8ea893e532f717e0def38545b83d3c9a4a1ba629
[bpt/emacs.git] / src / unexelf.c
1 /* Copyright (C) 1985, 1986, 1987, 1988, 1990, 1992, 1999, 2000
2 Free Software Foundation, Inc.
3
4 This file is part of GNU Emacs.
5
6 GNU Emacs is free software; you can redistribute it and/or modify
7 it under the terms of the GNU General Public License as published by
8 the Free Software Foundation; either version 2, or (at your option)
9 any later version.
10
11 GNU Emacs is distributed in the hope that it will be useful,
12 but WITHOUT ANY WARRANTY; without even the implied warranty of
13 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
14 GNU General Public License for more details.
15
16 You should have received a copy of the GNU General Public License
17 along with GNU Emacs; see the file COPYING. If not, write to
18 the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
19 Boston, MA 02111-1307, USA.
20
21 In other words, you are welcome to use, share and improve this program.
22 You are forbidden to forbid anyone else to use, share and improve
23 what you give them. Help stamp out software-hoarding! */
24
25
26 /*
27 * unexec.c - Convert a running program into an a.out file.
28 *
29 * Author: Spencer W. Thomas
30 * Computer Science Dept.
31 * University of Utah
32 * Date: Tue Mar 2 1982
33 * Modified heavily since then.
34 *
35 * Synopsis:
36 * unexec (new_name, old_name, data_start, bss_start, entry_address)
37 * char *new_name, *old_name;
38 * unsigned data_start, bss_start, entry_address;
39 *
40 * Takes a snapshot of the program and makes an a.out format file in the
41 * file named by the string argument new_name.
42 * If old_name is non-NULL, the symbol table will be taken from the given file.
43 * On some machines, an existing old_name file is required.
44 *
45 * The boundaries within the a.out file may be adjusted with the data_start
46 * and bss_start arguments. Either or both may be given as 0 for defaults.
47 *
48 * Data_start gives the boundary between the text segment and the data
49 * segment of the program. The text segment can contain shared, read-only
50 * program code and literal data, while the data segment is always unshared
51 * and unprotected. Data_start gives the lowest unprotected address.
52 * The value you specify may be rounded down to a suitable boundary
53 * as required by the machine you are using.
54 *
55 * Bss_start indicates how much of the data segment is to be saved in the
56 * a.out file and restored when the program is executed. It gives the lowest
57 * unsaved address, and is rounded up to a page boundary. The default when 0
58 * is given assumes that the entire data segment is to be stored, including
59 * the previous data and bss as well as any additional storage allocated with
60 * break (2).
61 *
62 * The new file is set up to start at entry_address.
63 *
64 */
65
66 /* Even more heavily modified by james@bigtex.cactus.org of Dell Computer Co.
67 * ELF support added.
68 *
69 * Basic theory: the data space of the running process needs to be
70 * dumped to the output file. Normally we would just enlarge the size
71 * of .data, scooting everything down. But we can't do that in ELF,
72 * because there is often something between the .data space and the
73 * .bss space.
74 *
75 * In the temacs dump below, notice that the Global Offset Table
76 * (.got) and the Dynamic link data (.dynamic) come between .data1 and
77 * .bss. It does not work to overlap .data with these fields.
78 *
79 * The solution is to create a new .data segment. This segment is
80 * filled with data from the current process. Since the contents of
81 * various sections refer to sections by index, the new .data segment
82 * is made the last in the table to avoid changing any existing index.
83
84 * This is an example of how the section headers are changed. "Addr"
85 * is a process virtual address. "Offset" is a file offset.
86
87 raid:/nfs/raid/src/dist-18.56/src> dump -h temacs
88
89 temacs:
90
91 **** SECTION HEADER TABLE ****
92 [No] Type Flags Addr Offset Size Name
93 Link Info Adralgn Entsize
94
95 [1] 1 2 0x80480d4 0xd4 0x13 .interp
96 0 0 0x1 0
97
98 [2] 5 2 0x80480e8 0xe8 0x388 .hash
99 3 0 0x4 0x4
100
101 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
102 4 1 0x4 0x10
103
104 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
105 0 0 0x1 0
106
107 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
108 3 7 0x4 0x8
109
110 [6] 1 6 0x8049348 0x1348 0x3 .init
111 0 0 0x4 0
112
113 [7] 1 6 0x804934c 0x134c 0x680 .plt
114 0 0 0x4 0x4
115
116 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
117 0 0 0x4 0
118
119 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
120 0 0 0x4 0
121
122 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
123 0 0 0x4 0
124
125 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
126 0 0 0x4 0
127
128 [12] 1 3 0x8088330 0x3f330 0x20afc .data
129 0 0 0x4 0
130
131 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
132 0 0 0x4 0
133
134 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
135 0 0 0x4 0x4
136
137 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
138 4 0 0x4 0x8
139
140 [16] 8 3 0x80a98f4 0x608f4 0x449c .bss
141 0 0 0x4 0
142
143 [17] 2 0 0 0x608f4 0x9b90 .symtab
144 18 371 0x4 0x10
145
146 [18] 3 0 0 0x6a484 0x8526 .strtab
147 0 0 0x1 0
148
149 [19] 3 0 0 0x729aa 0x93 .shstrtab
150 0 0 0x1 0
151
152 [20] 1 0 0 0x72a3d 0x68b7 .comment
153 0 0 0x1 0
154
155 raid:/nfs/raid/src/dist-18.56/src> dump -h xemacs
156
157 xemacs:
158
159 **** SECTION HEADER TABLE ****
160 [No] Type Flags Addr Offset Size Name
161 Link Info Adralgn Entsize
162
163 [1] 1 2 0x80480d4 0xd4 0x13 .interp
164 0 0 0x1 0
165
166 [2] 5 2 0x80480e8 0xe8 0x388 .hash
167 3 0 0x4 0x4
168
169 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
170 4 1 0x4 0x10
171
172 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
173 0 0 0x1 0
174
175 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
176 3 7 0x4 0x8
177
178 [6] 1 6 0x8049348 0x1348 0x3 .init
179 0 0 0x4 0
180
181 [7] 1 6 0x804934c 0x134c 0x680 .plt
182 0 0 0x4 0x4
183
184 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
185 0 0 0x4 0
186
187 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
188 0 0 0x4 0
189
190 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
191 0 0 0x4 0
192
193 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
194 0 0 0x4 0
195
196 [12] 1 3 0x8088330 0x3f330 0x20afc .data
197 0 0 0x4 0
198
199 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
200 0 0 0x4 0
201
202 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
203 0 0 0x4 0x4
204
205 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
206 4 0 0x4 0x8
207
208 [16] 8 3 0x80c6800 0x7d800 0 .bss
209 0 0 0x4 0
210
211 [17] 2 0 0 0x7d800 0x9b90 .symtab
212 18 371 0x4 0x10
213
214 [18] 3 0 0 0x87390 0x8526 .strtab
215 0 0 0x1 0
216
217 [19] 3 0 0 0x8f8b6 0x93 .shstrtab
218 0 0 0x1 0
219
220 [20] 1 0 0 0x8f949 0x68b7 .comment
221 0 0 0x1 0
222
223 [21] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
224 0 0 0x4 0
225
226 * This is an example of how the file header is changed. "Shoff" is
227 * the section header offset within the file. Since that table is
228 * after the new .data section, it is moved. "Shnum" is the number of
229 * sections, which we increment.
230 *
231 * "Phoff" is the file offset to the program header. "Phentsize" and
232 * "Shentsz" are the program and section header entries sizes respectively.
233 * These can be larger than the apparent struct sizes.
234
235 raid:/nfs/raid/src/dist-18.56/src> dump -f temacs
236
237 temacs:
238
239 **** ELF HEADER ****
240 Class Data Type Machine Version
241 Entry Phoff Shoff Flags Ehsize
242 Phentsize Phnum Shentsz Shnum Shstrndx
243
244 1 1 2 3 1
245 0x80499cc 0x34 0x792f4 0 0x34
246 0x20 5 0x28 21 19
247
248 raid:/nfs/raid/src/dist-18.56/src> dump -f xemacs
249
250 xemacs:
251
252 **** ELF HEADER ****
253 Class Data Type Machine Version
254 Entry Phoff Shoff Flags Ehsize
255 Phentsize Phnum Shentsz Shnum Shstrndx
256
257 1 1 2 3 1
258 0x80499cc 0x34 0x96200 0 0x34
259 0x20 5 0x28 22 19
260
261 * These are the program headers. "Offset" is the file offset to the
262 * segment. "Vaddr" is the memory load address. "Filesz" is the
263 * segment size as it appears in the file, and "Memsz" is the size in
264 * memory. Below, the third segment is the code and the fourth is the
265 * data: the difference between Filesz and Memsz is .bss
266
267 raid:/nfs/raid/src/dist-18.56/src> dump -o temacs
268
269 temacs:
270 ***** PROGRAM EXECUTION HEADER *****
271 Type Offset Vaddr Paddr
272 Filesz Memsz Flags Align
273
274 6 0x34 0x8048034 0
275 0xa0 0xa0 5 0
276
277 3 0xd4 0 0
278 0x13 0 4 0
279
280 1 0x34 0x8048034 0
281 0x3f2f9 0x3f2f9 5 0x1000
282
283 1 0x3f330 0x8088330 0
284 0x215c4 0x25a60 7 0x1000
285
286 2 0x60874 0x80a9874 0
287 0x80 0 7 0
288
289 raid:/nfs/raid/src/dist-18.56/src> dump -o xemacs
290
291 xemacs:
292 ***** PROGRAM EXECUTION HEADER *****
293 Type Offset Vaddr Paddr
294 Filesz Memsz Flags Align
295
296 6 0x34 0x8048034 0
297 0xa0 0xa0 5 0
298
299 3 0xd4 0 0
300 0x13 0 4 0
301
302 1 0x34 0x8048034 0
303 0x3f2f9 0x3f2f9 5 0x1000
304
305 1 0x3f330 0x8088330 0
306 0x3e4d0 0x3e4d0 7 0x1000
307
308 2 0x60874 0x80a9874 0
309 0x80 0 7 0
310
311
312 */
313 \f
314 /* Modified by wtien@urbana.mcd.mot.com of Motorola Inc.
315 *
316 * The above mechanism does not work if the unexeced ELF file is being
317 * re-layout by other applications (such as `strip'). All the applications
318 * that re-layout the internal of ELF will layout all sections in ascending
319 * order of their file offsets. After the re-layout, the data2 section will
320 * still be the LAST section in the section header vector, but its file offset
321 * is now being pushed far away down, and causes part of it not to be mapped
322 * in (ie. not covered by the load segment entry in PHDR vector), therefore
323 * causes the new binary to fail.
324 *
325 * The solution is to modify the unexec algorithm to insert the new data2
326 * section header right before the new bss section header, so their file
327 * offsets will be in the ascending order. Since some of the section's (all
328 * sections AFTER the bss section) indexes are now changed, we also need to
329 * modify some fields to make them point to the right sections. This is done
330 * by macro PATCH_INDEX. All the fields that need to be patched are:
331 *
332 * 1. ELF header e_shstrndx field.
333 * 2. section header sh_link and sh_info field.
334 * 3. symbol table entry st_shndx field.
335 *
336 * The above example now should look like:
337
338 **** SECTION HEADER TABLE ****
339 [No] Type Flags Addr Offset Size Name
340 Link Info Adralgn Entsize
341
342 [1] 1 2 0x80480d4 0xd4 0x13 .interp
343 0 0 0x1 0
344
345 [2] 5 2 0x80480e8 0xe8 0x388 .hash
346 3 0 0x4 0x4
347
348 [3] 11 2 0x8048470 0x470 0x7f0 .dynsym
349 4 1 0x4 0x10
350
351 [4] 3 2 0x8048c60 0xc60 0x3ad .dynstr
352 0 0 0x1 0
353
354 [5] 9 2 0x8049010 0x1010 0x338 .rel.plt
355 3 7 0x4 0x8
356
357 [6] 1 6 0x8049348 0x1348 0x3 .init
358 0 0 0x4 0
359
360 [7] 1 6 0x804934c 0x134c 0x680 .plt
361 0 0 0x4 0x4
362
363 [8] 1 6 0x80499cc 0x19cc 0x3c56f .text
364 0 0 0x4 0
365
366 [9] 1 6 0x8085f3c 0x3df3c 0x3 .fini
367 0 0 0x4 0
368
369 [10] 1 2 0x8085f40 0x3df40 0x69c .rodata
370 0 0 0x4 0
371
372 [11] 1 2 0x80865dc 0x3e5dc 0xd51 .rodata1
373 0 0 0x4 0
374
375 [12] 1 3 0x8088330 0x3f330 0x20afc .data
376 0 0 0x4 0
377
378 [13] 1 3 0x80a8e2c 0x5fe2c 0x89d .data1
379 0 0 0x4 0
380
381 [14] 1 3 0x80a96cc 0x606cc 0x1a8 .got
382 0 0 0x4 0x4
383
384 [15] 6 3 0x80a9874 0x60874 0x80 .dynamic
385 4 0 0x4 0x8
386
387 [16] 1 3 0x80a98f4 0x608f4 0x1cf0c .data
388 0 0 0x4 0
389
390 [17] 8 3 0x80c6800 0x7d800 0 .bss
391 0 0 0x4 0
392
393 [18] 2 0 0 0x7d800 0x9b90 .symtab
394 19 371 0x4 0x10
395
396 [19] 3 0 0 0x87390 0x8526 .strtab
397 0 0 0x1 0
398
399 [20] 3 0 0 0x8f8b6 0x93 .shstrtab
400 0 0 0x1 0
401
402 [21] 1 0 0 0x8f949 0x68b7 .comment
403 0 0 0x1 0
404
405 */
406 \f
407 /* We do not use mmap because that fails with NFS.
408 Instead we read the whole file, modify it, and write it out. */
409
410 #ifndef emacs
411 #define fatal(a, b, c) fprintf (stderr, a, b, c), exit (1)
412 #include <string.h>
413 #else
414 #include <config.h>
415 extern void fatal (char *, ...);
416 #endif
417
418 #include <sys/types.h>
419 #include <stdio.h>
420 #include <sys/stat.h>
421 #include <memory.h>
422 #include <errno.h>
423 #include <unistd.h>
424 #include <fcntl.h>
425 #if !defined (__NetBSD__) && !defined (__OpenBSD__)
426 #include <elf.h>
427 #endif
428 #include <sys/mman.h>
429 #if defined (__sony_news) && defined (_SYSTYPE_SYSV)
430 #include <sys/elf_mips.h>
431 #include <sym.h>
432 #endif /* __sony_news && _SYSTYPE_SYSV */
433 #if __sgi
434 #include <syms.h> /* for HDRR declaration */
435 #endif /* __sgi */
436
437 #if defined (__alpha__) && !defined (__NetBSD__) && !defined (__OpenBSD__)
438 /* Declare COFF debugging symbol table. This used to be in
439 /usr/include/sym.h, but this file is no longer included in Red Hat
440 5.0 and presumably in any other glibc 2.x based distribution. */
441 typedef struct {
442 short magic;
443 short vstamp;
444 int ilineMax;
445 int idnMax;
446 int ipdMax;
447 int isymMax;
448 int ioptMax;
449 int iauxMax;
450 int issMax;
451 int issExtMax;
452 int ifdMax;
453 int crfd;
454 int iextMax;
455 long cbLine;
456 long cbLineOffset;
457 long cbDnOffset;
458 long cbPdOffset;
459 long cbSymOffset;
460 long cbOptOffset;
461 long cbAuxOffset;
462 long cbSsOffset;
463 long cbSsExtOffset;
464 long cbFdOffset;
465 long cbRfdOffset;
466 long cbExtOffset;
467 } HDRR, *pHDRR;
468 #define cbHDRR sizeof(HDRR)
469 #define hdrNil ((pHDRR)0)
470 #endif
471
472 #ifdef __NetBSD__
473 /*
474 * NetBSD does not have normal-looking user-land ELF support.
475 */
476 # if defined __alpha__ || defined __sparc_v9__
477 # define ELFSIZE 64
478 # else
479 # define ELFSIZE 32
480 # endif
481 # include <sys/exec_elf.h>
482
483 # ifndef PT_LOAD
484 # define PT_LOAD Elf_pt_load
485 # if 0 /* was in pkgsrc patches for 20.7 */
486 # define SHT_PROGBITS Elf_sht_progbits
487 # endif
488 # define SHT_SYMTAB Elf_sht_symtab
489 # define SHT_DYNSYM Elf_sht_dynsym
490 # define SHT_NULL Elf_sht_null
491 # define SHT_NOBITS Elf_sht_nobits
492 # define SHT_REL Elf_sht_rel
493 # define SHT_RELA Elf_sht_rela
494
495 # define SHN_UNDEF Elf_eshn_undefined
496 # define SHN_ABS Elf_eshn_absolute
497 # define SHN_COMMON Elf_eshn_common
498 # endif /* !PT_LOAD */
499
500 # ifdef __alpha__
501 # include <sys/exec_ecoff.h>
502 # define HDRR struct ecoff_symhdr
503 # define pHDRR HDRR *
504 # endif /* __alpha__ */
505
506 #ifdef __mips__ /* was in pkgsrc patches for 20.7 */
507 # define SHT_MIPS_DEBUG DT_MIPS_FLAGS
508 # define HDRR struct Elf_Shdr
509 #endif /* __mips__ */
510 #endif /* __NetBSD__ */
511
512 #ifdef __OpenBSD__
513 # include <sys/exec_elf.h>
514 #endif
515
516 #if __GNU_LIBRARY__ - 0 >= 6
517 # include <link.h> /* get ElfW etc */
518 #endif
519
520 #ifndef ElfW
521 # ifdef __STDC__
522 # define ElfBitsW(bits, type) Elf##bits##_##type
523 # else
524 # define ElfBitsW(bits, type) Elf/**/bits/**/_/**/type
525 # endif
526 # ifdef _LP64
527 # define ELFSIZE 64
528 # else
529 # define ELFSIZE 32
530 # endif
531 /* This macro expands `bits' before invoking ElfBitsW. */
532 # define ElfExpandBitsW(bits, type) ElfBitsW (bits, type)
533 # define ElfW(type) ElfExpandBitsW (ELFSIZE, type)
534 #endif
535
536 #ifndef ELF_BSS_SECTION_NAME
537 #define ELF_BSS_SECTION_NAME ".bss"
538 #endif
539
540 /* Get the address of a particular section or program header entry,
541 * accounting for the size of the entries.
542 */
543 /*
544 On PPC Reference Platform running Solaris 2.5.1
545 the plt section is also of type NOBI like the bss section.
546 (not really stored) and therefore sections after the bss
547 section start at the plt offset. The plt section is always
548 the one just before the bss section.
549 Thus, we modify the test from
550 if (NEW_SECTION_H (nn).sh_offset >= new_data2_offset)
551 to
552 if (NEW_SECTION_H (nn).sh_offset >=
553 OLD_SECTION_H (old_bss_index-1).sh_offset)
554 This is just a hack. We should put the new data section
555 before the .plt section.
556 And we should not have this routine at all but use
557 the libelf library to read the old file and create the new
558 file.
559 The changed code is minimal and depends on prep set in m/prep.h
560 Erik Deumens
561 Quantum Theory Project
562 University of Florida
563 deumens@qtp.ufl.edu
564 Apr 23, 1996
565 */
566
567 #define OLD_SECTION_H(n) \
568 (*(ElfW(Shdr) *) ((byte *) old_section_h + old_file_h->e_shentsize * (n)))
569 #define NEW_SECTION_H(n) \
570 (*(ElfW(Shdr) *) ((byte *) new_section_h + new_file_h->e_shentsize * (n)))
571 #define OLD_PROGRAM_H(n) \
572 (*(ElfW(Phdr) *) ((byte *) old_program_h + old_file_h->e_phentsize * (n)))
573 #define NEW_PROGRAM_H(n) \
574 (*(ElfW(Phdr) *) ((byte *) new_program_h + new_file_h->e_phentsize * (n)))
575
576 #define PATCH_INDEX(n) \
577 do { \
578 if ((int) (n) >= old_bss_index) \
579 (n)++; } while (0)
580 typedef unsigned char byte;
581
582 /* Round X up to a multiple of Y. */
583
584 static ElfW(Addr)
585 round_up (x, y)
586 ElfW(Addr) x, y;
587 {
588 int rem = x % y;
589 if (rem == 0)
590 return x;
591 return x - rem + y;
592 }
593
594 /* Return the index of the section named NAME.
595 SECTION_NAMES, FILE_NAME and FILE_H give information
596 about the file we are looking in.
597
598 If we don't find the section NAME, that is a fatal error
599 if NOERROR is 0; we return -1 if NOERROR is nonzero. */
600
601 static int
602 find_section (name, section_names, file_name, old_file_h, old_section_h, noerror)
603 char *name;
604 char *section_names;
605 char *file_name;
606 ElfW(Ehdr) *old_file_h;
607 ElfW(Shdr) *old_section_h;
608 int noerror;
609 {
610 int idx;
611
612 for (idx = 1; idx < old_file_h->e_shnum; idx++)
613 {
614 #ifdef DEBUG
615 fprintf (stderr, "Looking for %s - found %s\n", name,
616 section_names + OLD_SECTION_H (idx).sh_name);
617 #endif
618 if (!strcmp (section_names + OLD_SECTION_H (idx).sh_name,
619 name))
620 break;
621 }
622 if (idx == old_file_h->e_shnum)
623 {
624 if (noerror)
625 return -1;
626 else
627 fatal ("Can't find %s in %s.\n", name, file_name);
628 }
629
630 return idx;
631 }
632
633 /* ****************************************************************
634 * unexec
635 *
636 * driving logic.
637 *
638 * In ELF, this works by replacing the old .bss section with a new
639 * .data section, and inserting an empty .bss immediately afterwards.
640 *
641 */
642 void
643 unexec (new_name, old_name, data_start, bss_start, entry_address)
644 char *new_name, *old_name;
645 unsigned data_start, bss_start, entry_address;
646 {
647 int new_file, old_file, new_file_size;
648
649 /* Pointers to the base of the image of the two files. */
650 caddr_t old_base, new_base;
651
652 /* Pointers to the file, program and section headers for the old and
653 new files. */
654 ElfW(Ehdr) *old_file_h, *new_file_h;
655 ElfW(Phdr) *old_program_h, *new_program_h;
656 ElfW(Shdr) *old_section_h, *new_section_h;
657
658 /* Point to the section name table in the old file. */
659 char *old_section_names;
660
661 ElfW(Addr) old_bss_addr, new_bss_addr;
662 ElfW(Word) old_bss_size, new_data2_size;
663 ElfW(Off) new_data2_offset;
664 ElfW(Addr) new_data2_addr;
665
666 int n, nn;
667 int old_bss_index, old_sbss_index;
668 int old_data_index, new_data2_index;
669 int old_mdebug_index;
670 struct stat stat_buf;
671 int old_file_size;
672
673 /* Open the old file, allocate a buffer of the right size, and read
674 in the file contents. */
675
676 old_file = open (old_name, O_RDONLY);
677
678 if (old_file < 0)
679 fatal ("Can't open %s for reading: errno %d\n", old_name, errno);
680
681 if (fstat (old_file, &stat_buf) == -1)
682 fatal ("Can't fstat (%s): errno %d\n", old_name, errno);
683
684 /* We cannot use malloc here because that may use sbrk. If it does,
685 we'd dump our temporary buffers with Emacs, and we'd have to be
686 extra careful to use the correct value of sbrk(0) after
687 allocating all buffers in the code below, which we aren't. */
688 old_file_size = stat_buf.st_size;
689 old_base = mmap (NULL, old_file_size, PROT_READ | PROT_WRITE,
690 MAP_ANON | MAP_PRIVATE, -1, 0);
691 if (old_base == (caddr_t) -1)
692 fatal ("Can't allocate buffer for %s\n", old_name);
693
694 if (read (old_file, old_base, stat_buf.st_size) != stat_buf.st_size)
695 fatal ("Didn't read all of %s: errno %d\n", old_name, errno);
696
697 /* Get pointers to headers & section names */
698
699 old_file_h = (ElfW(Ehdr) *) old_base;
700 old_program_h = (ElfW(Phdr) *) ((byte *) old_base + old_file_h->e_phoff);
701 old_section_h = (ElfW(Shdr) *) ((byte *) old_base + old_file_h->e_shoff);
702 old_section_names = (char *) old_base
703 + OLD_SECTION_H (old_file_h->e_shstrndx).sh_offset;
704
705 /* Find the mdebug section, if any. */
706
707 old_mdebug_index = find_section (".mdebug", old_section_names,
708 old_name, old_file_h, old_section_h, 1);
709
710 /* Find the old .bss section. Figure out parameters of the new
711 data2 and bss sections. */
712
713 old_bss_index = find_section (".bss", old_section_names,
714 old_name, old_file_h, old_section_h, 0);
715
716 old_sbss_index = find_section (".sbss", old_section_names,
717 old_name, old_file_h, old_section_h, 1);
718 if (old_sbss_index != -1)
719 if (OLD_SECTION_H (old_sbss_index).sh_type == SHT_PROGBITS)
720 old_sbss_index = -1;
721
722 if (old_sbss_index == -1)
723 {
724 old_bss_addr = OLD_SECTION_H (old_bss_index).sh_addr;
725 old_bss_size = OLD_SECTION_H (old_bss_index).sh_size;
726 new_data2_index = old_bss_index;
727 }
728 else
729 {
730 old_bss_addr = OLD_SECTION_H (old_sbss_index).sh_addr;
731 old_bss_size = OLD_SECTION_H (old_bss_index).sh_size
732 + OLD_SECTION_H (old_sbss_index).sh_size;
733 new_data2_index = old_sbss_index;
734 }
735
736 /* Find the old .data section. Figure out parameters of
737 the new data2 and bss sections. */
738
739 old_data_index = find_section (".data", old_section_names,
740 old_name, old_file_h, old_section_h, 0);
741
742 #if defined (emacs) || !defined (DEBUG)
743 new_bss_addr = (ElfW(Addr)) sbrk (0);
744 #else
745 new_bss_addr = old_bss_addr + old_bss_size + 0x1234;
746 #endif
747 new_data2_addr = old_bss_addr;
748 new_data2_size = new_bss_addr - old_bss_addr;
749 new_data2_offset = OLD_SECTION_H (old_data_index).sh_offset +
750 (new_data2_addr - OLD_SECTION_H (old_data_index).sh_addr);
751
752 #ifdef DEBUG
753 fprintf (stderr, "old_bss_index %d\n", old_bss_index);
754 fprintf (stderr, "old_bss_addr %x\n", old_bss_addr);
755 fprintf (stderr, "old_bss_size %x\n", old_bss_size);
756 fprintf (stderr, "new_bss_addr %x\n", new_bss_addr);
757 fprintf (stderr, "new_data2_addr %x\n", new_data2_addr);
758 fprintf (stderr, "new_data2_size %x\n", new_data2_size);
759 fprintf (stderr, "new_data2_offset %x\n", new_data2_offset);
760 #endif
761
762 if ((unsigned) new_bss_addr < (unsigned) old_bss_addr + old_bss_size)
763 fatal (".bss shrank when undumping???\n", 0, 0);
764
765 /* Set the output file to the right size. Allocate a buffer to hold
766 the image of the new file. Set pointers to various interesting
767 objects. stat_buf still has old_file data. */
768
769 new_file = open (new_name, O_RDWR | O_CREAT, 0666);
770 if (new_file < 0)
771 fatal ("Can't creat (%s): errno %d\n", new_name, errno);
772
773 new_file_size = stat_buf.st_size + old_file_h->e_shentsize + new_data2_size;
774
775 if (ftruncate (new_file, new_file_size))
776 fatal ("Can't ftruncate (%s): errno %d\n", new_name, errno);
777
778 new_base = mmap (NULL, new_file_size, PROT_READ | PROT_WRITE,
779 MAP_ANON | MAP_PRIVATE, -1, 0);
780 if (new_base == (caddr_t) -1)
781 fatal ("Can't allocate buffer for %s\n", old_name);
782
783 new_file_h = (ElfW(Ehdr) *) new_base;
784 new_program_h = (ElfW(Phdr) *) ((byte *) new_base + old_file_h->e_phoff);
785 new_section_h = (ElfW(Shdr) *)
786 ((byte *) new_base + old_file_h->e_shoff + new_data2_size);
787
788 /* Make our new file, program and section headers as copies of the
789 originals. */
790
791 memcpy (new_file_h, old_file_h, old_file_h->e_ehsize);
792 memcpy (new_program_h, old_program_h,
793 old_file_h->e_phnum * old_file_h->e_phentsize);
794
795 /* Modify the e_shstrndx if necessary. */
796 PATCH_INDEX (new_file_h->e_shstrndx);
797
798 /* Fix up file header. We'll add one section. Section header is
799 further away now. */
800
801 new_file_h->e_shoff += new_data2_size;
802 new_file_h->e_shnum += 1;
803
804 #ifdef DEBUG
805 fprintf (stderr, "Old section offset %x\n", old_file_h->e_shoff);
806 fprintf (stderr, "Old section count %d\n", old_file_h->e_shnum);
807 fprintf (stderr, "New section offset %x\n", new_file_h->e_shoff);
808 fprintf (stderr, "New section count %d\n", new_file_h->e_shnum);
809 #endif
810
811 /* Fix up a new program header. Extend the writable data segment so
812 that the bss area is covered too. Find that segment by looking
813 for a segment that ends just before the .bss area. Make sure
814 that no segments are above the new .data2. Put a loop at the end
815 to adjust the offset and address of any segment that is above
816 data2, just in case we decide to allow this later. */
817
818 for (n = new_file_h->e_phnum - 1; n >= 0; n--)
819 {
820 /* Compute maximum of all requirements for alignment of section. */
821 ElfW(Word) alignment = (NEW_PROGRAM_H (n)).p_align;
822 if ((OLD_SECTION_H (old_bss_index)).sh_addralign > alignment)
823 alignment = OLD_SECTION_H (old_bss_index).sh_addralign;
824
825 #ifdef __sgi
826 /* According to r02kar@x4u2.desy.de (Karsten Kuenne)
827 and oliva@gnu.org (Alexandre Oliva), on IRIX 5.2, we
828 always get "Program segment above .bss" when dumping
829 when the executable doesn't have an sbss section. */
830 if (old_sbss_index != -1)
831 #endif /* __sgi */
832 if (NEW_PROGRAM_H (n).p_vaddr + NEW_PROGRAM_H (n).p_filesz
833 > (old_sbss_index == -1
834 ? old_bss_addr
835 : round_up (old_bss_addr, alignment)))
836 fatal ("Program segment above .bss in %s\n", old_name, 0);
837
838 if (NEW_PROGRAM_H (n).p_type == PT_LOAD
839 && (round_up ((NEW_PROGRAM_H (n)).p_vaddr
840 + (NEW_PROGRAM_H (n)).p_filesz,
841 alignment)
842 == round_up (old_bss_addr, alignment)))
843 break;
844 }
845 if (n < 0)
846 fatal ("Couldn't find segment next to .bss in %s\n", old_name, 0);
847
848 /* Make sure that the size includes any padding before the old .bss
849 section. */
850 NEW_PROGRAM_H (n).p_filesz = new_bss_addr - NEW_PROGRAM_H (n).p_vaddr;
851 NEW_PROGRAM_H (n).p_memsz = NEW_PROGRAM_H (n).p_filesz;
852
853 #if 0 /* Maybe allow section after data2 - does this ever happen? */
854 for (n = new_file_h->e_phnum - 1; n >= 0; n--)
855 {
856 if (NEW_PROGRAM_H (n).p_vaddr
857 && NEW_PROGRAM_H (n).p_vaddr >= new_data2_addr)
858 NEW_PROGRAM_H (n).p_vaddr += new_data2_size - old_bss_size;
859
860 if (NEW_PROGRAM_H (n).p_offset >= new_data2_offset)
861 NEW_PROGRAM_H (n).p_offset += new_data2_size;
862 }
863 #endif
864
865 /* Fix up section headers based on new .data2 section. Any section
866 whose offset or virtual address is after the new .data2 section
867 gets its value adjusted. .bss size becomes zero and new address
868 is set. data2 section header gets added by copying the existing
869 .data header and modifying the offset, address and size. */
870 for (old_data_index = 1; old_data_index < (int) old_file_h->e_shnum;
871 old_data_index++)
872 if (!strcmp (old_section_names + OLD_SECTION_H (old_data_index).sh_name,
873 ".data"))
874 break;
875 if (old_data_index == old_file_h->e_shnum)
876 fatal ("Can't find .data in %s.\n", old_name, 0);
877
878 /* Walk through all section headers, insert the new data2 section right
879 before the new bss section. */
880 for (n = 1, nn = 1; n < (int) old_file_h->e_shnum; n++, nn++)
881 {
882 caddr_t src;
883 /* If it is (s)bss section, insert the new data2 section before it. */
884 /* new_data2_index is the index of either old_sbss or old_bss, that was
885 chosen as a section for new_data2. */
886 if (n == new_data2_index)
887 {
888 /* Steal the data section header for this data2 section. */
889 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (old_data_index),
890 new_file_h->e_shentsize);
891
892 NEW_SECTION_H (nn).sh_addr = new_data2_addr;
893 NEW_SECTION_H (nn).sh_offset = new_data2_offset;
894 NEW_SECTION_H (nn).sh_size = new_data2_size;
895 /* Use the bss section's alignment. This will assure that the
896 new data2 section always be placed in the same spot as the old
897 bss section by any other application. */
898 NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (n).sh_addralign;
899
900 /* Now copy over what we have in the memory now. */
901 memcpy (NEW_SECTION_H (nn).sh_offset + new_base,
902 (caddr_t) OLD_SECTION_H (n).sh_addr,
903 new_data2_size);
904 nn++;
905 }
906
907 memcpy (&NEW_SECTION_H (nn), &OLD_SECTION_H (n),
908 old_file_h->e_shentsize);
909
910 if (n == old_bss_index
911 /* The new bss and sbss section's size is zero, and its file offset
912 and virtual address should be off by NEW_DATA2_SIZE. */
913 || n == old_sbss_index
914 )
915 {
916 /* NN should be `old_s?bss_index + 1' at this point. */
917 NEW_SECTION_H (nn).sh_offset =
918 NEW_SECTION_H (new_data2_index).sh_offset + new_data2_size;
919 NEW_SECTION_H (nn).sh_addr =
920 NEW_SECTION_H (new_data2_index).sh_addr + new_data2_size;
921 /* Let the new bss section address alignment be the same as the
922 section address alignment followed the old bss section, so
923 this section will be placed in exactly the same place. */
924 NEW_SECTION_H (nn).sh_addralign = OLD_SECTION_H (nn).sh_addralign;
925 NEW_SECTION_H (nn).sh_size = 0;
926 }
927 else
928 {
929 /* Any section that was original placed AFTER the bss
930 section should now be off by NEW_DATA2_SIZE. */
931 #ifdef SOLARIS_POWERPC
932 /* On PPC Reference Platform running Solaris 2.5.1
933 the plt section is also of type NOBI like the bss section.
934 (not really stored) and therefore sections after the bss
935 section start at the plt offset. The plt section is always
936 the one just before the bss section.
937 It would be better to put the new data section before
938 the .plt section, or use libelf instead.
939 Erik Deumens, deumens@qtp.ufl.edu. */
940 if (NEW_SECTION_H (nn).sh_offset
941 >= OLD_SECTION_H (old_bss_index-1).sh_offset)
942 NEW_SECTION_H (nn).sh_offset += new_data2_size;
943 #else
944 if (round_up (NEW_SECTION_H (nn).sh_offset,
945 OLD_SECTION_H (old_bss_index).sh_addralign)
946 >= new_data2_offset)
947 NEW_SECTION_H (nn).sh_offset += new_data2_size;
948 #endif
949 /* Any section that was originally placed after the section
950 header table should now be off by the size of one section
951 header table entry. */
952 if (NEW_SECTION_H (nn).sh_offset > new_file_h->e_shoff)
953 NEW_SECTION_H (nn).sh_offset += new_file_h->e_shentsize;
954 }
955
956 /* If any section hdr refers to the section after the new .data
957 section, make it refer to next one because we have inserted
958 a new section in between. */
959
960 PATCH_INDEX (NEW_SECTION_H (nn).sh_link);
961 /* For symbol tables, info is a symbol table index,
962 so don't change it. */
963 if (NEW_SECTION_H (nn).sh_type != SHT_SYMTAB
964 && NEW_SECTION_H (nn).sh_type != SHT_DYNSYM)
965 PATCH_INDEX (NEW_SECTION_H (nn).sh_info);
966
967 if (old_sbss_index != -1)
968 if (!strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".sbss"))
969 {
970 NEW_SECTION_H (nn).sh_offset =
971 round_up (NEW_SECTION_H (nn).sh_offset,
972 NEW_SECTION_H (nn).sh_addralign);
973 NEW_SECTION_H (nn).sh_type = SHT_PROGBITS;
974 }
975
976 /* Now, start to copy the content of sections. */
977 if (NEW_SECTION_H (nn).sh_type == SHT_NULL
978 || NEW_SECTION_H (nn).sh_type == SHT_NOBITS)
979 continue;
980
981 /* Write out the sections. .data and .data1 (and data2, called
982 ".data" in the strings table) get copied from the current process
983 instead of the old file. */
984 if (!strcmp (old_section_names + NEW_SECTION_H (n).sh_name, ".data")
985 || !strcmp ((old_section_names + NEW_SECTION_H (n).sh_name),
986 ".sdata")
987 || !strcmp ((old_section_names + NEW_SECTION_H (n).sh_name),
988 ".lit4")
989 || !strcmp ((old_section_names + NEW_SECTION_H (n).sh_name),
990 ".lit8")
991 || !strcmp ((old_section_names + NEW_SECTION_H (n).sh_name),
992 ".sdata1")
993 || !strcmp ((old_section_names + NEW_SECTION_H (n).sh_name),
994 ".data1")
995 || !strcmp (old_section_names + NEW_SECTION_H (nn).sh_name,
996 ".sbss"))
997 src = (caddr_t) OLD_SECTION_H (n).sh_addr;
998 else
999 src = old_base + OLD_SECTION_H (n).sh_offset;
1000
1001 memcpy (NEW_SECTION_H (nn).sh_offset + new_base, src,
1002 NEW_SECTION_H (nn).sh_size);
1003
1004 #ifdef __alpha__
1005 /* Update Alpha COFF symbol table: */
1006 if (strcmp (old_section_names + OLD_SECTION_H (n).sh_name, ".mdebug")
1007 == 0)
1008 {
1009 pHDRR symhdr = (pHDRR) (NEW_SECTION_H (nn).sh_offset + new_base);
1010
1011 symhdr->cbLineOffset += new_data2_size;
1012 symhdr->cbDnOffset += new_data2_size;
1013 symhdr->cbPdOffset += new_data2_size;
1014 symhdr->cbSymOffset += new_data2_size;
1015 symhdr->cbOptOffset += new_data2_size;
1016 symhdr->cbAuxOffset += new_data2_size;
1017 symhdr->cbSsOffset += new_data2_size;
1018 symhdr->cbSsExtOffset += new_data2_size;
1019 symhdr->cbFdOffset += new_data2_size;
1020 symhdr->cbRfdOffset += new_data2_size;
1021 symhdr->cbExtOffset += new_data2_size;
1022 }
1023 #endif /* __alpha__ */
1024
1025 #if defined (__sony_news) && defined (_SYSTYPE_SYSV)
1026 if (NEW_SECTION_H (nn).sh_type == SHT_MIPS_DEBUG
1027 && old_mdebug_index != -1)
1028 {
1029 int diff = NEW_SECTION_H(nn).sh_offset
1030 - OLD_SECTION_H(old_mdebug_index).sh_offset;
1031 HDRR *phdr = (HDRR *)(NEW_SECTION_H (nn).sh_offset + new_base);
1032
1033 if (diff)
1034 {
1035 phdr->cbLineOffset += diff;
1036 phdr->cbDnOffset += diff;
1037 phdr->cbPdOffset += diff;
1038 phdr->cbSymOffset += diff;
1039 phdr->cbOptOffset += diff;
1040 phdr->cbAuxOffset += diff;
1041 phdr->cbSsOffset += diff;
1042 phdr->cbSsExtOffset += diff;
1043 phdr->cbFdOffset += diff;
1044 phdr->cbRfdOffset += diff;
1045 phdr->cbExtOffset += diff;
1046 }
1047 }
1048 #endif /* __sony_news && _SYSTYPE_SYSV */
1049
1050 #if __sgi
1051 /* Adjust the HDRR offsets in .mdebug and copy the
1052 line data if it's in its usual 'hole' in the object.
1053 Makes the new file debuggable with dbx.
1054 patches up two problems: the absolute file offsets
1055 in the HDRR record of .mdebug (see /usr/include/syms.h), and
1056 the ld bug that gets the line table in a hole in the
1057 elf file rather than in the .mdebug section proper.
1058 David Anderson. davea@sgi.com Jan 16,1994. */
1059 if (n == old_mdebug_index)
1060 {
1061 #define MDEBUGADJUST(__ct,__fileaddr) \
1062 if (n_phdrr->__ct > 0) \
1063 { \
1064 n_phdrr->__fileaddr += movement; \
1065 }
1066
1067 HDRR * o_phdrr = (HDRR *)((byte *)old_base + OLD_SECTION_H (n).sh_offset);
1068 HDRR * n_phdrr = (HDRR *)((byte *)new_base + NEW_SECTION_H (nn).sh_offset);
1069 unsigned movement = new_data2_size;
1070
1071 MDEBUGADJUST (idnMax, cbDnOffset);
1072 MDEBUGADJUST (ipdMax, cbPdOffset);
1073 MDEBUGADJUST (isymMax, cbSymOffset);
1074 MDEBUGADJUST (ioptMax, cbOptOffset);
1075 MDEBUGADJUST (iauxMax, cbAuxOffset);
1076 MDEBUGADJUST (issMax, cbSsOffset);
1077 MDEBUGADJUST (issExtMax, cbSsExtOffset);
1078 MDEBUGADJUST (ifdMax, cbFdOffset);
1079 MDEBUGADJUST (crfd, cbRfdOffset);
1080 MDEBUGADJUST (iextMax, cbExtOffset);
1081 /* The Line Section, being possible off in a hole of the object,
1082 requires special handling. */
1083 if (n_phdrr->cbLine > 0)
1084 {
1085 if (o_phdrr->cbLineOffset > (OLD_SECTION_H (n).sh_offset
1086 + OLD_SECTION_H (n).sh_size))
1087 {
1088 /* line data is in a hole in elf. do special copy and adjust
1089 for this ld mistake.
1090 */
1091 n_phdrr->cbLineOffset += movement;
1092
1093 memcpy (n_phdrr->cbLineOffset + new_base,
1094 o_phdrr->cbLineOffset + old_base, n_phdrr->cbLine);
1095 }
1096 else
1097 {
1098 /* somehow line data is in .mdebug as it is supposed to be. */
1099 MDEBUGADJUST (cbLine, cbLineOffset);
1100 }
1101 }
1102 }
1103 #endif /* __sgi */
1104
1105 /* If it is the symbol table, its st_shndx field needs to be patched. */
1106 if (NEW_SECTION_H (nn).sh_type == SHT_SYMTAB
1107 || NEW_SECTION_H (nn).sh_type == SHT_DYNSYM)
1108 {
1109 ElfW(Shdr) *spt = &NEW_SECTION_H (nn);
1110 unsigned int num = spt->sh_size / spt->sh_entsize;
1111 ElfW(Sym) * sym = (ElfW(Sym) *) (NEW_SECTION_H (nn).sh_offset +
1112 new_base);
1113 for (; num--; sym++)
1114 {
1115 if ((sym->st_shndx == SHN_UNDEF)
1116 || (sym->st_shndx == SHN_ABS)
1117 || (sym->st_shndx == SHN_COMMON))
1118 continue;
1119
1120 PATCH_INDEX (sym->st_shndx);
1121 }
1122 }
1123 }
1124
1125 /* Update the symbol values of _edata and _end. */
1126 for (n = new_file_h->e_shnum - 1; n; n--)
1127 {
1128 byte *symnames;
1129 ElfW(Sym) *symp, *symendp;
1130
1131 if (NEW_SECTION_H (n).sh_type != SHT_DYNSYM
1132 && NEW_SECTION_H (n).sh_type != SHT_SYMTAB)
1133 continue;
1134
1135 symnames = ((byte *) new_base
1136 + NEW_SECTION_H (NEW_SECTION_H (n).sh_link).sh_offset);
1137 symp = (ElfW(Sym) *) (NEW_SECTION_H (n).sh_offset + new_base);
1138 symendp = (ElfW(Sym) *) ((byte *)symp + NEW_SECTION_H (n).sh_size);
1139
1140 for (; symp < symendp; symp ++)
1141 if (strcmp ((char *) (symnames + symp->st_name), "_end") == 0
1142 || strcmp ((char *) (symnames + symp->st_name), "end") == 0
1143 || strcmp ((char *) (symnames + symp->st_name), "_edata") == 0
1144 || strcmp ((char *) (symnames + symp->st_name), "edata") == 0)
1145 memcpy (&symp->st_value, &new_bss_addr, sizeof (new_bss_addr));
1146 }
1147
1148 /* This loop seeks out relocation sections for the data section, so
1149 that it can undo relocations performed by the runtime linker. */
1150 for (n = new_file_h->e_shnum - 1; n; n--)
1151 {
1152 ElfW(Shdr) section = NEW_SECTION_H (n);
1153 switch (section.sh_type) {
1154 default:
1155 break;
1156 case SHT_REL:
1157 case SHT_RELA:
1158 /* This code handles two different size structs, but there should
1159 be no harm in that provided that r_offset is always the first
1160 member. */
1161 nn = section.sh_info;
1162 if (!strcmp (old_section_names + NEW_SECTION_H (nn).sh_name, ".data")
1163 || !strcmp ((old_section_names + NEW_SECTION_H (nn).sh_name),
1164 ".sdata")
1165 || !strcmp ((old_section_names + NEW_SECTION_H (nn).sh_name),
1166 ".lit4")
1167 || !strcmp ((old_section_names + NEW_SECTION_H (nn).sh_name),
1168 ".lit8")
1169 || !strcmp ((old_section_names + NEW_SECTION_H (nn).sh_name),
1170 ".sdata1")
1171 || !strcmp ((old_section_names + NEW_SECTION_H (nn).sh_name),
1172 ".data1"))
1173 {
1174 ElfW(Addr) offset = NEW_SECTION_H (nn).sh_addr -
1175 NEW_SECTION_H (nn).sh_offset;
1176 caddr_t reloc = old_base + section.sh_offset, end;
1177 for (end = reloc + section.sh_size; reloc < end;
1178 reloc += section.sh_entsize)
1179 {
1180 ElfW(Addr) addr = ((ElfW(Rel) *) reloc)->r_offset - offset;
1181 #ifdef __alpha__
1182 /* The Alpha ELF binutils currently have a bug that
1183 sometimes results in relocs that contain all
1184 zeroes. Work around this for now... */
1185 if (((ElfW(Rel) *) reloc)->r_offset == 0)
1186 continue;
1187 #endif
1188 memcpy (new_base + addr, old_base + addr, sizeof(ElfW(Addr)));
1189 }
1190 }
1191 break;
1192 }
1193 }
1194
1195 /* Write out new_file, and free the buffers. */
1196
1197 if (write (new_file, new_base, new_file_size) != new_file_size)
1198 fatal ("Didn't write %d bytes to %s: errno %d\n",
1199 new_file_size, new_base, errno);
1200
1201 munmap (old_base, old_file_size);
1202 munmap (new_base, new_file_size);
1203
1204 /* Close the files and make the new file executable. */
1205
1206 if (close (old_file))
1207 fatal ("Can't close (%s): errno %d\n", old_name, errno);
1208
1209 if (close (new_file))
1210 fatal ("Can't close (%s): errno %d\n", new_name, errno);
1211
1212 if (stat (new_name, &stat_buf) == -1)
1213 fatal ("Can't stat (%s): errno %d\n", new_name, errno);
1214
1215 n = umask (777);
1216 umask (n);
1217 stat_buf.st_mode |= 0111 & ~n;
1218 if (chmod (new_name, stat_buf.st_mode) == -1)
1219 fatal ("Can't chmod (%s): errno %d\n", new_name, errno);
1220 }