' means to skip re_opcode_t and size of bitmap,
843 and the 2 bytes of flags at the start of the range table. */
844 #define CHARSET_RANGE_TABLE(p) (&(p)[4 + CHARSET_BITMAP_SIZE (p)])
845
846 /* Extract the bit flags that start a range table. */
847 #define CHARSET_RANGE_TABLE_BITS(p) \
848 ((p)[2 + CHARSET_BITMAP_SIZE (p)] \
849 + (p)[3 + CHARSET_BITMAP_SIZE (p)] * 0x100)
850
851 /* Test if C is listed in the bitmap of charset P. */
852 #define CHARSET_LOOKUP_BITMAP(p, c) \
853 ((c) < CHARSET_BITMAP_SIZE (p) * BYTEWIDTH \
854 && (p)[2 + (c) / BYTEWIDTH] & (1 << ((c) % BYTEWIDTH)))
855
856 /* Return the address of end of RANGE_TABLE. COUNT is number of
857 ranges (which is a pair of (start, end)) in the RANGE_TABLE. `* 2'
858 is start of range and end of range. `* 3' is size of each start
859 and end. */
860 #define CHARSET_RANGE_TABLE_END(range_table, count) \
861 ((range_table) + (count) * 2 * 3)
862
863 /* Test if C is in RANGE_TABLE. A flag NOT is negated if C is in.
864 COUNT is number of ranges in RANGE_TABLE. */
865 #define CHARSET_LOOKUP_RANGE_TABLE_RAW(not, c, range_table, count) \
866 do \
867 { \
868 re_wchar_t range_start, range_end; \
869 re_char *p; \
870 re_char *range_table_end \
871 = CHARSET_RANGE_TABLE_END ((range_table), (count)); \
872 \
873 for (p = (range_table); p < range_table_end; p += 2 * 3) \
874 { \
875 EXTRACT_CHARACTER (range_start, p); \
876 EXTRACT_CHARACTER (range_end, p + 3); \
877 \
878 if (range_start <= (c) && (c) <= range_end) \
879 { \
880 (not) = !(not); \
881 break; \
882 } \
883 } \
884 } \
885 while (0)
886
887 /* Test if C is in range table of CHARSET. The flag NOT is negated if
888 C is listed in it. */
889 #define CHARSET_LOOKUP_RANGE_TABLE(not, c, charset) \
890 do \
891 { \
892 /* Number of ranges in range table. */ \
893 int count; \
894 re_char *range_table = CHARSET_RANGE_TABLE (charset); \
895 \
896 EXTRACT_NUMBER_AND_INCR (count, range_table); \
897 CHARSET_LOOKUP_RANGE_TABLE_RAW ((not), (c), range_table, count); \
898 } \
899 while (0)
900 \f
901 /* If DEBUG is defined, Regex prints many voluminous messages about what
902 it is doing (if the variable `debug' is nonzero). If linked with the
903 main program in `iregex.c', you can enter patterns and strings
904 interactively. And if linked with the main program in `main.c' and
905 the other test files, you can run the already-written tests. */
906
907 #ifdef DEBUG
908
909 /* We use standard I/O for debugging. */
910 # include <stdio.h>
911
912 /* It is useful to test things that ``must'' be true when debugging. */
913 # include <assert.h>
914
915 static int debug = -100000;
916
917 # define DEBUG_STATEMENT(e) e
918 # define DEBUG_PRINT1(x) if (debug > 0) printf (x)
919 # define DEBUG_PRINT2(x1, x2) if (debug > 0) printf (x1, x2)
920 # define DEBUG_PRINT3(x1, x2, x3) if (debug > 0) printf (x1, x2, x3)
921 # define DEBUG_PRINT4(x1, x2, x3, x4) if (debug > 0) printf (x1, x2, x3, x4)
922 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
923 if (debug > 0) print_partial_compiled_pattern (s, e)
924 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
925 if (debug > 0) print_double_string (w, s1, sz1, s2, sz2)
926
927
928 /* Print the fastmap in human-readable form. */
929
930 void
931 print_fastmap (fastmap)
932 char *fastmap;
933 {
934 unsigned was_a_range = 0;
935 unsigned i = 0;
936
937 while (i < (1 << BYTEWIDTH))
938 {
939 if (fastmap[i++])
940 {
941 was_a_range = 0;
942 putchar (i - 1);
943 while (i < (1 << BYTEWIDTH) && fastmap[i])
944 {
945 was_a_range = 1;
946 i++;
947 }
948 if (was_a_range)
949 {
950 printf ("-");
951 putchar (i - 1);
952 }
953 }
954 }
955 putchar ('\n');
956 }
957
958
959 /* Print a compiled pattern string in human-readable form, starting at
960 the START pointer into it and ending just before the pointer END. */
961
962 void
963 print_partial_compiled_pattern (start, end)
964 re_char *start;
965 re_char *end;
966 {
967 int mcnt, mcnt2;
968 re_char *p = start;
969 re_char *pend = end;
970
971 if (start == NULL)
972 {
973 fprintf (stderr, "(null)\n");
974 return;
975 }
976
977 /* Loop over pattern commands. */
978 while (p < pend)
979 {
980 fprintf (stderr, "%d:\t", p - start);
981
982 switch ((re_opcode_t) *p++)
983 {
984 case no_op:
985 fprintf (stderr, "/no_op");
986 break;
987
988 case succeed:
989 fprintf (stderr, "/succeed");
990 break;
991
992 case exactn:
993 mcnt = *p++;
994 fprintf (stderr, "/exactn/%d", mcnt);
995 do
996 {
997 fprintf (stderr, "/%c", *p++);
998 }
999 while (--mcnt);
1000 break;
1001
1002 case start_memory:
1003 fprintf (stderr, "/start_memory/%d", *p++);
1004 break;
1005
1006 case stop_memory:
1007 fprintf (stderr, "/stop_memory/%d", *p++);
1008 break;
1009
1010 case duplicate:
1011 fprintf (stderr, "/duplicate/%d", *p++);
1012 break;
1013
1014 case anychar:
1015 fprintf (stderr, "/anychar");
1016 break;
1017
1018 case charset:
1019 case charset_not:
1020 {
1021 register int c, last = -100;
1022 register int in_range = 0;
1023 int length = CHARSET_BITMAP_SIZE (p - 1);
1024 int has_range_table = CHARSET_RANGE_TABLE_EXISTS_P (p - 1);
1025
1026 fprintf (stderr, "/charset [%s",
1027 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
1028
1029 if (p + *p >= pend)
1030 fprintf (stderr, " !extends past end of pattern! ");
1031
1032 for (c = 0; c < 256; c++)
1033 if (c / 8 < length
1034 && (p[1 + (c/8)] & (1 << (c % 8))))
1035 {
1036 /* Are we starting a range? */
1037 if (last + 1 == c && ! in_range)
1038 {
1039 fprintf (stderr, "-");
1040 in_range = 1;
1041 }
1042 /* Have we broken a range? */
1043 else if (last + 1 != c && in_range)
1044 {
1045 fprintf (stderr, "%c", last);
1046 in_range = 0;
1047 }
1048
1049 if (! in_range)
1050 fprintf (stderr, "%c", c);
1051
1052 last = c;
1053 }
1054
1055 if (in_range)
1056 fprintf (stderr, "%c", last);
1057
1058 fprintf (stderr, "]");
1059
1060 p += 1 + length;
1061
1062 if (has_range_table)
1063 {
1064 int count;
1065 fprintf (stderr, "has-range-table");
1066
1067 /* ??? Should print the range table; for now, just skip it. */
1068 p += 2; /* skip range table bits */
1069 EXTRACT_NUMBER_AND_INCR (count, p);
1070 p = CHARSET_RANGE_TABLE_END (p, count);
1071 }
1072 }
1073 break;
1074
1075 case begline:
1076 fprintf (stderr, "/begline");
1077 break;
1078
1079 case endline:
1080 fprintf (stderr, "/endline");
1081 break;
1082
1083 case on_failure_jump:
1084 extract_number_and_incr (&mcnt, &p);
1085 fprintf (stderr, "/on_failure_jump to %d", p + mcnt - start);
1086 break;
1087
1088 case on_failure_keep_string_jump:
1089 extract_number_and_incr (&mcnt, &p);
1090 fprintf (stderr, "/on_failure_keep_string_jump to %d", p + mcnt - start);
1091 break;
1092
1093 case on_failure_jump_nastyloop:
1094 extract_number_and_incr (&mcnt, &p);
1095 fprintf (stderr, "/on_failure_jump_nastyloop to %d", p + mcnt - start);
1096 break;
1097
1098 case on_failure_jump_loop:
1099 extract_number_and_incr (&mcnt, &p);
1100 fprintf (stderr, "/on_failure_jump_loop to %d", p + mcnt - start);
1101 break;
1102
1103 case on_failure_jump_smart:
1104 extract_number_and_incr (&mcnt, &p);
1105 fprintf (stderr, "/on_failure_jump_smart to %d", p + mcnt - start);
1106 break;
1107
1108 case jump:
1109 extract_number_and_incr (&mcnt, &p);
1110 fprintf (stderr, "/jump to %d", p + mcnt - start);
1111 break;
1112
1113 case succeed_n:
1114 extract_number_and_incr (&mcnt, &p);
1115 extract_number_and_incr (&mcnt2, &p);
1116 fprintf (stderr, "/succeed_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1117 break;
1118
1119 case jump_n:
1120 extract_number_and_incr (&mcnt, &p);
1121 extract_number_and_incr (&mcnt2, &p);
1122 fprintf (stderr, "/jump_n to %d, %d times", p - 2 + mcnt - start, mcnt2);
1123 break;
1124
1125 case set_number_at:
1126 extract_number_and_incr (&mcnt, &p);
1127 extract_number_and_incr (&mcnt2, &p);
1128 fprintf (stderr, "/set_number_at location %d to %d", p - 2 + mcnt - start, mcnt2);
1129 break;
1130
1131 case wordbound:
1132 fprintf (stderr, "/wordbound");
1133 break;
1134
1135 case notwordbound:
1136 fprintf (stderr, "/notwordbound");
1137 break;
1138
1139 case wordbeg:
1140 fprintf (stderr, "/wordbeg");
1141 break;
1142
1143 case wordend:
1144 fprintf (stderr, "/wordend");
1145 break;
1146
1147 case symbeg:
1148 fprintf (stderr, "/symbeg");
1149 break;
1150
1151 case symend:
1152 fprintf (stderr, "/symend");
1153 break;
1154
1155 case syntaxspec:
1156 fprintf (stderr, "/syntaxspec");
1157 mcnt = *p++;
1158 fprintf (stderr, "/%d", mcnt);
1159 break;
1160
1161 case notsyntaxspec:
1162 fprintf (stderr, "/notsyntaxspec");
1163 mcnt = *p++;
1164 fprintf (stderr, "/%d", mcnt);
1165 break;
1166
1167 # ifdef emacs
1168 case before_dot:
1169 fprintf (stderr, "/before_dot");
1170 break;
1171
1172 case at_dot:
1173 fprintf (stderr, "/at_dot");
1174 break;
1175
1176 case after_dot:
1177 fprintf (stderr, "/after_dot");
1178 break;
1179
1180 case categoryspec:
1181 fprintf (stderr, "/categoryspec");
1182 mcnt = *p++;
1183 fprintf (stderr, "/%d", mcnt);
1184 break;
1185
1186 case notcategoryspec:
1187 fprintf (stderr, "/notcategoryspec");
1188 mcnt = *p++;
1189 fprintf (stderr, "/%d", mcnt);
1190 break;
1191 # endif /* emacs */
1192
1193 case begbuf:
1194 fprintf (stderr, "/begbuf");
1195 break;
1196
1197 case endbuf:
1198 fprintf (stderr, "/endbuf");
1199 break;
1200
1201 default:
1202 fprintf (stderr, "?%d", *(p-1));
1203 }
1204
1205 fprintf (stderr, "\n");
1206 }
1207
1208 fprintf (stderr, "%d:\tend of pattern.\n", p - start);
1209 }
1210
1211
1212 void
1213 print_compiled_pattern (bufp)
1214 struct re_pattern_buffer *bufp;
1215 {
1216 re_char *buffer = bufp->buffer;
1217
1218 print_partial_compiled_pattern (buffer, buffer + bufp->used);
1219 printf ("%ld bytes used/%ld bytes allocated.\n",
1220 bufp->used, bufp->allocated);
1221
1222 if (bufp->fastmap_accurate && bufp->fastmap)
1223 {
1224 printf ("fastmap: ");
1225 print_fastmap (bufp->fastmap);
1226 }
1227
1228 printf ("re_nsub: %d\t", bufp->re_nsub);
1229 printf ("regs_alloc: %d\t", bufp->regs_allocated);
1230 printf ("can_be_null: %d\t", bufp->can_be_null);
1231 printf ("no_sub: %d\t", bufp->no_sub);
1232 printf ("not_bol: %d\t", bufp->not_bol);
1233 printf ("not_eol: %d\t", bufp->not_eol);
1234 printf ("syntax: %lx\n", bufp->syntax);
1235 fflush (stdout);
1236 /* Perhaps we should print the translate table? */
1237 }
1238
1239
1240 void
1241 print_double_string (where, string1, size1, string2, size2)
1242 re_char *where;
1243 re_char *string1;
1244 re_char *string2;
1245 int size1;
1246 int size2;
1247 {
1248 int this_char;
1249
1250 if (where == NULL)
1251 printf ("(null)");
1252 else
1253 {
1254 if (FIRST_STRING_P (where))
1255 {
1256 for (this_char = where - string1; this_char < size1; this_char++)
1257 putchar (string1[this_char]);
1258
1259 where = string2;
1260 }
1261
1262 for (this_char = where - string2; this_char < size2; this_char++)
1263 putchar (string2[this_char]);
1264 }
1265 }
1266
1267 #else /* not DEBUG */
1268
1269 # undef assert
1270 # define assert(e)
1271
1272 # define DEBUG_STATEMENT(e)
1273 # define DEBUG_PRINT1(x)
1274 # define DEBUG_PRINT2(x1, x2)
1275 # define DEBUG_PRINT3(x1, x2, x3)
1276 # define DEBUG_PRINT4(x1, x2, x3, x4)
1277 # define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
1278 # define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
1279
1280 #endif /* not DEBUG */
1281 \f
1282 /* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
1283 also be assigned to arbitrarily: each pattern buffer stores its own
1284 syntax, so it can be changed between regex compilations. */
1285 /* This has no initializer because initialized variables in Emacs
1286 become read-only after dumping. */
1287 reg_syntax_t re_syntax_options;
1288
1289
1290 /* Specify the precise syntax of regexps for compilation. This provides
1291 for compatibility for various utilities which historically have
1292 different, incompatible syntaxes.
1293
1294 The argument SYNTAX is a bit mask comprised of the various bits
1295 defined in regex.h. We return the old syntax. */
1296
1297 reg_syntax_t
1298 re_set_syntax (syntax)
1299 reg_syntax_t syntax;
1300 {
1301 reg_syntax_t ret = re_syntax_options;
1302
1303 re_syntax_options = syntax;
1304 return ret;
1305 }
1306 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1307
1308 /* Regexp to use to replace spaces, or NULL meaning don't. */
1309 static re_char *whitespace_regexp;
1310
1311 void
1312 re_set_whitespace_regexp (regexp)
1313 const char *regexp;
1314 {
1315 whitespace_regexp = (re_char *) regexp;
1316 }
1317 WEAK_ALIAS (__re_set_syntax, re_set_syntax)
1318 \f
1319 /* This table gives an error message for each of the error codes listed
1320 in regex.h. Obviously the order here has to be same as there.
1321 POSIX doesn't require that we do anything for REG_NOERROR,
1322 but why not be nice? */
1323
1324 static const char *re_error_msgid[] =
1325 {
1326 gettext_noop ("Success"), /* REG_NOERROR */
1327 gettext_noop ("No match"), /* REG_NOMATCH */
1328 gettext_noop ("Invalid regular expression"), /* REG_BADPAT */
1329 gettext_noop ("Invalid collation character"), /* REG_ECOLLATE */
1330 gettext_noop ("Invalid character class name"), /* REG_ECTYPE */
1331 gettext_noop ("Trailing backslash"), /* REG_EESCAPE */
1332 gettext_noop ("Invalid back reference"), /* REG_ESUBREG */
1333 gettext_noop ("Unmatched [ or [^"), /* REG_EBRACK */
1334 gettext_noop ("Unmatched ( or \\("), /* REG_EPAREN */
1335 gettext_noop ("Unmatched \\{"), /* REG_EBRACE */
1336 gettext_noop ("Invalid content of \\{\\}"), /* REG_BADBR */
1337 gettext_noop ("Invalid range end"), /* REG_ERANGE */
1338 gettext_noop ("Memory exhausted"), /* REG_ESPACE */
1339 gettext_noop ("Invalid preceding regular expression"), /* REG_BADRPT */
1340 gettext_noop ("Premature end of regular expression"), /* REG_EEND */
1341 gettext_noop ("Regular expression too big"), /* REG_ESIZE */
1342 gettext_noop ("Unmatched ) or \\)"), /* REG_ERPAREN */
1343 gettext_noop ("Range striding over charsets") /* REG_ERANGEX */
1344 };
1345 \f
1346 /* Avoiding alloca during matching, to placate r_alloc. */
1347
1348 /* Define MATCH_MAY_ALLOCATE unless we need to make sure that the
1349 searching and matching functions should not call alloca. On some
1350 systems, alloca is implemented in terms of malloc, and if we're
1351 using the relocating allocator routines, then malloc could cause a
1352 relocation, which might (if the strings being searched are in the
1353 ralloc heap) shift the data out from underneath the regexp
1354 routines.
1355
1356 Here's another reason to avoid allocation: Emacs
1357 processes input from X in a signal handler; processing X input may
1358 call malloc; if input arrives while a matching routine is calling
1359 malloc, then we're scrod. But Emacs can't just block input while
1360 calling matching routines; then we don't notice interrupts when
1361 they come in. So, Emacs blocks input around all regexp calls
1362 except the matching calls, which it leaves unprotected, in the
1363 faith that they will not malloc. */
1364
1365 /* Normally, this is fine. */
1366 #define MATCH_MAY_ALLOCATE
1367
1368 /* When using GNU C, we are not REALLY using the C alloca, no matter
1369 what config.h may say. So don't take precautions for it. */
1370 #ifdef __GNUC__
1371 # undef C_ALLOCA
1372 #endif
1373
1374 /* The match routines may not allocate if (1) they would do it with malloc
1375 and (2) it's not safe for them to use malloc.
1376 Note that if REL_ALLOC is defined, matching would not use malloc for the
1377 failure stack, but we would still use it for the register vectors;
1378 so REL_ALLOC should not affect this. */
1379 #if (defined C_ALLOCA || defined REGEX_MALLOC) && defined emacs
1380 # undef MATCH_MAY_ALLOCATE
1381 #endif
1382
1383 \f
1384 /* Failure stack declarations and macros; both re_compile_fastmap and
1385 re_match_2 use a failure stack. These have to be macros because of
1386 REGEX_ALLOCATE_STACK. */
1387
1388
1389 /* Approximate number of failure points for which to initially allocate space
1390 when matching. If this number is exceeded, we allocate more
1391 space, so it is not a hard limit. */
1392 #ifndef INIT_FAILURE_ALLOC
1393 # define INIT_FAILURE_ALLOC 20
1394 #endif
1395
1396 /* Roughly the maximum number of failure points on the stack. Would be
1397 exactly that if always used TYPICAL_FAILURE_SIZE items each time we failed.
1398 This is a variable only so users of regex can assign to it; we never
1399 change it ourselves. We always multiply it by TYPICAL_FAILURE_SIZE
1400 before using it, so it should probably be a byte-count instead. */
1401 # if defined MATCH_MAY_ALLOCATE
1402 /* Note that 4400 was enough to cause a crash on Alpha OSF/1,
1403 whose default stack limit is 2mb. In order for a larger
1404 value to work reliably, you have to try to make it accord
1405 with the process stack limit. */
1406 size_t re_max_failures = 40000;
1407 # else
1408 size_t re_max_failures = 4000;
1409 # endif
1410
1411 union fail_stack_elt
1412 {
1413 re_char *pointer;
1414 /* This should be the biggest `int' that's no bigger than a pointer. */
1415 long integer;
1416 };
1417
1418 typedef union fail_stack_elt fail_stack_elt_t;
1419
1420 typedef struct
1421 {
1422 fail_stack_elt_t *stack;
1423 size_t size;
1424 size_t avail; /* Offset of next open position. */
1425 size_t frame; /* Offset of the cur constructed frame. */
1426 } fail_stack_type;
1427
1428 #define FAIL_STACK_EMPTY() (fail_stack.frame == 0)
1429 #define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
1430
1431
1432 /* Define macros to initialize and free the failure stack.
1433 Do `return -2' if the alloc fails. */
1434
1435 #ifdef MATCH_MAY_ALLOCATE
1436 # define INIT_FAIL_STACK() \
1437 do { \
1438 fail_stack.stack = (fail_stack_elt_t *) \
1439 REGEX_ALLOCATE_STACK (INIT_FAILURE_ALLOC * TYPICAL_FAILURE_SIZE \
1440 * sizeof (fail_stack_elt_t)); \
1441 \
1442 if (fail_stack.stack == NULL) \
1443 return -2; \
1444 \
1445 fail_stack.size = INIT_FAILURE_ALLOC; \
1446 fail_stack.avail = 0; \
1447 fail_stack.frame = 0; \
1448 } while (0)
1449
1450 # define RESET_FAIL_STACK() REGEX_FREE_STACK (fail_stack.stack)
1451 #else
1452 # define INIT_FAIL_STACK() \
1453 do { \
1454 fail_stack.avail = 0; \
1455 fail_stack.frame = 0; \
1456 } while (0)
1457
1458 # define RESET_FAIL_STACK() ((void)0)
1459 #endif
1460
1461
1462 /* Double the size of FAIL_STACK, up to a limit
1463 which allows approximately `re_max_failures' items.
1464
1465 Return 1 if succeeds, and 0 if either ran out of memory
1466 allocating space for it or it was already too large.
1467
1468 REGEX_REALLOCATE_STACK requires `destination' be declared. */
1469
1470 /* Factor to increase the failure stack size by
1471 when we increase it.
1472 This used to be 2, but 2 was too wasteful
1473 because the old discarded stacks added up to as much space
1474 were as ultimate, maximum-size stack. */
1475 #define FAIL_STACK_GROWTH_FACTOR 4
1476
1477 #define GROW_FAIL_STACK(fail_stack) \
1478 (((fail_stack).size * sizeof (fail_stack_elt_t) \
1479 >= re_max_failures * TYPICAL_FAILURE_SIZE) \
1480 ? 0 \
1481 : ((fail_stack).stack \
1482 = (fail_stack_elt_t *) \
1483 REGEX_REALLOCATE_STACK ((fail_stack).stack, \
1484 (fail_stack).size * sizeof (fail_stack_elt_t), \
1485 MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1486 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1487 * FAIL_STACK_GROWTH_FACTOR))), \
1488 \
1489 (fail_stack).stack == NULL \
1490 ? 0 \
1491 : ((fail_stack).size \
1492 = (MIN (re_max_failures * TYPICAL_FAILURE_SIZE, \
1493 ((fail_stack).size * sizeof (fail_stack_elt_t) \
1494 * FAIL_STACK_GROWTH_FACTOR)) \
1495 / sizeof (fail_stack_elt_t)), \
1496 1)))
1497
1498
1499 /* Push a pointer value onto the failure stack.
1500 Assumes the variable `fail_stack'. Probably should only
1501 be called from within `PUSH_FAILURE_POINT'. */
1502 #define PUSH_FAILURE_POINTER(item) \
1503 fail_stack.stack[fail_stack.avail++].pointer = (item)
1504
1505 /* This pushes an integer-valued item onto the failure stack.
1506 Assumes the variable `fail_stack'. Probably should only
1507 be called from within `PUSH_FAILURE_POINT'. */
1508 #define PUSH_FAILURE_INT(item) \
1509 fail_stack.stack[fail_stack.avail++].integer = (item)
1510
1511 /* Push a fail_stack_elt_t value onto the failure stack.
1512 Assumes the variable `fail_stack'. Probably should only
1513 be called from within `PUSH_FAILURE_POINT'. */
1514 #define PUSH_FAILURE_ELT(item) \
1515 fail_stack.stack[fail_stack.avail++] = (item)
1516
1517 /* These three POP... operations complement the three PUSH... operations.
1518 All assume that `fail_stack' is nonempty. */
1519 #define POP_FAILURE_POINTER() fail_stack.stack[--fail_stack.avail].pointer
1520 #define POP_FAILURE_INT() fail_stack.stack[--fail_stack.avail].integer
1521 #define POP_FAILURE_ELT() fail_stack.stack[--fail_stack.avail]
1522
1523 /* Individual items aside from the registers. */
1524 #define NUM_NONREG_ITEMS 3
1525
1526 /* Used to examine the stack (to detect infinite loops). */
1527 #define FAILURE_PAT(h) fail_stack.stack[(h) - 1].pointer
1528 #define FAILURE_STR(h) (fail_stack.stack[(h) - 2].pointer)
1529 #define NEXT_FAILURE_HANDLE(h) fail_stack.stack[(h) - 3].integer
1530 #define TOP_FAILURE_HANDLE() fail_stack.frame
1531
1532
1533 #define ENSURE_FAIL_STACK(space) \
1534 while (REMAINING_AVAIL_SLOTS <= space) { \
1535 if (!GROW_FAIL_STACK (fail_stack)) \
1536 return -2; \
1537 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", (fail_stack).size);\
1538 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1539 }
1540
1541 /* Push register NUM onto the stack. */
1542 #define PUSH_FAILURE_REG(num) \
1543 do { \
1544 char *destination; \
1545 ENSURE_FAIL_STACK(3); \
1546 DEBUG_PRINT4 (" Push reg %d (spanning %p -> %p)\n", \
1547 num, regstart[num], regend[num]); \
1548 PUSH_FAILURE_POINTER (regstart[num]); \
1549 PUSH_FAILURE_POINTER (regend[num]); \
1550 PUSH_FAILURE_INT (num); \
1551 } while (0)
1552
1553 /* Change the counter's value to VAL, but make sure that it will
1554 be reset when backtracking. */
1555 #define PUSH_NUMBER(ptr,val) \
1556 do { \
1557 char *destination; \
1558 int c; \
1559 ENSURE_FAIL_STACK(3); \
1560 EXTRACT_NUMBER (c, ptr); \
1561 DEBUG_PRINT4 (" Push number %p = %d -> %d\n", ptr, c, val); \
1562 PUSH_FAILURE_INT (c); \
1563 PUSH_FAILURE_POINTER (ptr); \
1564 PUSH_FAILURE_INT (-1); \
1565 STORE_NUMBER (ptr, val); \
1566 } while (0)
1567
1568 /* Pop a saved register off the stack. */
1569 #define POP_FAILURE_REG_OR_COUNT() \
1570 do { \
1571 int reg = POP_FAILURE_INT (); \
1572 if (reg == -1) \
1573 { \
1574 /* It's a counter. */ \
1575 /* Here, we discard `const', making re_match non-reentrant. */ \
1576 unsigned char *ptr = (unsigned char*) POP_FAILURE_POINTER (); \
1577 reg = POP_FAILURE_INT (); \
1578 STORE_NUMBER (ptr, reg); \
1579 DEBUG_PRINT3 (" Pop counter %p = %d\n", ptr, reg); \
1580 } \
1581 else \
1582 { \
1583 regend[reg] = POP_FAILURE_POINTER (); \
1584 regstart[reg] = POP_FAILURE_POINTER (); \
1585 DEBUG_PRINT4 (" Pop reg %d (spanning %p -> %p)\n", \
1586 reg, regstart[reg], regend[reg]); \
1587 } \
1588 } while (0)
1589
1590 /* Check that we are not stuck in an infinite loop. */
1591 #define CHECK_INFINITE_LOOP(pat_cur, string_place) \
1592 do { \
1593 int failure = TOP_FAILURE_HANDLE (); \
1594 /* Check for infinite matching loops */ \
1595 while (failure > 0 \
1596 && (FAILURE_STR (failure) == string_place \
1597 || FAILURE_STR (failure) == NULL)) \
1598 { \
1599 assert (FAILURE_PAT (failure) >= bufp->buffer \
1600 && FAILURE_PAT (failure) <= bufp->buffer + bufp->used); \
1601 if (FAILURE_PAT (failure) == pat_cur) \
1602 { \
1603 cycle = 1; \
1604 break; \
1605 } \
1606 DEBUG_PRINT2 (" Other pattern: %p\n", FAILURE_PAT (failure)); \
1607 failure = NEXT_FAILURE_HANDLE(failure); \
1608 } \
1609 DEBUG_PRINT2 (" Other string: %p\n", FAILURE_STR (failure)); \
1610 } while (0)
1611
1612 /* Push the information about the state we will need
1613 if we ever fail back to it.
1614
1615 Requires variables fail_stack, regstart, regend and
1616 num_regs be declared. GROW_FAIL_STACK requires `destination' be
1617 declared.
1618
1619 Does `return FAILURE_CODE' if runs out of memory. */
1620
1621 #define PUSH_FAILURE_POINT(pattern, string_place) \
1622 do { \
1623 char *destination; \
1624 /* Must be int, so when we don't save any registers, the arithmetic \
1625 of 0 + -1 isn't done as unsigned. */ \
1626 \
1627 DEBUG_STATEMENT (nfailure_points_pushed++); \
1628 DEBUG_PRINT1 ("\nPUSH_FAILURE_POINT:\n"); \
1629 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail); \
1630 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1631 \
1632 ENSURE_FAIL_STACK (NUM_NONREG_ITEMS); \
1633 \
1634 DEBUG_PRINT1 ("\n"); \
1635 \
1636 DEBUG_PRINT2 (" Push frame index: %d\n", fail_stack.frame); \
1637 PUSH_FAILURE_INT (fail_stack.frame); \
1638 \
1639 DEBUG_PRINT2 (" Push string %p: `", string_place); \
1640 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, size2);\
1641 DEBUG_PRINT1 ("'\n"); \
1642 PUSH_FAILURE_POINTER (string_place); \
1643 \
1644 DEBUG_PRINT2 (" Push pattern %p: ", pattern); \
1645 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern, pend); \
1646 PUSH_FAILURE_POINTER (pattern); \
1647 \
1648 /* Close the frame by moving the frame pointer past it. */ \
1649 fail_stack.frame = fail_stack.avail; \
1650 } while (0)
1651
1652 /* Estimate the size of data pushed by a typical failure stack entry.
1653 An estimate is all we need, because all we use this for
1654 is to choose a limit for how big to make the failure stack. */
1655 /* BEWARE, the value `20' is hard-coded in emacs.c:main(). */
1656 #define TYPICAL_FAILURE_SIZE 20
1657
1658 /* How many items can still be added to the stack without overflowing it. */
1659 #define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1660
1661
1662 /* Pops what PUSH_FAIL_STACK pushes.
1663
1664 We restore into the parameters, all of which should be lvalues:
1665 STR -- the saved data position.
1666 PAT -- the saved pattern position.
1667 REGSTART, REGEND -- arrays of string positions.
1668
1669 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1670 `pend', `string1', `size1', `string2', and `size2'. */
1671
1672 #define POP_FAILURE_POINT(str, pat) \
1673 do { \
1674 assert (!FAIL_STACK_EMPTY ()); \
1675 \
1676 /* Remove failure points and point to how many regs pushed. */ \
1677 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1678 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1679 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1680 \
1681 /* Pop the saved registers. */ \
1682 while (fail_stack.frame < fail_stack.avail) \
1683 POP_FAILURE_REG_OR_COUNT (); \
1684 \
1685 pat = POP_FAILURE_POINTER (); \
1686 DEBUG_PRINT2 (" Popping pattern %p: ", pat); \
1687 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1688 \
1689 /* If the saved string location is NULL, it came from an \
1690 on_failure_keep_string_jump opcode, and we want to throw away the \
1691 saved NULL, thus retaining our current position in the string. */ \
1692 str = POP_FAILURE_POINTER (); \
1693 DEBUG_PRINT2 (" Popping string %p: `", str); \
1694 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1695 DEBUG_PRINT1 ("'\n"); \
1696 \
1697 fail_stack.frame = POP_FAILURE_INT (); \
1698 DEBUG_PRINT2 (" Popping frame index: %d\n", fail_stack.frame); \
1699 \
1700 assert (fail_stack.avail >= 0); \
1701 assert (fail_stack.frame <= fail_stack.avail); \
1702 \
1703 DEBUG_STATEMENT (nfailure_points_popped++); \
1704 } while (0) /* POP_FAILURE_POINT */
1705
1706
1707 \f
1708 /* Registers are set to a sentinel when they haven't yet matched. */
1709 #define REG_UNSET(e) ((e) == NULL)
1710 \f
1711 /* Subroutine declarations and macros for regex_compile. */
1712
1713 static reg_errcode_t regex_compile _RE_ARGS ((re_char *pattern, size_t size,
1714 reg_syntax_t syntax,
1715 struct re_pattern_buffer *bufp));
1716 static void store_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc, int arg));
1717 static void store_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1718 int arg1, int arg2));
1719 static void insert_op1 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1720 int arg, unsigned char *end));
1721 static void insert_op2 _RE_ARGS ((re_opcode_t op, unsigned char *loc,
1722 int arg1, int arg2, unsigned char *end));
1723 static boolean at_begline_loc_p _RE_ARGS ((re_char *pattern,
1724 re_char *p,
1725 reg_syntax_t syntax));
1726 static boolean at_endline_loc_p _RE_ARGS ((re_char *p,
1727 re_char *pend,
1728 reg_syntax_t syntax));
1729 static re_char *skip_one_char _RE_ARGS ((re_char *p));
1730 static int analyse_first _RE_ARGS ((re_char *p, re_char *pend,
1731 char *fastmap, const int multibyte));
1732
1733 /* Fetch the next character in the uncompiled pattern, with no
1734 translation. */
1735 #define PATFETCH(c) \
1736 do { \
1737 int len; \
1738 if (p == pend) return REG_EEND; \
1739 c = RE_STRING_CHAR_AND_LENGTH (p, pend - p, len); \
1740 p += len; \
1741 } while (0)
1742
1743
1744 /* If `translate' is non-null, return translate[D], else just D. We
1745 cast the subscript to translate because some data is declared as
1746 `char *', to avoid warnings when a string constant is passed. But
1747 when we use a character as a subscript we must make it unsigned. */
1748 #ifndef TRANSLATE
1749 # define TRANSLATE(d) \
1750 (RE_TRANSLATE_P (translate) ? RE_TRANSLATE (translate, (d)) : (d))
1751 #endif
1752
1753
1754 /* Macros for outputting the compiled pattern into `buffer'. */
1755
1756 /* If the buffer isn't allocated when it comes in, use this. */
1757 #define INIT_BUF_SIZE 32
1758
1759 /* Make sure we have at least N more bytes of space in buffer. */
1760 #define GET_BUFFER_SPACE(n) \
1761 while ((size_t) (b - bufp->buffer + (n)) > bufp->allocated) \
1762 EXTEND_BUFFER ()
1763
1764 /* Make sure we have one more byte of buffer space and then add C to it. */
1765 #define BUF_PUSH(c) \
1766 do { \
1767 GET_BUFFER_SPACE (1); \
1768 *b++ = (unsigned char) (c); \
1769 } while (0)
1770
1771
1772 /* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1773 #define BUF_PUSH_2(c1, c2) \
1774 do { \
1775 GET_BUFFER_SPACE (2); \
1776 *b++ = (unsigned char) (c1); \
1777 *b++ = (unsigned char) (c2); \
1778 } while (0)
1779
1780
1781 /* As with BUF_PUSH_2, except for three bytes. */
1782 #define BUF_PUSH_3(c1, c2, c3) \
1783 do { \
1784 GET_BUFFER_SPACE (3); \
1785 *b++ = (unsigned char) (c1); \
1786 *b++ = (unsigned char) (c2); \
1787 *b++ = (unsigned char) (c3); \
1788 } while (0)
1789
1790
1791 /* Store a jump with opcode OP at LOC to location TO. We store a
1792 relative address offset by the three bytes the jump itself occupies. */
1793 #define STORE_JUMP(op, loc, to) \
1794 store_op1 (op, loc, (to) - (loc) - 3)
1795
1796 /* Likewise, for a two-argument jump. */
1797 #define STORE_JUMP2(op, loc, to, arg) \
1798 store_op2 (op, loc, (to) - (loc) - 3, arg)
1799
1800 /* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1801 #define INSERT_JUMP(op, loc, to) \
1802 insert_op1 (op, loc, (to) - (loc) - 3, b)
1803
1804 /* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1805 #define INSERT_JUMP2(op, loc, to, arg) \
1806 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1807
1808
1809 /* This is not an arbitrary limit: the arguments which represent offsets
1810 into the pattern are two bytes long. So if 2^15 bytes turns out to
1811 be too small, many things would have to change. */
1812 # define MAX_BUF_SIZE (1L << 15)
1813
1814 #if 0 /* This is when we thought it could be 2^16 bytes. */
1815 /* Any other compiler which, like MSC, has allocation limit below 2^16
1816 bytes will have to use approach similar to what was done below for
1817 MSC and drop MAX_BUF_SIZE a bit. Otherwise you may end up
1818 reallocating to 0 bytes. Such thing is not going to work too well.
1819 You have been warned!! */
1820 #if defined _MSC_VER && !defined WIN32
1821 /* Microsoft C 16-bit versions limit malloc to approx 65512 bytes. */
1822 # define MAX_BUF_SIZE 65500L
1823 #else
1824 # define MAX_BUF_SIZE (1L << 16)
1825 #endif
1826 #endif /* 0 */
1827
1828 /* Extend the buffer by twice its current size via realloc and
1829 reset the pointers that pointed into the old block to point to the
1830 correct places in the new one. If extending the buffer results in it
1831 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1832 #if __BOUNDED_POINTERS__
1833 # define SET_HIGH_BOUND(P) (__ptrhigh (P) = __ptrlow (P) + bufp->allocated)
1834 # define MOVE_BUFFER_POINTER(P) \
1835 (__ptrlow (P) += incr, SET_HIGH_BOUND (P), __ptrvalue (P) += incr)
1836 # define ELSE_EXTEND_BUFFER_HIGH_BOUND \
1837 else \
1838 { \
1839 SET_HIGH_BOUND (b); \
1840 SET_HIGH_BOUND (begalt); \
1841 if (fixup_alt_jump) \
1842 SET_HIGH_BOUND (fixup_alt_jump); \
1843 if (laststart) \
1844 SET_HIGH_BOUND (laststart); \
1845 if (pending_exact) \
1846 SET_HIGH_BOUND (pending_exact); \
1847 }
1848 #else
1849 # define MOVE_BUFFER_POINTER(P) (P) += incr
1850 # define ELSE_EXTEND_BUFFER_HIGH_BOUND
1851 #endif
1852 #define EXTEND_BUFFER() \
1853 do { \
1854 re_char *old_buffer = bufp->buffer; \
1855 if (bufp->allocated == MAX_BUF_SIZE) \
1856 return REG_ESIZE; \
1857 bufp->allocated <<= 1; \
1858 if (bufp->allocated > MAX_BUF_SIZE) \
1859 bufp->allocated = MAX_BUF_SIZE; \
1860 RETALLOC (bufp->buffer, bufp->allocated, unsigned char); \
1861 if (bufp->buffer == NULL) \
1862 return REG_ESPACE; \
1863 /* If the buffer moved, move all the pointers into it. */ \
1864 if (old_buffer != bufp->buffer) \
1865 { \
1866 int incr = bufp->buffer - old_buffer; \
1867 MOVE_BUFFER_POINTER (b); \
1868 MOVE_BUFFER_POINTER (begalt); \
1869 if (fixup_alt_jump) \
1870 MOVE_BUFFER_POINTER (fixup_alt_jump); \
1871 if (laststart) \
1872 MOVE_BUFFER_POINTER (laststart); \
1873 if (pending_exact) \
1874 MOVE_BUFFER_POINTER (pending_exact); \
1875 } \
1876 ELSE_EXTEND_BUFFER_HIGH_BOUND \
1877 } while (0)
1878
1879
1880 /* Since we have one byte reserved for the register number argument to
1881 {start,stop}_memory, the maximum number of groups we can report
1882 things about is what fits in that byte. */
1883 #define MAX_REGNUM 255
1884
1885 /* But patterns can have more than `MAX_REGNUM' registers. We just
1886 ignore the excess. */
1887 typedef int regnum_t;
1888
1889
1890 /* Macros for the compile stack. */
1891
1892 /* Since offsets can go either forwards or backwards, this type needs to
1893 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1894 /* int may be not enough when sizeof(int) == 2. */
1895 typedef long pattern_offset_t;
1896
1897 typedef struct
1898 {
1899 pattern_offset_t begalt_offset;
1900 pattern_offset_t fixup_alt_jump;
1901 pattern_offset_t laststart_offset;
1902 regnum_t regnum;
1903 } compile_stack_elt_t;
1904
1905
1906 typedef struct
1907 {
1908 compile_stack_elt_t *stack;
1909 unsigned size;
1910 unsigned avail; /* Offset of next open position. */
1911 } compile_stack_type;
1912
1913
1914 #define INIT_COMPILE_STACK_SIZE 32
1915
1916 #define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1917 #define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1918
1919 /* The next available element. */
1920 #define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1921
1922 /* Explicit quit checking is only used on NTemacs and whenever we
1923 use polling to process input events. */
1924 #if defined emacs && (defined WINDOWSNT || defined SYNC_INPUT) && defined QUIT
1925 extern int immediate_quit;
1926 # define IMMEDIATE_QUIT_CHECK \
1927 do { \
1928 if (immediate_quit) QUIT; \
1929 } while (0)
1930 #else
1931 # define IMMEDIATE_QUIT_CHECK ((void)0)
1932 #endif
1933 \f
1934 /* Structure to manage work area for range table. */
1935 struct range_table_work_area
1936 {
1937 int *table; /* actual work area. */
1938 int allocated; /* allocated size for work area in bytes. */
1939 int used; /* actually used size in words. */
1940 int bits; /* flag to record character classes */
1941 };
1942
1943 /* Make sure that WORK_AREA can hold more N multibyte characters.
1944 This is used only in set_image_of_range and set_image_of_range_1.
1945 It expects WORK_AREA to be a pointer.
1946 If it can't get the space, it returns from the surrounding function. */
1947
1948 #define EXTEND_RANGE_TABLE(work_area, n) \
1949 do { \
1950 if (((work_area)->used + (n)) * sizeof (int) > (work_area)->allocated) \
1951 { \
1952 extend_range_table_work_area (work_area); \
1953 if ((work_area)->table == 0) \
1954 return (REG_ESPACE); \
1955 } \
1956 } while (0)
1957
1958 #define SET_RANGE_TABLE_WORK_AREA_BIT(work_area, bit) \
1959 (work_area).bits |= (bit)
1960
1961 /* Bits used to implement the multibyte-part of the various character classes
1962 such as [:alnum:] in a charset's range table. */
1963 #define BIT_WORD 0x1
1964 #define BIT_LOWER 0x2
1965 #define BIT_PUNCT 0x4
1966 #define BIT_SPACE 0x8
1967 #define BIT_UPPER 0x10
1968 #define BIT_MULTIBYTE 0x20
1969
1970 /* Set a range START..END to WORK_AREA.
1971 The range is passed through TRANSLATE, so START and END
1972 should be untranslated. */
1973 #define SET_RANGE_TABLE_WORK_AREA(work_area, start, end) \
1974 do { \
1975 int tem; \
1976 tem = set_image_of_range (&work_area, start, end, translate); \
1977 if (tem > 0) \
1978 FREE_STACK_RETURN (tem); \
1979 } while (0)
1980
1981 /* Free allocated memory for WORK_AREA. */
1982 #define FREE_RANGE_TABLE_WORK_AREA(work_area) \
1983 do { \
1984 if ((work_area).table) \
1985 free ((work_area).table); \
1986 } while (0)
1987
1988 #define CLEAR_RANGE_TABLE_WORK_USED(work_area) ((work_area).used = 0, (work_area).bits = 0)
1989 #define RANGE_TABLE_WORK_USED(work_area) ((work_area).used)
1990 #define RANGE_TABLE_WORK_BITS(work_area) ((work_area).bits)
1991 #define RANGE_TABLE_WORK_ELT(work_area, i) ((work_area).table[i])
1992 \f
1993
1994 /* Set the bit for character C in a list. */
1995 #define SET_LIST_BIT(c) (b[((c)) / BYTEWIDTH] |= 1 << ((c) % BYTEWIDTH))
1996
1997
1998 /* Get the next unsigned number in the uncompiled pattern. */
1999 #define GET_UNSIGNED_NUMBER(num) \
2000 do { \
2001 if (p == pend) \
2002 FREE_STACK_RETURN (REG_EBRACE); \
2003 else \
2004 { \
2005 PATFETCH (c); \
2006 while ('0' <= c && c <= '9') \
2007 { \
2008 int prev; \
2009 if (num < 0) \
2010 num = 0; \
2011 prev = num; \
2012 num = num * 10 + c - '0'; \
2013 if (num / 10 != prev) \
2014 FREE_STACK_RETURN (REG_BADBR); \
2015 if (p == pend) \
2016 FREE_STACK_RETURN (REG_EBRACE); \
2017 PATFETCH (c); \
2018 } \
2019 } \
2020 } while (0)
2021 \f
2022 #if ! WIDE_CHAR_SUPPORT
2023
2024 /* Map a string to the char class it names (if any). */
2025 re_wctype_t
2026 re_wctype (str)
2027 re_char *str;
2028 {
2029 const char *string = str;
2030 if (STREQ (string, "alnum")) return RECC_ALNUM;
2031 else if (STREQ (string, "alpha")) return RECC_ALPHA;
2032 else if (STREQ (string, "word")) return RECC_WORD;
2033 else if (STREQ (string, "ascii")) return RECC_ASCII;
2034 else if (STREQ (string, "nonascii")) return RECC_NONASCII;
2035 else if (STREQ (string, "graph")) return RECC_GRAPH;
2036 else if (STREQ (string, "lower")) return RECC_LOWER;
2037 else if (STREQ (string, "print")) return RECC_PRINT;
2038 else if (STREQ (string, "punct")) return RECC_PUNCT;
2039 else if (STREQ (string, "space")) return RECC_SPACE;
2040 else if (STREQ (string, "upper")) return RECC_UPPER;
2041 else if (STREQ (string, "unibyte")) return RECC_UNIBYTE;
2042 else if (STREQ (string, "multibyte")) return RECC_MULTIBYTE;
2043 else if (STREQ (string, "digit")) return RECC_DIGIT;
2044 else if (STREQ (string, "xdigit")) return RECC_XDIGIT;
2045 else if (STREQ (string, "cntrl")) return RECC_CNTRL;
2046 else if (STREQ (string, "blank")) return RECC_BLANK;
2047 else return 0;
2048 }
2049
2050 /* True iff CH is in the char class CC. */
2051 boolean
2052 re_iswctype (ch, cc)
2053 int ch;
2054 re_wctype_t cc;
2055 {
2056 switch (cc)
2057 {
2058 case RECC_ALNUM: return ISALNUM (ch);
2059 case RECC_ALPHA: return ISALPHA (ch);
2060 case RECC_BLANK: return ISBLANK (ch);
2061 case RECC_CNTRL: return ISCNTRL (ch);
2062 case RECC_DIGIT: return ISDIGIT (ch);
2063 case RECC_GRAPH: return ISGRAPH (ch);
2064 case RECC_LOWER: return ISLOWER (ch);
2065 case RECC_PRINT: return ISPRINT (ch);
2066 case RECC_PUNCT: return ISPUNCT (ch);
2067 case RECC_SPACE: return ISSPACE (ch);
2068 case RECC_UPPER: return ISUPPER (ch);
2069 case RECC_XDIGIT: return ISXDIGIT (ch);
2070 case RECC_ASCII: return IS_REAL_ASCII (ch);
2071 case RECC_NONASCII: return !IS_REAL_ASCII (ch);
2072 case RECC_UNIBYTE: return ISUNIBYTE (ch);
2073 case RECC_MULTIBYTE: return !ISUNIBYTE (ch);
2074 case RECC_WORD: return ISWORD (ch);
2075 case RECC_ERROR: return false;
2076 default:
2077 abort();
2078 }
2079 }
2080
2081 /* Return a bit-pattern to use in the range-table bits to match multibyte
2082 chars of class CC. */
2083 static int
2084 re_wctype_to_bit (cc)
2085 re_wctype_t cc;
2086 {
2087 switch (cc)
2088 {
2089 case RECC_NONASCII: case RECC_PRINT: case RECC_GRAPH:
2090 case RECC_MULTIBYTE: return BIT_MULTIBYTE;
2091 case RECC_ALPHA: case RECC_ALNUM: case RECC_WORD: return BIT_WORD;
2092 case RECC_LOWER: return BIT_LOWER;
2093 case RECC_UPPER: return BIT_UPPER;
2094 case RECC_PUNCT: return BIT_PUNCT;
2095 case RECC_SPACE: return BIT_SPACE;
2096 case RECC_ASCII: case RECC_DIGIT: case RECC_XDIGIT: case RECC_CNTRL:
2097 case RECC_BLANK: case RECC_UNIBYTE: case RECC_ERROR: return 0;
2098 default:
2099 abort();
2100 }
2101 }
2102 #endif
2103 \f
2104 /* Filling in the work area of a range. */
2105
2106 /* Actually extend the space in WORK_AREA. */
2107
2108 static void
2109 extend_range_table_work_area (work_area)
2110 struct range_table_work_area *work_area;
2111 {
2112 work_area->allocated += 16 * sizeof (int);
2113 if (work_area->table)
2114 work_area->table
2115 = (int *) realloc (work_area->table, work_area->allocated);
2116 else
2117 work_area->table
2118 = (int *) malloc (work_area->allocated);
2119 }
2120
2121 #ifdef emacs
2122
2123 /* Carefully find the ranges of codes that are equivalent
2124 under case conversion to the range start..end when passed through
2125 TRANSLATE. Handle the case where non-letters can come in between
2126 two upper-case letters (which happens in Latin-1).
2127 Also handle the case of groups of more than 2 case-equivalent chars.
2128
2129 The basic method is to look at consecutive characters and see
2130 if they can form a run that can be handled as one.
2131
2132 Returns -1 if successful, REG_ESPACE if ran out of space. */
2133
2134 static int
2135 set_image_of_range_1 (work_area, start, end, translate)
2136 RE_TRANSLATE_TYPE translate;
2137 struct range_table_work_area *work_area;
2138 re_wchar_t start, end;
2139 {
2140 /* `one_case' indicates a character, or a run of characters,
2141 each of which is an isolate (no case-equivalents).
2142 This includes all ASCII non-letters.
2143
2144 `two_case' indicates a character, or a run of characters,
2145 each of which has two case-equivalent forms.
2146 This includes all ASCII letters.
2147
2148 `strange' indicates a character that has more than one
2149 case-equivalent. */
2150
2151 enum case_type {one_case, two_case, strange};
2152
2153 /* Describe the run that is in progress,
2154 which the next character can try to extend.
2155 If run_type is strange, that means there really is no run.
2156 If run_type is one_case, then run_start...run_end is the run.
2157 If run_type is two_case, then the run is run_start...run_end,
2158 and the case-equivalents end at run_eqv_end. */
2159
2160 enum case_type run_type = strange;
2161 int run_start, run_end, run_eqv_end;
2162
2163 Lisp_Object eqv_table;
2164
2165 if (!RE_TRANSLATE_P (translate))
2166 {
2167 EXTEND_RANGE_TABLE (work_area, 2);
2168 work_area->table[work_area->used++] = (start);
2169 work_area->table[work_area->used++] = (end);
2170 return -1;
2171 }
2172
2173 eqv_table = XCHAR_TABLE (translate)->extras[2];
2174
2175 for (; start <= end; start++)
2176 {
2177 enum case_type this_type;
2178 int eqv = RE_TRANSLATE (eqv_table, start);
2179 int minchar, maxchar;
2180
2181 /* Classify this character */
2182 if (eqv == start)
2183 this_type = one_case;
2184 else if (RE_TRANSLATE (eqv_table, eqv) == start)
2185 this_type = two_case;
2186 else
2187 this_type = strange;
2188
2189 if (start < eqv)
2190 minchar = start, maxchar = eqv;
2191 else
2192 minchar = eqv, maxchar = start;
2193
2194 /* Can this character extend the run in progress? */
2195 if (this_type == strange || this_type != run_type
2196 || !(minchar == run_end + 1
2197 && (run_type == two_case
2198 ? maxchar == run_eqv_end + 1 : 1)))
2199 {
2200 /* No, end the run.
2201 Record each of its equivalent ranges. */
2202 if (run_type == one_case)
2203 {
2204 EXTEND_RANGE_TABLE (work_area, 2);
2205 work_area->table[work_area->used++] = run_start;
2206 work_area->table[work_area->used++] = run_end;
2207 }
2208 else if (run_type == two_case)
2209 {
2210 EXTEND_RANGE_TABLE (work_area, 4);
2211 work_area->table[work_area->used++] = run_start;
2212 work_area->table[work_area->used++] = run_end;
2213 work_area->table[work_area->used++]
2214 = RE_TRANSLATE (eqv_table, run_start);
2215 work_area->table[work_area->used++]
2216 = RE_TRANSLATE (eqv_table, run_end);
2217 }
2218 run_type = strange;
2219 }
2220
2221 if (this_type == strange)
2222 {
2223 /* For a strange character, add each of its equivalents, one
2224 by one. Don't start a range. */
2225 do
2226 {
2227 EXTEND_RANGE_TABLE (work_area, 2);
2228 work_area->table[work_area->used++] = eqv;
2229 work_area->table[work_area->used++] = eqv;
2230 eqv = RE_TRANSLATE (eqv_table, eqv);
2231 }
2232 while (eqv != start);
2233 }
2234
2235 /* Add this char to the run, or start a new run. */
2236 else if (run_type == strange)
2237 {
2238 /* Initialize a new range. */
2239 run_type = this_type;
2240 run_start = start;
2241 run_end = start;
2242 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2243 }
2244 else
2245 {
2246 /* Extend a running range. */
2247 run_end = minchar;
2248 run_eqv_end = RE_TRANSLATE (eqv_table, run_end);
2249 }
2250 }
2251
2252 /* If a run is still in progress at the end, finish it now
2253 by recording its equivalent ranges. */
2254 if (run_type == one_case)
2255 {
2256 EXTEND_RANGE_TABLE (work_area, 2);
2257 work_area->table[work_area->used++] = run_start;
2258 work_area->table[work_area->used++] = run_end;
2259 }
2260 else if (run_type == two_case)
2261 {
2262 EXTEND_RANGE_TABLE (work_area, 4);
2263 work_area->table[work_area->used++] = run_start;
2264 work_area->table[work_area->used++] = run_end;
2265 work_area->table[work_area->used++]
2266 = RE_TRANSLATE (eqv_table, run_start);
2267 work_area->table[work_area->used++]
2268 = RE_TRANSLATE (eqv_table, run_end);
2269 }
2270
2271 return -1;
2272 }
2273
2274 #endif /* emacs */
2275
2276 /* Record the the image of the range start..end when passed through
2277 TRANSLATE. This is not necessarily TRANSLATE(start)..TRANSLATE(end)
2278 and is not even necessarily contiguous.
2279 Normally we approximate it with the smallest contiguous range that contains
2280 all the chars we need. However, for Latin-1 we go to extra effort
2281 to do a better job.
2282
2283 This function is not called for ASCII ranges.
2284
2285 Returns -1 if successful, REG_ESPACE if ran out of space. */
2286
2287 static int
2288 set_image_of_range (work_area, start, end, translate)
2289 RE_TRANSLATE_TYPE translate;
2290 struct range_table_work_area *work_area;
2291 re_wchar_t start, end;
2292 {
2293 re_wchar_t cmin, cmax;
2294
2295 #ifdef emacs
2296 /* For Latin-1 ranges, use set_image_of_range_1
2297 to get proper handling of ranges that include letters and nonletters.
2298 For a range that includes the whole of Latin-1, this is not necessary.
2299 For other character sets, we don't bother to get this right. */
2300 if (RE_TRANSLATE_P (translate) && start < 04400
2301 && !(start < 04200 && end >= 04377))
2302 {
2303 int newend;
2304 int tem;
2305 newend = end;
2306 if (newend > 04377)
2307 newend = 04377;
2308 tem = set_image_of_range_1 (work_area, start, newend, translate);
2309 if (tem > 0)
2310 return tem;
2311
2312 start = 04400;
2313 if (end < 04400)
2314 return -1;
2315 }
2316 #endif
2317
2318 EXTEND_RANGE_TABLE (work_area, 2);
2319 work_area->table[work_area->used++] = (start);
2320 work_area->table[work_area->used++] = (end);
2321
2322 cmin = -1, cmax = -1;
2323
2324 if (RE_TRANSLATE_P (translate))
2325 {
2326 int ch;
2327
2328 for (ch = start; ch <= end; ch++)
2329 {
2330 re_wchar_t c = TRANSLATE (ch);
2331 if (! (start <= c && c <= end))
2332 {
2333 if (cmin == -1)
2334 cmin = c, cmax = c;
2335 else
2336 {
2337 cmin = MIN (cmin, c);
2338 cmax = MAX (cmax, c);
2339 }
2340 }
2341 }
2342
2343 if (cmin != -1)
2344 {
2345 EXTEND_RANGE_TABLE (work_area, 2);
2346 work_area->table[work_area->used++] = (cmin);
2347 work_area->table[work_area->used++] = (cmax);
2348 }
2349 }
2350
2351 return -1;
2352 }
2353 \f
2354 #ifndef MATCH_MAY_ALLOCATE
2355
2356 /* If we cannot allocate large objects within re_match_2_internal,
2357 we make the fail stack and register vectors global.
2358 The fail stack, we grow to the maximum size when a regexp
2359 is compiled.
2360 The register vectors, we adjust in size each time we
2361 compile a regexp, according to the number of registers it needs. */
2362
2363 static fail_stack_type fail_stack;
2364
2365 /* Size with which the following vectors are currently allocated.
2366 That is so we can make them bigger as needed,
2367 but never make them smaller. */
2368 static int regs_allocated_size;
2369
2370 static re_char ** regstart, ** regend;
2371 static re_char **best_regstart, **best_regend;
2372
2373 /* Make the register vectors big enough for NUM_REGS registers,
2374 but don't make them smaller. */
2375
2376 static
2377 regex_grow_registers (num_regs)
2378 int num_regs;
2379 {
2380 if (num_regs > regs_allocated_size)
2381 {
2382 RETALLOC_IF (regstart, num_regs, re_char *);
2383 RETALLOC_IF (regend, num_regs, re_char *);
2384 RETALLOC_IF (best_regstart, num_regs, re_char *);
2385 RETALLOC_IF (best_regend, num_regs, re_char *);
2386
2387 regs_allocated_size = num_regs;
2388 }
2389 }
2390
2391 #endif /* not MATCH_MAY_ALLOCATE */
2392 \f
2393 static boolean group_in_compile_stack _RE_ARGS ((compile_stack_type
2394 compile_stack,
2395 regnum_t regnum));
2396
2397 /* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
2398 Returns one of error codes defined in `regex.h', or zero for success.
2399
2400 Assumes the `allocated' (and perhaps `buffer') and `translate'
2401 fields are set in BUFP on entry.
2402
2403 If it succeeds, results are put in BUFP (if it returns an error, the
2404 contents of BUFP are undefined):
2405 `buffer' is the compiled pattern;
2406 `syntax' is set to SYNTAX;
2407 `used' is set to the length of the compiled pattern;
2408 `fastmap_accurate' is zero;
2409 `re_nsub' is the number of subexpressions in PATTERN;
2410 `not_bol' and `not_eol' are zero;
2411
2412 The `fastmap' field is neither examined nor set. */
2413
2414 /* Insert the `jump' from the end of last alternative to "here".
2415 The space for the jump has already been allocated. */
2416 #define FIXUP_ALT_JUMP() \
2417 do { \
2418 if (fixup_alt_jump) \
2419 STORE_JUMP (jump, fixup_alt_jump, b); \
2420 } while (0)
2421
2422
2423 /* Return, freeing storage we allocated. */
2424 #define FREE_STACK_RETURN(value) \
2425 do { \
2426 FREE_RANGE_TABLE_WORK_AREA (range_table_work); \
2427 free (compile_stack.stack); \
2428 return value; \
2429 } while (0)
2430
2431 static reg_errcode_t
2432 regex_compile (pattern, size, syntax, bufp)
2433 re_char *pattern;
2434 size_t size;
2435 reg_syntax_t syntax;
2436 struct re_pattern_buffer *bufp;
2437 {
2438 /* We fetch characters from PATTERN here. */
2439 register re_wchar_t c, c1;
2440
2441 /* A random temporary spot in PATTERN. */
2442 re_char *p1;
2443
2444 /* Points to the end of the buffer, where we should append. */
2445 register unsigned char *b;
2446
2447 /* Keeps track of unclosed groups. */
2448 compile_stack_type compile_stack;
2449
2450 /* Points to the current (ending) position in the pattern. */
2451 #ifdef AIX
2452 /* `const' makes AIX compiler fail. */
2453 unsigned char *p = pattern;
2454 #else
2455 re_char *p = pattern;
2456 #endif
2457 re_char *pend = pattern + size;
2458
2459 /* How to translate the characters in the pattern. */
2460 RE_TRANSLATE_TYPE translate = bufp->translate;
2461
2462 /* Address of the count-byte of the most recently inserted `exactn'
2463 command. This makes it possible to tell if a new exact-match
2464 character can be added to that command or if the character requires
2465 a new `exactn' command. */
2466 unsigned char *pending_exact = 0;
2467
2468 /* Address of start of the most recently finished expression.
2469 This tells, e.g., postfix * where to find the start of its
2470 operand. Reset at the beginning of groups and alternatives. */
2471 unsigned char *laststart = 0;
2472
2473 /* Address of beginning of regexp, or inside of last group. */
2474 unsigned char *begalt;
2475
2476 /* Place in the uncompiled pattern (i.e., the {) to
2477 which to go back if the interval is invalid. */
2478 re_char *beg_interval;
2479
2480 /* Address of the place where a forward jump should go to the end of
2481 the containing expression. Each alternative of an `or' -- except the
2482 last -- ends with a forward jump of this sort. */
2483 unsigned char *fixup_alt_jump = 0;
2484
2485 /* Counts open-groups as they are encountered. Remembered for the
2486 matching close-group on the compile stack, so the same register
2487 number is put in the stop_memory as the start_memory. */
2488 regnum_t regnum = 0;
2489
2490 /* Work area for range table of charset. */
2491 struct range_table_work_area range_table_work;
2492
2493 /* If the object matched can contain multibyte characters. */
2494 const boolean multibyte = RE_MULTIBYTE_P (bufp);
2495
2496 /* Nonzero if we have pushed down into a subpattern. */
2497 int in_subpattern = 0;
2498
2499 /* These hold the values of p, pattern, and pend from the main
2500 pattern when we have pushed into a subpattern. */
2501 re_char *main_p;
2502 re_char *main_pattern;
2503 re_char *main_pend;
2504
2505 #ifdef DEBUG
2506 debug++;
2507 DEBUG_PRINT1 ("\nCompiling pattern: ");
2508 if (debug > 0)
2509 {
2510 unsigned debug_count;
2511
2512 for (debug_count = 0; debug_count < size; debug_count++)
2513 putchar (pattern[debug_count]);
2514 putchar ('\n');
2515 }
2516 #endif /* DEBUG */
2517
2518 /* Initialize the compile stack. */
2519 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
2520 if (compile_stack.stack == NULL)
2521 return REG_ESPACE;
2522
2523 compile_stack.size = INIT_COMPILE_STACK_SIZE;
2524 compile_stack.avail = 0;
2525
2526 range_table_work.table = 0;
2527 range_table_work.allocated = 0;
2528
2529 /* Initialize the pattern buffer. */
2530 bufp->syntax = syntax;
2531 bufp->fastmap_accurate = 0;
2532 bufp->not_bol = bufp->not_eol = 0;
2533 bufp->used_syntax = 0;
2534
2535 /* Set `used' to zero, so that if we return an error, the pattern
2536 printer (for debugging) will think there's no pattern. We reset it
2537 at the end. */
2538 bufp->used = 0;
2539
2540 /* Always count groups, whether or not bufp->no_sub is set. */
2541 bufp->re_nsub = 0;
2542
2543 #if !defined emacs && !defined SYNTAX_TABLE
2544 /* Initialize the syntax table. */
2545 init_syntax_once ();
2546 #endif
2547
2548 if (bufp->allocated == 0)
2549 {
2550 if (bufp->buffer)
2551 { /* If zero allocated, but buffer is non-null, try to realloc
2552 enough space. This loses if buffer's address is bogus, but
2553 that is the user's responsibility. */
2554 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
2555 }
2556 else
2557 { /* Caller did not allocate a buffer. Do it for them. */
2558 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
2559 }
2560 if (!bufp->buffer) FREE_STACK_RETURN (REG_ESPACE);
2561
2562 bufp->allocated = INIT_BUF_SIZE;
2563 }
2564
2565 begalt = b = bufp->buffer;
2566
2567 /* Loop through the uncompiled pattern until we're at the end. */
2568 while (1)
2569 {
2570 if (p == pend)
2571 {
2572 /* If this is the end of an included regexp,
2573 pop back to the main regexp and try again. */
2574 if (in_subpattern)
2575 {
2576 in_subpattern = 0;
2577 pattern = main_pattern;
2578 p = main_p;
2579 pend = main_pend;
2580 continue;
2581 }
2582 /* If this is the end of the main regexp, we are done. */
2583 break;
2584 }
2585
2586 PATFETCH (c);
2587
2588 switch (c)
2589 {
2590 case ' ':
2591 {
2592 re_char *p1 = p;
2593
2594 /* If there's no special whitespace regexp, treat
2595 spaces normally. And don't try to do this recursively. */
2596 if (!whitespace_regexp || in_subpattern)
2597 goto normal_char;
2598
2599 /* Peek past following spaces. */
2600 while (p1 != pend)
2601 {
2602 if (*p1 != ' ')
2603 break;
2604 p1++;
2605 }
2606 /* If the spaces are followed by a repetition op,
2607 treat them normally. */
2608 if (p1 != pend
2609 && (*p1 == '*' || *p1 == '+' || *p1 == '?'
2610 || (*p1 == '\\' && p1 + 1 != pend && p1[1] == '{')))
2611 goto normal_char;
2612
2613 /* Replace the spaces with the whitespace regexp. */
2614 in_subpattern = 1;
2615 main_p = p1;
2616 main_pend = pend;
2617 main_pattern = pattern;
2618 p = pattern = whitespace_regexp;
2619 pend = p + strlen (p);
2620 break;
2621 }
2622
2623 case '^':
2624 {
2625 if ( /* If at start of pattern, it's an operator. */
2626 p == pattern + 1
2627 /* If context independent, it's an operator. */
2628 || syntax & RE_CONTEXT_INDEP_ANCHORS
2629 /* Otherwise, depends on what's come before. */
2630 || at_begline_loc_p (pattern, p, syntax))
2631 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? begbuf : begline);
2632 else
2633 goto normal_char;
2634 }
2635 break;
2636
2637
2638 case '$':
2639 {
2640 if ( /* If at end of pattern, it's an operator. */
2641 p == pend
2642 /* If context independent, it's an operator. */
2643 || syntax & RE_CONTEXT_INDEP_ANCHORS
2644 /* Otherwise, depends on what's next. */
2645 || at_endline_loc_p (p, pend, syntax))
2646 BUF_PUSH ((syntax & RE_NO_NEWLINE_ANCHOR) ? endbuf : endline);
2647 else
2648 goto normal_char;
2649 }
2650 break;
2651
2652
2653 case '+':
2654 case '?':
2655 if ((syntax & RE_BK_PLUS_QM)
2656 || (syntax & RE_LIMITED_OPS))
2657 goto normal_char;
2658 handle_plus:
2659 case '*':
2660 /* If there is no previous pattern... */
2661 if (!laststart)
2662 {
2663 if (syntax & RE_CONTEXT_INVALID_OPS)
2664 FREE_STACK_RETURN (REG_BADRPT);
2665 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
2666 goto normal_char;
2667 }
2668
2669 {
2670 /* 1 means zero (many) matches is allowed. */
2671 boolean zero_times_ok = 0, many_times_ok = 0;
2672 boolean greedy = 1;
2673
2674 /* If there is a sequence of repetition chars, collapse it
2675 down to just one (the right one). We can't combine
2676 interval operators with these because of, e.g., `a{2}*',
2677 which should only match an even number of `a's. */
2678
2679 for (;;)
2680 {
2681 if ((syntax & RE_FRUGAL)
2682 && c == '?' && (zero_times_ok || many_times_ok))
2683 greedy = 0;
2684 else
2685 {
2686 zero_times_ok |= c != '+';
2687 many_times_ok |= c != '?';
2688 }
2689
2690 if (p == pend)
2691 break;
2692 else if (*p == '*'
2693 || (!(syntax & RE_BK_PLUS_QM)
2694 && (*p == '+' || *p == '?')))
2695 ;
2696 else if (syntax & RE_BK_PLUS_QM && *p == '\\')
2697 {
2698 if (p+1 == pend)
2699 FREE_STACK_RETURN (REG_EESCAPE);
2700 if (p[1] == '+' || p[1] == '?')
2701 PATFETCH (c); /* Gobble up the backslash. */
2702 else
2703 break;
2704 }
2705 else
2706 break;
2707 /* If we get here, we found another repeat character. */
2708 PATFETCH (c);
2709 }
2710
2711 /* Star, etc. applied to an empty pattern is equivalent
2712 to an empty pattern. */
2713 if (!laststart || laststart == b)
2714 break;
2715
2716 /* Now we know whether or not zero matches is allowed
2717 and also whether or not two or more matches is allowed. */
2718 if (greedy)
2719 {
2720 if (many_times_ok)
2721 {
2722 boolean simple = skip_one_char (laststart) == b;
2723 unsigned int startoffset = 0;
2724 re_opcode_t ofj =
2725 /* Check if the loop can match the empty string. */
2726 (simple || !analyse_first (laststart, b, NULL, 0))
2727 ? on_failure_jump : on_failure_jump_loop;
2728 assert (skip_one_char (laststart) <= b);
2729
2730 if (!zero_times_ok && simple)
2731 { /* Since simple * loops can be made faster by using
2732 on_failure_keep_string_jump, we turn simple P+
2733 into PP* if P is simple. */
2734 unsigned char *p1, *p2;
2735 startoffset = b - laststart;
2736 GET_BUFFER_SPACE (startoffset);
2737 p1 = b; p2 = laststart;
2738 while (p2 < p1)
2739 *b++ = *p2++;
2740 zero_times_ok = 1;
2741 }
2742
2743 GET_BUFFER_SPACE (6);
2744 if (!zero_times_ok)
2745 /* A + loop. */
2746 STORE_JUMP (ofj, b, b + 6);
2747 else
2748 /* Simple * loops can use on_failure_keep_string_jump
2749 depending on what follows. But since we don't know
2750 that yet, we leave the decision up to
2751 on_failure_jump_smart. */
2752 INSERT_JUMP (simple ? on_failure_jump_smart : ofj,
2753 laststart + startoffset, b + 6);
2754 b += 3;
2755 STORE_JUMP (jump, b, laststart + startoffset);
2756 b += 3;
2757 }
2758 else
2759 {
2760 /* A simple ? pattern. */
2761 assert (zero_times_ok);
2762 GET_BUFFER_SPACE (3);
2763 INSERT_JUMP (on_failure_jump, laststart, b + 3);
2764 b += 3;
2765 }
2766 }
2767 else /* not greedy */
2768 { /* I wish the greedy and non-greedy cases could be merged. */
2769
2770 GET_BUFFER_SPACE (7); /* We might use less. */
2771 if (many_times_ok)
2772 {
2773 boolean emptyp = analyse_first (laststart, b, NULL, 0);
2774
2775 /* The non-greedy multiple match looks like
2776 a repeat..until: we only need a conditional jump
2777 at the end of the loop. */
2778 if (emptyp) BUF_PUSH (no_op);
2779 STORE_JUMP (emptyp ? on_failure_jump_nastyloop
2780 : on_failure_jump, b, laststart);
2781 b += 3;
2782 if (zero_times_ok)
2783 {
2784 /* The repeat...until naturally matches one or more.
2785 To also match zero times, we need to first jump to
2786 the end of the loop (its conditional jump). */
2787 INSERT_JUMP (jump, laststart, b);
2788 b += 3;
2789 }
2790 }
2791 else
2792 {
2793 /* non-greedy a?? */
2794 INSERT_JUMP (jump, laststart, b + 3);
2795 b += 3;
2796 INSERT_JUMP (on_failure_jump, laststart, laststart + 6);
2797 b += 3;
2798 }
2799 }
2800 }
2801 pending_exact = 0;
2802 break;
2803
2804
2805 case '.':
2806 laststart = b;
2807 BUF_PUSH (anychar);
2808 break;
2809
2810
2811 case '[':
2812 {
2813 CLEAR_RANGE_TABLE_WORK_USED (range_table_work);
2814
2815 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2816
2817 /* Ensure that we have enough space to push a charset: the
2818 opcode, the length count, and the bitset; 34 bytes in all. */
2819 GET_BUFFER_SPACE (34);
2820
2821 laststart = b;
2822
2823 /* We test `*p == '^' twice, instead of using an if
2824 statement, so we only need one BUF_PUSH. */
2825 BUF_PUSH (*p == '^' ? charset_not : charset);
2826 if (*p == '^')
2827 p++;
2828
2829 /* Remember the first position in the bracket expression. */
2830 p1 = p;
2831
2832 /* Push the number of bytes in the bitmap. */
2833 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
2834
2835 /* Clear the whole map. */
2836 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
2837
2838 /* charset_not matches newline according to a syntax bit. */
2839 if ((re_opcode_t) b[-2] == charset_not
2840 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
2841 SET_LIST_BIT ('\n');
2842
2843 /* Read in characters and ranges, setting map bits. */
2844 for (;;)
2845 {
2846 boolean escaped_char = false;
2847 const unsigned char *p2 = p;
2848
2849 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2850
2851 /* Don't translate yet. The range TRANSLATE(X..Y) cannot
2852 always be determined from TRANSLATE(X) and TRANSLATE(Y)
2853 So the translation is done later in a loop. Example:
2854 (let ((case-fold-search t)) (string-match "[A-_]" "A")) */
2855 PATFETCH (c);
2856
2857 /* \ might escape characters inside [...] and [^...]. */
2858 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
2859 {
2860 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
2861
2862 PATFETCH (c);
2863 escaped_char = true;
2864 }
2865 else
2866 {
2867 /* Could be the end of the bracket expression. If it's
2868 not (i.e., when the bracket expression is `[]' so
2869 far), the ']' character bit gets set way below. */
2870 if (c == ']' && p2 != p1)
2871 break;
2872 }
2873
2874 /* What should we do for the character which is
2875 greater than 0x7F, but not BASE_LEADING_CODE_P?
2876 XXX */
2877
2878 /* See if we're at the beginning of a possible character
2879 class. */
2880
2881 if (!escaped_char &&
2882 syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
2883 {
2884 /* Leave room for the null. */
2885 unsigned char str[CHAR_CLASS_MAX_LENGTH + 1];
2886 const unsigned char *class_beg;
2887
2888 PATFETCH (c);
2889 c1 = 0;
2890 class_beg = p;
2891
2892 /* If pattern is `[[:'. */
2893 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2894
2895 for (;;)
2896 {
2897 PATFETCH (c);
2898 if ((c == ':' && *p == ']') || p == pend)
2899 break;
2900 if (c1 < CHAR_CLASS_MAX_LENGTH)
2901 str[c1++] = c;
2902 else
2903 /* This is in any case an invalid class name. */
2904 str[0] = '\0';
2905 }
2906 str[c1] = '\0';
2907
2908 /* If isn't a word bracketed by `[:' and `:]':
2909 undo the ending character, the letters, and
2910 leave the leading `:' and `[' (but set bits for
2911 them). */
2912 if (c == ':' && *p == ']')
2913 {
2914 re_wchar_t ch;
2915 re_wctype_t cc;
2916
2917 cc = re_wctype (str);
2918
2919 if (cc == 0)
2920 FREE_STACK_RETURN (REG_ECTYPE);
2921
2922 /* Throw away the ] at the end of the character
2923 class. */
2924 PATFETCH (c);
2925
2926 if (p == pend) FREE_STACK_RETURN (REG_EBRACK);
2927
2928 /* Most character classes in a multibyte match
2929 just set a flag. Exceptions are is_blank,
2930 is_digit, is_cntrl, and is_xdigit, since
2931 they can only match ASCII characters. We
2932 don't need to handle them for multibyte.
2933 They are distinguished by a negative wctype. */
2934
2935 if (multibyte)
2936 SET_RANGE_TABLE_WORK_AREA_BIT (range_table_work,
2937 re_wctype_to_bit (cc));
2938
2939 for (ch = 0; ch < 1 << BYTEWIDTH; ++ch)
2940 {
2941 int translated = TRANSLATE (ch);
2942 if (translated < (1 << BYTEWIDTH)
2943 && re_iswctype (btowc (ch), cc))
2944 SET_LIST_BIT (translated);
2945 }
2946
2947 /* In most cases the matching rule for char classes
2948 only uses the syntax table for multibyte chars,
2949 so that the content of the syntax-table it is not
2950 hardcoded in the range_table. SPACE and WORD are
2951 the two exceptions. */
2952 if ((1 << cc) & ((1 << RECC_SPACE) | (1 << RECC_WORD)))
2953 bufp->used_syntax = 1;
2954
2955 /* Repeat the loop. */
2956 continue;
2957 }
2958 else
2959 {
2960 /* Go back to right after the "[:". */
2961 p = class_beg;
2962 SET_LIST_BIT ('[');
2963
2964 /* Because the `:' may starts the range, we
2965 can't simply set bit and repeat the loop.
2966 Instead, just set it to C and handle below. */
2967 c = ':';
2968 }
2969 }
2970
2971 if (p < pend && p[0] == '-' && p[1] != ']')
2972 {
2973
2974 /* Discard the `-'. */
2975 PATFETCH (c1);
2976
2977 /* Fetch the character which ends the range. */
2978 PATFETCH (c1);
2979
2980 if (SINGLE_BYTE_CHAR_P (c))
2981 {
2982 if (! SINGLE_BYTE_CHAR_P (c1))
2983 {
2984 /* Handle a range starting with a
2985 character of less than 256, and ending
2986 with a character of not less than 256.
2987 Split that into two ranges, the low one
2988 ending at 0377, and the high one
2989 starting at the smallest character in
2990 the charset of C1 and ending at C1. */
2991 int charset = CHAR_CHARSET (c1);
2992 re_wchar_t c2 = MAKE_CHAR (charset, 0, 0);
2993
2994 SET_RANGE_TABLE_WORK_AREA (range_table_work,
2995 c2, c1);
2996 c1 = 0377;
2997 }
2998 }
2999 else if (!SAME_CHARSET_P (c, c1))
3000 FREE_STACK_RETURN (REG_ERANGEX);
3001 }
3002 else
3003 /* Range from C to C. */
3004 c1 = c;
3005
3006 /* Set the range ... */
3007 if (SINGLE_BYTE_CHAR_P (c))
3008 /* ... into bitmap. */
3009 {
3010 re_wchar_t this_char;
3011 re_wchar_t range_start = c, range_end = c1;
3012
3013 /* If the start is after the end, the range is empty. */
3014 if (range_start > range_end)
3015 {
3016 if (syntax & RE_NO_EMPTY_RANGES)
3017 FREE_STACK_RETURN (REG_ERANGE);
3018 /* Else, repeat the loop. */
3019 }
3020 else
3021 {
3022 for (this_char = range_start; this_char <= range_end;
3023 this_char++)
3024 {
3025 int translated = TRANSLATE (this_char);
3026 if (translated < (1 << BYTEWIDTH))
3027 SET_LIST_BIT (translated);
3028 else
3029 SET_RANGE_TABLE_WORK_AREA
3030 (range_table_work, translated, translated);
3031 }
3032 }
3033 }
3034 else
3035 /* ... into range table. */
3036 SET_RANGE_TABLE_WORK_AREA (range_table_work, c, c1);
3037 }
3038
3039 /* Discard any (non)matching list bytes that are all 0 at the
3040 end of the map. Decrease the map-length byte too. */
3041 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
3042 b[-1]--;
3043 b += b[-1];
3044
3045 /* Build real range table from work area. */
3046 if (RANGE_TABLE_WORK_USED (range_table_work)
3047 || RANGE_TABLE_WORK_BITS (range_table_work))
3048 {
3049 int i;
3050 int used = RANGE_TABLE_WORK_USED (range_table_work);
3051
3052 /* Allocate space for COUNT + RANGE_TABLE. Needs two
3053 bytes for flags, two for COUNT, and three bytes for
3054 each character. */
3055 GET_BUFFER_SPACE (4 + used * 3);
3056
3057 /* Indicate the existence of range table. */
3058 laststart[1] |= 0x80;
3059
3060 /* Store the character class flag bits into the range table.
3061 If not in emacs, these flag bits are always 0. */
3062 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) & 0xff;
3063 *b++ = RANGE_TABLE_WORK_BITS (range_table_work) >> 8;
3064
3065 STORE_NUMBER_AND_INCR (b, used / 2);
3066 for (i = 0; i < used; i++)
3067 STORE_CHARACTER_AND_INCR
3068 (b, RANGE_TABLE_WORK_ELT (range_table_work, i));
3069 }
3070 }
3071 break;
3072
3073
3074 case '(':
3075 if (syntax & RE_NO_BK_PARENS)
3076 goto handle_open;
3077 else
3078 goto normal_char;
3079
3080
3081 case ')':
3082 if (syntax & RE_NO_BK_PARENS)
3083 goto handle_close;
3084 else
3085 goto normal_char;
3086
3087
3088 case '\n':
3089 if (syntax & RE_NEWLINE_ALT)
3090 goto handle_alt;
3091 else
3092 goto normal_char;
3093
3094
3095 case '|':
3096 if (syntax & RE_NO_BK_VBAR)
3097 goto handle_alt;
3098 else
3099 goto normal_char;
3100
3101
3102 case '{':
3103 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
3104 goto handle_interval;
3105 else
3106 goto normal_char;
3107
3108
3109 case '\\':
3110 if (p == pend) FREE_STACK_RETURN (REG_EESCAPE);
3111
3112 /* Do not translate the character after the \, so that we can
3113 distinguish, e.g., \B from \b, even if we normally would
3114 translate, e.g., B to b. */
3115 PATFETCH (c);
3116
3117 switch (c)
3118 {
3119 case '(':
3120 if (syntax & RE_NO_BK_PARENS)
3121 goto normal_backslash;
3122
3123 handle_open:
3124 {
3125 int shy = 0;
3126 if (p+1 < pend)
3127 {
3128 /* Look for a special (?...) construct */
3129 if ((syntax & RE_SHY_GROUPS) && *p == '?')
3130 {
3131 PATFETCH (c); /* Gobble up the '?'. */
3132 PATFETCH (c);
3133 switch (c)
3134 {
3135 case ':': shy = 1; break;
3136 default:
3137 /* Only (?:...) is supported right now. */
3138 FREE_STACK_RETURN (REG_BADPAT);
3139 }
3140 }
3141 }
3142
3143 if (!shy)
3144 {
3145 bufp->re_nsub++;
3146 regnum++;
3147 }
3148
3149 if (COMPILE_STACK_FULL)
3150 {
3151 RETALLOC (compile_stack.stack, compile_stack.size << 1,
3152 compile_stack_elt_t);
3153 if (compile_stack.stack == NULL) return REG_ESPACE;
3154
3155 compile_stack.size <<= 1;
3156 }
3157
3158 /* These are the values to restore when we hit end of this
3159 group. They are all relative offsets, so that if the
3160 whole pattern moves because of realloc, they will still
3161 be valid. */
3162 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
3163 COMPILE_STACK_TOP.fixup_alt_jump
3164 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
3165 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
3166 COMPILE_STACK_TOP.regnum = shy ? -regnum : regnum;
3167
3168 /* Do not push a
3169 start_memory for groups beyond the last one we can
3170 represent in the compiled pattern. */
3171 if (regnum <= MAX_REGNUM && !shy)
3172 BUF_PUSH_2 (start_memory, regnum);
3173
3174 compile_stack.avail++;
3175
3176 fixup_alt_jump = 0;
3177 laststart = 0;
3178 begalt = b;
3179 /* If we've reached MAX_REGNUM groups, then this open
3180 won't actually generate any code, so we'll have to
3181 clear pending_exact explicitly. */
3182 pending_exact = 0;
3183 break;
3184 }
3185
3186 case ')':
3187 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
3188
3189 if (COMPILE_STACK_EMPTY)
3190 {
3191 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3192 goto normal_backslash;
3193 else
3194 FREE_STACK_RETURN (REG_ERPAREN);
3195 }
3196
3197 handle_close:
3198 FIXUP_ALT_JUMP ();
3199
3200 /* See similar code for backslashed left paren above. */
3201 if (COMPILE_STACK_EMPTY)
3202 {
3203 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
3204 goto normal_char;
3205 else
3206 FREE_STACK_RETURN (REG_ERPAREN);
3207 }
3208
3209 /* Since we just checked for an empty stack above, this
3210 ``can't happen''. */
3211 assert (compile_stack.avail != 0);
3212 {
3213 /* We don't just want to restore into `regnum', because
3214 later groups should continue to be numbered higher,
3215 as in `(ab)c(de)' -- the second group is #2. */
3216 regnum_t this_group_regnum;
3217
3218 compile_stack.avail--;
3219 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
3220 fixup_alt_jump
3221 = COMPILE_STACK_TOP.fixup_alt_jump
3222 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
3223 : 0;
3224 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
3225 this_group_regnum = COMPILE_STACK_TOP.regnum;
3226 /* If we've reached MAX_REGNUM groups, then this open
3227 won't actually generate any code, so we'll have to
3228 clear pending_exact explicitly. */
3229 pending_exact = 0;
3230
3231 /* We're at the end of the group, so now we know how many
3232 groups were inside this one. */
3233 if (this_group_regnum <= MAX_REGNUM && this_group_regnum > 0)
3234 BUF_PUSH_2 (stop_memory, this_group_regnum);
3235 }
3236 break;
3237
3238
3239 case '|': /* `\|'. */
3240 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
3241 goto normal_backslash;
3242 handle_alt:
3243 if (syntax & RE_LIMITED_OPS)
3244 goto normal_char;
3245
3246 /* Insert before the previous alternative a jump which
3247 jumps to this alternative if the former fails. */
3248 GET_BUFFER_SPACE (3);
3249 INSERT_JUMP (on_failure_jump, begalt, b + 6);
3250 pending_exact = 0;
3251 b += 3;
3252
3253 /* The alternative before this one has a jump after it
3254 which gets executed if it gets matched. Adjust that
3255 jump so it will jump to this alternative's analogous
3256 jump (put in below, which in turn will jump to the next
3257 (if any) alternative's such jump, etc.). The last such
3258 jump jumps to the correct final destination. A picture:
3259 _____ _____
3260 | | | |
3261 | v | v
3262 a | b | c
3263
3264 If we are at `b', then fixup_alt_jump right now points to a
3265 three-byte space after `a'. We'll put in the jump, set
3266 fixup_alt_jump to right after `b', and leave behind three
3267 bytes which we'll fill in when we get to after `c'. */
3268
3269 FIXUP_ALT_JUMP ();
3270
3271 /* Mark and leave space for a jump after this alternative,
3272 to be filled in later either by next alternative or
3273 when know we're at the end of a series of alternatives. */
3274 fixup_alt_jump = b;
3275 GET_BUFFER_SPACE (3);
3276 b += 3;
3277
3278 laststart = 0;
3279 begalt = b;
3280 break;
3281
3282
3283 case '{':
3284 /* If \{ is a literal. */
3285 if (!(syntax & RE_INTERVALS)
3286 /* If we're at `\{' and it's not the open-interval
3287 operator. */
3288 || (syntax & RE_NO_BK_BRACES))
3289 goto normal_backslash;
3290
3291 handle_interval:
3292 {
3293 /* If got here, then the syntax allows intervals. */
3294
3295 /* At least (most) this many matches must be made. */
3296 int lower_bound = 0, upper_bound = -1;
3297
3298 beg_interval = p;
3299
3300 GET_UNSIGNED_NUMBER (lower_bound);
3301
3302 if (c == ',')
3303 GET_UNSIGNED_NUMBER (upper_bound);
3304 else
3305 /* Interval such as `{1}' => match exactly once. */
3306 upper_bound = lower_bound;
3307
3308 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
3309 || (upper_bound >= 0 && lower_bound > upper_bound))
3310 FREE_STACK_RETURN (REG_BADBR);
3311
3312 if (!(syntax & RE_NO_BK_BRACES))
3313 {
3314 if (c != '\\')
3315 FREE_STACK_RETURN (REG_BADBR);
3316 if (p == pend)
3317 FREE_STACK_RETURN (REG_EESCAPE);
3318 PATFETCH (c);
3319 }
3320
3321 if (c != '}')
3322 FREE_STACK_RETURN (REG_BADBR);
3323
3324 /* We just parsed a valid interval. */
3325
3326 /* If it's invalid to have no preceding re. */
3327 if (!laststart)
3328 {
3329 if (syntax & RE_CONTEXT_INVALID_OPS)
3330 FREE_STACK_RETURN (REG_BADRPT);
3331 else if (syntax & RE_CONTEXT_INDEP_OPS)
3332 laststart = b;
3333 else
3334 goto unfetch_interval;
3335 }
3336
3337 if (upper_bound == 0)
3338 /* If the upper bound is zero, just drop the sub pattern
3339 altogether. */
3340 b = laststart;
3341 else if (lower_bound == 1 && upper_bound == 1)
3342 /* Just match it once: nothing to do here. */
3343 ;
3344
3345 /* Otherwise, we have a nontrivial interval. When
3346 we're all done, the pattern will look like:
3347 set_number_at <jump count> <upper bound>
3348 set_number_at <succeed_n count> <lower bound>
3349 succeed_n <after jump addr> <succeed_n count>
3350 <body of loop>
3351 jump_n <succeed_n addr> <jump count>
3352 (The upper bound and `jump_n' are omitted if
3353 `upper_bound' is 1, though.) */
3354 else
3355 { /* If the upper bound is > 1, we need to insert
3356 more at the end of the loop. */
3357 unsigned int nbytes = (upper_bound < 0 ? 3
3358 : upper_bound > 1 ? 5 : 0);
3359 unsigned int startoffset = 0;
3360
3361 GET_BUFFER_SPACE (20); /* We might use less. */
3362
3363 if (lower_bound == 0)
3364 {
3365 /* A succeed_n that starts with 0 is really a
3366 a simple on_failure_jump_loop. */
3367 INSERT_JUMP (on_failure_jump_loop, laststart,
3368 b + 3 + nbytes);
3369 b += 3;
3370 }
3371 else
3372 {
3373 /* Initialize lower bound of the `succeed_n', even
3374 though it will be set during matching by its
3375 attendant `set_number_at' (inserted next),
3376 because `re_compile_fastmap' needs to know.
3377 Jump to the `jump_n' we might insert below. */
3378 INSERT_JUMP2 (succeed_n, laststart,
3379 b + 5 + nbytes,
3380 lower_bound);
3381 b += 5;
3382
3383 /* Code to initialize the lower bound. Insert
3384 before the `succeed_n'. The `5' is the last two
3385 bytes of this `set_number_at', plus 3 bytes of
3386 the following `succeed_n'. */
3387 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
3388 b += 5;
3389 startoffset += 5;
3390 }
3391
3392 if (upper_bound < 0)
3393 {
3394 /* A negative upper bound stands for infinity,
3395 in which case it degenerates to a plain jump. */
3396 STORE_JUMP (jump, b, laststart + startoffset);
3397 b += 3;
3398 }
3399 else if (upper_bound > 1)
3400 { /* More than one repetition is allowed, so
3401 append a backward jump to the `succeed_n'
3402 that starts this interval.
3403
3404 When we've reached this during matching,
3405 we'll have matched the interval once, so
3406 jump back only `upper_bound - 1' times. */
3407 STORE_JUMP2 (jump_n, b, laststart + startoffset,
3408 upper_bound - 1);
3409 b += 5;
3410
3411 /* The location we want to set is the second
3412 parameter of the `jump_n'; that is `b-2' as
3413 an absolute address. `laststart' will be
3414 the `set_number_at' we're about to insert;
3415 `laststart+3' the number to set, the source
3416 for the relative address. But we are
3417 inserting into the middle of the pattern --
3418 so everything is getting moved up by 5.
3419 Conclusion: (b - 2) - (laststart + 3) + 5,
3420 i.e., b - laststart.
3421
3422 We insert this at the beginning of the loop
3423 so that if we fail during matching, we'll
3424 reinitialize the bounds. */
3425 insert_op2 (set_number_at, laststart, b - laststart,
3426 upper_bound - 1, b);
3427 b += 5;
3428 }
3429 }
3430 pending_exact = 0;
3431 beg_interval = NULL;
3432 }
3433 break;
3434
3435 unfetch_interval:
3436 /* If an invalid interval, match the characters as literals. */
3437 assert (beg_interval);
3438 p = beg_interval;
3439 beg_interval = NULL;
3440
3441 /* normal_char and normal_backslash need `c'. */
3442 c = '{';
3443
3444 if (!(syntax & RE_NO_BK_BRACES))
3445 {
3446 assert (p > pattern && p[-1] == '\\');
3447 goto normal_backslash;
3448 }
3449 else
3450 goto normal_char;
3451
3452 #ifdef emacs
3453 /* There is no way to specify the before_dot and after_dot
3454 operators. rms says this is ok. --karl */
3455 case '=':
3456 BUF_PUSH (at_dot);
3457 break;
3458
3459 case 's':
3460 laststart = b;
3461 PATFETCH (c);
3462 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
3463 break;
3464
3465 case 'S':
3466 laststart = b;
3467 PATFETCH (c);
3468 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
3469 break;
3470
3471 case 'c':
3472 laststart = b;
3473 PATFETCH (c);
3474 BUF_PUSH_2 (categoryspec, c);
3475 break;
3476
3477 case 'C':
3478 laststart = b;
3479 PATFETCH (c);
3480 BUF_PUSH_2 (notcategoryspec, c);
3481 break;
3482 #endif /* emacs */
3483
3484
3485 case 'w':
3486 if (syntax & RE_NO_GNU_OPS)
3487 goto normal_char;
3488 laststart = b;
3489 BUF_PUSH_2 (syntaxspec, Sword);
3490 break;
3491
3492
3493 case 'W':
3494 if (syntax & RE_NO_GNU_OPS)
3495 goto normal_char;
3496 laststart = b;
3497 BUF_PUSH_2 (notsyntaxspec, Sword);
3498 break;
3499
3500
3501 case '<':
3502 if (syntax & RE_NO_GNU_OPS)
3503 goto normal_char;
3504 BUF_PUSH (wordbeg);
3505 break;
3506
3507 case '>':
3508 if (syntax & RE_NO_GNU_OPS)
3509 goto normal_char;
3510 BUF_PUSH (wordend);
3511 break;
3512
3513 case '_':
3514 if (syntax & RE_NO_GNU_OPS)
3515 goto normal_char;
3516 laststart = b;
3517 PATFETCH (c);
3518 if (c == '<')
3519 BUF_PUSH (symbeg);
3520 else if (c == '>')
3521 BUF_PUSH (symend);
3522 else
3523 FREE_STACK_RETURN (REG_BADPAT);
3524 break;
3525
3526 case 'b':
3527 if (syntax & RE_NO_GNU_OPS)
3528 goto normal_char;
3529 BUF_PUSH (wordbound);
3530 break;
3531
3532 case 'B':
3533 if (syntax & RE_NO_GNU_OPS)
3534 goto normal_char;
3535 BUF_PUSH (notwordbound);
3536 break;
3537
3538 case '`':
3539 if (syntax & RE_NO_GNU_OPS)
3540 goto normal_char;
3541 BUF_PUSH (begbuf);
3542 break;
3543
3544 case '\'':
3545 if (syntax & RE_NO_GNU_OPS)
3546 goto normal_char;
3547 BUF_PUSH (endbuf);
3548 break;
3549
3550 case '1': case '2': case '3': case '4': case '5':
3551 case '6': case '7': case '8': case '9':
3552 {
3553 regnum_t reg;
3554
3555 if (syntax & RE_NO_BK_REFS)
3556 goto normal_backslash;
3557
3558 reg = c - '0';
3559
3560 /* Can't back reference to a subexpression before its end. */
3561 if (reg > regnum || group_in_compile_stack (compile_stack, reg))
3562 FREE_STACK_RETURN (REG_ESUBREG);
3563
3564 laststart = b;
3565 BUF_PUSH_2 (duplicate, reg);
3566 }
3567 break;
3568
3569
3570 case '+':
3571 case '?':
3572 if (syntax & RE_BK_PLUS_QM)
3573 goto handle_plus;
3574 else
3575 goto normal_backslash;
3576
3577 default:
3578 normal_backslash:
3579 /* You might think it would be useful for \ to mean
3580 not to translate; but if we don't translate it
3581 it will never match anything. */
3582 goto normal_char;
3583 }
3584 break;
3585
3586
3587 default:
3588 /* Expects the character in `c'. */
3589 normal_char:
3590 /* If no exactn currently being built. */
3591 if (!pending_exact
3592
3593 /* If last exactn not at current position. */
3594 || pending_exact + *pending_exact + 1 != b
3595
3596 /* We have only one byte following the exactn for the count. */
3597 || *pending_exact >= (1 << BYTEWIDTH) - MAX_MULTIBYTE_LENGTH
3598
3599 /* If followed by a repetition operator. */
3600 || (p != pend && (*p == '*' || *p == '^'))
3601 || ((syntax & RE_BK_PLUS_QM)
3602 ? p + 1 < pend && *p == '\\' && (p[1] == '+' || p[1] == '?')
3603 : p != pend && (*p == '+' || *p == '?'))
3604 || ((syntax & RE_INTERVALS)
3605 && ((syntax & RE_NO_BK_BRACES)
3606 ? p != pend && *p == '{'
3607 : p + 1 < pend && p[0] == '\\' && p[1] == '{')))
3608 {
3609 /* Start building a new exactn. */
3610
3611 laststart = b;
3612
3613 BUF_PUSH_2 (exactn, 0);
3614 pending_exact = b - 1;
3615 }
3616
3617 GET_BUFFER_SPACE (MAX_MULTIBYTE_LENGTH);
3618 {
3619 int len;
3620
3621 c = TRANSLATE (c);
3622 if (multibyte)
3623 len = CHAR_STRING (c, b);
3624 else
3625 *b = c, len = 1;
3626 b += len;
3627 (*pending_exact) += len;
3628 }
3629
3630 break;
3631 } /* switch (c) */
3632 } /* while p != pend */
3633
3634
3635 /* Through the pattern now. */
3636
3637 FIXUP_ALT_JUMP ();
3638
3639 if (!COMPILE_STACK_EMPTY)
3640 FREE_STACK_RETURN (REG_EPAREN);
3641
3642 /* If we don't want backtracking, force success
3643 the first time we reach the end of the compiled pattern. */
3644 if (syntax & RE_NO_POSIX_BACKTRACKING)
3645 BUF_PUSH (succeed);
3646
3647 /* We have succeeded; set the length of the buffer. */
3648 bufp->used = b - bufp->buffer;
3649
3650 #ifdef DEBUG
3651 if (debug > 0)
3652 {
3653 re_compile_fastmap (bufp);
3654 DEBUG_PRINT1 ("\nCompiled pattern: \n");
3655 print_compiled_pattern (bufp);
3656 }
3657 debug--;
3658 #endif /* DEBUG */
3659
3660 #ifndef MATCH_MAY_ALLOCATE
3661 /* Initialize the failure stack to the largest possible stack. This
3662 isn't necessary unless we're trying to avoid calling alloca in
3663 the search and match routines. */
3664 {
3665 int num_regs = bufp->re_nsub + 1;
3666
3667 if (fail_stack.size < re_max_failures * TYPICAL_FAILURE_SIZE)
3668 {
3669 fail_stack.size = re_max_failures * TYPICAL_FAILURE_SIZE;
3670
3671 if (! fail_stack.stack)
3672 fail_stack.stack
3673 = (fail_stack_elt_t *) malloc (fail_stack.size
3674 * sizeof (fail_stack_elt_t));
3675 else
3676 fail_stack.stack
3677 = (fail_stack_elt_t *) realloc (fail_stack.stack,
3678 (fail_stack.size
3679 * sizeof (fail_stack_elt_t)));
3680 }
3681
3682 regex_grow_registers (num_regs);
3683 }
3684 #endif /* not MATCH_MAY_ALLOCATE */
3685
3686 FREE_STACK_RETURN (REG_NOERROR);
3687 } /* regex_compile */
3688 \f
3689 /* Subroutines for `regex_compile'. */
3690
3691 /* Store OP at LOC followed by two-byte integer parameter ARG. */
3692
3693 static void
3694 store_op1 (op, loc, arg)
3695 re_opcode_t op;
3696 unsigned char *loc;
3697 int arg;
3698 {
3699 *loc = (unsigned char) op;
3700 STORE_NUMBER (loc + 1, arg);
3701 }
3702
3703
3704 /* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
3705
3706 static void
3707 store_op2 (op, loc, arg1, arg2)
3708 re_opcode_t op;
3709 unsigned char *loc;
3710 int arg1, arg2;
3711 {
3712 *loc = (unsigned char) op;
3713 STORE_NUMBER (loc + 1, arg1);
3714 STORE_NUMBER (loc + 3, arg2);
3715 }
3716
3717
3718 /* Copy the bytes from LOC to END to open up three bytes of space at LOC
3719 for OP followed by two-byte integer parameter ARG. */
3720
3721 static void
3722 insert_op1 (op, loc, arg, end)
3723 re_opcode_t op;
3724 unsigned char *loc;
3725 int arg;
3726 unsigned char *end;
3727 {
3728 register unsigned char *pfrom = end;
3729 register unsigned char *pto = end + 3;
3730
3731 while (pfrom != loc)
3732 *--pto = *--pfrom;
3733
3734 store_op1 (op, loc, arg);
3735 }
3736
3737
3738 /* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
3739
3740 static void
3741 insert_op2 (op, loc, arg1, arg2, end)
3742 re_opcode_t op;
3743 unsigned char *loc;
3744 int arg1, arg2;
3745 unsigned char *end;
3746 {
3747 register unsigned char *pfrom = end;
3748 register unsigned char *pto = end + 5;
3749
3750 while (pfrom != loc)
3751 *--pto = *--pfrom;
3752
3753 store_op2 (op, loc, arg1, arg2);
3754 }
3755
3756
3757 /* P points to just after a ^ in PATTERN. Return true if that ^ comes
3758 after an alternative or a begin-subexpression. We assume there is at
3759 least one character before the ^. */
3760
3761 static boolean
3762 at_begline_loc_p (pattern, p, syntax)
3763 re_char *pattern, *p;
3764 reg_syntax_t syntax;
3765 {
3766 re_char *prev = p - 2;
3767 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
3768
3769 return
3770 /* After a subexpression? */
3771 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
3772 /* After an alternative? */
3773 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash))
3774 /* After a shy subexpression? */
3775 || ((syntax & RE_SHY_GROUPS) && prev - 2 >= pattern
3776 && prev[-1] == '?' && prev[-2] == '('
3777 && (syntax & RE_NO_BK_PARENS
3778 || (prev - 3 >= pattern && prev[-3] == '\\')));
3779 }
3780
3781
3782 /* The dual of at_begline_loc_p. This one is for $. We assume there is
3783 at least one character after the $, i.e., `P < PEND'. */
3784
3785 static boolean
3786 at_endline_loc_p (p, pend, syntax)
3787 re_char *p, *pend;
3788 reg_syntax_t syntax;
3789 {
3790 re_char *next = p;
3791 boolean next_backslash = *next == '\\';
3792 re_char *next_next = p + 1 < pend ? p + 1 : 0;
3793
3794 return
3795 /* Before a subexpression? */
3796 (syntax & RE_NO_BK_PARENS ? *next == ')'
3797 : next_backslash && next_next && *next_next == ')')
3798 /* Before an alternative? */
3799 || (syntax & RE_NO_BK_VBAR ? *next == '|'
3800 : next_backslash && next_next && *next_next == '|');
3801 }
3802
3803
3804 /* Returns true if REGNUM is in one of COMPILE_STACK's elements and
3805 false if it's not. */
3806
3807 static boolean
3808 group_in_compile_stack (compile_stack, regnum)
3809 compile_stack_type compile_stack;
3810 regnum_t regnum;
3811 {
3812 int this_element;
3813
3814 for (this_element = compile_stack.avail - 1;
3815 this_element >= 0;
3816 this_element--)
3817 if (compile_stack.stack[this_element].regnum == regnum)
3818 return true;
3819
3820 return false;
3821 }
3822 \f
3823 /* analyse_first.
3824 If fastmap is non-NULL, go through the pattern and fill fastmap
3825 with all the possible leading chars. If fastmap is NULL, don't
3826 bother filling it up (obviously) and only return whether the
3827 pattern could potentially match the empty string.
3828
3829 Return 1 if p..pend might match the empty string.
3830 Return 0 if p..pend matches at least one char.
3831 Return -1 if fastmap was not updated accurately. */
3832
3833 static int
3834 analyse_first (p, pend, fastmap, multibyte)
3835 re_char *p, *pend;
3836 char *fastmap;
3837 const int multibyte;
3838 {
3839 int j, k;
3840 boolean not;
3841
3842 /* If all elements for base leading-codes in fastmap is set, this
3843 flag is set true. */
3844 boolean match_any_multibyte_characters = false;
3845
3846 assert (p);
3847
3848 /* The loop below works as follows:
3849 - It has a working-list kept in the PATTERN_STACK and which basically
3850 starts by only containing a pointer to the first operation.
3851 - If the opcode we're looking at is a match against some set of
3852 chars, then we add those chars to the fastmap and go on to the
3853 next work element from the worklist (done via `break').
3854 - If the opcode is a control operator on the other hand, we either
3855 ignore it (if it's meaningless at this point, such as `start_memory')
3856 or execute it (if it's a jump). If the jump has several destinations
3857 (i.e. `on_failure_jump'), then we push the other destination onto the
3858 worklist.
3859 We guarantee termination by ignoring backward jumps (more or less),
3860 so that `p' is monotonically increasing. More to the point, we
3861 never set `p' (or push) anything `<= p1'. */
3862
3863 while (p < pend)
3864 {
3865 /* `p1' is used as a marker of how far back a `on_failure_jump'
3866 can go without being ignored. It is normally equal to `p'
3867 (which prevents any backward `on_failure_jump') except right
3868 after a plain `jump', to allow patterns such as:
3869 0: jump 10
3870 3..9: <body>
3871 10: on_failure_jump 3
3872 as used for the *? operator. */
3873 re_char *p1 = p;
3874
3875 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
3876 {
3877 case succeed:
3878 return 1;
3879 continue;
3880
3881 case duplicate:
3882 /* If the first character has to match a backreference, that means
3883 that the group was empty (since it already matched). Since this
3884 is the only case that interests us here, we can assume that the
3885 backreference must match the empty string. */
3886 p++;
3887 continue;
3888
3889
3890 /* Following are the cases which match a character. These end
3891 with `break'. */
3892
3893 case exactn:
3894 if (fastmap)
3895 {
3896 int c = RE_STRING_CHAR (p + 1, pend - p);
3897 /* When fast-scanning, the fastmap can be indexed either with
3898 a char (smaller than 256) or with the first byte of
3899 a char's byte sequence. So we have to conservatively add
3900 both to the table. */
3901 if (SINGLE_BYTE_CHAR_P (c))
3902 fastmap[c] = 1;
3903 fastmap[p[1]] = 1;
3904 }
3905 break;
3906
3907
3908 case anychar:
3909 /* We could put all the chars except for \n (and maybe \0)
3910 but we don't bother since it is generally not worth it. */
3911 if (!fastmap) break;
3912 return -1;
3913
3914
3915 case charset_not:
3916 /* Chars beyond end of bitmap are possible matches.
3917 All the single-byte codes can occur in multibyte buffers.
3918 So any that are not listed in the charset
3919 are possible matches, even in multibyte buffers. */
3920 if (!fastmap) break;
3921 /* We don't need to mark LEADING_CODE_8_BIT_CONTROL specially
3922 because it will automatically be set when needed by virtue of
3923 being larger than the highest char of its charset (0xbf) but
3924 smaller than (1<<BYTEWIDTH). */
3925 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH;
3926 j < (1 << BYTEWIDTH); j++)
3927 fastmap[j] = 1;
3928 /* Fallthrough */
3929 case charset:
3930 if (!fastmap) break;
3931 not = (re_opcode_t) *(p - 1) == charset_not;
3932 for (j = CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH - 1, p++;
3933 j >= 0; j--)
3934 if (!!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))) ^ not)
3935 {
3936 fastmap[j] = 1;
3937 #ifdef emacs
3938 if (j >= 0x80 && j < 0xa0)
3939 fastmap[LEADING_CODE_8_BIT_CONTROL] = 1;
3940 #endif
3941 }
3942
3943 if ((not && multibyte)
3944 /* Any character set can possibly contain a character
3945 which doesn't match the specified set of characters. */
3946 || (CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3947 && CHARSET_RANGE_TABLE_BITS (&p[-2]) != 0))
3948 /* If we can match a character class, we can match
3949 any character set. */
3950 {
3951 set_fastmap_for_multibyte_characters:
3952 if (match_any_multibyte_characters == false)
3953 {
3954 for (j = 0x80; j < 0xA0; j++) /* XXX */
3955 if (BASE_LEADING_CODE_P (j))
3956 fastmap[j] = 1;
3957 match_any_multibyte_characters = true;
3958 }
3959 }
3960
3961 else if (!not && CHARSET_RANGE_TABLE_EXISTS_P (&p[-2])
3962 && match_any_multibyte_characters == false)
3963 {
3964 /* Set fastmap[I] 1 where I is a base leading code of each
3965 multibyte character in the range table. */
3966 int c, count;
3967
3968 /* Make P points the range table. `+ 2' is to skip flag
3969 bits for a character class. */
3970 p += CHARSET_BITMAP_SIZE (&p[-2]) + 2;
3971
3972 /* Extract the number of ranges in range table into COUNT. */
3973 EXTRACT_NUMBER_AND_INCR (count, p);
3974 for (; count > 0; count--, p += 2 * 3) /* XXX */
3975 {
3976 /* Extract the start of each range. */
3977 EXTRACT_CHARACTER (c, p);
3978 j = CHAR_CHARSET (c);
3979 fastmap[CHARSET_LEADING_CODE_BASE (j)] = 1;
3980 }
3981 }
3982 break;
3983
3984 case syntaxspec:
3985 case notsyntaxspec:
3986 if (!fastmap) break;
3987 #ifndef emacs
3988 not = (re_opcode_t)p[-1] == notsyntaxspec;
3989 k = *p++;
3990 for (j = 0; j < (1 << BYTEWIDTH); j++)
3991 if ((SYNTAX (j) == (enum syntaxcode) k) ^ not)
3992 fastmap[j] = 1;
3993 break;
3994 #else /* emacs */
3995 /* This match depends on text properties. These end with
3996 aborting optimizations. */
3997 return -1;
3998
3999 case categoryspec:
4000 case notcategoryspec:
4001 if (!fastmap) break;
4002 not = (re_opcode_t)p[-1] == notcategoryspec;
4003 k = *p++;
4004 for (j = 0; j < (1 << BYTEWIDTH); j++)
4005 if ((CHAR_HAS_CATEGORY (j, k)) ^ not)
4006 fastmap[j] = 1;
4007
4008 if (multibyte)
4009 /* Any character set can possibly contain a character
4010 whose category is K (or not). */
4011 goto set_fastmap_for_multibyte_characters;
4012 break;
4013
4014 /* All cases after this match the empty string. These end with
4015 `continue'. */
4016
4017 case before_dot:
4018 case at_dot:
4019 case after_dot:
4020 #endif /* !emacs */
4021 case no_op:
4022 case begline:
4023 case endline:
4024 case begbuf:
4025 case endbuf:
4026 case wordbound:
4027 case notwordbound:
4028 case wordbeg:
4029 case wordend:
4030 case symbeg:
4031 case symend:
4032 continue;
4033
4034
4035 case jump:
4036 EXTRACT_NUMBER_AND_INCR (j, p);
4037 if (j < 0)
4038 /* Backward jumps can only go back to code that we've already
4039 visited. `re_compile' should make sure this is true. */
4040 break;
4041 p += j;
4042 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4043 {
4044 case on_failure_jump:
4045 case on_failure_keep_string_jump:
4046 case on_failure_jump_loop:
4047 case on_failure_jump_nastyloop:
4048 case on_failure_jump_smart:
4049 p++;
4050 break;
4051 default:
4052 continue;
4053 };
4054 /* Keep `p1' to allow the `on_failure_jump' we are jumping to
4055 to jump back to "just after here". */
4056 /* Fallthrough */
4057
4058 case on_failure_jump:
4059 case on_failure_keep_string_jump:
4060 case on_failure_jump_nastyloop:
4061 case on_failure_jump_loop:
4062 case on_failure_jump_smart:
4063 EXTRACT_NUMBER_AND_INCR (j, p);
4064 if (p + j <= p1)
4065 ; /* Backward jump to be ignored. */
4066 else
4067 { /* We have to look down both arms.
4068 We first go down the "straight" path so as to minimize
4069 stack usage when going through alternatives. */
4070 int r = analyse_first (p, pend, fastmap, multibyte);
4071 if (r) return r;
4072 p += j;
4073 }
4074 continue;
4075
4076
4077 case jump_n:
4078 /* This code simply does not properly handle forward jump_n. */
4079 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p); assert (j < 0));
4080 p += 4;
4081 /* jump_n can either jump or fall through. The (backward) jump
4082 case has already been handled, so we only need to look at the
4083 fallthrough case. */
4084 continue;
4085
4086 case succeed_n:
4087 /* If N == 0, it should be an on_failure_jump_loop instead. */
4088 DEBUG_STATEMENT (EXTRACT_NUMBER (j, p + 2); assert (j > 0));
4089 p += 4;
4090 /* We only care about one iteration of the loop, so we don't
4091 need to consider the case where this behaves like an
4092 on_failure_jump. */
4093 continue;
4094
4095
4096 case set_number_at:
4097 p += 4;
4098 continue;
4099
4100
4101 case start_memory:
4102 case stop_memory:
4103 p += 1;
4104 continue;
4105
4106
4107 default:
4108 abort (); /* We have listed all the cases. */
4109 } /* switch *p++ */
4110
4111 /* Getting here means we have found the possible starting
4112 characters for one path of the pattern -- and that the empty
4113 string does not match. We need not follow this path further. */
4114 return 0;
4115 } /* while p */
4116
4117 /* We reached the end without matching anything. */
4118 return 1;
4119
4120 } /* analyse_first */
4121 \f
4122 /* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
4123 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
4124 characters can start a string that matches the pattern. This fastmap
4125 is used by re_search to skip quickly over impossible starting points.
4126
4127 Character codes above (1 << BYTEWIDTH) are not represented in the
4128 fastmap, but the leading codes are represented. Thus, the fastmap
4129 indicates which character sets could start a match.
4130
4131 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
4132 area as BUFP->fastmap.
4133
4134 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
4135 the pattern buffer.
4136
4137 Returns 0 if we succeed, -2 if an internal error. */
4138
4139 int
4140 re_compile_fastmap (bufp)
4141 struct re_pattern_buffer *bufp;
4142 {
4143 char *fastmap = bufp->fastmap;
4144 int analysis;
4145
4146 assert (fastmap && bufp->buffer);
4147
4148 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
4149 bufp->fastmap_accurate = 1; /* It will be when we're done. */
4150
4151 analysis = analyse_first (bufp->buffer, bufp->buffer + bufp->used,
4152 fastmap, RE_MULTIBYTE_P (bufp));
4153 bufp->can_be_null = (analysis != 0);
4154 return 0;
4155 } /* re_compile_fastmap */
4156 \f
4157 /* Set REGS to hold NUM_REGS registers, storing them in STARTS and
4158 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
4159 this memory for recording register information. STARTS and ENDS
4160 must be allocated using the malloc library routine, and must each
4161 be at least NUM_REGS * sizeof (regoff_t) bytes long.
4162
4163 If NUM_REGS == 0, then subsequent matches should allocate their own
4164 register data.
4165
4166 Unless this function is called, the first search or match using
4167 PATTERN_BUFFER will allocate its own register data, without
4168 freeing the old data. */
4169
4170 void
4171 re_set_registers (bufp, regs, num_regs, starts, ends)
4172 struct re_pattern_buffer *bufp;
4173 struct re_registers *regs;
4174 unsigned num_regs;
4175 regoff_t *starts, *ends;
4176 {
4177 if (num_regs)
4178 {
4179 bufp->regs_allocated = REGS_REALLOCATE;
4180 regs->num_regs = num_regs;
4181 regs->start = starts;
4182 regs->end = ends;
4183 }
4184 else
4185 {
4186 bufp->regs_allocated = REGS_UNALLOCATED;
4187 regs->num_regs = 0;
4188 regs->start = regs->end = (regoff_t *) 0;
4189 }
4190 }
4191 WEAK_ALIAS (__re_set_registers, re_set_registers)
4192 \f
4193 /* Searching routines. */
4194
4195 /* Like re_search_2, below, but only one string is specified, and
4196 doesn't let you say where to stop matching. */
4197
4198 int
4199 re_search (bufp, string, size, startpos, range, regs)
4200 struct re_pattern_buffer *bufp;
4201 const char *string;
4202 int size, startpos, range;
4203 struct re_registers *regs;
4204 {
4205 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
4206 regs, size);
4207 }
4208 WEAK_ALIAS (__re_search, re_search)
4209
4210 /* Head address of virtual concatenation of string. */
4211 #define HEAD_ADDR_VSTRING(P) \
4212 (((P) >= size1 ? string2 : string1))
4213
4214 /* End address of virtual concatenation of string. */
4215 #define STOP_ADDR_VSTRING(P) \
4216 (((P) >= size1 ? string2 + size2 : string1 + size1))
4217
4218 /* Address of POS in the concatenation of virtual string. */
4219 #define POS_ADDR_VSTRING(POS) \
4220 (((POS) >= size1 ? string2 - size1 : string1) + (POS))
4221
4222 /* Using the compiled pattern in BUFP->buffer, first tries to match the
4223 virtual concatenation of STRING1 and STRING2, starting first at index
4224 STARTPOS, then at STARTPOS + 1, and so on.
4225
4226 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
4227
4228 RANGE is how far to scan while trying to match. RANGE = 0 means try
4229 only at STARTPOS; in general, the last start tried is STARTPOS +
4230 RANGE.
4231
4232 In REGS, return the indices of the virtual concatenation of STRING1
4233 and STRING2 that matched the entire BUFP->buffer and its contained
4234 subexpressions.
4235
4236 Do not consider matching one past the index STOP in the virtual
4237 concatenation of STRING1 and STRING2.
4238
4239 We return either the position in the strings at which the match was
4240 found, -1 if no match, or -2 if error (such as failure
4241 stack overflow). */
4242
4243 int
4244 re_search_2 (bufp, str1, size1, str2, size2, startpos, range, regs, stop)
4245 struct re_pattern_buffer *bufp;
4246 const char *str1, *str2;
4247 int size1, size2;
4248 int startpos;
4249 int range;
4250 struct re_registers *regs;
4251 int stop;
4252 {
4253 int val;
4254 re_char *string1 = (re_char*) str1;
4255 re_char *string2 = (re_char*) str2;
4256 register char *fastmap = bufp->fastmap;
4257 register RE_TRANSLATE_TYPE translate = bufp->translate;
4258 int total_size = size1 + size2;
4259 int endpos = startpos + range;
4260 boolean anchored_start;
4261
4262 /* Nonzero if we have to concern multibyte character. */
4263 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4264
4265 /* Check for out-of-range STARTPOS. */
4266 if (startpos < 0 || startpos > total_size)
4267 return -1;
4268
4269 /* Fix up RANGE if it might eventually take us outside
4270 the virtual concatenation of STRING1 and STRING2.
4271 Make sure we won't move STARTPOS below 0 or above TOTAL_SIZE. */
4272 if (endpos < 0)
4273 range = 0 - startpos;
4274 else if (endpos > total_size)
4275 range = total_size - startpos;
4276
4277 /* If the search isn't to be a backwards one, don't waste time in a
4278 search for a pattern anchored at beginning of buffer. */
4279 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
4280 {
4281 if (startpos > 0)
4282 return -1;
4283 else
4284 range = 0;
4285 }
4286
4287 #ifdef emacs
4288 /* In a forward search for something that starts with \=.
4289 don't keep searching past point. */
4290 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == at_dot && range > 0)
4291 {
4292 range = PT_BYTE - BEGV_BYTE - startpos;
4293 if (range < 0)
4294 return -1;
4295 }
4296 #endif /* emacs */
4297
4298 /* Update the fastmap now if not correct already. */
4299 if (fastmap && !bufp->fastmap_accurate)
4300 re_compile_fastmap (bufp);
4301
4302 /* See whether the pattern is anchored. */
4303 anchored_start = (bufp->buffer[0] == begline);
4304
4305 #ifdef emacs
4306 gl_state.object = re_match_object;
4307 {
4308 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (startpos));
4309
4310 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4311 }
4312 #endif
4313
4314 /* Loop through the string, looking for a place to start matching. */
4315 for (;;)
4316 {
4317 /* If the pattern is anchored,
4318 skip quickly past places we cannot match.
4319 We don't bother to treat startpos == 0 specially
4320 because that case doesn't repeat. */
4321 if (anchored_start && startpos > 0)
4322 {
4323 if (! ((startpos <= size1 ? string1[startpos - 1]
4324 : string2[startpos - size1 - 1])
4325 == '\n'))
4326 goto advance;
4327 }
4328
4329 /* If a fastmap is supplied, skip quickly over characters that
4330 cannot be the start of a match. If the pattern can match the
4331 null string, however, we don't need to skip characters; we want
4332 the first null string. */
4333 if (fastmap && startpos < total_size && !bufp->can_be_null)
4334 {
4335 register re_char *d;
4336 register re_wchar_t buf_ch;
4337
4338 d = POS_ADDR_VSTRING (startpos);
4339
4340 if (range > 0) /* Searching forwards. */
4341 {
4342 register int lim = 0;
4343 int irange = range;
4344
4345 if (startpos < size1 && startpos + range >= size1)
4346 lim = range - (size1 - startpos);
4347
4348 /* Written out as an if-else to avoid testing `translate'
4349 inside the loop. */
4350 if (RE_TRANSLATE_P (translate))
4351 {
4352 if (multibyte)
4353 while (range > lim)
4354 {
4355 int buf_charlen;
4356
4357 buf_ch = STRING_CHAR_AND_LENGTH (d, range - lim,
4358 buf_charlen);
4359
4360 buf_ch = RE_TRANSLATE (translate, buf_ch);
4361 if (buf_ch >= 0400
4362 || fastmap[buf_ch])
4363 break;
4364
4365 range -= buf_charlen;
4366 d += buf_charlen;
4367 }
4368 else
4369 {
4370 /* Convert *d to integer to shut up GCC's
4371 whining about comparison that is always
4372 true. */
4373 int di = *d;
4374
4375 while (range > lim
4376 && !fastmap[RE_TRANSLATE (translate, di)])
4377 {
4378 di = *(++d);
4379 range--;
4380 }
4381 }
4382 }
4383 else
4384 do
4385 {
4386 re_char *d_start = d;
4387 while (range > lim && !fastmap[*d])
4388 {
4389 d++;
4390 range--;
4391 }
4392 #ifdef emacs
4393 if (multibyte && range > lim)
4394 {
4395 /* Check that we are at the beginning of a char. */
4396 int at_boundary;
4397 AT_CHAR_BOUNDARY_P (at_boundary, d, d_start);
4398 if (at_boundary)
4399 break;
4400 else
4401 { /* We have matched an internal byte of a char
4402 rather than the leading byte, so it's a false
4403 positive: we should keep scanning. */
4404 d++; range--;
4405 }
4406 }
4407 else
4408 #endif
4409 break;
4410 } while (1);
4411
4412 startpos += irange - range;
4413 }
4414 else /* Searching backwards. */
4415 {
4416 int room = (startpos >= size1
4417 ? size2 + size1 - startpos
4418 : size1 - startpos);
4419 buf_ch = RE_STRING_CHAR (d, room);
4420 buf_ch = TRANSLATE (buf_ch);
4421
4422 if (! (buf_ch >= 0400
4423 || fastmap[buf_ch]))
4424 goto advance;
4425 }
4426 }
4427
4428 /* If can't match the null string, and that's all we have left, fail. */
4429 if (range >= 0 && startpos == total_size && fastmap
4430 && !bufp->can_be_null)
4431 return -1;
4432
4433 val = re_match_2_internal (bufp, string1, size1, string2, size2,
4434 startpos, regs, stop);
4435 #ifndef REGEX_MALLOC
4436 # ifdef C_ALLOCA
4437 alloca (0);
4438 # endif
4439 #endif
4440
4441 if (val >= 0)
4442 return startpos;
4443
4444 if (val == -2)
4445 return -2;
4446
4447 advance:
4448 if (!range)
4449 break;
4450 else if (range > 0)
4451 {
4452 /* Update STARTPOS to the next character boundary. */
4453 if (multibyte)
4454 {
4455 re_char *p = POS_ADDR_VSTRING (startpos);
4456 re_char *pend = STOP_ADDR_VSTRING (startpos);
4457 int len = MULTIBYTE_FORM_LENGTH (p, pend - p);
4458
4459 range -= len;
4460 if (range < 0)
4461 break;
4462 startpos += len;
4463 }
4464 else
4465 {
4466 range--;
4467 startpos++;
4468 }
4469 }
4470 else
4471 {
4472 range++;
4473 startpos--;
4474
4475 /* Update STARTPOS to the previous character boundary. */
4476 if (multibyte)
4477 {
4478 re_char *p = POS_ADDR_VSTRING (startpos) + 1;
4479 re_char *p0 = p;
4480 re_char *phead = HEAD_ADDR_VSTRING (startpos);
4481
4482 /* Find the head of multibyte form. */
4483 PREV_CHAR_BOUNDARY (p, phead);
4484 range += p0 - 1 - p;
4485 if (range > 0)
4486 break;
4487
4488 startpos -= p0 - 1 - p;
4489 }
4490 }
4491 }
4492 return -1;
4493 } /* re_search_2 */
4494 WEAK_ALIAS (__re_search_2, re_search_2)
4495 \f
4496 /* Declarations and macros for re_match_2. */
4497
4498 static int bcmp_translate _RE_ARGS((re_char *s1, re_char *s2,
4499 register int len,
4500 RE_TRANSLATE_TYPE translate,
4501 const int multibyte));
4502
4503 /* This converts PTR, a pointer into one of the search strings `string1'
4504 and `string2' into an offset from the beginning of that string. */
4505 #define POINTER_TO_OFFSET(ptr) \
4506 (FIRST_STRING_P (ptr) \
4507 ? ((regoff_t) ((ptr) - string1)) \
4508 : ((regoff_t) ((ptr) - string2 + size1)))
4509
4510 /* Call before fetching a character with *d. This switches over to
4511 string2 if necessary.
4512 Check re_match_2_internal for a discussion of why end_match_2 might
4513 not be within string2 (but be equal to end_match_1 instead). */
4514 #define PREFETCH() \
4515 while (d == dend) \
4516 { \
4517 /* End of string2 => fail. */ \
4518 if (dend == end_match_2) \
4519 goto fail; \
4520 /* End of string1 => advance to string2. */ \
4521 d = string2; \
4522 dend = end_match_2; \
4523 }
4524
4525 /* Call before fetching a char with *d if you already checked other limits.
4526 This is meant for use in lookahead operations like wordend, etc..
4527 where we might need to look at parts of the string that might be
4528 outside of the LIMITs (i.e past `stop'). */
4529 #define PREFETCH_NOLIMIT() \
4530 if (d == end1) \
4531 { \
4532 d = string2; \
4533 dend = end_match_2; \
4534 } \
4535
4536 /* Test if at very beginning or at very end of the virtual concatenation
4537 of `string1' and `string2'. If only one string, it's `string2'. */
4538 #define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
4539 #define AT_STRINGS_END(d) ((d) == end2)
4540
4541
4542 /* Test if D points to a character which is word-constituent. We have
4543 two special cases to check for: if past the end of string1, look at
4544 the first character in string2; and if before the beginning of
4545 string2, look at the last character in string1. */
4546 #define WORDCHAR_P(d) \
4547 (SYNTAX ((d) == end1 ? *string2 \
4548 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
4549 == Sword)
4550
4551 /* Disabled due to a compiler bug -- see comment at case wordbound */
4552
4553 /* The comment at case wordbound is following one, but we don't use
4554 AT_WORD_BOUNDARY anymore to support multibyte form.
4555
4556 The DEC Alpha C compiler 3.x generates incorrect code for the
4557 test WORDCHAR_P (d - 1) != WORDCHAR_P (d) in the expansion of
4558 AT_WORD_BOUNDARY, so this code is disabled. Expanding the
4559 macro and introducing temporary variables works around the bug. */
4560
4561 #if 0
4562 /* Test if the character before D and the one at D differ with respect
4563 to being word-constituent. */
4564 #define AT_WORD_BOUNDARY(d) \
4565 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
4566 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
4567 #endif
4568
4569 /* Free everything we malloc. */
4570 #ifdef MATCH_MAY_ALLOCATE
4571 # define FREE_VAR(var) if (var) { REGEX_FREE (var); var = NULL; } else
4572 # define FREE_VARIABLES() \
4573 do { \
4574 REGEX_FREE_STACK (fail_stack.stack); \
4575 FREE_VAR (regstart); \
4576 FREE_VAR (regend); \
4577 FREE_VAR (best_regstart); \
4578 FREE_VAR (best_regend); \
4579 } while (0)
4580 #else
4581 # define FREE_VARIABLES() ((void)0) /* Do nothing! But inhibit gcc warning. */
4582 #endif /* not MATCH_MAY_ALLOCATE */
4583
4584 \f
4585 /* Optimization routines. */
4586
4587 /* If the operation is a match against one or more chars,
4588 return a pointer to the next operation, else return NULL. */
4589 static re_char *
4590 skip_one_char (p)
4591 re_char *p;
4592 {
4593 switch (SWITCH_ENUM_CAST (*p++))
4594 {
4595 case anychar:
4596 break;
4597
4598 case exactn:
4599 p += *p + 1;
4600 break;
4601
4602 case charset_not:
4603 case charset:
4604 if (CHARSET_RANGE_TABLE_EXISTS_P (p - 1))
4605 {
4606 int mcnt;
4607 p = CHARSET_RANGE_TABLE (p - 1);
4608 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4609 p = CHARSET_RANGE_TABLE_END (p, mcnt);
4610 }
4611 else
4612 p += 1 + CHARSET_BITMAP_SIZE (p - 1);
4613 break;
4614
4615 case syntaxspec:
4616 case notsyntaxspec:
4617 #ifdef emacs
4618 case categoryspec:
4619 case notcategoryspec:
4620 #endif /* emacs */
4621 p++;
4622 break;
4623
4624 default:
4625 p = NULL;
4626 }
4627 return p;
4628 }
4629
4630
4631 /* Jump over non-matching operations. */
4632 static re_char *
4633 skip_noops (p, pend)
4634 re_char *p, *pend;
4635 {
4636 int mcnt;
4637 while (p < pend)
4638 {
4639 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p))
4640 {
4641 case start_memory:
4642 case stop_memory:
4643 p += 2; break;
4644 case no_op:
4645 p += 1; break;
4646 case jump:
4647 p += 1;
4648 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4649 p += mcnt;
4650 break;
4651 default:
4652 return p;
4653 }
4654 }
4655 assert (p == pend);
4656 return p;
4657 }
4658
4659 /* Non-zero if "p1 matches something" implies "p2 fails". */
4660 static int
4661 mutually_exclusive_p (bufp, p1, p2)
4662 struct re_pattern_buffer *bufp;
4663 re_char *p1, *p2;
4664 {
4665 re_opcode_t op2;
4666 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4667 unsigned char *pend = bufp->buffer + bufp->used;
4668
4669 assert (p1 >= bufp->buffer && p1 < pend
4670 && p2 >= bufp->buffer && p2 <= pend);
4671
4672 /* Skip over open/close-group commands.
4673 If what follows this loop is a ...+ construct,
4674 look at what begins its body, since we will have to
4675 match at least one of that. */
4676 p2 = skip_noops (p2, pend);
4677 /* The same skip can be done for p1, except that this function
4678 is only used in the case where p1 is a simple match operator. */
4679 /* p1 = skip_noops (p1, pend); */
4680
4681 assert (p1 >= bufp->buffer && p1 < pend
4682 && p2 >= bufp->buffer && p2 <= pend);
4683
4684 op2 = p2 == pend ? succeed : *p2;
4685
4686 switch (SWITCH_ENUM_CAST (op2))
4687 {
4688 case succeed:
4689 case endbuf:
4690 /* If we're at the end of the pattern, we can change. */
4691 if (skip_one_char (p1))
4692 {
4693 DEBUG_PRINT1 (" End of pattern: fast loop.\n");
4694 return 1;
4695 }
4696 break;
4697
4698 case endline:
4699 case exactn:
4700 {
4701 register re_wchar_t c
4702 = (re_opcode_t) *p2 == endline ? '\n'
4703 : RE_STRING_CHAR (p2 + 2, pend - p2 - 2);
4704
4705 if ((re_opcode_t) *p1 == exactn)
4706 {
4707 if (c != RE_STRING_CHAR (p1 + 2, pend - p1 - 2))
4708 {
4709 DEBUG_PRINT3 (" '%c' != '%c' => fast loop.\n", c, p1[2]);
4710 return 1;
4711 }
4712 }
4713
4714 else if ((re_opcode_t) *p1 == charset
4715 || (re_opcode_t) *p1 == charset_not)
4716 {
4717 int not = (re_opcode_t) *p1 == charset_not;
4718
4719 /* Test if C is listed in charset (or charset_not)
4720 at `p1'. */
4721 if (SINGLE_BYTE_CHAR_P (c))
4722 {
4723 if (c < CHARSET_BITMAP_SIZE (p1) * BYTEWIDTH
4724 && p1[2 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4725 not = !not;
4726 }
4727 else if (CHARSET_RANGE_TABLE_EXISTS_P (p1))
4728 CHARSET_LOOKUP_RANGE_TABLE (not, c, p1);
4729
4730 /* `not' is equal to 1 if c would match, which means
4731 that we can't change to pop_failure_jump. */
4732 if (!not)
4733 {
4734 DEBUG_PRINT1 (" No match => fast loop.\n");
4735 return 1;
4736 }
4737 }
4738 else if ((re_opcode_t) *p1 == anychar
4739 && c == '\n')
4740 {
4741 DEBUG_PRINT1 (" . != \\n => fast loop.\n");
4742 return 1;
4743 }
4744 }
4745 break;
4746
4747 case charset:
4748 {
4749 if ((re_opcode_t) *p1 == exactn)
4750 /* Reuse the code above. */
4751 return mutually_exclusive_p (bufp, p2, p1);
4752
4753 /* It is hard to list up all the character in charset
4754 P2 if it includes multibyte character. Give up in
4755 such case. */
4756 else if (!multibyte || !CHARSET_RANGE_TABLE_EXISTS_P (p2))
4757 {
4758 /* Now, we are sure that P2 has no range table.
4759 So, for the size of bitmap in P2, `p2[1]' is
4760 enough. But P1 may have range table, so the
4761 size of bitmap table of P1 is extracted by
4762 using macro `CHARSET_BITMAP_SIZE'.
4763
4764 Since we know that all the character listed in
4765 P2 is ASCII, it is enough to test only bitmap
4766 table of P1. */
4767
4768 if ((re_opcode_t) *p1 == charset)
4769 {
4770 int idx;
4771 /* We win if the charset inside the loop
4772 has no overlap with the one after the loop. */
4773 for (idx = 0;
4774 (idx < (int) p2[1]
4775 && idx < CHARSET_BITMAP_SIZE (p1));
4776 idx++)
4777 if ((p2[2 + idx] & p1[2 + idx]) != 0)
4778 break;
4779
4780 if (idx == p2[1]
4781 || idx == CHARSET_BITMAP_SIZE (p1))
4782 {
4783 DEBUG_PRINT1 (" No match => fast loop.\n");
4784 return 1;
4785 }
4786 }
4787 else if ((re_opcode_t) *p1 == charset_not)
4788 {
4789 int idx;
4790 /* We win if the charset_not inside the loop lists
4791 every character listed in the charset after. */
4792 for (idx = 0; idx < (int) p2[1]; idx++)
4793 if (! (p2[2 + idx] == 0
4794 || (idx < CHARSET_BITMAP_SIZE (p1)
4795 && ((p2[2 + idx] & ~ p1[2 + idx]) == 0))))
4796 break;
4797
4798 if (idx == p2[1])
4799 {
4800 DEBUG_PRINT1 (" No match => fast loop.\n");
4801 return 1;
4802 }
4803 }
4804 }
4805 }
4806 break;
4807
4808 case charset_not:
4809 switch (SWITCH_ENUM_CAST (*p1))
4810 {
4811 case exactn:
4812 case charset:
4813 /* Reuse the code above. */
4814 return mutually_exclusive_p (bufp, p2, p1);
4815 case charset_not:
4816 /* When we have two charset_not, it's very unlikely that
4817 they don't overlap. The union of the two sets of excluded
4818 chars should cover all possible chars, which, as a matter of
4819 fact, is virtually impossible in multibyte buffers. */
4820 break;
4821 }
4822 break;
4823
4824 case wordend:
4825 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == Sword);
4826 case symend:
4827 return ((re_opcode_t) *p1 == syntaxspec
4828 && (p1[1] == Ssymbol || p1[1] == Sword));
4829 case notsyntaxspec:
4830 return ((re_opcode_t) *p1 == syntaxspec && p1[1] == p2[1]);
4831
4832 case wordbeg:
4833 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == Sword);
4834 case symbeg:
4835 return ((re_opcode_t) *p1 == notsyntaxspec
4836 && (p1[1] == Ssymbol || p1[1] == Sword));
4837 case syntaxspec:
4838 return ((re_opcode_t) *p1 == notsyntaxspec && p1[1] == p2[1]);
4839
4840 case wordbound:
4841 return (((re_opcode_t) *p1 == notsyntaxspec
4842 || (re_opcode_t) *p1 == syntaxspec)
4843 && p1[1] == Sword);
4844
4845 #ifdef emacs
4846 case categoryspec:
4847 return ((re_opcode_t) *p1 == notcategoryspec && p1[1] == p2[1]);
4848 case notcategoryspec:
4849 return ((re_opcode_t) *p1 == categoryspec && p1[1] == p2[1]);
4850 #endif /* emacs */
4851
4852 default:
4853 ;
4854 }
4855
4856 /* Safe default. */
4857 return 0;
4858 }
4859
4860 \f
4861 /* Matching routines. */
4862
4863 #ifndef emacs /* Emacs never uses this. */
4864 /* re_match is like re_match_2 except it takes only a single string. */
4865
4866 int
4867 re_match (bufp, string, size, pos, regs)
4868 struct re_pattern_buffer *bufp;
4869 const char *string;
4870 int size, pos;
4871 struct re_registers *regs;
4872 {
4873 int result = re_match_2_internal (bufp, NULL, 0, (re_char*) string, size,
4874 pos, regs, size);
4875 # if defined C_ALLOCA && !defined REGEX_MALLOC
4876 alloca (0);
4877 # endif
4878 return result;
4879 }
4880 WEAK_ALIAS (__re_match, re_match)
4881 #endif /* not emacs */
4882
4883 #ifdef emacs
4884 /* In Emacs, this is the string or buffer in which we
4885 are matching. It is used for looking up syntax properties. */
4886 Lisp_Object re_match_object;
4887 #endif
4888
4889 /* re_match_2 matches the compiled pattern in BUFP against the
4890 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
4891 and SIZE2, respectively). We start matching at POS, and stop
4892 matching at STOP.
4893
4894 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
4895 store offsets for the substring each group matched in REGS. See the
4896 documentation for exactly how many groups we fill.
4897
4898 We return -1 if no match, -2 if an internal error (such as the
4899 failure stack overflowing). Otherwise, we return the length of the
4900 matched substring. */
4901
4902 int
4903 re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
4904 struct re_pattern_buffer *bufp;
4905 const char *string1, *string2;
4906 int size1, size2;
4907 int pos;
4908 struct re_registers *regs;
4909 int stop;
4910 {
4911 int result;
4912
4913 #ifdef emacs
4914 int charpos;
4915 gl_state.object = re_match_object;
4916 charpos = SYNTAX_TABLE_BYTE_TO_CHAR (POS_AS_IN_BUFFER (pos));
4917 SETUP_SYNTAX_TABLE_FOR_OBJECT (re_match_object, charpos, 1);
4918 #endif
4919
4920 result = re_match_2_internal (bufp, (re_char*) string1, size1,
4921 (re_char*) string2, size2,
4922 pos, regs, stop);
4923 #if defined C_ALLOCA && !defined REGEX_MALLOC
4924 alloca (0);
4925 #endif
4926 return result;
4927 }
4928 WEAK_ALIAS (__re_match_2, re_match_2)
4929
4930 /* This is a separate function so that we can force an alloca cleanup
4931 afterwards. */
4932 static int
4933 re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
4934 struct re_pattern_buffer *bufp;
4935 re_char *string1, *string2;
4936 int size1, size2;
4937 int pos;
4938 struct re_registers *regs;
4939 int stop;
4940 {
4941 /* General temporaries. */
4942 int mcnt;
4943 size_t reg;
4944 boolean not;
4945
4946 /* Just past the end of the corresponding string. */
4947 re_char *end1, *end2;
4948
4949 /* Pointers into string1 and string2, just past the last characters in
4950 each to consider matching. */
4951 re_char *end_match_1, *end_match_2;
4952
4953 /* Where we are in the data, and the end of the current string. */
4954 re_char *d, *dend;
4955
4956 /* Used sometimes to remember where we were before starting matching
4957 an operator so that we can go back in case of failure. This "atomic"
4958 behavior of matching opcodes is indispensable to the correctness
4959 of the on_failure_keep_string_jump optimization. */
4960 re_char *dfail;
4961
4962 /* Where we are in the pattern, and the end of the pattern. */
4963 re_char *p = bufp->buffer;
4964 re_char *pend = p + bufp->used;
4965
4966 /* We use this to map every character in the string. */
4967 RE_TRANSLATE_TYPE translate = bufp->translate;
4968
4969 /* Nonzero if we have to concern multibyte character. */
4970 const boolean multibyte = RE_MULTIBYTE_P (bufp);
4971
4972 /* Failure point stack. Each place that can handle a failure further
4973 down the line pushes a failure point on this stack. It consists of
4974 regstart, and regend for all registers corresponding to
4975 the subexpressions we're currently inside, plus the number of such
4976 registers, and, finally, two char *'s. The first char * is where
4977 to resume scanning the pattern; the second one is where to resume
4978 scanning the strings. */
4979 #ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
4980 fail_stack_type fail_stack;
4981 #endif
4982 #ifdef DEBUG
4983 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
4984 #endif
4985
4986 #if defined REL_ALLOC && defined REGEX_MALLOC
4987 /* This holds the pointer to the failure stack, when
4988 it is allocated relocatably. */
4989 fail_stack_elt_t *failure_stack_ptr;
4990 #endif
4991
4992 /* We fill all the registers internally, independent of what we
4993 return, for use in backreferences. The number here includes
4994 an element for register zero. */
4995 size_t num_regs = bufp->re_nsub + 1;
4996
4997 /* Information on the contents of registers. These are pointers into
4998 the input strings; they record just what was matched (on this
4999 attempt) by a subexpression part of the pattern, that is, the
5000 regnum-th regstart pointer points to where in the pattern we began
5001 matching and the regnum-th regend points to right after where we
5002 stopped matching the regnum-th subexpression. (The zeroth register
5003 keeps track of what the whole pattern matches.) */
5004 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5005 re_char **regstart, **regend;
5006 #endif
5007
5008 /* The following record the register info as found in the above
5009 variables when we find a match better than any we've seen before.
5010 This happens as we backtrack through the failure points, which in
5011 turn happens only if we have not yet matched the entire string. */
5012 unsigned best_regs_set = false;
5013 #ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
5014 re_char **best_regstart, **best_regend;
5015 #endif
5016
5017 /* Logically, this is `best_regend[0]'. But we don't want to have to
5018 allocate space for that if we're not allocating space for anything
5019 else (see below). Also, we never need info about register 0 for
5020 any of the other register vectors, and it seems rather a kludge to
5021 treat `best_regend' differently than the rest. So we keep track of
5022 the end of the best match so far in a separate variable. We
5023 initialize this to NULL so that when we backtrack the first time
5024 and need to test it, it's not garbage. */
5025 re_char *match_end = NULL;
5026
5027 #ifdef DEBUG
5028 /* Counts the total number of registers pushed. */
5029 unsigned num_regs_pushed = 0;
5030 #endif
5031
5032 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
5033
5034 INIT_FAIL_STACK ();
5035
5036 #ifdef MATCH_MAY_ALLOCATE
5037 /* Do not bother to initialize all the register variables if there are
5038 no groups in the pattern, as it takes a fair amount of time. If
5039 there are groups, we include space for register 0 (the whole
5040 pattern), even though we never use it, since it simplifies the
5041 array indexing. We should fix this. */
5042 if (bufp->re_nsub)
5043 {
5044 regstart = REGEX_TALLOC (num_regs, re_char *);
5045 regend = REGEX_TALLOC (num_regs, re_char *);
5046 best_regstart = REGEX_TALLOC (num_regs, re_char *);
5047 best_regend = REGEX_TALLOC (num_regs, re_char *);
5048
5049 if (!(regstart && regend && best_regstart && best_regend))
5050 {
5051 FREE_VARIABLES ();
5052 return -2;
5053 }
5054 }
5055 else
5056 {
5057 /* We must initialize all our variables to NULL, so that
5058 `FREE_VARIABLES' doesn't try to free them. */
5059 regstart = regend = best_regstart = best_regend = NULL;
5060 }
5061 #endif /* MATCH_MAY_ALLOCATE */
5062
5063 /* The starting position is bogus. */
5064 if (pos < 0 || pos > size1 + size2)
5065 {
5066 FREE_VARIABLES ();
5067 return -1;
5068 }
5069
5070 /* Initialize subexpression text positions to -1 to mark ones that no
5071 start_memory/stop_memory has been seen for. Also initialize the
5072 register information struct. */
5073 for (reg = 1; reg < num_regs; reg++)
5074 regstart[reg] = regend[reg] = NULL;
5075
5076 /* We move `string1' into `string2' if the latter's empty -- but not if
5077 `string1' is null. */
5078 if (size2 == 0 && string1 != NULL)
5079 {
5080 string2 = string1;
5081 size2 = size1;
5082 string1 = 0;
5083 size1 = 0;
5084 }
5085 end1 = string1 + size1;
5086 end2 = string2 + size2;
5087
5088 /* `p' scans through the pattern as `d' scans through the data.
5089 `dend' is the end of the input string that `d' points within. `d'
5090 is advanced into the following input string whenever necessary, but
5091 this happens before fetching; therefore, at the beginning of the
5092 loop, `d' can be pointing at the end of a string, but it cannot
5093 equal `string2'. */
5094 if (pos >= size1)
5095 {
5096 /* Only match within string2. */
5097 d = string2 + pos - size1;
5098 dend = end_match_2 = string2 + stop - size1;
5099 end_match_1 = end1; /* Just to give it a value. */
5100 }
5101 else
5102 {
5103 if (stop < size1)
5104 {
5105 /* Only match within string1. */
5106 end_match_1 = string1 + stop;
5107 /* BEWARE!
5108 When we reach end_match_1, PREFETCH normally switches to string2.
5109 But in the present case, this means that just doing a PREFETCH
5110 makes us jump from `stop' to `gap' within the string.
5111 What we really want here is for the search to stop as
5112 soon as we hit end_match_1. That's why we set end_match_2
5113 to end_match_1 (since PREFETCH fails as soon as we hit
5114 end_match_2). */
5115 end_match_2 = end_match_1;
5116 }
5117 else
5118 { /* It's important to use this code when stop == size so that
5119 moving `d' from end1 to string2 will not prevent the d == dend
5120 check from catching the end of string. */
5121 end_match_1 = end1;
5122 end_match_2 = string2 + stop - size1;
5123 }
5124 d = string1 + pos;
5125 dend = end_match_1;
5126 }
5127
5128 DEBUG_PRINT1 ("The compiled pattern is: ");
5129 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
5130 DEBUG_PRINT1 ("The string to match is: `");
5131 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
5132 DEBUG_PRINT1 ("'\n");
5133
5134 /* This loops over pattern commands. It exits by returning from the
5135 function if the match is complete, or it drops through if the match
5136 fails at this starting point in the input data. */
5137 for (;;)
5138 {
5139 DEBUG_PRINT2 ("\n%p: ", p);
5140
5141 if (p == pend)
5142 { /* End of pattern means we might have succeeded. */
5143 DEBUG_PRINT1 ("end of pattern ... ");
5144
5145 /* If we haven't matched the entire string, and we want the
5146 longest match, try backtracking. */
5147 if (d != end_match_2)
5148 {
5149 /* 1 if this match ends in the same string (string1 or string2)
5150 as the best previous match. */
5151 boolean same_str_p = (FIRST_STRING_P (match_end)
5152 == FIRST_STRING_P (d));
5153 /* 1 if this match is the best seen so far. */
5154 boolean best_match_p;
5155
5156 /* AIX compiler got confused when this was combined
5157 with the previous declaration. */
5158 if (same_str_p)
5159 best_match_p = d > match_end;
5160 else
5161 best_match_p = !FIRST_STRING_P (d);
5162
5163 DEBUG_PRINT1 ("backtracking.\n");
5164
5165 if (!FAIL_STACK_EMPTY ())
5166 { /* More failure points to try. */
5167
5168 /* If exceeds best match so far, save it. */
5169 if (!best_regs_set || best_match_p)
5170 {
5171 best_regs_set = true;
5172 match_end = d;
5173
5174 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
5175
5176 for (reg = 1; reg < num_regs; reg++)
5177 {
5178 best_regstart[reg] = regstart[reg];
5179 best_regend[reg] = regend[reg];
5180 }
5181 }
5182 goto fail;
5183 }
5184
5185 /* If no failure points, don't restore garbage. And if
5186 last match is real best match, don't restore second
5187 best one. */
5188 else if (best_regs_set && !best_match_p)
5189 {
5190 restore_best_regs:
5191 /* Restore best match. It may happen that `dend ==
5192 end_match_1' while the restored d is in string2.
5193 For example, the pattern `x.*y.*z' against the
5194 strings `x-' and `y-z-', if the two strings are
5195 not consecutive in memory. */
5196 DEBUG_PRINT1 ("Restoring best registers.\n");
5197
5198 d = match_end;
5199 dend = ((d >= string1 && d <= end1)
5200 ? end_match_1 : end_match_2);
5201
5202 for (reg = 1; reg < num_regs; reg++)
5203 {
5204 regstart[reg] = best_regstart[reg];
5205 regend[reg] = best_regend[reg];
5206 }
5207 }
5208 } /* d != end_match_2 */
5209
5210 succeed_label:
5211 DEBUG_PRINT1 ("Accepting match.\n");
5212
5213 /* If caller wants register contents data back, do it. */
5214 if (regs && !bufp->no_sub)
5215 {
5216 /* Have the register data arrays been allocated? */
5217 if (bufp->regs_allocated == REGS_UNALLOCATED)
5218 { /* No. So allocate them with malloc. We need one
5219 extra element beyond `num_regs' for the `-1' marker
5220 GNU code uses. */
5221 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
5222 regs->start = TALLOC (regs->num_regs, regoff_t);
5223 regs->end = TALLOC (regs->num_regs, regoff_t);
5224 if (regs->start == NULL || regs->end == NULL)
5225 {
5226 FREE_VARIABLES ();
5227 return -2;
5228 }
5229 bufp->regs_allocated = REGS_REALLOCATE;
5230 }
5231 else if (bufp->regs_allocated == REGS_REALLOCATE)
5232 { /* Yes. If we need more elements than were already
5233 allocated, reallocate them. If we need fewer, just
5234 leave it alone. */
5235 if (regs->num_regs < num_regs + 1)
5236 {
5237 regs->num_regs = num_regs + 1;
5238 RETALLOC (regs->start, regs->num_regs, regoff_t);
5239 RETALLOC (regs->end, regs->num_regs, regoff_t);
5240 if (regs->start == NULL || regs->end == NULL)
5241 {
5242 FREE_VARIABLES ();
5243 return -2;
5244 }
5245 }
5246 }
5247 else
5248 {
5249 /* These braces fend off a "empty body in an else-statement"
5250 warning under GCC when assert expands to nothing. */
5251 assert (bufp->regs_allocated == REGS_FIXED);
5252 }
5253
5254 /* Convert the pointer data in `regstart' and `regend' to
5255 indices. Register zero has to be set differently,
5256 since we haven't kept track of any info for it. */
5257 if (regs->num_regs > 0)
5258 {
5259 regs->start[0] = pos;
5260 regs->end[0] = POINTER_TO_OFFSET (d);
5261 }
5262
5263 /* Go through the first `min (num_regs, regs->num_regs)'
5264 registers, since that is all we initialized. */
5265 for (reg = 1; reg < MIN (num_regs, regs->num_regs); reg++)
5266 {
5267 if (REG_UNSET (regstart[reg]) || REG_UNSET (regend[reg]))
5268 regs->start[reg] = regs->end[reg] = -1;
5269 else
5270 {
5271 regs->start[reg]
5272 = (regoff_t) POINTER_TO_OFFSET (regstart[reg]);
5273 regs->end[reg]
5274 = (regoff_t) POINTER_TO_OFFSET (regend[reg]);
5275 }
5276 }
5277
5278 /* If the regs structure we return has more elements than
5279 were in the pattern, set the extra elements to -1. If
5280 we (re)allocated the registers, this is the case,
5281 because we always allocate enough to have at least one
5282 -1 at the end. */
5283 for (reg = num_regs; reg < regs->num_regs; reg++)
5284 regs->start[reg] = regs->end[reg] = -1;
5285 } /* regs && !bufp->no_sub */
5286
5287 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
5288 nfailure_points_pushed, nfailure_points_popped,
5289 nfailure_points_pushed - nfailure_points_popped);
5290 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
5291
5292 mcnt = POINTER_TO_OFFSET (d) - pos;
5293
5294 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
5295
5296 FREE_VARIABLES ();
5297 return mcnt;
5298 }
5299
5300 /* Otherwise match next pattern command. */
5301 switch (SWITCH_ENUM_CAST ((re_opcode_t) *p++))
5302 {
5303 /* Ignore these. Used to ignore the n of succeed_n's which
5304 currently have n == 0. */
5305 case no_op:
5306 DEBUG_PRINT1 ("EXECUTING no_op.\n");
5307 break;
5308
5309 case succeed:
5310 DEBUG_PRINT1 ("EXECUTING succeed.\n");
5311 goto succeed_label;
5312
5313 /* Match the next n pattern characters exactly. The following
5314 byte in the pattern defines n, and the n bytes after that
5315 are the characters to match. */
5316 case exactn:
5317 mcnt = *p++;
5318 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
5319
5320 /* Remember the start point to rollback upon failure. */
5321 dfail = d;
5322
5323 /* This is written out as an if-else so we don't waste time
5324 testing `translate' inside the loop. */
5325 if (RE_TRANSLATE_P (translate))
5326 {
5327 if (multibyte)
5328 do
5329 {
5330 int pat_charlen, buf_charlen;
5331 unsigned int pat_ch, buf_ch;
5332
5333 PREFETCH ();
5334 pat_ch = STRING_CHAR_AND_LENGTH (p, pend - p, pat_charlen);
5335 buf_ch = STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5336
5337 if (RE_TRANSLATE (translate, buf_ch)
5338 != pat_ch)
5339 {
5340 d = dfail;
5341 goto fail;
5342 }
5343
5344 p += pat_charlen;
5345 d += buf_charlen;
5346 mcnt -= pat_charlen;
5347 }
5348 while (mcnt > 0);
5349 else
5350 do
5351 {
5352 /* Avoid compiler whining about comparison being
5353 always true. */
5354 int di;
5355
5356 PREFETCH ();
5357 di = *d;
5358 if (RE_TRANSLATE (translate, di) != *p++)
5359 {
5360 d = dfail;
5361 goto fail;
5362 }
5363 d++;
5364 }
5365 while (--mcnt);
5366 }
5367 else
5368 {
5369 do
5370 {
5371 PREFETCH ();
5372 if (*d++ != *p++)
5373 {
5374 d = dfail;
5375 goto fail;
5376 }
5377 }
5378 while (--mcnt);
5379 }
5380 break;
5381
5382
5383 /* Match any character except possibly a newline or a null. */
5384 case anychar:
5385 {
5386 int buf_charlen;
5387 re_wchar_t buf_ch;
5388
5389 DEBUG_PRINT1 ("EXECUTING anychar.\n");
5390
5391 PREFETCH ();
5392 buf_ch = RE_STRING_CHAR_AND_LENGTH (d, dend - d, buf_charlen);
5393 buf_ch = TRANSLATE (buf_ch);
5394
5395 if ((!(bufp->syntax & RE_DOT_NEWLINE)
5396 && buf_ch == '\n')
5397 || ((bufp->syntax & RE_DOT_NOT_NULL)
5398 && buf_ch == '\000'))
5399 goto fail;
5400
5401 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
5402 d += buf_charlen;
5403 }
5404 break;
5405
5406
5407 case charset:
5408 case charset_not:
5409 {
5410 register unsigned int c;
5411 boolean not = (re_opcode_t) *(p - 1) == charset_not;
5412 int len;
5413
5414 /* Start of actual range_table, or end of bitmap if there is no
5415 range table. */
5416 re_char *range_table;
5417
5418 /* Nonzero if there is a range table. */
5419 int range_table_exists;
5420
5421 /* Number of ranges of range table. This is not included
5422 in the initial byte-length of the command. */
5423 int count = 0;
5424
5425 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
5426
5427 range_table_exists = CHARSET_RANGE_TABLE_EXISTS_P (&p[-1]);
5428
5429 if (range_table_exists)
5430 {
5431 range_table = CHARSET_RANGE_TABLE (&p[-1]); /* Past the bitmap. */
5432 EXTRACT_NUMBER_AND_INCR (count, range_table);
5433 }
5434
5435 PREFETCH ();
5436 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
5437 c = TRANSLATE (c); /* The character to match. */
5438
5439 if (SINGLE_BYTE_CHAR_P (c))
5440 { /* Lookup bitmap. */
5441 /* Cast to `unsigned' instead of `unsigned char' in
5442 case the bit list is a full 32 bytes long. */
5443 if (c < (unsigned) (CHARSET_BITMAP_SIZE (&p[-1]) * BYTEWIDTH)
5444 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
5445 not = !not;
5446 }
5447 #ifdef emacs
5448 else if (range_table_exists)
5449 {
5450 int class_bits = CHARSET_RANGE_TABLE_BITS (&p[-1]);
5451
5452 if ( (class_bits & BIT_LOWER && ISLOWER (c))
5453 | (class_bits & BIT_MULTIBYTE)
5454 | (class_bits & BIT_PUNCT && ISPUNCT (c))
5455 | (class_bits & BIT_SPACE && ISSPACE (c))
5456 | (class_bits & BIT_UPPER && ISUPPER (c))
5457 | (class_bits & BIT_WORD && ISWORD (c)))
5458 not = !not;
5459 else
5460 CHARSET_LOOKUP_RANGE_TABLE_RAW (not, c, range_table, count);
5461 }
5462 #endif /* emacs */
5463
5464 if (range_table_exists)
5465 p = CHARSET_RANGE_TABLE_END (range_table, count);
5466 else
5467 p += CHARSET_BITMAP_SIZE (&p[-1]) + 1;
5468
5469 if (!not) goto fail;
5470
5471 d += len;
5472 break;
5473 }
5474
5475
5476 /* The beginning of a group is represented by start_memory.
5477 The argument is the register number. The text
5478 matched within the group is recorded (in the internal
5479 registers data structure) under the register number. */
5480 case start_memory:
5481 DEBUG_PRINT2 ("EXECUTING start_memory %d:\n", *p);
5482
5483 /* In case we need to undo this operation (via backtracking). */
5484 PUSH_FAILURE_REG ((unsigned int)*p);
5485
5486 regstart[*p] = d;
5487 regend[*p] = NULL; /* probably unnecessary. -sm */
5488 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
5489
5490 /* Move past the register number and inner group count. */
5491 p += 1;
5492 break;
5493
5494
5495 /* The stop_memory opcode represents the end of a group. Its
5496 argument is the same as start_memory's: the register number. */
5497 case stop_memory:
5498 DEBUG_PRINT2 ("EXECUTING stop_memory %d:\n", *p);
5499
5500 assert (!REG_UNSET (regstart[*p]));
5501 /* Strictly speaking, there should be code such as:
5502
5503 assert (REG_UNSET (regend[*p]));
5504 PUSH_FAILURE_REGSTOP ((unsigned int)*p);
5505
5506 But the only info to be pushed is regend[*p] and it is known to
5507 be UNSET, so there really isn't anything to push.
5508 Not pushing anything, on the other hand deprives us from the
5509 guarantee that regend[*p] is UNSET since undoing this operation
5510 will not reset its value properly. This is not important since
5511 the value will only be read on the next start_memory or at
5512 the very end and both events can only happen if this stop_memory
5513 is *not* undone. */
5514
5515 regend[*p] = d;
5516 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
5517
5518 /* Move past the register number and the inner group count. */
5519 p += 1;
5520 break;
5521
5522
5523 /* \<digit> has been turned into a `duplicate' command which is
5524 followed by the numeric value of <digit> as the register number. */
5525 case duplicate:
5526 {
5527 register re_char *d2, *dend2;
5528 int regno = *p++; /* Get which register to match against. */
5529 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
5530
5531 /* Can't back reference a group which we've never matched. */
5532 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
5533 goto fail;
5534
5535 /* Where in input to try to start matching. */
5536 d2 = regstart[regno];
5537
5538 /* Remember the start point to rollback upon failure. */
5539 dfail = d;
5540
5541 /* Where to stop matching; if both the place to start and
5542 the place to stop matching are in the same string, then
5543 set to the place to stop, otherwise, for now have to use
5544 the end of the first string. */
5545
5546 dend2 = ((FIRST_STRING_P (regstart[regno])
5547 == FIRST_STRING_P (regend[regno]))
5548 ? regend[regno] : end_match_1);
5549 for (;;)
5550 {
5551 /* If necessary, advance to next segment in register
5552 contents. */
5553 while (d2 == dend2)
5554 {
5555 if (dend2 == end_match_2) break;
5556 if (dend2 == regend[regno]) break;
5557
5558 /* End of string1 => advance to string2. */
5559 d2 = string2;
5560 dend2 = regend[regno];
5561 }
5562 /* At end of register contents => success */
5563 if (d2 == dend2) break;
5564
5565 /* If necessary, advance to next segment in data. */
5566 PREFETCH ();
5567
5568 /* How many characters left in this segment to match. */
5569 mcnt = dend - d;
5570
5571 /* Want how many consecutive characters we can match in
5572 one shot, so, if necessary, adjust the count. */
5573 if (mcnt > dend2 - d2)
5574 mcnt = dend2 - d2;
5575
5576 /* Compare that many; failure if mismatch, else move
5577 past them. */
5578 if (RE_TRANSLATE_P (translate)
5579 ? bcmp_translate (d, d2, mcnt, translate, multibyte)
5580 : memcmp (d, d2, mcnt))
5581 {
5582 d = dfail;
5583 goto fail;
5584 }
5585 d += mcnt, d2 += mcnt;
5586 }
5587 }
5588 break;
5589
5590
5591 /* begline matches the empty string at the beginning of the string
5592 (unless `not_bol' is set in `bufp'), and after newlines. */
5593 case begline:
5594 DEBUG_PRINT1 ("EXECUTING begline.\n");
5595
5596 if (AT_STRINGS_BEG (d))
5597 {
5598 if (!bufp->not_bol) break;
5599 }
5600 else
5601 {
5602 unsigned char c;
5603 GET_CHAR_BEFORE_2 (c, d, string1, end1, string2, end2);
5604 if (c == '\n')
5605 break;
5606 }
5607 /* In all other cases, we fail. */
5608 goto fail;
5609
5610
5611 /* endline is the dual of begline. */
5612 case endline:
5613 DEBUG_PRINT1 ("EXECUTING endline.\n");
5614
5615 if (AT_STRINGS_END (d))
5616 {
5617 if (!bufp->not_eol) break;
5618 }
5619 else
5620 {
5621 PREFETCH_NOLIMIT ();
5622 if (*d == '\n')
5623 break;
5624 }
5625 goto fail;
5626
5627
5628 /* Match at the very beginning of the data. */
5629 case begbuf:
5630 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
5631 if (AT_STRINGS_BEG (d))
5632 break;
5633 goto fail;
5634
5635
5636 /* Match at the very end of the data. */
5637 case endbuf:
5638 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
5639 if (AT_STRINGS_END (d))
5640 break;
5641 goto fail;
5642
5643
5644 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
5645 pushes NULL as the value for the string on the stack. Then
5646 `POP_FAILURE_POINT' will keep the current value for the
5647 string, instead of restoring it. To see why, consider
5648 matching `foo\nbar' against `.*\n'. The .* matches the foo;
5649 then the . fails against the \n. But the next thing we want
5650 to do is match the \n against the \n; if we restored the
5651 string value, we would be back at the foo.
5652
5653 Because this is used only in specific cases, we don't need to
5654 check all the things that `on_failure_jump' does, to make
5655 sure the right things get saved on the stack. Hence we don't
5656 share its code. The only reason to push anything on the
5657 stack at all is that otherwise we would have to change
5658 `anychar's code to do something besides goto fail in this
5659 case; that seems worse than this. */
5660 case on_failure_keep_string_jump:
5661 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5662 DEBUG_PRINT3 ("EXECUTING on_failure_keep_string_jump %d (to %p):\n",
5663 mcnt, p + mcnt);
5664
5665 PUSH_FAILURE_POINT (p - 3, NULL);
5666 break;
5667
5668 /* A nasty loop is introduced by the non-greedy *? and +?.
5669 With such loops, the stack only ever contains one failure point
5670 at a time, so that a plain on_failure_jump_loop kind of
5671 cycle detection cannot work. Worse yet, such a detection
5672 can not only fail to detect a cycle, but it can also wrongly
5673 detect a cycle (between different instantiations of the same
5674 loop).
5675 So the method used for those nasty loops is a little different:
5676 We use a special cycle-detection-stack-frame which is pushed
5677 when the on_failure_jump_nastyloop failure-point is *popped*.
5678 This special frame thus marks the beginning of one iteration
5679 through the loop and we can hence easily check right here
5680 whether something matched between the beginning and the end of
5681 the loop. */
5682 case on_failure_jump_nastyloop:
5683 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5684 DEBUG_PRINT3 ("EXECUTING on_failure_jump_nastyloop %d (to %p):\n",
5685 mcnt, p + mcnt);
5686
5687 assert ((re_opcode_t)p[-4] == no_op);
5688 {
5689 int cycle = 0;
5690 CHECK_INFINITE_LOOP (p - 4, d);
5691 if (!cycle)
5692 /* If there's a cycle, just continue without pushing
5693 this failure point. The failure point is the "try again"
5694 option, which shouldn't be tried.
5695 We want (x?)*?y\1z to match both xxyz and xxyxz. */
5696 PUSH_FAILURE_POINT (p - 3, d);
5697 }
5698 break;
5699
5700 /* Simple loop detecting on_failure_jump: just check on the
5701 failure stack if the same spot was already hit earlier. */
5702 case on_failure_jump_loop:
5703 on_failure:
5704 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5705 DEBUG_PRINT3 ("EXECUTING on_failure_jump_loop %d (to %p):\n",
5706 mcnt, p + mcnt);
5707 {
5708 int cycle = 0;
5709 CHECK_INFINITE_LOOP (p - 3, d);
5710 if (cycle)
5711 /* If there's a cycle, get out of the loop, as if the matching
5712 had failed. We used to just `goto fail' here, but that was
5713 aborting the search a bit too early: we want to keep the
5714 empty-loop-match and keep matching after the loop.
5715 We want (x?)*y\1z to match both xxyz and xxyxz. */
5716 p += mcnt;
5717 else
5718 PUSH_FAILURE_POINT (p - 3, d);
5719 }
5720 break;
5721
5722
5723 /* Uses of on_failure_jump:
5724
5725 Each alternative starts with an on_failure_jump that points
5726 to the beginning of the next alternative. Each alternative
5727 except the last ends with a jump that in effect jumps past
5728 the rest of the alternatives. (They really jump to the
5729 ending jump of the following alternative, because tensioning
5730 these jumps is a hassle.)
5731
5732 Repeats start with an on_failure_jump that points past both
5733 the repetition text and either the following jump or
5734 pop_failure_jump back to this on_failure_jump. */
5735 case on_failure_jump:
5736 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5737 DEBUG_PRINT3 ("EXECUTING on_failure_jump %d (to %p):\n",
5738 mcnt, p + mcnt);
5739
5740 PUSH_FAILURE_POINT (p -3, d);
5741 break;
5742
5743 /* This operation is used for greedy *.
5744 Compare the beginning of the repeat with what in the
5745 pattern follows its end. If we can establish that there
5746 is nothing that they would both match, i.e., that we
5747 would have to backtrack because of (as in, e.g., `a*a')
5748 then we can use a non-backtracking loop based on
5749 on_failure_keep_string_jump instead of on_failure_jump. */
5750 case on_failure_jump_smart:
5751 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5752 DEBUG_PRINT3 ("EXECUTING on_failure_jump_smart %d (to %p).\n",
5753 mcnt, p + mcnt);
5754 {
5755 re_char *p1 = p; /* Next operation. */
5756 /* Here, we discard `const', making re_match non-reentrant. */
5757 unsigned char *p2 = (unsigned char*) p + mcnt; /* Jump dest. */
5758 unsigned char *p3 = (unsigned char*) p - 3; /* opcode location. */
5759
5760 p -= 3; /* Reset so that we will re-execute the
5761 instruction once it's been changed. */
5762
5763 EXTRACT_NUMBER (mcnt, p2 - 2);
5764
5765 /* Ensure this is a indeed the trivial kind of loop
5766 we are expecting. */
5767 assert (skip_one_char (p1) == p2 - 3);
5768 assert ((re_opcode_t) p2[-3] == jump && p2 + mcnt == p);
5769 DEBUG_STATEMENT (debug += 2);
5770 if (mutually_exclusive_p (bufp, p1, p2))
5771 {
5772 /* Use a fast `on_failure_keep_string_jump' loop. */
5773 DEBUG_PRINT1 (" smart exclusive => fast loop.\n");
5774 *p3 = (unsigned char) on_failure_keep_string_jump;
5775 STORE_NUMBER (p2 - 2, mcnt + 3);
5776 }
5777 else
5778 {
5779 /* Default to a safe `on_failure_jump' loop. */
5780 DEBUG_PRINT1 (" smart default => slow loop.\n");
5781 *p3 = (unsigned char) on_failure_jump;
5782 }
5783 DEBUG_STATEMENT (debug -= 2);
5784 }
5785 break;
5786
5787 /* Unconditionally jump (without popping any failure points). */
5788 case jump:
5789 unconditional_jump:
5790 IMMEDIATE_QUIT_CHECK;
5791 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
5792 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
5793 p += mcnt; /* Do the jump. */
5794 DEBUG_PRINT2 ("(to %p).\n", p);
5795 break;
5796
5797
5798 /* Have to succeed matching what follows at least n times.
5799 After that, handle like `on_failure_jump'. */
5800 case succeed_n:
5801 /* Signedness doesn't matter since we only compare MCNT to 0. */
5802 EXTRACT_NUMBER (mcnt, p + 2);
5803 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
5804
5805 /* Originally, mcnt is how many times we HAVE to succeed. */
5806 if (mcnt != 0)
5807 {
5808 /* Here, we discard `const', making re_match non-reentrant. */
5809 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5810 mcnt--;
5811 p += 4;
5812 PUSH_NUMBER (p2, mcnt);
5813 }
5814 else
5815 /* The two bytes encoding mcnt == 0 are two no_op opcodes. */
5816 goto on_failure;
5817 break;
5818
5819 case jump_n:
5820 /* Signedness doesn't matter since we only compare MCNT to 0. */
5821 EXTRACT_NUMBER (mcnt, p + 2);
5822 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
5823
5824 /* Originally, this is how many times we CAN jump. */
5825 if (mcnt != 0)
5826 {
5827 /* Here, we discard `const', making re_match non-reentrant. */
5828 unsigned char *p2 = (unsigned char*) p + 2; /* counter loc. */
5829 mcnt--;
5830 PUSH_NUMBER (p2, mcnt);
5831 goto unconditional_jump;
5832 }
5833 /* If don't have to jump any more, skip over the rest of command. */
5834 else
5835 p += 4;
5836 break;
5837
5838 case set_number_at:
5839 {
5840 unsigned char *p2; /* Location of the counter. */
5841 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
5842
5843 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5844 /* Here, we discard `const', making re_match non-reentrant. */
5845 p2 = (unsigned char*) p + mcnt;
5846 /* Signedness doesn't matter since we only copy MCNT's bits . */
5847 EXTRACT_NUMBER_AND_INCR (mcnt, p);
5848 DEBUG_PRINT3 (" Setting %p to %d.\n", p2, mcnt);
5849 PUSH_NUMBER (p2, mcnt);
5850 break;
5851 }
5852
5853 case wordbound:
5854 case notwordbound:
5855 not = (re_opcode_t) *(p - 1) == notwordbound;
5856 DEBUG_PRINT2 ("EXECUTING %swordbound.\n", not?"not":"");
5857
5858 /* We SUCCEED (or FAIL) in one of the following cases: */
5859
5860 /* Case 1: D is at the beginning or the end of string. */
5861 if (AT_STRINGS_BEG (d) || AT_STRINGS_END (d))
5862 not = !not;
5863 else
5864 {
5865 /* C1 is the character before D, S1 is the syntax of C1, C2
5866 is the character at D, and S2 is the syntax of C2. */
5867 re_wchar_t c1, c2;
5868 int s1, s2;
5869 #ifdef emacs
5870 int offset = PTR_TO_OFFSET (d - 1);
5871 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5872 UPDATE_SYNTAX_TABLE (charpos);
5873 #endif
5874 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5875 s1 = SYNTAX (c1);
5876 #ifdef emacs
5877 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5878 #endif
5879 PREFETCH_NOLIMIT ();
5880 c2 = RE_STRING_CHAR (d, dend - d);
5881 s2 = SYNTAX (c2);
5882
5883 if (/* Case 2: Only one of S1 and S2 is Sword. */
5884 ((s1 == Sword) != (s2 == Sword))
5885 /* Case 3: Both of S1 and S2 are Sword, and macro
5886 WORD_BOUNDARY_P (C1, C2) returns nonzero. */
5887 || ((s1 == Sword) && WORD_BOUNDARY_P (c1, c2)))
5888 not = !not;
5889 }
5890 if (not)
5891 break;
5892 else
5893 goto fail;
5894
5895 case wordbeg:
5896 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
5897
5898 /* We FAIL in one of the following cases: */
5899
5900 /* Case 1: D is at the end of string. */
5901 if (AT_STRINGS_END (d))
5902 goto fail;
5903 else
5904 {
5905 /* C1 is the character before D, S1 is the syntax of C1, C2
5906 is the character at D, and S2 is the syntax of C2. */
5907 re_wchar_t c1, c2;
5908 int s1, s2;
5909 #ifdef emacs
5910 int offset = PTR_TO_OFFSET (d);
5911 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5912 UPDATE_SYNTAX_TABLE (charpos);
5913 #endif
5914 PREFETCH ();
5915 c2 = RE_STRING_CHAR (d, dend - d);
5916 s2 = SYNTAX (c2);
5917
5918 /* Case 2: S2 is not Sword. */
5919 if (s2 != Sword)
5920 goto fail;
5921
5922 /* Case 3: D is not at the beginning of string ... */
5923 if (!AT_STRINGS_BEG (d))
5924 {
5925 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5926 #ifdef emacs
5927 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
5928 #endif
5929 s1 = SYNTAX (c1);
5930
5931 /* ... and S1 is Sword, and WORD_BOUNDARY_P (C1, C2)
5932 returns 0. */
5933 if ((s1 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5934 goto fail;
5935 }
5936 }
5937 break;
5938
5939 case wordend:
5940 DEBUG_PRINT1 ("EXECUTING wordend.\n");
5941
5942 /* We FAIL in one of the following cases: */
5943
5944 /* Case 1: D is at the beginning of string. */
5945 if (AT_STRINGS_BEG (d))
5946 goto fail;
5947 else
5948 {
5949 /* C1 is the character before D, S1 is the syntax of C1, C2
5950 is the character at D, and S2 is the syntax of C2. */
5951 re_wchar_t c1, c2;
5952 int s1, s2;
5953 #ifdef emacs
5954 int offset = PTR_TO_OFFSET (d) - 1;
5955 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
5956 UPDATE_SYNTAX_TABLE (charpos);
5957 #endif
5958 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
5959 s1 = SYNTAX (c1);
5960
5961 /* Case 2: S1 is not Sword. */
5962 if (s1 != Sword)
5963 goto fail;
5964
5965 /* Case 3: D is not at the end of string ... */
5966 if (!AT_STRINGS_END (d))
5967 {
5968 PREFETCH_NOLIMIT ();
5969 c2 = RE_STRING_CHAR (d, dend - d);
5970 #ifdef emacs
5971 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
5972 #endif
5973 s2 = SYNTAX (c2);
5974
5975 /* ... and S2 is Sword, and WORD_BOUNDARY_P (C1, C2)
5976 returns 0. */
5977 if ((s2 == Sword) && !WORD_BOUNDARY_P (c1, c2))
5978 goto fail;
5979 }
5980 }
5981 break;
5982
5983 case symbeg:
5984 DEBUG_PRINT1 ("EXECUTING symbeg.\n");
5985
5986 /* We FAIL in one of the following cases: */
5987
5988 /* Case 1: D is at the end of string. */
5989 if (AT_STRINGS_END (d))
5990 goto fail;
5991 else
5992 {
5993 /* C1 is the character before D, S1 is the syntax of C1, C2
5994 is the character at D, and S2 is the syntax of C2. */
5995 re_wchar_t c1, c2;
5996 int s1, s2;
5997 #ifdef emacs
5998 int offset = PTR_TO_OFFSET (d);
5999 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6000 UPDATE_SYNTAX_TABLE (charpos);
6001 #endif
6002 PREFETCH ();
6003 c2 = RE_STRING_CHAR (d, dend - d);
6004 s2 = SYNTAX (c2);
6005
6006 /* Case 2: S2 is neither Sword nor Ssymbol. */
6007 if (s2 != Sword && s2 != Ssymbol)
6008 goto fail;
6009
6010 /* Case 3: D is not at the beginning of string ... */
6011 if (!AT_STRINGS_BEG (d))
6012 {
6013 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6014 #ifdef emacs
6015 UPDATE_SYNTAX_TABLE_BACKWARD (charpos - 1);
6016 #endif
6017 s1 = SYNTAX (c1);
6018
6019 /* ... and S1 is Sword or Ssymbol. */
6020 if (s1 == Sword || s1 == Ssymbol)
6021 goto fail;
6022 }
6023 }
6024 break;
6025
6026 case symend:
6027 DEBUG_PRINT1 ("EXECUTING symend.\n");
6028
6029 /* We FAIL in one of the following cases: */
6030
6031 /* Case 1: D is at the beginning of string. */
6032 if (AT_STRINGS_BEG (d))
6033 goto fail;
6034 else
6035 {
6036 /* C1 is the character before D, S1 is the syntax of C1, C2
6037 is the character at D, and S2 is the syntax of C2. */
6038 re_wchar_t c1, c2;
6039 int s1, s2;
6040 #ifdef emacs
6041 int offset = PTR_TO_OFFSET (d) - 1;
6042 int charpos = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6043 UPDATE_SYNTAX_TABLE (charpos);
6044 #endif
6045 GET_CHAR_BEFORE_2 (c1, d, string1, end1, string2, end2);
6046 s1 = SYNTAX (c1);
6047
6048 /* Case 2: S1 is neither Ssymbol nor Sword. */
6049 if (s1 != Sword && s1 != Ssymbol)
6050 goto fail;
6051
6052 /* Case 3: D is not at the end of string ... */
6053 if (!AT_STRINGS_END (d))
6054 {
6055 PREFETCH_NOLIMIT ();
6056 c2 = RE_STRING_CHAR (d, dend - d);
6057 #ifdef emacs
6058 UPDATE_SYNTAX_TABLE_FORWARD (charpos + 1);
6059 #endif
6060 s2 = SYNTAX (c2);
6061
6062 /* ... and S2 is Sword or Ssymbol. */
6063 if (s2 == Sword || s2 == Ssymbol)
6064 goto fail;
6065 }
6066 }
6067 break;
6068
6069 case syntaxspec:
6070 case notsyntaxspec:
6071 not = (re_opcode_t) *(p - 1) == notsyntaxspec;
6072 mcnt = *p++;
6073 DEBUG_PRINT3 ("EXECUTING %ssyntaxspec %d.\n", not?"not":"", mcnt);
6074 PREFETCH ();
6075 #ifdef emacs
6076 {
6077 int offset = PTR_TO_OFFSET (d);
6078 int pos1 = SYNTAX_TABLE_BYTE_TO_CHAR (offset);
6079 UPDATE_SYNTAX_TABLE (pos1);
6080 }
6081 #endif
6082 {
6083 int len;
6084 re_wchar_t c;
6085
6086 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6087
6088 if ((SYNTAX (c) != (enum syntaxcode) mcnt) ^ not)
6089 goto fail;
6090 d += len;
6091 }
6092 break;
6093
6094 #ifdef emacs
6095 case before_dot:
6096 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
6097 if (PTR_BYTE_POS (d) >= PT_BYTE)
6098 goto fail;
6099 break;
6100
6101 case at_dot:
6102 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
6103 if (PTR_BYTE_POS (d) != PT_BYTE)
6104 goto fail;
6105 break;
6106
6107 case after_dot:
6108 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
6109 if (PTR_BYTE_POS (d) <= PT_BYTE)
6110 goto fail;
6111 break;
6112
6113 case categoryspec:
6114 case notcategoryspec:
6115 not = (re_opcode_t) *(p - 1) == notcategoryspec;
6116 mcnt = *p++;
6117 DEBUG_PRINT3 ("EXECUTING %scategoryspec %d.\n", not?"not":"", mcnt);
6118 PREFETCH ();
6119 {
6120 int len;
6121 re_wchar_t c;
6122
6123 c = RE_STRING_CHAR_AND_LENGTH (d, dend - d, len);
6124
6125 if ((!CHAR_HAS_CATEGORY (c, mcnt)) ^ not)
6126 goto fail;
6127 d += len;
6128 }
6129 break;
6130
6131 #endif /* emacs */
6132
6133 default:
6134 abort ();
6135 }
6136 continue; /* Successfully executed one pattern command; keep going. */
6137
6138
6139 /* We goto here if a matching operation fails. */
6140 fail:
6141 IMMEDIATE_QUIT_CHECK;
6142 if (!FAIL_STACK_EMPTY ())
6143 {
6144 re_char *str, *pat;
6145 /* A restart point is known. Restore to that state. */
6146 DEBUG_PRINT1 ("\nFAIL:\n");
6147 POP_FAILURE_POINT (str, pat);
6148 switch (SWITCH_ENUM_CAST ((re_opcode_t) *pat++))
6149 {
6150 case on_failure_keep_string_jump:
6151 assert (str == NULL);
6152 goto continue_failure_jump;
6153
6154 case on_failure_jump_nastyloop:
6155 assert ((re_opcode_t)pat[-2] == no_op);
6156 PUSH_FAILURE_POINT (pat - 2, str);
6157 /* Fallthrough */
6158
6159 case on_failure_jump_loop:
6160 case on_failure_jump:
6161 case succeed_n:
6162 d = str;
6163 continue_failure_jump:
6164 EXTRACT_NUMBER_AND_INCR (mcnt, pat);
6165 p = pat + mcnt;
6166 break;
6167
6168 case no_op:
6169 /* A special frame used for nastyloops. */
6170 goto fail;
6171
6172 default:
6173 abort();
6174 }
6175
6176 assert (p >= bufp->buffer && p <= pend);
6177
6178 if (d >= string1 && d <= end1)
6179 dend = end_match_1;
6180 }
6181 else
6182 break; /* Matching at this starting point really fails. */
6183 } /* for (;;) */
6184
6185 if (best_regs_set)
6186 goto restore_best_regs;
6187
6188 FREE_VARIABLES ();
6189
6190 return -1; /* Failure to match. */
6191 } /* re_match_2 */
6192 \f
6193 /* Subroutine definitions for re_match_2. */
6194
6195 /* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
6196 bytes; nonzero otherwise. */
6197
6198 static int
6199 bcmp_translate (s1, s2, len, translate, multibyte)
6200 re_char *s1, *s2;
6201 register int len;
6202 RE_TRANSLATE_TYPE translate;
6203 const int multibyte;
6204 {
6205 register re_char *p1 = s1, *p2 = s2;
6206 re_char *p1_end = s1 + len;
6207 re_char *p2_end = s2 + len;
6208
6209 /* FIXME: Checking both p1 and p2 presumes that the two strings might have
6210 different lengths, but relying on a single `len' would break this. -sm */
6211 while (p1 < p1_end && p2 < p2_end)
6212 {
6213 int p1_charlen, p2_charlen;
6214 re_wchar_t p1_ch, p2_ch;
6215
6216 p1_ch = RE_STRING_CHAR_AND_LENGTH (p1, p1_end - p1, p1_charlen);
6217 p2_ch = RE_STRING_CHAR_AND_LENGTH (p2, p2_end - p2, p2_charlen);
6218
6219 if (RE_TRANSLATE (translate, p1_ch)
6220 != RE_TRANSLATE (translate, p2_ch))
6221 return 1;
6222
6223 p1 += p1_charlen, p2 += p2_charlen;
6224 }
6225
6226 if (p1 != p1_end || p2 != p2_end)
6227 return 1;
6228
6229 return 0;
6230 }
6231 \f
6232 /* Entry points for GNU code. */
6233
6234 /* re_compile_pattern is the GNU regular expression compiler: it
6235 compiles PATTERN (of length SIZE) and puts the result in BUFP.
6236 Returns 0 if the pattern was valid, otherwise an error string.
6237
6238 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
6239 are set in BUFP on entry.
6240
6241 We call regex_compile to do the actual compilation. */
6242
6243 const char *
6244 re_compile_pattern (pattern, length, bufp)
6245 const char *pattern;
6246 size_t length;
6247 struct re_pattern_buffer *bufp;
6248 {
6249 reg_errcode_t ret;
6250
6251 #ifdef emacs
6252 gl_state.current_syntax_table = current_buffer->syntax_table;
6253 #endif
6254
6255 /* GNU code is written to assume at least RE_NREGS registers will be set
6256 (and at least one extra will be -1). */
6257 bufp->regs_allocated = REGS_UNALLOCATED;
6258
6259 /* And GNU code determines whether or not to get register information
6260 by passing null for the REGS argument to re_match, etc., not by
6261 setting no_sub. */
6262 bufp->no_sub = 0;
6263
6264 ret = regex_compile ((re_char*) pattern, length, re_syntax_options, bufp);
6265
6266 if (!ret)
6267 return NULL;
6268 return gettext (re_error_msgid[(int) ret]);
6269 }
6270 WEAK_ALIAS (__re_compile_pattern, re_compile_pattern)
6271 \f
6272 /* Entry points compatible with 4.2 BSD regex library. We don't define
6273 them unless specifically requested. */
6274
6275 #if defined _REGEX_RE_COMP || defined _LIBC
6276
6277 /* BSD has one and only one pattern buffer. */
6278 static struct re_pattern_buffer re_comp_buf;
6279
6280 char *
6281 # ifdef _LIBC
6282 /* Make these definitions weak in libc, so POSIX programs can redefine
6283 these names if they don't use our functions, and still use
6284 regcomp/regexec below without link errors. */
6285 weak_function
6286 # endif
6287 re_comp (s)
6288 const char *s;
6289 {
6290 reg_errcode_t ret;
6291
6292 if (!s)
6293 {
6294 if (!re_comp_buf.buffer)
6295 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6296 return (char *) gettext ("No previous regular expression");
6297 return 0;
6298 }
6299
6300 if (!re_comp_buf.buffer)
6301 {
6302 re_comp_buf.buffer = (unsigned char *) malloc (200);
6303 if (re_comp_buf.buffer == NULL)
6304 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6305 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6306 re_comp_buf.allocated = 200;
6307
6308 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
6309 if (re_comp_buf.fastmap == NULL)
6310 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6311 return (char *) gettext (re_error_msgid[(int) REG_ESPACE]);
6312 }
6313
6314 /* Since `re_exec' always passes NULL for the `regs' argument, we
6315 don't need to initialize the pattern buffer fields which affect it. */
6316
6317 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
6318
6319 if (!ret)
6320 return NULL;
6321
6322 /* Yes, we're discarding `const' here if !HAVE_LIBINTL. */
6323 return (char *) gettext (re_error_msgid[(int) ret]);
6324 }
6325
6326
6327 int
6328 # ifdef _LIBC
6329 weak_function
6330 # endif
6331 re_exec (s)
6332 const char *s;
6333 {
6334 const int len = strlen (s);
6335 return
6336 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
6337 }
6338 #endif /* _REGEX_RE_COMP */
6339 \f
6340 /* POSIX.2 functions. Don't define these for Emacs. */
6341
6342 #ifndef emacs
6343
6344 /* regcomp takes a regular expression as a string and compiles it.
6345
6346 PREG is a regex_t *. We do not expect any fields to be initialized,
6347 since POSIX says we shouldn't. Thus, we set
6348
6349 `buffer' to the compiled pattern;
6350 `used' to the length of the compiled pattern;
6351 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
6352 REG_EXTENDED bit in CFLAGS is set; otherwise, to
6353 RE_SYNTAX_POSIX_BASIC;
6354 `fastmap' to an allocated space for the fastmap;
6355 `fastmap_accurate' to zero;
6356 `re_nsub' to the number of subexpressions in PATTERN.
6357
6358 PATTERN is the address of the pattern string.
6359
6360 CFLAGS is a series of bits which affect compilation.
6361
6362 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
6363 use POSIX basic syntax.
6364
6365 If REG_NEWLINE is set, then . and [^...] don't match newline.
6366 Also, regexec will try a match beginning after every newline.
6367
6368 If REG_ICASE is set, then we considers upper- and lowercase
6369 versions of letters to be equivalent when matching.
6370
6371 If REG_NOSUB is set, then when PREG is passed to regexec, that
6372 routine will report only success or failure, and nothing about the
6373 registers.
6374
6375 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
6376 the return codes and their meanings.) */
6377
6378 int
6379 regcomp (preg, pattern, cflags)
6380 regex_t *__restrict preg;
6381 const char *__restrict pattern;
6382 int cflags;
6383 {
6384 reg_errcode_t ret;
6385 reg_syntax_t syntax
6386 = (cflags & REG_EXTENDED) ?
6387 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
6388
6389 /* regex_compile will allocate the space for the compiled pattern. */
6390 preg->buffer = 0;
6391 preg->allocated = 0;
6392 preg->used = 0;
6393
6394 /* Try to allocate space for the fastmap. */
6395 preg->fastmap = (char *) malloc (1 << BYTEWIDTH);
6396
6397 if (cflags & REG_ICASE)
6398 {
6399 unsigned i;
6400
6401 preg->translate
6402 = (RE_TRANSLATE_TYPE) malloc (CHAR_SET_SIZE
6403 * sizeof (*(RE_TRANSLATE_TYPE)0));
6404 if (preg->translate == NULL)
6405 return (int) REG_ESPACE;
6406
6407 /* Map uppercase characters to corresponding lowercase ones. */
6408 for (i = 0; i < CHAR_SET_SIZE; i++)
6409 preg->translate[i] = ISUPPER (i) ? TOLOWER (i) : i;
6410 }
6411 else
6412 preg->translate = NULL;
6413
6414 /* If REG_NEWLINE is set, newlines are treated differently. */
6415 if (cflags & REG_NEWLINE)
6416 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
6417 syntax &= ~RE_DOT_NEWLINE;
6418 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
6419 }
6420 else
6421 syntax |= RE_NO_NEWLINE_ANCHOR;
6422
6423 preg->no_sub = !!(cflags & REG_NOSUB);
6424
6425 /* POSIX says a null character in the pattern terminates it, so we
6426 can use strlen here in compiling the pattern. */
6427 ret = regex_compile ((re_char*) pattern, strlen (pattern), syntax, preg);
6428
6429 /* POSIX doesn't distinguish between an unmatched open-group and an
6430 unmatched close-group: both are REG_EPAREN. */
6431 if (ret == REG_ERPAREN)
6432 ret = REG_EPAREN;
6433
6434 if (ret == REG_NOERROR && preg->fastmap)
6435 { /* Compute the fastmap now, since regexec cannot modify the pattern
6436 buffer. */
6437 re_compile_fastmap (preg);
6438 if (preg->can_be_null)
6439 { /* The fastmap can't be used anyway. */
6440 free (preg->fastmap);
6441 preg->fastmap = NULL;
6442 }
6443 }
6444 return (int) ret;
6445 }
6446 WEAK_ALIAS (__regcomp, regcomp)
6447
6448
6449 /* regexec searches for a given pattern, specified by PREG, in the
6450 string STRING.
6451
6452 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
6453 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
6454 least NMATCH elements, and we set them to the offsets of the
6455 corresponding matched substrings.
6456
6457 EFLAGS specifies `execution flags' which affect matching: if
6458 REG_NOTBOL is set, then ^ does not match at the beginning of the
6459 string; if REG_NOTEOL is set, then $ does not match at the end.
6460
6461 We return 0 if we find a match and REG_NOMATCH if not. */
6462
6463 int
6464 regexec (preg, string, nmatch, pmatch, eflags)
6465 const regex_t *__restrict preg;
6466 const char *__restrict string;
6467 size_t nmatch;
6468 regmatch_t pmatch[__restrict_arr];
6469 int eflags;
6470 {
6471 int ret;
6472 struct re_registers regs;
6473 regex_t private_preg;
6474 int len = strlen (string);
6475 boolean want_reg_info = !preg->no_sub && nmatch > 0 && pmatch;
6476
6477 private_preg = *preg;
6478
6479 private_preg.not_bol = !!(eflags & REG_NOTBOL);
6480 private_preg.not_eol = !!(eflags & REG_NOTEOL);
6481
6482 /* The user has told us exactly how many registers to return
6483 information about, via `nmatch'. We have to pass that on to the
6484 matching routines. */
6485 private_preg.regs_allocated = REGS_FIXED;
6486
6487 if (want_reg_info)
6488 {
6489 regs.num_regs = nmatch;
6490 regs.start = TALLOC (nmatch * 2, regoff_t);
6491 if (regs.start == NULL)
6492 return (int) REG_NOMATCH;
6493 regs.end = regs.start + nmatch;
6494 }
6495
6496 /* Instead of using not_eol to implement REG_NOTEOL, we could simply
6497 pass (&private_preg, string, len + 1, 0, len, ...) pretending the string
6498 was a little bit longer but still only matching the real part.
6499 This works because the `endline' will check for a '\n' and will find a
6500 '\0', correctly deciding that this is not the end of a line.
6501 But it doesn't work out so nicely for REG_NOTBOL, since we don't have
6502 a convenient '\0' there. For all we know, the string could be preceded
6503 by '\n' which would throw things off. */
6504
6505 /* Perform the searching operation. */
6506 ret = re_search (&private_preg, string, len,
6507 /* start: */ 0, /* range: */ len,
6508 want_reg_info ? &regs : (struct re_registers *) 0);
6509
6510 /* Copy the register information to the POSIX structure. */
6511 if (want_reg_info)
6512 {
6513 if (ret >= 0)
6514 {
6515 unsigned r;
6516
6517 for (r = 0; r < nmatch; r++)
6518 {
6519 pmatch[r].rm_so = regs.start[r];
6520 pmatch[r].rm_eo = regs.end[r];
6521 }
6522 }
6523
6524 /* If we needed the temporary register info, free the space now. */
6525 free (regs.start);
6526 }
6527
6528 /* We want zero return to mean success, unlike `re_search'. */
6529 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
6530 }
6531 WEAK_ALIAS (__regexec, regexec)
6532
6533
6534 /* Returns a message corresponding to an error code, ERR_CODE, returned
6535 from either regcomp or regexec. We don't use PREG here.
6536
6537 ERR_CODE was previously called ERRCODE, but that name causes an
6538 error with msvc8 compiler. */
6539
6540 size_t
6541 regerror (err_code, preg, errbuf, errbuf_size)
6542 int err_code;
6543 const regex_t *preg;
6544 char *errbuf;
6545 size_t errbuf_size;
6546 {
6547 const char *msg;
6548 size_t msg_size;
6549
6550 if (err_code < 0
6551 || err_code >= (sizeof (re_error_msgid) / sizeof (re_error_msgid[0])))
6552 /* Only error codes returned by the rest of the code should be passed
6553 to this routine. If we are given anything else, or if other regex
6554 code generates an invalid error code, then the program has a bug.
6555 Dump core so we can fix it. */
6556 abort ();
6557
6558 msg = gettext (re_error_msgid[err_code]);
6559
6560 msg_size = strlen (msg) + 1; /* Includes the null. */
6561
6562 if (errbuf_size != 0)
6563 {
6564 if (msg_size > errbuf_size)
6565 {
6566 strncpy (errbuf, msg, errbuf_size - 1);
6567 errbuf[errbuf_size - 1] = 0;
6568 }
6569 else
6570 strcpy (errbuf, msg);
6571 }
6572
6573 return msg_size;
6574 }
6575 WEAK_ALIAS (__regerror, regerror)
6576
6577
6578 /* Free dynamically allocated space used by PREG. */
6579
6580 void
6581 regfree (preg)
6582 regex_t *preg;
6583 {
6584 if (preg->buffer != NULL)
6585 free (preg->buffer);
6586 preg->buffer = NULL;
6587
6588 preg->allocated = 0;
6589 preg->used = 0;
6590
6591 if (preg->fastmap != NULL)
6592 free (preg->fastmap);
6593 preg->fastmap = NULL;
6594 preg->fastmap_accurate = 0;
6595
6596 if (preg->translate != NULL)
6597 free (preg->translate);
6598 preg->translate = NULL;
6599 }
6600 WEAK_ALIAS (__regfree, regfree)
6601
6602 #endif /* not emacs */
6603
6604 /* arch-tag: 4ffd68ba-2a9e-435b-a21a-018990f9eeb2
6605 (do not change this comment) */