557c68ca5af61755fb2b4a7e92b1d3e868a1be70
[bpt/emacs.git] / src / alloc.c
1 /* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3 Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2012
4 Free Software Foundation, Inc.
5
6 This file is part of GNU Emacs.
7
8 GNU Emacs is free software: you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation, either version 3 of the License, or
11 (at your option) any later version.
12
13 GNU Emacs is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21 #include <config.h>
22
23 #define LISP_INLINE EXTERN_INLINE
24
25 #include <stdio.h>
26 #include <limits.h> /* For CHAR_BIT. */
27
28 #ifdef ENABLE_CHECKING
29 #include <signal.h> /* For SIGABRT. */
30 #endif
31
32 #ifdef HAVE_PTHREAD
33 #include <pthread.h>
34 #endif
35
36 #include "lisp.h"
37 #include "process.h"
38 #include "intervals.h"
39 #include "puresize.h"
40 #include "character.h"
41 #include "buffer.h"
42 #include "window.h"
43 #include "keyboard.h"
44 #include "frame.h"
45 #include "blockinput.h"
46 #include "termhooks.h" /* For struct terminal. */
47
48 #include <verify.h>
49
50 /* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
51 Doable only if GC_MARK_STACK. */
52 #if ! GC_MARK_STACK
53 # undef GC_CHECK_MARKED_OBJECTS
54 #endif
55
56 /* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
57 memory. Can do this only if using gmalloc.c and if not checking
58 marked objects. */
59
60 #if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
61 || defined GC_CHECK_MARKED_OBJECTS)
62 #undef GC_MALLOC_CHECK
63 #endif
64
65 #include <unistd.h>
66 #ifndef HAVE_UNISTD_H
67 extern void *sbrk ();
68 #endif
69
70 #include <fcntl.h>
71
72 #ifdef USE_GTK
73 # include "gtkutil.h"
74 #endif
75 #ifdef WINDOWSNT
76 #include "w32.h"
77 #include "w32heap.h" /* for sbrk */
78 #endif
79
80 #ifdef DOUG_LEA_MALLOC
81
82 #include <malloc.h>
83
84 /* Specify maximum number of areas to mmap. It would be nice to use a
85 value that explicitly means "no limit". */
86
87 #define MMAP_MAX_AREAS 100000000
88
89 #endif /* not DOUG_LEA_MALLOC */
90
91 /* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
92 to a struct Lisp_String. */
93
94 #define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
95 #define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
96 #define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
97
98 #define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
99 #define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
100 #define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
101
102 /* Default value of gc_cons_threshold (see below). */
103
104 #define GC_DEFAULT_THRESHOLD (100000 * word_size)
105
106 /* Global variables. */
107 struct emacs_globals globals;
108
109 /* Number of bytes of consing done since the last gc. */
110
111 EMACS_INT consing_since_gc;
112
113 /* Similar minimum, computed from Vgc_cons_percentage. */
114
115 EMACS_INT gc_relative_threshold;
116
117 /* Minimum number of bytes of consing since GC before next GC,
118 when memory is full. */
119
120 EMACS_INT memory_full_cons_threshold;
121
122 /* True during GC. */
123
124 bool gc_in_progress;
125
126 /* True means abort if try to GC.
127 This is for code which is written on the assumption that
128 no GC will happen, so as to verify that assumption. */
129
130 bool abort_on_gc;
131
132 /* Number of live and free conses etc. */
133
134 static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
135 static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
136 static EMACS_INT total_free_floats, total_floats;
137
138 /* Points to memory space allocated as "spare", to be freed if we run
139 out of memory. We keep one large block, four cons-blocks, and
140 two string blocks. */
141
142 static char *spare_memory[7];
143
144 /* Amount of spare memory to keep in large reserve block, or to see
145 whether this much is available when malloc fails on a larger request. */
146
147 #define SPARE_MEMORY (1 << 14)
148
149 /* Initialize it to a nonzero value to force it into data space
150 (rather than bss space). That way unexec will remap it into text
151 space (pure), on some systems. We have not implemented the
152 remapping on more recent systems because this is less important
153 nowadays than in the days of small memories and timesharing. */
154
155 EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
156 #define PUREBEG (char *) pure
157
158 /* Pointer to the pure area, and its size. */
159
160 static char *purebeg;
161 static ptrdiff_t pure_size;
162
163 /* Number of bytes of pure storage used before pure storage overflowed.
164 If this is non-zero, this implies that an overflow occurred. */
165
166 static ptrdiff_t pure_bytes_used_before_overflow;
167
168 /* True if P points into pure space. */
169
170 #define PURE_POINTER_P(P) \
171 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
172
173 /* Index in pure at which next pure Lisp object will be allocated.. */
174
175 static ptrdiff_t pure_bytes_used_lisp;
176
177 /* Number of bytes allocated for non-Lisp objects in pure storage. */
178
179 static ptrdiff_t pure_bytes_used_non_lisp;
180
181 /* If nonzero, this is a warning delivered by malloc and not yet
182 displayed. */
183
184 const char *pending_malloc_warning;
185
186 /* Maximum amount of C stack to save when a GC happens. */
187
188 #ifndef MAX_SAVE_STACK
189 #define MAX_SAVE_STACK 16000
190 #endif
191
192 /* Buffer in which we save a copy of the C stack at each GC. */
193
194 #if MAX_SAVE_STACK > 0
195 static char *stack_copy;
196 static ptrdiff_t stack_copy_size;
197 #endif
198
199 static Lisp_Object Qconses;
200 static Lisp_Object Qsymbols;
201 static Lisp_Object Qmiscs;
202 static Lisp_Object Qstrings;
203 static Lisp_Object Qvectors;
204 static Lisp_Object Qfloats;
205 static Lisp_Object Qintervals;
206 static Lisp_Object Qbuffers;
207 static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
208 static Lisp_Object Qgc_cons_threshold;
209 Lisp_Object Qautomatic_gc;
210 Lisp_Object Qchar_table_extra_slots;
211
212 /* Hook run after GC has finished. */
213
214 static Lisp_Object Qpost_gc_hook;
215
216 static void mark_terminals (void);
217 static void gc_sweep (void);
218 static Lisp_Object make_pure_vector (ptrdiff_t);
219 static void mark_buffer (struct buffer *);
220
221 #if !defined REL_ALLOC || defined SYSTEM_MALLOC
222 static void refill_memory_reserve (void);
223 #endif
224 static void compact_small_strings (void);
225 static void free_large_strings (void);
226 static void free_misc (Lisp_Object);
227 extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
228
229 /* When scanning the C stack for live Lisp objects, Emacs keeps track of
230 what memory allocated via lisp_malloc and lisp_align_malloc is intended
231 for what purpose. This enumeration specifies the type of memory. */
232
233 enum mem_type
234 {
235 MEM_TYPE_NON_LISP,
236 MEM_TYPE_BUFFER,
237 MEM_TYPE_CONS,
238 MEM_TYPE_STRING,
239 MEM_TYPE_MISC,
240 MEM_TYPE_SYMBOL,
241 MEM_TYPE_FLOAT,
242 /* Since all non-bool pseudovectors are small enough to be
243 allocated from vector blocks, this memory type denotes
244 large regular vectors and large bool pseudovectors. */
245 MEM_TYPE_VECTORLIKE,
246 /* Special type to denote vector blocks. */
247 MEM_TYPE_VECTOR_BLOCK,
248 /* Special type to denote reserved memory. */
249 MEM_TYPE_SPARE
250 };
251
252 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
253
254 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
255 #include <stdio.h> /* For fprintf. */
256 #endif
257
258 /* A unique object in pure space used to make some Lisp objects
259 on free lists recognizable in O(1). */
260
261 static Lisp_Object Vdead;
262 #define DEADP(x) EQ (x, Vdead)
263
264 #ifdef GC_MALLOC_CHECK
265
266 enum mem_type allocated_mem_type;
267
268 #endif /* GC_MALLOC_CHECK */
269
270 /* A node in the red-black tree describing allocated memory containing
271 Lisp data. Each such block is recorded with its start and end
272 address when it is allocated, and removed from the tree when it
273 is freed.
274
275 A red-black tree is a balanced binary tree with the following
276 properties:
277
278 1. Every node is either red or black.
279 2. Every leaf is black.
280 3. If a node is red, then both of its children are black.
281 4. Every simple path from a node to a descendant leaf contains
282 the same number of black nodes.
283 5. The root is always black.
284
285 When nodes are inserted into the tree, or deleted from the tree,
286 the tree is "fixed" so that these properties are always true.
287
288 A red-black tree with N internal nodes has height at most 2
289 log(N+1). Searches, insertions and deletions are done in O(log N).
290 Please see a text book about data structures for a detailed
291 description of red-black trees. Any book worth its salt should
292 describe them. */
293
294 struct mem_node
295 {
296 /* Children of this node. These pointers are never NULL. When there
297 is no child, the value is MEM_NIL, which points to a dummy node. */
298 struct mem_node *left, *right;
299
300 /* The parent of this node. In the root node, this is NULL. */
301 struct mem_node *parent;
302
303 /* Start and end of allocated region. */
304 void *start, *end;
305
306 /* Node color. */
307 enum {MEM_BLACK, MEM_RED} color;
308
309 /* Memory type. */
310 enum mem_type type;
311 };
312
313 /* Base address of stack. Set in main. */
314
315 Lisp_Object *stack_base;
316
317 /* Root of the tree describing allocated Lisp memory. */
318
319 static struct mem_node *mem_root;
320
321 /* Lowest and highest known address in the heap. */
322
323 static void *min_heap_address, *max_heap_address;
324
325 /* Sentinel node of the tree. */
326
327 static struct mem_node mem_z;
328 #define MEM_NIL &mem_z
329
330 static struct Lisp_Vector *allocate_vectorlike (ptrdiff_t);
331 static void lisp_free (void *);
332 static void mark_stack (void);
333 static bool live_vector_p (struct mem_node *, void *);
334 static bool live_buffer_p (struct mem_node *, void *);
335 static bool live_string_p (struct mem_node *, void *);
336 static bool live_cons_p (struct mem_node *, void *);
337 static bool live_symbol_p (struct mem_node *, void *);
338 static bool live_float_p (struct mem_node *, void *);
339 static bool live_misc_p (struct mem_node *, void *);
340 static void mark_maybe_object (Lisp_Object);
341 static void mark_memory (void *, void *);
342 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
343 static void mem_init (void);
344 static struct mem_node *mem_insert (void *, void *, enum mem_type);
345 static void mem_insert_fixup (struct mem_node *);
346 static void mem_rotate_left (struct mem_node *);
347 static void mem_rotate_right (struct mem_node *);
348 static void mem_delete (struct mem_node *);
349 static void mem_delete_fixup (struct mem_node *);
350 static struct mem_node *mem_find (void *);
351 #endif
352
353
354 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
355 static void check_gcpros (void);
356 #endif
357
358 #endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
359
360 #ifndef DEADP
361 # define DEADP(x) 0
362 #endif
363
364 /* Recording what needs to be marked for gc. */
365
366 struct gcpro *gcprolist;
367
368 /* Addresses of staticpro'd variables. Initialize it to a nonzero
369 value; otherwise some compilers put it into BSS. */
370
371 #define NSTATICS 0x800
372 static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
373
374 /* Index of next unused slot in staticvec. */
375
376 static int staticidx;
377
378 static void *pure_alloc (size_t, int);
379
380
381 /* Value is SZ rounded up to the next multiple of ALIGNMENT.
382 ALIGNMENT must be a power of 2. */
383
384 #define ALIGN(ptr, ALIGNMENT) \
385 ((void *) (((uintptr_t) (ptr) + (ALIGNMENT) - 1) \
386 & ~ ((ALIGNMENT) - 1)))
387
388
389 \f
390 /************************************************************************
391 Malloc
392 ************************************************************************/
393
394 /* Function malloc calls this if it finds we are near exhausting storage. */
395
396 void
397 malloc_warning (const char *str)
398 {
399 pending_malloc_warning = str;
400 }
401
402
403 /* Display an already-pending malloc warning. */
404
405 void
406 display_malloc_warning (void)
407 {
408 call3 (intern ("display-warning"),
409 intern ("alloc"),
410 build_string (pending_malloc_warning),
411 intern ("emergency"));
412 pending_malloc_warning = 0;
413 }
414 \f
415 /* Called if we can't allocate relocatable space for a buffer. */
416
417 void
418 buffer_memory_full (ptrdiff_t nbytes)
419 {
420 /* If buffers use the relocating allocator, no need to free
421 spare_memory, because we may have plenty of malloc space left
422 that we could get, and if we don't, the malloc that fails will
423 itself cause spare_memory to be freed. If buffers don't use the
424 relocating allocator, treat this like any other failing
425 malloc. */
426
427 #ifndef REL_ALLOC
428 memory_full (nbytes);
429 #endif
430
431 /* This used to call error, but if we've run out of memory, we could
432 get infinite recursion trying to build the string. */
433 xsignal (Qnil, Vmemory_signal_data);
434 }
435
436 /* A common multiple of the positive integers A and B. Ideally this
437 would be the least common multiple, but there's no way to do that
438 as a constant expression in C, so do the best that we can easily do. */
439 #define COMMON_MULTIPLE(a, b) \
440 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
441
442 #ifndef XMALLOC_OVERRUN_CHECK
443 #define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
444 #else
445
446 /* Check for overrun in malloc'ed buffers by wrapping a header and trailer
447 around each block.
448
449 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
450 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
451 block size in little-endian order. The trailer consists of
452 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
453
454 The header is used to detect whether this block has been allocated
455 through these functions, as some low-level libc functions may
456 bypass the malloc hooks. */
457
458 #define XMALLOC_OVERRUN_CHECK_SIZE 16
459 #define XMALLOC_OVERRUN_CHECK_OVERHEAD \
460 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
461
462 /* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
463 hold a size_t value and (2) the header size is a multiple of the
464 alignment that Emacs needs for C types and for USE_LSB_TAG. */
465 #define XMALLOC_BASE_ALIGNMENT \
466 alignof (union { long double d; intmax_t i; void *p; })
467
468 #if USE_LSB_TAG
469 # define XMALLOC_HEADER_ALIGNMENT \
470 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
471 #else
472 # define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
473 #endif
474 #define XMALLOC_OVERRUN_SIZE_SIZE \
475 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
476 + XMALLOC_HEADER_ALIGNMENT - 1) \
477 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
478 - XMALLOC_OVERRUN_CHECK_SIZE)
479
480 static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
481 { '\x9a', '\x9b', '\xae', '\xaf',
482 '\xbf', '\xbe', '\xce', '\xcf',
483 '\xea', '\xeb', '\xec', '\xed',
484 '\xdf', '\xde', '\x9c', '\x9d' };
485
486 static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
487 { '\xaa', '\xab', '\xac', '\xad',
488 '\xba', '\xbb', '\xbc', '\xbd',
489 '\xca', '\xcb', '\xcc', '\xcd',
490 '\xda', '\xdb', '\xdc', '\xdd' };
491
492 /* Insert and extract the block size in the header. */
493
494 static void
495 xmalloc_put_size (unsigned char *ptr, size_t size)
496 {
497 int i;
498 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
499 {
500 *--ptr = size & ((1 << CHAR_BIT) - 1);
501 size >>= CHAR_BIT;
502 }
503 }
504
505 static size_t
506 xmalloc_get_size (unsigned char *ptr)
507 {
508 size_t size = 0;
509 int i;
510 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
511 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
512 {
513 size <<= CHAR_BIT;
514 size += *ptr++;
515 }
516 return size;
517 }
518
519
520 /* Like malloc, but wraps allocated block with header and trailer. */
521
522 static void *
523 overrun_check_malloc (size_t size)
524 {
525 register unsigned char *val;
526 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
527 emacs_abort ();
528
529 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
530 if (val)
531 {
532 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
533 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
534 xmalloc_put_size (val, size);
535 memcpy (val + size, xmalloc_overrun_check_trailer,
536 XMALLOC_OVERRUN_CHECK_SIZE);
537 }
538 return val;
539 }
540
541
542 /* Like realloc, but checks old block for overrun, and wraps new block
543 with header and trailer. */
544
545 static void *
546 overrun_check_realloc (void *block, size_t size)
547 {
548 register unsigned char *val = (unsigned char *) block;
549 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
550 emacs_abort ();
551
552 if (val
553 && memcmp (xmalloc_overrun_check_header,
554 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
555 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
556 {
557 size_t osize = xmalloc_get_size (val);
558 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
559 XMALLOC_OVERRUN_CHECK_SIZE))
560 emacs_abort ();
561 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
562 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
563 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
564 }
565
566 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
567
568 if (val)
569 {
570 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
571 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
572 xmalloc_put_size (val, size);
573 memcpy (val + size, xmalloc_overrun_check_trailer,
574 XMALLOC_OVERRUN_CHECK_SIZE);
575 }
576 return val;
577 }
578
579 /* Like free, but checks block for overrun. */
580
581 static void
582 overrun_check_free (void *block)
583 {
584 unsigned char *val = (unsigned char *) block;
585
586 if (val
587 && memcmp (xmalloc_overrun_check_header,
588 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
589 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
590 {
591 size_t osize = xmalloc_get_size (val);
592 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
593 XMALLOC_OVERRUN_CHECK_SIZE))
594 emacs_abort ();
595 #ifdef XMALLOC_CLEAR_FREE_MEMORY
596 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
597 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
598 #else
599 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
600 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
601 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
602 #endif
603 }
604
605 free (val);
606 }
607
608 #undef malloc
609 #undef realloc
610 #undef free
611 #define malloc overrun_check_malloc
612 #define realloc overrun_check_realloc
613 #define free overrun_check_free
614 #endif
615
616 /* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
617 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
618 If that variable is set, block input while in one of Emacs's memory
619 allocation functions. There should be no need for this debugging
620 option, since signal handlers do not allocate memory, but Emacs
621 formerly allocated memory in signal handlers and this compile-time
622 option remains as a way to help debug the issue should it rear its
623 ugly head again. */
624 #ifdef XMALLOC_BLOCK_INPUT_CHECK
625 bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
626 static void
627 malloc_block_input (void)
628 {
629 if (block_input_in_memory_allocators)
630 block_input ();
631 }
632 static void
633 malloc_unblock_input (void)
634 {
635 if (block_input_in_memory_allocators)
636 unblock_input ();
637 }
638 # define MALLOC_BLOCK_INPUT malloc_block_input ()
639 # define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
640 #else
641 # define MALLOC_BLOCK_INPUT ((void) 0)
642 # define MALLOC_UNBLOCK_INPUT ((void) 0)
643 #endif
644
645 #define MALLOC_PROBE(size) \
646 do { \
647 if (profiler_memory_running) \
648 malloc_probe (size); \
649 } while (0)
650
651
652 /* Like malloc but check for no memory and block interrupt input.. */
653
654 void *
655 xmalloc (size_t size)
656 {
657 void *val;
658
659 MALLOC_BLOCK_INPUT;
660 val = malloc (size);
661 MALLOC_UNBLOCK_INPUT;
662
663 if (!val && size)
664 memory_full (size);
665 MALLOC_PROBE (size);
666 return val;
667 }
668
669 /* Like the above, but zeroes out the memory just allocated. */
670
671 void *
672 xzalloc (size_t size)
673 {
674 void *val;
675
676 MALLOC_BLOCK_INPUT;
677 val = malloc (size);
678 MALLOC_UNBLOCK_INPUT;
679
680 if (!val && size)
681 memory_full (size);
682 memset (val, 0, size);
683 MALLOC_PROBE (size);
684 return val;
685 }
686
687 /* Like realloc but check for no memory and block interrupt input.. */
688
689 void *
690 xrealloc (void *block, size_t size)
691 {
692 void *val;
693
694 MALLOC_BLOCK_INPUT;
695 /* We must call malloc explicitly when BLOCK is 0, since some
696 reallocs don't do this. */
697 if (! block)
698 val = malloc (size);
699 else
700 val = realloc (block, size);
701 MALLOC_UNBLOCK_INPUT;
702
703 if (!val && size)
704 memory_full (size);
705 MALLOC_PROBE (size);
706 return val;
707 }
708
709
710 /* Like free but block interrupt input. */
711
712 void
713 xfree (void *block)
714 {
715 if (!block)
716 return;
717 MALLOC_BLOCK_INPUT;
718 free (block);
719 MALLOC_UNBLOCK_INPUT;
720 /* We don't call refill_memory_reserve here
721 because in practice the call in r_alloc_free seems to suffice. */
722 }
723
724
725 /* Other parts of Emacs pass large int values to allocator functions
726 expecting ptrdiff_t. This is portable in practice, but check it to
727 be safe. */
728 verify (INT_MAX <= PTRDIFF_MAX);
729
730
731 /* Allocate an array of NITEMS items, each of size ITEM_SIZE.
732 Signal an error on memory exhaustion, and block interrupt input. */
733
734 void *
735 xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
736 {
737 eassert (0 <= nitems && 0 < item_size);
738 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
739 memory_full (SIZE_MAX);
740 return xmalloc (nitems * item_size);
741 }
742
743
744 /* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
745 Signal an error on memory exhaustion, and block interrupt input. */
746
747 void *
748 xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
749 {
750 eassert (0 <= nitems && 0 < item_size);
751 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
752 memory_full (SIZE_MAX);
753 return xrealloc (pa, nitems * item_size);
754 }
755
756
757 /* Grow PA, which points to an array of *NITEMS items, and return the
758 location of the reallocated array, updating *NITEMS to reflect its
759 new size. The new array will contain at least NITEMS_INCR_MIN more
760 items, but will not contain more than NITEMS_MAX items total.
761 ITEM_SIZE is the size of each item, in bytes.
762
763 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
764 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
765 infinity.
766
767 If PA is null, then allocate a new array instead of reallocating
768 the old one. Thus, to grow an array A without saving its old
769 contents, invoke xfree (A) immediately followed by xgrowalloc (0,
770 &NITEMS, ...).
771
772 Block interrupt input as needed. If memory exhaustion occurs, set
773 *NITEMS to zero if PA is null, and signal an error (i.e., do not
774 return). */
775
776 void *
777 xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
778 ptrdiff_t nitems_max, ptrdiff_t item_size)
779 {
780 /* The approximate size to use for initial small allocation
781 requests. This is the largest "small" request for the GNU C
782 library malloc. */
783 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
784
785 /* If the array is tiny, grow it to about (but no greater than)
786 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
787 ptrdiff_t n = *nitems;
788 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
789 ptrdiff_t half_again = n >> 1;
790 ptrdiff_t incr_estimate = max (tiny_max, half_again);
791
792 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
793 NITEMS_MAX, and what the C language can represent safely. */
794 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
795 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
796 ? nitems_max : C_language_max);
797 ptrdiff_t nitems_incr_max = n_max - n;
798 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
799
800 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
801 if (! pa)
802 *nitems = 0;
803 if (nitems_incr_max < incr)
804 memory_full (SIZE_MAX);
805 n += incr;
806 pa = xrealloc (pa, n * item_size);
807 *nitems = n;
808 return pa;
809 }
810
811
812 /* Like strdup, but uses xmalloc. */
813
814 char *
815 xstrdup (const char *s)
816 {
817 size_t len = strlen (s) + 1;
818 char *p = xmalloc (len);
819 memcpy (p, s, len);
820 return p;
821 }
822
823
824 /* Unwind for SAFE_ALLOCA */
825
826 Lisp_Object
827 safe_alloca_unwind (Lisp_Object arg)
828 {
829 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
830
831 p->dogc = 0;
832 xfree (p->pointer);
833 p->pointer = 0;
834 free_misc (arg);
835 return Qnil;
836 }
837
838 /* Return a newly allocated memory block of SIZE bytes, remembering
839 to free it when unwinding. */
840 void *
841 record_xmalloc (size_t size)
842 {
843 void *p = xmalloc (size);
844 record_unwind_protect (safe_alloca_unwind, make_save_value (p, 0));
845 return p;
846 }
847
848
849 /* Like malloc but used for allocating Lisp data. NBYTES is the
850 number of bytes to allocate, TYPE describes the intended use of the
851 allocated memory block (for strings, for conses, ...). */
852
853 #if ! USE_LSB_TAG
854 void *lisp_malloc_loser EXTERNALLY_VISIBLE;
855 #endif
856
857 static void *
858 lisp_malloc (size_t nbytes, enum mem_type type)
859 {
860 register void *val;
861
862 MALLOC_BLOCK_INPUT;
863
864 #ifdef GC_MALLOC_CHECK
865 allocated_mem_type = type;
866 #endif
867
868 val = malloc (nbytes);
869
870 #if ! USE_LSB_TAG
871 /* If the memory just allocated cannot be addressed thru a Lisp
872 object's pointer, and it needs to be,
873 that's equivalent to running out of memory. */
874 if (val && type != MEM_TYPE_NON_LISP)
875 {
876 Lisp_Object tem;
877 XSETCONS (tem, (char *) val + nbytes - 1);
878 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
879 {
880 lisp_malloc_loser = val;
881 free (val);
882 val = 0;
883 }
884 }
885 #endif
886
887 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
888 if (val && type != MEM_TYPE_NON_LISP)
889 mem_insert (val, (char *) val + nbytes, type);
890 #endif
891
892 MALLOC_UNBLOCK_INPUT;
893 if (!val && nbytes)
894 memory_full (nbytes);
895 MALLOC_PROBE (nbytes);
896 return val;
897 }
898
899 /* Free BLOCK. This must be called to free memory allocated with a
900 call to lisp_malloc. */
901
902 static void
903 lisp_free (void *block)
904 {
905 MALLOC_BLOCK_INPUT;
906 free (block);
907 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
908 mem_delete (mem_find (block));
909 #endif
910 MALLOC_UNBLOCK_INPUT;
911 }
912
913 /***** Allocation of aligned blocks of memory to store Lisp data. *****/
914
915 /* The entry point is lisp_align_malloc which returns blocks of at most
916 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
917
918 #if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
919 #define USE_POSIX_MEMALIGN 1
920 #endif
921
922 /* BLOCK_ALIGN has to be a power of 2. */
923 #define BLOCK_ALIGN (1 << 10)
924
925 /* Padding to leave at the end of a malloc'd block. This is to give
926 malloc a chance to minimize the amount of memory wasted to alignment.
927 It should be tuned to the particular malloc library used.
928 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
929 posix_memalign on the other hand would ideally prefer a value of 4
930 because otherwise, there's 1020 bytes wasted between each ablocks.
931 In Emacs, testing shows that those 1020 can most of the time be
932 efficiently used by malloc to place other objects, so a value of 0 can
933 still preferable unless you have a lot of aligned blocks and virtually
934 nothing else. */
935 #define BLOCK_PADDING 0
936 #define BLOCK_BYTES \
937 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
938
939 /* Internal data structures and constants. */
940
941 #define ABLOCKS_SIZE 16
942
943 /* An aligned block of memory. */
944 struct ablock
945 {
946 union
947 {
948 char payload[BLOCK_BYTES];
949 struct ablock *next_free;
950 } x;
951 /* `abase' is the aligned base of the ablocks. */
952 /* It is overloaded to hold the virtual `busy' field that counts
953 the number of used ablock in the parent ablocks.
954 The first ablock has the `busy' field, the others have the `abase'
955 field. To tell the difference, we assume that pointers will have
956 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
957 is used to tell whether the real base of the parent ablocks is `abase'
958 (if not, the word before the first ablock holds a pointer to the
959 real base). */
960 struct ablocks *abase;
961 /* The padding of all but the last ablock is unused. The padding of
962 the last ablock in an ablocks is not allocated. */
963 #if BLOCK_PADDING
964 char padding[BLOCK_PADDING];
965 #endif
966 };
967
968 /* A bunch of consecutive aligned blocks. */
969 struct ablocks
970 {
971 struct ablock blocks[ABLOCKS_SIZE];
972 };
973
974 /* Size of the block requested from malloc or posix_memalign. */
975 #define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
976
977 #define ABLOCK_ABASE(block) \
978 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
979 ? (struct ablocks *)(block) \
980 : (block)->abase)
981
982 /* Virtual `busy' field. */
983 #define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
984
985 /* Pointer to the (not necessarily aligned) malloc block. */
986 #ifdef USE_POSIX_MEMALIGN
987 #define ABLOCKS_BASE(abase) (abase)
988 #else
989 #define ABLOCKS_BASE(abase) \
990 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
991 #endif
992
993 /* The list of free ablock. */
994 static struct ablock *free_ablock;
995
996 /* Allocate an aligned block of nbytes.
997 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
998 smaller or equal to BLOCK_BYTES. */
999 static void *
1000 lisp_align_malloc (size_t nbytes, enum mem_type type)
1001 {
1002 void *base, *val;
1003 struct ablocks *abase;
1004
1005 eassert (nbytes <= BLOCK_BYTES);
1006
1007 MALLOC_BLOCK_INPUT;
1008
1009 #ifdef GC_MALLOC_CHECK
1010 allocated_mem_type = type;
1011 #endif
1012
1013 if (!free_ablock)
1014 {
1015 int i;
1016 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1017
1018 #ifdef DOUG_LEA_MALLOC
1019 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1020 because mapped region contents are not preserved in
1021 a dumped Emacs. */
1022 mallopt (M_MMAP_MAX, 0);
1023 #endif
1024
1025 #ifdef USE_POSIX_MEMALIGN
1026 {
1027 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1028 if (err)
1029 base = NULL;
1030 abase = base;
1031 }
1032 #else
1033 base = malloc (ABLOCKS_BYTES);
1034 abase = ALIGN (base, BLOCK_ALIGN);
1035 #endif
1036
1037 if (base == 0)
1038 {
1039 MALLOC_UNBLOCK_INPUT;
1040 memory_full (ABLOCKS_BYTES);
1041 }
1042
1043 aligned = (base == abase);
1044 if (!aligned)
1045 ((void**)abase)[-1] = base;
1046
1047 #ifdef DOUG_LEA_MALLOC
1048 /* Back to a reasonable maximum of mmap'ed areas. */
1049 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1050 #endif
1051
1052 #if ! USE_LSB_TAG
1053 /* If the memory just allocated cannot be addressed thru a Lisp
1054 object's pointer, and it needs to be, that's equivalent to
1055 running out of memory. */
1056 if (type != MEM_TYPE_NON_LISP)
1057 {
1058 Lisp_Object tem;
1059 char *end = (char *) base + ABLOCKS_BYTES - 1;
1060 XSETCONS (tem, end);
1061 if ((char *) XCONS (tem) != end)
1062 {
1063 lisp_malloc_loser = base;
1064 free (base);
1065 MALLOC_UNBLOCK_INPUT;
1066 memory_full (SIZE_MAX);
1067 }
1068 }
1069 #endif
1070
1071 /* Initialize the blocks and put them on the free list.
1072 If `base' was not properly aligned, we can't use the last block. */
1073 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1074 {
1075 abase->blocks[i].abase = abase;
1076 abase->blocks[i].x.next_free = free_ablock;
1077 free_ablock = &abase->blocks[i];
1078 }
1079 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1080
1081 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1082 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1083 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1084 eassert (ABLOCKS_BASE (abase) == base);
1085 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1086 }
1087
1088 abase = ABLOCK_ABASE (free_ablock);
1089 ABLOCKS_BUSY (abase) =
1090 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1091 val = free_ablock;
1092 free_ablock = free_ablock->x.next_free;
1093
1094 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1095 if (type != MEM_TYPE_NON_LISP)
1096 mem_insert (val, (char *) val + nbytes, type);
1097 #endif
1098
1099 MALLOC_UNBLOCK_INPUT;
1100
1101 MALLOC_PROBE (nbytes);
1102
1103 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1104 return val;
1105 }
1106
1107 static void
1108 lisp_align_free (void *block)
1109 {
1110 struct ablock *ablock = block;
1111 struct ablocks *abase = ABLOCK_ABASE (ablock);
1112
1113 MALLOC_BLOCK_INPUT;
1114 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1115 mem_delete (mem_find (block));
1116 #endif
1117 /* Put on free list. */
1118 ablock->x.next_free = free_ablock;
1119 free_ablock = ablock;
1120 /* Update busy count. */
1121 ABLOCKS_BUSY (abase)
1122 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1123
1124 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1125 { /* All the blocks are free. */
1126 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1127 struct ablock **tem = &free_ablock;
1128 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1129
1130 while (*tem)
1131 {
1132 if (*tem >= (struct ablock *) abase && *tem < atop)
1133 {
1134 i++;
1135 *tem = (*tem)->x.next_free;
1136 }
1137 else
1138 tem = &(*tem)->x.next_free;
1139 }
1140 eassert ((aligned & 1) == aligned);
1141 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1142 #ifdef USE_POSIX_MEMALIGN
1143 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1144 #endif
1145 free (ABLOCKS_BASE (abase));
1146 }
1147 MALLOC_UNBLOCK_INPUT;
1148 }
1149
1150 \f
1151 /***********************************************************************
1152 Interval Allocation
1153 ***********************************************************************/
1154
1155 /* Number of intervals allocated in an interval_block structure.
1156 The 1020 is 1024 minus malloc overhead. */
1157
1158 #define INTERVAL_BLOCK_SIZE \
1159 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1160
1161 /* Intervals are allocated in chunks in form of an interval_block
1162 structure. */
1163
1164 struct interval_block
1165 {
1166 /* Place `intervals' first, to preserve alignment. */
1167 struct interval intervals[INTERVAL_BLOCK_SIZE];
1168 struct interval_block *next;
1169 };
1170
1171 /* Current interval block. Its `next' pointer points to older
1172 blocks. */
1173
1174 static struct interval_block *interval_block;
1175
1176 /* Index in interval_block above of the next unused interval
1177 structure. */
1178
1179 static int interval_block_index = INTERVAL_BLOCK_SIZE;
1180
1181 /* Number of free and live intervals. */
1182
1183 static EMACS_INT total_free_intervals, total_intervals;
1184
1185 /* List of free intervals. */
1186
1187 static INTERVAL interval_free_list;
1188
1189 /* Return a new interval. */
1190
1191 INTERVAL
1192 make_interval (void)
1193 {
1194 INTERVAL val;
1195
1196 MALLOC_BLOCK_INPUT;
1197
1198 if (interval_free_list)
1199 {
1200 val = interval_free_list;
1201 interval_free_list = INTERVAL_PARENT (interval_free_list);
1202 }
1203 else
1204 {
1205 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1206 {
1207 struct interval_block *newi
1208 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1209
1210 newi->next = interval_block;
1211 interval_block = newi;
1212 interval_block_index = 0;
1213 total_free_intervals += INTERVAL_BLOCK_SIZE;
1214 }
1215 val = &interval_block->intervals[interval_block_index++];
1216 }
1217
1218 MALLOC_UNBLOCK_INPUT;
1219
1220 consing_since_gc += sizeof (struct interval);
1221 intervals_consed++;
1222 total_free_intervals--;
1223 RESET_INTERVAL (val);
1224 val->gcmarkbit = 0;
1225 return val;
1226 }
1227
1228
1229 /* Mark Lisp objects in interval I. */
1230
1231 static void
1232 mark_interval (register INTERVAL i, Lisp_Object dummy)
1233 {
1234 /* Intervals should never be shared. So, if extra internal checking is
1235 enabled, GC aborts if it seems to have visited an interval twice. */
1236 eassert (!i->gcmarkbit);
1237 i->gcmarkbit = 1;
1238 mark_object (i->plist);
1239 }
1240
1241 /* Mark the interval tree rooted in I. */
1242
1243 #define MARK_INTERVAL_TREE(i) \
1244 do { \
1245 if (i && !i->gcmarkbit) \
1246 traverse_intervals_noorder (i, mark_interval, Qnil); \
1247 } while (0)
1248
1249 /***********************************************************************
1250 String Allocation
1251 ***********************************************************************/
1252
1253 /* Lisp_Strings are allocated in string_block structures. When a new
1254 string_block is allocated, all the Lisp_Strings it contains are
1255 added to a free-list string_free_list. When a new Lisp_String is
1256 needed, it is taken from that list. During the sweep phase of GC,
1257 string_blocks that are entirely free are freed, except two which
1258 we keep.
1259
1260 String data is allocated from sblock structures. Strings larger
1261 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1262 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1263
1264 Sblocks consist internally of sdata structures, one for each
1265 Lisp_String. The sdata structure points to the Lisp_String it
1266 belongs to. The Lisp_String points back to the `u.data' member of
1267 its sdata structure.
1268
1269 When a Lisp_String is freed during GC, it is put back on
1270 string_free_list, and its `data' member and its sdata's `string'
1271 pointer is set to null. The size of the string is recorded in the
1272 `u.nbytes' member of the sdata. So, sdata structures that are no
1273 longer used, can be easily recognized, and it's easy to compact the
1274 sblocks of small strings which we do in compact_small_strings. */
1275
1276 /* Size in bytes of an sblock structure used for small strings. This
1277 is 8192 minus malloc overhead. */
1278
1279 #define SBLOCK_SIZE 8188
1280
1281 /* Strings larger than this are considered large strings. String data
1282 for large strings is allocated from individual sblocks. */
1283
1284 #define LARGE_STRING_BYTES 1024
1285
1286 /* Structure describing string memory sub-allocated from an sblock.
1287 This is where the contents of Lisp strings are stored. */
1288
1289 struct sdata
1290 {
1291 /* Back-pointer to the string this sdata belongs to. If null, this
1292 structure is free, and the NBYTES member of the union below
1293 contains the string's byte size (the same value that STRING_BYTES
1294 would return if STRING were non-null). If non-null, STRING_BYTES
1295 (STRING) is the size of the data, and DATA contains the string's
1296 contents. */
1297 struct Lisp_String *string;
1298
1299 #ifdef GC_CHECK_STRING_BYTES
1300
1301 ptrdiff_t nbytes;
1302 unsigned char data[1];
1303
1304 #define SDATA_NBYTES(S) (S)->nbytes
1305 #define SDATA_DATA(S) (S)->data
1306 #define SDATA_SELECTOR(member) member
1307
1308 #else /* not GC_CHECK_STRING_BYTES */
1309
1310 union
1311 {
1312 /* When STRING is non-null. */
1313 unsigned char data[1];
1314
1315 /* When STRING is null. */
1316 ptrdiff_t nbytes;
1317 } u;
1318
1319 #define SDATA_NBYTES(S) (S)->u.nbytes
1320 #define SDATA_DATA(S) (S)->u.data
1321 #define SDATA_SELECTOR(member) u.member
1322
1323 #endif /* not GC_CHECK_STRING_BYTES */
1324
1325 #define SDATA_DATA_OFFSET offsetof (struct sdata, SDATA_SELECTOR (data))
1326 };
1327
1328
1329 /* Structure describing a block of memory which is sub-allocated to
1330 obtain string data memory for strings. Blocks for small strings
1331 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1332 as large as needed. */
1333
1334 struct sblock
1335 {
1336 /* Next in list. */
1337 struct sblock *next;
1338
1339 /* Pointer to the next free sdata block. This points past the end
1340 of the sblock if there isn't any space left in this block. */
1341 struct sdata *next_free;
1342
1343 /* Start of data. */
1344 struct sdata first_data;
1345 };
1346
1347 /* Number of Lisp strings in a string_block structure. The 1020 is
1348 1024 minus malloc overhead. */
1349
1350 #define STRING_BLOCK_SIZE \
1351 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1352
1353 /* Structure describing a block from which Lisp_String structures
1354 are allocated. */
1355
1356 struct string_block
1357 {
1358 /* Place `strings' first, to preserve alignment. */
1359 struct Lisp_String strings[STRING_BLOCK_SIZE];
1360 struct string_block *next;
1361 };
1362
1363 /* Head and tail of the list of sblock structures holding Lisp string
1364 data. We always allocate from current_sblock. The NEXT pointers
1365 in the sblock structures go from oldest_sblock to current_sblock. */
1366
1367 static struct sblock *oldest_sblock, *current_sblock;
1368
1369 /* List of sblocks for large strings. */
1370
1371 static struct sblock *large_sblocks;
1372
1373 /* List of string_block structures. */
1374
1375 static struct string_block *string_blocks;
1376
1377 /* Free-list of Lisp_Strings. */
1378
1379 static struct Lisp_String *string_free_list;
1380
1381 /* Number of live and free Lisp_Strings. */
1382
1383 static EMACS_INT total_strings, total_free_strings;
1384
1385 /* Number of bytes used by live strings. */
1386
1387 static EMACS_INT total_string_bytes;
1388
1389 /* Given a pointer to a Lisp_String S which is on the free-list
1390 string_free_list, return a pointer to its successor in the
1391 free-list. */
1392
1393 #define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1394
1395 /* Return a pointer to the sdata structure belonging to Lisp string S.
1396 S must be live, i.e. S->data must not be null. S->data is actually
1397 a pointer to the `u.data' member of its sdata structure; the
1398 structure starts at a constant offset in front of that. */
1399
1400 #define SDATA_OF_STRING(S) ((struct sdata *) ((S)->data - SDATA_DATA_OFFSET))
1401
1402
1403 #ifdef GC_CHECK_STRING_OVERRUN
1404
1405 /* We check for overrun in string data blocks by appending a small
1406 "cookie" after each allocated string data block, and check for the
1407 presence of this cookie during GC. */
1408
1409 #define GC_STRING_OVERRUN_COOKIE_SIZE 4
1410 static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1411 { '\xde', '\xad', '\xbe', '\xef' };
1412
1413 #else
1414 #define GC_STRING_OVERRUN_COOKIE_SIZE 0
1415 #endif
1416
1417 /* Value is the size of an sdata structure large enough to hold NBYTES
1418 bytes of string data. The value returned includes a terminating
1419 NUL byte, the size of the sdata structure, and padding. */
1420
1421 #ifdef GC_CHECK_STRING_BYTES
1422
1423 #define SDATA_SIZE(NBYTES) \
1424 ((SDATA_DATA_OFFSET \
1425 + (NBYTES) + 1 \
1426 + sizeof (ptrdiff_t) - 1) \
1427 & ~(sizeof (ptrdiff_t) - 1))
1428
1429 #else /* not GC_CHECK_STRING_BYTES */
1430
1431 /* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1432 less than the size of that member. The 'max' is not needed when
1433 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1434 alignment code reserves enough space. */
1435
1436 #define SDATA_SIZE(NBYTES) \
1437 ((SDATA_DATA_OFFSET \
1438 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1439 ? NBYTES \
1440 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1441 + 1 \
1442 + sizeof (ptrdiff_t) - 1) \
1443 & ~(sizeof (ptrdiff_t) - 1))
1444
1445 #endif /* not GC_CHECK_STRING_BYTES */
1446
1447 /* Extra bytes to allocate for each string. */
1448
1449 #define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1450
1451 /* Exact bound on the number of bytes in a string, not counting the
1452 terminating null. A string cannot contain more bytes than
1453 STRING_BYTES_BOUND, nor can it be so long that the size_t
1454 arithmetic in allocate_string_data would overflow while it is
1455 calculating a value to be passed to malloc. */
1456 static ptrdiff_t const STRING_BYTES_MAX =
1457 min (STRING_BYTES_BOUND,
1458 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1459 - GC_STRING_EXTRA
1460 - offsetof (struct sblock, first_data)
1461 - SDATA_DATA_OFFSET)
1462 & ~(sizeof (EMACS_INT) - 1)));
1463
1464 /* Initialize string allocation. Called from init_alloc_once. */
1465
1466 static void
1467 init_strings (void)
1468 {
1469 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1470 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1471 }
1472
1473
1474 #ifdef GC_CHECK_STRING_BYTES
1475
1476 static int check_string_bytes_count;
1477
1478 /* Like STRING_BYTES, but with debugging check. Can be
1479 called during GC, so pay attention to the mark bit. */
1480
1481 ptrdiff_t
1482 string_bytes (struct Lisp_String *s)
1483 {
1484 ptrdiff_t nbytes =
1485 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1486
1487 if (!PURE_POINTER_P (s)
1488 && s->data
1489 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1490 emacs_abort ();
1491 return nbytes;
1492 }
1493
1494 /* Check validity of Lisp strings' string_bytes member in B. */
1495
1496 static void
1497 check_sblock (struct sblock *b)
1498 {
1499 struct sdata *from, *end, *from_end;
1500
1501 end = b->next_free;
1502
1503 for (from = &b->first_data; from < end; from = from_end)
1504 {
1505 /* Compute the next FROM here because copying below may
1506 overwrite data we need to compute it. */
1507 ptrdiff_t nbytes;
1508
1509 /* Check that the string size recorded in the string is the
1510 same as the one recorded in the sdata structure. */
1511 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1512 : SDATA_NBYTES (from));
1513 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1514 }
1515 }
1516
1517
1518 /* Check validity of Lisp strings' string_bytes member. ALL_P
1519 means check all strings, otherwise check only most
1520 recently allocated strings. Used for hunting a bug. */
1521
1522 static void
1523 check_string_bytes (bool all_p)
1524 {
1525 if (all_p)
1526 {
1527 struct sblock *b;
1528
1529 for (b = large_sblocks; b; b = b->next)
1530 {
1531 struct Lisp_String *s = b->first_data.string;
1532 if (s)
1533 string_bytes (s);
1534 }
1535
1536 for (b = oldest_sblock; b; b = b->next)
1537 check_sblock (b);
1538 }
1539 else if (current_sblock)
1540 check_sblock (current_sblock);
1541 }
1542
1543 #else /* not GC_CHECK_STRING_BYTES */
1544
1545 #define check_string_bytes(all) ((void) 0)
1546
1547 #endif /* GC_CHECK_STRING_BYTES */
1548
1549 #ifdef GC_CHECK_STRING_FREE_LIST
1550
1551 /* Walk through the string free list looking for bogus next pointers.
1552 This may catch buffer overrun from a previous string. */
1553
1554 static void
1555 check_string_free_list (void)
1556 {
1557 struct Lisp_String *s;
1558
1559 /* Pop a Lisp_String off the free-list. */
1560 s = string_free_list;
1561 while (s != NULL)
1562 {
1563 if ((uintptr_t) s < 1024)
1564 emacs_abort ();
1565 s = NEXT_FREE_LISP_STRING (s);
1566 }
1567 }
1568 #else
1569 #define check_string_free_list()
1570 #endif
1571
1572 /* Return a new Lisp_String. */
1573
1574 static struct Lisp_String *
1575 allocate_string (void)
1576 {
1577 struct Lisp_String *s;
1578
1579 MALLOC_BLOCK_INPUT;
1580
1581 /* If the free-list is empty, allocate a new string_block, and
1582 add all the Lisp_Strings in it to the free-list. */
1583 if (string_free_list == NULL)
1584 {
1585 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1586 int i;
1587
1588 b->next = string_blocks;
1589 string_blocks = b;
1590
1591 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1592 {
1593 s = b->strings + i;
1594 /* Every string on a free list should have NULL data pointer. */
1595 s->data = NULL;
1596 NEXT_FREE_LISP_STRING (s) = string_free_list;
1597 string_free_list = s;
1598 }
1599
1600 total_free_strings += STRING_BLOCK_SIZE;
1601 }
1602
1603 check_string_free_list ();
1604
1605 /* Pop a Lisp_String off the free-list. */
1606 s = string_free_list;
1607 string_free_list = NEXT_FREE_LISP_STRING (s);
1608
1609 MALLOC_UNBLOCK_INPUT;
1610
1611 --total_free_strings;
1612 ++total_strings;
1613 ++strings_consed;
1614 consing_since_gc += sizeof *s;
1615
1616 #ifdef GC_CHECK_STRING_BYTES
1617 if (!noninteractive)
1618 {
1619 if (++check_string_bytes_count == 200)
1620 {
1621 check_string_bytes_count = 0;
1622 check_string_bytes (1);
1623 }
1624 else
1625 check_string_bytes (0);
1626 }
1627 #endif /* GC_CHECK_STRING_BYTES */
1628
1629 return s;
1630 }
1631
1632
1633 /* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1634 plus a NUL byte at the end. Allocate an sdata structure for S, and
1635 set S->data to its `u.data' member. Store a NUL byte at the end of
1636 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1637 S->data if it was initially non-null. */
1638
1639 void
1640 allocate_string_data (struct Lisp_String *s,
1641 EMACS_INT nchars, EMACS_INT nbytes)
1642 {
1643 struct sdata *data, *old_data;
1644 struct sblock *b;
1645 ptrdiff_t needed, old_nbytes;
1646
1647 if (STRING_BYTES_MAX < nbytes)
1648 string_overflow ();
1649
1650 /* Determine the number of bytes needed to store NBYTES bytes
1651 of string data. */
1652 needed = SDATA_SIZE (nbytes);
1653 if (s->data)
1654 {
1655 old_data = SDATA_OF_STRING (s);
1656 old_nbytes = STRING_BYTES (s);
1657 }
1658 else
1659 old_data = NULL;
1660
1661 MALLOC_BLOCK_INPUT;
1662
1663 if (nbytes > LARGE_STRING_BYTES)
1664 {
1665 size_t size = offsetof (struct sblock, first_data) + needed;
1666
1667 #ifdef DOUG_LEA_MALLOC
1668 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1669 because mapped region contents are not preserved in
1670 a dumped Emacs.
1671
1672 In case you think of allowing it in a dumped Emacs at the
1673 cost of not being able to re-dump, there's another reason:
1674 mmap'ed data typically have an address towards the top of the
1675 address space, which won't fit into an EMACS_INT (at least on
1676 32-bit systems with the current tagging scheme). --fx */
1677 mallopt (M_MMAP_MAX, 0);
1678 #endif
1679
1680 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1681
1682 #ifdef DOUG_LEA_MALLOC
1683 /* Back to a reasonable maximum of mmap'ed areas. */
1684 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1685 #endif
1686
1687 b->next_free = &b->first_data;
1688 b->first_data.string = NULL;
1689 b->next = large_sblocks;
1690 large_sblocks = b;
1691 }
1692 else if (current_sblock == NULL
1693 || (((char *) current_sblock + SBLOCK_SIZE
1694 - (char *) current_sblock->next_free)
1695 < (needed + GC_STRING_EXTRA)))
1696 {
1697 /* Not enough room in the current sblock. */
1698 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1699 b->next_free = &b->first_data;
1700 b->first_data.string = NULL;
1701 b->next = NULL;
1702
1703 if (current_sblock)
1704 current_sblock->next = b;
1705 else
1706 oldest_sblock = b;
1707 current_sblock = b;
1708 }
1709 else
1710 b = current_sblock;
1711
1712 data = b->next_free;
1713 b->next_free = (struct sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1714
1715 MALLOC_UNBLOCK_INPUT;
1716
1717 data->string = s;
1718 s->data = SDATA_DATA (data);
1719 #ifdef GC_CHECK_STRING_BYTES
1720 SDATA_NBYTES (data) = nbytes;
1721 #endif
1722 s->size = nchars;
1723 s->size_byte = nbytes;
1724 s->data[nbytes] = '\0';
1725 #ifdef GC_CHECK_STRING_OVERRUN
1726 memcpy ((char *) data + needed, string_overrun_cookie,
1727 GC_STRING_OVERRUN_COOKIE_SIZE);
1728 #endif
1729
1730 /* Note that Faset may call to this function when S has already data
1731 assigned. In this case, mark data as free by setting it's string
1732 back-pointer to null, and record the size of the data in it. */
1733 if (old_data)
1734 {
1735 SDATA_NBYTES (old_data) = old_nbytes;
1736 old_data->string = NULL;
1737 }
1738
1739 consing_since_gc += needed;
1740 }
1741
1742
1743 /* Sweep and compact strings. */
1744
1745 static void
1746 sweep_strings (void)
1747 {
1748 struct string_block *b, *next;
1749 struct string_block *live_blocks = NULL;
1750
1751 string_free_list = NULL;
1752 total_strings = total_free_strings = 0;
1753 total_string_bytes = 0;
1754
1755 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1756 for (b = string_blocks; b; b = next)
1757 {
1758 int i, nfree = 0;
1759 struct Lisp_String *free_list_before = string_free_list;
1760
1761 next = b->next;
1762
1763 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1764 {
1765 struct Lisp_String *s = b->strings + i;
1766
1767 if (s->data)
1768 {
1769 /* String was not on free-list before. */
1770 if (STRING_MARKED_P (s))
1771 {
1772 /* String is live; unmark it and its intervals. */
1773 UNMARK_STRING (s);
1774
1775 /* Do not use string_(set|get)_intervals here. */
1776 s->intervals = balance_intervals (s->intervals);
1777
1778 ++total_strings;
1779 total_string_bytes += STRING_BYTES (s);
1780 }
1781 else
1782 {
1783 /* String is dead. Put it on the free-list. */
1784 struct sdata *data = SDATA_OF_STRING (s);
1785
1786 /* Save the size of S in its sdata so that we know
1787 how large that is. Reset the sdata's string
1788 back-pointer so that we know it's free. */
1789 #ifdef GC_CHECK_STRING_BYTES
1790 if (string_bytes (s) != SDATA_NBYTES (data))
1791 emacs_abort ();
1792 #else
1793 data->u.nbytes = STRING_BYTES (s);
1794 #endif
1795 data->string = NULL;
1796
1797 /* Reset the strings's `data' member so that we
1798 know it's free. */
1799 s->data = NULL;
1800
1801 /* Put the string on the free-list. */
1802 NEXT_FREE_LISP_STRING (s) = string_free_list;
1803 string_free_list = s;
1804 ++nfree;
1805 }
1806 }
1807 else
1808 {
1809 /* S was on the free-list before. Put it there again. */
1810 NEXT_FREE_LISP_STRING (s) = string_free_list;
1811 string_free_list = s;
1812 ++nfree;
1813 }
1814 }
1815
1816 /* Free blocks that contain free Lisp_Strings only, except
1817 the first two of them. */
1818 if (nfree == STRING_BLOCK_SIZE
1819 && total_free_strings > STRING_BLOCK_SIZE)
1820 {
1821 lisp_free (b);
1822 string_free_list = free_list_before;
1823 }
1824 else
1825 {
1826 total_free_strings += nfree;
1827 b->next = live_blocks;
1828 live_blocks = b;
1829 }
1830 }
1831
1832 check_string_free_list ();
1833
1834 string_blocks = live_blocks;
1835 free_large_strings ();
1836 compact_small_strings ();
1837
1838 check_string_free_list ();
1839 }
1840
1841
1842 /* Free dead large strings. */
1843
1844 static void
1845 free_large_strings (void)
1846 {
1847 struct sblock *b, *next;
1848 struct sblock *live_blocks = NULL;
1849
1850 for (b = large_sblocks; b; b = next)
1851 {
1852 next = b->next;
1853
1854 if (b->first_data.string == NULL)
1855 lisp_free (b);
1856 else
1857 {
1858 b->next = live_blocks;
1859 live_blocks = b;
1860 }
1861 }
1862
1863 large_sblocks = live_blocks;
1864 }
1865
1866
1867 /* Compact data of small strings. Free sblocks that don't contain
1868 data of live strings after compaction. */
1869
1870 static void
1871 compact_small_strings (void)
1872 {
1873 struct sblock *b, *tb, *next;
1874 struct sdata *from, *to, *end, *tb_end;
1875 struct sdata *to_end, *from_end;
1876
1877 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1878 to, and TB_END is the end of TB. */
1879 tb = oldest_sblock;
1880 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1881 to = &tb->first_data;
1882
1883 /* Step through the blocks from the oldest to the youngest. We
1884 expect that old blocks will stabilize over time, so that less
1885 copying will happen this way. */
1886 for (b = oldest_sblock; b; b = b->next)
1887 {
1888 end = b->next_free;
1889 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1890
1891 for (from = &b->first_data; from < end; from = from_end)
1892 {
1893 /* Compute the next FROM here because copying below may
1894 overwrite data we need to compute it. */
1895 ptrdiff_t nbytes;
1896 struct Lisp_String *s = from->string;
1897
1898 #ifdef GC_CHECK_STRING_BYTES
1899 /* Check that the string size recorded in the string is the
1900 same as the one recorded in the sdata structure. */
1901 if (s && string_bytes (s) != SDATA_NBYTES (from))
1902 emacs_abort ();
1903 #endif /* GC_CHECK_STRING_BYTES */
1904
1905 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1906 eassert (nbytes <= LARGE_STRING_BYTES);
1907
1908 nbytes = SDATA_SIZE (nbytes);
1909 from_end = (struct sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1910
1911 #ifdef GC_CHECK_STRING_OVERRUN
1912 if (memcmp (string_overrun_cookie,
1913 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1914 GC_STRING_OVERRUN_COOKIE_SIZE))
1915 emacs_abort ();
1916 #endif
1917
1918 /* Non-NULL S means it's alive. Copy its data. */
1919 if (s)
1920 {
1921 /* If TB is full, proceed with the next sblock. */
1922 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1923 if (to_end > tb_end)
1924 {
1925 tb->next_free = to;
1926 tb = tb->next;
1927 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1928 to = &tb->first_data;
1929 to_end = (struct sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1930 }
1931
1932 /* Copy, and update the string's `data' pointer. */
1933 if (from != to)
1934 {
1935 eassert (tb != b || to < from);
1936 memmove (to, from, nbytes + GC_STRING_EXTRA);
1937 to->string->data = SDATA_DATA (to);
1938 }
1939
1940 /* Advance past the sdata we copied to. */
1941 to = to_end;
1942 }
1943 }
1944 }
1945
1946 /* The rest of the sblocks following TB don't contain live data, so
1947 we can free them. */
1948 for (b = tb->next; b; b = next)
1949 {
1950 next = b->next;
1951 lisp_free (b);
1952 }
1953
1954 tb->next_free = to;
1955 tb->next = NULL;
1956 current_sblock = tb;
1957 }
1958
1959 void
1960 string_overflow (void)
1961 {
1962 error ("Maximum string size exceeded");
1963 }
1964
1965 DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1966 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1967 LENGTH must be an integer.
1968 INIT must be an integer that represents a character. */)
1969 (Lisp_Object length, Lisp_Object init)
1970 {
1971 register Lisp_Object val;
1972 register unsigned char *p, *end;
1973 int c;
1974 EMACS_INT nbytes;
1975
1976 CHECK_NATNUM (length);
1977 CHECK_CHARACTER (init);
1978
1979 c = XFASTINT (init);
1980 if (ASCII_CHAR_P (c))
1981 {
1982 nbytes = XINT (length);
1983 val = make_uninit_string (nbytes);
1984 p = SDATA (val);
1985 end = p + SCHARS (val);
1986 while (p != end)
1987 *p++ = c;
1988 }
1989 else
1990 {
1991 unsigned char str[MAX_MULTIBYTE_LENGTH];
1992 int len = CHAR_STRING (c, str);
1993 EMACS_INT string_len = XINT (length);
1994
1995 if (string_len > STRING_BYTES_MAX / len)
1996 string_overflow ();
1997 nbytes = len * string_len;
1998 val = make_uninit_multibyte_string (string_len, nbytes);
1999 p = SDATA (val);
2000 end = p + nbytes;
2001 while (p != end)
2002 {
2003 memcpy (p, str, len);
2004 p += len;
2005 }
2006 }
2007
2008 *p = 0;
2009 return val;
2010 }
2011
2012
2013 DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2014 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2015 LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2016 (Lisp_Object length, Lisp_Object init)
2017 {
2018 register Lisp_Object val;
2019 struct Lisp_Bool_Vector *p;
2020 ptrdiff_t length_in_chars;
2021 EMACS_INT length_in_elts;
2022 int bits_per_value;
2023 int extra_bool_elts = ((bool_header_size - header_size + word_size - 1)
2024 / word_size);
2025
2026 CHECK_NATNUM (length);
2027
2028 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
2029
2030 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
2031
2032 val = Fmake_vector (make_number (length_in_elts + extra_bool_elts), Qnil);
2033
2034 /* No Lisp_Object to trace in there. */
2035 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2036
2037 p = XBOOL_VECTOR (val);
2038 p->size = XFASTINT (length);
2039
2040 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
2041 / BOOL_VECTOR_BITS_PER_CHAR);
2042 if (length_in_chars)
2043 {
2044 memset (p->data, ! NILP (init) ? -1 : 0, length_in_chars);
2045
2046 /* Clear any extraneous bits in the last byte. */
2047 p->data[length_in_chars - 1]
2048 &= (1 << ((XFASTINT (length) - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1)) - 1;
2049 }
2050
2051 return val;
2052 }
2053
2054
2055 /* Make a string from NBYTES bytes at CONTENTS, and compute the number
2056 of characters from the contents. This string may be unibyte or
2057 multibyte, depending on the contents. */
2058
2059 Lisp_Object
2060 make_string (const char *contents, ptrdiff_t nbytes)
2061 {
2062 register Lisp_Object val;
2063 ptrdiff_t nchars, multibyte_nbytes;
2064
2065 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2066 &nchars, &multibyte_nbytes);
2067 if (nbytes == nchars || nbytes != multibyte_nbytes)
2068 /* CONTENTS contains no multibyte sequences or contains an invalid
2069 multibyte sequence. We must make unibyte string. */
2070 val = make_unibyte_string (contents, nbytes);
2071 else
2072 val = make_multibyte_string (contents, nchars, nbytes);
2073 return val;
2074 }
2075
2076
2077 /* Make an unibyte string from LENGTH bytes at CONTENTS. */
2078
2079 Lisp_Object
2080 make_unibyte_string (const char *contents, ptrdiff_t length)
2081 {
2082 register Lisp_Object val;
2083 val = make_uninit_string (length);
2084 memcpy (SDATA (val), contents, length);
2085 return val;
2086 }
2087
2088
2089 /* Make a multibyte string from NCHARS characters occupying NBYTES
2090 bytes at CONTENTS. */
2091
2092 Lisp_Object
2093 make_multibyte_string (const char *contents,
2094 ptrdiff_t nchars, ptrdiff_t nbytes)
2095 {
2096 register Lisp_Object val;
2097 val = make_uninit_multibyte_string (nchars, nbytes);
2098 memcpy (SDATA (val), contents, nbytes);
2099 return val;
2100 }
2101
2102
2103 /* Make a string from NCHARS characters occupying NBYTES bytes at
2104 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2105
2106 Lisp_Object
2107 make_string_from_bytes (const char *contents,
2108 ptrdiff_t nchars, ptrdiff_t nbytes)
2109 {
2110 register Lisp_Object val;
2111 val = make_uninit_multibyte_string (nchars, nbytes);
2112 memcpy (SDATA (val), contents, nbytes);
2113 if (SBYTES (val) == SCHARS (val))
2114 STRING_SET_UNIBYTE (val);
2115 return val;
2116 }
2117
2118
2119 /* Make a string from NCHARS characters occupying NBYTES bytes at
2120 CONTENTS. The argument MULTIBYTE controls whether to label the
2121 string as multibyte. If NCHARS is negative, it counts the number of
2122 characters by itself. */
2123
2124 Lisp_Object
2125 make_specified_string (const char *contents,
2126 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2127 {
2128 Lisp_Object val;
2129
2130 if (nchars < 0)
2131 {
2132 if (multibyte)
2133 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2134 nbytes);
2135 else
2136 nchars = nbytes;
2137 }
2138 val = make_uninit_multibyte_string (nchars, nbytes);
2139 memcpy (SDATA (val), contents, nbytes);
2140 if (!multibyte)
2141 STRING_SET_UNIBYTE (val);
2142 return val;
2143 }
2144
2145
2146 /* Return an unibyte Lisp_String set up to hold LENGTH characters
2147 occupying LENGTH bytes. */
2148
2149 Lisp_Object
2150 make_uninit_string (EMACS_INT length)
2151 {
2152 Lisp_Object val;
2153
2154 if (!length)
2155 return empty_unibyte_string;
2156 val = make_uninit_multibyte_string (length, length);
2157 STRING_SET_UNIBYTE (val);
2158 return val;
2159 }
2160
2161
2162 /* Return a multibyte Lisp_String set up to hold NCHARS characters
2163 which occupy NBYTES bytes. */
2164
2165 Lisp_Object
2166 make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2167 {
2168 Lisp_Object string;
2169 struct Lisp_String *s;
2170
2171 if (nchars < 0)
2172 emacs_abort ();
2173 if (!nbytes)
2174 return empty_multibyte_string;
2175
2176 s = allocate_string ();
2177 s->intervals = NULL;
2178 allocate_string_data (s, nchars, nbytes);
2179 XSETSTRING (string, s);
2180 string_chars_consed += nbytes;
2181 return string;
2182 }
2183
2184 /* Print arguments to BUF according to a FORMAT, then return
2185 a Lisp_String initialized with the data from BUF. */
2186
2187 Lisp_Object
2188 make_formatted_string (char *buf, const char *format, ...)
2189 {
2190 va_list ap;
2191 int length;
2192
2193 va_start (ap, format);
2194 length = vsprintf (buf, format, ap);
2195 va_end (ap);
2196 return make_string (buf, length);
2197 }
2198
2199 \f
2200 /***********************************************************************
2201 Float Allocation
2202 ***********************************************************************/
2203
2204 /* We store float cells inside of float_blocks, allocating a new
2205 float_block with malloc whenever necessary. Float cells reclaimed
2206 by GC are put on a free list to be reallocated before allocating
2207 any new float cells from the latest float_block. */
2208
2209 #define FLOAT_BLOCK_SIZE \
2210 (((BLOCK_BYTES - sizeof (struct float_block *) \
2211 /* The compiler might add padding at the end. */ \
2212 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2213 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2214
2215 #define GETMARKBIT(block,n) \
2216 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2217 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2218 & 1)
2219
2220 #define SETMARKBIT(block,n) \
2221 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2222 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2223
2224 #define UNSETMARKBIT(block,n) \
2225 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2226 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2227
2228 #define FLOAT_BLOCK(fptr) \
2229 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2230
2231 #define FLOAT_INDEX(fptr) \
2232 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2233
2234 struct float_block
2235 {
2236 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2237 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2238 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2239 struct float_block *next;
2240 };
2241
2242 #define FLOAT_MARKED_P(fptr) \
2243 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2244
2245 #define FLOAT_MARK(fptr) \
2246 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2247
2248 #define FLOAT_UNMARK(fptr) \
2249 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2250
2251 /* Current float_block. */
2252
2253 static struct float_block *float_block;
2254
2255 /* Index of first unused Lisp_Float in the current float_block. */
2256
2257 static int float_block_index = FLOAT_BLOCK_SIZE;
2258
2259 /* Free-list of Lisp_Floats. */
2260
2261 static struct Lisp_Float *float_free_list;
2262
2263 /* Return a new float object with value FLOAT_VALUE. */
2264
2265 Lisp_Object
2266 make_float (double float_value)
2267 {
2268 register Lisp_Object val;
2269
2270 MALLOC_BLOCK_INPUT;
2271
2272 if (float_free_list)
2273 {
2274 /* We use the data field for chaining the free list
2275 so that we won't use the same field that has the mark bit. */
2276 XSETFLOAT (val, float_free_list);
2277 float_free_list = float_free_list->u.chain;
2278 }
2279 else
2280 {
2281 if (float_block_index == FLOAT_BLOCK_SIZE)
2282 {
2283 struct float_block *new
2284 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2285 new->next = float_block;
2286 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2287 float_block = new;
2288 float_block_index = 0;
2289 total_free_floats += FLOAT_BLOCK_SIZE;
2290 }
2291 XSETFLOAT (val, &float_block->floats[float_block_index]);
2292 float_block_index++;
2293 }
2294
2295 MALLOC_UNBLOCK_INPUT;
2296
2297 XFLOAT_INIT (val, float_value);
2298 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2299 consing_since_gc += sizeof (struct Lisp_Float);
2300 floats_consed++;
2301 total_free_floats--;
2302 return val;
2303 }
2304
2305
2306 \f
2307 /***********************************************************************
2308 Cons Allocation
2309 ***********************************************************************/
2310
2311 /* We store cons cells inside of cons_blocks, allocating a new
2312 cons_block with malloc whenever necessary. Cons cells reclaimed by
2313 GC are put on a free list to be reallocated before allocating
2314 any new cons cells from the latest cons_block. */
2315
2316 #define CONS_BLOCK_SIZE \
2317 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2318 /* The compiler might add padding at the end. */ \
2319 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2320 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2321
2322 #define CONS_BLOCK(fptr) \
2323 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2324
2325 #define CONS_INDEX(fptr) \
2326 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2327
2328 struct cons_block
2329 {
2330 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2331 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2332 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2333 struct cons_block *next;
2334 };
2335
2336 #define CONS_MARKED_P(fptr) \
2337 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2338
2339 #define CONS_MARK(fptr) \
2340 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2341
2342 #define CONS_UNMARK(fptr) \
2343 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2344
2345 /* Current cons_block. */
2346
2347 static struct cons_block *cons_block;
2348
2349 /* Index of first unused Lisp_Cons in the current block. */
2350
2351 static int cons_block_index = CONS_BLOCK_SIZE;
2352
2353 /* Free-list of Lisp_Cons structures. */
2354
2355 static struct Lisp_Cons *cons_free_list;
2356
2357 /* Explicitly free a cons cell by putting it on the free-list. */
2358
2359 void
2360 free_cons (struct Lisp_Cons *ptr)
2361 {
2362 ptr->u.chain = cons_free_list;
2363 #if GC_MARK_STACK
2364 ptr->car = Vdead;
2365 #endif
2366 cons_free_list = ptr;
2367 consing_since_gc -= sizeof *ptr;
2368 total_free_conses++;
2369 }
2370
2371 DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2372 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2373 (Lisp_Object car, Lisp_Object cdr)
2374 {
2375 register Lisp_Object val;
2376
2377 MALLOC_BLOCK_INPUT;
2378
2379 if (cons_free_list)
2380 {
2381 /* We use the cdr for chaining the free list
2382 so that we won't use the same field that has the mark bit. */
2383 XSETCONS (val, cons_free_list);
2384 cons_free_list = cons_free_list->u.chain;
2385 }
2386 else
2387 {
2388 if (cons_block_index == CONS_BLOCK_SIZE)
2389 {
2390 struct cons_block *new
2391 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2392 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2393 new->next = cons_block;
2394 cons_block = new;
2395 cons_block_index = 0;
2396 total_free_conses += CONS_BLOCK_SIZE;
2397 }
2398 XSETCONS (val, &cons_block->conses[cons_block_index]);
2399 cons_block_index++;
2400 }
2401
2402 MALLOC_UNBLOCK_INPUT;
2403
2404 XSETCAR (val, car);
2405 XSETCDR (val, cdr);
2406 eassert (!CONS_MARKED_P (XCONS (val)));
2407 consing_since_gc += sizeof (struct Lisp_Cons);
2408 total_free_conses--;
2409 cons_cells_consed++;
2410 return val;
2411 }
2412
2413 #ifdef GC_CHECK_CONS_LIST
2414 /* Get an error now if there's any junk in the cons free list. */
2415 void
2416 check_cons_list (void)
2417 {
2418 struct Lisp_Cons *tail = cons_free_list;
2419
2420 while (tail)
2421 tail = tail->u.chain;
2422 }
2423 #endif
2424
2425 /* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2426
2427 Lisp_Object
2428 list1 (Lisp_Object arg1)
2429 {
2430 return Fcons (arg1, Qnil);
2431 }
2432
2433 Lisp_Object
2434 list2 (Lisp_Object arg1, Lisp_Object arg2)
2435 {
2436 return Fcons (arg1, Fcons (arg2, Qnil));
2437 }
2438
2439
2440 Lisp_Object
2441 list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2442 {
2443 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2444 }
2445
2446
2447 Lisp_Object
2448 list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2449 {
2450 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2451 }
2452
2453
2454 Lisp_Object
2455 list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2456 {
2457 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2458 Fcons (arg5, Qnil)))));
2459 }
2460
2461 /* Make a list of COUNT Lisp_Objects, where ARG is the
2462 first one. Allocate conses from pure space if TYPE
2463 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2464
2465 Lisp_Object
2466 listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2467 {
2468 va_list ap;
2469 ptrdiff_t i;
2470 Lisp_Object val, *objp;
2471
2472 /* Change to SAFE_ALLOCA if you hit this eassert. */
2473 eassert (count <= MAX_ALLOCA / word_size);
2474
2475 objp = alloca (count * word_size);
2476 objp[0] = arg;
2477 va_start (ap, arg);
2478 for (i = 1; i < count; i++)
2479 objp[i] = va_arg (ap, Lisp_Object);
2480 va_end (ap);
2481
2482 for (val = Qnil, i = count - 1; i >= 0; i--)
2483 {
2484 if (type == CONSTYPE_PURE)
2485 val = pure_cons (objp[i], val);
2486 else if (type == CONSTYPE_HEAP)
2487 val = Fcons (objp[i], val);
2488 else
2489 emacs_abort ();
2490 }
2491 return val;
2492 }
2493
2494 DEFUN ("list", Flist, Slist, 0, MANY, 0,
2495 doc: /* Return a newly created list with specified arguments as elements.
2496 Any number of arguments, even zero arguments, are allowed.
2497 usage: (list &rest OBJECTS) */)
2498 (ptrdiff_t nargs, Lisp_Object *args)
2499 {
2500 register Lisp_Object val;
2501 val = Qnil;
2502
2503 while (nargs > 0)
2504 {
2505 nargs--;
2506 val = Fcons (args[nargs], val);
2507 }
2508 return val;
2509 }
2510
2511
2512 DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2513 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2514 (register Lisp_Object length, Lisp_Object init)
2515 {
2516 register Lisp_Object val;
2517 register EMACS_INT size;
2518
2519 CHECK_NATNUM (length);
2520 size = XFASTINT (length);
2521
2522 val = Qnil;
2523 while (size > 0)
2524 {
2525 val = Fcons (init, val);
2526 --size;
2527
2528 if (size > 0)
2529 {
2530 val = Fcons (init, val);
2531 --size;
2532
2533 if (size > 0)
2534 {
2535 val = Fcons (init, val);
2536 --size;
2537
2538 if (size > 0)
2539 {
2540 val = Fcons (init, val);
2541 --size;
2542
2543 if (size > 0)
2544 {
2545 val = Fcons (init, val);
2546 --size;
2547 }
2548 }
2549 }
2550 }
2551
2552 QUIT;
2553 }
2554
2555 return val;
2556 }
2557
2558
2559 \f
2560 /***********************************************************************
2561 Vector Allocation
2562 ***********************************************************************/
2563
2564 /* This value is balanced well enough to avoid too much internal overhead
2565 for the most common cases; it's not required to be a power of two, but
2566 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2567
2568 #define VECTOR_BLOCK_SIZE 4096
2569
2570 /* Align allocation request sizes to be a multiple of ROUNDUP_SIZE. */
2571 enum
2572 {
2573 roundup_size = COMMON_MULTIPLE (word_size, USE_LSB_TAG ? GCALIGNMENT : 1)
2574 };
2575
2576 /* ROUNDUP_SIZE must be a power of 2. */
2577 verify ((roundup_size & (roundup_size - 1)) == 0);
2578
2579 /* Verify assumptions described above. */
2580 verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2581 verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2582
2583 /* Round up X to nearest mult-of-ROUNDUP_SIZE. */
2584
2585 #define vroundup(x) (((x) + (roundup_size - 1)) & ~(roundup_size - 1))
2586
2587 /* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2588
2589 #define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup (sizeof (void *)))
2590
2591 /* Size of the minimal vector allocated from block. */
2592
2593 #define VBLOCK_BYTES_MIN vroundup (sizeof (struct Lisp_Vector))
2594
2595 /* Size of the largest vector allocated from block. */
2596
2597 #define VBLOCK_BYTES_MAX \
2598 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2599
2600 /* We maintain one free list for each possible block-allocated
2601 vector size, and this is the number of free lists we have. */
2602
2603 #define VECTOR_MAX_FREE_LIST_INDEX \
2604 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2605
2606 /* Common shortcut to advance vector pointer over a block data. */
2607
2608 #define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2609
2610 /* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2611
2612 #define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2613
2614 /* When V is on the free list, first word after header is used as a pointer
2615 to next vector on the free list. It might be done in a better way with:
2616
2617 (*(struct Lisp_Vector **)&(v->contents[0]))
2618
2619 but this breaks GCC's strict-aliasing rules (which looks more relaxed
2620 for char and void pointers). */
2621
2622 #define NEXT_IN_FREE_LIST(v) \
2623 (*(struct Lisp_Vector **)((char *) v + header_size))
2624
2625 /* Common shortcut to setup vector on a free list. */
2626
2627 #define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2628 do { \
2629 (tmp) = ((nbytes - header_size) / word_size); \
2630 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2631 eassert ((nbytes) % roundup_size == 0); \
2632 (tmp) = VINDEX (nbytes); \
2633 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2634 NEXT_IN_FREE_LIST (v) = vector_free_lists[tmp]; \
2635 vector_free_lists[tmp] = (v); \
2636 total_free_vector_slots += (nbytes) / word_size; \
2637 } while (0)
2638
2639 /* This internal type is used to maintain the list of large vectors
2640 which are allocated at their own, e.g. outside of vector blocks. */
2641
2642 struct large_vector
2643 {
2644 union {
2645 struct large_vector *vector;
2646 #if USE_LSB_TAG
2647 /* We need to maintain ROUNDUP_SIZE alignment for the vector member. */
2648 unsigned char c[vroundup (sizeof (struct large_vector *))];
2649 #endif
2650 } next;
2651 struct Lisp_Vector v;
2652 };
2653
2654 /* This internal type is used to maintain an underlying storage
2655 for small vectors. */
2656
2657 struct vector_block
2658 {
2659 char data[VECTOR_BLOCK_BYTES];
2660 struct vector_block *next;
2661 };
2662
2663 /* Chain of vector blocks. */
2664
2665 static struct vector_block *vector_blocks;
2666
2667 /* Vector free lists, where NTH item points to a chain of free
2668 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2669
2670 static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2671
2672 /* Singly-linked list of large vectors. */
2673
2674 static struct large_vector *large_vectors;
2675
2676 /* The only vector with 0 slots, allocated from pure space. */
2677
2678 Lisp_Object zero_vector;
2679
2680 /* Number of live vectors. */
2681
2682 static EMACS_INT total_vectors;
2683
2684 /* Total size of live and free vectors, in Lisp_Object units. */
2685
2686 static EMACS_INT total_vector_slots, total_free_vector_slots;
2687
2688 /* Get a new vector block. */
2689
2690 static struct vector_block *
2691 allocate_vector_block (void)
2692 {
2693 struct vector_block *block = xmalloc (sizeof *block);
2694
2695 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2696 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2697 MEM_TYPE_VECTOR_BLOCK);
2698 #endif
2699
2700 block->next = vector_blocks;
2701 vector_blocks = block;
2702 return block;
2703 }
2704
2705 /* Called once to initialize vector allocation. */
2706
2707 static void
2708 init_vectors (void)
2709 {
2710 zero_vector = make_pure_vector (0);
2711 }
2712
2713 /* Allocate vector from a vector block. */
2714
2715 static struct Lisp_Vector *
2716 allocate_vector_from_block (size_t nbytes)
2717 {
2718 struct Lisp_Vector *vector;
2719 struct vector_block *block;
2720 size_t index, restbytes;
2721
2722 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2723 eassert (nbytes % roundup_size == 0);
2724
2725 /* First, try to allocate from a free list
2726 containing vectors of the requested size. */
2727 index = VINDEX (nbytes);
2728 if (vector_free_lists[index])
2729 {
2730 vector = vector_free_lists[index];
2731 vector_free_lists[index] = NEXT_IN_FREE_LIST (vector);
2732 total_free_vector_slots -= nbytes / word_size;
2733 return vector;
2734 }
2735
2736 /* Next, check free lists containing larger vectors. Since
2737 we will split the result, we should have remaining space
2738 large enough to use for one-slot vector at least. */
2739 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2740 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2741 if (vector_free_lists[index])
2742 {
2743 /* This vector is larger than requested. */
2744 vector = vector_free_lists[index];
2745 vector_free_lists[index] = NEXT_IN_FREE_LIST (vector);
2746 total_free_vector_slots -= nbytes / word_size;
2747
2748 /* Excess bytes are used for the smaller vector,
2749 which should be set on an appropriate free list. */
2750 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2751 eassert (restbytes % roundup_size == 0);
2752 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2753 return vector;
2754 }
2755
2756 /* Finally, need a new vector block. */
2757 block = allocate_vector_block ();
2758
2759 /* New vector will be at the beginning of this block. */
2760 vector = (struct Lisp_Vector *) block->data;
2761
2762 /* If the rest of space from this block is large enough
2763 for one-slot vector at least, set up it on a free list. */
2764 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2765 if (restbytes >= VBLOCK_BYTES_MIN)
2766 {
2767 eassert (restbytes % roundup_size == 0);
2768 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2769 }
2770 return vector;
2771 }
2772
2773 /* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2774
2775 #define VECTOR_IN_BLOCK(vector, block) \
2776 ((char *) (vector) <= (block)->data \
2777 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2778
2779 /* Return the memory footprint of V in bytes. */
2780
2781 static ptrdiff_t
2782 vector_nbytes (struct Lisp_Vector *v)
2783 {
2784 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2785
2786 if (size & PSEUDOVECTOR_FLAG)
2787 {
2788 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2789 size = (bool_header_size
2790 + (((struct Lisp_Bool_Vector *) v)->size
2791 + BOOL_VECTOR_BITS_PER_CHAR - 1)
2792 / BOOL_VECTOR_BITS_PER_CHAR);
2793 else
2794 size = (header_size
2795 + ((size & PSEUDOVECTOR_SIZE_MASK)
2796 + ((size & PSEUDOVECTOR_REST_MASK)
2797 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2798 }
2799 else
2800 size = header_size + size * word_size;
2801 return vroundup (size);
2802 }
2803
2804 /* Reclaim space used by unmarked vectors. */
2805
2806 static void
2807 sweep_vectors (void)
2808 {
2809 struct vector_block *block = vector_blocks, **bprev = &vector_blocks;
2810 struct large_vector *lv, **lvprev = &large_vectors;
2811 struct Lisp_Vector *vector, *next;
2812
2813 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2814 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2815
2816 /* Looking through vector blocks. */
2817
2818 for (block = vector_blocks; block; block = *bprev)
2819 {
2820 bool free_this_block = 0;
2821 ptrdiff_t nbytes;
2822
2823 for (vector = (struct Lisp_Vector *) block->data;
2824 VECTOR_IN_BLOCK (vector, block); vector = next)
2825 {
2826 if (VECTOR_MARKED_P (vector))
2827 {
2828 VECTOR_UNMARK (vector);
2829 total_vectors++;
2830 nbytes = vector_nbytes (vector);
2831 total_vector_slots += nbytes / word_size;
2832 next = ADVANCE (vector, nbytes);
2833 }
2834 else
2835 {
2836 ptrdiff_t total_bytes;
2837
2838 nbytes = vector_nbytes (vector);
2839 total_bytes = nbytes;
2840 next = ADVANCE (vector, nbytes);
2841
2842 /* While NEXT is not marked, try to coalesce with VECTOR,
2843 thus making VECTOR of the largest possible size. */
2844
2845 while (VECTOR_IN_BLOCK (next, block))
2846 {
2847 if (VECTOR_MARKED_P (next))
2848 break;
2849 nbytes = vector_nbytes (next);
2850 total_bytes += nbytes;
2851 next = ADVANCE (next, nbytes);
2852 }
2853
2854 eassert (total_bytes % roundup_size == 0);
2855
2856 if (vector == (struct Lisp_Vector *) block->data
2857 && !VECTOR_IN_BLOCK (next, block))
2858 /* This block should be freed because all of it's
2859 space was coalesced into the only free vector. */
2860 free_this_block = 1;
2861 else
2862 {
2863 int tmp;
2864 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2865 }
2866 }
2867 }
2868
2869 if (free_this_block)
2870 {
2871 *bprev = block->next;
2872 #if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2873 mem_delete (mem_find (block->data));
2874 #endif
2875 xfree (block);
2876 }
2877 else
2878 bprev = &block->next;
2879 }
2880
2881 /* Sweep large vectors. */
2882
2883 for (lv = large_vectors; lv; lv = *lvprev)
2884 {
2885 vector = &lv->v;
2886 if (VECTOR_MARKED_P (vector))
2887 {
2888 VECTOR_UNMARK (vector);
2889 total_vectors++;
2890 if (vector->header.size & PSEUDOVECTOR_FLAG)
2891 {
2892 struct Lisp_Bool_Vector *b = (struct Lisp_Bool_Vector *) vector;
2893
2894 /* All non-bool pseudovectors are small enough to be allocated
2895 from vector blocks. This code should be redesigned if some
2896 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2897 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2898
2899 total_vector_slots
2900 += (bool_header_size
2901 + ((b->size + BOOL_VECTOR_BITS_PER_CHAR - 1)
2902 / BOOL_VECTOR_BITS_PER_CHAR)) / word_size;
2903 }
2904 else
2905 total_vector_slots
2906 += header_size / word_size + vector->header.size;
2907 lvprev = &lv->next.vector;
2908 }
2909 else
2910 {
2911 *lvprev = lv->next.vector;
2912 lisp_free (lv);
2913 }
2914 }
2915 }
2916
2917 /* Value is a pointer to a newly allocated Lisp_Vector structure
2918 with room for LEN Lisp_Objects. */
2919
2920 static struct Lisp_Vector *
2921 allocate_vectorlike (ptrdiff_t len)
2922 {
2923 struct Lisp_Vector *p;
2924
2925 MALLOC_BLOCK_INPUT;
2926
2927 if (len == 0)
2928 p = XVECTOR (zero_vector);
2929 else
2930 {
2931 size_t nbytes = header_size + len * word_size;
2932
2933 #ifdef DOUG_LEA_MALLOC
2934 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2935 because mapped region contents are not preserved in
2936 a dumped Emacs. */
2937 mallopt (M_MMAP_MAX, 0);
2938 #endif
2939
2940 if (nbytes <= VBLOCK_BYTES_MAX)
2941 p = allocate_vector_from_block (vroundup (nbytes));
2942 else
2943 {
2944 struct large_vector *lv
2945 = lisp_malloc (sizeof (*lv) + (len - 1) * word_size,
2946 MEM_TYPE_VECTORLIKE);
2947 lv->next.vector = large_vectors;
2948 large_vectors = lv;
2949 p = &lv->v;
2950 }
2951
2952 #ifdef DOUG_LEA_MALLOC
2953 /* Back to a reasonable maximum of mmap'ed areas. */
2954 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2955 #endif
2956
2957 consing_since_gc += nbytes;
2958 vector_cells_consed += len;
2959 }
2960
2961 MALLOC_UNBLOCK_INPUT;
2962
2963 return p;
2964 }
2965
2966
2967 /* Allocate a vector with LEN slots. */
2968
2969 struct Lisp_Vector *
2970 allocate_vector (EMACS_INT len)
2971 {
2972 struct Lisp_Vector *v;
2973 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
2974
2975 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
2976 memory_full (SIZE_MAX);
2977 v = allocate_vectorlike (len);
2978 v->header.size = len;
2979 return v;
2980 }
2981
2982
2983 /* Allocate other vector-like structures. */
2984
2985 struct Lisp_Vector *
2986 allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
2987 {
2988 struct Lisp_Vector *v = allocate_vectorlike (memlen);
2989 int i;
2990
2991 /* Catch bogus values. */
2992 eassert (tag <= PVEC_FONT);
2993 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
2994 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
2995
2996 /* Only the first lisplen slots will be traced normally by the GC. */
2997 for (i = 0; i < lisplen; ++i)
2998 v->contents[i] = Qnil;
2999
3000 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3001 return v;
3002 }
3003
3004 struct buffer *
3005 allocate_buffer (void)
3006 {
3007 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3008
3009 BUFFER_PVEC_INIT (b);
3010 /* Put B on the chain of all buffers including killed ones. */
3011 b->next = all_buffers;
3012 all_buffers = b;
3013 /* Note that the rest fields of B are not initialized. */
3014 return b;
3015 }
3016
3017 struct Lisp_Hash_Table *
3018 allocate_hash_table (void)
3019 {
3020 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3021 }
3022
3023 struct window *
3024 allocate_window (void)
3025 {
3026 struct window *w;
3027
3028 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3029 /* Users assumes that non-Lisp data is zeroed. */
3030 memset (&w->current_matrix, 0,
3031 sizeof (*w) - offsetof (struct window, current_matrix));
3032 return w;
3033 }
3034
3035 struct terminal *
3036 allocate_terminal (void)
3037 {
3038 struct terminal *t;
3039
3040 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3041 /* Users assumes that non-Lisp data is zeroed. */
3042 memset (&t->next_terminal, 0,
3043 sizeof (*t) - offsetof (struct terminal, next_terminal));
3044 return t;
3045 }
3046
3047 struct frame *
3048 allocate_frame (void)
3049 {
3050 struct frame *f;
3051
3052 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3053 /* Users assumes that non-Lisp data is zeroed. */
3054 memset (&f->face_cache, 0,
3055 sizeof (*f) - offsetof (struct frame, face_cache));
3056 return f;
3057 }
3058
3059 struct Lisp_Process *
3060 allocate_process (void)
3061 {
3062 struct Lisp_Process *p;
3063
3064 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3065 /* Users assumes that non-Lisp data is zeroed. */
3066 memset (&p->pid, 0,
3067 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3068 return p;
3069 }
3070
3071 DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3072 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3073 See also the function `vector'. */)
3074 (register Lisp_Object length, Lisp_Object init)
3075 {
3076 Lisp_Object vector;
3077 register ptrdiff_t sizei;
3078 register ptrdiff_t i;
3079 register struct Lisp_Vector *p;
3080
3081 CHECK_NATNUM (length);
3082
3083 p = allocate_vector (XFASTINT (length));
3084 sizei = XFASTINT (length);
3085 for (i = 0; i < sizei; i++)
3086 p->contents[i] = init;
3087
3088 XSETVECTOR (vector, p);
3089 return vector;
3090 }
3091
3092
3093 DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3094 doc: /* Return a newly created vector with specified arguments as elements.
3095 Any number of arguments, even zero arguments, are allowed.
3096 usage: (vector &rest OBJECTS) */)
3097 (ptrdiff_t nargs, Lisp_Object *args)
3098 {
3099 register Lisp_Object len, val;
3100 ptrdiff_t i;
3101 register struct Lisp_Vector *p;
3102
3103 XSETFASTINT (len, nargs);
3104 val = Fmake_vector (len, Qnil);
3105 p = XVECTOR (val);
3106 for (i = 0; i < nargs; i++)
3107 p->contents[i] = args[i];
3108 return val;
3109 }
3110
3111 void
3112 make_byte_code (struct Lisp_Vector *v)
3113 {
3114 if (v->header.size > 1 && STRINGP (v->contents[1])
3115 && STRING_MULTIBYTE (v->contents[1]))
3116 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3117 earlier because they produced a raw 8-bit string for byte-code
3118 and now such a byte-code string is loaded as multibyte while
3119 raw 8-bit characters converted to multibyte form. Thus, now we
3120 must convert them back to the original unibyte form. */
3121 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3122 XSETPVECTYPE (v, PVEC_COMPILED);
3123 }
3124
3125 DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3126 doc: /* Create a byte-code object with specified arguments as elements.
3127 The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3128 vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3129 and (optional) INTERACTIVE-SPEC.
3130 The first four arguments are required; at most six have any
3131 significance.
3132 The ARGLIST can be either like the one of `lambda', in which case the arguments
3133 will be dynamically bound before executing the byte code, or it can be an
3134 integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3135 minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3136 of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3137 argument to catch the left-over arguments. If such an integer is used, the
3138 arguments will not be dynamically bound but will be instead pushed on the
3139 stack before executing the byte-code.
3140 usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3141 (ptrdiff_t nargs, Lisp_Object *args)
3142 {
3143 register Lisp_Object len, val;
3144 ptrdiff_t i;
3145 register struct Lisp_Vector *p;
3146
3147 /* We used to purecopy everything here, if purify-flag was set. This worked
3148 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3149 dangerous, since make-byte-code is used during execution to build
3150 closures, so any closure built during the preload phase would end up
3151 copied into pure space, including its free variables, which is sometimes
3152 just wasteful and other times plainly wrong (e.g. those free vars may want
3153 to be setcar'd). */
3154
3155 XSETFASTINT (len, nargs);
3156 val = Fmake_vector (len, Qnil);
3157
3158 p = XVECTOR (val);
3159 for (i = 0; i < nargs; i++)
3160 p->contents[i] = args[i];
3161 make_byte_code (p);
3162 XSETCOMPILED (val, p);
3163 return val;
3164 }
3165
3166
3167 \f
3168 /***********************************************************************
3169 Symbol Allocation
3170 ***********************************************************************/
3171
3172 /* Like struct Lisp_Symbol, but padded so that the size is a multiple
3173 of the required alignment if LSB tags are used. */
3174
3175 union aligned_Lisp_Symbol
3176 {
3177 struct Lisp_Symbol s;
3178 #if USE_LSB_TAG
3179 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3180 & -GCALIGNMENT];
3181 #endif
3182 };
3183
3184 /* Each symbol_block is just under 1020 bytes long, since malloc
3185 really allocates in units of powers of two and uses 4 bytes for its
3186 own overhead. */
3187
3188 #define SYMBOL_BLOCK_SIZE \
3189 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3190
3191 struct symbol_block
3192 {
3193 /* Place `symbols' first, to preserve alignment. */
3194 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3195 struct symbol_block *next;
3196 };
3197
3198 /* Current symbol block and index of first unused Lisp_Symbol
3199 structure in it. */
3200
3201 static struct symbol_block *symbol_block;
3202 static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3203
3204 /* List of free symbols. */
3205
3206 static struct Lisp_Symbol *symbol_free_list;
3207
3208 DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3209 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3210 Its value and function definition are void, and its property list is nil. */)
3211 (Lisp_Object name)
3212 {
3213 register Lisp_Object val;
3214 register struct Lisp_Symbol *p;
3215
3216 CHECK_STRING (name);
3217
3218 MALLOC_BLOCK_INPUT;
3219
3220 if (symbol_free_list)
3221 {
3222 XSETSYMBOL (val, symbol_free_list);
3223 symbol_free_list = symbol_free_list->next;
3224 }
3225 else
3226 {
3227 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3228 {
3229 struct symbol_block *new
3230 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3231 new->next = symbol_block;
3232 symbol_block = new;
3233 symbol_block_index = 0;
3234 total_free_symbols += SYMBOL_BLOCK_SIZE;
3235 }
3236 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3237 symbol_block_index++;
3238 }
3239
3240 MALLOC_UNBLOCK_INPUT;
3241
3242 p = XSYMBOL (val);
3243 set_symbol_name (val, name);
3244 set_symbol_plist (val, Qnil);
3245 p->redirect = SYMBOL_PLAINVAL;
3246 SET_SYMBOL_VAL (p, Qunbound);
3247 set_symbol_function (val, Qunbound);
3248 set_symbol_next (val, NULL);
3249 p->gcmarkbit = 0;
3250 p->interned = SYMBOL_UNINTERNED;
3251 p->constant = 0;
3252 p->declared_special = 0;
3253 consing_since_gc += sizeof (struct Lisp_Symbol);
3254 symbols_consed++;
3255 total_free_symbols--;
3256 return val;
3257 }
3258
3259
3260 \f
3261 /***********************************************************************
3262 Marker (Misc) Allocation
3263 ***********************************************************************/
3264
3265 /* Like union Lisp_Misc, but padded so that its size is a multiple of
3266 the required alignment when LSB tags are used. */
3267
3268 union aligned_Lisp_Misc
3269 {
3270 union Lisp_Misc m;
3271 #if USE_LSB_TAG
3272 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3273 & -GCALIGNMENT];
3274 #endif
3275 };
3276
3277 /* Allocation of markers and other objects that share that structure.
3278 Works like allocation of conses. */
3279
3280 #define MARKER_BLOCK_SIZE \
3281 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3282
3283 struct marker_block
3284 {
3285 /* Place `markers' first, to preserve alignment. */
3286 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3287 struct marker_block *next;
3288 };
3289
3290 static struct marker_block *marker_block;
3291 static int marker_block_index = MARKER_BLOCK_SIZE;
3292
3293 static union Lisp_Misc *marker_free_list;
3294
3295 /* Return a newly allocated Lisp_Misc object of specified TYPE. */
3296
3297 static Lisp_Object
3298 allocate_misc (enum Lisp_Misc_Type type)
3299 {
3300 Lisp_Object val;
3301
3302 MALLOC_BLOCK_INPUT;
3303
3304 if (marker_free_list)
3305 {
3306 XSETMISC (val, marker_free_list);
3307 marker_free_list = marker_free_list->u_free.chain;
3308 }
3309 else
3310 {
3311 if (marker_block_index == MARKER_BLOCK_SIZE)
3312 {
3313 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3314 new->next = marker_block;
3315 marker_block = new;
3316 marker_block_index = 0;
3317 total_free_markers += MARKER_BLOCK_SIZE;
3318 }
3319 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3320 marker_block_index++;
3321 }
3322
3323 MALLOC_UNBLOCK_INPUT;
3324
3325 --total_free_markers;
3326 consing_since_gc += sizeof (union Lisp_Misc);
3327 misc_objects_consed++;
3328 XMISCTYPE (val) = type;
3329 XMISCANY (val)->gcmarkbit = 0;
3330 return val;
3331 }
3332
3333 /* Free a Lisp_Misc object */
3334
3335 static void
3336 free_misc (Lisp_Object misc)
3337 {
3338 XMISCTYPE (misc) = Lisp_Misc_Free;
3339 XMISC (misc)->u_free.chain = marker_free_list;
3340 marker_free_list = XMISC (misc);
3341 consing_since_gc -= sizeof (union Lisp_Misc);
3342 total_free_markers++;
3343 }
3344
3345 /* Return a Lisp_Misc_Save_Value object containing POINTER and
3346 INTEGER. This is used to package C values to call record_unwind_protect.
3347 The unwind function can get the C values back using XSAVE_VALUE. */
3348
3349 Lisp_Object
3350 make_save_value (void *pointer, ptrdiff_t integer)
3351 {
3352 register Lisp_Object val;
3353 register struct Lisp_Save_Value *p;
3354
3355 val = allocate_misc (Lisp_Misc_Save_Value);
3356 p = XSAVE_VALUE (val);
3357 p->pointer = pointer;
3358 p->integer = integer;
3359 p->dogc = 0;
3360 return val;
3361 }
3362
3363 /* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3364
3365 Lisp_Object
3366 build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3367 {
3368 register Lisp_Object overlay;
3369
3370 overlay = allocate_misc (Lisp_Misc_Overlay);
3371 OVERLAY_START (overlay) = start;
3372 OVERLAY_END (overlay) = end;
3373 set_overlay_plist (overlay, plist);
3374 XOVERLAY (overlay)->next = NULL;
3375 return overlay;
3376 }
3377
3378 DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3379 doc: /* Return a newly allocated marker which does not point at any place. */)
3380 (void)
3381 {
3382 register Lisp_Object val;
3383 register struct Lisp_Marker *p;
3384
3385 val = allocate_misc (Lisp_Misc_Marker);
3386 p = XMARKER (val);
3387 p->buffer = 0;
3388 p->bytepos = 0;
3389 p->charpos = 0;
3390 p->next = NULL;
3391 p->insertion_type = 0;
3392 return val;
3393 }
3394
3395 /* Return a newly allocated marker which points into BUF
3396 at character position CHARPOS and byte position BYTEPOS. */
3397
3398 Lisp_Object
3399 build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3400 {
3401 Lisp_Object obj;
3402 struct Lisp_Marker *m;
3403
3404 /* No dead buffers here. */
3405 eassert (BUFFER_LIVE_P (buf));
3406
3407 /* Every character is at least one byte. */
3408 eassert (charpos <= bytepos);
3409
3410 obj = allocate_misc (Lisp_Misc_Marker);
3411 m = XMARKER (obj);
3412 m->buffer = buf;
3413 m->charpos = charpos;
3414 m->bytepos = bytepos;
3415 m->insertion_type = 0;
3416 m->next = BUF_MARKERS (buf);
3417 BUF_MARKERS (buf) = m;
3418 return obj;
3419 }
3420
3421 /* Put MARKER back on the free list after using it temporarily. */
3422
3423 void
3424 free_marker (Lisp_Object marker)
3425 {
3426 unchain_marker (XMARKER (marker));
3427 free_misc (marker);
3428 }
3429
3430 \f
3431 /* Return a newly created vector or string with specified arguments as
3432 elements. If all the arguments are characters that can fit
3433 in a string of events, make a string; otherwise, make a vector.
3434
3435 Any number of arguments, even zero arguments, are allowed. */
3436
3437 Lisp_Object
3438 make_event_array (register int nargs, Lisp_Object *args)
3439 {
3440 int i;
3441
3442 for (i = 0; i < nargs; i++)
3443 /* The things that fit in a string
3444 are characters that are in 0...127,
3445 after discarding the meta bit and all the bits above it. */
3446 if (!INTEGERP (args[i])
3447 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3448 return Fvector (nargs, args);
3449
3450 /* Since the loop exited, we know that all the things in it are
3451 characters, so we can make a string. */
3452 {
3453 Lisp_Object result;
3454
3455 result = Fmake_string (make_number (nargs), make_number (0));
3456 for (i = 0; i < nargs; i++)
3457 {
3458 SSET (result, i, XINT (args[i]));
3459 /* Move the meta bit to the right place for a string char. */
3460 if (XINT (args[i]) & CHAR_META)
3461 SSET (result, i, SREF (result, i) | 0x80);
3462 }
3463
3464 return result;
3465 }
3466 }
3467
3468
3469 \f
3470 /************************************************************************
3471 Memory Full Handling
3472 ************************************************************************/
3473
3474
3475 /* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3476 there may have been size_t overflow so that malloc was never
3477 called, or perhaps malloc was invoked successfully but the
3478 resulting pointer had problems fitting into a tagged EMACS_INT. In
3479 either case this counts as memory being full even though malloc did
3480 not fail. */
3481
3482 void
3483 memory_full (size_t nbytes)
3484 {
3485 /* Do not go into hysterics merely because a large request failed. */
3486 bool enough_free_memory = 0;
3487 if (SPARE_MEMORY < nbytes)
3488 {
3489 void *p;
3490
3491 MALLOC_BLOCK_INPUT;
3492 p = malloc (SPARE_MEMORY);
3493 if (p)
3494 {
3495 free (p);
3496 enough_free_memory = 1;
3497 }
3498 MALLOC_UNBLOCK_INPUT;
3499 }
3500
3501 if (! enough_free_memory)
3502 {
3503 int i;
3504
3505 Vmemory_full = Qt;
3506
3507 memory_full_cons_threshold = sizeof (struct cons_block);
3508
3509 /* The first time we get here, free the spare memory. */
3510 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3511 if (spare_memory[i])
3512 {
3513 if (i == 0)
3514 free (spare_memory[i]);
3515 else if (i >= 1 && i <= 4)
3516 lisp_align_free (spare_memory[i]);
3517 else
3518 lisp_free (spare_memory[i]);
3519 spare_memory[i] = 0;
3520 }
3521 }
3522
3523 /* This used to call error, but if we've run out of memory, we could
3524 get infinite recursion trying to build the string. */
3525 xsignal (Qnil, Vmemory_signal_data);
3526 }
3527
3528 /* If we released our reserve (due to running out of memory),
3529 and we have a fair amount free once again,
3530 try to set aside another reserve in case we run out once more.
3531
3532 This is called when a relocatable block is freed in ralloc.c,
3533 and also directly from this file, in case we're not using ralloc.c. */
3534
3535 void
3536 refill_memory_reserve (void)
3537 {
3538 #ifndef SYSTEM_MALLOC
3539 if (spare_memory[0] == 0)
3540 spare_memory[0] = malloc (SPARE_MEMORY);
3541 if (spare_memory[1] == 0)
3542 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3543 MEM_TYPE_SPARE);
3544 if (spare_memory[2] == 0)
3545 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3546 MEM_TYPE_SPARE);
3547 if (spare_memory[3] == 0)
3548 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3549 MEM_TYPE_SPARE);
3550 if (spare_memory[4] == 0)
3551 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3552 MEM_TYPE_SPARE);
3553 if (spare_memory[5] == 0)
3554 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3555 MEM_TYPE_SPARE);
3556 if (spare_memory[6] == 0)
3557 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3558 MEM_TYPE_SPARE);
3559 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3560 Vmemory_full = Qnil;
3561 #endif
3562 }
3563 \f
3564 /************************************************************************
3565 C Stack Marking
3566 ************************************************************************/
3567
3568 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
3569
3570 /* Conservative C stack marking requires a method to identify possibly
3571 live Lisp objects given a pointer value. We do this by keeping
3572 track of blocks of Lisp data that are allocated in a red-black tree
3573 (see also the comment of mem_node which is the type of nodes in
3574 that tree). Function lisp_malloc adds information for an allocated
3575 block to the red-black tree with calls to mem_insert, and function
3576 lisp_free removes it with mem_delete. Functions live_string_p etc
3577 call mem_find to lookup information about a given pointer in the
3578 tree, and use that to determine if the pointer points to a Lisp
3579 object or not. */
3580
3581 /* Initialize this part of alloc.c. */
3582
3583 static void
3584 mem_init (void)
3585 {
3586 mem_z.left = mem_z.right = MEM_NIL;
3587 mem_z.parent = NULL;
3588 mem_z.color = MEM_BLACK;
3589 mem_z.start = mem_z.end = NULL;
3590 mem_root = MEM_NIL;
3591 }
3592
3593
3594 /* Value is a pointer to the mem_node containing START. Value is
3595 MEM_NIL if there is no node in the tree containing START. */
3596
3597 static struct mem_node *
3598 mem_find (void *start)
3599 {
3600 struct mem_node *p;
3601
3602 if (start < min_heap_address || start > max_heap_address)
3603 return MEM_NIL;
3604
3605 /* Make the search always successful to speed up the loop below. */
3606 mem_z.start = start;
3607 mem_z.end = (char *) start + 1;
3608
3609 p = mem_root;
3610 while (start < p->start || start >= p->end)
3611 p = start < p->start ? p->left : p->right;
3612 return p;
3613 }
3614
3615
3616 /* Insert a new node into the tree for a block of memory with start
3617 address START, end address END, and type TYPE. Value is a
3618 pointer to the node that was inserted. */
3619
3620 static struct mem_node *
3621 mem_insert (void *start, void *end, enum mem_type type)
3622 {
3623 struct mem_node *c, *parent, *x;
3624
3625 if (min_heap_address == NULL || start < min_heap_address)
3626 min_heap_address = start;
3627 if (max_heap_address == NULL || end > max_heap_address)
3628 max_heap_address = end;
3629
3630 /* See where in the tree a node for START belongs. In this
3631 particular application, it shouldn't happen that a node is already
3632 present. For debugging purposes, let's check that. */
3633 c = mem_root;
3634 parent = NULL;
3635
3636 #if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3637
3638 while (c != MEM_NIL)
3639 {
3640 if (start >= c->start && start < c->end)
3641 emacs_abort ();
3642 parent = c;
3643 c = start < c->start ? c->left : c->right;
3644 }
3645
3646 #else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3647
3648 while (c != MEM_NIL)
3649 {
3650 parent = c;
3651 c = start < c->start ? c->left : c->right;
3652 }
3653
3654 #endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3655
3656 /* Create a new node. */
3657 #ifdef GC_MALLOC_CHECK
3658 x = malloc (sizeof *x);
3659 if (x == NULL)
3660 emacs_abort ();
3661 #else
3662 x = xmalloc (sizeof *x);
3663 #endif
3664 x->start = start;
3665 x->end = end;
3666 x->type = type;
3667 x->parent = parent;
3668 x->left = x->right = MEM_NIL;
3669 x->color = MEM_RED;
3670
3671 /* Insert it as child of PARENT or install it as root. */
3672 if (parent)
3673 {
3674 if (start < parent->start)
3675 parent->left = x;
3676 else
3677 parent->right = x;
3678 }
3679 else
3680 mem_root = x;
3681
3682 /* Re-establish red-black tree properties. */
3683 mem_insert_fixup (x);
3684
3685 return x;
3686 }
3687
3688
3689 /* Re-establish the red-black properties of the tree, and thereby
3690 balance the tree, after node X has been inserted; X is always red. */
3691
3692 static void
3693 mem_insert_fixup (struct mem_node *x)
3694 {
3695 while (x != mem_root && x->parent->color == MEM_RED)
3696 {
3697 /* X is red and its parent is red. This is a violation of
3698 red-black tree property #3. */
3699
3700 if (x->parent == x->parent->parent->left)
3701 {
3702 /* We're on the left side of our grandparent, and Y is our
3703 "uncle". */
3704 struct mem_node *y = x->parent->parent->right;
3705
3706 if (y->color == MEM_RED)
3707 {
3708 /* Uncle and parent are red but should be black because
3709 X is red. Change the colors accordingly and proceed
3710 with the grandparent. */
3711 x->parent->color = MEM_BLACK;
3712 y->color = MEM_BLACK;
3713 x->parent->parent->color = MEM_RED;
3714 x = x->parent->parent;
3715 }
3716 else
3717 {
3718 /* Parent and uncle have different colors; parent is
3719 red, uncle is black. */
3720 if (x == x->parent->right)
3721 {
3722 x = x->parent;
3723 mem_rotate_left (x);
3724 }
3725
3726 x->parent->color = MEM_BLACK;
3727 x->parent->parent->color = MEM_RED;
3728 mem_rotate_right (x->parent->parent);
3729 }
3730 }
3731 else
3732 {
3733 /* This is the symmetrical case of above. */
3734 struct mem_node *y = x->parent->parent->left;
3735
3736 if (y->color == MEM_RED)
3737 {
3738 x->parent->color = MEM_BLACK;
3739 y->color = MEM_BLACK;
3740 x->parent->parent->color = MEM_RED;
3741 x = x->parent->parent;
3742 }
3743 else
3744 {
3745 if (x == x->parent->left)
3746 {
3747 x = x->parent;
3748 mem_rotate_right (x);
3749 }
3750
3751 x->parent->color = MEM_BLACK;
3752 x->parent->parent->color = MEM_RED;
3753 mem_rotate_left (x->parent->parent);
3754 }
3755 }
3756 }
3757
3758 /* The root may have been changed to red due to the algorithm. Set
3759 it to black so that property #5 is satisfied. */
3760 mem_root->color = MEM_BLACK;
3761 }
3762
3763
3764 /* (x) (y)
3765 / \ / \
3766 a (y) ===> (x) c
3767 / \ / \
3768 b c a b */
3769
3770 static void
3771 mem_rotate_left (struct mem_node *x)
3772 {
3773 struct mem_node *y;
3774
3775 /* Turn y's left sub-tree into x's right sub-tree. */
3776 y = x->right;
3777 x->right = y->left;
3778 if (y->left != MEM_NIL)
3779 y->left->parent = x;
3780
3781 /* Y's parent was x's parent. */
3782 if (y != MEM_NIL)
3783 y->parent = x->parent;
3784
3785 /* Get the parent to point to y instead of x. */
3786 if (x->parent)
3787 {
3788 if (x == x->parent->left)
3789 x->parent->left = y;
3790 else
3791 x->parent->right = y;
3792 }
3793 else
3794 mem_root = y;
3795
3796 /* Put x on y's left. */
3797 y->left = x;
3798 if (x != MEM_NIL)
3799 x->parent = y;
3800 }
3801
3802
3803 /* (x) (Y)
3804 / \ / \
3805 (y) c ===> a (x)
3806 / \ / \
3807 a b b c */
3808
3809 static void
3810 mem_rotate_right (struct mem_node *x)
3811 {
3812 struct mem_node *y = x->left;
3813
3814 x->left = y->right;
3815 if (y->right != MEM_NIL)
3816 y->right->parent = x;
3817
3818 if (y != MEM_NIL)
3819 y->parent = x->parent;
3820 if (x->parent)
3821 {
3822 if (x == x->parent->right)
3823 x->parent->right = y;
3824 else
3825 x->parent->left = y;
3826 }
3827 else
3828 mem_root = y;
3829
3830 y->right = x;
3831 if (x != MEM_NIL)
3832 x->parent = y;
3833 }
3834
3835
3836 /* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3837
3838 static void
3839 mem_delete (struct mem_node *z)
3840 {
3841 struct mem_node *x, *y;
3842
3843 if (!z || z == MEM_NIL)
3844 return;
3845
3846 if (z->left == MEM_NIL || z->right == MEM_NIL)
3847 y = z;
3848 else
3849 {
3850 y = z->right;
3851 while (y->left != MEM_NIL)
3852 y = y->left;
3853 }
3854
3855 if (y->left != MEM_NIL)
3856 x = y->left;
3857 else
3858 x = y->right;
3859
3860 x->parent = y->parent;
3861 if (y->parent)
3862 {
3863 if (y == y->parent->left)
3864 y->parent->left = x;
3865 else
3866 y->parent->right = x;
3867 }
3868 else
3869 mem_root = x;
3870
3871 if (y != z)
3872 {
3873 z->start = y->start;
3874 z->end = y->end;
3875 z->type = y->type;
3876 }
3877
3878 if (y->color == MEM_BLACK)
3879 mem_delete_fixup (x);
3880
3881 #ifdef GC_MALLOC_CHECK
3882 free (y);
3883 #else
3884 xfree (y);
3885 #endif
3886 }
3887
3888
3889 /* Re-establish the red-black properties of the tree, after a
3890 deletion. */
3891
3892 static void
3893 mem_delete_fixup (struct mem_node *x)
3894 {
3895 while (x != mem_root && x->color == MEM_BLACK)
3896 {
3897 if (x == x->parent->left)
3898 {
3899 struct mem_node *w = x->parent->right;
3900
3901 if (w->color == MEM_RED)
3902 {
3903 w->color = MEM_BLACK;
3904 x->parent->color = MEM_RED;
3905 mem_rotate_left (x->parent);
3906 w = x->parent->right;
3907 }
3908
3909 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3910 {
3911 w->color = MEM_RED;
3912 x = x->parent;
3913 }
3914 else
3915 {
3916 if (w->right->color == MEM_BLACK)
3917 {
3918 w->left->color = MEM_BLACK;
3919 w->color = MEM_RED;
3920 mem_rotate_right (w);
3921 w = x->parent->right;
3922 }
3923 w->color = x->parent->color;
3924 x->parent->color = MEM_BLACK;
3925 w->right->color = MEM_BLACK;
3926 mem_rotate_left (x->parent);
3927 x = mem_root;
3928 }
3929 }
3930 else
3931 {
3932 struct mem_node *w = x->parent->left;
3933
3934 if (w->color == MEM_RED)
3935 {
3936 w->color = MEM_BLACK;
3937 x->parent->color = MEM_RED;
3938 mem_rotate_right (x->parent);
3939 w = x->parent->left;
3940 }
3941
3942 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3943 {
3944 w->color = MEM_RED;
3945 x = x->parent;
3946 }
3947 else
3948 {
3949 if (w->left->color == MEM_BLACK)
3950 {
3951 w->right->color = MEM_BLACK;
3952 w->color = MEM_RED;
3953 mem_rotate_left (w);
3954 w = x->parent->left;
3955 }
3956
3957 w->color = x->parent->color;
3958 x->parent->color = MEM_BLACK;
3959 w->left->color = MEM_BLACK;
3960 mem_rotate_right (x->parent);
3961 x = mem_root;
3962 }
3963 }
3964 }
3965
3966 x->color = MEM_BLACK;
3967 }
3968
3969
3970 /* Value is non-zero if P is a pointer to a live Lisp string on
3971 the heap. M is a pointer to the mem_block for P. */
3972
3973 static bool
3974 live_string_p (struct mem_node *m, void *p)
3975 {
3976 if (m->type == MEM_TYPE_STRING)
3977 {
3978 struct string_block *b = (struct string_block *) m->start;
3979 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
3980
3981 /* P must point to the start of a Lisp_String structure, and it
3982 must not be on the free-list. */
3983 return (offset >= 0
3984 && offset % sizeof b->strings[0] == 0
3985 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3986 && ((struct Lisp_String *) p)->data != NULL);
3987 }
3988 else
3989 return 0;
3990 }
3991
3992
3993 /* Value is non-zero if P is a pointer to a live Lisp cons on
3994 the heap. M is a pointer to the mem_block for P. */
3995
3996 static bool
3997 live_cons_p (struct mem_node *m, void *p)
3998 {
3999 if (m->type == MEM_TYPE_CONS)
4000 {
4001 struct cons_block *b = (struct cons_block *) m->start;
4002 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4003
4004 /* P must point to the start of a Lisp_Cons, not be
4005 one of the unused cells in the current cons block,
4006 and not be on the free-list. */
4007 return (offset >= 0
4008 && offset % sizeof b->conses[0] == 0
4009 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4010 && (b != cons_block
4011 || offset / sizeof b->conses[0] < cons_block_index)
4012 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4013 }
4014 else
4015 return 0;
4016 }
4017
4018
4019 /* Value is non-zero if P is a pointer to a live Lisp symbol on
4020 the heap. M is a pointer to the mem_block for P. */
4021
4022 static bool
4023 live_symbol_p (struct mem_node *m, void *p)
4024 {
4025 if (m->type == MEM_TYPE_SYMBOL)
4026 {
4027 struct symbol_block *b = (struct symbol_block *) m->start;
4028 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4029
4030 /* P must point to the start of a Lisp_Symbol, not be
4031 one of the unused cells in the current symbol block,
4032 and not be on the free-list. */
4033 return (offset >= 0
4034 && offset % sizeof b->symbols[0] == 0
4035 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4036 && (b != symbol_block
4037 || offset / sizeof b->symbols[0] < symbol_block_index)
4038 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4039 }
4040 else
4041 return 0;
4042 }
4043
4044
4045 /* Value is non-zero if P is a pointer to a live Lisp float on
4046 the heap. M is a pointer to the mem_block for P. */
4047
4048 static bool
4049 live_float_p (struct mem_node *m, void *p)
4050 {
4051 if (m->type == MEM_TYPE_FLOAT)
4052 {
4053 struct float_block *b = (struct float_block *) m->start;
4054 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4055
4056 /* P must point to the start of a Lisp_Float and not be
4057 one of the unused cells in the current float block. */
4058 return (offset >= 0
4059 && offset % sizeof b->floats[0] == 0
4060 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4061 && (b != float_block
4062 || offset / sizeof b->floats[0] < float_block_index));
4063 }
4064 else
4065 return 0;
4066 }
4067
4068
4069 /* Value is non-zero if P is a pointer to a live Lisp Misc on
4070 the heap. M is a pointer to the mem_block for P. */
4071
4072 static bool
4073 live_misc_p (struct mem_node *m, void *p)
4074 {
4075 if (m->type == MEM_TYPE_MISC)
4076 {
4077 struct marker_block *b = (struct marker_block *) m->start;
4078 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4079
4080 /* P must point to the start of a Lisp_Misc, not be
4081 one of the unused cells in the current misc block,
4082 and not be on the free-list. */
4083 return (offset >= 0
4084 && offset % sizeof b->markers[0] == 0
4085 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4086 && (b != marker_block
4087 || offset / sizeof b->markers[0] < marker_block_index)
4088 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4089 }
4090 else
4091 return 0;
4092 }
4093
4094
4095 /* Value is non-zero if P is a pointer to a live vector-like object.
4096 M is a pointer to the mem_block for P. */
4097
4098 static bool
4099 live_vector_p (struct mem_node *m, void *p)
4100 {
4101 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4102 {
4103 /* This memory node corresponds to a vector block. */
4104 struct vector_block *block = (struct vector_block *) m->start;
4105 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4106
4107 /* P is in the block's allocation range. Scan the block
4108 up to P and see whether P points to the start of some
4109 vector which is not on a free list. FIXME: check whether
4110 some allocation patterns (probably a lot of short vectors)
4111 may cause a substantial overhead of this loop. */
4112 while (VECTOR_IN_BLOCK (vector, block)
4113 && vector <= (struct Lisp_Vector *) p)
4114 {
4115 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4116 return 1;
4117 else
4118 vector = ADVANCE (vector, vector_nbytes (vector));
4119 }
4120 }
4121 else if (m->type == MEM_TYPE_VECTORLIKE
4122 && (char *) p == ((char *) m->start
4123 + offsetof (struct large_vector, v)))
4124 /* This memory node corresponds to a large vector. */
4125 return 1;
4126 return 0;
4127 }
4128
4129
4130 /* Value is non-zero if P is a pointer to a live buffer. M is a
4131 pointer to the mem_block for P. */
4132
4133 static bool
4134 live_buffer_p (struct mem_node *m, void *p)
4135 {
4136 /* P must point to the start of the block, and the buffer
4137 must not have been killed. */
4138 return (m->type == MEM_TYPE_BUFFER
4139 && p == m->start
4140 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4141 }
4142
4143 #endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4144
4145 #if GC_MARK_STACK
4146
4147 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4148
4149 /* Array of objects that are kept alive because the C stack contains
4150 a pattern that looks like a reference to them . */
4151
4152 #define MAX_ZOMBIES 10
4153 static Lisp_Object zombies[MAX_ZOMBIES];
4154
4155 /* Number of zombie objects. */
4156
4157 static EMACS_INT nzombies;
4158
4159 /* Number of garbage collections. */
4160
4161 static EMACS_INT ngcs;
4162
4163 /* Average percentage of zombies per collection. */
4164
4165 static double avg_zombies;
4166
4167 /* Max. number of live and zombie objects. */
4168
4169 static EMACS_INT max_live, max_zombies;
4170
4171 /* Average number of live objects per GC. */
4172
4173 static double avg_live;
4174
4175 DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4176 doc: /* Show information about live and zombie objects. */)
4177 (void)
4178 {
4179 Lisp_Object args[8], zombie_list = Qnil;
4180 EMACS_INT i;
4181 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4182 zombie_list = Fcons (zombies[i], zombie_list);
4183 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4184 args[1] = make_number (ngcs);
4185 args[2] = make_float (avg_live);
4186 args[3] = make_float (avg_zombies);
4187 args[4] = make_float (avg_zombies / avg_live / 100);
4188 args[5] = make_number (max_live);
4189 args[6] = make_number (max_zombies);
4190 args[7] = zombie_list;
4191 return Fmessage (8, args);
4192 }
4193
4194 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4195
4196
4197 /* Mark OBJ if we can prove it's a Lisp_Object. */
4198
4199 static void
4200 mark_maybe_object (Lisp_Object obj)
4201 {
4202 void *po;
4203 struct mem_node *m;
4204
4205 if (INTEGERP (obj))
4206 return;
4207
4208 po = (void *) XPNTR (obj);
4209 m = mem_find (po);
4210
4211 if (m != MEM_NIL)
4212 {
4213 bool mark_p = 0;
4214
4215 switch (XTYPE (obj))
4216 {
4217 case Lisp_String:
4218 mark_p = (live_string_p (m, po)
4219 && !STRING_MARKED_P ((struct Lisp_String *) po));
4220 break;
4221
4222 case Lisp_Cons:
4223 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4224 break;
4225
4226 case Lisp_Symbol:
4227 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4228 break;
4229
4230 case Lisp_Float:
4231 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4232 break;
4233
4234 case Lisp_Vectorlike:
4235 /* Note: can't check BUFFERP before we know it's a
4236 buffer because checking that dereferences the pointer
4237 PO which might point anywhere. */
4238 if (live_vector_p (m, po))
4239 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4240 else if (live_buffer_p (m, po))
4241 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4242 break;
4243
4244 case Lisp_Misc:
4245 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4246 break;
4247
4248 default:
4249 break;
4250 }
4251
4252 if (mark_p)
4253 {
4254 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4255 if (nzombies < MAX_ZOMBIES)
4256 zombies[nzombies] = obj;
4257 ++nzombies;
4258 #endif
4259 mark_object (obj);
4260 }
4261 }
4262 }
4263
4264
4265 /* If P points to Lisp data, mark that as live if it isn't already
4266 marked. */
4267
4268 static void
4269 mark_maybe_pointer (void *p)
4270 {
4271 struct mem_node *m;
4272
4273 /* Quickly rule out some values which can't point to Lisp data.
4274 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4275 Otherwise, assume that Lisp data is aligned on even addresses. */
4276 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4277 return;
4278
4279 m = mem_find (p);
4280 if (m != MEM_NIL)
4281 {
4282 Lisp_Object obj = Qnil;
4283
4284 switch (m->type)
4285 {
4286 case MEM_TYPE_NON_LISP:
4287 case MEM_TYPE_SPARE:
4288 /* Nothing to do; not a pointer to Lisp memory. */
4289 break;
4290
4291 case MEM_TYPE_BUFFER:
4292 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4293 XSETVECTOR (obj, p);
4294 break;
4295
4296 case MEM_TYPE_CONS:
4297 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4298 XSETCONS (obj, p);
4299 break;
4300
4301 case MEM_TYPE_STRING:
4302 if (live_string_p (m, p)
4303 && !STRING_MARKED_P ((struct Lisp_String *) p))
4304 XSETSTRING (obj, p);
4305 break;
4306
4307 case MEM_TYPE_MISC:
4308 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4309 XSETMISC (obj, p);
4310 break;
4311
4312 case MEM_TYPE_SYMBOL:
4313 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4314 XSETSYMBOL (obj, p);
4315 break;
4316
4317 case MEM_TYPE_FLOAT:
4318 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4319 XSETFLOAT (obj, p);
4320 break;
4321
4322 case MEM_TYPE_VECTORLIKE:
4323 case MEM_TYPE_VECTOR_BLOCK:
4324 if (live_vector_p (m, p))
4325 {
4326 Lisp_Object tem;
4327 XSETVECTOR (tem, p);
4328 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4329 obj = tem;
4330 }
4331 break;
4332
4333 default:
4334 emacs_abort ();
4335 }
4336
4337 if (!NILP (obj))
4338 mark_object (obj);
4339 }
4340 }
4341
4342
4343 /* Alignment of pointer values. Use alignof, as it sometimes returns
4344 a smaller alignment than GCC's __alignof__ and mark_memory might
4345 miss objects if __alignof__ were used. */
4346 #define GC_POINTER_ALIGNMENT alignof (void *)
4347
4348 /* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4349 not suffice, which is the typical case. A host where a Lisp_Object is
4350 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4351 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4352 suffice to widen it to to a Lisp_Object and check it that way. */
4353 #if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4354 # if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4355 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4356 nor mark_maybe_object can follow the pointers. This should not occur on
4357 any practical porting target. */
4358 # error "MSB type bits straddle pointer-word boundaries"
4359 # endif
4360 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4361 pointer words that hold pointers ORed with type bits. */
4362 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4363 #else
4364 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4365 words that hold unmodified pointers. */
4366 # define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4367 #endif
4368
4369 /* Mark Lisp objects referenced from the address range START+OFFSET..END
4370 or END+OFFSET..START. */
4371
4372 static void
4373 mark_memory (void *start, void *end)
4374 #if defined (__clang__) && defined (__has_feature)
4375 #if __has_feature(address_sanitizer)
4376 /* Do not allow -faddress-sanitizer to check this function, since it
4377 crosses the function stack boundary, and thus would yield many
4378 false positives. */
4379 __attribute__((no_address_safety_analysis))
4380 #endif
4381 #endif
4382 {
4383 void **pp;
4384 int i;
4385
4386 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4387 nzombies = 0;
4388 #endif
4389
4390 /* Make START the pointer to the start of the memory region,
4391 if it isn't already. */
4392 if (end < start)
4393 {
4394 void *tem = start;
4395 start = end;
4396 end = tem;
4397 }
4398
4399 /* Mark Lisp data pointed to. This is necessary because, in some
4400 situations, the C compiler optimizes Lisp objects away, so that
4401 only a pointer to them remains. Example:
4402
4403 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4404 ()
4405 {
4406 Lisp_Object obj = build_string ("test");
4407 struct Lisp_String *s = XSTRING (obj);
4408 Fgarbage_collect ();
4409 fprintf (stderr, "test `%s'\n", s->data);
4410 return Qnil;
4411 }
4412
4413 Here, `obj' isn't really used, and the compiler optimizes it
4414 away. The only reference to the life string is through the
4415 pointer `s'. */
4416
4417 for (pp = start; (void *) pp < end; pp++)
4418 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4419 {
4420 void *p = *(void **) ((char *) pp + i);
4421 mark_maybe_pointer (p);
4422 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4423 mark_maybe_object (XIL ((intptr_t) p));
4424 }
4425 }
4426
4427 /* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
4428 the GCC system configuration. In gcc 3.2, the only systems for
4429 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
4430 by others?) and ns32k-pc532-min. */
4431
4432 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4433
4434 static bool setjmp_tested_p;
4435 static int longjmps_done;
4436
4437 #define SETJMP_WILL_LIKELY_WORK "\
4438 \n\
4439 Emacs garbage collector has been changed to use conservative stack\n\
4440 marking. Emacs has determined that the method it uses to do the\n\
4441 marking will likely work on your system, but this isn't sure.\n\
4442 \n\
4443 If you are a system-programmer, or can get the help of a local wizard\n\
4444 who is, please take a look at the function mark_stack in alloc.c, and\n\
4445 verify that the methods used are appropriate for your system.\n\
4446 \n\
4447 Please mail the result to <emacs-devel@gnu.org>.\n\
4448 "
4449
4450 #define SETJMP_WILL_NOT_WORK "\
4451 \n\
4452 Emacs garbage collector has been changed to use conservative stack\n\
4453 marking. Emacs has determined that the default method it uses to do the\n\
4454 marking will not work on your system. We will need a system-dependent\n\
4455 solution for your system.\n\
4456 \n\
4457 Please take a look at the function mark_stack in alloc.c, and\n\
4458 try to find a way to make it work on your system.\n\
4459 \n\
4460 Note that you may get false negatives, depending on the compiler.\n\
4461 In particular, you need to use -O with GCC for this test.\n\
4462 \n\
4463 Please mail the result to <emacs-devel@gnu.org>.\n\
4464 "
4465
4466
4467 /* Perform a quick check if it looks like setjmp saves registers in a
4468 jmp_buf. Print a message to stderr saying so. When this test
4469 succeeds, this is _not_ a proof that setjmp is sufficient for
4470 conservative stack marking. Only the sources or a disassembly
4471 can prove that. */
4472
4473 static void
4474 test_setjmp (void)
4475 {
4476 char buf[10];
4477 register int x;
4478 sys_jmp_buf jbuf;
4479
4480 /* Arrange for X to be put in a register. */
4481 sprintf (buf, "1");
4482 x = strlen (buf);
4483 x = 2 * x - 1;
4484
4485 sys_setjmp (jbuf);
4486 if (longjmps_done == 1)
4487 {
4488 /* Came here after the longjmp at the end of the function.
4489
4490 If x == 1, the longjmp has restored the register to its
4491 value before the setjmp, and we can hope that setjmp
4492 saves all such registers in the jmp_buf, although that
4493 isn't sure.
4494
4495 For other values of X, either something really strange is
4496 taking place, or the setjmp just didn't save the register. */
4497
4498 if (x == 1)
4499 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4500 else
4501 {
4502 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4503 exit (1);
4504 }
4505 }
4506
4507 ++longjmps_done;
4508 x = 2;
4509 if (longjmps_done == 1)
4510 sys_longjmp (jbuf, 1);
4511 }
4512
4513 #endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4514
4515
4516 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4517
4518 /* Abort if anything GCPRO'd doesn't survive the GC. */
4519
4520 static void
4521 check_gcpros (void)
4522 {
4523 struct gcpro *p;
4524 ptrdiff_t i;
4525
4526 for (p = gcprolist; p; p = p->next)
4527 for (i = 0; i < p->nvars; ++i)
4528 if (!survives_gc_p (p->var[i]))
4529 /* FIXME: It's not necessarily a bug. It might just be that the
4530 GCPRO is unnecessary or should release the object sooner. */
4531 emacs_abort ();
4532 }
4533
4534 #elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4535
4536 static void
4537 dump_zombies (void)
4538 {
4539 int i;
4540
4541 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4542 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4543 {
4544 fprintf (stderr, " %d = ", i);
4545 debug_print (zombies[i]);
4546 }
4547 }
4548
4549 #endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4550
4551
4552 /* Mark live Lisp objects on the C stack.
4553
4554 There are several system-dependent problems to consider when
4555 porting this to new architectures:
4556
4557 Processor Registers
4558
4559 We have to mark Lisp objects in CPU registers that can hold local
4560 variables or are used to pass parameters.
4561
4562 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4563 something that either saves relevant registers on the stack, or
4564 calls mark_maybe_object passing it each register's contents.
4565
4566 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4567 implementation assumes that calling setjmp saves registers we need
4568 to see in a jmp_buf which itself lies on the stack. This doesn't
4569 have to be true! It must be verified for each system, possibly
4570 by taking a look at the source code of setjmp.
4571
4572 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4573 can use it as a machine independent method to store all registers
4574 to the stack. In this case the macros described in the previous
4575 two paragraphs are not used.
4576
4577 Stack Layout
4578
4579 Architectures differ in the way their processor stack is organized.
4580 For example, the stack might look like this
4581
4582 +----------------+
4583 | Lisp_Object | size = 4
4584 +----------------+
4585 | something else | size = 2
4586 +----------------+
4587 | Lisp_Object | size = 4
4588 +----------------+
4589 | ... |
4590
4591 In such a case, not every Lisp_Object will be aligned equally. To
4592 find all Lisp_Object on the stack it won't be sufficient to walk
4593 the stack in steps of 4 bytes. Instead, two passes will be
4594 necessary, one starting at the start of the stack, and a second
4595 pass starting at the start of the stack + 2. Likewise, if the
4596 minimal alignment of Lisp_Objects on the stack is 1, four passes
4597 would be necessary, each one starting with one byte more offset
4598 from the stack start. */
4599
4600 static void
4601 mark_stack (void)
4602 {
4603 void *end;
4604
4605 #ifdef HAVE___BUILTIN_UNWIND_INIT
4606 /* Force callee-saved registers and register windows onto the stack.
4607 This is the preferred method if available, obviating the need for
4608 machine dependent methods. */
4609 __builtin_unwind_init ();
4610 end = &end;
4611 #else /* not HAVE___BUILTIN_UNWIND_INIT */
4612 #ifndef GC_SAVE_REGISTERS_ON_STACK
4613 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4614 union aligned_jmpbuf {
4615 Lisp_Object o;
4616 sys_jmp_buf j;
4617 } j;
4618 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4619 #endif
4620 /* This trick flushes the register windows so that all the state of
4621 the process is contained in the stack. */
4622 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4623 needed on ia64 too. See mach_dep.c, where it also says inline
4624 assembler doesn't work with relevant proprietary compilers. */
4625 #ifdef __sparc__
4626 #if defined (__sparc64__) && defined (__FreeBSD__)
4627 /* FreeBSD does not have a ta 3 handler. */
4628 asm ("flushw");
4629 #else
4630 asm ("ta 3");
4631 #endif
4632 #endif
4633
4634 /* Save registers that we need to see on the stack. We need to see
4635 registers used to hold register variables and registers used to
4636 pass parameters. */
4637 #ifdef GC_SAVE_REGISTERS_ON_STACK
4638 GC_SAVE_REGISTERS_ON_STACK (end);
4639 #else /* not GC_SAVE_REGISTERS_ON_STACK */
4640
4641 #ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4642 setjmp will definitely work, test it
4643 and print a message with the result
4644 of the test. */
4645 if (!setjmp_tested_p)
4646 {
4647 setjmp_tested_p = 1;
4648 test_setjmp ();
4649 }
4650 #endif /* GC_SETJMP_WORKS */
4651
4652 sys_setjmp (j.j);
4653 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4654 #endif /* not GC_SAVE_REGISTERS_ON_STACK */
4655 #endif /* not HAVE___BUILTIN_UNWIND_INIT */
4656
4657 /* This assumes that the stack is a contiguous region in memory. If
4658 that's not the case, something has to be done here to iterate
4659 over the stack segments. */
4660 mark_memory (stack_base, end);
4661
4662 /* Allow for marking a secondary stack, like the register stack on the
4663 ia64. */
4664 #ifdef GC_MARK_SECONDARY_STACK
4665 GC_MARK_SECONDARY_STACK ();
4666 #endif
4667
4668 #if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4669 check_gcpros ();
4670 #endif
4671 }
4672
4673 #endif /* GC_MARK_STACK != 0 */
4674
4675
4676 /* Determine whether it is safe to access memory at address P. */
4677 static int
4678 valid_pointer_p (void *p)
4679 {
4680 #ifdef WINDOWSNT
4681 return w32_valid_pointer_p (p, 16);
4682 #else
4683 int fd[2];
4684
4685 /* Obviously, we cannot just access it (we would SEGV trying), so we
4686 trick the o/s to tell us whether p is a valid pointer.
4687 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4688 not validate p in that case. */
4689
4690 if (pipe (fd) == 0)
4691 {
4692 bool valid = emacs_write (fd[1], (char *) p, 16) == 16;
4693 emacs_close (fd[1]);
4694 emacs_close (fd[0]);
4695 return valid;
4696 }
4697
4698 return -1;
4699 #endif
4700 }
4701
4702 /* Return 2 if OBJ is a killed or special buffer object.
4703 Return 1 if OBJ is a valid lisp object.
4704 Return 0 if OBJ is NOT a valid lisp object.
4705 Return -1 if we cannot validate OBJ.
4706 This function can be quite slow,
4707 so it should only be used in code for manual debugging. */
4708
4709 int
4710 valid_lisp_object_p (Lisp_Object obj)
4711 {
4712 void *p;
4713 #if GC_MARK_STACK
4714 struct mem_node *m;
4715 #endif
4716
4717 if (INTEGERP (obj))
4718 return 1;
4719
4720 p = (void *) XPNTR (obj);
4721 if (PURE_POINTER_P (p))
4722 return 1;
4723
4724 if (p == &buffer_defaults || p == &buffer_local_symbols)
4725 return 2;
4726
4727 #if !GC_MARK_STACK
4728 return valid_pointer_p (p);
4729 #else
4730
4731 m = mem_find (p);
4732
4733 if (m == MEM_NIL)
4734 {
4735 int valid = valid_pointer_p (p);
4736 if (valid <= 0)
4737 return valid;
4738
4739 if (SUBRP (obj))
4740 return 1;
4741
4742 return 0;
4743 }
4744
4745 switch (m->type)
4746 {
4747 case MEM_TYPE_NON_LISP:
4748 case MEM_TYPE_SPARE:
4749 return 0;
4750
4751 case MEM_TYPE_BUFFER:
4752 return live_buffer_p (m, p) ? 1 : 2;
4753
4754 case MEM_TYPE_CONS:
4755 return live_cons_p (m, p);
4756
4757 case MEM_TYPE_STRING:
4758 return live_string_p (m, p);
4759
4760 case MEM_TYPE_MISC:
4761 return live_misc_p (m, p);
4762
4763 case MEM_TYPE_SYMBOL:
4764 return live_symbol_p (m, p);
4765
4766 case MEM_TYPE_FLOAT:
4767 return live_float_p (m, p);
4768
4769 case MEM_TYPE_VECTORLIKE:
4770 case MEM_TYPE_VECTOR_BLOCK:
4771 return live_vector_p (m, p);
4772
4773 default:
4774 break;
4775 }
4776
4777 return 0;
4778 #endif
4779 }
4780
4781
4782
4783 \f
4784 /***********************************************************************
4785 Pure Storage Management
4786 ***********************************************************************/
4787
4788 /* Allocate room for SIZE bytes from pure Lisp storage and return a
4789 pointer to it. TYPE is the Lisp type for which the memory is
4790 allocated. TYPE < 0 means it's not used for a Lisp object. */
4791
4792 static void *
4793 pure_alloc (size_t size, int type)
4794 {
4795 void *result;
4796 #if USE_LSB_TAG
4797 size_t alignment = GCALIGNMENT;
4798 #else
4799 size_t alignment = alignof (EMACS_INT);
4800
4801 /* Give Lisp_Floats an extra alignment. */
4802 if (type == Lisp_Float)
4803 alignment = alignof (struct Lisp_Float);
4804 #endif
4805
4806 again:
4807 if (type >= 0)
4808 {
4809 /* Allocate space for a Lisp object from the beginning of the free
4810 space with taking account of alignment. */
4811 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4812 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4813 }
4814 else
4815 {
4816 /* Allocate space for a non-Lisp object from the end of the free
4817 space. */
4818 pure_bytes_used_non_lisp += size;
4819 result = purebeg + pure_size - pure_bytes_used_non_lisp;
4820 }
4821 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
4822
4823 if (pure_bytes_used <= pure_size)
4824 return result;
4825
4826 /* Don't allocate a large amount here,
4827 because it might get mmap'd and then its address
4828 might not be usable. */
4829 purebeg = xmalloc (10000);
4830 pure_size = 10000;
4831 pure_bytes_used_before_overflow += pure_bytes_used - size;
4832 pure_bytes_used = 0;
4833 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
4834 goto again;
4835 }
4836
4837
4838 /* Print a warning if PURESIZE is too small. */
4839
4840 void
4841 check_pure_size (void)
4842 {
4843 if (pure_bytes_used_before_overflow)
4844 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
4845 " bytes needed)"),
4846 pure_bytes_used + pure_bytes_used_before_overflow);
4847 }
4848
4849
4850 /* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
4851 the non-Lisp data pool of the pure storage, and return its start
4852 address. Return NULL if not found. */
4853
4854 static char *
4855 find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
4856 {
4857 int i;
4858 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
4859 const unsigned char *p;
4860 char *non_lisp_beg;
4861
4862 if (pure_bytes_used_non_lisp <= nbytes)
4863 return NULL;
4864
4865 /* Set up the Boyer-Moore table. */
4866 skip = nbytes + 1;
4867 for (i = 0; i < 256; i++)
4868 bm_skip[i] = skip;
4869
4870 p = (const unsigned char *) data;
4871 while (--skip > 0)
4872 bm_skip[*p++] = skip;
4873
4874 last_char_skip = bm_skip['\0'];
4875
4876 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
4877 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
4878
4879 /* See the comments in the function `boyer_moore' (search.c) for the
4880 use of `infinity'. */
4881 infinity = pure_bytes_used_non_lisp + 1;
4882 bm_skip['\0'] = infinity;
4883
4884 p = (const unsigned char *) non_lisp_beg + nbytes;
4885 start = 0;
4886 do
4887 {
4888 /* Check the last character (== '\0'). */
4889 do
4890 {
4891 start += bm_skip[*(p + start)];
4892 }
4893 while (start <= start_max);
4894
4895 if (start < infinity)
4896 /* Couldn't find the last character. */
4897 return NULL;
4898
4899 /* No less than `infinity' means we could find the last
4900 character at `p[start - infinity]'. */
4901 start -= infinity;
4902
4903 /* Check the remaining characters. */
4904 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
4905 /* Found. */
4906 return non_lisp_beg + start;
4907
4908 start += last_char_skip;
4909 }
4910 while (start <= start_max);
4911
4912 return NULL;
4913 }
4914
4915
4916 /* Return a string allocated in pure space. DATA is a buffer holding
4917 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4918 means make the result string multibyte.
4919
4920 Must get an error if pure storage is full, since if it cannot hold
4921 a large string it may be able to hold conses that point to that
4922 string; then the string is not protected from gc. */
4923
4924 Lisp_Object
4925 make_pure_string (const char *data,
4926 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
4927 {
4928 Lisp_Object string;
4929 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4930 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
4931 if (s->data == NULL)
4932 {
4933 s->data = pure_alloc (nbytes + 1, -1);
4934 memcpy (s->data, data, nbytes);
4935 s->data[nbytes] = '\0';
4936 }
4937 s->size = nchars;
4938 s->size_byte = multibyte ? nbytes : -1;
4939 s->intervals = NULL;
4940 XSETSTRING (string, s);
4941 return string;
4942 }
4943
4944 /* Return a string allocated in pure space. Do not
4945 allocate the string data, just point to DATA. */
4946
4947 Lisp_Object
4948 make_pure_c_string (const char *data, ptrdiff_t nchars)
4949 {
4950 Lisp_Object string;
4951 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
4952 s->size = nchars;
4953 s->size_byte = -1;
4954 s->data = (unsigned char *) data;
4955 s->intervals = NULL;
4956 XSETSTRING (string, s);
4957 return string;
4958 }
4959
4960 /* Return a cons allocated from pure space. Give it pure copies
4961 of CAR as car and CDR as cdr. */
4962
4963 Lisp_Object
4964 pure_cons (Lisp_Object car, Lisp_Object cdr)
4965 {
4966 Lisp_Object new;
4967 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
4968 XSETCONS (new, p);
4969 XSETCAR (new, Fpurecopy (car));
4970 XSETCDR (new, Fpurecopy (cdr));
4971 return new;
4972 }
4973
4974
4975 /* Value is a float object with value NUM allocated from pure space. */
4976
4977 static Lisp_Object
4978 make_pure_float (double num)
4979 {
4980 Lisp_Object new;
4981 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
4982 XSETFLOAT (new, p);
4983 XFLOAT_INIT (new, num);
4984 return new;
4985 }
4986
4987
4988 /* Return a vector with room for LEN Lisp_Objects allocated from
4989 pure space. */
4990
4991 static Lisp_Object
4992 make_pure_vector (ptrdiff_t len)
4993 {
4994 Lisp_Object new;
4995 size_t size = header_size + len * word_size;
4996 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
4997 XSETVECTOR (new, p);
4998 XVECTOR (new)->header.size = len;
4999 return new;
5000 }
5001
5002
5003 DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5004 doc: /* Make a copy of object OBJ in pure storage.
5005 Recursively copies contents of vectors and cons cells.
5006 Does not copy symbols. Copies strings without text properties. */)
5007 (register Lisp_Object obj)
5008 {
5009 if (NILP (Vpurify_flag))
5010 return obj;
5011
5012 if (PURE_POINTER_P (XPNTR (obj)))
5013 return obj;
5014
5015 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5016 {
5017 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5018 if (!NILP (tmp))
5019 return tmp;
5020 }
5021
5022 if (CONSP (obj))
5023 obj = pure_cons (XCAR (obj), XCDR (obj));
5024 else if (FLOATP (obj))
5025 obj = make_pure_float (XFLOAT_DATA (obj));
5026 else if (STRINGP (obj))
5027 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5028 SBYTES (obj),
5029 STRING_MULTIBYTE (obj));
5030 else if (COMPILEDP (obj) || VECTORP (obj))
5031 {
5032 register struct Lisp_Vector *vec;
5033 register ptrdiff_t i;
5034 ptrdiff_t size;
5035
5036 size = ASIZE (obj);
5037 if (size & PSEUDOVECTOR_FLAG)
5038 size &= PSEUDOVECTOR_SIZE_MASK;
5039 vec = XVECTOR (make_pure_vector (size));
5040 for (i = 0; i < size; i++)
5041 vec->contents[i] = Fpurecopy (AREF (obj, i));
5042 if (COMPILEDP (obj))
5043 {
5044 XSETPVECTYPE (vec, PVEC_COMPILED);
5045 XSETCOMPILED (obj, vec);
5046 }
5047 else
5048 XSETVECTOR (obj, vec);
5049 }
5050 else if (MARKERP (obj))
5051 error ("Attempt to copy a marker to pure storage");
5052 else
5053 /* Not purified, don't hash-cons. */
5054 return obj;
5055
5056 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5057 Fputhash (obj, obj, Vpurify_flag);
5058
5059 return obj;
5060 }
5061
5062
5063 \f
5064 /***********************************************************************
5065 Protection from GC
5066 ***********************************************************************/
5067
5068 /* Put an entry in staticvec, pointing at the variable with address
5069 VARADDRESS. */
5070
5071 void
5072 staticpro (Lisp_Object *varaddress)
5073 {
5074 staticvec[staticidx++] = varaddress;
5075 if (staticidx >= NSTATICS)
5076 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5077 }
5078
5079 \f
5080 /***********************************************************************
5081 Protection from GC
5082 ***********************************************************************/
5083
5084 /* Temporarily prevent garbage collection. */
5085
5086 ptrdiff_t
5087 inhibit_garbage_collection (void)
5088 {
5089 ptrdiff_t count = SPECPDL_INDEX ();
5090
5091 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5092 return count;
5093 }
5094
5095 /* Used to avoid possible overflows when
5096 converting from C to Lisp integers. */
5097
5098 static Lisp_Object
5099 bounded_number (EMACS_INT number)
5100 {
5101 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5102 }
5103
5104 /* Calculate total bytes of live objects. */
5105
5106 static size_t
5107 total_bytes_of_live_objects (void)
5108 {
5109 size_t tot = 0;
5110 tot += total_conses * sizeof (struct Lisp_Cons);
5111 tot += total_symbols * sizeof (struct Lisp_Symbol);
5112 tot += total_markers * sizeof (union Lisp_Misc);
5113 tot += total_string_bytes;
5114 tot += total_vector_slots * word_size;
5115 tot += total_floats * sizeof (struct Lisp_Float);
5116 tot += total_intervals * sizeof (struct interval);
5117 tot += total_strings * sizeof (struct Lisp_String);
5118 return tot;
5119 }
5120
5121 DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5122 doc: /* Reclaim storage for Lisp objects no longer needed.
5123 Garbage collection happens automatically if you cons more than
5124 `gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5125 `garbage-collect' normally returns a list with info on amount of space in use,
5126 where each entry has the form (NAME SIZE USED FREE), where:
5127 - NAME is a symbol describing the kind of objects this entry represents,
5128 - SIZE is the number of bytes used by each one,
5129 - USED is the number of those objects that were found live in the heap,
5130 - FREE is the number of those objects that are not live but that Emacs
5131 keeps around for future allocations (maybe because it does not know how
5132 to return them to the OS).
5133 However, if there was overflow in pure space, `garbage-collect'
5134 returns nil, because real GC can't be done.
5135 See Info node `(elisp)Garbage Collection'. */)
5136 (void)
5137 {
5138 struct specbinding *bind;
5139 struct buffer *nextb;
5140 char stack_top_variable;
5141 ptrdiff_t i;
5142 bool message_p;
5143 ptrdiff_t count = SPECPDL_INDEX ();
5144 EMACS_TIME start;
5145 Lisp_Object retval = Qnil;
5146 size_t tot_before = 0;
5147 struct backtrace backtrace;
5148
5149 if (abort_on_gc)
5150 emacs_abort ();
5151
5152 /* Can't GC if pure storage overflowed because we can't determine
5153 if something is a pure object or not. */
5154 if (pure_bytes_used_before_overflow)
5155 return Qnil;
5156
5157 /* Record this function, so it appears on the profiler's backtraces. */
5158 backtrace.next = backtrace_list;
5159 backtrace.function = Qautomatic_gc;
5160 backtrace.args = &Qnil;
5161 backtrace.nargs = 0;
5162 backtrace.debug_on_exit = 0;
5163 backtrace_list = &backtrace;
5164
5165 check_cons_list ();
5166
5167 /* Don't keep undo information around forever.
5168 Do this early on, so it is no problem if the user quits. */
5169 FOR_EACH_BUFFER (nextb)
5170 compact_buffer (nextb);
5171
5172 if (profiler_memory_running)
5173 tot_before = total_bytes_of_live_objects ();
5174
5175 start = current_emacs_time ();
5176
5177 /* In case user calls debug_print during GC,
5178 don't let that cause a recursive GC. */
5179 consing_since_gc = 0;
5180
5181 /* Save what's currently displayed in the echo area. */
5182 message_p = push_message ();
5183 record_unwind_protect (pop_message_unwind, Qnil);
5184
5185 /* Save a copy of the contents of the stack, for debugging. */
5186 #if MAX_SAVE_STACK > 0
5187 if (NILP (Vpurify_flag))
5188 {
5189 char *stack;
5190 ptrdiff_t stack_size;
5191 if (&stack_top_variable < stack_bottom)
5192 {
5193 stack = &stack_top_variable;
5194 stack_size = stack_bottom - &stack_top_variable;
5195 }
5196 else
5197 {
5198 stack = stack_bottom;
5199 stack_size = &stack_top_variable - stack_bottom;
5200 }
5201 if (stack_size <= MAX_SAVE_STACK)
5202 {
5203 if (stack_copy_size < stack_size)
5204 {
5205 stack_copy = xrealloc (stack_copy, stack_size);
5206 stack_copy_size = stack_size;
5207 }
5208 memcpy (stack_copy, stack, stack_size);
5209 }
5210 }
5211 #endif /* MAX_SAVE_STACK > 0 */
5212
5213 if (garbage_collection_messages)
5214 message1_nolog ("Garbage collecting...");
5215
5216 block_input ();
5217
5218 shrink_regexp_cache ();
5219
5220 gc_in_progress = 1;
5221
5222 /* Mark all the special slots that serve as the roots of accessibility. */
5223
5224 mark_buffer (&buffer_defaults);
5225 mark_buffer (&buffer_local_symbols);
5226
5227 for (i = 0; i < staticidx; i++)
5228 mark_object (*staticvec[i]);
5229
5230 for (bind = specpdl; bind != specpdl_ptr; bind++)
5231 {
5232 mark_object (bind->symbol);
5233 mark_object (bind->old_value);
5234 }
5235 mark_terminals ();
5236 mark_kboards ();
5237
5238 #ifdef USE_GTK
5239 xg_mark_data ();
5240 #endif
5241
5242 #if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5243 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5244 mark_stack ();
5245 #else
5246 {
5247 register struct gcpro *tail;
5248 for (tail = gcprolist; tail; tail = tail->next)
5249 for (i = 0; i < tail->nvars; i++)
5250 mark_object (tail->var[i]);
5251 }
5252 mark_byte_stack ();
5253 {
5254 struct catchtag *catch;
5255 struct handler *handler;
5256
5257 for (catch = catchlist; catch; catch = catch->next)
5258 {
5259 mark_object (catch->tag);
5260 mark_object (catch->val);
5261 }
5262 for (handler = handlerlist; handler; handler = handler->next)
5263 {
5264 mark_object (handler->handler);
5265 mark_object (handler->var);
5266 }
5267 }
5268 mark_backtrace ();
5269 #endif
5270
5271 #ifdef HAVE_WINDOW_SYSTEM
5272 mark_fringe_data ();
5273 #endif
5274
5275 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5276 mark_stack ();
5277 #endif
5278
5279 /* Everything is now marked, except for the things that require special
5280 finalization, i.e. the undo_list.
5281 Look thru every buffer's undo list
5282 for elements that update markers that were not marked,
5283 and delete them. */
5284 FOR_EACH_BUFFER (nextb)
5285 {
5286 /* If a buffer's undo list is Qt, that means that undo is
5287 turned off in that buffer. Calling truncate_undo_list on
5288 Qt tends to return NULL, which effectively turns undo back on.
5289 So don't call truncate_undo_list if undo_list is Qt. */
5290 if (! EQ (nextb->INTERNAL_FIELD (undo_list), Qt))
5291 {
5292 Lisp_Object tail, prev;
5293 tail = nextb->INTERNAL_FIELD (undo_list);
5294 prev = Qnil;
5295 while (CONSP (tail))
5296 {
5297 if (CONSP (XCAR (tail))
5298 && MARKERP (XCAR (XCAR (tail)))
5299 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5300 {
5301 if (NILP (prev))
5302 nextb->INTERNAL_FIELD (undo_list) = tail = XCDR (tail);
5303 else
5304 {
5305 tail = XCDR (tail);
5306 XSETCDR (prev, tail);
5307 }
5308 }
5309 else
5310 {
5311 prev = tail;
5312 tail = XCDR (tail);
5313 }
5314 }
5315 }
5316 /* Now that we have stripped the elements that need not be in the
5317 undo_list any more, we can finally mark the list. */
5318 mark_object (nextb->INTERNAL_FIELD (undo_list));
5319 }
5320
5321 gc_sweep ();
5322
5323 /* Clear the mark bits that we set in certain root slots. */
5324
5325 unmark_byte_stack ();
5326 VECTOR_UNMARK (&buffer_defaults);
5327 VECTOR_UNMARK (&buffer_local_symbols);
5328
5329 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5330 dump_zombies ();
5331 #endif
5332
5333 unblock_input ();
5334
5335 check_cons_list ();
5336
5337 gc_in_progress = 0;
5338
5339 consing_since_gc = 0;
5340 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5341 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5342
5343 gc_relative_threshold = 0;
5344 if (FLOATP (Vgc_cons_percentage))
5345 { /* Set gc_cons_combined_threshold. */
5346 double tot = total_bytes_of_live_objects ();
5347
5348 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5349 if (0 < tot)
5350 {
5351 if (tot < TYPE_MAXIMUM (EMACS_INT))
5352 gc_relative_threshold = tot;
5353 else
5354 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5355 }
5356 }
5357
5358 if (garbage_collection_messages)
5359 {
5360 if (message_p || minibuf_level > 0)
5361 restore_message ();
5362 else
5363 message1_nolog ("Garbage collecting...done");
5364 }
5365
5366 unbind_to (count, Qnil);
5367 {
5368 Lisp_Object total[11];
5369 int total_size = 10;
5370
5371 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5372 bounded_number (total_conses),
5373 bounded_number (total_free_conses));
5374
5375 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5376 bounded_number (total_symbols),
5377 bounded_number (total_free_symbols));
5378
5379 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5380 bounded_number (total_markers),
5381 bounded_number (total_free_markers));
5382
5383 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5384 bounded_number (total_strings),
5385 bounded_number (total_free_strings));
5386
5387 total[4] = list3 (Qstring_bytes, make_number (1),
5388 bounded_number (total_string_bytes));
5389
5390 total[5] = list3 (Qvectors, make_number (sizeof (struct Lisp_Vector)),
5391 bounded_number (total_vectors));
5392
5393 total[6] = list4 (Qvector_slots, make_number (word_size),
5394 bounded_number (total_vector_slots),
5395 bounded_number (total_free_vector_slots));
5396
5397 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5398 bounded_number (total_floats),
5399 bounded_number (total_free_floats));
5400
5401 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5402 bounded_number (total_intervals),
5403 bounded_number (total_free_intervals));
5404
5405 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5406 bounded_number (total_buffers));
5407
5408 #ifdef DOUG_LEA_MALLOC
5409 total_size++;
5410 total[10] = list4 (Qheap, make_number (1024),
5411 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5412 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5413 #endif
5414 retval = Flist (total_size, total);
5415 }
5416
5417 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5418 {
5419 /* Compute average percentage of zombies. */
5420 double nlive
5421 = (total_conses + total_symbols + total_markers + total_strings
5422 + total_vectors + total_floats + total_intervals + total_buffers);
5423
5424 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5425 max_live = max (nlive, max_live);
5426 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5427 max_zombies = max (nzombies, max_zombies);
5428 ++ngcs;
5429 }
5430 #endif
5431
5432 if (!NILP (Vpost_gc_hook))
5433 {
5434 ptrdiff_t gc_count = inhibit_garbage_collection ();
5435 safe_run_hooks (Qpost_gc_hook);
5436 unbind_to (gc_count, Qnil);
5437 }
5438
5439 /* Accumulate statistics. */
5440 if (FLOATP (Vgc_elapsed))
5441 {
5442 EMACS_TIME since_start = sub_emacs_time (current_emacs_time (), start);
5443 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5444 + EMACS_TIME_TO_DOUBLE (since_start));
5445 }
5446
5447 gcs_done++;
5448
5449 /* Collect profiling data. */
5450 if (profiler_memory_running)
5451 {
5452 size_t swept = 0;
5453 size_t tot_after = total_bytes_of_live_objects ();
5454 if (tot_before > tot_after)
5455 swept = tot_before - tot_after;
5456 malloc_probe (swept);
5457 }
5458
5459 backtrace_list = backtrace.next;
5460 return retval;
5461 }
5462
5463
5464 /* Mark Lisp objects in glyph matrix MATRIX. Currently the
5465 only interesting objects referenced from glyphs are strings. */
5466
5467 static void
5468 mark_glyph_matrix (struct glyph_matrix *matrix)
5469 {
5470 struct glyph_row *row = matrix->rows;
5471 struct glyph_row *end = row + matrix->nrows;
5472
5473 for (; row < end; ++row)
5474 if (row->enabled_p)
5475 {
5476 int area;
5477 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5478 {
5479 struct glyph *glyph = row->glyphs[area];
5480 struct glyph *end_glyph = glyph + row->used[area];
5481
5482 for (; glyph < end_glyph; ++glyph)
5483 if (STRINGP (glyph->object)
5484 && !STRING_MARKED_P (XSTRING (glyph->object)))
5485 mark_object (glyph->object);
5486 }
5487 }
5488 }
5489
5490
5491 /* Mark Lisp faces in the face cache C. */
5492
5493 static void
5494 mark_face_cache (struct face_cache *c)
5495 {
5496 if (c)
5497 {
5498 int i, j;
5499 for (i = 0; i < c->used; ++i)
5500 {
5501 struct face *face = FACE_FROM_ID (c->f, i);
5502
5503 if (face)
5504 {
5505 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5506 mark_object (face->lface[j]);
5507 }
5508 }
5509 }
5510 }
5511
5512
5513 \f
5514 /* Mark reference to a Lisp_Object.
5515 If the object referred to has not been seen yet, recursively mark
5516 all the references contained in it. */
5517
5518 #define LAST_MARKED_SIZE 500
5519 static Lisp_Object last_marked[LAST_MARKED_SIZE];
5520 static int last_marked_index;
5521
5522 /* For debugging--call abort when we cdr down this many
5523 links of a list, in mark_object. In debugging,
5524 the call to abort will hit a breakpoint.
5525 Normally this is zero and the check never goes off. */
5526 ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5527
5528 static void
5529 mark_vectorlike (struct Lisp_Vector *ptr)
5530 {
5531 ptrdiff_t size = ptr->header.size;
5532 ptrdiff_t i;
5533
5534 eassert (!VECTOR_MARKED_P (ptr));
5535 VECTOR_MARK (ptr); /* Else mark it. */
5536 if (size & PSEUDOVECTOR_FLAG)
5537 size &= PSEUDOVECTOR_SIZE_MASK;
5538
5539 /* Note that this size is not the memory-footprint size, but only
5540 the number of Lisp_Object fields that we should trace.
5541 The distinction is used e.g. by Lisp_Process which places extra
5542 non-Lisp_Object fields at the end of the structure... */
5543 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5544 mark_object (ptr->contents[i]);
5545 }
5546
5547 /* Like mark_vectorlike but optimized for char-tables (and
5548 sub-char-tables) assuming that the contents are mostly integers or
5549 symbols. */
5550
5551 static void
5552 mark_char_table (struct Lisp_Vector *ptr)
5553 {
5554 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5555 int i;
5556
5557 eassert (!VECTOR_MARKED_P (ptr));
5558 VECTOR_MARK (ptr);
5559 for (i = 0; i < size; i++)
5560 {
5561 Lisp_Object val = ptr->contents[i];
5562
5563 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5564 continue;
5565 if (SUB_CHAR_TABLE_P (val))
5566 {
5567 if (! VECTOR_MARKED_P (XVECTOR (val)))
5568 mark_char_table (XVECTOR (val));
5569 }
5570 else
5571 mark_object (val);
5572 }
5573 }
5574
5575 /* Mark the chain of overlays starting at PTR. */
5576
5577 static void
5578 mark_overlay (struct Lisp_Overlay *ptr)
5579 {
5580 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5581 {
5582 ptr->gcmarkbit = 1;
5583 mark_object (ptr->start);
5584 mark_object (ptr->end);
5585 mark_object (ptr->plist);
5586 }
5587 }
5588
5589 /* Mark Lisp_Objects and special pointers in BUFFER. */
5590
5591 static void
5592 mark_buffer (struct buffer *buffer)
5593 {
5594 /* This is handled much like other pseudovectors... */
5595 mark_vectorlike ((struct Lisp_Vector *) buffer);
5596
5597 /* ...but there are some buffer-specific things. */
5598
5599 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5600
5601 /* For now, we just don't mark the undo_list. It's done later in
5602 a special way just before the sweep phase, and after stripping
5603 some of its elements that are not needed any more. */
5604
5605 mark_overlay (buffer->overlays_before);
5606 mark_overlay (buffer->overlays_after);
5607
5608 /* If this is an indirect buffer, mark its base buffer. */
5609 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5610 mark_buffer (buffer->base_buffer);
5611 }
5612
5613 /* Remove killed buffers or items whose car is a killed buffer from
5614 LIST, and mark other items. Return changed LIST, which is marked. */
5615
5616 static Lisp_Object
5617 mark_discard_killed_buffers (Lisp_Object list)
5618 {
5619 Lisp_Object tail, *prev = &list;
5620
5621 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5622 tail = XCDR (tail))
5623 {
5624 Lisp_Object tem = XCAR (tail);
5625 if (CONSP (tem))
5626 tem = XCAR (tem);
5627 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5628 *prev = XCDR (tail);
5629 else
5630 {
5631 CONS_MARK (XCONS (tail));
5632 mark_object (XCAR (tail));
5633 prev = &XCDR_AS_LVALUE (tail);
5634 }
5635 }
5636 mark_object (tail);
5637 return list;
5638 }
5639
5640 /* Determine type of generic Lisp_Object and mark it accordingly. */
5641
5642 void
5643 mark_object (Lisp_Object arg)
5644 {
5645 register Lisp_Object obj = arg;
5646 #ifdef GC_CHECK_MARKED_OBJECTS
5647 void *po;
5648 struct mem_node *m;
5649 #endif
5650 ptrdiff_t cdr_count = 0;
5651
5652 loop:
5653
5654 if (PURE_POINTER_P (XPNTR (obj)))
5655 return;
5656
5657 last_marked[last_marked_index++] = obj;
5658 if (last_marked_index == LAST_MARKED_SIZE)
5659 last_marked_index = 0;
5660
5661 /* Perform some sanity checks on the objects marked here. Abort if
5662 we encounter an object we know is bogus. This increases GC time
5663 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5664 #ifdef GC_CHECK_MARKED_OBJECTS
5665
5666 po = (void *) XPNTR (obj);
5667
5668 /* Check that the object pointed to by PO is known to be a Lisp
5669 structure allocated from the heap. */
5670 #define CHECK_ALLOCATED() \
5671 do { \
5672 m = mem_find (po); \
5673 if (m == MEM_NIL) \
5674 emacs_abort (); \
5675 } while (0)
5676
5677 /* Check that the object pointed to by PO is live, using predicate
5678 function LIVEP. */
5679 #define CHECK_LIVE(LIVEP) \
5680 do { \
5681 if (!LIVEP (m, po)) \
5682 emacs_abort (); \
5683 } while (0)
5684
5685 /* Check both of the above conditions. */
5686 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5687 do { \
5688 CHECK_ALLOCATED (); \
5689 CHECK_LIVE (LIVEP); \
5690 } while (0) \
5691
5692 #else /* not GC_CHECK_MARKED_OBJECTS */
5693
5694 #define CHECK_LIVE(LIVEP) (void) 0
5695 #define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5696
5697 #endif /* not GC_CHECK_MARKED_OBJECTS */
5698
5699 switch (XTYPE (obj))
5700 {
5701 case Lisp_String:
5702 {
5703 register struct Lisp_String *ptr = XSTRING (obj);
5704 if (STRING_MARKED_P (ptr))
5705 break;
5706 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5707 MARK_STRING (ptr);
5708 MARK_INTERVAL_TREE (ptr->intervals);
5709 #ifdef GC_CHECK_STRING_BYTES
5710 /* Check that the string size recorded in the string is the
5711 same as the one recorded in the sdata structure. */
5712 string_bytes (ptr);
5713 #endif /* GC_CHECK_STRING_BYTES */
5714 }
5715 break;
5716
5717 case Lisp_Vectorlike:
5718 {
5719 register struct Lisp_Vector *ptr = XVECTOR (obj);
5720 register ptrdiff_t pvectype;
5721
5722 if (VECTOR_MARKED_P (ptr))
5723 break;
5724
5725 #ifdef GC_CHECK_MARKED_OBJECTS
5726 m = mem_find (po);
5727 if (m == MEM_NIL && !SUBRP (obj))
5728 emacs_abort ();
5729 #endif /* GC_CHECK_MARKED_OBJECTS */
5730
5731 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5732 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5733 >> PSEUDOVECTOR_AREA_BITS);
5734 else
5735 pvectype = PVEC_NORMAL_VECTOR;
5736
5737 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5738 CHECK_LIVE (live_vector_p);
5739
5740 switch (pvectype)
5741 {
5742 case PVEC_BUFFER:
5743 #ifdef GC_CHECK_MARKED_OBJECTS
5744 {
5745 struct buffer *b;
5746 FOR_EACH_BUFFER (b)
5747 if (b == po)
5748 break;
5749 if (b == NULL)
5750 emacs_abort ();
5751 }
5752 #endif /* GC_CHECK_MARKED_OBJECTS */
5753 mark_buffer ((struct buffer *) ptr);
5754 break;
5755
5756 case PVEC_COMPILED:
5757 { /* We could treat this just like a vector, but it is better
5758 to save the COMPILED_CONSTANTS element for last and avoid
5759 recursion there. */
5760 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5761 int i;
5762
5763 VECTOR_MARK (ptr);
5764 for (i = 0; i < size; i++)
5765 if (i != COMPILED_CONSTANTS)
5766 mark_object (ptr->contents[i]);
5767 if (size > COMPILED_CONSTANTS)
5768 {
5769 obj = ptr->contents[COMPILED_CONSTANTS];
5770 goto loop;
5771 }
5772 }
5773 break;
5774
5775 case PVEC_FRAME:
5776 mark_vectorlike (ptr);
5777 mark_face_cache (((struct frame *) ptr)->face_cache);
5778 break;
5779
5780 case PVEC_WINDOW:
5781 {
5782 struct window *w = (struct window *) ptr;
5783 bool leaf = NILP (w->hchild) && NILP (w->vchild);
5784
5785 mark_vectorlike (ptr);
5786
5787 /* Mark glyphs for leaf windows. Marking window
5788 matrices is sufficient because frame matrices
5789 use the same glyph memory. */
5790 if (leaf && w->current_matrix)
5791 {
5792 mark_glyph_matrix (w->current_matrix);
5793 mark_glyph_matrix (w->desired_matrix);
5794 }
5795
5796 /* Filter out killed buffers from both buffer lists
5797 in attempt to help GC to reclaim killed buffers faster.
5798 We can do it elsewhere for live windows, but this is the
5799 best place to do it for dead windows. */
5800 wset_prev_buffers
5801 (w, mark_discard_killed_buffers (w->prev_buffers));
5802 wset_next_buffers
5803 (w, mark_discard_killed_buffers (w->next_buffers));
5804 }
5805 break;
5806
5807 case PVEC_HASH_TABLE:
5808 {
5809 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
5810
5811 mark_vectorlike (ptr);
5812 /* If hash table is not weak, mark all keys and values.
5813 For weak tables, mark only the vector. */
5814 if (NILP (h->weak))
5815 mark_object (h->key_and_value);
5816 else
5817 VECTOR_MARK (XVECTOR (h->key_and_value));
5818 }
5819 break;
5820
5821 case PVEC_CHAR_TABLE:
5822 mark_char_table (ptr);
5823 break;
5824
5825 case PVEC_BOOL_VECTOR:
5826 /* No Lisp_Objects to mark in a bool vector. */
5827 VECTOR_MARK (ptr);
5828 break;
5829
5830 case PVEC_SUBR:
5831 break;
5832
5833 case PVEC_FREE:
5834 emacs_abort ();
5835
5836 default:
5837 mark_vectorlike (ptr);
5838 }
5839 }
5840 break;
5841
5842 case Lisp_Symbol:
5843 {
5844 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
5845 struct Lisp_Symbol *ptrx;
5846
5847 if (ptr->gcmarkbit)
5848 break;
5849 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
5850 ptr->gcmarkbit = 1;
5851 mark_object (ptr->function);
5852 mark_object (ptr->plist);
5853 switch (ptr->redirect)
5854 {
5855 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
5856 case SYMBOL_VARALIAS:
5857 {
5858 Lisp_Object tem;
5859 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
5860 mark_object (tem);
5861 break;
5862 }
5863 case SYMBOL_LOCALIZED:
5864 {
5865 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
5866 Lisp_Object where = blv->where;
5867 /* If the value is set up for a killed buffer or deleted
5868 frame, restore it's global binding. If the value is
5869 forwarded to a C variable, either it's not a Lisp_Object
5870 var, or it's staticpro'd already. */
5871 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
5872 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
5873 swap_in_global_binding (ptr);
5874 mark_object (blv->where);
5875 mark_object (blv->valcell);
5876 mark_object (blv->defcell);
5877 break;
5878 }
5879 case SYMBOL_FORWARDED:
5880 /* If the value is forwarded to a buffer or keyboard field,
5881 these are marked when we see the corresponding object.
5882 And if it's forwarded to a C variable, either it's not
5883 a Lisp_Object var, or it's staticpro'd already. */
5884 break;
5885 default: emacs_abort ();
5886 }
5887 if (!PURE_POINTER_P (XSTRING (ptr->name)))
5888 MARK_STRING (XSTRING (ptr->name));
5889 MARK_INTERVAL_TREE (string_intervals (ptr->name));
5890
5891 ptr = ptr->next;
5892 if (ptr)
5893 {
5894 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
5895 XSETSYMBOL (obj, ptrx);
5896 goto loop;
5897 }
5898 }
5899 break;
5900
5901 case Lisp_Misc:
5902 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
5903
5904 if (XMISCANY (obj)->gcmarkbit)
5905 break;
5906
5907 switch (XMISCTYPE (obj))
5908 {
5909 case Lisp_Misc_Marker:
5910 /* DO NOT mark thru the marker's chain.
5911 The buffer's markers chain does not preserve markers from gc;
5912 instead, markers are removed from the chain when freed by gc. */
5913 XMISCANY (obj)->gcmarkbit = 1;
5914 break;
5915
5916 case Lisp_Misc_Save_Value:
5917 XMISCANY (obj)->gcmarkbit = 1;
5918 #if GC_MARK_STACK
5919 {
5920 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5921 /* If DOGC is set, POINTER is the address of a memory
5922 area containing INTEGER potential Lisp_Objects. */
5923 if (ptr->dogc)
5924 {
5925 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5926 ptrdiff_t nelt;
5927 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5928 mark_maybe_object (*p);
5929 }
5930 }
5931 #endif
5932 break;
5933
5934 case Lisp_Misc_Overlay:
5935 mark_overlay (XOVERLAY (obj));
5936 break;
5937
5938 default:
5939 emacs_abort ();
5940 }
5941 break;
5942
5943 case Lisp_Cons:
5944 {
5945 register struct Lisp_Cons *ptr = XCONS (obj);
5946 if (CONS_MARKED_P (ptr))
5947 break;
5948 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5949 CONS_MARK (ptr);
5950 /* If the cdr is nil, avoid recursion for the car. */
5951 if (EQ (ptr->u.cdr, Qnil))
5952 {
5953 obj = ptr->car;
5954 cdr_count = 0;
5955 goto loop;
5956 }
5957 mark_object (ptr->car);
5958 obj = ptr->u.cdr;
5959 cdr_count++;
5960 if (cdr_count == mark_object_loop_halt)
5961 emacs_abort ();
5962 goto loop;
5963 }
5964
5965 case Lisp_Float:
5966 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5967 FLOAT_MARK (XFLOAT (obj));
5968 break;
5969
5970 case_Lisp_Int:
5971 break;
5972
5973 default:
5974 emacs_abort ();
5975 }
5976
5977 #undef CHECK_LIVE
5978 #undef CHECK_ALLOCATED
5979 #undef CHECK_ALLOCATED_AND_LIVE
5980 }
5981 /* Mark the Lisp pointers in the terminal objects.
5982 Called by Fgarbage_collect. */
5983
5984 static void
5985 mark_terminals (void)
5986 {
5987 struct terminal *t;
5988 for (t = terminal_list; t; t = t->next_terminal)
5989 {
5990 eassert (t->name != NULL);
5991 #ifdef HAVE_WINDOW_SYSTEM
5992 /* If a terminal object is reachable from a stacpro'ed object,
5993 it might have been marked already. Make sure the image cache
5994 gets marked. */
5995 mark_image_cache (t->image_cache);
5996 #endif /* HAVE_WINDOW_SYSTEM */
5997 if (!VECTOR_MARKED_P (t))
5998 mark_vectorlike ((struct Lisp_Vector *)t);
5999 }
6000 }
6001
6002
6003
6004 /* Value is non-zero if OBJ will survive the current GC because it's
6005 either marked or does not need to be marked to survive. */
6006
6007 bool
6008 survives_gc_p (Lisp_Object obj)
6009 {
6010 bool survives_p;
6011
6012 switch (XTYPE (obj))
6013 {
6014 case_Lisp_Int:
6015 survives_p = 1;
6016 break;
6017
6018 case Lisp_Symbol:
6019 survives_p = XSYMBOL (obj)->gcmarkbit;
6020 break;
6021
6022 case Lisp_Misc:
6023 survives_p = XMISCANY (obj)->gcmarkbit;
6024 break;
6025
6026 case Lisp_String:
6027 survives_p = STRING_MARKED_P (XSTRING (obj));
6028 break;
6029
6030 case Lisp_Vectorlike:
6031 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6032 break;
6033
6034 case Lisp_Cons:
6035 survives_p = CONS_MARKED_P (XCONS (obj));
6036 break;
6037
6038 case Lisp_Float:
6039 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6040 break;
6041
6042 default:
6043 emacs_abort ();
6044 }
6045
6046 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6047 }
6048
6049
6050 \f
6051 /* Sweep: find all structures not marked, and free them. */
6052
6053 static void
6054 gc_sweep (void)
6055 {
6056 /* Remove or mark entries in weak hash tables.
6057 This must be done before any object is unmarked. */
6058 sweep_weak_hash_tables ();
6059
6060 sweep_strings ();
6061 check_string_bytes (!noninteractive);
6062
6063 /* Put all unmarked conses on free list */
6064 {
6065 register struct cons_block *cblk;
6066 struct cons_block **cprev = &cons_block;
6067 register int lim = cons_block_index;
6068 EMACS_INT num_free = 0, num_used = 0;
6069
6070 cons_free_list = 0;
6071
6072 for (cblk = cons_block; cblk; cblk = *cprev)
6073 {
6074 register int i = 0;
6075 int this_free = 0;
6076 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6077
6078 /* Scan the mark bits an int at a time. */
6079 for (i = 0; i < ilim; i++)
6080 {
6081 if (cblk->gcmarkbits[i] == -1)
6082 {
6083 /* Fast path - all cons cells for this int are marked. */
6084 cblk->gcmarkbits[i] = 0;
6085 num_used += BITS_PER_INT;
6086 }
6087 else
6088 {
6089 /* Some cons cells for this int are not marked.
6090 Find which ones, and free them. */
6091 int start, pos, stop;
6092
6093 start = i * BITS_PER_INT;
6094 stop = lim - start;
6095 if (stop > BITS_PER_INT)
6096 stop = BITS_PER_INT;
6097 stop += start;
6098
6099 for (pos = start; pos < stop; pos++)
6100 {
6101 if (!CONS_MARKED_P (&cblk->conses[pos]))
6102 {
6103 this_free++;
6104 cblk->conses[pos].u.chain = cons_free_list;
6105 cons_free_list = &cblk->conses[pos];
6106 #if GC_MARK_STACK
6107 cons_free_list->car = Vdead;
6108 #endif
6109 }
6110 else
6111 {
6112 num_used++;
6113 CONS_UNMARK (&cblk->conses[pos]);
6114 }
6115 }
6116 }
6117 }
6118
6119 lim = CONS_BLOCK_SIZE;
6120 /* If this block contains only free conses and we have already
6121 seen more than two blocks worth of free conses then deallocate
6122 this block. */
6123 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6124 {
6125 *cprev = cblk->next;
6126 /* Unhook from the free list. */
6127 cons_free_list = cblk->conses[0].u.chain;
6128 lisp_align_free (cblk);
6129 }
6130 else
6131 {
6132 num_free += this_free;
6133 cprev = &cblk->next;
6134 }
6135 }
6136 total_conses = num_used;
6137 total_free_conses = num_free;
6138 }
6139
6140 /* Put all unmarked floats on free list */
6141 {
6142 register struct float_block *fblk;
6143 struct float_block **fprev = &float_block;
6144 register int lim = float_block_index;
6145 EMACS_INT num_free = 0, num_used = 0;
6146
6147 float_free_list = 0;
6148
6149 for (fblk = float_block; fblk; fblk = *fprev)
6150 {
6151 register int i;
6152 int this_free = 0;
6153 for (i = 0; i < lim; i++)
6154 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6155 {
6156 this_free++;
6157 fblk->floats[i].u.chain = float_free_list;
6158 float_free_list = &fblk->floats[i];
6159 }
6160 else
6161 {
6162 num_used++;
6163 FLOAT_UNMARK (&fblk->floats[i]);
6164 }
6165 lim = FLOAT_BLOCK_SIZE;
6166 /* If this block contains only free floats and we have already
6167 seen more than two blocks worth of free floats then deallocate
6168 this block. */
6169 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6170 {
6171 *fprev = fblk->next;
6172 /* Unhook from the free list. */
6173 float_free_list = fblk->floats[0].u.chain;
6174 lisp_align_free (fblk);
6175 }
6176 else
6177 {
6178 num_free += this_free;
6179 fprev = &fblk->next;
6180 }
6181 }
6182 total_floats = num_used;
6183 total_free_floats = num_free;
6184 }
6185
6186 /* Put all unmarked intervals on free list */
6187 {
6188 register struct interval_block *iblk;
6189 struct interval_block **iprev = &interval_block;
6190 register int lim = interval_block_index;
6191 EMACS_INT num_free = 0, num_used = 0;
6192
6193 interval_free_list = 0;
6194
6195 for (iblk = interval_block; iblk; iblk = *iprev)
6196 {
6197 register int i;
6198 int this_free = 0;
6199
6200 for (i = 0; i < lim; i++)
6201 {
6202 if (!iblk->intervals[i].gcmarkbit)
6203 {
6204 set_interval_parent (&iblk->intervals[i], interval_free_list);
6205 interval_free_list = &iblk->intervals[i];
6206 this_free++;
6207 }
6208 else
6209 {
6210 num_used++;
6211 iblk->intervals[i].gcmarkbit = 0;
6212 }
6213 }
6214 lim = INTERVAL_BLOCK_SIZE;
6215 /* If this block contains only free intervals and we have already
6216 seen more than two blocks worth of free intervals then
6217 deallocate this block. */
6218 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6219 {
6220 *iprev = iblk->next;
6221 /* Unhook from the free list. */
6222 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6223 lisp_free (iblk);
6224 }
6225 else
6226 {
6227 num_free += this_free;
6228 iprev = &iblk->next;
6229 }
6230 }
6231 total_intervals = num_used;
6232 total_free_intervals = num_free;
6233 }
6234
6235 /* Put all unmarked symbols on free list */
6236 {
6237 register struct symbol_block *sblk;
6238 struct symbol_block **sprev = &symbol_block;
6239 register int lim = symbol_block_index;
6240 EMACS_INT num_free = 0, num_used = 0;
6241
6242 symbol_free_list = NULL;
6243
6244 for (sblk = symbol_block; sblk; sblk = *sprev)
6245 {
6246 int this_free = 0;
6247 union aligned_Lisp_Symbol *sym = sblk->symbols;
6248 union aligned_Lisp_Symbol *end = sym + lim;
6249
6250 for (; sym < end; ++sym)
6251 {
6252 /* Check if the symbol was created during loadup. In such a case
6253 it might be pointed to by pure bytecode which we don't trace,
6254 so we conservatively assume that it is live. */
6255 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6256
6257 if (!sym->s.gcmarkbit && !pure_p)
6258 {
6259 if (sym->s.redirect == SYMBOL_LOCALIZED)
6260 xfree (SYMBOL_BLV (&sym->s));
6261 sym->s.next = symbol_free_list;
6262 symbol_free_list = &sym->s;
6263 #if GC_MARK_STACK
6264 symbol_free_list->function = Vdead;
6265 #endif
6266 ++this_free;
6267 }
6268 else
6269 {
6270 ++num_used;
6271 if (!pure_p)
6272 UNMARK_STRING (XSTRING (sym->s.name));
6273 sym->s.gcmarkbit = 0;
6274 }
6275 }
6276
6277 lim = SYMBOL_BLOCK_SIZE;
6278 /* If this block contains only free symbols and we have already
6279 seen more than two blocks worth of free symbols then deallocate
6280 this block. */
6281 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6282 {
6283 *sprev = sblk->next;
6284 /* Unhook from the free list. */
6285 symbol_free_list = sblk->symbols[0].s.next;
6286 lisp_free (sblk);
6287 }
6288 else
6289 {
6290 num_free += this_free;
6291 sprev = &sblk->next;
6292 }
6293 }
6294 total_symbols = num_used;
6295 total_free_symbols = num_free;
6296 }
6297
6298 /* Put all unmarked misc's on free list.
6299 For a marker, first unchain it from the buffer it points into. */
6300 {
6301 register struct marker_block *mblk;
6302 struct marker_block **mprev = &marker_block;
6303 register int lim = marker_block_index;
6304 EMACS_INT num_free = 0, num_used = 0;
6305
6306 marker_free_list = 0;
6307
6308 for (mblk = marker_block; mblk; mblk = *mprev)
6309 {
6310 register int i;
6311 int this_free = 0;
6312
6313 for (i = 0; i < lim; i++)
6314 {
6315 if (!mblk->markers[i].m.u_any.gcmarkbit)
6316 {
6317 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6318 unchain_marker (&mblk->markers[i].m.u_marker);
6319 /* Set the type of the freed object to Lisp_Misc_Free.
6320 We could leave the type alone, since nobody checks it,
6321 but this might catch bugs faster. */
6322 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6323 mblk->markers[i].m.u_free.chain = marker_free_list;
6324 marker_free_list = &mblk->markers[i].m;
6325 this_free++;
6326 }
6327 else
6328 {
6329 num_used++;
6330 mblk->markers[i].m.u_any.gcmarkbit = 0;
6331 }
6332 }
6333 lim = MARKER_BLOCK_SIZE;
6334 /* If this block contains only free markers and we have already
6335 seen more than two blocks worth of free markers then deallocate
6336 this block. */
6337 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6338 {
6339 *mprev = mblk->next;
6340 /* Unhook from the free list. */
6341 marker_free_list = mblk->markers[0].m.u_free.chain;
6342 lisp_free (mblk);
6343 }
6344 else
6345 {
6346 num_free += this_free;
6347 mprev = &mblk->next;
6348 }
6349 }
6350
6351 total_markers = num_used;
6352 total_free_markers = num_free;
6353 }
6354
6355 /* Free all unmarked buffers */
6356 {
6357 register struct buffer *buffer, **bprev = &all_buffers;
6358
6359 total_buffers = 0;
6360 for (buffer = all_buffers; buffer; buffer = *bprev)
6361 if (!VECTOR_MARKED_P (buffer))
6362 {
6363 *bprev = buffer->next;
6364 lisp_free (buffer);
6365 }
6366 else
6367 {
6368 VECTOR_UNMARK (buffer);
6369 /* Do not use buffer_(set|get)_intervals here. */
6370 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6371 total_buffers++;
6372 bprev = &buffer->next;
6373 }
6374 }
6375
6376 sweep_vectors ();
6377 check_string_bytes (!noninteractive);
6378 }
6379
6380
6381
6382 \f
6383 /* Debugging aids. */
6384
6385 DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6386 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6387 This may be helpful in debugging Emacs's memory usage.
6388 We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6389 (void)
6390 {
6391 Lisp_Object end;
6392
6393 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6394
6395 return end;
6396 }
6397
6398 DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6399 doc: /* Return a list of counters that measure how much consing there has been.
6400 Each of these counters increments for a certain kind of object.
6401 The counters wrap around from the largest positive integer to zero.
6402 Garbage collection does not decrease them.
6403 The elements of the value are as follows:
6404 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6405 All are in units of 1 = one object consed
6406 except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6407 objects consed.
6408 MISCS include overlays, markers, and some internal types.
6409 Frames, windows, buffers, and subprocesses count as vectors
6410 (but the contents of a buffer's text do not count here). */)
6411 (void)
6412 {
6413 return listn (CONSTYPE_HEAP, 8,
6414 bounded_number (cons_cells_consed),
6415 bounded_number (floats_consed),
6416 bounded_number (vector_cells_consed),
6417 bounded_number (symbols_consed),
6418 bounded_number (string_chars_consed),
6419 bounded_number (misc_objects_consed),
6420 bounded_number (intervals_consed),
6421 bounded_number (strings_consed));
6422 }
6423
6424 /* Find at most FIND_MAX symbols which have OBJ as their value or
6425 function. This is used in gdbinit's `xwhichsymbols' command. */
6426
6427 Lisp_Object
6428 which_symbols (Lisp_Object obj, EMACS_INT find_max)
6429 {
6430 struct symbol_block *sblk;
6431 ptrdiff_t gc_count = inhibit_garbage_collection ();
6432 Lisp_Object found = Qnil;
6433
6434 if (! DEADP (obj))
6435 {
6436 for (sblk = symbol_block; sblk; sblk = sblk->next)
6437 {
6438 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6439 int bn;
6440
6441 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6442 {
6443 struct Lisp_Symbol *sym = &aligned_sym->s;
6444 Lisp_Object val;
6445 Lisp_Object tem;
6446
6447 if (sblk == symbol_block && bn >= symbol_block_index)
6448 break;
6449
6450 XSETSYMBOL (tem, sym);
6451 val = find_symbol_value (tem);
6452 if (EQ (val, obj)
6453 || EQ (sym->function, obj)
6454 || (!NILP (sym->function)
6455 && COMPILEDP (sym->function)
6456 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6457 || (!NILP (val)
6458 && COMPILEDP (val)
6459 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6460 {
6461 found = Fcons (tem, found);
6462 if (--find_max == 0)
6463 goto out;
6464 }
6465 }
6466 }
6467 }
6468
6469 out:
6470 unbind_to (gc_count, Qnil);
6471 return found;
6472 }
6473
6474 #ifdef ENABLE_CHECKING
6475
6476 bool suppress_checking;
6477
6478 void
6479 die (const char *msg, const char *file, int line)
6480 {
6481 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: %s\r\n",
6482 file, line, msg);
6483 terminate_due_to_signal (SIGABRT, INT_MAX);
6484 }
6485 #endif
6486 \f
6487 /* Initialization */
6488
6489 void
6490 init_alloc_once (void)
6491 {
6492 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6493 purebeg = PUREBEG;
6494 pure_size = PURESIZE;
6495
6496 #if GC_MARK_STACK || defined GC_MALLOC_CHECK
6497 mem_init ();
6498 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6499 #endif
6500
6501 #ifdef DOUG_LEA_MALLOC
6502 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
6503 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
6504 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
6505 #endif
6506 init_strings ();
6507 init_vectors ();
6508
6509 refill_memory_reserve ();
6510 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6511 }
6512
6513 void
6514 init_alloc (void)
6515 {
6516 gcprolist = 0;
6517 byte_stack_list = 0;
6518 #if GC_MARK_STACK
6519 #if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6520 setjmp_tested_p = longjmps_done = 0;
6521 #endif
6522 #endif
6523 Vgc_elapsed = make_float (0.0);
6524 gcs_done = 0;
6525 }
6526
6527 void
6528 syms_of_alloc (void)
6529 {
6530 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6531 doc: /* Number of bytes of consing between garbage collections.
6532 Garbage collection can happen automatically once this many bytes have been
6533 allocated since the last garbage collection. All data types count.
6534
6535 Garbage collection happens automatically only when `eval' is called.
6536
6537 By binding this temporarily to a large number, you can effectively
6538 prevent garbage collection during a part of the program.
6539 See also `gc-cons-percentage'. */);
6540
6541 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6542 doc: /* Portion of the heap used for allocation.
6543 Garbage collection can happen automatically once this portion of the heap
6544 has been allocated since the last garbage collection.
6545 If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6546 Vgc_cons_percentage = make_float (0.1);
6547
6548 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6549 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6550
6551 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6552 doc: /* Number of cons cells that have been consed so far. */);
6553
6554 DEFVAR_INT ("floats-consed", floats_consed,
6555 doc: /* Number of floats that have been consed so far. */);
6556
6557 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6558 doc: /* Number of vector cells that have been consed so far. */);
6559
6560 DEFVAR_INT ("symbols-consed", symbols_consed,
6561 doc: /* Number of symbols that have been consed so far. */);
6562
6563 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6564 doc: /* Number of string characters that have been consed so far. */);
6565
6566 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6567 doc: /* Number of miscellaneous objects that have been consed so far.
6568 These include markers and overlays, plus certain objects not visible
6569 to users. */);
6570
6571 DEFVAR_INT ("intervals-consed", intervals_consed,
6572 doc: /* Number of intervals that have been consed so far. */);
6573
6574 DEFVAR_INT ("strings-consed", strings_consed,
6575 doc: /* Number of strings that have been consed so far. */);
6576
6577 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6578 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6579 This means that certain objects should be allocated in shared (pure) space.
6580 It can also be set to a hash-table, in which case this table is used to
6581 do hash-consing of the objects allocated to pure space. */);
6582
6583 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6584 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6585 garbage_collection_messages = 0;
6586
6587 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6588 doc: /* Hook run after garbage collection has finished. */);
6589 Vpost_gc_hook = Qnil;
6590 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6591
6592 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6593 doc: /* Precomputed `signal' argument for memory-full error. */);
6594 /* We build this in advance because if we wait until we need it, we might
6595 not be able to allocate the memory to hold it. */
6596 Vmemory_signal_data
6597 = listn (CONSTYPE_PURE, 2, Qerror,
6598 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6599
6600 DEFVAR_LISP ("memory-full", Vmemory_full,
6601 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6602 Vmemory_full = Qnil;
6603
6604 DEFSYM (Qconses, "conses");
6605 DEFSYM (Qsymbols, "symbols");
6606 DEFSYM (Qmiscs, "miscs");
6607 DEFSYM (Qstrings, "strings");
6608 DEFSYM (Qvectors, "vectors");
6609 DEFSYM (Qfloats, "floats");
6610 DEFSYM (Qintervals, "intervals");
6611 DEFSYM (Qbuffers, "buffers");
6612 DEFSYM (Qstring_bytes, "string-bytes");
6613 DEFSYM (Qvector_slots, "vector-slots");
6614 DEFSYM (Qheap, "heap");
6615 DEFSYM (Qautomatic_gc, "Automatic GC");
6616
6617 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6618 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6619
6620 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6621 doc: /* Accumulated time elapsed in garbage collections.
6622 The time is in seconds as a floating point value. */);
6623 DEFVAR_INT ("gcs-done", gcs_done,
6624 doc: /* Accumulated number of garbage collections done. */);
6625
6626 defsubr (&Scons);
6627 defsubr (&Slist);
6628 defsubr (&Svector);
6629 defsubr (&Smake_byte_code);
6630 defsubr (&Smake_list);
6631 defsubr (&Smake_vector);
6632 defsubr (&Smake_string);
6633 defsubr (&Smake_bool_vector);
6634 defsubr (&Smake_symbol);
6635 defsubr (&Smake_marker);
6636 defsubr (&Spurecopy);
6637 defsubr (&Sgarbage_collect);
6638 defsubr (&Smemory_limit);
6639 defsubr (&Smemory_use_counts);
6640
6641 #if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6642 defsubr (&Sgc_status);
6643 #endif
6644 }
6645
6646 /* When compiled with GCC, GDB might say "No enum type named
6647 pvec_type" if we don't have at least one symbol with that type, and
6648 then xbacktrace could fail. Similarly for the other enums and
6649 their values. Some non-GCC compilers don't like these constructs. */
6650 #ifdef __GNUC__
6651 union
6652 {
6653 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6654 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6655 enum char_bits char_bits;
6656 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6657 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6658 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6659 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6660 enum Lisp_Bits Lisp_Bits;
6661 enum Lisp_Compiled Lisp_Compiled;
6662 enum maxargs maxargs;
6663 enum MAX_ALLOCA MAX_ALLOCA;
6664 enum More_Lisp_Bits More_Lisp_Bits;
6665 enum pvec_type pvec_type;
6666 #if USE_LSB_TAG
6667 enum lsb_bits lsb_bits;
6668 #endif
6669 } const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6670 #endif /* __GNUC__ */