24770a121972313a0b609515ed5e464ea7e864fe
[bpt/emacs.git] / lisp / emacs-lisp / byte-opt.el
1 ;;; byte-opt.el --- the optimization passes of the emacs-lisp byte compiler.
2
3 ;;; Copyright (c) 1991, 1994, 2000 Free Software Foundation, Inc.
4
5 ;; Author: Jamie Zawinski <jwz@lucid.com>
6 ;; Hallvard Furuseth <hbf@ulrik.uio.no>
7 ;; Maintainer: FSF
8 ;; Keywords: internal
9
10 ;; This file is part of GNU Emacs.
11
12 ;; GNU Emacs is free software; you can redistribute it and/or modify
13 ;; it under the terms of the GNU General Public License as published by
14 ;; the Free Software Foundation; either version 2, or (at your option)
15 ;; any later version.
16
17 ;; GNU Emacs is distributed in the hope that it will be useful,
18 ;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19 ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20 ;; GNU General Public License for more details.
21
22 ;; You should have received a copy of the GNU General Public License
23 ;; along with GNU Emacs; see the file COPYING. If not, write to the
24 ;; Free Software Foundation, Inc., 59 Temple Place - Suite 330,
25 ;; Boston, MA 02111-1307, USA.
26
27 ;;; Commentary:
28
29 ;; ========================================================================
30 ;; "No matter how hard you try, you can't make a racehorse out of a pig.
31 ;; You can, however, make a faster pig."
32 ;;
33 ;; Or, to put it another way, the emacs byte compiler is a VW Bug. This code
34 ;; makes it be a VW Bug with fuel injection and a turbocharger... You're
35 ;; still not going to make it go faster than 70 mph, but it might be easier
36 ;; to get it there.
37 ;;
38
39 ;; TO DO:
40 ;;
41 ;; (apply '(lambda (x &rest y) ...) 1 (foo))
42 ;;
43 ;; maintain a list of functions known not to access any global variables
44 ;; (actually, give them a 'dynamically-safe property) and then
45 ;; (let ( v1 v2 ... vM vN ) <...dynamically-safe...> ) ==>
46 ;; (let ( v1 v2 ... vM ) vN <...dynamically-safe...> )
47 ;; by recursing on this, we might be able to eliminate the entire let.
48 ;; However certain variables should never have their bindings optimized
49 ;; away, because they affect everything.
50 ;; (put 'debug-on-error 'binding-is-magic t)
51 ;; (put 'debug-on-abort 'binding-is-magic t)
52 ;; (put 'debug-on-next-call 'binding-is-magic t)
53 ;; (put 'mocklisp-arguments 'binding-is-magic t)
54 ;; (put 'inhibit-quit 'binding-is-magic t)
55 ;; (put 'quit-flag 'binding-is-magic t)
56 ;; (put 't 'binding-is-magic t)
57 ;; (put 'nil 'binding-is-magic t)
58 ;; possibly also
59 ;; (put 'gc-cons-threshold 'binding-is-magic t)
60 ;; (put 'track-mouse 'binding-is-magic t)
61 ;; others?
62 ;;
63 ;; Simple defsubsts often produce forms like
64 ;; (let ((v1 (f1)) (v2 (f2)) ...)
65 ;; (FN v1 v2 ...))
66 ;; It would be nice if we could optimize this to
67 ;; (FN (f1) (f2) ...)
68 ;; but we can't unless FN is dynamically-safe (it might be dynamically
69 ;; referring to the bindings that the lambda arglist established.)
70 ;; One of the uncountable lossages introduced by dynamic scope...
71 ;;
72 ;; Maybe there should be a control-structure that says "turn on
73 ;; fast-and-loose type-assumptive optimizations here." Then when
74 ;; we see a form like (car foo) we can from then on assume that
75 ;; the variable foo is of type cons, and optimize based on that.
76 ;; But, this won't win much because of (you guessed it) dynamic
77 ;; scope. Anything down the stack could change the value.
78 ;; (Another reason it doesn't work is that it is perfectly valid
79 ;; to call car with a null argument.) A better approach might
80 ;; be to allow type-specification of the form
81 ;; (put 'foo 'arg-types '(float (list integer) dynamic))
82 ;; (put 'foo 'result-type 'bool)
83 ;; It should be possible to have these types checked to a certain
84 ;; degree.
85 ;;
86 ;; collapse common subexpressions
87 ;;
88 ;; It would be nice if redundant sequences could be factored out as well,
89 ;; when they are known to have no side-effects:
90 ;; (list (+ a b c) (+ a b c)) --> a b add c add dup list-2
91 ;; but beware of traps like
92 ;; (cons (list x y) (list x y))
93 ;;
94 ;; Tail-recursion elimination is not really possible in Emacs Lisp.
95 ;; Tail-recursion elimination is almost always impossible when all variables
96 ;; have dynamic scope, but given that the "return" byteop requires the
97 ;; binding stack to be empty (rather than emptying it itself), there can be
98 ;; no truly tail-recursive Emacs Lisp functions that take any arguments or
99 ;; make any bindings.
100 ;;
101 ;; Here is an example of an Emacs Lisp function which could safely be
102 ;; byte-compiled tail-recursively:
103 ;;
104 ;; (defun tail-map (fn list)
105 ;; (cond (list
106 ;; (funcall fn (car list))
107 ;; (tail-map fn (cdr list)))))
108 ;;
109 ;; However, if there was even a single let-binding around the COND,
110 ;; it could not be byte-compiled, because there would be an "unbind"
111 ;; byte-op between the final "call" and "return." Adding a
112 ;; Bunbind_all byteop would fix this.
113 ;;
114 ;; (defun foo (x y z) ... (foo a b c))
115 ;; ... (const foo) (varref a) (varref b) (varref c) (call 3) END: (return)
116 ;; ... (varref a) (varbind x) (varref b) (varbind y) (varref c) (varbind z) (goto 0) END: (unbind-all) (return)
117 ;; ... (varref a) (varset x) (varref b) (varset y) (varref c) (varset z) (goto 0) END: (return)
118 ;;
119 ;; this also can be considered tail recursion:
120 ;;
121 ;; ... (const foo) (varref a) (call 1) (goto X) ... X: (return)
122 ;; could generalize this by doing the optimization
123 ;; (goto X) ... X: (return) --> (return)
124 ;;
125 ;; But this doesn't solve all of the problems: although by doing tail-
126 ;; recursion elimination in this way, the call-stack does not grow, the
127 ;; binding-stack would grow with each recursive step, and would eventually
128 ;; overflow. I don't believe there is any way around this without lexical
129 ;; scope.
130 ;;
131 ;; Wouldn't it be nice if Emacs Lisp had lexical scope.
132 ;;
133 ;; Idea: the form (lexical-scope) in a file means that the file may be
134 ;; compiled lexically. This proclamation is file-local. Then, within
135 ;; that file, "let" would establish lexical bindings, and "let-dynamic"
136 ;; would do things the old way. (Or we could use CL "declare" forms.)
137 ;; We'd have to notice defvars and defconsts, since those variables should
138 ;; always be dynamic, and attempting to do a lexical binding of them
139 ;; should simply do a dynamic binding instead.
140 ;; But! We need to know about variables that were not necessarily defvarred
141 ;; in the file being compiled (doing a boundp check isn't good enough.)
142 ;; Fdefvar() would have to be modified to add something to the plist.
143 ;;
144 ;; A major disadvantage of this scheme is that the interpreter and compiler
145 ;; would have different semantics for files compiled with (dynamic-scope).
146 ;; Since this would be a file-local optimization, there would be no way to
147 ;; modify the interpreter to obey this (unless the loader was hacked
148 ;; in some grody way, but that's a really bad idea.)
149
150 ;; Other things to consider:
151
152 ;;;;; Associative math should recognize subcalls to identical function:
153 ;;;(disassemble (lambda (x) (+ (+ (foo) 1) (+ (bar) 2))))
154 ;;;;; This should generate the same as (1+ x) and (1- x)
155
156 ;;;(disassemble (lambda (x) (cons (+ x 1) (- x 1))))
157 ;;;;; An awful lot of functions always return a non-nil value. If they're
158 ;;;;; error free also they may act as true-constants.
159
160 ;;;(disassemble (lambda (x) (and (point) (foo))))
161 ;;;;; When
162 ;;;;; - all but one arguments to a function are constant
163 ;;;;; - the non-constant argument is an if-expression (cond-expression?)
164 ;;;;; then the outer function can be distributed. If the guarding
165 ;;;;; condition is side-effect-free [assignment-free] then the other
166 ;;;;; arguments may be any expressions. Since, however, the code size
167 ;;;;; can increase this way they should be "simple". Compare:
168
169 ;;;(disassemble (lambda (x) (eq (if (point) 'a 'b) 'c)))
170 ;;;(disassemble (lambda (x) (if (point) (eq 'a 'c) (eq 'b 'c))))
171
172 ;;;;; (car (cons A B)) -> (progn B A)
173 ;;;(disassemble (lambda (x) (car (cons (foo) 42))))
174
175 ;;;;; (cdr (cons A B)) -> (progn A B)
176 ;;;(disassemble (lambda (x) (cdr (cons 42 (foo)))))
177
178 ;;;;; (car (list A B ...)) -> (progn B ... A)
179 ;;;(disassemble (lambda (x) (car (list (foo) 42 (bar)))))
180
181 ;;;;; (cdr (list A B ...)) -> (progn A (list B ...))
182 ;;;(disassemble (lambda (x) (cdr (list 42 (foo) (bar)))))
183
184
185 ;;; Code:
186
187 (require 'bytecomp)
188
189 (defun byte-compile-log-lap-1 (format &rest args)
190 (if (aref byte-code-vector 0)
191 (error "The old version of the disassembler is loaded. Reload new-bytecomp as well."))
192 (byte-compile-log-1
193 (apply 'format format
194 (let (c a)
195 (mapcar '(lambda (arg)
196 (if (not (consp arg))
197 (if (and (symbolp arg)
198 (string-match "^byte-" (symbol-name arg)))
199 (intern (substring (symbol-name arg) 5))
200 arg)
201 (if (integerp (setq c (car arg)))
202 (error "non-symbolic byte-op %s" c))
203 (if (eq c 'TAG)
204 (setq c arg)
205 (setq a (cond ((memq c byte-goto-ops)
206 (car (cdr (cdr arg))))
207 ((memq c byte-constref-ops)
208 (car (cdr arg)))
209 (t (cdr arg))))
210 (setq c (symbol-name c))
211 (if (string-match "^byte-." c)
212 (setq c (intern (substring c 5)))))
213 (if (eq c 'constant) (setq c 'const))
214 (if (and (eq (cdr arg) 0)
215 (not (memq c '(unbind call const))))
216 c
217 (format "(%s %s)" c a))))
218 args)))))
219
220 (defmacro byte-compile-log-lap (format-string &rest args)
221 (list 'and
222 '(memq byte-optimize-log '(t byte))
223 (cons 'byte-compile-log-lap-1
224 (cons format-string args))))
225
226 \f
227 ;;; byte-compile optimizers to support inlining
228
229 (put 'inline 'byte-optimizer 'byte-optimize-inline-handler)
230
231 (defun byte-optimize-inline-handler (form)
232 "byte-optimize-handler for the `inline' special-form."
233 (cons 'progn
234 (mapcar
235 '(lambda (sexp)
236 (let ((fn (car-safe sexp)))
237 (if (and (symbolp fn)
238 (or (cdr (assq fn byte-compile-function-environment))
239 (and (fboundp fn)
240 (not (or (cdr (assq fn byte-compile-macro-environment))
241 (and (consp (setq fn (symbol-function fn)))
242 (eq (car fn) 'macro))
243 (subrp fn))))))
244 (byte-compile-inline-expand sexp)
245 sexp)))
246 (cdr form))))
247
248
249 ;; Splice the given lap code into the current instruction stream.
250 ;; If it has any labels in it, you're responsible for making sure there
251 ;; are no collisions, and that byte-compile-tag-number is reasonable
252 ;; after this is spliced in. The provided list is destroyed.
253 (defun byte-inline-lapcode (lap)
254 (setq byte-compile-output (nconc (nreverse lap) byte-compile-output)))
255
256
257 (defun byte-compile-inline-expand (form)
258 (let* ((name (car form))
259 (fn (or (cdr (assq name byte-compile-function-environment))
260 (and (fboundp name) (symbol-function name)))))
261 (if (null fn)
262 (progn
263 (byte-compile-warn "attempt to inline %s before it was defined" name)
264 form)
265 ;; else
266 (if (and (consp fn) (eq (car fn) 'autoload))
267 (progn
268 (load (nth 1 fn))
269 (setq fn (or (cdr (assq name byte-compile-function-environment))
270 (and (fboundp name) (symbol-function name))))))
271 (if (and (consp fn) (eq (car fn) 'autoload))
272 (error "file \"%s\" didn't define \"%s\"" (nth 1 fn) name))
273 (if (symbolp fn)
274 (byte-compile-inline-expand (cons fn (cdr form)))
275 (if (byte-code-function-p fn)
276 (let (string)
277 (fetch-bytecode fn)
278 (setq string (aref fn 1))
279 (if (fboundp 'string-as-unibyte)
280 (setq string (string-as-unibyte string)))
281 (cons (list 'lambda (aref fn 0)
282 (list 'byte-code string (aref fn 2) (aref fn 3)))
283 (cdr form)))
284 (if (eq (car-safe fn) 'lambda)
285 (cons fn (cdr form))
286 ;; Give up on inlining.
287 form))))))
288
289 ;;; ((lambda ...) ...)
290 ;;;
291 (defun byte-compile-unfold-lambda (form &optional name)
292 (or name (setq name "anonymous lambda"))
293 (let ((lambda (car form))
294 (values (cdr form)))
295 (if (byte-code-function-p lambda)
296 (setq lambda (list 'lambda (aref lambda 0)
297 (list 'byte-code (aref lambda 1)
298 (aref lambda 2) (aref lambda 3)))))
299 (let ((arglist (nth 1 lambda))
300 (body (cdr (cdr lambda)))
301 optionalp restp
302 bindings)
303 (if (and (stringp (car body)) (cdr body))
304 (setq body (cdr body)))
305 (if (and (consp (car body)) (eq 'interactive (car (car body))))
306 (setq body (cdr body)))
307 (while arglist
308 (cond ((eq (car arglist) '&optional)
309 ;; ok, I'll let this slide because funcall_lambda() does...
310 ;; (if optionalp (error "multiple &optional keywords in %s" name))
311 (if restp (error "&optional found after &rest in %s" name))
312 (if (null (cdr arglist))
313 (error "nothing after &optional in %s" name))
314 (setq optionalp t))
315 ((eq (car arglist) '&rest)
316 ;; ...but it is by no stretch of the imagination a reasonable
317 ;; thing that funcall_lambda() allows (&rest x y) and
318 ;; (&rest x &optional y) in arglists.
319 (if (null (cdr arglist))
320 (error "nothing after &rest in %s" name))
321 (if (cdr (cdr arglist))
322 (error "multiple vars after &rest in %s" name))
323 (setq restp t))
324 (restp
325 (setq bindings (cons (list (car arglist)
326 (and values (cons 'list values)))
327 bindings)
328 values nil))
329 ((and (not optionalp) (null values))
330 (byte-compile-warn "attempt to open-code %s with too few arguments" name)
331 (setq arglist nil values 'too-few))
332 (t
333 (setq bindings (cons (list (car arglist) (car values))
334 bindings)
335 values (cdr values))))
336 (setq arglist (cdr arglist)))
337 (if values
338 (progn
339 (or (eq values 'too-few)
340 (byte-compile-warn
341 "attempt to open-code %s with too many arguments" name))
342 form)
343 (setq body (mapcar 'byte-optimize-form body))
344 (let ((newform
345 (if bindings
346 (cons 'let (cons (nreverse bindings) body))
347 (cons 'progn body))))
348 (byte-compile-log " %s\t==>\t%s" form newform)
349 newform)))))
350
351 \f
352 ;;; implementing source-level optimizers
353
354 (defun byte-optimize-form-code-walker (form for-effect)
355 ;;
356 ;; For normal function calls, We can just mapcar the optimizer the cdr. But
357 ;; we need to have special knowledge of the syntax of the special forms
358 ;; like let and defun (that's why they're special forms :-). (Actually,
359 ;; the important aspect is that they are subrs that don't evaluate all of
360 ;; their args.)
361 ;;
362 (let ((fn (car-safe form))
363 tmp)
364 (cond ((not (consp form))
365 (if (not (and for-effect
366 (or byte-compile-delete-errors
367 (not (symbolp form))
368 (eq form t))))
369 form))
370 ((eq fn 'quote)
371 (if (cdr (cdr form))
372 (byte-compile-warn "malformed quote form: %s"
373 (prin1-to-string form)))
374 ;; map (quote nil) to nil to simplify optimizer logic.
375 ;; map quoted constants to nil if for-effect (just because).
376 (and (nth 1 form)
377 (not for-effect)
378 form))
379 ((or (byte-code-function-p fn)
380 (eq 'lambda (car-safe fn)))
381 (byte-compile-unfold-lambda form))
382 ((memq fn '(let let*))
383 ;; recursively enter the optimizer for the bindings and body
384 ;; of a let or let*. This for depth-firstness: forms that
385 ;; are more deeply nested are optimized first.
386 (cons fn
387 (cons
388 (mapcar '(lambda (binding)
389 (if (symbolp binding)
390 binding
391 (if (cdr (cdr binding))
392 (byte-compile-warn "malformed let binding: %s"
393 (prin1-to-string binding)))
394 (list (car binding)
395 (byte-optimize-form (nth 1 binding) nil))))
396 (nth 1 form))
397 (byte-optimize-body (cdr (cdr form)) for-effect))))
398 ((eq fn 'cond)
399 (cons fn
400 (mapcar '(lambda (clause)
401 (if (consp clause)
402 (cons
403 (byte-optimize-form (car clause) nil)
404 (byte-optimize-body (cdr clause) for-effect))
405 (byte-compile-warn "malformed cond form: %s"
406 (prin1-to-string clause))
407 clause))
408 (cdr form))))
409 ((eq fn 'progn)
410 ;; as an extra added bonus, this simplifies (progn <x>) --> <x>
411 (if (cdr (cdr form))
412 (progn
413 (setq tmp (byte-optimize-body (cdr form) for-effect))
414 (if (cdr tmp) (cons 'progn tmp) (car tmp)))
415 (byte-optimize-form (nth 1 form) for-effect)))
416 ((eq fn 'prog1)
417 (if (cdr (cdr form))
418 (cons 'prog1
419 (cons (byte-optimize-form (nth 1 form) for-effect)
420 (byte-optimize-body (cdr (cdr form)) t)))
421 (byte-optimize-form (nth 1 form) for-effect)))
422 ((eq fn 'prog2)
423 (cons 'prog2
424 (cons (byte-optimize-form (nth 1 form) t)
425 (cons (byte-optimize-form (nth 2 form) for-effect)
426 (byte-optimize-body (cdr (cdr (cdr form))) t)))))
427
428 ((memq fn '(save-excursion save-restriction save-current-buffer))
429 ;; those subrs which have an implicit progn; it's not quite good
430 ;; enough to treat these like normal function calls.
431 ;; This can turn (save-excursion ...) into (save-excursion) which
432 ;; will be optimized away in the lap-optimize pass.
433 (cons fn (byte-optimize-body (cdr form) for-effect)))
434
435 ((eq fn 'with-output-to-temp-buffer)
436 ;; this is just like the above, except for the first argument.
437 (cons fn
438 (cons
439 (byte-optimize-form (nth 1 form) nil)
440 (byte-optimize-body (cdr (cdr form)) for-effect))))
441
442 ((eq fn 'if)
443 (cons fn
444 (cons (byte-optimize-form (nth 1 form) nil)
445 (cons
446 (byte-optimize-form (nth 2 form) for-effect)
447 (byte-optimize-body (nthcdr 3 form) for-effect)))))
448
449 ((memq fn '(and or)) ; remember, and/or are control structures.
450 ;; take forms off the back until we can't any more.
451 ;; In the future it could conceivably be a problem that the
452 ;; subexpressions of these forms are optimized in the reverse
453 ;; order, but it's ok for now.
454 (if for-effect
455 (let ((backwards (reverse (cdr form))))
456 (while (and backwards
457 (null (setcar backwards
458 (byte-optimize-form (car backwards)
459 for-effect))))
460 (setq backwards (cdr backwards)))
461 (if (and (cdr form) (null backwards))
462 (byte-compile-log
463 " all subforms of %s called for effect; deleted" form))
464 (and backwards
465 (cons fn (nreverse backwards))))
466 (cons fn (mapcar 'byte-optimize-form (cdr form)))))
467
468 ((eq fn 'interactive)
469 (byte-compile-warn "misplaced interactive spec: %s"
470 (prin1-to-string form))
471 nil)
472
473 ((memq fn '(defun defmacro function
474 condition-case save-window-excursion))
475 ;; These forms are compiled as constants or by breaking out
476 ;; all the subexpressions and compiling them separately.
477 form)
478
479 ((eq fn 'unwind-protect)
480 ;; the "protected" part of an unwind-protect is compiled (and thus
481 ;; optimized) as a top-level form, so don't do it here. But the
482 ;; non-protected part has the same for-effect status as the
483 ;; unwind-protect itself. (The protected part is always for effect,
484 ;; but that isn't handled properly yet.)
485 (cons fn
486 (cons (byte-optimize-form (nth 1 form) for-effect)
487 (cdr (cdr form)))))
488
489 ((eq fn 'catch)
490 ;; the body of a catch is compiled (and thus optimized) as a
491 ;; top-level form, so don't do it here. The tag is never
492 ;; for-effect. The body should have the same for-effect status
493 ;; as the catch form itself, but that isn't handled properly yet.
494 (cons fn
495 (cons (byte-optimize-form (nth 1 form) nil)
496 (cdr (cdr form)))))
497
498 ;; If optimization is on, this is the only place that macros are
499 ;; expanded. If optimization is off, then macroexpansion happens
500 ;; in byte-compile-form. Otherwise, the macros are already expanded
501 ;; by the time that is reached.
502 ((not (eq form
503 (setq form (macroexpand form
504 byte-compile-macro-environment))))
505 (byte-optimize-form form for-effect))
506
507 ;; Support compiler macros as in cl.el.
508 ((and (fboundp 'compiler-macroexpand)
509 (symbolp (car-safe form))
510 (get (car-safe form) 'cl-compiler-macro)
511 (not (eq form
512 (setq form (compiler-macroexpand form)))))
513 (byte-optimize-form form for-effect))
514
515 ((not (symbolp fn))
516 (or (eq 'mocklisp (car-safe fn)) ; ha!
517 (byte-compile-warn "%s is a malformed function"
518 (prin1-to-string fn)))
519 form)
520
521 ((and for-effect (setq tmp (get fn 'side-effect-free))
522 (or byte-compile-delete-errors
523 (eq tmp 'error-free)
524 (progn
525 (byte-compile-warn "%s called for effect"
526 (prin1-to-string form))
527 nil)))
528 (byte-compile-log " %s called for effect; deleted" fn)
529 ;; appending a nil here might not be necessary, but it can't hurt.
530 (byte-optimize-form
531 (cons 'progn (append (cdr form) '(nil))) t))
532
533 (t
534 ;; Otherwise, no args can be considered to be for-effect,
535 ;; even if the called function is for-effect, because we
536 ;; don't know anything about that function.
537 (cons fn (mapcar 'byte-optimize-form (cdr form)))))))
538
539
540 (defun byte-optimize-form (form &optional for-effect)
541 "The source-level pass of the optimizer."
542 ;;
543 ;; First, optimize all sub-forms of this one.
544 (setq form (byte-optimize-form-code-walker form for-effect))
545 ;;
546 ;; after optimizing all subforms, optimize this form until it doesn't
547 ;; optimize any further. This means that some forms will be passed through
548 ;; the optimizer many times, but that's necessary to make the for-effect
549 ;; processing do as much as possible.
550 ;;
551 (let (opt new)
552 (if (and (consp form)
553 (symbolp (car form))
554 (or (and for-effect
555 ;; we don't have any of these yet, but we might.
556 (setq opt (get (car form) 'byte-for-effect-optimizer)))
557 (setq opt (get (car form) 'byte-optimizer)))
558 (not (eq form (setq new (funcall opt form)))))
559 (progn
560 ;; (if (equal form new) (error "bogus optimizer -- %s" opt))
561 (byte-compile-log " %s\t==>\t%s" form new)
562 (setq new (byte-optimize-form new for-effect))
563 new)
564 form)))
565
566
567 (defun byte-optimize-body (forms all-for-effect)
568 ;; optimize the cdr of a progn or implicit progn; all forms is a list of
569 ;; forms, all but the last of which are optimized with the assumption that
570 ;; they are being called for effect. the last is for-effect as well if
571 ;; all-for-effect is true. returns a new list of forms.
572 (let ((rest forms)
573 (result nil)
574 fe new)
575 (while rest
576 (setq fe (or all-for-effect (cdr rest)))
577 (setq new (and (car rest) (byte-optimize-form (car rest) fe)))
578 (if (or new (not fe))
579 (setq result (cons new result)))
580 (setq rest (cdr rest)))
581 (nreverse result)))
582
583 \f
584 ;;; some source-level optimizers
585 ;;;
586 ;;; when writing optimizers, be VERY careful that the optimizer returns
587 ;;; something not EQ to its argument if and ONLY if it has made a change.
588 ;;; This implies that you cannot simply destructively modify the list;
589 ;;; you must return something not EQ to it if you make an optimization.
590 ;;;
591 ;;; It is now safe to optimize code such that it introduces new bindings.
592
593 ;; I'd like this to be a defsubst, but let's not be self-referential...
594 (defmacro byte-compile-trueconstp (form)
595 ;; Returns non-nil if FORM is a non-nil constant.
596 `(cond ((consp ,form) (eq (car ,form) 'quote))
597 ((not (symbolp ,form)))
598 ((eq ,form t))
599 ((keywordp ,form))))
600
601 ;; If the function is being called with constant numeric args,
602 ;; evaluate as much as possible at compile-time. This optimizer
603 ;; assumes that the function is associative, like + or *.
604 (defun byte-optimize-associative-math (form)
605 (let ((args nil)
606 (constants nil)
607 (rest (cdr form)))
608 (while rest
609 (if (numberp (car rest))
610 (setq constants (cons (car rest) constants))
611 (setq args (cons (car rest) args)))
612 (setq rest (cdr rest)))
613 (if (cdr constants)
614 (if args
615 (list (car form)
616 (apply (car form) constants)
617 (if (cdr args)
618 (cons (car form) (nreverse args))
619 (car args)))
620 (apply (car form) constants))
621 form)))
622
623 ;; If the function is being called with constant numeric args,
624 ;; evaluate as much as possible at compile-time. This optimizer
625 ;; assumes that the function satisfies
626 ;; (op x1 x2 ... xn) == (op ...(op (op x1 x2) x3) ...xn)
627 ;; like - and /.
628 (defun byte-optimize-nonassociative-math (form)
629 (if (or (not (numberp (car (cdr form))))
630 (not (numberp (car (cdr (cdr form))))))
631 form
632 (let ((constant (car (cdr form)))
633 (rest (cdr (cdr form))))
634 (while (numberp (car rest))
635 (setq constant (funcall (car form) constant (car rest))
636 rest (cdr rest)))
637 (if rest
638 (cons (car form) (cons constant rest))
639 constant))))
640
641 ;;(defun byte-optimize-associative-two-args-math (form)
642 ;; (setq form (byte-optimize-associative-math form))
643 ;; (if (consp form)
644 ;; (byte-optimize-two-args-left form)
645 ;; form))
646
647 ;;(defun byte-optimize-nonassociative-two-args-math (form)
648 ;; (setq form (byte-optimize-nonassociative-math form))
649 ;; (if (consp form)
650 ;; (byte-optimize-two-args-right form)
651 ;; form))
652
653 (defun byte-optimize-approx-equal (x y)
654 (<= (* (abs (- x y)) 100) (abs (+ x y))))
655
656 ;; Collect all the constants from FORM, after the STARTth arg,
657 ;; and apply FUN to them to make one argument at the end.
658 ;; For functions that can handle floats, that optimization
659 ;; can be incorrect because reordering can cause an overflow
660 ;; that would otherwise be avoided by encountering an arg that is a float.
661 ;; We avoid this problem by (1) not moving float constants and
662 ;; (2) not moving anything if it would cause an overflow.
663 (defun byte-optimize-delay-constants-math (form start fun)
664 ;; Merge all FORM's constants from number START, call FUN on them
665 ;; and put the result at the end.
666 (let ((rest (nthcdr (1- start) form))
667 (orig form)
668 ;; t means we must check for overflow.
669 (overflow (memq fun '(+ *))))
670 (while (cdr (setq rest (cdr rest)))
671 (if (integerp (car rest))
672 (let (constants)
673 (setq form (copy-sequence form)
674 rest (nthcdr (1- start) form))
675 (while (setq rest (cdr rest))
676 (cond ((integerp (car rest))
677 (setq constants (cons (car rest) constants))
678 (setcar rest nil))))
679 ;; If necessary, check now for overflow
680 ;; that might be caused by reordering.
681 (if (and overflow
682 ;; We have overflow if the result of doing the arithmetic
683 ;; on floats is not even close to the result
684 ;; of doing it on integers.
685 (not (byte-optimize-approx-equal
686 (apply fun (mapcar 'float constants))
687 (float (apply fun constants)))))
688 (setq form orig)
689 (setq form (nconc (delq nil form)
690 (list (apply fun (nreverse constants)))))))))
691 form))
692
693 (defun byte-optimize-plus (form)
694 (setq form (byte-optimize-delay-constants-math form 1 '+))
695 (if (memq 0 form) (setq form (delq 0 (copy-sequence form))))
696 ;;(setq form (byte-optimize-associative-two-args-math form))
697 (cond ((null (cdr form))
698 (condition-case ()
699 (eval form)
700 (error form)))
701 ;;; It is not safe to delete the function entirely
702 ;;; (actually, it would be safe if we know the sole arg
703 ;;; is not a marker).
704 ;; ((null (cdr (cdr form))) (nth 1 form))
705 ((null (cddr form))
706 (if (numberp (nth 1 form))
707 (nth 1 form)
708 form))
709 ((and (null (nthcdr 3 form))
710 (or (memq (nth 1 form) '(1 -1))
711 (memq (nth 2 form) '(1 -1))))
712 ;; Optimize (+ x 1) into (1+ x) and (+ x -1) into (1- x).
713 (let ((integer
714 (if (memq (nth 1 form) '(1 -1))
715 (nth 1 form)
716 (nth 2 form)))
717 (other
718 (if (memq (nth 1 form) '(1 -1))
719 (nth 2 form)
720 (nth 1 form))))
721 (list (if (eq integer 1) '1+ '1-)
722 other)))
723 (t form)))
724
725 (defun byte-optimize-minus (form)
726 ;; Put constants at the end, except the last constant.
727 (setq form (byte-optimize-delay-constants-math form 2 '+))
728 ;; Now only first and last element can be a number.
729 (let ((last (car (reverse (nthcdr 3 form)))))
730 (cond ((eq 0 last)
731 ;; (- x y ... 0) --> (- x y ...)
732 (setq form (copy-sequence form))
733 (setcdr (cdr (cdr form)) (delq 0 (nthcdr 3 form))))
734 ((equal (nthcdr 2 form) '(1))
735 (setq form (list '1- (nth 1 form))))
736 ((equal (nthcdr 2 form) '(-1))
737 (setq form (list '1+ (nth 1 form))))
738 ;; If form is (- CONST foo... CONST), merge first and last.
739 ((and (numberp (nth 1 form))
740 (numberp last))
741 (setq form (nconc (list '- (- (nth 1 form) last) (nth 2 form))
742 (delq last (copy-sequence (nthcdr 3 form))))))))
743 ;;; It is not safe to delete the function entirely
744 ;;; (actually, it would be safe if we know the sole arg
745 ;;; is not a marker).
746 ;;; (if (eq (nth 2 form) 0)
747 ;;; (nth 1 form) ; (- x 0) --> x
748 (byte-optimize-predicate
749 (if (and (null (cdr (cdr (cdr form))))
750 (eq (nth 1 form) 0)) ; (- 0 x) --> (- x)
751 (cons (car form) (cdr (cdr form)))
752 form))
753 ;;; )
754 )
755
756 (defun byte-optimize-multiply (form)
757 (setq form (byte-optimize-delay-constants-math form 1 '*))
758 ;; If there is a constant in FORM, it is now the last element.
759 (cond ((null (cdr form)) 1)
760 ;;; It is not safe to delete the function entirely
761 ;;; (actually, it would be safe if we know the sole arg
762 ;;; is not a marker or if it appears in other arithmetic).
763 ;;; ((null (cdr (cdr form))) (nth 1 form))
764 ((let ((last (car (reverse form))))
765 (cond ((eq 0 last) (cons 'progn (cdr form)))
766 ((eq 1 last) (delq 1 (copy-sequence form)))
767 ((eq -1 last) (list '- (delq -1 (copy-sequence form))))
768 ((and (eq 2 last)
769 (memq t (mapcar 'symbolp (cdr form))))
770 (prog1 (setq form (delq 2 (copy-sequence form)))
771 (while (not (symbolp (car (setq form (cdr form))))))
772 (setcar form (list '+ (car form) (car form)))))
773 (form))))))
774
775 (defsubst byte-compile-butlast (form)
776 (nreverse (cdr (reverse form))))
777
778 (defun byte-optimize-divide (form)
779 (setq form (byte-optimize-delay-constants-math form 2 '*))
780 (let ((last (car (reverse (cdr (cdr form))))))
781 (if (numberp last)
782 (cond ((= (length form) 3)
783 (if (and (numberp (nth 1 form))
784 (not (zerop last))
785 (condition-case nil
786 (/ (nth 1 form) last)
787 (error nil)))
788 (setq form (list 'progn (/ (nth 1 form) last)))))
789 ((= last 1)
790 (setq form (byte-compile-butlast form)))
791 ((numberp (nth 1 form))
792 (setq form (cons (car form)
793 (cons (/ (nth 1 form) last)
794 (byte-compile-butlast (cdr (cdr form)))))
795 last nil))))
796 (cond
797 ;;; ((null (cdr (cdr form)))
798 ;;; (nth 1 form))
799 ((eq (nth 1 form) 0)
800 (append '(progn) (cdr (cdr form)) '(0)))
801 ((eq last -1)
802 (list '- (if (nthcdr 3 form)
803 (byte-compile-butlast form)
804 (nth 1 form))))
805 (form))))
806
807 (defun byte-optimize-logmumble (form)
808 (setq form (byte-optimize-delay-constants-math form 1 (car form)))
809 (byte-optimize-predicate
810 (cond ((memq 0 form)
811 (setq form (if (eq (car form) 'logand)
812 (cons 'progn (cdr form))
813 (delq 0 (copy-sequence form)))))
814 ((and (eq (car-safe form) 'logior)
815 (memq -1 form))
816 (cons 'progn (cdr form)))
817 (form))))
818
819
820 (defun byte-optimize-binary-predicate (form)
821 (if (byte-compile-constp (nth 1 form))
822 (if (byte-compile-constp (nth 2 form))
823 (condition-case ()
824 (list 'quote (eval form))
825 (error form))
826 ;; This can enable some lapcode optimizations.
827 (list (car form) (nth 2 form) (nth 1 form)))
828 form))
829
830 (defun byte-optimize-predicate (form)
831 (let ((ok t)
832 (rest (cdr form)))
833 (while (and rest ok)
834 (setq ok (byte-compile-constp (car rest))
835 rest (cdr rest)))
836 (if ok
837 (condition-case ()
838 (list 'quote (eval form))
839 (error form))
840 form)))
841
842 (defun byte-optimize-identity (form)
843 (if (and (cdr form) (null (cdr (cdr form))))
844 (nth 1 form)
845 (byte-compile-warn "identity called with %d arg%s, but requires 1"
846 (length (cdr form))
847 (if (= 1 (length (cdr form))) "" "s"))
848 form))
849
850 (put 'identity 'byte-optimizer 'byte-optimize-identity)
851
852 (put '+ 'byte-optimizer 'byte-optimize-plus)
853 (put '* 'byte-optimizer 'byte-optimize-multiply)
854 (put '- 'byte-optimizer 'byte-optimize-minus)
855 (put '/ 'byte-optimizer 'byte-optimize-divide)
856 (put 'max 'byte-optimizer 'byte-optimize-associative-math)
857 (put 'min 'byte-optimizer 'byte-optimize-associative-math)
858
859 (put '= 'byte-optimizer 'byte-optimize-binary-predicate)
860 (put 'eq 'byte-optimizer 'byte-optimize-binary-predicate)
861 (put 'equal 'byte-optimizer 'byte-optimize-binary-predicate)
862 (put 'string= 'byte-optimizer 'byte-optimize-binary-predicate)
863 (put 'string-equal 'byte-optimizer 'byte-optimize-binary-predicate)
864
865 (put '< 'byte-optimizer 'byte-optimize-predicate)
866 (put '> 'byte-optimizer 'byte-optimize-predicate)
867 (put '<= 'byte-optimizer 'byte-optimize-predicate)
868 (put '>= 'byte-optimizer 'byte-optimize-predicate)
869 (put '1+ 'byte-optimizer 'byte-optimize-predicate)
870 (put '1- 'byte-optimizer 'byte-optimize-predicate)
871 (put 'not 'byte-optimizer 'byte-optimize-predicate)
872 (put 'null 'byte-optimizer 'byte-optimize-predicate)
873 (put 'memq 'byte-optimizer 'byte-optimize-predicate)
874 (put 'consp 'byte-optimizer 'byte-optimize-predicate)
875 (put 'listp 'byte-optimizer 'byte-optimize-predicate)
876 (put 'symbolp 'byte-optimizer 'byte-optimize-predicate)
877 (put 'stringp 'byte-optimizer 'byte-optimize-predicate)
878 (put 'string< 'byte-optimizer 'byte-optimize-predicate)
879 (put 'string-lessp 'byte-optimizer 'byte-optimize-predicate)
880
881 (put 'logand 'byte-optimizer 'byte-optimize-logmumble)
882 (put 'logior 'byte-optimizer 'byte-optimize-logmumble)
883 (put 'logxor 'byte-optimizer 'byte-optimize-logmumble)
884 (put 'lognot 'byte-optimizer 'byte-optimize-predicate)
885
886 (put 'car 'byte-optimizer 'byte-optimize-predicate)
887 (put 'cdr 'byte-optimizer 'byte-optimize-predicate)
888 (put 'car-safe 'byte-optimizer 'byte-optimize-predicate)
889 (put 'cdr-safe 'byte-optimizer 'byte-optimize-predicate)
890
891
892 ;; I'm not convinced that this is necessary. Doesn't the optimizer loop
893 ;; take care of this? - Jamie
894 ;; I think this may some times be necessary to reduce ie (quote 5) to 5,
895 ;; so arithmetic optimizers recognize the numeric constant. - Hallvard
896 (put 'quote 'byte-optimizer 'byte-optimize-quote)
897 (defun byte-optimize-quote (form)
898 (if (or (consp (nth 1 form))
899 (and (symbolp (nth 1 form))
900 (not (byte-compile-const-symbol-p form))))
901 form
902 (nth 1 form)))
903
904 (defun byte-optimize-zerop (form)
905 (cond ((numberp (nth 1 form))
906 (eval form))
907 (byte-compile-delete-errors
908 (list '= (nth 1 form) 0))
909 (form)))
910
911 (put 'zerop 'byte-optimizer 'byte-optimize-zerop)
912
913 (defun byte-optimize-and (form)
914 ;; Simplify if less than 2 args.
915 ;; if there is a literal nil in the args to `and', throw it and following
916 ;; forms away, and surround the `and' with (progn ... nil).
917 (cond ((null (cdr form)))
918 ((memq nil form)
919 (list 'progn
920 (byte-optimize-and
921 (prog1 (setq form (copy-sequence form))
922 (while (nth 1 form)
923 (setq form (cdr form)))
924 (setcdr form nil)))
925 nil))
926 ((null (cdr (cdr form)))
927 (nth 1 form))
928 ((byte-optimize-predicate form))))
929
930 (defun byte-optimize-or (form)
931 ;; Throw away nil's, and simplify if less than 2 args.
932 ;; If there is a literal non-nil constant in the args to `or', throw away all
933 ;; following forms.
934 (if (memq nil form)
935 (setq form (delq nil (copy-sequence form))))
936 (let ((rest form))
937 (while (cdr (setq rest (cdr rest)))
938 (if (byte-compile-trueconstp (car rest))
939 (setq form (copy-sequence form)
940 rest (setcdr (memq (car rest) form) nil))))
941 (if (cdr (cdr form))
942 (byte-optimize-predicate form)
943 (nth 1 form))))
944
945 (defun byte-optimize-cond (form)
946 ;; if any clauses have a literal nil as their test, throw them away.
947 ;; if any clause has a literal non-nil constant as its test, throw
948 ;; away all following clauses.
949 (let (rest)
950 ;; This must be first, to reduce (cond (t ...) (nil)) to (progn t ...)
951 (while (setq rest (assq nil (cdr form)))
952 (setq form (delq rest (copy-sequence form))))
953 (if (memq nil (cdr form))
954 (setq form (delq nil (copy-sequence form))))
955 (setq rest form)
956 (while (setq rest (cdr rest))
957 (cond ((byte-compile-trueconstp (car-safe (car rest)))
958 (cond ((eq rest (cdr form))
959 (setq form
960 (if (cdr (car rest))
961 (if (cdr (cdr (car rest)))
962 (cons 'progn (cdr (car rest)))
963 (nth 1 (car rest)))
964 (car (car rest)))))
965 ((cdr rest)
966 (setq form (copy-sequence form))
967 (setcdr (memq (car rest) form) nil)))
968 (setq rest nil)))))
969 ;;
970 ;; Turn (cond (( <x> )) ... ) into (or <x> (cond ... ))
971 (if (eq 'cond (car-safe form))
972 (let ((clauses (cdr form)))
973 (if (and (consp (car clauses))
974 (null (cdr (car clauses))))
975 (list 'or (car (car clauses))
976 (byte-optimize-cond
977 (cons (car form) (cdr (cdr form)))))
978 form))
979 form))
980
981 (defun byte-optimize-if (form)
982 ;; (if <true-constant> <then> <else...>) ==> <then>
983 ;; (if <false-constant> <then> <else...>) ==> (progn <else...>)
984 ;; (if <test> nil <else...>) ==> (if (not <test>) (progn <else...>))
985 ;; (if <test> <then> nil) ==> (if <test> <then>)
986 (let ((clause (nth 1 form)))
987 (cond ((byte-compile-trueconstp clause)
988 (nth 2 form))
989 ((null clause)
990 (if (nthcdr 4 form)
991 (cons 'progn (nthcdr 3 form))
992 (nth 3 form)))
993 ((nth 2 form)
994 (if (equal '(nil) (nthcdr 3 form))
995 (list 'if clause (nth 2 form))
996 form))
997 ((or (nth 3 form) (nthcdr 4 form))
998 (list 'if
999 ;; Don't make a double negative;
1000 ;; instead, take away the one that is there.
1001 (if (and (consp clause) (memq (car clause) '(not null))
1002 (= (length clause) 2)) ; (not xxxx) or (not (xxxx))
1003 (nth 1 clause)
1004 (list 'not clause))
1005 (if (nthcdr 4 form)
1006 (cons 'progn (nthcdr 3 form))
1007 (nth 3 form))))
1008 (t
1009 (list 'progn clause nil)))))
1010
1011 (defun byte-optimize-while (form)
1012 (if (nth 1 form)
1013 form))
1014
1015 (put 'and 'byte-optimizer 'byte-optimize-and)
1016 (put 'or 'byte-optimizer 'byte-optimize-or)
1017 (put 'cond 'byte-optimizer 'byte-optimize-cond)
1018 (put 'if 'byte-optimizer 'byte-optimize-if)
1019 (put 'while 'byte-optimizer 'byte-optimize-while)
1020
1021 ;; byte-compile-negation-optimizer lives in bytecomp.el
1022 (put '/= 'byte-optimizer 'byte-compile-negation-optimizer)
1023 (put 'atom 'byte-optimizer 'byte-compile-negation-optimizer)
1024 (put 'nlistp 'byte-optimizer 'byte-compile-negation-optimizer)
1025
1026
1027 (defun byte-optimize-funcall (form)
1028 ;; (funcall '(lambda ...) ...) ==> ((lambda ...) ...)
1029 ;; (funcall 'foo ...) ==> (foo ...)
1030 (let ((fn (nth 1 form)))
1031 (if (memq (car-safe fn) '(quote function))
1032 (cons (nth 1 fn) (cdr (cdr form)))
1033 form)))
1034
1035 (defun byte-optimize-apply (form)
1036 ;; If the last arg is a literal constant, turn this into a funcall.
1037 ;; The funcall optimizer can then transform (funcall 'foo ...) -> (foo ...).
1038 (let ((fn (nth 1 form))
1039 (last (nth (1- (length form)) form))) ; I think this really is fastest
1040 (or (if (or (null last)
1041 (eq (car-safe last) 'quote))
1042 (if (listp (nth 1 last))
1043 (let ((butlast (nreverse (cdr (reverse (cdr (cdr form)))))))
1044 (nconc (list 'funcall fn) butlast
1045 (mapcar '(lambda (x) (list 'quote x)) (nth 1 last))))
1046 (byte-compile-warn
1047 "last arg to apply can't be a literal atom: %s"
1048 (prin1-to-string last))
1049 nil))
1050 form)))
1051
1052 (put 'funcall 'byte-optimizer 'byte-optimize-funcall)
1053 (put 'apply 'byte-optimizer 'byte-optimize-apply)
1054
1055
1056 (put 'let 'byte-optimizer 'byte-optimize-letX)
1057 (put 'let* 'byte-optimizer 'byte-optimize-letX)
1058 (defun byte-optimize-letX (form)
1059 (cond ((null (nth 1 form))
1060 ;; No bindings
1061 (cons 'progn (cdr (cdr form))))
1062 ((or (nth 2 form) (nthcdr 3 form))
1063 form)
1064 ;; The body is nil
1065 ((eq (car form) 'let)
1066 (append '(progn) (mapcar 'car-safe (mapcar 'cdr-safe (nth 1 form)))
1067 '(nil)))
1068 (t
1069 (let ((binds (reverse (nth 1 form))))
1070 (list 'let* (reverse (cdr binds)) (nth 1 (car binds)) nil)))))
1071
1072
1073 (put 'nth 'byte-optimizer 'byte-optimize-nth)
1074 (defun byte-optimize-nth (form)
1075 (if (and (= (safe-length form) 3) (memq (nth 1 form) '(0 1)))
1076 (list 'car (if (zerop (nth 1 form))
1077 (nth 2 form)
1078 (list 'cdr (nth 2 form))))
1079 (byte-optimize-predicate form)))
1080
1081 (put 'nthcdr 'byte-optimizer 'byte-optimize-nthcdr)
1082 (defun byte-optimize-nthcdr (form)
1083 (if (and (= (safe-length form) 3) (not (memq (nth 1 form) '(0 1 2))))
1084 (byte-optimize-predicate form)
1085 (let ((count (nth 1 form)))
1086 (setq form (nth 2 form))
1087 (while (>= (setq count (1- count)) 0)
1088 (setq form (list 'cdr form)))
1089 form)))
1090
1091 (put 'concat 'byte-optimizer 'byte-optimize-concat)
1092 (defun byte-optimize-concat (form)
1093 (let ((args (cdr form))
1094 (constant t))
1095 (while (and args constant)
1096 (or (byte-compile-constp (car args))
1097 (setq constant nil))
1098 (setq args (cdr args)))
1099 (if constant
1100 (eval form)
1101 form)))
1102
1103 ;; Avoid having to write forward-... with a negative arg for speed.
1104 (put 'backward-char 'byte-optimizer 'byte-optimize-backward-char)
1105 (defun byte-optimize-backward-char (form)
1106 (cond ((and (= 2 (safe-length form))
1107 (numberp (nth 1 form)))
1108 (list 'forward-char (eval (- (nth 1 form)))))
1109 ((= 1 (safe-length form))
1110 '(forward-char -1))
1111 (t form)))
1112
1113 (put 'backward-word 'byte-optimizer 'byte-optimize-backward-word)
1114 (defun byte-optimize-backward-word (form)
1115 (cond ((and (= 2 (safe-length form))
1116 (numberp (nth 1 form)))
1117 (list 'forward-word (eval (- (nth 1 form)))))
1118 ((= 1 (safe-length form))
1119 '(forward-char -1))
1120 (t form)))
1121
1122 (put 'char-before 'byte-optimizer 'byte-optimize-char-before)
1123 (defun byte-optimize-char-before (form)
1124 (cond ((= 2 (safe-length form))
1125 `(char-after (1- ,(nth 1 form))))
1126 ((= 1 (safe-length form))
1127 '(char-after (1- (point))))
1128 (t form)))
1129 \f
1130 ;;; enumerating those functions which need not be called if the returned
1131 ;;; value is not used. That is, something like
1132 ;;; (progn (list (something-with-side-effects) (yow))
1133 ;;; (foo))
1134 ;;; may safely be turned into
1135 ;;; (progn (progn (something-with-side-effects) (yow))
1136 ;;; (foo))
1137 ;;; Further optimizations will turn (progn (list 1 2 3) 'foo) into 'foo.
1138
1139 ;;; I wonder if I missed any :-\)
1140 (let ((side-effect-free-fns
1141 '(% * + - / /= 1+ 1- < <= = > >= abs acos append aref ash asin atan
1142 assoc assq
1143 boundp buffer-file-name buffer-local-variables buffer-modified-p
1144 buffer-substring
1145 capitalize car-less-than-car car cdr ceiling concat
1146 coordinates-in-window-p
1147 char-width copy-marker cos count-lines
1148 default-boundp default-value documentation downcase
1149 elt exp expt fboundp featurep
1150 file-directory-p file-exists-p file-locked-p file-name-absolute-p
1151 file-newer-than-file-p file-readable-p file-symlink-p file-writable-p
1152 float floor format frame-visible-p
1153 get gethash get-buffer get-buffer-window getenv get-file-buffer
1154 hash-table-count
1155 int-to-string
1156 keymap-parent
1157 length local-variable-if-set-p local-variable-p log log10 logand
1158 logb logior lognot logxor lsh
1159 marker-buffer max member memq min mod
1160 next-window nth nthcdr number-to-string
1161 parse-colon-path prefix-numeric-value previous-window
1162 radians-to-degrees rassq regexp-quote reverse round
1163 sin sqrt string< string= string-equal string-lessp string-to-char
1164 string-to-int string-to-number substring symbol-function symbol-plist
1165 symbol-value
1166 tan unibyte-char-to-multibyte upcase user-variable-p vconcat
1167 window-buffer window-dedicated-p window-edges window-height
1168 window-hscroll window-minibuffer-p window-width
1169 zerop))
1170 (side-effect-and-error-free-fns
1171 '(arrayp atom
1172 bobp bolp buffer-end buffer-list buffer-size buffer-string bufferp
1173 car-safe case-table-p cdr-safe char-or-string-p commandp cons consp
1174 current-buffer current-global-map current-indentation
1175 current-local-map current-minor-mode-maps
1176 dot dot-marker eobp eolp eq equal eventp floatp framep
1177 get-largest-window get-lru-window
1178 hash-table-p
1179 identity ignore integerp integer-or-marker-p interactive-p
1180 invocation-directory invocation-name
1181 keymapp
1182 line-beginning-position line-end-position list listp
1183 make-marker mark mark-marker markerp memory-limit minibuffer-window
1184 mouse-movement-p
1185 natnump nlistp not null number-or-marker-p numberp
1186 one-window-p overlayp
1187 point point-marker point-min point-max processp
1188 recent-keys recursion-depth
1189 selected-frame selected-window sequencep stringp subrp symbolp
1190 standard-case-table standard-syntax-table syntax-table-p
1191 this-command-keys this-command-keys-vector this-single-command-keys
1192 this-single-command-raw-keys
1193 user-full-name user-login-name user-original-login-name
1194 user-real-login-name user-real-uid user-uid
1195 vector vectorp visible-frame-list
1196 window-configuration-p window-live-p windowp)))
1197 (while side-effect-free-fns
1198 (put (car side-effect-free-fns) 'side-effect-free t)
1199 (setq side-effect-free-fns (cdr side-effect-free-fns)))
1200 (while side-effect-and-error-free-fns
1201 (put (car side-effect-and-error-free-fns) 'side-effect-free 'error-free)
1202 (setq side-effect-and-error-free-fns (cdr side-effect-and-error-free-fns)))
1203 nil)
1204
1205
1206 (defun byte-compile-splice-in-already-compiled-code (form)
1207 ;; form is (byte-code "..." [...] n)
1208 (if (not (memq byte-optimize '(t lap)))
1209 (byte-compile-normal-call form)
1210 (byte-inline-lapcode
1211 (byte-decompile-bytecode-1 (nth 1 form) (nth 2 form) t))
1212 (setq byte-compile-maxdepth (max (+ byte-compile-depth (nth 3 form))
1213 byte-compile-maxdepth))
1214 (setq byte-compile-depth (1+ byte-compile-depth))))
1215
1216 (put 'byte-code 'byte-compile 'byte-compile-splice-in-already-compiled-code)
1217
1218 \f
1219 (defconst byte-constref-ops
1220 '(byte-constant byte-constant2 byte-varref byte-varset byte-varbind))
1221
1222 ;;; This function extracts the bitfields from variable-length opcodes.
1223 ;;; Originally defined in disass.el (which no longer uses it.)
1224
1225 (defun disassemble-offset ()
1226 "Don't call this!"
1227 ;; fetch and return the offset for the current opcode.
1228 ;; return NIL if this opcode has no offset
1229 ;; OP, PTR and BYTES are used and set dynamically
1230 (defvar op)
1231 (defvar ptr)
1232 (defvar bytes)
1233 (cond ((< op byte-nth)
1234 (let ((tem (logand op 7)))
1235 (setq op (logand op 248))
1236 (cond ((eq tem 6)
1237 (setq ptr (1+ ptr)) ;offset in next byte
1238 (aref bytes ptr))
1239 ((eq tem 7)
1240 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1241 (+ (aref bytes ptr)
1242 (progn (setq ptr (1+ ptr))
1243 (lsh (aref bytes ptr) 8))))
1244 (t tem)))) ;offset was in opcode
1245 ((>= op byte-constant)
1246 (prog1 (- op byte-constant) ;offset in opcode
1247 (setq op byte-constant)))
1248 ((and (>= op byte-constant2)
1249 (<= op byte-goto-if-not-nil-else-pop))
1250 (setq ptr (1+ ptr)) ;offset in next 2 bytes
1251 (+ (aref bytes ptr)
1252 (progn (setq ptr (1+ ptr))
1253 (lsh (aref bytes ptr) 8))))
1254 ((and (>= op byte-listN)
1255 (<= op byte-insertN))
1256 (setq ptr (1+ ptr)) ;offset in next byte
1257 (aref bytes ptr))))
1258
1259
1260 ;;; This de-compiler is used for inline expansion of compiled functions,
1261 ;;; and by the disassembler.
1262 ;;;
1263 ;;; This list contains numbers, which are pc values,
1264 ;;; before each instruction.
1265 (defun byte-decompile-bytecode (bytes constvec)
1266 "Turns BYTECODE into lapcode, referring to CONSTVEC."
1267 (let ((byte-compile-constants nil)
1268 (byte-compile-variables nil)
1269 (byte-compile-tag-number 0))
1270 (byte-decompile-bytecode-1 bytes constvec)))
1271
1272 ;; As byte-decompile-bytecode, but updates
1273 ;; byte-compile-{constants, variables, tag-number}.
1274 ;; If MAKE-SPLICEABLE is true, then `return' opcodes are replaced
1275 ;; with `goto's destined for the end of the code.
1276 ;; That is for use by the compiler.
1277 ;; If MAKE-SPLICEABLE is nil, we are being called for the disassembler.
1278 ;; In that case, we put a pc value into the list
1279 ;; before each insn (or its label).
1280 (defun byte-decompile-bytecode-1 (bytes constvec &optional make-spliceable)
1281 (let ((length (length bytes))
1282 (ptr 0) optr tag tags op offset
1283 lap tmp
1284 endtag
1285 (retcount 0))
1286 (while (not (= ptr length))
1287 (or make-spliceable
1288 (setq lap (cons ptr lap)))
1289 (setq op (aref bytes ptr)
1290 optr ptr
1291 offset (disassemble-offset)) ; this does dynamic-scope magic
1292 (setq op (aref byte-code-vector op))
1293 (cond ((memq op byte-goto-ops)
1294 ;; it's a pc
1295 (setq offset
1296 (cdr (or (assq offset tags)
1297 (car (setq tags
1298 (cons (cons offset
1299 (byte-compile-make-tag))
1300 tags)))))))
1301 ((cond ((eq op 'byte-constant2) (setq op 'byte-constant) t)
1302 ((memq op byte-constref-ops)))
1303 (setq tmp (if (>= offset (length constvec))
1304 (list 'out-of-range offset)
1305 (aref constvec offset))
1306 offset (if (eq op 'byte-constant)
1307 (byte-compile-get-constant tmp)
1308 (or (assq tmp byte-compile-variables)
1309 (car (setq byte-compile-variables
1310 (cons (list tmp)
1311 byte-compile-variables)))))))
1312 ((and make-spliceable
1313 (eq op 'byte-return))
1314 (if (= ptr (1- length))
1315 (setq op nil)
1316 (setq offset (or endtag (setq endtag (byte-compile-make-tag)))
1317 op 'byte-goto))))
1318 ;; lap = ( [ (pc . (op . arg)) ]* )
1319 (setq lap (cons (cons optr (cons op (or offset 0)))
1320 lap))
1321 (setq ptr (1+ ptr)))
1322 ;; take off the dummy nil op that we replaced a trailing "return" with.
1323 (let ((rest lap))
1324 (while rest
1325 (cond ((numberp (car rest)))
1326 ((setq tmp (assq (car (car rest)) tags))
1327 ;; this addr is jumped to
1328 (setcdr rest (cons (cons nil (cdr tmp))
1329 (cdr rest)))
1330 (setq tags (delq tmp tags))
1331 (setq rest (cdr rest))))
1332 (setq rest (cdr rest))))
1333 (if tags (error "optimizer error: missed tags %s" tags))
1334 (if (null (car (cdr (car lap))))
1335 (setq lap (cdr lap)))
1336 (if endtag
1337 (setq lap (cons (cons nil endtag) lap)))
1338 ;; remove addrs, lap = ( [ (op . arg) | (TAG tagno) ]* )
1339 (mapcar (function (lambda (elt)
1340 (if (numberp elt)
1341 elt
1342 (cdr elt))))
1343 (nreverse lap))))
1344
1345 \f
1346 ;;; peephole optimizer
1347
1348 (defconst byte-tagref-ops (cons 'TAG byte-goto-ops))
1349
1350 (defconst byte-conditional-ops
1351 '(byte-goto-if-nil byte-goto-if-not-nil byte-goto-if-nil-else-pop
1352 byte-goto-if-not-nil-else-pop))
1353
1354 (defconst byte-after-unbind-ops
1355 '(byte-constant byte-dup
1356 byte-symbolp byte-consp byte-stringp byte-listp byte-numberp byte-integerp
1357 byte-eq byte-not
1358 byte-cons byte-list1 byte-list2 ; byte-list3 byte-list4
1359 byte-interactive-p)
1360 ;; How about other side-effect-free-ops? Is it safe to move an
1361 ;; error invocation (such as from nth) out of an unwind-protect?
1362 ;; No, it is not, because the unwind-protect forms can alter
1363 ;; the inside of the object to which nth would apply.
1364 ;; For the same reason, byte-equal was deleted from this list.
1365 "Byte-codes that can be moved past an unbind.")
1366
1367 (defconst byte-compile-side-effect-and-error-free-ops
1368 '(byte-constant byte-dup byte-symbolp byte-consp byte-stringp byte-listp
1369 byte-integerp byte-numberp byte-eq byte-equal byte-not byte-car-safe
1370 byte-cdr-safe byte-cons byte-list1 byte-list2 byte-point byte-point-max
1371 byte-point-min byte-following-char byte-preceding-char
1372 byte-current-column byte-eolp byte-eobp byte-bolp byte-bobp
1373 byte-current-buffer byte-interactive-p))
1374
1375 (defconst byte-compile-side-effect-free-ops
1376 (nconc
1377 '(byte-varref byte-nth byte-memq byte-car byte-cdr byte-length byte-aref
1378 byte-symbol-value byte-get byte-concat2 byte-concat3 byte-sub1 byte-add1
1379 byte-eqlsign byte-gtr byte-lss byte-leq byte-geq byte-diff byte-negate
1380 byte-plus byte-max byte-min byte-mult byte-char-after byte-char-syntax
1381 byte-buffer-substring byte-string= byte-string< byte-nthcdr byte-elt
1382 byte-member byte-assq byte-quo byte-rem)
1383 byte-compile-side-effect-and-error-free-ops))
1384
1385 ;;; This crock is because of the way DEFVAR_BOOL variables work.
1386 ;;; Consider the code
1387 ;;;
1388 ;;; (defun foo (flag)
1389 ;;; (let ((old-pop-ups pop-up-windows)
1390 ;;; (pop-up-windows flag))
1391 ;;; (cond ((not (eq pop-up-windows old-pop-ups))
1392 ;;; (setq old-pop-ups pop-up-windows)
1393 ;;; ...))))
1394 ;;;
1395 ;;; Uncompiled, old-pop-ups will always be set to nil or t, even if FLAG is
1396 ;;; something else. But if we optimize
1397 ;;;
1398 ;;; varref flag
1399 ;;; varbind pop-up-windows
1400 ;;; varref pop-up-windows
1401 ;;; not
1402 ;;; to
1403 ;;; varref flag
1404 ;;; dup
1405 ;;; varbind pop-up-windows
1406 ;;; not
1407 ;;;
1408 ;;; we break the program, because it will appear that pop-up-windows and
1409 ;;; old-pop-ups are not EQ when really they are. So we have to know what
1410 ;;; the BOOL variables are, and not perform this optimization on them.
1411
1412 ;;; The variable `byte-boolean-vars' is now primitive and updated
1413 ;;; automatically by DEFVAR_BOOL.
1414
1415 (defun byte-optimize-lapcode (lap &optional for-effect)
1416 "Simple peephole optimizer. LAP is both modified and returned."
1417 (let (lap0 off0
1418 lap1 off1
1419 lap2 off2
1420 (keep-going 'first-time)
1421 (add-depth 0)
1422 rest tmp tmp2 tmp3
1423 (side-effect-free (if byte-compile-delete-errors
1424 byte-compile-side-effect-free-ops
1425 byte-compile-side-effect-and-error-free-ops)))
1426 (while keep-going
1427 (or (eq keep-going 'first-time)
1428 (byte-compile-log-lap " ---- next pass"))
1429 (setq rest lap
1430 keep-going nil)
1431 (while rest
1432 (setq lap0 (car rest)
1433 lap1 (nth 1 rest)
1434 lap2 (nth 2 rest))
1435
1436 ;; You may notice that sequences like "dup varset discard" are
1437 ;; optimized but sequences like "dup varset TAG1: discard" are not.
1438 ;; You may be tempted to change this; resist that temptation.
1439 (cond ;;
1440 ;; <side-effect-free> pop --> <deleted>
1441 ;; ...including:
1442 ;; const-X pop --> <deleted>
1443 ;; varref-X pop --> <deleted>
1444 ;; dup pop --> <deleted>
1445 ;;
1446 ((and (eq 'byte-discard (car lap1))
1447 (memq (car lap0) side-effect-free))
1448 (setq keep-going t)
1449 (setq tmp (aref byte-stack+-info (symbol-value (car lap0))))
1450 (setq rest (cdr rest))
1451 (cond ((= tmp 1)
1452 (byte-compile-log-lap
1453 " %s discard\t-->\t<deleted>" lap0)
1454 (setq lap (delq lap0 (delq lap1 lap))))
1455 ((= tmp 0)
1456 (byte-compile-log-lap
1457 " %s discard\t-->\t<deleted> discard" lap0)
1458 (setq lap (delq lap0 lap)))
1459 ((= tmp -1)
1460 (byte-compile-log-lap
1461 " %s discard\t-->\tdiscard discard" lap0)
1462 (setcar lap0 'byte-discard)
1463 (setcdr lap0 0))
1464 ((error "Optimizer error: too much on the stack"))))
1465 ;;
1466 ;; goto*-X X: --> X:
1467 ;;
1468 ((and (memq (car lap0) byte-goto-ops)
1469 (eq (cdr lap0) lap1))
1470 (cond ((eq (car lap0) 'byte-goto)
1471 (setq lap (delq lap0 lap))
1472 (setq tmp "<deleted>"))
1473 ((memq (car lap0) byte-goto-always-pop-ops)
1474 (setcar lap0 (setq tmp 'byte-discard))
1475 (setcdr lap0 0))
1476 ((error "Depth conflict at tag %d" (nth 2 lap0))))
1477 (and (memq byte-optimize-log '(t byte))
1478 (byte-compile-log " (goto %s) %s:\t-->\t%s %s:"
1479 (nth 1 lap1) (nth 1 lap1)
1480 tmp (nth 1 lap1)))
1481 (setq keep-going t))
1482 ;;
1483 ;; varset-X varref-X --> dup varset-X
1484 ;; varbind-X varref-X --> dup varbind-X
1485 ;; const/dup varset-X varref-X --> const/dup varset-X const/dup
1486 ;; const/dup varbind-X varref-X --> const/dup varbind-X const/dup
1487 ;; The latter two can enable other optimizations.
1488 ;;
1489 ((and (eq 'byte-varref (car lap2))
1490 (eq (cdr lap1) (cdr lap2))
1491 (memq (car lap1) '(byte-varset byte-varbind)))
1492 (if (and (setq tmp (memq (car (cdr lap2)) byte-boolean-vars))
1493 (not (eq (car lap0) 'byte-constant)))
1494 nil
1495 (setq keep-going t)
1496 (if (memq (car lap0) '(byte-constant byte-dup))
1497 (progn
1498 (setq tmp (if (or (not tmp)
1499 (byte-compile-const-symbol-p
1500 (car (cdr lap0))))
1501 (cdr lap0)
1502 (byte-compile-get-constant t)))
1503 (byte-compile-log-lap " %s %s %s\t-->\t%s %s %s"
1504 lap0 lap1 lap2 lap0 lap1
1505 (cons (car lap0) tmp))
1506 (setcar lap2 (car lap0))
1507 (setcdr lap2 tmp))
1508 (byte-compile-log-lap " %s %s\t-->\tdup %s" lap1 lap2 lap1)
1509 (setcar lap2 (car lap1))
1510 (setcar lap1 'byte-dup)
1511 (setcdr lap1 0)
1512 ;; The stack depth gets locally increased, so we will
1513 ;; increase maxdepth in case depth = maxdepth here.
1514 ;; This can cause the third argument to byte-code to
1515 ;; be larger than necessary.
1516 (setq add-depth 1))))
1517 ;;
1518 ;; dup varset-X discard --> varset-X
1519 ;; dup varbind-X discard --> varbind-X
1520 ;; (the varbind variant can emerge from other optimizations)
1521 ;;
1522 ((and (eq 'byte-dup (car lap0))
1523 (eq 'byte-discard (car lap2))
1524 (memq (car lap1) '(byte-varset byte-varbind)))
1525 (byte-compile-log-lap " dup %s discard\t-->\t%s" lap1 lap1)
1526 (setq keep-going t
1527 rest (cdr rest))
1528 (setq lap (delq lap0 (delq lap2 lap))))
1529 ;;
1530 ;; not goto-X-if-nil --> goto-X-if-non-nil
1531 ;; not goto-X-if-non-nil --> goto-X-if-nil
1532 ;;
1533 ;; it is wrong to do the same thing for the -else-pop variants.
1534 ;;
1535 ((and (eq 'byte-not (car lap0))
1536 (or (eq 'byte-goto-if-nil (car lap1))
1537 (eq 'byte-goto-if-not-nil (car lap1))))
1538 (byte-compile-log-lap " not %s\t-->\t%s"
1539 lap1
1540 (cons
1541 (if (eq (car lap1) 'byte-goto-if-nil)
1542 'byte-goto-if-not-nil
1543 'byte-goto-if-nil)
1544 (cdr lap1)))
1545 (setcar lap1 (if (eq (car lap1) 'byte-goto-if-nil)
1546 'byte-goto-if-not-nil
1547 'byte-goto-if-nil))
1548 (setq lap (delq lap0 lap))
1549 (setq keep-going t))
1550 ;;
1551 ;; goto-X-if-nil goto-Y X: --> goto-Y-if-non-nil X:
1552 ;; goto-X-if-non-nil goto-Y X: --> goto-Y-if-nil X:
1553 ;;
1554 ;; it is wrong to do the same thing for the -else-pop variants.
1555 ;;
1556 ((and (or (eq 'byte-goto-if-nil (car lap0))
1557 (eq 'byte-goto-if-not-nil (car lap0))) ; gotoX
1558 (eq 'byte-goto (car lap1)) ; gotoY
1559 (eq (cdr lap0) lap2)) ; TAG X
1560 (let ((inverse (if (eq 'byte-goto-if-nil (car lap0))
1561 'byte-goto-if-not-nil 'byte-goto-if-nil)))
1562 (byte-compile-log-lap " %s %s %s:\t-->\t%s %s:"
1563 lap0 lap1 lap2
1564 (cons inverse (cdr lap1)) lap2)
1565 (setq lap (delq lap0 lap))
1566 (setcar lap1 inverse)
1567 (setq keep-going t)))
1568 ;;
1569 ;; const goto-if-* --> whatever
1570 ;;
1571 ((and (eq 'byte-constant (car lap0))
1572 (memq (car lap1) byte-conditional-ops))
1573 (cond ((if (or (eq (car lap1) 'byte-goto-if-nil)
1574 (eq (car lap1) 'byte-goto-if-nil-else-pop))
1575 (car (cdr lap0))
1576 (not (car (cdr lap0))))
1577 (byte-compile-log-lap " %s %s\t-->\t<deleted>"
1578 lap0 lap1)
1579 (setq rest (cdr rest)
1580 lap (delq lap0 (delq lap1 lap))))
1581 (t
1582 (if (memq (car lap1) byte-goto-always-pop-ops)
1583 (progn
1584 (byte-compile-log-lap " %s %s\t-->\t%s"
1585 lap0 lap1 (cons 'byte-goto (cdr lap1)))
1586 (setq lap (delq lap0 lap)))
1587 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1588 (cons 'byte-goto (cdr lap1))))
1589 (setcar lap1 'byte-goto)))
1590 (setq keep-going t))
1591 ;;
1592 ;; varref-X varref-X --> varref-X dup
1593 ;; varref-X [dup ...] varref-X --> varref-X [dup ...] dup
1594 ;; We don't optimize the const-X variations on this here,
1595 ;; because that would inhibit some goto optimizations; we
1596 ;; optimize the const-X case after all other optimizations.
1597 ;;
1598 ((and (eq 'byte-varref (car lap0))
1599 (progn
1600 (setq tmp (cdr rest))
1601 (while (eq (car (car tmp)) 'byte-dup)
1602 (setq tmp (cdr tmp)))
1603 t)
1604 (eq (cdr lap0) (cdr (car tmp)))
1605 (eq 'byte-varref (car (car tmp))))
1606 (if (memq byte-optimize-log '(t byte))
1607 (let ((str ""))
1608 (setq tmp2 (cdr rest))
1609 (while (not (eq tmp tmp2))
1610 (setq tmp2 (cdr tmp2)
1611 str (concat str " dup")))
1612 (byte-compile-log-lap " %s%s %s\t-->\t%s%s dup"
1613 lap0 str lap0 lap0 str)))
1614 (setq keep-going t)
1615 (setcar (car tmp) 'byte-dup)
1616 (setcdr (car tmp) 0)
1617 (setq rest tmp))
1618 ;;
1619 ;; TAG1: TAG2: --> TAG1: <deleted>
1620 ;; (and other references to TAG2 are replaced with TAG1)
1621 ;;
1622 ((and (eq (car lap0) 'TAG)
1623 (eq (car lap1) 'TAG))
1624 (and (memq byte-optimize-log '(t byte))
1625 (byte-compile-log " adjacent tags %d and %d merged"
1626 (nth 1 lap1) (nth 1 lap0)))
1627 (setq tmp3 lap)
1628 (while (setq tmp2 (rassq lap0 tmp3))
1629 (setcdr tmp2 lap1)
1630 (setq tmp3 (cdr (memq tmp2 tmp3))))
1631 (setq lap (delq lap0 lap)
1632 keep-going t))
1633 ;;
1634 ;; unused-TAG: --> <deleted>
1635 ;;
1636 ((and (eq 'TAG (car lap0))
1637 (not (rassq lap0 lap)))
1638 (and (memq byte-optimize-log '(t byte))
1639 (byte-compile-log " unused tag %d removed" (nth 1 lap0)))
1640 (setq lap (delq lap0 lap)
1641 keep-going t))
1642 ;;
1643 ;; goto ... --> goto <delete until TAG or end>
1644 ;; return ... --> return <delete until TAG or end>
1645 ;;
1646 ((and (memq (car lap0) '(byte-goto byte-return))
1647 (not (memq (car lap1) '(TAG nil))))
1648 (setq tmp rest)
1649 (let ((i 0)
1650 (opt-p (memq byte-optimize-log '(t lap)))
1651 str deleted)
1652 (while (and (setq tmp (cdr tmp))
1653 (not (eq 'TAG (car (car tmp)))))
1654 (if opt-p (setq deleted (cons (car tmp) deleted)
1655 str (concat str " %s")
1656 i (1+ i))))
1657 (if opt-p
1658 (let ((tagstr
1659 (if (eq 'TAG (car (car tmp)))
1660 (format "%d:" (car (cdr (car tmp))))
1661 (or (car tmp) ""))))
1662 (if (< i 6)
1663 (apply 'byte-compile-log-lap-1
1664 (concat " %s" str
1665 " %s\t-->\t%s <deleted> %s")
1666 lap0
1667 (nconc (nreverse deleted)
1668 (list tagstr lap0 tagstr)))
1669 (byte-compile-log-lap
1670 " %s <%d unreachable op%s> %s\t-->\t%s <deleted> %s"
1671 lap0 i (if (= i 1) "" "s")
1672 tagstr lap0 tagstr))))
1673 (rplacd rest tmp))
1674 (setq keep-going t))
1675 ;;
1676 ;; <safe-op> unbind --> unbind <safe-op>
1677 ;; (this may enable other optimizations.)
1678 ;;
1679 ((and (eq 'byte-unbind (car lap1))
1680 (memq (car lap0) byte-after-unbind-ops))
1681 (byte-compile-log-lap " %s %s\t-->\t%s %s" lap0 lap1 lap1 lap0)
1682 (setcar rest lap1)
1683 (setcar (cdr rest) lap0)
1684 (setq keep-going t))
1685 ;;
1686 ;; varbind-X unbind-N --> discard unbind-(N-1)
1687 ;; save-excursion unbind-N --> unbind-(N-1)
1688 ;; save-restriction unbind-N --> unbind-(N-1)
1689 ;;
1690 ((and (eq 'byte-unbind (car lap1))
1691 (memq (car lap0) '(byte-varbind byte-save-excursion
1692 byte-save-restriction))
1693 (< 0 (cdr lap1)))
1694 (if (zerop (setcdr lap1 (1- (cdr lap1))))
1695 (delq lap1 rest))
1696 (if (eq (car lap0) 'byte-varbind)
1697 (setcar rest (cons 'byte-discard 0))
1698 (setq lap (delq lap0 lap)))
1699 (byte-compile-log-lap " %s %s\t-->\t%s %s"
1700 lap0 (cons (car lap1) (1+ (cdr lap1)))
1701 (if (eq (car lap0) 'byte-varbind)
1702 (car rest)
1703 (car (cdr rest)))
1704 (if (and (/= 0 (cdr lap1))
1705 (eq (car lap0) 'byte-varbind))
1706 (car (cdr rest))
1707 ""))
1708 (setq keep-going t))
1709 ;;
1710 ;; goto*-X ... X: goto-Y --> goto*-Y
1711 ;; goto-X ... X: return --> return
1712 ;;
1713 ((and (memq (car lap0) byte-goto-ops)
1714 (memq (car (setq tmp (nth 1 (memq (cdr lap0) lap))))
1715 '(byte-goto byte-return)))
1716 (cond ((and (not (eq tmp lap0))
1717 (or (eq (car lap0) 'byte-goto)
1718 (eq (car tmp) 'byte-goto)))
1719 (byte-compile-log-lap " %s [%s]\t-->\t%s"
1720 (car lap0) tmp tmp)
1721 (if (eq (car tmp) 'byte-return)
1722 (setcar lap0 'byte-return))
1723 (setcdr lap0 (cdr tmp))
1724 (setq keep-going t))))
1725 ;;
1726 ;; goto-*-else-pop X ... X: goto-if-* --> whatever
1727 ;; goto-*-else-pop X ... X: discard --> whatever
1728 ;;
1729 ((and (memq (car lap0) '(byte-goto-if-nil-else-pop
1730 byte-goto-if-not-nil-else-pop))
1731 (memq (car (car (setq tmp (cdr (memq (cdr lap0) lap)))))
1732 (eval-when-compile
1733 (cons 'byte-discard byte-conditional-ops)))
1734 (not (eq lap0 (car tmp))))
1735 (setq tmp2 (car tmp))
1736 (setq tmp3 (assq (car lap0) '((byte-goto-if-nil-else-pop
1737 byte-goto-if-nil)
1738 (byte-goto-if-not-nil-else-pop
1739 byte-goto-if-not-nil))))
1740 (if (memq (car tmp2) tmp3)
1741 (progn (setcar lap0 (car tmp2))
1742 (setcdr lap0 (cdr tmp2))
1743 (byte-compile-log-lap " %s-else-pop [%s]\t-->\t%s"
1744 (car lap0) tmp2 lap0))
1745 ;; Get rid of the -else-pop's and jump one step further.
1746 (or (eq 'TAG (car (nth 1 tmp)))
1747 (setcdr tmp (cons (byte-compile-make-tag)
1748 (cdr tmp))))
1749 (byte-compile-log-lap " %s [%s]\t-->\t%s <skip>"
1750 (car lap0) tmp2 (nth 1 tmp3))
1751 (setcar lap0 (nth 1 tmp3))
1752 (setcdr lap0 (nth 1 tmp)))
1753 (setq keep-going t))
1754 ;;
1755 ;; const goto-X ... X: goto-if-* --> whatever
1756 ;; const goto-X ... X: discard --> whatever
1757 ;;
1758 ((and (eq (car lap0) 'byte-constant)
1759 (eq (car lap1) 'byte-goto)
1760 (memq (car (car (setq tmp (cdr (memq (cdr lap1) lap)))))
1761 (eval-when-compile
1762 (cons 'byte-discard byte-conditional-ops)))
1763 (not (eq lap1 (car tmp))))
1764 (setq tmp2 (car tmp))
1765 (cond ((memq (car tmp2)
1766 (if (null (car (cdr lap0)))
1767 '(byte-goto-if-nil byte-goto-if-nil-else-pop)
1768 '(byte-goto-if-not-nil
1769 byte-goto-if-not-nil-else-pop)))
1770 (byte-compile-log-lap " %s goto [%s]\t-->\t%s %s"
1771 lap0 tmp2 lap0 tmp2)
1772 (setcar lap1 (car tmp2))
1773 (setcdr lap1 (cdr tmp2))
1774 ;; Let next step fix the (const,goto-if*) sequence.
1775 (setq rest (cons nil rest)))
1776 (t
1777 ;; Jump one step further
1778 (byte-compile-log-lap
1779 " %s goto [%s]\t-->\t<deleted> goto <skip>"
1780 lap0 tmp2)
1781 (or (eq 'TAG (car (nth 1 tmp)))
1782 (setcdr tmp (cons (byte-compile-make-tag)
1783 (cdr tmp))))
1784 (setcdr lap1 (car (cdr tmp)))
1785 (setq lap (delq lap0 lap))))
1786 (setq keep-going t))
1787 ;;
1788 ;; X: varref-Y ... varset-Y goto-X -->
1789 ;; X: varref-Y Z: ... dup varset-Y goto-Z
1790 ;; (varset-X goto-BACK, BACK: varref-X --> copy the varref down.)
1791 ;; (This is so usual for while loops that it is worth handling).
1792 ;;
1793 ((and (eq (car lap1) 'byte-varset)
1794 (eq (car lap2) 'byte-goto)
1795 (not (memq (cdr lap2) rest)) ;Backwards jump
1796 (eq (car (car (setq tmp (cdr (memq (cdr lap2) lap)))))
1797 'byte-varref)
1798 (eq (cdr (car tmp)) (cdr lap1))
1799 (not (memq (car (cdr lap1)) byte-boolean-vars)))
1800 ;;(byte-compile-log-lap " Pulled %s to end of loop" (car tmp))
1801 (let ((newtag (byte-compile-make-tag)))
1802 (byte-compile-log-lap
1803 " %s: %s ... %s %s\t-->\t%s: %s %s: ... %s %s %s"
1804 (nth 1 (cdr lap2)) (car tmp)
1805 lap1 lap2
1806 (nth 1 (cdr lap2)) (car tmp)
1807 (nth 1 newtag) 'byte-dup lap1
1808 (cons 'byte-goto newtag)
1809 )
1810 (setcdr rest (cons (cons 'byte-dup 0) (cdr rest)))
1811 (setcdr tmp (cons (setcdr lap2 newtag) (cdr tmp))))
1812 (setq add-depth 1)
1813 (setq keep-going t))
1814 ;;
1815 ;; goto-X Y: ... X: goto-if*-Y --> goto-if-not-*-X+1 Y:
1816 ;; (This can pull the loop test to the end of the loop)
1817 ;;
1818 ((and (eq (car lap0) 'byte-goto)
1819 (eq (car lap1) 'TAG)
1820 (eq lap1
1821 (cdr (car (setq tmp (cdr (memq (cdr lap0) lap))))))
1822 (memq (car (car tmp))
1823 '(byte-goto byte-goto-if-nil byte-goto-if-not-nil
1824 byte-goto-if-nil-else-pop)))
1825 ;; (byte-compile-log-lap " %s %s, %s %s --> moved conditional"
1826 ;; lap0 lap1 (cdr lap0) (car tmp))
1827 (let ((newtag (byte-compile-make-tag)))
1828 (byte-compile-log-lap
1829 "%s %s: ... %s: %s\t-->\t%s ... %s:"
1830 lap0 (nth 1 lap1) (nth 1 (cdr lap0)) (car tmp)
1831 (cons (cdr (assq (car (car tmp))
1832 '((byte-goto-if-nil . byte-goto-if-not-nil)
1833 (byte-goto-if-not-nil . byte-goto-if-nil)
1834 (byte-goto-if-nil-else-pop .
1835 byte-goto-if-not-nil-else-pop)
1836 (byte-goto-if-not-nil-else-pop .
1837 byte-goto-if-nil-else-pop))))
1838 newtag)
1839
1840 (nth 1 newtag)
1841 )
1842 (setcdr tmp (cons (setcdr lap0 newtag) (cdr tmp)))
1843 (if (eq (car (car tmp)) 'byte-goto-if-nil-else-pop)
1844 ;; We can handle this case but not the -if-not-nil case,
1845 ;; because we won't know which non-nil constant to push.
1846 (setcdr rest (cons (cons 'byte-constant
1847 (byte-compile-get-constant nil))
1848 (cdr rest))))
1849 (setcar lap0 (nth 1 (memq (car (car tmp))
1850 '(byte-goto-if-nil-else-pop
1851 byte-goto-if-not-nil
1852 byte-goto-if-nil
1853 byte-goto-if-not-nil
1854 byte-goto byte-goto))))
1855 )
1856 (setq keep-going t))
1857 )
1858 (setq rest (cdr rest)))
1859 )
1860 ;; Cleanup stage:
1861 ;; Rebuild byte-compile-constants / byte-compile-variables.
1862 ;; Simple optimizations that would inhibit other optimizations if they
1863 ;; were done in the optimizing loop, and optimizations which there is no
1864 ;; need to do more than once.
1865 (setq byte-compile-constants nil
1866 byte-compile-variables nil)
1867 (setq rest lap)
1868 (while rest
1869 (setq lap0 (car rest)
1870 lap1 (nth 1 rest))
1871 (if (memq (car lap0) byte-constref-ops)
1872 (if (not (eq (car lap0) 'byte-constant))
1873 (or (memq (cdr lap0) byte-compile-variables)
1874 (setq byte-compile-variables (cons (cdr lap0)
1875 byte-compile-variables)))
1876 (or (memq (cdr lap0) byte-compile-constants)
1877 (setq byte-compile-constants (cons (cdr lap0)
1878 byte-compile-constants)))))
1879 (cond (;;
1880 ;; const-C varset-X const-C --> const-C dup varset-X
1881 ;; const-C varbind-X const-C --> const-C dup varbind-X
1882 ;;
1883 (and (eq (car lap0) 'byte-constant)
1884 (eq (car (nth 2 rest)) 'byte-constant)
1885 (eq (cdr lap0) (car (nth 2 rest)))
1886 (memq (car lap1) '(byte-varbind byte-varset)))
1887 (byte-compile-log-lap " %s %s %s\t-->\t%s dup %s"
1888 lap0 lap1 lap0 lap0 lap1)
1889 (setcar (cdr (cdr rest)) (cons (car lap1) (cdr lap1)))
1890 (setcar (cdr rest) (cons 'byte-dup 0))
1891 (setq add-depth 1))
1892 ;;
1893 ;; const-X [dup/const-X ...] --> const-X [dup ...] dup
1894 ;; varref-X [dup/varref-X ...] --> varref-X [dup ...] dup
1895 ;;
1896 ((memq (car lap0) '(byte-constant byte-varref))
1897 (setq tmp rest
1898 tmp2 nil)
1899 (while (progn
1900 (while (eq 'byte-dup (car (car (setq tmp (cdr tmp))))))
1901 (and (eq (cdr lap0) (cdr (car tmp)))
1902 (eq (car lap0) (car (car tmp)))))
1903 (setcar tmp (cons 'byte-dup 0))
1904 (setq tmp2 t))
1905 (if tmp2
1906 (byte-compile-log-lap
1907 " %s [dup/%s]...\t-->\t%s dup..." lap0 lap0 lap0)))
1908 ;;
1909 ;; unbind-N unbind-M --> unbind-(N+M)
1910 ;;
1911 ((and (eq 'byte-unbind (car lap0))
1912 (eq 'byte-unbind (car lap1)))
1913 (byte-compile-log-lap " %s %s\t-->\t%s" lap0 lap1
1914 (cons 'byte-unbind
1915 (+ (cdr lap0) (cdr lap1))))
1916 (setq keep-going t)
1917 (setq lap (delq lap0 lap))
1918 (setcdr lap1 (+ (cdr lap1) (cdr lap0))))
1919 )
1920 (setq rest (cdr rest)))
1921 (setq byte-compile-maxdepth (+ byte-compile-maxdepth add-depth)))
1922 lap)
1923
1924 (provide 'byte-opt)
1925
1926 \f
1927 ;; To avoid "lisp nesting exceeds max-lisp-eval-depth" when this file compiles
1928 ;; itself, compile some of its most used recursive functions (at load time).
1929 ;;
1930 (eval-when-compile
1931 (or (byte-code-function-p (symbol-function 'byte-optimize-form))
1932 (assq 'byte-code (symbol-function 'byte-optimize-form))
1933 (let ((byte-optimize nil)
1934 (byte-compile-warnings nil))
1935 (mapcar '(lambda (x)
1936 (or noninteractive (message "compiling %s..." x))
1937 (byte-compile x)
1938 (or noninteractive (message "compiling %s...done" x)))
1939 '(byte-optimize-form
1940 byte-optimize-body
1941 byte-optimize-predicate
1942 byte-optimize-binary-predicate
1943 ;; Inserted some more than necessary, to speed it up.
1944 byte-optimize-form-code-walker
1945 byte-optimize-lapcode))))
1946 nil)
1947
1948 ;;; byte-opt.el ends here