(read-feature): Doc fix.
[bpt/emacs.git] / src / coding.c
... / ...
CommitLineData
1/* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995, 1997, 1998 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
19the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22/*** TABLE OF CONTENTS ***
23
24 1. Preamble
25 2. Emacs' internal format (emacs-mule) handlers
26 3. ISO2022 handlers
27 4. Shift-JIS and BIG5 handlers
28 5. End-of-line handlers
29 6. C library functions
30 7. Emacs Lisp library functions
31 8. Post-amble
32
33*/
34
35/*** GENERAL NOTE on CODING SYSTEM ***
36
37 Coding system is an encoding mechanism of one or more character
38 sets. Here's a list of coding systems which Emacs can handle. When
39 we say "decode", it means converting some other coding system to
40 Emacs' internal format (emacs-internal), and when we say "encode",
41 it means converting the coding system emacs-mule to some other
42 coding system.
43
44 0. Emacs' internal format (emacs-mule)
45
46 Emacs itself holds a multi-lingual character in a buffer and a string
47 in a special format. Details are described in section 2.
48
49 1. ISO2022
50
51 The most famous coding system for multiple character sets. X's
52 Compound Text, various EUCs (Extended Unix Code), and coding
53 systems used in Internet communication such as ISO-2022-JP are
54 all variants of ISO2022. Details are described in section 3.
55
56 2. SJIS (or Shift-JIS or MS-Kanji-Code)
57
58 A coding system to encode character sets: ASCII, JISX0201, and
59 JISX0208. Widely used for PC's in Japan. Details are described in
60 section 4.
61
62 3. BIG5
63
64 A coding system to encode character sets: ASCII and Big5. Widely
65 used by Chinese (mainly in Taiwan and Hong Kong). Details are
66 described in section 4. In this file, when we write "BIG5"
67 (all uppercase), we mean the coding system, and when we write
68 "Big5" (capitalized), we mean the character set.
69
70 4. Raw text
71
72 A coding system for a text containing random 8-bit code. Emacs does
73 no code conversion on such a text except for end-of-line format.
74
75 5. Other
76
77 If a user wants to read/write a text encoded in a coding system not
78 listed above, he can supply a decoder and an encoder for it in CCL
79 (Code Conversion Language) programs. Emacs executes the CCL program
80 while reading/writing.
81
82 Emacs represents a coding system by a Lisp symbol that has a property
83 `coding-system'. But, before actually using the coding system, the
84 information about it is set in a structure of type `struct
85 coding_system' for rapid processing. See section 6 for more details.
86
87*/
88
89/*** GENERAL NOTES on END-OF-LINE FORMAT ***
90
91 How end-of-line of a text is encoded depends on a system. For
92 instance, Unix's format is just one byte of `line-feed' code,
93 whereas DOS's format is two-byte sequence of `carriage-return' and
94 `line-feed' codes. MacOS's format is usually one byte of
95 `carriage-return'.
96
97 Since text characters encoding and end-of-line encoding are
98 independent, any coding system described above can take
99 any format of end-of-line. So, Emacs has information of format of
100 end-of-line in each coding-system. See section 6 for more details.
101
102*/
103
104/*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
105
106 These functions check if a text between SRC and SRC_END is encoded
107 in the coding system category XXX. Each returns an integer value in
108 which appropriate flag bits for the category XXX is set. The flag
109 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
110 template of these functions. */
111#if 0
112int
113detect_coding_emacs_mule (src, src_end)
114 unsigned char *src, *src_end;
115{
116 ...
117}
118#endif
119
120/*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
121
122 These functions decode SRC_BYTES length text at SOURCE encoded in
123 CODING to Emacs' internal format (emacs-mule). The resulting text
124 goes to a place pointed to by DESTINATION, the length of which
125 should not exceed DST_BYTES. These functions set the information of
126 original and decoded texts in the members produced, produced_char,
127 consumed, and consumed_char of the structure *CODING.
128
129 The return value is an integer (CODING_FINISH_XXX) indicating how
130 the decoding finished.
131
132 DST_BYTES zero means that source area and destination area are
133 overlapped, which means that we can produce a decoded text until it
134 reaches at the head of not-yet-decoded source text.
135
136 Below is a template of these functions. */
137#if 0
138decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
139 struct coding_system *coding;
140 unsigned char *source, *destination;
141 int src_bytes, dst_bytes;
142{
143 ...
144}
145#endif
146
147/*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
148
149 These functions encode SRC_BYTES length text at SOURCE of Emacs'
150 internal format (emacs-mule) to CODING. The resulting text goes to
151 a place pointed to by DESTINATION, the length of which should not
152 exceed DST_BYTES. These functions set the information of
153 original and encoded texts in the members produced, produced_char,
154 consumed, and consumed_char of the structure *CODING.
155
156 The return value is an integer (CODING_FINISH_XXX) indicating how
157 the encoding finished.
158
159 DST_BYTES zero means that source area and destination area are
160 overlapped, which means that we can produce a decoded text until it
161 reaches at the head of not-yet-decoded source text.
162
163 Below is a template of these functions. */
164#if 0
165encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
166 struct coding_system *coding;
167 unsigned char *source, *destination;
168 int src_bytes, dst_bytes;
169{
170 ...
171}
172#endif
173
174/*** COMMONLY USED MACROS ***/
175
176/* The following three macros ONE_MORE_BYTE, TWO_MORE_BYTES, and
177 THREE_MORE_BYTES safely get one, two, and three bytes from the
178 source text respectively. If there are not enough bytes in the
179 source, they jump to `label_end_of_loop'. The caller should set
180 variables `src' and `src_end' to appropriate areas in advance. */
181
182#define ONE_MORE_BYTE(c1) \
183 do { \
184 if (src < src_end) \
185 c1 = *src++; \
186 else \
187 goto label_end_of_loop; \
188 } while (0)
189
190#define TWO_MORE_BYTES(c1, c2) \
191 do { \
192 if (src + 1 < src_end) \
193 c1 = *src++, c2 = *src++; \
194 else \
195 goto label_end_of_loop; \
196 } while (0)
197
198#define THREE_MORE_BYTES(c1, c2, c3) \
199 do { \
200 if (src + 2 < src_end) \
201 c1 = *src++, c2 = *src++, c3 = *src++; \
202 else \
203 goto label_end_of_loop; \
204 } while (0)
205
206/* The following three macros DECODE_CHARACTER_ASCII,
207 DECODE_CHARACTER_DIMENSION1, and DECODE_CHARACTER_DIMENSION2 put
208 the multi-byte form of a character of each class at the place
209 pointed by `dst'. The caller should set the variable `dst' to
210 point to an appropriate area and the variable `coding' to point to
211 the coding-system of the currently decoding text in advance. */
212
213/* Decode one ASCII character C. */
214
215#define DECODE_CHARACTER_ASCII(c) \
216 do { \
217 if (COMPOSING_P (coding->composing)) \
218 *dst++ = 0xA0, *dst++ = (c) | 0x80; \
219 else \
220 { \
221 *dst++ = (c); \
222 coding->produced_char++; \
223 } \
224 } while (0)
225
226/* Decode one DIMENSION1 character whose charset is CHARSET and whose
227 position-code is C. */
228
229#define DECODE_CHARACTER_DIMENSION1(charset, c) \
230 do { \
231 unsigned char leading_code = CHARSET_LEADING_CODE_BASE (charset); \
232 if (COMPOSING_P (coding->composing)) \
233 *dst++ = leading_code + 0x20; \
234 else \
235 { \
236 *dst++ = leading_code; \
237 coding->produced_char++; \
238 } \
239 if (leading_code = CHARSET_LEADING_CODE_EXT (charset)) \
240 *dst++ = leading_code; \
241 *dst++ = (c) | 0x80; \
242 } while (0)
243
244/* Decode one DIMENSION2 character whose charset is CHARSET and whose
245 position-codes are C1 and C2. */
246
247#define DECODE_CHARACTER_DIMENSION2(charset, c1, c2) \
248 do { \
249 DECODE_CHARACTER_DIMENSION1 (charset, c1); \
250 *dst++ = (c2) | 0x80; \
251 } while (0)
252
253\f
254/*** 1. Preamble ***/
255
256#include <stdio.h>
257
258#ifdef emacs
259
260#include <config.h>
261#include "lisp.h"
262#include "buffer.h"
263#include "charset.h"
264#include "ccl.h"
265#include "coding.h"
266#include "window.h"
267
268#else /* not emacs */
269
270#include "mulelib.h"
271
272#endif /* not emacs */
273
274Lisp_Object Qcoding_system, Qeol_type;
275Lisp_Object Qbuffer_file_coding_system;
276Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
277Lisp_Object Qno_conversion, Qundecided;
278Lisp_Object Qcoding_system_history;
279Lisp_Object Qsafe_charsets;
280
281extern Lisp_Object Qinsert_file_contents, Qwrite_region;
282Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
283Lisp_Object Qstart_process, Qopen_network_stream;
284Lisp_Object Qtarget_idx;
285
286Lisp_Object Vselect_safe_coding_system_function;
287
288/* Mnemonic character of each format of end-of-line. */
289int eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
290/* Mnemonic character to indicate format of end-of-line is not yet
291 decided. */
292int eol_mnemonic_undecided;
293
294/* Format of end-of-line decided by system. This is CODING_EOL_LF on
295 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
296int system_eol_type;
297
298#ifdef emacs
299
300Lisp_Object Vcoding_system_list, Vcoding_system_alist;
301
302Lisp_Object Qcoding_system_p, Qcoding_system_error;
303
304/* Coding system emacs-mule and raw-text are for converting only
305 end-of-line format. */
306Lisp_Object Qemacs_mule, Qraw_text;
307
308/* Coding-systems are handed between Emacs Lisp programs and C internal
309 routines by the following three variables. */
310/* Coding-system for reading files and receiving data from process. */
311Lisp_Object Vcoding_system_for_read;
312/* Coding-system for writing files and sending data to process. */
313Lisp_Object Vcoding_system_for_write;
314/* Coding-system actually used in the latest I/O. */
315Lisp_Object Vlast_coding_system_used;
316
317/* A vector of length 256 which contains information about special
318 Latin codes (espepcially for dealing with Microsoft code). */
319Lisp_Object Vlatin_extra_code_table;
320
321/* Flag to inhibit code conversion of end-of-line format. */
322int inhibit_eol_conversion;
323
324/* Flag to make buffer-file-coding-system inherit from process-coding. */
325int inherit_process_coding_system;
326
327/* Coding system to be used to encode text for terminal display. */
328struct coding_system terminal_coding;
329
330/* Coding system to be used to encode text for terminal display when
331 terminal coding system is nil. */
332struct coding_system safe_terminal_coding;
333
334/* Coding system of what is sent from terminal keyboard. */
335struct coding_system keyboard_coding;
336
337Lisp_Object Vfile_coding_system_alist;
338Lisp_Object Vprocess_coding_system_alist;
339Lisp_Object Vnetwork_coding_system_alist;
340
341#endif /* emacs */
342
343Lisp_Object Qcoding_category, Qcoding_category_index;
344
345/* List of symbols `coding-category-xxx' ordered by priority. */
346Lisp_Object Vcoding_category_list;
347
348/* Table of coding categories (Lisp symbols). */
349Lisp_Object Vcoding_category_table;
350
351/* Table of names of symbol for each coding-category. */
352char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
353 "coding-category-emacs-mule",
354 "coding-category-sjis",
355 "coding-category-iso-7",
356 "coding-category-iso-7-tight",
357 "coding-category-iso-8-1",
358 "coding-category-iso-8-2",
359 "coding-category-iso-7-else",
360 "coding-category-iso-8-else",
361 "coding-category-big5",
362 "coding-category-raw-text",
363 "coding-category-binary"
364};
365
366/* Table of pointers to coding systems corresponding to each coding
367 categories. */
368struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
369
370/* Table of coding category masks. Nth element is a mask for a coding
371 cateogry of which priority is Nth. */
372static
373int coding_priorities[CODING_CATEGORY_IDX_MAX];
374
375/* Flag to tell if we look up translation table on character code
376 conversion. */
377Lisp_Object Venable_character_translation;
378/* Standard translation table to look up on decoding (reading). */
379Lisp_Object Vstandard_translation_table_for_decode;
380/* Standard translation table to look up on encoding (writing). */
381Lisp_Object Vstandard_translation_table_for_encode;
382
383Lisp_Object Qtranslation_table;
384Lisp_Object Qtranslation_table_id;
385Lisp_Object Qtranslation_table_for_decode;
386Lisp_Object Qtranslation_table_for_encode;
387
388/* Alist of charsets vs revision number. */
389Lisp_Object Vcharset_revision_alist;
390
391/* Default coding systems used for process I/O. */
392Lisp_Object Vdefault_process_coding_system;
393
394\f
395/*** 2. Emacs internal format (emacs-mule) handlers ***/
396
397/* Emacs' internal format for encoding multiple character sets is a
398 kind of multi-byte encoding, i.e. characters are encoded by
399 variable-length sequences of one-byte codes. ASCII characters
400 and control characters (e.g. `tab', `newline') are represented by
401 one-byte sequences which are their ASCII codes, in the range 0x00
402 through 0x7F. The other characters are represented by a sequence
403 of `base leading-code', optional `extended leading-code', and one
404 or two `position-code's. The length of the sequence is determined
405 by the base leading-code. Leading-code takes the range 0x80
406 through 0x9F, whereas extended leading-code and position-code take
407 the range 0xA0 through 0xFF. See `charset.h' for more details
408 about leading-code and position-code.
409
410 There's one exception to this rule. Special leading-code
411 `leading-code-composition' denotes that the following several
412 characters should be composed into one character. Leading-codes of
413 components (except for ASCII) are added 0x20. An ASCII character
414 component is represented by a 2-byte sequence of `0xA0' and
415 `ASCII-code + 0x80'. See also the comments in `charset.h' for the
416 details of composite character. Hence, we can summarize the code
417 range as follows:
418
419 --- CODE RANGE of Emacs' internal format ---
420 (character set) (range)
421 ASCII 0x00 .. 0x7F
422 ELSE (1st byte) 0x80 .. 0x9F
423 (rest bytes) 0xA0 .. 0xFF
424 ---------------------------------------------
425
426 */
427
428enum emacs_code_class_type emacs_code_class[256];
429
430/* Go to the next statement only if *SRC is accessible and the code is
431 greater than 0xA0. */
432#define CHECK_CODE_RANGE_A0_FF \
433 do { \
434 if (src >= src_end) \
435 goto label_end_of_switch; \
436 else if (*src++ < 0xA0) \
437 return 0; \
438 } while (0)
439
440/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
441 Check if a text is encoded in Emacs' internal format. If it is,
442 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
443
444int
445detect_coding_emacs_mule (src, src_end)
446 unsigned char *src, *src_end;
447{
448 unsigned char c;
449 int composing = 0;
450
451 while (src < src_end)
452 {
453 c = *src++;
454
455 if (composing)
456 {
457 if (c < 0xA0)
458 composing = 0;
459 else
460 c -= 0x20;
461 }
462
463 switch (emacs_code_class[c])
464 {
465 case EMACS_ascii_code:
466 case EMACS_linefeed_code:
467 break;
468
469 case EMACS_control_code:
470 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
471 return 0;
472 break;
473
474 case EMACS_invalid_code:
475 return 0;
476
477 case EMACS_leading_code_composition: /* c == 0x80 */
478 if (composing)
479 CHECK_CODE_RANGE_A0_FF;
480 else
481 composing = 1;
482 break;
483
484 case EMACS_leading_code_4:
485 CHECK_CODE_RANGE_A0_FF;
486 /* fall down to check it two more times ... */
487
488 case EMACS_leading_code_3:
489 CHECK_CODE_RANGE_A0_FF;
490 /* fall down to check it one more time ... */
491
492 case EMACS_leading_code_2:
493 CHECK_CODE_RANGE_A0_FF;
494 break;
495
496 default:
497 label_end_of_switch:
498 break;
499 }
500 }
501 return CODING_CATEGORY_MASK_EMACS_MULE;
502}
503
504\f
505/*** 3. ISO2022 handlers ***/
506
507/* The following note describes the coding system ISO2022 briefly.
508 Since the intention of this note is to help in understanding of
509 the programs in this file, some parts are NOT ACCURATE or OVERLY
510 SIMPLIFIED. For the thorough understanding, please refer to the
511 original document of ISO2022.
512
513 ISO2022 provides many mechanisms to encode several character sets
514 in 7-bit and 8-bit environment. If one chooses 7-bite environment,
515 all text is encoded by codes of less than 128. This may make the
516 encoded text a little bit longer, but the text gets more stability
517 to pass through several gateways (some of them strip off the MSB).
518
519 There are two kinds of character set: control character set and
520 graphic character set. The former contains control characters such
521 as `newline' and `escape' to provide control functions (control
522 functions are provided also by escape sequences). The latter
523 contains graphic characters such as ' A' and '-'. Emacs recognizes
524 two control character sets and many graphic character sets.
525
526 Graphic character sets are classified into one of the following
527 four classes, DIMENSION1_CHARS94, DIMENSION1_CHARS96,
528 DIMENSION2_CHARS94, DIMENSION2_CHARS96 according to the number of
529 bytes (DIMENSION) and the number of characters in one dimension
530 (CHARS) of the set. In addition, each character set is assigned an
531 identification tag (called "final character" and denoted as <F>
532 here after) which is unique in each class. <F> of each character
533 set is decided by ECMA(*) when it is registered in ISO. Code range
534 of <F> is 0x30..0x7F (0x30..0x3F are for private use only).
535
536 Note (*): ECMA = European Computer Manufacturers Association
537
538 Here are examples of graphic character set [NAME(<F>)]:
539 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
540 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
541 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
542 o DIMENSION2_CHARS96 -- none for the moment
543
544 A code area (1byte=8bits) is divided into 4 areas, C0, GL, C1, and GR.
545 C0 [0x00..0x1F] -- control character plane 0
546 GL [0x20..0x7F] -- graphic character plane 0
547 C1 [0x80..0x9F] -- control character plane 1
548 GR [0xA0..0xFF] -- graphic character plane 1
549
550 A control character set is directly designated and invoked to C0 or
551 C1 by an escape sequence. The most common case is that ISO646's
552 control character set is designated/invoked to C0 and ISO6429's
553 control character set is designated/invoked to C1, and usually
554 these designations/invocations are omitted in a coded text. With
555 7-bit environment, only C0 can be used, and a control character for
556 C1 is encoded by an appropriate escape sequence to fit in the
557 environment. All control characters for C1 are defined the
558 corresponding escape sequences.
559
560 A graphic character set is at first designated to one of four
561 graphic registers (G0 through G3), then these graphic registers are
562 invoked to GL or GR. These designations and invocations can be
563 done independently. The most common case is that G0 is invoked to
564 GL, G1 is invoked to GR, and ASCII is designated to G0, and usually
565 these invocations and designations are omitted in a coded text.
566 With 7-bit environment, only GL can be used.
567
568 When a graphic character set of CHARS94 is invoked to GL, code 0x20
569 and 0x7F of GL area work as control characters SPACE and DEL
570 respectively, and code 0xA0 and 0xFF of GR area should not be used.
571
572 There are two ways of invocation: locking-shift and single-shift.
573 With locking-shift, the invocation lasts until the next different
574 invocation, whereas with single-shift, the invocation works only
575 for the following character and doesn't affect locking-shift.
576 Invocations are done by the following control characters or escape
577 sequences.
578
579 ----------------------------------------------------------------------
580 function control char escape sequence description
581 ----------------------------------------------------------------------
582 SI (shift-in) 0x0F none invoke G0 to GL
583 SO (shift-out) 0x0E none invoke G1 to GL
584 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
585 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
586 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 into GL
587 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 into GL
588 ----------------------------------------------------------------------
589 The first four are for locking-shift. Control characters for these
590 functions are defined by macros ISO_CODE_XXX in `coding.h'.
591
592 Designations are done by the following escape sequences.
593 ----------------------------------------------------------------------
594 escape sequence description
595 ----------------------------------------------------------------------
596 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
597 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
598 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
599 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
600 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
601 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
602 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
603 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
604 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
605 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
606 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
607 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
608 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
609 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
610 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
611 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
612 ----------------------------------------------------------------------
613
614 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
615 of dimension 1, chars 94, and final character <F>, and etc.
616
617 Note (*): Although these designations are not allowed in ISO2022,
618 Emacs accepts them on decoding, and produces them on encoding
619 CHARS96 character set in a coding system which is characterized as
620 7-bit environment, non-locking-shift, and non-single-shift.
621
622 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
623 '(' can be omitted. We call this as "short-form" here after.
624
625 Now you may notice that there are a lot of ways for encoding the
626 same multilingual text in ISO2022. Actually, there exists many
627 coding systems such as Compound Text (used in X's inter client
628 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
629 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
630 localized platforms), and all of these are variants of ISO2022.
631
632 In addition to the above, Emacs handles two more kinds of escape
633 sequences: ISO6429's direction specification and Emacs' private
634 sequence for specifying character composition.
635
636 ISO6429's direction specification takes the following format:
637 o CSI ']' -- end of the current direction
638 o CSI '0' ']' -- end of the current direction
639 o CSI '1' ']' -- start of left-to-right text
640 o CSI '2' ']' -- start of right-to-left text
641 The control character CSI (0x9B: control sequence introducer) is
642 abbreviated to the escape sequence ESC '[' in 7-bit environment.
643
644 Character composition specification takes the following format:
645 o ESC '0' -- start character composition
646 o ESC '1' -- end character composition
647 Since these are not standard escape sequences of any ISO, the use
648 of them for these meaning is restricted to Emacs only. */
649
650enum iso_code_class_type iso_code_class[256];
651
652#define CHARSET_OK(idx, charset) \
653 (coding_system_table[idx]->safe_charsets[charset] \
654 || (CODING_SPEC_ISO_REQUESTED_DESIGNATION \
655 (coding_system_table[idx], charset) \
656 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
657
658#define SHIFT_OUT_OK(idx) \
659 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
660
661/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
662 Check if a text is encoded in ISO2022. If it is, returns an
663 integer in which appropriate flag bits any of:
664 CODING_CATEGORY_MASK_ISO_7
665 CODING_CATEGORY_MASK_ISO_7_TIGHT
666 CODING_CATEGORY_MASK_ISO_8_1
667 CODING_CATEGORY_MASK_ISO_8_2
668 CODING_CATEGORY_MASK_ISO_7_ELSE
669 CODING_CATEGORY_MASK_ISO_8_ELSE
670 are set. If a code which should never appear in ISO2022 is found,
671 returns 0. */
672
673int
674detect_coding_iso2022 (src, src_end)
675 unsigned char *src, *src_end;
676{
677 int mask = CODING_CATEGORY_MASK_ISO;
678 int mask_found = 0;
679 int reg[4], shift_out = 0;
680 int c, c1, i, charset;
681
682 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
683 while (mask && src < src_end)
684 {
685 c = *src++;
686 switch (c)
687 {
688 case ISO_CODE_ESC:
689 if (src >= src_end)
690 break;
691 c = *src++;
692 if (c >= '(' && c <= '/')
693 {
694 /* Designation sequence for a charset of dimension 1. */
695 if (src >= src_end)
696 break;
697 c1 = *src++;
698 if (c1 < ' ' || c1 >= 0x80
699 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
700 /* Invalid designation sequence. Just ignore. */
701 break;
702 reg[(c - '(') % 4] = charset;
703 }
704 else if (c == '$')
705 {
706 /* Designation sequence for a charset of dimension 2. */
707 if (src >= src_end)
708 break;
709 c = *src++;
710 if (c >= '@' && c <= 'B')
711 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
712 reg[0] = charset = iso_charset_table[1][0][c];
713 else if (c >= '(' && c <= '/')
714 {
715 if (src >= src_end)
716 break;
717 c1 = *src++;
718 if (c1 < ' ' || c1 >= 0x80
719 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
720 /* Invalid designation sequence. Just ignore. */
721 break;
722 reg[(c - '(') % 4] = charset;
723 }
724 else
725 /* Invalid designation sequence. Just ignore. */
726 break;
727 }
728 else if (c == 'N' || c == 'n')
729 {
730 if (shift_out == 0
731 && (reg[1] >= 0
732 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
733 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
734 {
735 /* Locking shift out. */
736 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
737 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
738 shift_out = 1;
739 }
740 break;
741 }
742 else if (c == 'O' || c == 'o')
743 {
744 if (shift_out == 1)
745 {
746 /* Locking shift in. */
747 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
748 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
749 shift_out = 0;
750 }
751 break;
752 }
753 else if (c == '0' || c == '1' || c == '2')
754 /* Start/end composition. Just ignore. */
755 break;
756 else
757 /* Invalid escape sequence. Just ignore. */
758 break;
759
760 /* We found a valid designation sequence for CHARSET. */
761 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
762 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset))
763 mask_found |= CODING_CATEGORY_MASK_ISO_7;
764 else
765 mask &= ~CODING_CATEGORY_MASK_ISO_7;
766 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset))
767 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
768 else
769 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
770 if (! CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset))
771 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
772 if (! CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset))
773 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
774 break;
775
776 case ISO_CODE_SO:
777 if (shift_out == 0
778 && (reg[1] >= 0
779 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
780 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
781 {
782 /* Locking shift out. */
783 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
784 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
785 }
786 break;
787
788 case ISO_CODE_SI:
789 if (shift_out == 1)
790 {
791 /* Locking shift in. */
792 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
793 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
794 }
795 break;
796
797 case ISO_CODE_CSI:
798 case ISO_CODE_SS2:
799 case ISO_CODE_SS3:
800 {
801 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
802
803 if (c != ISO_CODE_CSI)
804 {
805 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
806 & CODING_FLAG_ISO_SINGLE_SHIFT)
807 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
808 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
809 & CODING_FLAG_ISO_SINGLE_SHIFT)
810 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
811 }
812 if (VECTORP (Vlatin_extra_code_table)
813 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
814 {
815 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
816 & CODING_FLAG_ISO_LATIN_EXTRA)
817 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
818 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
819 & CODING_FLAG_ISO_LATIN_EXTRA)
820 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
821 }
822 mask &= newmask;
823 mask_found |= newmask;
824 }
825 break;
826
827 default:
828 if (c < 0x80)
829 break;
830 else if (c < 0xA0)
831 {
832 if (VECTORP (Vlatin_extra_code_table)
833 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
834 {
835 int newmask = 0;
836
837 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
838 & CODING_FLAG_ISO_LATIN_EXTRA)
839 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
840 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
841 & CODING_FLAG_ISO_LATIN_EXTRA)
842 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
843 mask &= newmask;
844 mask_found |= newmask;
845 }
846 else
847 return 0;
848 }
849 else
850 {
851 unsigned char *src_begin = src;
852
853 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
854 | CODING_CATEGORY_MASK_ISO_7_ELSE);
855 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
856 while (src < src_end && *src >= 0xA0)
857 src++;
858 if ((src - src_begin - 1) & 1 && src < src_end)
859 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
860 else
861 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
862 }
863 break;
864 }
865 }
866
867 return (mask & mask_found);
868}
869
870/* Decode a character of which charset is CHARSET and the 1st position
871 code is C1. If dimension of CHARSET is 2, the 2nd position code is
872 fetched from SRC and set to C2. If CHARSET is negative, it means
873 that we are decoding ill formed text, and what we can do is just to
874 read C1 as is. */
875
876#define DECODE_ISO_CHARACTER(charset, c1) \
877 do { \
878 int c_alt, charset_alt = (charset); \
879 if (COMPOSING_HEAD_P (coding->composing)) \
880 { \
881 *dst++ = LEADING_CODE_COMPOSITION; \
882 if (COMPOSING_WITH_RULE_P (coding->composing)) \
883 /* To tell composition rules are embeded. */ \
884 *dst++ = 0xFF; \
885 coding->composing += 2; \
886 } \
887 if ((charset) >= 0) \
888 { \
889 if (CHARSET_DIMENSION (charset) == 2) \
890 { \
891 ONE_MORE_BYTE (c2); \
892 if (iso_code_class[(c2) & 0x7F] != ISO_0x20_or_0x7F \
893 && iso_code_class[(c2) & 0x7F] != ISO_graphic_plane_0) \
894 { \
895 src--; \
896 c2 = ' '; \
897 } \
898 } \
899 if (!NILP (translation_table) \
900 && ((c_alt = translate_char (translation_table, \
901 -1, (charset), c1, c2)) >= 0)) \
902 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
903 } \
904 if (charset_alt == CHARSET_ASCII || charset_alt < 0) \
905 DECODE_CHARACTER_ASCII (c1); \
906 else if (CHARSET_DIMENSION (charset_alt) == 1) \
907 DECODE_CHARACTER_DIMENSION1 (charset_alt, c1); \
908 else \
909 DECODE_CHARACTER_DIMENSION2 (charset_alt, c1, c2); \
910 if (COMPOSING_WITH_RULE_P (coding->composing)) \
911 /* To tell a composition rule follows. */ \
912 coding->composing = COMPOSING_WITH_RULE_RULE; \
913 } while (0)
914
915/* Set designation state into CODING. */
916#define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
917 do { \
918 int charset = ISO_CHARSET_TABLE (make_number (dimension), \
919 make_number (chars), \
920 make_number (final_char)); \
921 if (charset >= 0 \
922 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
923 || coding->safe_charsets[charset])) \
924 { \
925 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
926 && reg == 0 \
927 && charset == CHARSET_ASCII) \
928 { \
929 /* We should insert this designation sequence as is so \
930 that it is surely written back to a file. */ \
931 coding->spec.iso2022.last_invalid_designation_register = -1; \
932 goto label_invalid_code; \
933 } \
934 coding->spec.iso2022.last_invalid_designation_register = -1; \
935 if ((coding->mode & CODING_MODE_DIRECTION) \
936 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
937 charset = CHARSET_REVERSE_CHARSET (charset); \
938 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
939 } \
940 else \
941 { \
942 coding->spec.iso2022.last_invalid_designation_register = reg; \
943 goto label_invalid_code; \
944 } \
945 } while (0)
946
947/* Check if the current composing sequence contains only valid codes.
948 If the composing sequence doesn't end before SRC_END, return -1.
949 Else, if it contains only valid codes, return 0.
950 Else return the length of the composing sequence. */
951
952int
953check_composing_code (coding, src, src_end)
954 struct coding_system *coding;
955 unsigned char *src, *src_end;
956{
957 unsigned char *src_start = src;
958 int invalid_code_found = 0;
959 int charset, c, c1, dim;
960
961 while (src < src_end)
962 {
963 if (*src++ != ISO_CODE_ESC) continue;
964 if (src >= src_end) break;
965 if ((c = *src++) == '1') /* end of compsition */
966 return (invalid_code_found ? src - src_start : 0);
967 if (src + 2 >= src_end) break;
968 if (!coding->flags & CODING_FLAG_ISO_DESIGNATION)
969 invalid_code_found = 1;
970 else
971 {
972 dim = 0;
973 if (c == '$')
974 {
975 dim = 1;
976 c = (*src >= '@' && *src <= 'B') ? '(' : *src++;
977 }
978 if (c >= '(' && c <= '/')
979 {
980 c1 = *src++;
981 if ((c1 < ' ' || c1 >= 0x80)
982 || (charset = iso_charset_table[dim][c >= ','][c1]) < 0
983 || ! coding->safe_charsets[charset]
984 || (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
985 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
986 invalid_code_found = 1;
987 }
988 else
989 invalid_code_found = 1;
990 }
991 }
992 return (invalid_code_found
993 ? src - src_start
994 : (coding->mode & CODING_MODE_LAST_BLOCK ? 0 : -1));
995}
996
997/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
998
999int
1000decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1001 struct coding_system *coding;
1002 unsigned char *source, *destination;
1003 int src_bytes, dst_bytes;
1004{
1005 unsigned char *src = source;
1006 unsigned char *src_end = source + src_bytes;
1007 unsigned char *dst = destination;
1008 unsigned char *dst_end = destination + dst_bytes;
1009 /* Since the maximum bytes produced by each loop is 7, we subtract 6
1010 from DST_END to assure that overflow checking is necessary only
1011 at the head of loop. */
1012 unsigned char *adjusted_dst_end = dst_end - 6;
1013 int charset;
1014 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1015 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1016 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1017 Lisp_Object translation_table
1018 = coding->translation_table_for_decode;
1019 int result = CODING_FINISH_NORMAL;
1020
1021 if (!NILP (Venable_character_translation) && NILP (translation_table))
1022 translation_table = Vstandard_translation_table_for_decode;
1023
1024 coding->produced_char = 0;
1025 coding->fake_multibyte = 0;
1026 while (src < src_end && (dst_bytes
1027 ? (dst < adjusted_dst_end)
1028 : (dst < src - 6)))
1029 {
1030 /* SRC_BASE remembers the start position in source in each loop.
1031 The loop will be exited when there's not enough source text
1032 to analyze long escape sequence or 2-byte code (within macros
1033 ONE_MORE_BYTE or TWO_MORE_BYTES). In that case, SRC is reset
1034 to SRC_BASE before exiting. */
1035 unsigned char *src_base = src;
1036 int c1 = *src++, c2;
1037
1038 switch (iso_code_class [c1])
1039 {
1040 case ISO_0x20_or_0x7F:
1041 if (!coding->composing
1042 && (charset0 < 0 || CHARSET_CHARS (charset0) == 94))
1043 {
1044 /* This is SPACE or DEL. */
1045 *dst++ = c1;
1046 coding->produced_char++;
1047 break;
1048 }
1049 /* This is a graphic character, we fall down ... */
1050
1051 case ISO_graphic_plane_0:
1052 if (coding->composing == COMPOSING_WITH_RULE_RULE)
1053 {
1054 /* This is a composition rule. */
1055 *dst++ = c1 | 0x80;
1056 coding->composing = COMPOSING_WITH_RULE_TAIL;
1057 }
1058 else
1059 DECODE_ISO_CHARACTER (charset0, c1);
1060 break;
1061
1062 case ISO_0xA0_or_0xFF:
1063 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1064 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1065 goto label_invalid_code;
1066 /* This is a graphic character, we fall down ... */
1067
1068 case ISO_graphic_plane_1:
1069 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1070 goto label_invalid_code;
1071 else
1072 DECODE_ISO_CHARACTER (charset1, c1);
1073 break;
1074
1075 case ISO_control_code:
1076 /* All ISO2022 control characters in this class have the
1077 same representation in Emacs internal format. */
1078 if (c1 == '\n'
1079 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1080 && (coding->eol_type == CODING_EOL_CR
1081 || coding->eol_type == CODING_EOL_CRLF))
1082 {
1083 result = CODING_FINISH_INCONSISTENT_EOL;
1084 goto label_end_of_loop_2;
1085 }
1086 *dst++ = c1;
1087 coding->produced_char++;
1088 break;
1089
1090 case ISO_carriage_return:
1091 if (coding->eol_type == CODING_EOL_CR)
1092 *dst++ = '\n';
1093 else if (coding->eol_type == CODING_EOL_CRLF)
1094 {
1095 ONE_MORE_BYTE (c1);
1096 if (c1 == ISO_CODE_LF)
1097 *dst++ = '\n';
1098 else
1099 {
1100 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1101 {
1102 result = CODING_FINISH_INCONSISTENT_EOL;
1103 goto label_end_of_loop_2;
1104 }
1105 src--;
1106 *dst++ = '\r';
1107 }
1108 }
1109 else
1110 *dst++ = c1;
1111 coding->produced_char++;
1112 break;
1113
1114 case ISO_shift_out:
1115 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1116 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1117 goto label_invalid_code;
1118 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1119 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1120 break;
1121
1122 case ISO_shift_in:
1123 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1124 goto label_invalid_code;
1125 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1126 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1127 break;
1128
1129 case ISO_single_shift_2_7:
1130 case ISO_single_shift_2:
1131 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1132 goto label_invalid_code;
1133 /* SS2 is handled as an escape sequence of ESC 'N' */
1134 c1 = 'N';
1135 goto label_escape_sequence;
1136
1137 case ISO_single_shift_3:
1138 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1139 goto label_invalid_code;
1140 /* SS2 is handled as an escape sequence of ESC 'O' */
1141 c1 = 'O';
1142 goto label_escape_sequence;
1143
1144 case ISO_control_sequence_introducer:
1145 /* CSI is handled as an escape sequence of ESC '[' ... */
1146 c1 = '[';
1147 goto label_escape_sequence;
1148
1149 case ISO_escape:
1150 ONE_MORE_BYTE (c1);
1151 label_escape_sequence:
1152 /* Escape sequences handled by Emacs are invocation,
1153 designation, direction specification, and character
1154 composition specification. */
1155 switch (c1)
1156 {
1157 case '&': /* revision of following character set */
1158 ONE_MORE_BYTE (c1);
1159 if (!(c1 >= '@' && c1 <= '~'))
1160 goto label_invalid_code;
1161 ONE_MORE_BYTE (c1);
1162 if (c1 != ISO_CODE_ESC)
1163 goto label_invalid_code;
1164 ONE_MORE_BYTE (c1);
1165 goto label_escape_sequence;
1166
1167 case '$': /* designation of 2-byte character set */
1168 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1169 goto label_invalid_code;
1170 ONE_MORE_BYTE (c1);
1171 if (c1 >= '@' && c1 <= 'B')
1172 { /* designation of JISX0208.1978, GB2312.1980,
1173 or JISX0208.1980 */
1174 DECODE_DESIGNATION (0, 2, 94, c1);
1175 }
1176 else if (c1 >= 0x28 && c1 <= 0x2B)
1177 { /* designation of DIMENSION2_CHARS94 character set */
1178 ONE_MORE_BYTE (c2);
1179 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
1180 }
1181 else if (c1 >= 0x2C && c1 <= 0x2F)
1182 { /* designation of DIMENSION2_CHARS96 character set */
1183 ONE_MORE_BYTE (c2);
1184 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
1185 }
1186 else
1187 goto label_invalid_code;
1188 break;
1189
1190 case 'n': /* invocation of locking-shift-2 */
1191 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1192 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1193 goto label_invalid_code;
1194 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
1195 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1196 break;
1197
1198 case 'o': /* invocation of locking-shift-3 */
1199 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1200 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1201 goto label_invalid_code;
1202 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
1203 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1204 break;
1205
1206 case 'N': /* invocation of single-shift-2 */
1207 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1208 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1209 goto label_invalid_code;
1210 ONE_MORE_BYTE (c1);
1211 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
1212 DECODE_ISO_CHARACTER (charset, c1);
1213 break;
1214
1215 case 'O': /* invocation of single-shift-3 */
1216 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1217 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1218 goto label_invalid_code;
1219 ONE_MORE_BYTE (c1);
1220 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
1221 DECODE_ISO_CHARACTER (charset, c1);
1222 break;
1223
1224 case '0': case '2': /* start composing */
1225 /* Before processing composing, we must be sure that all
1226 characters being composed are supported by CODING.
1227 If not, we must give up composing and insert the
1228 bunch of codes for composing as is without decoding. */
1229 {
1230 int result1;
1231
1232 result1 = check_composing_code (coding, src, src_end);
1233 if (result1 == 0)
1234 {
1235 coding->composing = (c1 == '0'
1236 ? COMPOSING_NO_RULE_HEAD
1237 : COMPOSING_WITH_RULE_HEAD);
1238 coding->produced_char++;
1239 }
1240 else if (result1 > 0)
1241 {
1242 if (result1 + 2 < (dst_bytes ? dst_end : src_base) - dst)
1243 {
1244 bcopy (src_base, dst, result1 + 2);
1245 src += result1;
1246 dst += result1 + 2;
1247 coding->produced_char += result1 + 2;
1248 }
1249 else
1250 {
1251 result = CODING_FINISH_INSUFFICIENT_DST;
1252 goto label_end_of_loop_2;
1253 }
1254 }
1255 else
1256 goto label_end_of_loop;
1257 }
1258 break;
1259
1260 case '1': /* end composing */
1261 coding->composing = COMPOSING_NO;
1262 break;
1263
1264 case '[': /* specification of direction */
1265 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
1266 goto label_invalid_code;
1267 /* For the moment, nested direction is not supported.
1268 So, `coding->mode & CODING_MODE_DIRECTION' zero means
1269 left-to-right, and nozero means right-to-left. */
1270 ONE_MORE_BYTE (c1);
1271 switch (c1)
1272 {
1273 case ']': /* end of the current direction */
1274 coding->mode &= ~CODING_MODE_DIRECTION;
1275
1276 case '0': /* end of the current direction */
1277 case '1': /* start of left-to-right direction */
1278 ONE_MORE_BYTE (c1);
1279 if (c1 == ']')
1280 coding->mode &= ~CODING_MODE_DIRECTION;
1281 else
1282 goto label_invalid_code;
1283 break;
1284
1285 case '2': /* start of right-to-left direction */
1286 ONE_MORE_BYTE (c1);
1287 if (c1 == ']')
1288 coding->mode |= CODING_MODE_DIRECTION;
1289 else
1290 goto label_invalid_code;
1291 break;
1292
1293 default:
1294 goto label_invalid_code;
1295 }
1296 break;
1297
1298 default:
1299 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1300 goto label_invalid_code;
1301 if (c1 >= 0x28 && c1 <= 0x2B)
1302 { /* designation of DIMENSION1_CHARS94 character set */
1303 ONE_MORE_BYTE (c2);
1304 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
1305 }
1306 else if (c1 >= 0x2C && c1 <= 0x2F)
1307 { /* designation of DIMENSION1_CHARS96 character set */
1308 ONE_MORE_BYTE (c2);
1309 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
1310 }
1311 else
1312 {
1313 goto label_invalid_code;
1314 }
1315 }
1316 /* We must update these variables now. */
1317 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1318 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1319 break;
1320
1321 label_invalid_code:
1322 while (src_base < src)
1323 *dst++ = *src_base++;
1324 coding->fake_multibyte = 1;
1325 }
1326 continue;
1327
1328 label_end_of_loop:
1329 result = CODING_FINISH_INSUFFICIENT_SRC;
1330 label_end_of_loop_2:
1331 src = src_base;
1332 break;
1333 }
1334
1335 if (src < src_end)
1336 {
1337 if (result == CODING_FINISH_NORMAL)
1338 result = CODING_FINISH_INSUFFICIENT_DST;
1339 else if (result != CODING_FINISH_INCONSISTENT_EOL
1340 && coding->mode & CODING_MODE_LAST_BLOCK)
1341 {
1342 /* This is the last block of the text to be decoded. We had
1343 better just flush out all remaining codes in the text
1344 although they are not valid characters. */
1345 src_bytes = src_end - src;
1346 if (dst_bytes && (dst_end - dst < src_bytes))
1347 src_bytes = dst_end - dst;
1348 bcopy (src, dst, src_bytes);
1349 dst += src_bytes;
1350 src += src_bytes;
1351 coding->fake_multibyte = 1;
1352 }
1353 }
1354
1355 coding->consumed = coding->consumed_char = src - source;
1356 coding->produced = dst - destination;
1357 return result;
1358}
1359
1360/* ISO2022 encoding stuff. */
1361
1362/*
1363 It is not enough to say just "ISO2022" on encoding, we have to
1364 specify more details. In Emacs, each coding system of ISO2022
1365 variant has the following specifications:
1366 1. Initial designation to G0 thru G3.
1367 2. Allows short-form designation?
1368 3. ASCII should be designated to G0 before control characters?
1369 4. ASCII should be designated to G0 at end of line?
1370 5. 7-bit environment or 8-bit environment?
1371 6. Use locking-shift?
1372 7. Use Single-shift?
1373 And the following two are only for Japanese:
1374 8. Use ASCII in place of JIS0201-1976-Roman?
1375 9. Use JISX0208-1983 in place of JISX0208-1978?
1376 These specifications are encoded in `coding->flags' as flag bits
1377 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
1378 details.
1379*/
1380
1381/* Produce codes (escape sequence) for designating CHARSET to graphic
1382 register REG. If <final-char> of CHARSET is '@', 'A', or 'B' and
1383 the coding system CODING allows, produce designation sequence of
1384 short-form. */
1385
1386#define ENCODE_DESIGNATION(charset, reg, coding) \
1387 do { \
1388 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
1389 char *intermediate_char_94 = "()*+"; \
1390 char *intermediate_char_96 = ",-./"; \
1391 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
1392 if (revision < 255) \
1393 { \
1394 *dst++ = ISO_CODE_ESC; \
1395 *dst++ = '&'; \
1396 *dst++ = '@' + revision; \
1397 } \
1398 *dst++ = ISO_CODE_ESC; \
1399 if (CHARSET_DIMENSION (charset) == 1) \
1400 { \
1401 if (CHARSET_CHARS (charset) == 94) \
1402 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
1403 else \
1404 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
1405 } \
1406 else \
1407 { \
1408 *dst++ = '$'; \
1409 if (CHARSET_CHARS (charset) == 94) \
1410 { \
1411 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
1412 || reg != 0 \
1413 || final_char < '@' || final_char > 'B') \
1414 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
1415 } \
1416 else \
1417 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
1418 } \
1419 *dst++ = final_char; \
1420 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1421 } while (0)
1422
1423/* The following two macros produce codes (control character or escape
1424 sequence) for ISO2022 single-shift functions (single-shift-2 and
1425 single-shift-3). */
1426
1427#define ENCODE_SINGLE_SHIFT_2 \
1428 do { \
1429 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1430 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
1431 else \
1432 { \
1433 *dst++ = ISO_CODE_SS2; \
1434 coding->fake_multibyte = 1; \
1435 } \
1436 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
1437 } while (0)
1438
1439#define ENCODE_SINGLE_SHIFT_3 \
1440 do { \
1441 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1442 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
1443 else \
1444 { \
1445 *dst++ = ISO_CODE_SS3; \
1446 coding->fake_multibyte = 1; \
1447 } \
1448 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
1449 } while (0)
1450
1451/* The following four macros produce codes (control character or
1452 escape sequence) for ISO2022 locking-shift functions (shift-in,
1453 shift-out, locking-shift-2, and locking-shift-3). */
1454
1455#define ENCODE_SHIFT_IN \
1456 do { \
1457 *dst++ = ISO_CODE_SI; \
1458 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
1459 } while (0)
1460
1461#define ENCODE_SHIFT_OUT \
1462 do { \
1463 *dst++ = ISO_CODE_SO; \
1464 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
1465 } while (0)
1466
1467#define ENCODE_LOCKING_SHIFT_2 \
1468 do { \
1469 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
1470 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
1471 } while (0)
1472
1473#define ENCODE_LOCKING_SHIFT_3 \
1474 do { \
1475 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
1476 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
1477 } while (0)
1478
1479/* Produce codes for a DIMENSION1 character whose character set is
1480 CHARSET and whose position-code is C1. Designation and invocation
1481 sequences are also produced in advance if necessary. */
1482
1483
1484#define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
1485 do { \
1486 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
1487 { \
1488 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1489 *dst++ = c1 & 0x7F; \
1490 else \
1491 *dst++ = c1 | 0x80; \
1492 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
1493 break; \
1494 } \
1495 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
1496 { \
1497 *dst++ = c1 & 0x7F; \
1498 break; \
1499 } \
1500 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
1501 { \
1502 *dst++ = c1 | 0x80; \
1503 break; \
1504 } \
1505 else if (coding->flags & CODING_FLAG_ISO_SAFE \
1506 && !coding->safe_charsets[charset]) \
1507 { \
1508 /* We should not encode this character, instead produce one or \
1509 two `?'s. */ \
1510 *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \
1511 if (CHARSET_WIDTH (charset) == 2) \
1512 *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \
1513 break; \
1514 } \
1515 else \
1516 /* Since CHARSET is not yet invoked to any graphic planes, we \
1517 must invoke it, or, at first, designate it to some graphic \
1518 register. Then repeat the loop to actually produce the \
1519 character. */ \
1520 dst = encode_invocation_designation (charset, coding, dst); \
1521 } while (1)
1522
1523/* Produce codes for a DIMENSION2 character whose character set is
1524 CHARSET and whose position-codes are C1 and C2. Designation and
1525 invocation codes are also produced in advance if necessary. */
1526
1527#define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
1528 do { \
1529 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
1530 { \
1531 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
1532 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
1533 else \
1534 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
1535 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
1536 break; \
1537 } \
1538 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
1539 { \
1540 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
1541 break; \
1542 } \
1543 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
1544 { \
1545 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
1546 break; \
1547 } \
1548 else if (coding->flags & CODING_FLAG_ISO_SAFE \
1549 && !coding->safe_charsets[charset]) \
1550 { \
1551 /* We should not encode this character, instead produce one or \
1552 two `?'s. */ \
1553 *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \
1554 if (CHARSET_WIDTH (charset) == 2) \
1555 *dst++ = CODING_INHIBIT_CHARACTER_SUBSTITUTION; \
1556 break; \
1557 } \
1558 else \
1559 /* Since CHARSET is not yet invoked to any graphic planes, we \
1560 must invoke it, or, at first, designate it to some graphic \
1561 register. Then repeat the loop to actually produce the \
1562 character. */ \
1563 dst = encode_invocation_designation (charset, coding, dst); \
1564 } while (1)
1565
1566#define ENCODE_ISO_CHARACTER(charset, c1, c2) \
1567 do { \
1568 int c_alt, charset_alt; \
1569 if (!NILP (translation_table) \
1570 && ((c_alt = translate_char (translation_table, -1, \
1571 charset, c1, c2)) \
1572 >= 0)) \
1573 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
1574 else \
1575 charset_alt = charset; \
1576 if (CHARSET_DIMENSION (charset_alt) == 1) \
1577 { \
1578 if (charset == CHARSET_ASCII \
1579 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
1580 charset_alt = charset_latin_jisx0201; \
1581 ENCODE_ISO_CHARACTER_DIMENSION1 (charset_alt, c1); \
1582 } \
1583 else \
1584 { \
1585 if (charset == charset_jisx0208 \
1586 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
1587 charset_alt = charset_jisx0208_1978; \
1588 ENCODE_ISO_CHARACTER_DIMENSION2 (charset_alt, c1, c2); \
1589 } \
1590 if (! COMPOSING_P (coding->composing)) \
1591 coding->consumed_char++; \
1592 } while (0)
1593
1594/* Produce designation and invocation codes at a place pointed by DST
1595 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
1596 Return new DST. */
1597
1598unsigned char *
1599encode_invocation_designation (charset, coding, dst)
1600 int charset;
1601 struct coding_system *coding;
1602 unsigned char *dst;
1603{
1604 int reg; /* graphic register number */
1605
1606 /* At first, check designations. */
1607 for (reg = 0; reg < 4; reg++)
1608 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
1609 break;
1610
1611 if (reg >= 4)
1612 {
1613 /* CHARSET is not yet designated to any graphic registers. */
1614 /* At first check the requested designation. */
1615 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
1616 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
1617 /* Since CHARSET requests no special designation, designate it
1618 to graphic register 0. */
1619 reg = 0;
1620
1621 ENCODE_DESIGNATION (charset, reg, coding);
1622 }
1623
1624 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
1625 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
1626 {
1627 /* Since the graphic register REG is not invoked to any graphic
1628 planes, invoke it to graphic plane 0. */
1629 switch (reg)
1630 {
1631 case 0: /* graphic register 0 */
1632 ENCODE_SHIFT_IN;
1633 break;
1634
1635 case 1: /* graphic register 1 */
1636 ENCODE_SHIFT_OUT;
1637 break;
1638
1639 case 2: /* graphic register 2 */
1640 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1641 ENCODE_SINGLE_SHIFT_2;
1642 else
1643 ENCODE_LOCKING_SHIFT_2;
1644 break;
1645
1646 case 3: /* graphic register 3 */
1647 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1648 ENCODE_SINGLE_SHIFT_3;
1649 else
1650 ENCODE_LOCKING_SHIFT_3;
1651 break;
1652 }
1653 }
1654 return dst;
1655}
1656
1657/* The following two macros produce codes for indicating composition. */
1658#define ENCODE_COMPOSITION_NO_RULE_START *dst++ = ISO_CODE_ESC, *dst++ = '0'
1659#define ENCODE_COMPOSITION_WITH_RULE_START *dst++ = ISO_CODE_ESC, *dst++ = '2'
1660#define ENCODE_COMPOSITION_END *dst++ = ISO_CODE_ESC, *dst++ = '1'
1661
1662/* The following three macros produce codes for indicating direction
1663 of text. */
1664#define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
1665 do { \
1666 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
1667 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
1668 else \
1669 *dst++ = ISO_CODE_CSI; \
1670 } while (0)
1671
1672#define ENCODE_DIRECTION_R2L \
1673 ENCODE_CONTROL_SEQUENCE_INTRODUCER, *dst++ = '2', *dst++ = ']'
1674
1675#define ENCODE_DIRECTION_L2R \
1676 ENCODE_CONTROL_SEQUENCE_INTRODUCER, *dst++ = '0', *dst++ = ']'
1677
1678/* Produce codes for designation and invocation to reset the graphic
1679 planes and registers to initial state. */
1680#define ENCODE_RESET_PLANE_AND_REGISTER \
1681 do { \
1682 int reg; \
1683 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
1684 ENCODE_SHIFT_IN; \
1685 for (reg = 0; reg < 4; reg++) \
1686 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
1687 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
1688 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
1689 ENCODE_DESIGNATION \
1690 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
1691 } while (0)
1692
1693/* Produce designation sequences of charsets in the line started from
1694 SRC to a place pointed by *DSTP, and update DSTP.
1695
1696 If the current block ends before any end-of-line, we may fail to
1697 find all the necessary designations. */
1698
1699void
1700encode_designation_at_bol (coding, table, src, src_end, dstp)
1701 struct coding_system *coding;
1702 Lisp_Object table;
1703 unsigned char *src, *src_end, **dstp;
1704{
1705 int charset, c, found = 0, reg;
1706 /* Table of charsets to be designated to each graphic register. */
1707 int r[4];
1708 unsigned char *dst = *dstp;
1709
1710 for (reg = 0; reg < 4; reg++)
1711 r[reg] = -1;
1712
1713 while (src < src_end && *src != '\n' && found < 4)
1714 {
1715 int bytes = BYTES_BY_CHAR_HEAD (*src);
1716
1717 if (NILP (table))
1718 charset = CHARSET_AT (src);
1719 else
1720 {
1721 int c_alt;
1722 unsigned char c1, c2;
1723
1724 SPLIT_STRING(src, bytes, charset, c1, c2);
1725 if ((c_alt = translate_char (table, -1, charset, c1, c2)) >= 0)
1726 charset = CHAR_CHARSET (c_alt);
1727 }
1728
1729 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
1730 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
1731 {
1732 found++;
1733 r[reg] = charset;
1734 }
1735
1736 src += bytes;
1737 }
1738
1739 if (found)
1740 {
1741 for (reg = 0; reg < 4; reg++)
1742 if (r[reg] >= 0
1743 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
1744 ENCODE_DESIGNATION (r[reg], reg, coding);
1745 *dstp = dst;
1746 }
1747}
1748
1749/* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
1750
1751int
1752encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1753 struct coding_system *coding;
1754 unsigned char *source, *destination;
1755 int src_bytes, dst_bytes;
1756{
1757 unsigned char *src = source;
1758 unsigned char *src_end = source + src_bytes;
1759 unsigned char *dst = destination;
1760 unsigned char *dst_end = destination + dst_bytes;
1761 /* Since the maximum bytes produced by each loop is 20, we subtract 19
1762 from DST_END to assure overflow checking is necessary only at the
1763 head of loop. */
1764 unsigned char *adjusted_dst_end = dst_end - 19;
1765 Lisp_Object translation_table
1766 = coding->translation_table_for_encode;
1767 int result = CODING_FINISH_NORMAL;
1768
1769 if (!NILP (Venable_character_translation) && NILP (translation_table))
1770 translation_table = Vstandard_translation_table_for_encode;
1771
1772 coding->consumed_char = 0;
1773 coding->fake_multibyte = 0;
1774 while (src < src_end && (dst_bytes
1775 ? (dst < adjusted_dst_end)
1776 : (dst < src - 19)))
1777 {
1778 /* SRC_BASE remembers the start position in source in each loop.
1779 The loop will be exited when there's not enough source text
1780 to analyze multi-byte codes (within macros ONE_MORE_BYTE,
1781 TWO_MORE_BYTES, and THREE_MORE_BYTES). In that case, SRC is
1782 reset to SRC_BASE before exiting. */
1783 unsigned char *src_base = src;
1784 int charset, c1, c2, c3, c4;
1785
1786 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
1787 && CODING_SPEC_ISO_BOL (coding))
1788 {
1789 /* We have to produce designation sequences if any now. */
1790 encode_designation_at_bol (coding, translation_table,
1791 src, src_end, &dst);
1792 CODING_SPEC_ISO_BOL (coding) = 0;
1793 }
1794
1795 c1 = *src++;
1796 /* If we are seeing a component of a composite character, we are
1797 seeing a leading-code encoded irregularly for composition, or
1798 a composition rule if composing with rule. We must set C1 to
1799 a normal leading-code or an ASCII code. If we are not seeing
1800 a composite character, we must reset composition,
1801 designation, and invocation states. */
1802 if (COMPOSING_P (coding->composing))
1803 {
1804 if (c1 < 0xA0)
1805 {
1806 /* We are not in a composite character any longer. */
1807 coding->composing = COMPOSING_NO;
1808 ENCODE_RESET_PLANE_AND_REGISTER;
1809 ENCODE_COMPOSITION_END;
1810 }
1811 else
1812 {
1813 if (coding->composing == COMPOSING_WITH_RULE_RULE)
1814 {
1815 *dst++ = c1 & 0x7F;
1816 coding->composing = COMPOSING_WITH_RULE_HEAD;
1817 continue;
1818 }
1819 else if (coding->composing == COMPOSING_WITH_RULE_HEAD)
1820 coding->composing = COMPOSING_WITH_RULE_RULE;
1821 if (c1 == 0xA0)
1822 {
1823 /* This is an ASCII component. */
1824 ONE_MORE_BYTE (c1);
1825 c1 &= 0x7F;
1826 }
1827 else
1828 /* This is a leading-code of non ASCII component. */
1829 c1 -= 0x20;
1830 }
1831 }
1832
1833 /* Now encode one character. C1 is a control character, an
1834 ASCII character, or a leading-code of multi-byte character. */
1835 switch (emacs_code_class[c1])
1836 {
1837 case EMACS_ascii_code:
1838 ENCODE_ISO_CHARACTER (CHARSET_ASCII, c1, /* dummy */ c2);
1839 break;
1840
1841 case EMACS_control_code:
1842 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
1843 ENCODE_RESET_PLANE_AND_REGISTER;
1844 *dst++ = c1;
1845 coding->consumed_char++;
1846 break;
1847
1848 case EMACS_carriage_return_code:
1849 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
1850 {
1851 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
1852 ENCODE_RESET_PLANE_AND_REGISTER;
1853 *dst++ = c1;
1854 coding->consumed_char++;
1855 break;
1856 }
1857 /* fall down to treat '\r' as '\n' ... */
1858
1859 case EMACS_linefeed_code:
1860 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
1861 ENCODE_RESET_PLANE_AND_REGISTER;
1862 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
1863 bcopy (coding->spec.iso2022.initial_designation,
1864 coding->spec.iso2022.current_designation,
1865 sizeof coding->spec.iso2022.initial_designation);
1866 if (coding->eol_type == CODING_EOL_LF
1867 || coding->eol_type == CODING_EOL_UNDECIDED)
1868 *dst++ = ISO_CODE_LF;
1869 else if (coding->eol_type == CODING_EOL_CRLF)
1870 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
1871 else
1872 *dst++ = ISO_CODE_CR;
1873 CODING_SPEC_ISO_BOL (coding) = 1;
1874 coding->consumed_char++;
1875 break;
1876
1877 case EMACS_leading_code_2:
1878 ONE_MORE_BYTE (c2);
1879 if (c2 < 0xA0)
1880 {
1881 /* invalid sequence */
1882 *dst++ = c1;
1883 src--;
1884 coding->consumed_char++;
1885 }
1886 else
1887 ENCODE_ISO_CHARACTER (c1, c2, /* dummy */ c3);
1888 break;
1889
1890 case EMACS_leading_code_3:
1891 TWO_MORE_BYTES (c2, c3);
1892 if (c2 < 0xA0 || c3 < 0xA0)
1893 {
1894 /* invalid sequence */
1895 *dst++ = c1;
1896 src -= 2;
1897 coding->consumed_char++;
1898 }
1899 else if (c1 < LEADING_CODE_PRIVATE_11)
1900 ENCODE_ISO_CHARACTER (c1, c2, c3);
1901 else
1902 ENCODE_ISO_CHARACTER (c2, c3, /* dummy */ c4);
1903 break;
1904
1905 case EMACS_leading_code_4:
1906 THREE_MORE_BYTES (c2, c3, c4);
1907 if (c2 < 0xA0 || c3 < 0xA0 || c4 < 0xA0)
1908 {
1909 /* invalid sequence */
1910 *dst++ = c1;
1911 src -= 3;
1912 coding->consumed_char++;
1913 }
1914 else
1915 ENCODE_ISO_CHARACTER (c2, c3, c4);
1916 break;
1917
1918 case EMACS_leading_code_composition:
1919 ONE_MORE_BYTE (c2);
1920 if (c2 < 0xA0)
1921 {
1922 /* invalid sequence */
1923 *dst++ = c1;
1924 src--;
1925 coding->consumed_char++;
1926 }
1927 else if (c2 == 0xFF)
1928 {
1929 ENCODE_RESET_PLANE_AND_REGISTER;
1930 coding->composing = COMPOSING_WITH_RULE_HEAD;
1931 ENCODE_COMPOSITION_WITH_RULE_START;
1932 coding->consumed_char++;
1933 }
1934 else
1935 {
1936 ENCODE_RESET_PLANE_AND_REGISTER;
1937 /* Rewind one byte because it is a character code of
1938 composition elements. */
1939 src--;
1940 coding->composing = COMPOSING_NO_RULE_HEAD;
1941 ENCODE_COMPOSITION_NO_RULE_START;
1942 coding->consumed_char++;
1943 }
1944 break;
1945
1946 case EMACS_invalid_code:
1947 *dst++ = c1;
1948 coding->consumed_char++;
1949 break;
1950 }
1951 continue;
1952 label_end_of_loop:
1953 result = CODING_FINISH_INSUFFICIENT_SRC;
1954 src = src_base;
1955 break;
1956 }
1957
1958 if (src < src_end && result == CODING_FINISH_NORMAL)
1959 result = CODING_FINISH_INSUFFICIENT_DST;
1960
1961 /* If this is the last block of the text to be encoded, we must
1962 reset graphic planes and registers to the initial state, and
1963 flush out the carryover if any. */
1964 if (coding->mode & CODING_MODE_LAST_BLOCK)
1965 {
1966 ENCODE_RESET_PLANE_AND_REGISTER;
1967 if (COMPOSING_P (coding->composing))
1968 ENCODE_COMPOSITION_END;
1969 }
1970 coding->consumed = src - source;
1971 coding->produced = coding->produced_char = dst - destination;
1972 return result;
1973}
1974
1975\f
1976/*** 4. SJIS and BIG5 handlers ***/
1977
1978/* Although SJIS and BIG5 are not ISO's coding system, they are used
1979 quite widely. So, for the moment, Emacs supports them in the bare
1980 C code. But, in the future, they may be supported only by CCL. */
1981
1982/* SJIS is a coding system encoding three character sets: ASCII, right
1983 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
1984 as is. A character of charset katakana-jisx0201 is encoded by
1985 "position-code + 0x80". A character of charset japanese-jisx0208
1986 is encoded in 2-byte but two position-codes are divided and shifted
1987 so that it fit in the range below.
1988
1989 --- CODE RANGE of SJIS ---
1990 (character set) (range)
1991 ASCII 0x00 .. 0x7F
1992 KATAKANA-JISX0201 0xA0 .. 0xDF
1993 JISX0208 (1st byte) 0x80 .. 0x9F and 0xE0 .. 0xFF
1994 (2nd byte) 0x40 .. 0xFF
1995 -------------------------------
1996
1997*/
1998
1999/* BIG5 is a coding system encoding two character sets: ASCII and
2000 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2001 character set and is encoded in two-byte.
2002
2003 --- CODE RANGE of BIG5 ---
2004 (character set) (range)
2005 ASCII 0x00 .. 0x7F
2006 Big5 (1st byte) 0xA1 .. 0xFE
2007 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2008 --------------------------
2009
2010 Since the number of characters in Big5 is larger than maximum
2011 characters in Emacs' charset (96x96), it can't be handled as one
2012 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2013 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2014 contains frequently used characters and the latter contains less
2015 frequently used characters. */
2016
2017/* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2018 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2019 C1 and C2 are the 1st and 2nd position-codes of of Emacs' internal
2020 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2021
2022/* Number of Big5 characters which have the same code in 1st byte. */
2023#define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2024
2025#define DECODE_BIG5(b1, b2, charset, c1, c2) \
2026 do { \
2027 unsigned int temp \
2028 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2029 if (b1 < 0xC9) \
2030 charset = charset_big5_1; \
2031 else \
2032 { \
2033 charset = charset_big5_2; \
2034 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2035 } \
2036 c1 = temp / (0xFF - 0xA1) + 0x21; \
2037 c2 = temp % (0xFF - 0xA1) + 0x21; \
2038 } while (0)
2039
2040#define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2041 do { \
2042 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2043 if (charset == charset_big5_2) \
2044 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2045 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2046 b2 = temp % BIG5_SAME_ROW; \
2047 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2048 } while (0)
2049
2050#define DECODE_SJIS_BIG5_CHARACTER(charset, c1, c2) \
2051 do { \
2052 int c_alt, charset_alt = (charset); \
2053 if (!NILP (translation_table) \
2054 && ((c_alt = translate_char (translation_table, \
2055 -1, (charset), c1, c2)) >= 0)) \
2056 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
2057 if (charset_alt == CHARSET_ASCII || charset_alt < 0) \
2058 DECODE_CHARACTER_ASCII (c1); \
2059 else if (CHARSET_DIMENSION (charset_alt) == 1) \
2060 DECODE_CHARACTER_DIMENSION1 (charset_alt, c1); \
2061 else \
2062 DECODE_CHARACTER_DIMENSION2 (charset_alt, c1, c2); \
2063 } while (0)
2064
2065#define ENCODE_SJIS_BIG5_CHARACTER(charset, c1, c2) \
2066 do { \
2067 int c_alt, charset_alt; \
2068 if (!NILP (translation_table) \
2069 && ((c_alt = translate_char (translation_table, -1, \
2070 charset, c1, c2)) \
2071 >= 0)) \
2072 SPLIT_CHAR (c_alt, charset_alt, c1, c2); \
2073 else \
2074 charset_alt = charset; \
2075 if (charset_alt == charset_ascii) \
2076 *dst++ = c1; \
2077 else if (CHARSET_DIMENSION (charset_alt) == 1) \
2078 { \
2079 if (sjis_p && charset_alt == charset_katakana_jisx0201) \
2080 *dst++ = c1; \
2081 else \
2082 { \
2083 *dst++ = charset_alt, *dst++ = c1; \
2084 coding->fake_multibyte = 1; \
2085 } \
2086 } \
2087 else \
2088 { \
2089 c1 &= 0x7F, c2 &= 0x7F; \
2090 if (sjis_p && charset_alt == charset_jisx0208) \
2091 { \
2092 unsigned char s1, s2; \
2093 \
2094 ENCODE_SJIS (c1, c2, s1, s2); \
2095 *dst++ = s1, *dst++ = s2; \
2096 coding->fake_multibyte = 1; \
2097 } \
2098 else if (!sjis_p \
2099 && (charset_alt == charset_big5_1 \
2100 || charset_alt == charset_big5_2)) \
2101 { \
2102 unsigned char b1, b2; \
2103 \
2104 ENCODE_BIG5 (charset_alt, c1, c2, b1, b2); \
2105 *dst++ = b1, *dst++ = b2; \
2106 } \
2107 else \
2108 { \
2109 *dst++ = charset_alt, *dst++ = c1, *dst++ = c2; \
2110 coding->fake_multibyte = 1; \
2111 } \
2112 } \
2113 coding->consumed_char++; \
2114 } while (0);
2115
2116/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2117 Check if a text is encoded in SJIS. If it is, return
2118 CODING_CATEGORY_MASK_SJIS, else return 0. */
2119
2120int
2121detect_coding_sjis (src, src_end)
2122 unsigned char *src, *src_end;
2123{
2124 unsigned char c;
2125
2126 while (src < src_end)
2127 {
2128 c = *src++;
2129 if ((c >= 0x80 && c < 0xA0) || c >= 0xE0)
2130 {
2131 if (src < src_end && *src++ < 0x40)
2132 return 0;
2133 }
2134 }
2135 return CODING_CATEGORY_MASK_SJIS;
2136}
2137
2138/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2139 Check if a text is encoded in BIG5. If it is, return
2140 CODING_CATEGORY_MASK_BIG5, else return 0. */
2141
2142int
2143detect_coding_big5 (src, src_end)
2144 unsigned char *src, *src_end;
2145{
2146 unsigned char c;
2147
2148 while (src < src_end)
2149 {
2150 c = *src++;
2151 if (c >= 0xA1)
2152 {
2153 if (src >= src_end)
2154 break;
2155 c = *src++;
2156 if (c < 0x40 || (c >= 0x7F && c <= 0xA0))
2157 return 0;
2158 }
2159 }
2160 return CODING_CATEGORY_MASK_BIG5;
2161}
2162
2163/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
2164 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
2165
2166int
2167decode_coding_sjis_big5 (coding, source, destination,
2168 src_bytes, dst_bytes, sjis_p)
2169 struct coding_system *coding;
2170 unsigned char *source, *destination;
2171 int src_bytes, dst_bytes;
2172 int sjis_p;
2173{
2174 unsigned char *src = source;
2175 unsigned char *src_end = source + src_bytes;
2176 unsigned char *dst = destination;
2177 unsigned char *dst_end = destination + dst_bytes;
2178 /* Since the maximum bytes produced by each loop is 4, we subtract 3
2179 from DST_END to assure overflow checking is necessary only at the
2180 head of loop. */
2181 unsigned char *adjusted_dst_end = dst_end - 3;
2182 Lisp_Object translation_table
2183 = coding->translation_table_for_decode;
2184 int result = CODING_FINISH_NORMAL;
2185
2186 if (!NILP (Venable_character_translation) && NILP (translation_table))
2187 translation_table = Vstandard_translation_table_for_decode;
2188
2189 coding->produced_char = 0;
2190 coding->fake_multibyte = 0;
2191 while (src < src_end && (dst_bytes
2192 ? (dst < adjusted_dst_end)
2193 : (dst < src - 3)))
2194 {
2195 /* SRC_BASE remembers the start position in source in each loop.
2196 The loop will be exited when there's not enough source text
2197 to analyze two-byte character (within macro ONE_MORE_BYTE).
2198 In that case, SRC is reset to SRC_BASE before exiting. */
2199 unsigned char *src_base = src;
2200 unsigned char c1 = *src++, c2, c3, c4;
2201
2202 if (c1 < 0x20)
2203 {
2204 if (c1 == '\r')
2205 {
2206 if (coding->eol_type == CODING_EOL_CRLF)
2207 {
2208 ONE_MORE_BYTE (c2);
2209 if (c2 == '\n')
2210 *dst++ = c2;
2211 else if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2212 {
2213 result = CODING_FINISH_INCONSISTENT_EOL;
2214 goto label_end_of_loop_2;
2215 }
2216 else
2217 /* To process C2 again, SRC is subtracted by 1. */
2218 *dst++ = c1, src--;
2219 }
2220 else if (coding->eol_type == CODING_EOL_CR)
2221 *dst++ = '\n';
2222 else
2223 *dst++ = c1;
2224 }
2225 else if (c1 == '\n'
2226 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2227 && (coding->eol_type == CODING_EOL_CR
2228 || coding->eol_type == CODING_EOL_CRLF))
2229 {
2230 result = CODING_FINISH_INCONSISTENT_EOL;
2231 goto label_end_of_loop_2;
2232 }
2233 else
2234 *dst++ = c1;
2235 coding->produced_char++;
2236 }
2237 else if (c1 < 0x80)
2238 DECODE_SJIS_BIG5_CHARACTER (charset_ascii, c1, /* dummy */ c2);
2239 else if (c1 < 0xA0)
2240 {
2241 /* SJIS -> JISX0208 */
2242 if (sjis_p)
2243 {
2244 ONE_MORE_BYTE (c2);
2245 if (c2 >= 0x40)
2246 {
2247 DECODE_SJIS (c1, c2, c3, c4);
2248 DECODE_SJIS_BIG5_CHARACTER (charset_jisx0208, c3, c4);
2249 }
2250 else
2251 goto label_invalid_code_2;
2252 }
2253 else
2254 goto label_invalid_code_1;
2255 }
2256 else if (c1 < 0xE0)
2257 {
2258 /* SJIS -> JISX0201-Kana, BIG5 -> Big5 */
2259 if (sjis_p)
2260 DECODE_SJIS_BIG5_CHARACTER (charset_katakana_jisx0201, c1,
2261 /* dummy */ c2);
2262 else
2263 {
2264 int charset;
2265
2266 ONE_MORE_BYTE (c2);
2267 if ((c2 >= 0x40 && c2 <= 0x7E) || (c2 >= 0xA1 && c2 <= 0xFE))
2268 {
2269 DECODE_BIG5 (c1, c2, charset, c3, c4);
2270 DECODE_SJIS_BIG5_CHARACTER (charset, c3, c4);
2271 }
2272 else
2273 goto label_invalid_code_2;
2274 }
2275 }
2276 else /* C1 >= 0xE0 */
2277 {
2278 /* SJIS -> JISX0208, BIG5 -> Big5 */
2279 if (sjis_p)
2280 {
2281 ONE_MORE_BYTE (c2);
2282 if (c2 >= 0x40)
2283 {
2284 DECODE_SJIS (c1, c2, c3, c4);
2285 DECODE_SJIS_BIG5_CHARACTER (charset_jisx0208, c3, c4);
2286 }
2287 else
2288 goto label_invalid_code_2;
2289 }
2290 else
2291 {
2292 int charset;
2293
2294 ONE_MORE_BYTE (c2);
2295 if ((c2 >= 0x40 && c2 <= 0x7E) || (c2 >= 0xA1 && c2 <= 0xFE))
2296 {
2297 DECODE_BIG5 (c1, c2, charset, c3, c4);
2298 DECODE_SJIS_BIG5_CHARACTER (charset, c3, c4);
2299 }
2300 else
2301 goto label_invalid_code_2;
2302 }
2303 }
2304 continue;
2305
2306 label_invalid_code_1:
2307 *dst++ = c1;
2308 coding->produced_char++;
2309 coding->fake_multibyte = 1;
2310 continue;
2311
2312 label_invalid_code_2:
2313 *dst++ = c1; *dst++= c2;
2314 coding->produced_char += 2;
2315 coding->fake_multibyte = 1;
2316 continue;
2317
2318 label_end_of_loop:
2319 result = CODING_FINISH_INSUFFICIENT_SRC;
2320 label_end_of_loop_2:
2321 src = src_base;
2322 break;
2323 }
2324
2325 if (src < src_end)
2326 {
2327 if (result == CODING_FINISH_NORMAL)
2328 result = CODING_FINISH_INSUFFICIENT_DST;
2329 else if (result != CODING_FINISH_INCONSISTENT_EOL
2330 && coding->mode & CODING_MODE_LAST_BLOCK)
2331 {
2332 src_bytes = src_end - src;
2333 if (dst_bytes && (dst_end - dst < src_bytes))
2334 src_bytes = dst_end - dst;
2335 bcopy (dst, src, src_bytes);
2336 src += src_bytes;
2337 dst += src_bytes;
2338 coding->fake_multibyte = 1;
2339 }
2340 }
2341
2342 coding->consumed = coding->consumed_char = src - source;
2343 coding->produced = dst - destination;
2344 return result;
2345}
2346
2347/* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
2348 This function can encode `charset_ascii', `charset_katakana_jisx0201',
2349 `charset_jisx0208', `charset_big5_1', and `charset_big5-2'. We are
2350 sure that all these charsets are registered as official charset
2351 (i.e. do not have extended leading-codes). Characters of other
2352 charsets are produced without any encoding. If SJIS_P is 1, encode
2353 SJIS text, else encode BIG5 text. */
2354
2355int
2356encode_coding_sjis_big5 (coding, source, destination,
2357 src_bytes, dst_bytes, sjis_p)
2358 struct coding_system *coding;
2359 unsigned char *source, *destination;
2360 int src_bytes, dst_bytes;
2361 int sjis_p;
2362{
2363 unsigned char *src = source;
2364 unsigned char *src_end = source + src_bytes;
2365 unsigned char *dst = destination;
2366 unsigned char *dst_end = destination + dst_bytes;
2367 /* Since the maximum bytes produced by each loop is 2, we subtract 1
2368 from DST_END to assure overflow checking is necessary only at the
2369 head of loop. */
2370 unsigned char *adjusted_dst_end = dst_end - 1;
2371 Lisp_Object translation_table
2372 = coding->translation_table_for_encode;
2373 int result = CODING_FINISH_NORMAL;
2374
2375 if (!NILP (Venable_character_translation) && NILP (translation_table))
2376 translation_table = Vstandard_translation_table_for_encode;
2377
2378 coding->consumed_char = 0;
2379 coding->fake_multibyte = 0;
2380 while (src < src_end && (dst_bytes
2381 ? (dst < adjusted_dst_end)
2382 : (dst < src - 1)))
2383 {
2384 /* SRC_BASE remembers the start position in source in each loop.
2385 The loop will be exited when there's not enough source text
2386 to analyze multi-byte codes (within macros ONE_MORE_BYTE and
2387 TWO_MORE_BYTES). In that case, SRC is reset to SRC_BASE
2388 before exiting. */
2389 unsigned char *src_base = src;
2390 unsigned char c1 = *src++, c2, c3, c4;
2391
2392 if (coding->composing)
2393 {
2394 if (c1 == 0xA0)
2395 {
2396 ONE_MORE_BYTE (c1);
2397 c1 &= 0x7F;
2398 }
2399 else if (c1 >= 0xA0)
2400 c1 -= 0x20;
2401 else
2402 coding->composing = 0;
2403 }
2404
2405 switch (emacs_code_class[c1])
2406 {
2407 case EMACS_ascii_code:
2408 ENCODE_SJIS_BIG5_CHARACTER (charset_ascii, c1, /* dummy */ c2);
2409 break;
2410
2411 case EMACS_control_code:
2412 *dst++ = c1;
2413 coding->consumed_char++;
2414 break;
2415
2416 case EMACS_carriage_return_code:
2417 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2418 {
2419 *dst++ = c1;
2420 coding->consumed_char++;
2421 break;
2422 }
2423 /* fall down to treat '\r' as '\n' ... */
2424
2425 case EMACS_linefeed_code:
2426 if (coding->eol_type == CODING_EOL_LF
2427 || coding->eol_type == CODING_EOL_UNDECIDED)
2428 *dst++ = '\n';
2429 else if (coding->eol_type == CODING_EOL_CRLF)
2430 *dst++ = '\r', *dst++ = '\n';
2431 else
2432 *dst++ = '\r';
2433 coding->consumed_char++;
2434 break;
2435
2436 case EMACS_leading_code_2:
2437 ONE_MORE_BYTE (c2);
2438 ENCODE_SJIS_BIG5_CHARACTER (c1, c2, /* dummy */ c3);
2439 break;
2440
2441 case EMACS_leading_code_3:
2442 TWO_MORE_BYTES (c2, c3);
2443 ENCODE_SJIS_BIG5_CHARACTER (c1, c2, c3);
2444 break;
2445
2446 case EMACS_leading_code_4:
2447 THREE_MORE_BYTES (c2, c3, c4);
2448 ENCODE_SJIS_BIG5_CHARACTER (c2, c3, c4);
2449 break;
2450
2451 case EMACS_leading_code_composition:
2452 coding->composing = 1;
2453 break;
2454
2455 default: /* i.e. case EMACS_invalid_code: */
2456 *dst++ = c1;
2457 coding->consumed_char++;
2458 }
2459 continue;
2460
2461 label_end_of_loop:
2462 result = CODING_FINISH_INSUFFICIENT_SRC;
2463 src = src_base;
2464 break;
2465 }
2466
2467 if (result == CODING_FINISH_NORMAL
2468 && src < src_end)
2469 result = CODING_FINISH_INSUFFICIENT_DST;
2470 coding->consumed = src - source;
2471 coding->produced = coding->produced_char = dst - destination;
2472 return result;
2473}
2474
2475\f
2476/*** 5. End-of-line handlers ***/
2477
2478/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
2479 This function is called only when `coding->eol_type' is
2480 CODING_EOL_CRLF or CODING_EOL_CR. */
2481
2482int
2483decode_eol (coding, source, destination, src_bytes, dst_bytes)
2484 struct coding_system *coding;
2485 unsigned char *source, *destination;
2486 int src_bytes, dst_bytes;
2487{
2488 unsigned char *src = source;
2489 unsigned char *src_end = source + src_bytes;
2490 unsigned char *dst = destination;
2491 unsigned char *dst_end = destination + dst_bytes;
2492 unsigned char c;
2493 int result = CODING_FINISH_NORMAL;
2494
2495 coding->fake_multibyte = 0;
2496
2497 if (src_bytes <= 0)
2498 return result;
2499
2500 switch (coding->eol_type)
2501 {
2502 case CODING_EOL_CRLF:
2503 {
2504 /* Since the maximum bytes produced by each loop is 2, we
2505 subtract 1 from DST_END to assure overflow checking is
2506 necessary only at the head of loop. */
2507 unsigned char *adjusted_dst_end = dst_end - 1;
2508
2509 while (src < src_end && (dst_bytes
2510 ? (dst < adjusted_dst_end)
2511 : (dst < src - 1)))
2512 {
2513 unsigned char *src_base = src;
2514
2515 c = *src++;
2516 if (c == '\r')
2517 {
2518 ONE_MORE_BYTE (c);
2519 if (c != '\n')
2520 {
2521 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2522 {
2523 result = CODING_FINISH_INCONSISTENT_EOL;
2524 goto label_end_of_loop_2;
2525 }
2526 *dst++ = '\r';
2527 if (BASE_LEADING_CODE_P (c))
2528 coding->fake_multibyte = 1;
2529 }
2530 *dst++ = c;
2531 }
2532 else if (c == '\n'
2533 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
2534 {
2535 result = CODING_FINISH_INCONSISTENT_EOL;
2536 goto label_end_of_loop_2;
2537 }
2538 else
2539 {
2540 *dst++ = c;
2541 if (BASE_LEADING_CODE_P (c))
2542 coding->fake_multibyte = 1;
2543 }
2544 continue;
2545
2546 label_end_of_loop:
2547 result = CODING_FINISH_INSUFFICIENT_SRC;
2548 label_end_of_loop_2:
2549 src = src_base;
2550 break;
2551 }
2552 if (result == CODING_FINISH_NORMAL
2553 && src < src_end)
2554 result = CODING_FINISH_INSUFFICIENT_DST;
2555 }
2556 break;
2557
2558 case CODING_EOL_CR:
2559 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2560 {
2561 while (src < src_end)
2562 {
2563 if ((c = *src++) == '\n')
2564 break;
2565 if (BASE_LEADING_CODE_P (c))
2566 coding->fake_multibyte = 1;
2567 }
2568 if (*--src == '\n')
2569 {
2570 src_bytes = src - source;
2571 result = CODING_FINISH_INCONSISTENT_EOL;
2572 }
2573 }
2574 if (dst_bytes && src_bytes > dst_bytes)
2575 {
2576 result = CODING_FINISH_INSUFFICIENT_DST;
2577 src_bytes = dst_bytes;
2578 }
2579 if (dst_bytes)
2580 bcopy (source, destination, src_bytes);
2581 else
2582 safe_bcopy (source, destination, src_bytes);
2583 src = source + src_bytes;
2584 while (src_bytes--) if (*dst++ == '\r') dst[-1] = '\n';
2585 break;
2586
2587 default: /* i.e. case: CODING_EOL_LF */
2588 if (dst_bytes && src_bytes > dst_bytes)
2589 {
2590 result = CODING_FINISH_INSUFFICIENT_DST;
2591 src_bytes = dst_bytes;
2592 }
2593 if (dst_bytes)
2594 bcopy (source, destination, src_bytes);
2595 else
2596 safe_bcopy (source, destination, src_bytes);
2597 src += src_bytes;
2598 dst += dst_bytes;
2599 coding->fake_multibyte = 1;
2600 break;
2601 }
2602
2603 coding->consumed = coding->consumed_char = src - source;
2604 coding->produced = coding->produced_char = dst - destination;
2605 return result;
2606}
2607
2608/* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
2609 format of end-of-line according to `coding->eol_type'. If
2610 `coding->mode & CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code
2611 '\r' in source text also means end-of-line. */
2612
2613int
2614encode_eol (coding, source, destination, src_bytes, dst_bytes)
2615 struct coding_system *coding;
2616 unsigned char *source, *destination;
2617 int src_bytes, dst_bytes;
2618{
2619 unsigned char *src = source;
2620 unsigned char *dst = destination;
2621 int result = CODING_FINISH_NORMAL;
2622
2623 coding->fake_multibyte = 0;
2624
2625 if (coding->eol_type == CODING_EOL_CRLF)
2626 {
2627 unsigned char c;
2628 unsigned char *src_end = source + src_bytes;
2629 unsigned char *dst_end = destination + dst_bytes;
2630 /* Since the maximum bytes produced by each loop is 2, we
2631 subtract 1 from DST_END to assure overflow checking is
2632 necessary only at the head of loop. */
2633 unsigned char *adjusted_dst_end = dst_end - 1;
2634
2635 while (src < src_end && (dst_bytes
2636 ? (dst < adjusted_dst_end)
2637 : (dst < src - 1)))
2638 {
2639 c = *src++;
2640 if (c == '\n'
2641 || (c == '\r' && (coding->mode & CODING_MODE_SELECTIVE_DISPLAY)))
2642 *dst++ = '\r', *dst++ = '\n';
2643 else
2644 {
2645 *dst++ = c;
2646 if (BASE_LEADING_CODE_P (c))
2647 coding->fake_multibyte = 1;
2648 }
2649 }
2650 if (src < src_end)
2651 result = CODING_FINISH_INSUFFICIENT_DST;
2652 }
2653 else
2654 {
2655 unsigned char c;
2656
2657 if (dst_bytes && src_bytes > dst_bytes)
2658 {
2659 src_bytes = dst_bytes;
2660 result = CODING_FINISH_INSUFFICIENT_DST;
2661 }
2662 if (dst_bytes)
2663 bcopy (source, destination, src_bytes);
2664 else
2665 {
2666 safe_bcopy (source, destination, src_bytes);
2667 dst_bytes = src_bytes;
2668 }
2669 if (coding->eol_type == CODING_EOL_CRLF)
2670 {
2671 while (src_bytes--)
2672 {
2673 if ((c = *dst++) == '\n')
2674 dst[-1] = '\r';
2675 else if (BASE_LEADING_CODE_P (c))
2676 coding->fake_multibyte = 1;
2677 }
2678 }
2679 else
2680 {
2681 if (coding->mode & CODING_MODE_SELECTIVE_DISPLAY)
2682 {
2683 while (src_bytes--)
2684 if (*dst++ == '\r') dst[-1] = '\n';
2685 }
2686 coding->fake_multibyte = 1;
2687 }
2688 src = source + dst_bytes;
2689 dst = destination + dst_bytes;
2690 }
2691
2692 coding->consumed = coding->consumed_char = src - source;
2693 coding->produced = coding->produced_char = dst - destination;
2694 return result;
2695}
2696
2697\f
2698/*** 6. C library functions ***/
2699
2700/* In Emacs Lisp, coding system is represented by a Lisp symbol which
2701 has a property `coding-system'. The value of this property is a
2702 vector of length 5 (called as coding-vector). Among elements of
2703 this vector, the first (element[0]) and the fifth (element[4])
2704 carry important information for decoding/encoding. Before
2705 decoding/encoding, this information should be set in fields of a
2706 structure of type `coding_system'.
2707
2708 A value of property `coding-system' can be a symbol of another
2709 subsidiary coding-system. In that case, Emacs gets coding-vector
2710 from that symbol.
2711
2712 `element[0]' contains information to be set in `coding->type'. The
2713 value and its meaning is as follows:
2714
2715 0 -- coding_type_emacs_mule
2716 1 -- coding_type_sjis
2717 2 -- coding_type_iso2022
2718 3 -- coding_type_big5
2719 4 -- coding_type_ccl encoder/decoder written in CCL
2720 nil -- coding_type_no_conversion
2721 t -- coding_type_undecided (automatic conversion on decoding,
2722 no-conversion on encoding)
2723
2724 `element[4]' contains information to be set in `coding->flags' and
2725 `coding->spec'. The meaning varies by `coding->type'.
2726
2727 If `coding->type' is `coding_type_iso2022', element[4] is a vector
2728 of length 32 (of which the first 13 sub-elements are used now).
2729 Meanings of these sub-elements are:
2730
2731 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
2732 If the value is an integer of valid charset, the charset is
2733 assumed to be designated to graphic register N initially.
2734
2735 If the value is minus, it is a minus value of charset which
2736 reserves graphic register N, which means that the charset is
2737 not designated initially but should be designated to graphic
2738 register N just before encoding a character in that charset.
2739
2740 If the value is nil, graphic register N is never used on
2741 encoding.
2742
2743 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
2744 Each value takes t or nil. See the section ISO2022 of
2745 `coding.h' for more information.
2746
2747 If `coding->type' is `coding_type_big5', element[4] is t to denote
2748 BIG5-ETen or nil to denote BIG5-HKU.
2749
2750 If `coding->type' takes the other value, element[4] is ignored.
2751
2752 Emacs Lisp's coding system also carries information about format of
2753 end-of-line in a value of property `eol-type'. If the value is
2754 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
2755 means CODING_EOL_CR. If it is not integer, it should be a vector
2756 of subsidiary coding systems of which property `eol-type' has one
2757 of above values.
2758
2759*/
2760
2761/* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
2762 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
2763 is setup so that no conversion is necessary and return -1, else
2764 return 0. */
2765
2766int
2767setup_coding_system (coding_system, coding)
2768 Lisp_Object coding_system;
2769 struct coding_system *coding;
2770{
2771 Lisp_Object coding_spec, coding_type, eol_type, plist;
2772 Lisp_Object val;
2773 int i;
2774
2775 /* Initialize some fields required for all kinds of coding systems. */
2776 coding->symbol = coding_system;
2777 coding->common_flags = 0;
2778 coding->mode = 0;
2779 coding->heading_ascii = -1;
2780 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
2781 coding_spec = Fget (coding_system, Qcoding_system);
2782 if (!VECTORP (coding_spec)
2783 || XVECTOR (coding_spec)->size != 5
2784 || !CONSP (XVECTOR (coding_spec)->contents[3]))
2785 goto label_invalid_coding_system;
2786
2787 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
2788 if (VECTORP (eol_type))
2789 {
2790 coding->eol_type = CODING_EOL_UNDECIDED;
2791 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
2792 }
2793 else if (XFASTINT (eol_type) == 1)
2794 {
2795 coding->eol_type = CODING_EOL_CRLF;
2796 coding->common_flags
2797 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
2798 }
2799 else if (XFASTINT (eol_type) == 2)
2800 {
2801 coding->eol_type = CODING_EOL_CR;
2802 coding->common_flags
2803 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
2804 }
2805 else
2806 coding->eol_type = CODING_EOL_LF;
2807
2808 coding_type = XVECTOR (coding_spec)->contents[0];
2809 /* Try short cut. */
2810 if (SYMBOLP (coding_type))
2811 {
2812 if (EQ (coding_type, Qt))
2813 {
2814 coding->type = coding_type_undecided;
2815 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
2816 }
2817 else
2818 coding->type = coding_type_no_conversion;
2819 return 0;
2820 }
2821
2822 /* Initialize remaining fields. */
2823 coding->composing = 0;
2824 coding->translation_table_for_decode = Qnil;
2825 coding->translation_table_for_encode = Qnil;
2826
2827 /* Get values of coding system properties:
2828 `post-read-conversion', `pre-write-conversion',
2829 `translation-table-for-decode', `translation-table-for-encode'. */
2830 plist = XVECTOR (coding_spec)->contents[3];
2831 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
2832 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
2833 val = Fplist_get (plist, Qtranslation_table_for_decode);
2834 if (SYMBOLP (val))
2835 val = Fget (val, Qtranslation_table_for_decode);
2836 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
2837 val = Fplist_get (plist, Qtranslation_table_for_encode);
2838 if (SYMBOLP (val))
2839 val = Fget (val, Qtranslation_table_for_encode);
2840 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
2841 val = Fplist_get (plist, Qcoding_category);
2842 if (!NILP (val))
2843 {
2844 val = Fget (val, Qcoding_category_index);
2845 if (INTEGERP (val))
2846 coding->category_idx = XINT (val);
2847 else
2848 goto label_invalid_coding_system;
2849 }
2850 else
2851 goto label_invalid_coding_system;
2852
2853 val = Fplist_get (plist, Qsafe_charsets);
2854 if (EQ (val, Qt))
2855 {
2856 for (i = 0; i <= MAX_CHARSET; i++)
2857 coding->safe_charsets[i] = 1;
2858 }
2859 else
2860 {
2861 bzero (coding->safe_charsets, MAX_CHARSET + 1);
2862 while (CONSP (val))
2863 {
2864 if ((i = get_charset_id (XCONS (val)->car)) >= 0)
2865 coding->safe_charsets[i] = 1;
2866 val = XCONS (val)->cdr;
2867 }
2868 }
2869
2870 switch (XFASTINT (coding_type))
2871 {
2872 case 0:
2873 coding->type = coding_type_emacs_mule;
2874 if (!NILP (coding->post_read_conversion))
2875 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
2876 if (!NILP (coding->pre_write_conversion))
2877 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
2878 break;
2879
2880 case 1:
2881 coding->type = coding_type_sjis;
2882 coding->common_flags
2883 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
2884 break;
2885
2886 case 2:
2887 coding->type = coding_type_iso2022;
2888 coding->common_flags
2889 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
2890 {
2891 Lisp_Object val, temp;
2892 Lisp_Object *flags;
2893 int i, charset, reg_bits = 0;
2894
2895 val = XVECTOR (coding_spec)->contents[4];
2896
2897 if (!VECTORP (val) || XVECTOR (val)->size != 32)
2898 goto label_invalid_coding_system;
2899
2900 flags = XVECTOR (val)->contents;
2901 coding->flags
2902 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
2903 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
2904 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
2905 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
2906 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
2907 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
2908 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
2909 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
2910 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
2911 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
2912 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
2913 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
2914 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
2915 );
2916
2917 /* Invoke graphic register 0 to plane 0. */
2918 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
2919 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
2920 CODING_SPEC_ISO_INVOCATION (coding, 1)
2921 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
2922 /* Not single shifting at first. */
2923 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
2924 /* Beginning of buffer should also be regarded as bol. */
2925 CODING_SPEC_ISO_BOL (coding) = 1;
2926
2927 for (charset = 0; charset <= MAX_CHARSET; charset++)
2928 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
2929 val = Vcharset_revision_alist;
2930 while (CONSP (val))
2931 {
2932 charset = get_charset_id (Fcar_safe (XCONS (val)->car));
2933 if (charset >= 0
2934 && (temp = Fcdr_safe (XCONS (val)->car), INTEGERP (temp))
2935 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
2936 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
2937 val = XCONS (val)->cdr;
2938 }
2939
2940 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
2941 FLAGS[REG] can be one of below:
2942 integer CHARSET: CHARSET occupies register I,
2943 t: designate nothing to REG initially, but can be used
2944 by any charsets,
2945 list of integer, nil, or t: designate the first
2946 element (if integer) to REG initially, the remaining
2947 elements (if integer) is designated to REG on request,
2948 if an element is t, REG can be used by any charsets,
2949 nil: REG is never used. */
2950 for (charset = 0; charset <= MAX_CHARSET; charset++)
2951 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
2952 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
2953 for (i = 0; i < 4; i++)
2954 {
2955 if (INTEGERP (flags[i])
2956 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset))
2957 || (charset = get_charset_id (flags[i])) >= 0)
2958 {
2959 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
2960 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
2961 }
2962 else if (EQ (flags[i], Qt))
2963 {
2964 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
2965 reg_bits |= 1 << i;
2966 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
2967 }
2968 else if (CONSP (flags[i]))
2969 {
2970 Lisp_Object tail = flags[i];
2971
2972 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
2973 if (INTEGERP (XCONS (tail)->car)
2974 && (charset = XINT (XCONS (tail)->car),
2975 CHARSET_VALID_P (charset))
2976 || (charset = get_charset_id (XCONS (tail)->car)) >= 0)
2977 {
2978 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
2979 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
2980 }
2981 else
2982 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
2983 tail = XCONS (tail)->cdr;
2984 while (CONSP (tail))
2985 {
2986 if (INTEGERP (XCONS (tail)->car)
2987 && (charset = XINT (XCONS (tail)->car),
2988 CHARSET_VALID_P (charset))
2989 || (charset = get_charset_id (XCONS (tail)->car)) >= 0)
2990 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
2991 = i;
2992 else if (EQ (XCONS (tail)->car, Qt))
2993 reg_bits |= 1 << i;
2994 tail = XCONS (tail)->cdr;
2995 }
2996 }
2997 else
2998 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
2999
3000 CODING_SPEC_ISO_DESIGNATION (coding, i)
3001 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3002 }
3003
3004 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3005 {
3006 /* REG 1 can be used only by locking shift in 7-bit env. */
3007 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3008 reg_bits &= ~2;
3009 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3010 /* Without any shifting, only REG 0 and 1 can be used. */
3011 reg_bits &= 3;
3012 }
3013
3014 if (reg_bits)
3015 for (charset = 0; charset <= MAX_CHARSET; charset++)
3016 {
3017 if (CHARSET_VALID_P (charset))
3018 {
3019 /* There exist some default graphic registers to be
3020 used CHARSET. */
3021
3022 /* We had better avoid designating a charset of
3023 CHARS96 to REG 0 as far as possible. */
3024 if (CHARSET_CHARS (charset) == 96)
3025 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3026 = (reg_bits & 2
3027 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3028 else
3029 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3030 = (reg_bits & 1
3031 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3032 }
3033 }
3034 }
3035 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3036 coding->spec.iso2022.last_invalid_designation_register = -1;
3037 break;
3038
3039 case 3:
3040 coding->type = coding_type_big5;
3041 coding->common_flags
3042 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3043 coding->flags
3044 = (NILP (XVECTOR (coding_spec)->contents[4])
3045 ? CODING_FLAG_BIG5_HKU
3046 : CODING_FLAG_BIG5_ETEN);
3047 break;
3048
3049 case 4:
3050 coding->type = coding_type_ccl;
3051 coding->common_flags
3052 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3053 {
3054 Lisp_Object val = XVECTOR (coding_spec)->contents[4];
3055 Lisp_Object decoder, encoder;
3056
3057 if (CONSP (val)
3058 && SYMBOLP (XCONS (val)->car)
3059 && !NILP (decoder = Fget (XCONS (val)->car, Qccl_program_idx))
3060 && !NILP (decoder = Fcdr (Faref (Vccl_program_table, decoder)))
3061 && SYMBOLP (XCONS (val)->cdr)
3062 && !NILP (encoder = Fget (XCONS (val)->cdr, Qccl_program_idx))
3063 && !NILP (encoder = Fcdr (Faref (Vccl_program_table, encoder))))
3064 {
3065 setup_ccl_program (&(coding->spec.ccl.decoder), decoder);
3066 setup_ccl_program (&(coding->spec.ccl.encoder), encoder);
3067 }
3068 else
3069 goto label_invalid_coding_system;
3070 }
3071 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3072 break;
3073
3074 case 5:
3075 coding->type = coding_type_raw_text;
3076 break;
3077
3078 default:
3079 goto label_invalid_coding_system;
3080 }
3081 return 0;
3082
3083 label_invalid_coding_system:
3084 coding->type = coding_type_no_conversion;
3085 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3086 coding->common_flags = 0;
3087 coding->eol_type = CODING_EOL_LF;
3088 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3089 return -1;
3090}
3091
3092/* Emacs has a mechanism to automatically detect a coding system if it
3093 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3094 it's impossible to distinguish some coding systems accurately
3095 because they use the same range of codes. So, at first, coding
3096 systems are categorized into 7, those are:
3097
3098 o coding-category-emacs-mule
3099
3100 The category for a coding system which has the same code range
3101 as Emacs' internal format. Assigned the coding-system (Lisp
3102 symbol) `emacs-mule' by default.
3103
3104 o coding-category-sjis
3105
3106 The category for a coding system which has the same code range
3107 as SJIS. Assigned the coding-system (Lisp
3108 symbol) `japanese-shift-jis' by default.
3109
3110 o coding-category-iso-7
3111
3112 The category for a coding system which has the same code range
3113 as ISO2022 of 7-bit environment. This doesn't use any locking
3114 shift and single shift functions. This can encode/decode all
3115 charsets. Assigned the coding-system (Lisp symbol)
3116 `iso-2022-7bit' by default.
3117
3118 o coding-category-iso-7-tight
3119
3120 Same as coding-category-iso-7 except that this can
3121 encode/decode only the specified charsets.
3122
3123 o coding-category-iso-8-1
3124
3125 The category for a coding system which has the same code range
3126 as ISO2022 of 8-bit environment and graphic plane 1 used only
3127 for DIMENSION1 charset. This doesn't use any locking shift
3128 and single shift functions. Assigned the coding-system (Lisp
3129 symbol) `iso-latin-1' by default.
3130
3131 o coding-category-iso-8-2
3132
3133 The category for a coding system which has the same code range
3134 as ISO2022 of 8-bit environment and graphic plane 1 used only
3135 for DIMENSION2 charset. This doesn't use any locking shift
3136 and single shift functions. Assigned the coding-system (Lisp
3137 symbol) `japanese-iso-8bit' by default.
3138
3139 o coding-category-iso-7-else
3140
3141 The category for a coding system which has the same code range
3142 as ISO2022 of 7-bit environemnt but uses locking shift or
3143 single shift functions. Assigned the coding-system (Lisp
3144 symbol) `iso-2022-7bit-lock' by default.
3145
3146 o coding-category-iso-8-else
3147
3148 The category for a coding system which has the same code range
3149 as ISO2022 of 8-bit environemnt but uses locking shift or
3150 single shift functions. Assigned the coding-system (Lisp
3151 symbol) `iso-2022-8bit-ss2' by default.
3152
3153 o coding-category-big5
3154
3155 The category for a coding system which has the same code range
3156 as BIG5. Assigned the coding-system (Lisp symbol)
3157 `cn-big5' by default.
3158
3159 o coding-category-binary
3160
3161 The category for a coding system not categorized in any of the
3162 above. Assigned the coding-system (Lisp symbol)
3163 `no-conversion' by default.
3164
3165 Each of them is a Lisp symbol and the value is an actual
3166 `coding-system's (this is also a Lisp symbol) assigned by a user.
3167 What Emacs does actually is to detect a category of coding system.
3168 Then, it uses a `coding-system' assigned to it. If Emacs can't
3169 decide only one possible category, it selects a category of the
3170 highest priority. Priorities of categories are also specified by a
3171 user in a Lisp variable `coding-category-list'.
3172
3173*/
3174
3175static
3176int ascii_skip_code[256];
3177
3178/* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
3179 If it detects possible coding systems, return an integer in which
3180 appropriate flag bits are set. Flag bits are defined by macros
3181 CODING_CATEGORY_MASK_XXX in `coding.h'.
3182
3183 How many ASCII characters are at the head is returned as *SKIP. */
3184
3185static int
3186detect_coding_mask (source, src_bytes, priorities, skip)
3187 unsigned char *source;
3188 int src_bytes, *priorities, *skip;
3189{
3190 register unsigned char c;
3191 unsigned char *src = source, *src_end = source + src_bytes;
3192 unsigned int mask;
3193 int i;
3194
3195 /* At first, skip all ASCII characters and control characters except
3196 for three ISO2022 specific control characters. */
3197 ascii_skip_code[ISO_CODE_SO] = 0;
3198 ascii_skip_code[ISO_CODE_SI] = 0;
3199 ascii_skip_code[ISO_CODE_ESC] = 0;
3200
3201 label_loop_detect_coding:
3202 while (src < src_end && ascii_skip_code[*src]) src++;
3203 *skip = src - source;
3204
3205 if (src >= src_end)
3206 /* We found nothing other than ASCII. There's nothing to do. */
3207 return 0;
3208
3209 c = *src;
3210 /* The text seems to be encoded in some multilingual coding system.
3211 Now, try to find in which coding system the text is encoded. */
3212 if (c < 0x80)
3213 {
3214 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
3215 /* C is an ISO2022 specific control code of C0. */
3216 mask = detect_coding_iso2022 (src, src_end);
3217 if (mask == 0)
3218 {
3219 /* No valid ISO2022 code follows C. Try again. */
3220 src++;
3221 if (c == ISO_CODE_ESC)
3222 ascii_skip_code[ISO_CODE_ESC] = 1;
3223 else
3224 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
3225 goto label_loop_detect_coding;
3226 }
3227 if (priorities)
3228 goto label_return_highest_only;
3229 }
3230 else
3231 {
3232 int try;
3233
3234 if (c < 0xA0)
3235 {
3236 /* C is the first byte of SJIS character code,
3237 or a leading-code of Emacs' internal format (emacs-mule). */
3238 try = CODING_CATEGORY_MASK_SJIS | CODING_CATEGORY_MASK_EMACS_MULE;
3239
3240 /* Or, if C is a special latin extra code,
3241 or is an ISO2022 specific control code of C1 (SS2 or SS3),
3242 or is an ISO2022 control-sequence-introducer (CSI),
3243 we should also consider the possibility of ISO2022 codings. */
3244 if ((VECTORP (Vlatin_extra_code_table)
3245 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
3246 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
3247 || (c == ISO_CODE_CSI
3248 && (src < src_end
3249 && (*src == ']'
3250 || ((*src == '0' || *src == '1' || *src == '2')
3251 && src + 1 < src_end
3252 && src[1] == ']')))))
3253 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
3254 | CODING_CATEGORY_MASK_ISO_8BIT);
3255 }
3256 else
3257 /* C is a character of ISO2022 in graphic plane right,
3258 or a SJIS's 1-byte character code (i.e. JISX0201),
3259 or the first byte of BIG5's 2-byte code. */
3260 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
3261 | CODING_CATEGORY_MASK_ISO_8BIT
3262 | CODING_CATEGORY_MASK_SJIS
3263 | CODING_CATEGORY_MASK_BIG5);
3264
3265 mask = 0;
3266 if (priorities)
3267 {
3268 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3269 {
3270 if (priorities[i] & try & CODING_CATEGORY_MASK_ISO)
3271 mask = detect_coding_iso2022 (src, src_end);
3272 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
3273 mask = detect_coding_sjis (src, src_end);
3274 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
3275 mask = detect_coding_big5 (src, src_end);
3276 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
3277 mask = detect_coding_emacs_mule (src, src_end);
3278 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
3279 mask = CODING_CATEGORY_MASK_RAW_TEXT;
3280 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
3281 mask = CODING_CATEGORY_MASK_BINARY;
3282 if (mask)
3283 goto label_return_highest_only;
3284 }
3285 return CODING_CATEGORY_MASK_RAW_TEXT;
3286 }
3287 if (try & CODING_CATEGORY_MASK_ISO)
3288 mask |= detect_coding_iso2022 (src, src_end);
3289 if (try & CODING_CATEGORY_MASK_SJIS)
3290 mask |= detect_coding_sjis (src, src_end);
3291 if (try & CODING_CATEGORY_MASK_BIG5)
3292 mask |= detect_coding_big5 (src, src_end);
3293 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
3294 mask |= detect_coding_emacs_mule (src, src_end);
3295 }
3296 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
3297
3298 label_return_highest_only:
3299 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3300 {
3301 if (mask & priorities[i])
3302 return priorities[i];
3303 }
3304 return CODING_CATEGORY_MASK_RAW_TEXT;
3305}
3306
3307/* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
3308 The information of the detected coding system is set in CODING. */
3309
3310void
3311detect_coding (coding, src, src_bytes)
3312 struct coding_system *coding;
3313 unsigned char *src;
3314 int src_bytes;
3315{
3316 unsigned int idx;
3317 int skip, mask, i;
3318 Lisp_Object val = Vcoding_category_list;
3319
3320 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip);
3321 coding->heading_ascii = skip;
3322
3323 if (!mask) return;
3324
3325 /* We found a single coding system of the highest priority in MASK. */
3326 idx = 0;
3327 while (mask && ! (mask & 1)) mask >>= 1, idx++;
3328 if (! mask)
3329 idx = CODING_CATEGORY_IDX_RAW_TEXT;
3330
3331 val = XSYMBOL (XVECTOR (Vcoding_category_table)->contents[idx])->value;
3332
3333 if (coding->eol_type != CODING_EOL_UNDECIDED)
3334 {
3335 Lisp_Object tmp = Fget (val, Qeol_type);
3336
3337 if (VECTORP (tmp))
3338 val = XVECTOR (tmp)->contents[coding->eol_type];
3339 }
3340 setup_coding_system (val, coding);
3341 /* Set this again because setup_coding_system reset this member. */
3342 coding->heading_ascii = skip;
3343}
3344
3345/* Detect how end-of-line of a text of length SRC_BYTES pointed by
3346 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
3347 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
3348
3349 How many non-eol characters are at the head is returned as *SKIP. */
3350
3351#define MAX_EOL_CHECK_COUNT 3
3352
3353static int
3354detect_eol_type (source, src_bytes, skip)
3355 unsigned char *source;
3356 int src_bytes, *skip;
3357{
3358 unsigned char *src = source, *src_end = src + src_bytes;
3359 unsigned char c;
3360 int total = 0; /* How many end-of-lines are found so far. */
3361 int eol_type = CODING_EOL_UNDECIDED;
3362 int this_eol_type;
3363
3364 *skip = 0;
3365
3366 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
3367 {
3368 c = *src++;
3369 if (c == '\n' || c == '\r')
3370 {
3371 if (*skip == 0)
3372 *skip = src - 1 - source;
3373 total++;
3374 if (c == '\n')
3375 this_eol_type = CODING_EOL_LF;
3376 else if (src >= src_end || *src != '\n')
3377 this_eol_type = CODING_EOL_CR;
3378 else
3379 this_eol_type = CODING_EOL_CRLF, src++;
3380
3381 if (eol_type == CODING_EOL_UNDECIDED)
3382 /* This is the first end-of-line. */
3383 eol_type = this_eol_type;
3384 else if (eol_type != this_eol_type)
3385 {
3386 /* The found type is different from what found before. */
3387 eol_type = CODING_EOL_INCONSISTENT;
3388 break;
3389 }
3390 }
3391 }
3392
3393 if (*skip == 0)
3394 *skip = src_end - source;
3395 return eol_type;
3396}
3397
3398/* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
3399 is encoded. If it detects an appropriate format of end-of-line, it
3400 sets the information in *CODING. */
3401
3402void
3403detect_eol (coding, src, src_bytes)
3404 struct coding_system *coding;
3405 unsigned char *src;
3406 int src_bytes;
3407{
3408 Lisp_Object val;
3409 int skip;
3410 int eol_type = detect_eol_type (src, src_bytes, &skip);
3411
3412 if (coding->heading_ascii > skip)
3413 coding->heading_ascii = skip;
3414 else
3415 skip = coding->heading_ascii;
3416
3417 if (eol_type == CODING_EOL_UNDECIDED)
3418 return;
3419 if (eol_type == CODING_EOL_INCONSISTENT)
3420 {
3421#if 0
3422 /* This code is suppressed until we find a better way to
3423 distinguish raw text file and binary file. */
3424
3425 /* If we have already detected that the coding is raw-text, the
3426 coding should actually be no-conversion. */
3427 if (coding->type == coding_type_raw_text)
3428 {
3429 setup_coding_system (Qno_conversion, coding);
3430 return;
3431 }
3432 /* Else, let's decode only text code anyway. */
3433#endif /* 0 */
3434 eol_type = CODING_EOL_LF;
3435 }
3436
3437 val = Fget (coding->symbol, Qeol_type);
3438 if (VECTORP (val) && XVECTOR (val)->size == 3)
3439 {
3440 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
3441 coding->heading_ascii = skip;
3442 }
3443}
3444
3445#define CONVERSION_BUFFER_EXTRA_ROOM 256
3446
3447#define DECODING_BUFFER_MAG(coding) \
3448 (coding->type == coding_type_iso2022 \
3449 ? 3 \
3450 : ((coding->type == coding_type_sjis || coding->type == coding_type_big5) \
3451 ? 2 \
3452 : (coding->type == coding_type_raw_text \
3453 ? 1 \
3454 : (coding->type == coding_type_ccl \
3455 ? coding->spec.ccl.decoder.buf_magnification \
3456 : 2))))
3457
3458/* Return maximum size (bytes) of a buffer enough for decoding
3459 SRC_BYTES of text encoded in CODING. */
3460
3461int
3462decoding_buffer_size (coding, src_bytes)
3463 struct coding_system *coding;
3464 int src_bytes;
3465{
3466 return (src_bytes * DECODING_BUFFER_MAG (coding)
3467 + CONVERSION_BUFFER_EXTRA_ROOM);
3468}
3469
3470/* Return maximum size (bytes) of a buffer enough for encoding
3471 SRC_BYTES of text to CODING. */
3472
3473int
3474encoding_buffer_size (coding, src_bytes)
3475 struct coding_system *coding;
3476 int src_bytes;
3477{
3478 int magnification;
3479
3480 if (coding->type == coding_type_ccl)
3481 magnification = coding->spec.ccl.encoder.buf_magnification;
3482 else
3483 magnification = 3;
3484
3485 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
3486}
3487
3488#ifndef MINIMUM_CONVERSION_BUFFER_SIZE
3489#define MINIMUM_CONVERSION_BUFFER_SIZE 1024
3490#endif
3491
3492char *conversion_buffer;
3493int conversion_buffer_size;
3494
3495/* Return a pointer to a SIZE bytes of buffer to be used for encoding
3496 or decoding. Sufficient memory is allocated automatically. If we
3497 run out of memory, return NULL. */
3498
3499char *
3500get_conversion_buffer (size)
3501 int size;
3502{
3503 if (size > conversion_buffer_size)
3504 {
3505 char *buf;
3506 int real_size = conversion_buffer_size * 2;
3507
3508 while (real_size < size) real_size *= 2;
3509 buf = (char *) xmalloc (real_size);
3510 xfree (conversion_buffer);
3511 conversion_buffer = buf;
3512 conversion_buffer_size = real_size;
3513 }
3514 return conversion_buffer;
3515}
3516
3517int
3518ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
3519 struct coding_system *coding;
3520 unsigned char *source, *destination;
3521 int src_bytes, dst_bytes, encodep;
3522{
3523 struct ccl_program *ccl
3524 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
3525 int result;
3526
3527 coding->produced = ccl_driver (ccl, source, destination,
3528 src_bytes, dst_bytes, &(coding->consumed));
3529 if (encodep)
3530 {
3531 coding->produced_char = coding->produced;
3532 coding->consumed_char
3533 = multibyte_chars_in_text (source, coding->consumed);
3534 }
3535 else
3536 {
3537 coding->produced_char
3538 = multibyte_chars_in_text (destination, coding->produced);
3539 coding->consumed_char = coding->consumed;
3540 }
3541 switch (ccl->status)
3542 {
3543 case CCL_STAT_SUSPEND_BY_SRC:
3544 result = CODING_FINISH_INSUFFICIENT_SRC;
3545 break;
3546 case CCL_STAT_SUSPEND_BY_DST:
3547 result = CODING_FINISH_INSUFFICIENT_DST;
3548 break;
3549 default:
3550 result = CODING_FINISH_NORMAL;
3551 break;
3552 }
3553 return result;
3554}
3555
3556/* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
3557 decoding, it may detect coding system and format of end-of-line if
3558 those are not yet decided. */
3559
3560int
3561decode_coding (coding, source, destination, src_bytes, dst_bytes)
3562 struct coding_system *coding;
3563 unsigned char *source, *destination;
3564 int src_bytes, dst_bytes;
3565{
3566 int result;
3567
3568 if (src_bytes <= 0)
3569 {
3570 coding->produced = coding->produced_char = 0;
3571 coding->consumed = coding->consumed_char = 0;
3572 coding->fake_multibyte = 0;
3573 return CODING_FINISH_NORMAL;
3574 }
3575
3576 if (coding->type == coding_type_undecided)
3577 detect_coding (coding, source, src_bytes);
3578
3579 if (coding->eol_type == CODING_EOL_UNDECIDED)
3580 detect_eol (coding, source, src_bytes);
3581
3582 switch (coding->type)
3583 {
3584 case coding_type_emacs_mule:
3585 case coding_type_undecided:
3586 case coding_type_raw_text:
3587 if (coding->eol_type == CODING_EOL_LF
3588 || coding->eol_type == CODING_EOL_UNDECIDED)
3589 goto label_no_conversion;
3590 result = decode_eol (coding, source, destination, src_bytes, dst_bytes);
3591 break;
3592
3593 case coding_type_sjis:
3594 result = decode_coding_sjis_big5 (coding, source, destination,
3595 src_bytes, dst_bytes, 1);
3596 break;
3597
3598 case coding_type_iso2022:
3599 result = decode_coding_iso2022 (coding, source, destination,
3600 src_bytes, dst_bytes);
3601 break;
3602
3603 case coding_type_big5:
3604 result = decode_coding_sjis_big5 (coding, source, destination,
3605 src_bytes, dst_bytes, 0);
3606 break;
3607
3608 case coding_type_ccl:
3609 result = ccl_coding_driver (coding, source, destination,
3610 src_bytes, dst_bytes, 0);
3611 break;
3612
3613 default: /* i.e. case coding_type_no_conversion: */
3614 label_no_conversion:
3615 if (dst_bytes && src_bytes > dst_bytes)
3616 {
3617 coding->produced = dst_bytes;
3618 result = CODING_FINISH_INSUFFICIENT_DST;
3619 }
3620 else
3621 {
3622 coding->produced = src_bytes;
3623 result = CODING_FINISH_NORMAL;
3624 }
3625 if (dst_bytes)
3626 bcopy (source, destination, coding->produced);
3627 else
3628 safe_bcopy (source, destination, coding->produced);
3629 coding->fake_multibyte = 1;
3630 coding->consumed
3631 = coding->consumed_char = coding->produced_char = coding->produced;
3632 break;
3633 }
3634
3635 return result;
3636}
3637
3638/* See "GENERAL NOTES about `encode_coding_XXX ()' functions". */
3639
3640int
3641encode_coding (coding, source, destination, src_bytes, dst_bytes)
3642 struct coding_system *coding;
3643 unsigned char *source, *destination;
3644 int src_bytes, dst_bytes;
3645{
3646 int result;
3647
3648 if (src_bytes <= 0)
3649 {
3650 coding->produced = coding->produced_char = 0;
3651 coding->consumed = coding->consumed_char = 0;
3652 coding->fake_multibyte = 0;
3653 return CODING_FINISH_NORMAL;
3654 }
3655
3656 switch (coding->type)
3657 {
3658 case coding_type_emacs_mule:
3659 case coding_type_undecided:
3660 case coding_type_raw_text:
3661 if (coding->eol_type == CODING_EOL_LF
3662 || coding->eol_type == CODING_EOL_UNDECIDED)
3663 goto label_no_conversion;
3664 result = encode_eol (coding, source, destination, src_bytes, dst_bytes);
3665 break;
3666
3667 case coding_type_sjis:
3668 result = encode_coding_sjis_big5 (coding, source, destination,
3669 src_bytes, dst_bytes, 1);
3670 break;
3671
3672 case coding_type_iso2022:
3673 result = encode_coding_iso2022 (coding, source, destination,
3674 src_bytes, dst_bytes);
3675 break;
3676
3677 case coding_type_big5:
3678 result = encode_coding_sjis_big5 (coding, source, destination,
3679 src_bytes, dst_bytes, 0);
3680 break;
3681
3682 case coding_type_ccl:
3683 result = ccl_coding_driver (coding, source, destination,
3684 src_bytes, dst_bytes, 1);
3685 break;
3686
3687 default: /* i.e. case coding_type_no_conversion: */
3688 label_no_conversion:
3689 if (dst_bytes && src_bytes > dst_bytes)
3690 {
3691 coding->produced = dst_bytes;
3692 result = CODING_FINISH_INSUFFICIENT_DST;
3693 }
3694 else
3695 {
3696 coding->produced = src_bytes;
3697 result = CODING_FINISH_NORMAL;
3698 }
3699 if (dst_bytes)
3700 bcopy (source, destination, coding->produced);
3701 else
3702 safe_bcopy (source, destination, coding->produced);
3703 if (coding->mode & CODING_MODE_SELECTIVE_DISPLAY)
3704 {
3705 unsigned char *p = destination, *pend = p + coding->produced;
3706 while (p < pend)
3707 if (*p++ == '\015') p[-1] = '\n';
3708 }
3709 coding->fake_multibyte = 1;
3710 coding->consumed
3711 = coding->consumed_char = coding->produced_char = coding->produced;
3712 break;
3713 }
3714
3715 return result;
3716}
3717
3718/* Scan text in the region between *BEG and *END (byte positions),
3719 skip characters which we don't have to decode by coding system
3720 CODING at the head and tail, then set *BEG and *END to the region
3721 of the text we actually have to convert. The caller should move
3722 the gap out of the region in advance.
3723
3724 If STR is not NULL, *BEG and *END are indices into STR. */
3725
3726static void
3727shrink_decoding_region (beg, end, coding, str)
3728 int *beg, *end;
3729 struct coding_system *coding;
3730 unsigned char *str;
3731{
3732 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
3733 int eol_conversion;
3734
3735 if (coding->type == coding_type_ccl
3736 || coding->type == coding_type_undecided
3737 || !NILP (coding->post_read_conversion))
3738 {
3739 /* We can't skip any data. */
3740 return;
3741 }
3742 else if (coding->type == coding_type_no_conversion)
3743 {
3744 /* We need no conversion, but don't have to skip any data here.
3745 Decoding routine handles them effectively anyway. */
3746 return;
3747 }
3748
3749 eol_conversion = (coding->eol_type != CODING_EOL_LF);
3750
3751 if ((! eol_conversion) && (coding->heading_ascii >= 0))
3752 /* Detection routine has already found how much we can skip at the
3753 head. */
3754 *beg += coding->heading_ascii;
3755
3756 if (str)
3757 {
3758 begp_orig = begp = str + *beg;
3759 endp_orig = endp = str + *end;
3760 }
3761 else
3762 {
3763 begp_orig = begp = BYTE_POS_ADDR (*beg);
3764 endp_orig = endp = begp + *end - *beg;
3765 }
3766
3767 switch (coding->type)
3768 {
3769 case coding_type_emacs_mule:
3770 case coding_type_raw_text:
3771 if (eol_conversion)
3772 {
3773 if (coding->heading_ascii < 0)
3774 while (begp < endp && *begp != '\r' && *begp < 0x80) begp++;
3775 while (begp < endp && endp[-1] != '\r' && endp[-1] < 0x80)
3776 endp--;
3777 /* Do not consider LF as ascii if preceded by CR, since that
3778 confuses eol decoding. */
3779 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
3780 endp++;
3781 }
3782 else
3783 begp = endp;
3784 break;
3785
3786 case coding_type_sjis:
3787 case coding_type_big5:
3788 /* We can skip all ASCII characters at the head. */
3789 if (coding->heading_ascii < 0)
3790 {
3791 if (eol_conversion)
3792 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
3793 else
3794 while (begp < endp && *begp < 0x80) begp++;
3795 }
3796 /* We can skip all ASCII characters at the tail except for the
3797 second byte of SJIS or BIG5 code. */
3798 if (eol_conversion)
3799 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
3800 else
3801 while (begp < endp && endp[-1] < 0x80) endp--;
3802 /* Do not consider LF as ascii if preceded by CR, since that
3803 confuses eol decoding. */
3804 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
3805 endp++;
3806 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
3807 endp++;
3808 break;
3809
3810 default: /* i.e. case coding_type_iso2022: */
3811 if (coding->heading_ascii < 0)
3812 {
3813 /* We can skip all ASCII characters at the head except for a
3814 few control codes. */
3815 while (begp < endp && (c = *begp) < 0x80
3816 && c != ISO_CODE_CR && c != ISO_CODE_SO
3817 && c != ISO_CODE_SI && c != ISO_CODE_ESC
3818 && (!eol_conversion || c != ISO_CODE_LF))
3819 begp++;
3820 }
3821 switch (coding->category_idx)
3822 {
3823 case CODING_CATEGORY_IDX_ISO_8_1:
3824 case CODING_CATEGORY_IDX_ISO_8_2:
3825 /* We can skip all ASCII characters at the tail. */
3826 if (eol_conversion)
3827 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
3828 else
3829 while (begp < endp && endp[-1] < 0x80) endp--;
3830 /* Do not consider LF as ascii if preceded by CR, since that
3831 confuses eol decoding. */
3832 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
3833 endp++;
3834 break;
3835
3836 case CODING_CATEGORY_IDX_ISO_7:
3837 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
3838 /* We can skip all charactes at the tail except for ESC and
3839 the following 2-byte at the tail. */
3840 if (eol_conversion)
3841 while (begp < endp
3842 && (c = endp[-1]) < 0x80 && c != ISO_CODE_ESC && c != '\r')
3843 endp--;
3844 else
3845 while (begp < endp
3846 && (c = endp[-1]) < 0x80 && c != ISO_CODE_ESC)
3847 endp--;
3848 /* Do not consider LF as ascii if preceded by CR, since that
3849 confuses eol decoding. */
3850 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
3851 endp++;
3852 if (begp < endp && endp[-1] == ISO_CODE_ESC)
3853 {
3854 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
3855 /* This is an ASCII designation sequence. We can
3856 surely skip the tail. */
3857 endp += 2;
3858 else
3859 /* Hmmm, we can't skip the tail. */
3860 endp = endp_orig;
3861 }
3862 }
3863 }
3864 *beg += begp - begp_orig;
3865 *end += endp - endp_orig;
3866 return;
3867}
3868
3869/* Like shrink_decoding_region but for encoding. */
3870
3871static void
3872shrink_encoding_region (beg, end, coding, str)
3873 int *beg, *end;
3874 struct coding_system *coding;
3875 unsigned char *str;
3876{
3877 unsigned char *begp_orig, *begp, *endp_orig, *endp;
3878 int eol_conversion;
3879
3880 if (coding->type == coding_type_ccl)
3881 /* We can't skip any data. */
3882 return;
3883 else if (coding->type == coding_type_no_conversion)
3884 {
3885 /* We need no conversion. */
3886 *beg = *end;
3887 return;
3888 }
3889
3890 if (str)
3891 {
3892 begp_orig = begp = str + *beg;
3893 endp_orig = endp = str + *end;
3894 }
3895 else
3896 {
3897 begp_orig = begp = BYTE_POS_ADDR (*beg);
3898 endp_orig = endp = begp + *end - *beg;
3899 }
3900
3901 eol_conversion = (coding->eol_type == CODING_EOL_CR
3902 || coding->eol_type == CODING_EOL_CRLF);
3903
3904 /* Here, we don't have to check coding->pre_write_conversion because
3905 the caller is expected to have handled it already. */
3906 switch (coding->type)
3907 {
3908 case coding_type_undecided:
3909 case coding_type_emacs_mule:
3910 case coding_type_raw_text:
3911 if (eol_conversion)
3912 {
3913 while (begp < endp && *begp != '\n') begp++;
3914 while (begp < endp && endp[-1] != '\n') endp--;
3915 }
3916 else
3917 begp = endp;
3918 break;
3919
3920 case coding_type_iso2022:
3921 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3922 {
3923 unsigned char *bol = begp;
3924 while (begp < endp && *begp < 0x80)
3925 {
3926 begp++;
3927 if (begp[-1] == '\n')
3928 bol = begp;
3929 }
3930 begp = bol;
3931 goto label_skip_tail;
3932 }
3933 /* fall down ... */
3934
3935 default:
3936 /* We can skip all ASCII characters at the head and tail. */
3937 if (eol_conversion)
3938 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
3939 else
3940 while (begp < endp && *begp < 0x80) begp++;
3941 label_skip_tail:
3942 if (eol_conversion)
3943 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
3944 else
3945 while (begp < endp && *(endp - 1) < 0x80) endp--;
3946 break;
3947 }
3948
3949 *beg += begp - begp_orig;
3950 *end += endp - endp_orig;
3951 return;
3952}
3953
3954/* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
3955 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
3956 coding system CODING, and return the status code of code conversion
3957 (currently, this value has no meaning).
3958
3959 How many characters (and bytes) are converted to how many
3960 characters (and bytes) are recorded in members of the structure
3961 CODING.
3962
3963 If REPLACE is nonzero, we do various things as if the original text
3964 is deleted and a new text is inserted. See the comments in
3965 replace_range (insdel.c) to know what we are doing. */
3966
3967int
3968code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
3969 int from, from_byte, to, to_byte, encodep, replace;
3970 struct coding_system *coding;
3971{
3972 int len = to - from, len_byte = to_byte - from_byte;
3973 int require, inserted, inserted_byte;
3974 int head_skip, tail_skip, total_skip;
3975 Lisp_Object saved_coding_symbol = Qnil;
3976 int multibyte = !NILP (current_buffer->enable_multibyte_characters);
3977 int first = 1;
3978 int fake_multibyte = 0;
3979 unsigned char *src, *dst;
3980 Lisp_Object deletion = Qnil;
3981
3982 if (from < PT && PT < to)
3983 SET_PT_BOTH (from, from_byte);
3984
3985 if (replace)
3986 {
3987 int saved_from = from;
3988
3989 prepare_to_modify_buffer (from, to, &from);
3990 if (saved_from != from)
3991 {
3992 to = from + len;
3993 if (multibyte)
3994 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
3995 else
3996 from_byte = from, to_byte = to;
3997 len_byte = to_byte - from_byte;
3998 }
3999 }
4000
4001 if (! encodep && CODING_REQUIRE_DETECTION (coding))
4002 {
4003 /* We must detect encoding of text and eol format. */
4004
4005 if (from < GPT && to > GPT)
4006 move_gap_both (from, from_byte);
4007 if (coding->type == coding_type_undecided)
4008 {
4009 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
4010 if (coding->type == coding_type_undecided)
4011 /* It seems that the text contains only ASCII, but we
4012 should not left it undecided because the deeper
4013 decoding routine (decode_coding) tries to detect the
4014 encodings again in vain. */
4015 coding->type = coding_type_emacs_mule;
4016 }
4017 if (coding->eol_type == CODING_EOL_UNDECIDED)
4018 {
4019 saved_coding_symbol = coding->symbol;
4020 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
4021 if (coding->eol_type == CODING_EOL_UNDECIDED)
4022 coding->eol_type = CODING_EOL_LF;
4023 /* We had better recover the original eol format if we
4024 encounter an inconsitent eol format while decoding. */
4025 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4026 }
4027 }
4028
4029 coding->consumed_char = len, coding->consumed = len_byte;
4030
4031 if (encodep
4032 ? ! CODING_REQUIRE_ENCODING (coding)
4033 : ! CODING_REQUIRE_DECODING (coding))
4034 {
4035 coding->produced = len_byte;
4036 if (multibyte
4037 && ! replace
4038 /* See the comment of the member heading_ascii in coding.h. */
4039 && coding->heading_ascii < len_byte)
4040 {
4041 /* We still may have to combine byte at the head and the
4042 tail of the text in the region. */
4043 if (from < GPT && GPT < to)
4044 move_gap_both (to, to_byte);
4045 len = multibyte_chars_in_text (BYTE_POS_ADDR (from_byte), len_byte);
4046 adjust_after_insert (from, from_byte, to, to_byte, len);
4047 coding->produced_char = len;
4048 }
4049 else
4050 {
4051 if (!replace)
4052 adjust_after_insert (from, from_byte, to, to_byte, len_byte);
4053 coding->produced_char = len_byte;
4054 }
4055 return 0;
4056 }
4057
4058 /* Now we convert the text. */
4059
4060 /* For encoding, we must process pre-write-conversion in advance. */
4061 if (encodep
4062 && ! NILP (coding->pre_write_conversion)
4063 && SYMBOLP (coding->pre_write_conversion)
4064 && ! NILP (Ffboundp (coding->pre_write_conversion)))
4065 {
4066 /* The function in pre-write-conversion may put a new text in a
4067 new buffer. */
4068 struct buffer *prev = current_buffer, *new;
4069
4070 call2 (coding->pre_write_conversion,
4071 make_number (from), make_number (to));
4072 if (current_buffer != prev)
4073 {
4074 len = ZV - BEGV;
4075 new = current_buffer;
4076 set_buffer_internal_1 (prev);
4077 del_range_2 (from, from_byte, to, to_byte);
4078 insert_from_buffer (new, BEG, len, 0);
4079 to = from + len;
4080 to_byte = multibyte ? CHAR_TO_BYTE (to) : to;
4081 len_byte = to_byte - from_byte;
4082 }
4083 }
4084
4085 if (replace)
4086 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
4087
4088 /* Try to skip the heading and tailing ASCIIs. */
4089 {
4090 int from_byte_orig = from_byte, to_byte_orig = to_byte;
4091
4092 if (from < GPT && GPT < to)
4093 move_gap_both (from, from_byte);
4094 if (encodep)
4095 shrink_encoding_region (&from_byte, &to_byte, coding, NULL);
4096 else
4097 shrink_decoding_region (&from_byte, &to_byte, coding, NULL);
4098 if (from_byte == to_byte)
4099 {
4100 coding->produced = len_byte;
4101 coding->produced_char = multibyte ? len : len_byte;
4102 if (!replace)
4103 /* We must record and adjust for this new text now. */
4104 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
4105 return 0;
4106 }
4107
4108 head_skip = from_byte - from_byte_orig;
4109 tail_skip = to_byte_orig - to_byte;
4110 total_skip = head_skip + tail_skip;
4111 from += head_skip;
4112 to -= tail_skip;
4113 len -= total_skip; len_byte -= total_skip;
4114 }
4115
4116 /* For converion, we must put the gap before the text in addition to
4117 making the gap larger for efficient decoding. The required gap
4118 size starts from 2000 which is the magic number used in make_gap.
4119 But, after one batch of conversion, it will be incremented if we
4120 find that it is not enough . */
4121 require = 2000;
4122
4123 if (GAP_SIZE < require)
4124 make_gap (require - GAP_SIZE);
4125 move_gap_both (from, from_byte);
4126
4127 if (GPT - BEG < beg_unchanged)
4128 beg_unchanged = GPT - BEG;
4129 if (Z - GPT < end_unchanged)
4130 end_unchanged = Z - GPT;
4131
4132 inserted = inserted_byte = 0;
4133 src = GAP_END_ADDR, dst = GPT_ADDR;
4134
4135 GAP_SIZE += len_byte;
4136 ZV -= len;
4137 Z -= len;
4138 ZV_BYTE -= len_byte;
4139 Z_BYTE -= len_byte;
4140
4141 for (;;)
4142 {
4143 int result;
4144
4145 /* The buffer memory is changed from:
4146 +--------+converted-text+---------+-------original-text------+---+
4147 |<-from->|<--inserted-->|---------|<-----------len---------->|---|
4148 |<------------------- GAP_SIZE -------------------->| */
4149 if (encodep)
4150 result = encode_coding (coding, src, dst, len_byte, 0);
4151 else
4152 result = decode_coding (coding, src, dst, len_byte, 0);
4153 /* to:
4154 +--------+-------converted-text--------+--+---original-text--+---+
4155 |<-from->|<--inserted-->|<--produced-->|--|<-(len-consumed)->|---|
4156 |<------------------- GAP_SIZE -------------------->| */
4157 if (coding->fake_multibyte)
4158 fake_multibyte = 1;
4159
4160 if (!encodep && !multibyte)
4161 coding->produced_char = coding->produced;
4162 inserted += coding->produced_char;
4163 inserted_byte += coding->produced;
4164 len_byte -= coding->consumed;
4165 src += coding->consumed;
4166 dst += inserted_byte;
4167
4168 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
4169 {
4170 unsigned char *pend = dst, *p = pend - inserted_byte;
4171
4172 /* Encode LFs back to the original eol format (CR or CRLF). */
4173 if (coding->eol_type == CODING_EOL_CR)
4174 {
4175 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
4176 }
4177 else
4178 {
4179 int count = 0;
4180
4181 while (p < pend) if (*p++ == '\n') count++;
4182 if (src - dst < count)
4183 {
4184 /* We don't have sufficient room for putting LFs
4185 back to CRLF. We must record converted and
4186 not-yet-converted text back to the buffer
4187 content, enlarge the gap, then record them out of
4188 the buffer contents again. */
4189 int add = len_byte + inserted_byte;
4190
4191 GAP_SIZE -= add;
4192 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
4193 GPT += inserted_byte; GPT_BYTE += inserted_byte;
4194 make_gap (count - GAP_SIZE);
4195 GAP_SIZE += add;
4196 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
4197 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
4198 /* Don't forget to update SRC, DST, and PEND. */
4199 src = GAP_END_ADDR - len_byte;
4200 dst = GPT_ADDR + inserted_byte;
4201 pend = dst;
4202 }
4203 inserted += count;
4204 inserted_byte += count;
4205 coding->produced += count;
4206 p = dst = pend + count;
4207 while (count)
4208 {
4209 *--p = *--pend;
4210 if (*p == '\n') count--, *--p = '\r';
4211 }
4212 }
4213
4214 /* Suppress eol-format conversion in the further conversion. */
4215 coding->eol_type = CODING_EOL_LF;
4216
4217 /* Restore the original symbol. */
4218 coding->symbol = saved_coding_symbol;
4219
4220 continue;
4221 }
4222 if (len_byte <= 0)
4223 break;
4224 if (result == CODING_FINISH_INSUFFICIENT_SRC)
4225 {
4226 /* The source text ends in invalid codes. Let's just
4227 make them valid buffer contents, and finish conversion. */
4228 inserted += len_byte;
4229 inserted_byte += len_byte;
4230 while (len_byte--)
4231 *dst++ = *src++;
4232 fake_multibyte = 1;
4233 break;
4234 }
4235 if (first)
4236 {
4237 /* We have just done the first batch of conversion which was
4238 stoped because of insufficient gap. Let's reconsider the
4239 required gap size (i.e. SRT - DST) now.
4240
4241 We have converted ORIG bytes (== coding->consumed) into
4242 NEW bytes (coding->produced). To convert the remaining
4243 LEN bytes, we may need REQUIRE bytes of gap, where:
4244 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
4245 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
4246 Here, we are sure that NEW >= ORIG. */
4247 float ratio = coding->produced - coding->consumed;
4248 ratio /= coding->consumed;
4249 require = len_byte * ratio;
4250 first = 0;
4251 }
4252 if ((src - dst) < (require + 2000))
4253 {
4254 /* See the comment above the previous call of make_gap. */
4255 int add = len_byte + inserted_byte;
4256
4257 GAP_SIZE -= add;
4258 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
4259 GPT += inserted_byte; GPT_BYTE += inserted_byte;
4260 make_gap (require + 2000);
4261 GAP_SIZE += add;
4262 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
4263 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
4264 /* Don't forget to update SRC, DST. */
4265 src = GAP_END_ADDR - len_byte;
4266 dst = GPT_ADDR + inserted_byte;
4267 }
4268 }
4269 if (src - dst > 0) *dst = 0; /* Put an anchor. */
4270
4271 if (multibyte
4272 && (fake_multibyte
4273 || !encodep && (to - from) != (to_byte - from_byte)))
4274 inserted = multibyte_chars_in_text (GPT_ADDR, inserted_byte);
4275
4276 /* If we have shrinked the conversion area, adjust it now. */
4277 if (total_skip > 0)
4278 {
4279 if (tail_skip > 0)
4280 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
4281 inserted += total_skip; inserted_byte += total_skip;
4282 GAP_SIZE += total_skip;
4283 GPT -= head_skip; GPT_BYTE -= head_skip;
4284 ZV -= total_skip; ZV_BYTE -= total_skip;
4285 Z -= total_skip; Z_BYTE -= total_skip;
4286 from -= head_skip; from_byte -= head_skip;
4287 to += tail_skip; to_byte += tail_skip;
4288 }
4289
4290 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
4291
4292 if (! encodep && ! NILP (coding->post_read_conversion))
4293 {
4294 Lisp_Object val;
4295 int orig_inserted = inserted, pos = PT;
4296
4297 if (from != pos)
4298 temp_set_point_both (current_buffer, from, from_byte);
4299 val = call1 (coding->post_read_conversion, make_number (inserted));
4300 if (! NILP (val))
4301 {
4302 CHECK_NUMBER (val, 0);
4303 inserted = XFASTINT (val);
4304 }
4305 if (pos >= from + orig_inserted)
4306 temp_set_point (current_buffer, pos + (inserted - orig_inserted));
4307 }
4308
4309 signal_after_change (from, to - from, inserted);
4310
4311 {
4312 coding->consumed = to_byte - from_byte;
4313 coding->consumed_char = to - from;
4314 coding->produced = inserted_byte;
4315 coding->produced_char = inserted;
4316 }
4317
4318 return 0;
4319}
4320
4321Lisp_Object
4322code_convert_string (str, coding, encodep, nocopy)
4323 Lisp_Object str;
4324 struct coding_system *coding;
4325 int encodep, nocopy;
4326{
4327 int len;
4328 char *buf;
4329 int from = 0, to = XSTRING (str)->size;
4330 int to_byte = STRING_BYTES (XSTRING (str));
4331 struct gcpro gcpro1;
4332 Lisp_Object saved_coding_symbol = Qnil;
4333 int result;
4334
4335 if (encodep && !NILP (coding->pre_write_conversion)
4336 || !encodep && !NILP (coding->post_read_conversion))
4337 {
4338 /* Since we have to call Lisp functions which assume target text
4339 is in a buffer, after setting a temporary buffer, call
4340 code_convert_region. */
4341 int count = specpdl_ptr - specpdl;
4342 struct buffer *prev = current_buffer;
4343
4344 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
4345 temp_output_buffer_setup (" *code-converting-work*");
4346 set_buffer_internal (XBUFFER (Vstandard_output));
4347 if (encodep)
4348 insert_from_string (str, 0, 0, to, to_byte, 0);
4349 else
4350 {
4351 /* We must insert the contents of STR as is without
4352 unibyte<->multibyte conversion. */
4353 current_buffer->enable_multibyte_characters = Qnil;
4354 insert_from_string (str, 0, 0, to_byte, to_byte, 0);
4355 current_buffer->enable_multibyte_characters = Qt;
4356 }
4357 code_convert_region (BEGV, BEGV_BYTE, ZV, ZV_BYTE, coding, encodep, 1);
4358 if (encodep)
4359 /* We must return the buffer contents as unibyte string. */
4360 current_buffer->enable_multibyte_characters = Qnil;
4361 str = make_buffer_string (BEGV, ZV, 0);
4362 set_buffer_internal (prev);
4363 return unbind_to (count, str);
4364 }
4365
4366 if (! encodep && CODING_REQUIRE_DETECTION (coding))
4367 {
4368 /* See the comments in code_convert_region. */
4369 if (coding->type == coding_type_undecided)
4370 {
4371 detect_coding (coding, XSTRING (str)->data, to_byte);
4372 if (coding->type == coding_type_undecided)
4373 coding->type = coding_type_emacs_mule;
4374 }
4375 if (coding->eol_type == CODING_EOL_UNDECIDED)
4376 {
4377 saved_coding_symbol = coding->symbol;
4378 detect_eol (coding, XSTRING (str)->data, to_byte);
4379 if (coding->eol_type == CODING_EOL_UNDECIDED)
4380 coding->eol_type = CODING_EOL_LF;
4381 /* We had better recover the original eol format if we
4382 encounter an inconsitent eol format while decoding. */
4383 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4384 }
4385 }
4386
4387 if (encodep
4388 ? ! CODING_REQUIRE_ENCODING (coding)
4389 : ! CODING_REQUIRE_DECODING (coding))
4390 from = to_byte;
4391 else
4392 {
4393 /* Try to skip the heading and tailing ASCIIs. */
4394 if (encodep)
4395 shrink_encoding_region (&from, &to_byte, coding, XSTRING (str)->data);
4396 else
4397 shrink_decoding_region (&from, &to_byte, coding, XSTRING (str)->data);
4398 }
4399 if (from == to_byte)
4400 return (nocopy ? str : Fcopy_sequence (str));
4401
4402 if (encodep)
4403 len = encoding_buffer_size (coding, to_byte - from);
4404 else
4405 len = decoding_buffer_size (coding, to_byte - from);
4406 len += from + STRING_BYTES (XSTRING (str)) - to_byte;
4407 GCPRO1 (str);
4408 buf = get_conversion_buffer (len);
4409 UNGCPRO;
4410
4411 if (from > 0)
4412 bcopy (XSTRING (str)->data, buf, from);
4413 result = (encodep
4414 ? encode_coding (coding, XSTRING (str)->data + from,
4415 buf + from, to_byte - from, len)
4416 : decode_coding (coding, XSTRING (str)->data + from,
4417 buf + from, to_byte - from, len));
4418 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
4419 {
4420 /* We simple try to decode the whole string again but without
4421 eol-conversion this time. */
4422 coding->eol_type = CODING_EOL_LF;
4423 coding->symbol = saved_coding_symbol;
4424 return code_convert_string (str, coding, encodep, nocopy);
4425 }
4426
4427 bcopy (XSTRING (str)->data + to_byte, buf + from + coding->produced,
4428 STRING_BYTES (XSTRING (str)) - to_byte);
4429
4430 len = from + STRING_BYTES (XSTRING (str)) - to_byte;
4431 if (encodep)
4432 str = make_unibyte_string (buf, len + coding->produced);
4433 else
4434 str = make_string_from_bytes (buf, len + coding->produced_char,
4435 len + coding->produced);
4436 return str;
4437}
4438
4439\f
4440#ifdef emacs
4441/*** 7. Emacs Lisp library functions ***/
4442
4443DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
4444 "Return t if OBJECT is nil or a coding-system.\n\
4445See the documentation of `make-coding-system' for information\n\
4446about coding-system objects.")
4447 (obj)
4448 Lisp_Object obj;
4449{
4450 if (NILP (obj))
4451 return Qt;
4452 if (!SYMBOLP (obj))
4453 return Qnil;
4454 /* Get coding-spec vector for OBJ. */
4455 obj = Fget (obj, Qcoding_system);
4456 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
4457 ? Qt : Qnil);
4458}
4459
4460DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
4461 Sread_non_nil_coding_system, 1, 1, 0,
4462 "Read a coding system from the minibuffer, prompting with string PROMPT.")
4463 (prompt)
4464 Lisp_Object prompt;
4465{
4466 Lisp_Object val;
4467 do
4468 {
4469 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
4470 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
4471 }
4472 while (XSTRING (val)->size == 0);
4473 return (Fintern (val, Qnil));
4474}
4475
4476DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
4477 "Read a coding system from the minibuffer, prompting with string PROMPT.\n\
4478If the user enters null input, return second argument DEFAULT-CODING-SYSTEM.")
4479 (prompt, default_coding_system)
4480 Lisp_Object prompt, default_coding_system;
4481{
4482 Lisp_Object val;
4483 if (SYMBOLP (default_coding_system))
4484 XSETSTRING (default_coding_system, XSYMBOL (default_coding_system)->name);
4485 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
4486 Qt, Qnil, Qcoding_system_history,
4487 default_coding_system, Qnil);
4488 return (XSTRING (val)->size == 0 ? Qnil : Fintern (val, Qnil));
4489}
4490
4491DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
4492 1, 1, 0,
4493 "Check validity of CODING-SYSTEM.\n\
4494If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.\n\
4495It is valid if it is a symbol with a non-nil `coding-system' property.\n\
4496The value of property should be a vector of length 5.")
4497 (coding_system)
4498 Lisp_Object coding_system;
4499{
4500 CHECK_SYMBOL (coding_system, 0);
4501 if (!NILP (Fcoding_system_p (coding_system)))
4502 return coding_system;
4503 while (1)
4504 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
4505}
4506\f
4507Lisp_Object
4508detect_coding_system (src, src_bytes, highest)
4509 unsigned char *src;
4510 int src_bytes, highest;
4511{
4512 int coding_mask, eol_type;
4513 Lisp_Object val, tmp;
4514 int dummy;
4515
4516 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy);
4517 eol_type = detect_eol_type (src, src_bytes, &dummy);
4518 if (eol_type == CODING_EOL_INCONSISTENT)
4519 eol_type == CODING_EOL_UNDECIDED;
4520
4521 if (!coding_mask)
4522 {
4523 val = Qundecided;
4524 if (eol_type != CODING_EOL_UNDECIDED)
4525 {
4526 Lisp_Object val2;
4527 val2 = Fget (Qundecided, Qeol_type);
4528 if (VECTORP (val2))
4529 val = XVECTOR (val2)->contents[eol_type];
4530 }
4531 return val;
4532 }
4533
4534 /* At first, gather possible coding systems in VAL. */
4535 val = Qnil;
4536 for (tmp = Vcoding_category_list; !NILP (tmp); tmp = XCONS (tmp)->cdr)
4537 {
4538 int idx
4539 = XFASTINT (Fget (XCONS (tmp)->car, Qcoding_category_index));
4540 if (coding_mask & (1 << idx))
4541 {
4542 val = Fcons (Fsymbol_value (XCONS (tmp)->car), val);
4543 if (highest)
4544 break;
4545 }
4546 }
4547 if (!highest)
4548 val = Fnreverse (val);
4549
4550 /* Then, replace the elements with subsidiary coding systems. */
4551 for (tmp = val; !NILP (tmp); tmp = XCONS (tmp)->cdr)
4552 {
4553 if (eol_type != CODING_EOL_UNDECIDED
4554 && eol_type != CODING_EOL_INCONSISTENT)
4555 {
4556 Lisp_Object eol;
4557 eol = Fget (XCONS (tmp)->car, Qeol_type);
4558 if (VECTORP (eol))
4559 XCONS (tmp)->car = XVECTOR (eol)->contents[eol_type];
4560 }
4561 }
4562 return (highest ? XCONS (val)->car : val);
4563}
4564
4565DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
4566 2, 3, 0,
4567 "Detect coding system of the text in the region between START and END.\n\
4568Return a list of possible coding systems ordered by priority.\n\
4569\n\
4570If only ASCII characters are found, it returns `undecided'\n\
4571or its subsidiary coding system according to a detected end-of-line format.\n\
4572\n\
4573If optional argument HIGHEST is non-nil, return the coding system of\n\
4574highest priority.")
4575 (start, end, highest)
4576 Lisp_Object start, end, highest;
4577{
4578 int from, to;
4579 int from_byte, to_byte;
4580
4581 CHECK_NUMBER_COERCE_MARKER (start, 0);
4582 CHECK_NUMBER_COERCE_MARKER (end, 1);
4583
4584 validate_region (&start, &end);
4585 from = XINT (start), to = XINT (end);
4586 from_byte = CHAR_TO_BYTE (from);
4587 to_byte = CHAR_TO_BYTE (to);
4588
4589 if (from < GPT && to >= GPT)
4590 move_gap_both (to, to_byte);
4591
4592 return detect_coding_system (BYTE_POS_ADDR (from_byte),
4593 to_byte - from_byte,
4594 !NILP (highest));
4595}
4596
4597DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
4598 1, 2, 0,
4599 "Detect coding system of the text in STRING.\n\
4600Return a list of possible coding systems ordered by priority.\n\
4601\n\
4602If only ASCII characters are found, it returns `undecided'\n\
4603or its subsidiary coding system according to a detected end-of-line format.\n\
4604\n\
4605If optional argument HIGHEST is non-nil, return the coding system of\n\
4606highest priority.")
4607 (string, highest)
4608 Lisp_Object string, highest;
4609{
4610 CHECK_STRING (string, 0);
4611
4612 return detect_coding_system (XSTRING (string)->data,
4613 STRING_BYTES (XSTRING (string)),
4614 !NILP (highest));
4615}
4616
4617Lisp_Object
4618code_convert_region1 (start, end, coding_system, encodep)
4619 Lisp_Object start, end, coding_system;
4620 int encodep;
4621{
4622 struct coding_system coding;
4623 int from, to, len;
4624
4625 CHECK_NUMBER_COERCE_MARKER (start, 0);
4626 CHECK_NUMBER_COERCE_MARKER (end, 1);
4627 CHECK_SYMBOL (coding_system, 2);
4628
4629 validate_region (&start, &end);
4630 from = XFASTINT (start);
4631 to = XFASTINT (end);
4632
4633 if (NILP (coding_system))
4634 return make_number (to - from);
4635
4636 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
4637 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
4638
4639 coding.mode |= CODING_MODE_LAST_BLOCK;
4640 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
4641 &coding, encodep, 1);
4642 Vlast_coding_system_used = coding.symbol;
4643 return make_number (coding.produced_char);
4644}
4645
4646DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
4647 3, 3, "r\nzCoding system: ",
4648 "Decode the current region by specified coding system.\n\
4649When called from a program, takes three arguments:\n\
4650START, END, and CODING-SYSTEM. START and END are buffer positions.\n\
4651This function sets `last-coding-system-used' to the precise coding system\n\
4652used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
4653not fully specified.)\n\
4654It returns the length of the decoded text.")
4655 (start, end, coding_system)
4656 Lisp_Object start, end, coding_system;
4657{
4658 return code_convert_region1 (start, end, coding_system, 0);
4659}
4660
4661DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
4662 3, 3, "r\nzCoding system: ",
4663 "Encode the current region by specified coding system.\n\
4664When called from a program, takes three arguments:\n\
4665START, END, and CODING-SYSTEM. START and END are buffer positions.\n\
4666This function sets `last-coding-system-used' to the precise coding system\n\
4667used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
4668not fully specified.)\n\
4669It returns the length of the encoded text.")
4670 (start, end, coding_system)
4671 Lisp_Object start, end, coding_system;
4672{
4673 return code_convert_region1 (start, end, coding_system, 1);
4674}
4675
4676Lisp_Object
4677code_convert_string1 (string, coding_system, nocopy, encodep)
4678 Lisp_Object string, coding_system, nocopy;
4679 int encodep;
4680{
4681 struct coding_system coding;
4682
4683 CHECK_STRING (string, 0);
4684 CHECK_SYMBOL (coding_system, 1);
4685
4686 if (NILP (coding_system))
4687 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
4688
4689 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
4690 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
4691
4692 coding.mode |= CODING_MODE_LAST_BLOCK;
4693 Vlast_coding_system_used = coding.symbol;
4694 return code_convert_string (string, &coding, encodep, !NILP (nocopy));
4695}
4696
4697DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
4698 2, 3, 0,
4699 "Decode STRING which is encoded in CODING-SYSTEM, and return the result.\n\
4700Optional arg NOCOPY non-nil means it is ok to return STRING itself\n\
4701if the decoding operation is trivial.\n\
4702This function sets `last-coding-system-used' to the precise coding system\n\
4703used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
4704not fully specified.)")
4705 (string, coding_system, nocopy)
4706 Lisp_Object string, coding_system, nocopy;
4707{
4708 return code_convert_string1 (string, coding_system, nocopy, 0);
4709}
4710
4711DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
4712 2, 3, 0,
4713 "Encode STRING to CODING-SYSTEM, and return the result.\n\
4714Optional arg NOCOPY non-nil means it is ok to return STRING itself\n\
4715if the encoding operation is trivial.\n\
4716This function sets `last-coding-system-used' to the precise coding system\n\
4717used (which may be different from CODING-SYSTEM if CODING-SYSTEM is\n\
4718not fully specified.)")
4719 (string, coding_system, nocopy)
4720 Lisp_Object string, coding_system, nocopy;
4721{
4722 return code_convert_string1 (string, coding_system, nocopy, 1);
4723}
4724
4725/* Encode or decode STRING according to CODING_SYSTEM.
4726 Do not set Vlast_coding_system_used. */
4727
4728Lisp_Object
4729code_convert_string_norecord (string, coding_system, encodep)
4730 Lisp_Object string, coding_system;
4731 int encodep;
4732{
4733 struct coding_system coding;
4734
4735 CHECK_STRING (string, 0);
4736 CHECK_SYMBOL (coding_system, 1);
4737
4738 if (NILP (coding_system))
4739 return string;
4740
4741 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
4742 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
4743
4744 coding.mode |= CODING_MODE_LAST_BLOCK;
4745 return code_convert_string (string, &coding, encodep, Qt);
4746}
4747\f
4748DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
4749 "Decode a JISX0208 character of shift-jis encoding.\n\
4750CODE is the character code in SJIS.\n\
4751Return the corresponding character.")
4752 (code)
4753 Lisp_Object code;
4754{
4755 unsigned char c1, c2, s1, s2;
4756 Lisp_Object val;
4757
4758 CHECK_NUMBER (code, 0);
4759 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
4760 DECODE_SJIS (s1, s2, c1, c2);
4761 XSETFASTINT (val, MAKE_NON_ASCII_CHAR (charset_jisx0208, c1, c2));
4762 return val;
4763}
4764
4765DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
4766 "Encode a JISX0208 character CHAR to SJIS coding system.\n\
4767Return the corresponding character code in SJIS.")
4768 (ch)
4769 Lisp_Object ch;
4770{
4771 int charset, c1, c2, s1, s2;
4772 Lisp_Object val;
4773
4774 CHECK_NUMBER (ch, 0);
4775 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
4776 if (charset == charset_jisx0208)
4777 {
4778 ENCODE_SJIS (c1, c2, s1, s2);
4779 XSETFASTINT (val, (s1 << 8) | s2);
4780 }
4781 else
4782 XSETFASTINT (val, 0);
4783 return val;
4784}
4785
4786DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
4787 "Decode a Big5 character CODE of BIG5 coding system.\n\
4788CODE is the character code in BIG5.\n\
4789Return the corresponding character.")
4790 (code)
4791 Lisp_Object code;
4792{
4793 int charset;
4794 unsigned char b1, b2, c1, c2;
4795 Lisp_Object val;
4796
4797 CHECK_NUMBER (code, 0);
4798 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
4799 DECODE_BIG5 (b1, b2, charset, c1, c2);
4800 XSETFASTINT (val, MAKE_NON_ASCII_CHAR (charset, c1, c2));
4801 return val;
4802}
4803
4804DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
4805 "Encode the Big5 character CHAR to BIG5 coding system.\n\
4806Return the corresponding character code in Big5.")
4807 (ch)
4808 Lisp_Object ch;
4809{
4810 int charset, c1, c2, b1, b2;
4811 Lisp_Object val;
4812
4813 CHECK_NUMBER (ch, 0);
4814 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
4815 if (charset == charset_big5_1 || charset == charset_big5_2)
4816 {
4817 ENCODE_BIG5 (charset, c1, c2, b1, b2);
4818 XSETFASTINT (val, (b1 << 8) | b2);
4819 }
4820 else
4821 XSETFASTINT (val, 0);
4822 return val;
4823}
4824\f
4825DEFUN ("set-terminal-coding-system-internal",
4826 Fset_terminal_coding_system_internal,
4827 Sset_terminal_coding_system_internal, 1, 1, 0, "")
4828 (coding_system)
4829 Lisp_Object coding_system;
4830{
4831 CHECK_SYMBOL (coding_system, 0);
4832 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
4833 /* We had better not send unsafe characters to terminal. */
4834 terminal_coding.flags |= CODING_FLAG_ISO_SAFE;
4835
4836 return Qnil;
4837}
4838
4839DEFUN ("set-safe-terminal-coding-system-internal",
4840 Fset_safe_terminal_coding_system_internal,
4841 Sset_safe_terminal_coding_system_internal, 1, 1, 0, "")
4842 (coding_system)
4843 Lisp_Object coding_system;
4844{
4845 CHECK_SYMBOL (coding_system, 0);
4846 setup_coding_system (Fcheck_coding_system (coding_system),
4847 &safe_terminal_coding);
4848 return Qnil;
4849}
4850
4851DEFUN ("terminal-coding-system",
4852 Fterminal_coding_system, Sterminal_coding_system, 0, 0, 0,
4853 "Return coding system specified for terminal output.")
4854 ()
4855{
4856 return terminal_coding.symbol;
4857}
4858
4859DEFUN ("set-keyboard-coding-system-internal",
4860 Fset_keyboard_coding_system_internal,
4861 Sset_keyboard_coding_system_internal, 1, 1, 0, "")
4862 (coding_system)
4863 Lisp_Object coding_system;
4864{
4865 CHECK_SYMBOL (coding_system, 0);
4866 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
4867 return Qnil;
4868}
4869
4870DEFUN ("keyboard-coding-system",
4871 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 0, 0,
4872 "Return coding system specified for decoding keyboard input.")
4873 ()
4874{
4875 return keyboard_coding.symbol;
4876}
4877
4878\f
4879DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
4880 Sfind_operation_coding_system, 1, MANY, 0,
4881 "Choose a coding system for an operation based on the target name.\n\
4882The value names a pair of coding systems: (DECODING-SYSTEM ENCODING-SYSTEM).\n\
4883DECODING-SYSTEM is the coding system to use for decoding\n\
4884\(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system\n\
4885for encoding (in case OPERATION does encoding).\n\
4886\n\
4887The first argument OPERATION specifies an I/O primitive:\n\
4888 For file I/O, `insert-file-contents' or `write-region'.\n\
4889 For process I/O, `call-process', `call-process-region', or `start-process'.\n\
4890 For network I/O, `open-network-stream'.\n\
4891\n\
4892The remaining arguments should be the same arguments that were passed\n\
4893to the primitive. Depending on which primitive, one of those arguments\n\
4894is selected as the TARGET. For example, if OPERATION does file I/O,\n\
4895whichever argument specifies the file name is TARGET.\n\
4896\n\
4897TARGET has a meaning which depends on OPERATION:\n\
4898 For file I/O, TARGET is a file name.\n\
4899 For process I/O, TARGET is a process name.\n\
4900 For network I/O, TARGET is a service name or a port number\n\
4901\n\
4902This function looks up what specified for TARGET in,\n\
4903`file-coding-system-alist', `process-coding-system-alist',\n\
4904or `network-coding-system-alist' depending on OPERATION.\n\
4905They may specify a coding system, a cons of coding systems,\n\
4906or a function symbol to call.\n\
4907In the last case, we call the function with one argument,\n\
4908which is a list of all the arguments given to this function.")
4909 (nargs, args)
4910 int nargs;
4911 Lisp_Object *args;
4912{
4913 Lisp_Object operation, target_idx, target, val;
4914 register Lisp_Object chain;
4915
4916 if (nargs < 2)
4917 error ("Too few arguments");
4918 operation = args[0];
4919 if (!SYMBOLP (operation)
4920 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
4921 error ("Invalid first arguement");
4922 if (nargs < 1 + XINT (target_idx))
4923 error ("Too few arguments for operation: %s",
4924 XSYMBOL (operation)->name->data);
4925 target = args[XINT (target_idx) + 1];
4926 if (!(STRINGP (target)
4927 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
4928 error ("Invalid %dth argument", XINT (target_idx) + 1);
4929
4930 chain = ((EQ (operation, Qinsert_file_contents)
4931 || EQ (operation, Qwrite_region))
4932 ? Vfile_coding_system_alist
4933 : (EQ (operation, Qopen_network_stream)
4934 ? Vnetwork_coding_system_alist
4935 : Vprocess_coding_system_alist));
4936 if (NILP (chain))
4937 return Qnil;
4938
4939 for (; CONSP (chain); chain = XCONS (chain)->cdr)
4940 {
4941 Lisp_Object elt;
4942 elt = XCONS (chain)->car;
4943
4944 if (CONSP (elt)
4945 && ((STRINGP (target)
4946 && STRINGP (XCONS (elt)->car)
4947 && fast_string_match (XCONS (elt)->car, target) >= 0)
4948 || (INTEGERP (target) && EQ (target, XCONS (elt)->car))))
4949 {
4950 val = XCONS (elt)->cdr;
4951 /* Here, if VAL is both a valid coding system and a valid
4952 function symbol, we return VAL as a coding system. */
4953 if (CONSP (val))
4954 return val;
4955 if (! SYMBOLP (val))
4956 return Qnil;
4957 if (! NILP (Fcoding_system_p (val)))
4958 return Fcons (val, val);
4959 if (! NILP (Ffboundp (val)))
4960 {
4961 val = call1 (val, Flist (nargs, args));
4962 if (CONSP (val))
4963 return val;
4964 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
4965 return Fcons (val, val);
4966 }
4967 return Qnil;
4968 }
4969 }
4970 return Qnil;
4971}
4972
4973DEFUN ("update-iso-coding-systems", Fupdate_iso_coding_systems,
4974 Supdate_iso_coding_systems, 0, 0, 0,
4975 "Update internal database for ISO2022 based coding systems.\n\
4976When values of the following coding categories are changed, you must\n\
4977call this function:\n\
4978 coding-category-iso-7, coding-category-iso-7-tight,\n\
4979 coding-category-iso-8-1, coding-category-iso-8-2,\n\
4980 coding-category-iso-7-else, coding-category-iso-8-else")
4981 ()
4982{
4983 int i;
4984
4985 for (i = CODING_CATEGORY_IDX_ISO_7; i <= CODING_CATEGORY_IDX_ISO_8_ELSE;
4986 i++)
4987 {
4988 if (! coding_system_table[i])
4989 coding_system_table[i]
4990 = (struct coding_system *) xmalloc (sizeof (struct coding_system));
4991 setup_coding_system
4992 (XSYMBOL (XVECTOR (Vcoding_category_table)->contents[i])->value,
4993 coding_system_table[i]);
4994 }
4995 return Qnil;
4996}
4997
4998DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
4999 Sset_coding_priority_internal, 0, 0, 0,
5000 "Update internal database for the current value of `coding-category-list'.\n\
5001This function is internal use only.")
5002 ()
5003{
5004 int i = 0, idx;
5005 Lisp_Object val = Vcoding_category_list;
5006
5007 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
5008 {
5009 if (! SYMBOLP (XCONS (val)->car))
5010 break;
5011 idx = XFASTINT (Fget (XCONS (val)->car, Qcoding_category_index));
5012 if (idx >= CODING_CATEGORY_IDX_MAX)
5013 break;
5014 coding_priorities[i++] = (1 << idx);
5015 val = XCONS (val)->cdr;
5016 }
5017 /* If coding-category-list is valid and contains all coding
5018 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
5019 the following code saves Emacs from craching. */
5020 while (i < CODING_CATEGORY_IDX_MAX)
5021 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
5022
5023 return Qnil;
5024}
5025
5026#endif /* emacs */
5027
5028\f
5029/*** 8. Post-amble ***/
5030
5031void
5032init_coding_once ()
5033{
5034 int i;
5035
5036 /* Emacs' internal format specific initialize routine. */
5037 for (i = 0; i <= 0x20; i++)
5038 emacs_code_class[i] = EMACS_control_code;
5039 emacs_code_class[0x0A] = EMACS_linefeed_code;
5040 emacs_code_class[0x0D] = EMACS_carriage_return_code;
5041 for (i = 0x21 ; i < 0x7F; i++)
5042 emacs_code_class[i] = EMACS_ascii_code;
5043 emacs_code_class[0x7F] = EMACS_control_code;
5044 emacs_code_class[0x80] = EMACS_leading_code_composition;
5045 for (i = 0x81; i < 0xFF; i++)
5046 emacs_code_class[i] = EMACS_invalid_code;
5047 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
5048 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
5049 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
5050 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
5051
5052 /* ISO2022 specific initialize routine. */
5053 for (i = 0; i < 0x20; i++)
5054 iso_code_class[i] = ISO_control_code;
5055 for (i = 0x21; i < 0x7F; i++)
5056 iso_code_class[i] = ISO_graphic_plane_0;
5057 for (i = 0x80; i < 0xA0; i++)
5058 iso_code_class[i] = ISO_control_code;
5059 for (i = 0xA1; i < 0xFF; i++)
5060 iso_code_class[i] = ISO_graphic_plane_1;
5061 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
5062 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
5063 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
5064 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
5065 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
5066 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
5067 iso_code_class[ISO_CODE_ESC] = ISO_escape;
5068 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
5069 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
5070 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
5071
5072 conversion_buffer_size = MINIMUM_CONVERSION_BUFFER_SIZE;
5073 conversion_buffer = (char *) xmalloc (MINIMUM_CONVERSION_BUFFER_SIZE);
5074
5075 setup_coding_system (Qnil, &keyboard_coding);
5076 setup_coding_system (Qnil, &terminal_coding);
5077 setup_coding_system (Qnil, &safe_terminal_coding);
5078
5079 bzero (coding_system_table, sizeof coding_system_table);
5080
5081 bzero (ascii_skip_code, sizeof ascii_skip_code);
5082 for (i = 0; i < 128; i++)
5083 ascii_skip_code[i] = 1;
5084
5085#if defined (MSDOS) || defined (WINDOWSNT)
5086 system_eol_type = CODING_EOL_CRLF;
5087#else
5088 system_eol_type = CODING_EOL_LF;
5089#endif
5090}
5091
5092#ifdef emacs
5093
5094void
5095syms_of_coding ()
5096{
5097 Qtarget_idx = intern ("target-idx");
5098 staticpro (&Qtarget_idx);
5099
5100 Qcoding_system_history = intern ("coding-system-history");
5101 staticpro (&Qcoding_system_history);
5102 Fset (Qcoding_system_history, Qnil);
5103
5104 /* Target FILENAME is the first argument. */
5105 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
5106 /* Target FILENAME is the third argument. */
5107 Fput (Qwrite_region, Qtarget_idx, make_number (2));
5108
5109 Qcall_process = intern ("call-process");
5110 staticpro (&Qcall_process);
5111 /* Target PROGRAM is the first argument. */
5112 Fput (Qcall_process, Qtarget_idx, make_number (0));
5113
5114 Qcall_process_region = intern ("call-process-region");
5115 staticpro (&Qcall_process_region);
5116 /* Target PROGRAM is the third argument. */
5117 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
5118
5119 Qstart_process = intern ("start-process");
5120 staticpro (&Qstart_process);
5121 /* Target PROGRAM is the third argument. */
5122 Fput (Qstart_process, Qtarget_idx, make_number (2));
5123
5124 Qopen_network_stream = intern ("open-network-stream");
5125 staticpro (&Qopen_network_stream);
5126 /* Target SERVICE is the fourth argument. */
5127 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
5128
5129 Qcoding_system = intern ("coding-system");
5130 staticpro (&Qcoding_system);
5131
5132 Qeol_type = intern ("eol-type");
5133 staticpro (&Qeol_type);
5134
5135 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
5136 staticpro (&Qbuffer_file_coding_system);
5137
5138 Qpost_read_conversion = intern ("post-read-conversion");
5139 staticpro (&Qpost_read_conversion);
5140
5141 Qpre_write_conversion = intern ("pre-write-conversion");
5142 staticpro (&Qpre_write_conversion);
5143
5144 Qno_conversion = intern ("no-conversion");
5145 staticpro (&Qno_conversion);
5146
5147 Qundecided = intern ("undecided");
5148 staticpro (&Qundecided);
5149
5150 Qcoding_system_p = intern ("coding-system-p");
5151 staticpro (&Qcoding_system_p);
5152
5153 Qcoding_system_error = intern ("coding-system-error");
5154 staticpro (&Qcoding_system_error);
5155
5156 Fput (Qcoding_system_error, Qerror_conditions,
5157 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
5158 Fput (Qcoding_system_error, Qerror_message,
5159 build_string ("Invalid coding system"));
5160
5161 Qcoding_category = intern ("coding-category");
5162 staticpro (&Qcoding_category);
5163 Qcoding_category_index = intern ("coding-category-index");
5164 staticpro (&Qcoding_category_index);
5165
5166 Vcoding_category_table
5167 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
5168 staticpro (&Vcoding_category_table);
5169 {
5170 int i;
5171 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
5172 {
5173 XVECTOR (Vcoding_category_table)->contents[i]
5174 = intern (coding_category_name[i]);
5175 Fput (XVECTOR (Vcoding_category_table)->contents[i],
5176 Qcoding_category_index, make_number (i));
5177 }
5178 }
5179
5180 Qtranslation_table = intern ("translation-table");
5181 staticpro (&Qtranslation_table);
5182 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (0));
5183
5184 Qtranslation_table_id = intern ("translation-table-id");
5185 staticpro (&Qtranslation_table_id);
5186
5187 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
5188 staticpro (&Qtranslation_table_for_decode);
5189
5190 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
5191 staticpro (&Qtranslation_table_for_encode);
5192
5193 Qsafe_charsets = intern ("safe-charsets");
5194 staticpro (&Qsafe_charsets);
5195
5196 Qemacs_mule = intern ("emacs-mule");
5197 staticpro (&Qemacs_mule);
5198
5199 Qraw_text = intern ("raw-text");
5200 staticpro (&Qraw_text);
5201
5202 defsubr (&Scoding_system_p);
5203 defsubr (&Sread_coding_system);
5204 defsubr (&Sread_non_nil_coding_system);
5205 defsubr (&Scheck_coding_system);
5206 defsubr (&Sdetect_coding_region);
5207 defsubr (&Sdetect_coding_string);
5208 defsubr (&Sdecode_coding_region);
5209 defsubr (&Sencode_coding_region);
5210 defsubr (&Sdecode_coding_string);
5211 defsubr (&Sencode_coding_string);
5212 defsubr (&Sdecode_sjis_char);
5213 defsubr (&Sencode_sjis_char);
5214 defsubr (&Sdecode_big5_char);
5215 defsubr (&Sencode_big5_char);
5216 defsubr (&Sset_terminal_coding_system_internal);
5217 defsubr (&Sset_safe_terminal_coding_system_internal);
5218 defsubr (&Sterminal_coding_system);
5219 defsubr (&Sset_keyboard_coding_system_internal);
5220 defsubr (&Skeyboard_coding_system);
5221 defsubr (&Sfind_operation_coding_system);
5222 defsubr (&Supdate_iso_coding_systems);
5223 defsubr (&Sset_coding_priority_internal);
5224
5225 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
5226 "List of coding systems.\n\
5227\n\
5228Do not alter the value of this variable manually. This variable should be\n\
5229updated by the functions `make-coding-system' and\n\
5230`define-coding-system-alias'.");
5231 Vcoding_system_list = Qnil;
5232
5233 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
5234 "Alist of coding system names.\n\
5235Each element is one element list of coding system name.\n\
5236This variable is given to `completing-read' as TABLE argument.\n\
5237\n\
5238Do not alter the value of this variable manually. This variable should be\n\
5239updated by the functions `make-coding-system' and\n\
5240`define-coding-system-alias'.");
5241 Vcoding_system_alist = Qnil;
5242
5243 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
5244 "List of coding-categories (symbols) ordered by priority.");
5245 {
5246 int i;
5247
5248 Vcoding_category_list = Qnil;
5249 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
5250 Vcoding_category_list
5251 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
5252 Vcoding_category_list);
5253 }
5254
5255 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
5256 "Specify the coding system for read operations.\n\
5257It is useful to bind this variable with `let', but do not set it globally.\n\
5258If the value is a coding system, it is used for decoding on read operation.\n\
5259If not, an appropriate element is used from one of the coding system alists:\n\
5260There are three such tables, `file-coding-system-alist',\n\
5261`process-coding-system-alist', and `network-coding-system-alist'.");
5262 Vcoding_system_for_read = Qnil;
5263
5264 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
5265 "Specify the coding system for write operations.\n\
5266It is useful to bind this variable with `let', but do not set it globally.\n\
5267If the value is a coding system, it is used for encoding on write operation.\n\
5268If not, an appropriate element is used from one of the coding system alists:\n\
5269There are three such tables, `file-coding-system-alist',\n\
5270`process-coding-system-alist', and `network-coding-system-alist'.");
5271 Vcoding_system_for_write = Qnil;
5272
5273 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
5274 "Coding system used in the latest file or process I/O.");
5275 Vlast_coding_system_used = Qnil;
5276
5277 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
5278 "*Non-nil inhibit code conversion of end-of-line format in any cases.");
5279 inhibit_eol_conversion = 0;
5280
5281 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
5282 "Non-nil means process buffer inherits coding system of process output.\n\
5283Bind it to t if the process output is to be treated as if it were a file\n\
5284read from some filesystem.");
5285 inherit_process_coding_system = 0;
5286
5287 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
5288 "Alist to decide a coding system to use for a file I/O operation.\n\
5289The format is ((PATTERN . VAL) ...),\n\
5290where PATTERN is a regular expression matching a file name,\n\
5291VAL is a coding system, a cons of coding systems, or a function symbol.\n\
5292If VAL is a coding system, it is used for both decoding and encoding\n\
5293the file contents.\n\
5294If VAL is a cons of coding systems, the car part is used for decoding,\n\
5295and the cdr part is used for encoding.\n\
5296If VAL is a function symbol, the function must return a coding system\n\
5297or a cons of coding systems which are used as above.\n\
5298\n\
5299See also the function `find-operation-coding-system'.");
5300 Vfile_coding_system_alist = Qnil;
5301
5302 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
5303 "Alist to decide a coding system to use for a process I/O operation.\n\
5304The format is ((PATTERN . VAL) ...),\n\
5305where PATTERN is a regular expression matching a program name,\n\
5306VAL is a coding system, a cons of coding systems, or a function symbol.\n\
5307If VAL is a coding system, it is used for both decoding what received\n\
5308from the program and encoding what sent to the program.\n\
5309If VAL is a cons of coding systems, the car part is used for decoding,\n\
5310and the cdr part is used for encoding.\n\
5311If VAL is a function symbol, the function must return a coding system\n\
5312or a cons of coding systems which are used as above.\n\
5313\n\
5314See also the function `find-operation-coding-system'.");
5315 Vprocess_coding_system_alist = Qnil;
5316
5317 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
5318 "Alist to decide a coding system to use for a network I/O operation.\n\
5319The format is ((PATTERN . VAL) ...),\n\
5320where PATTERN is a regular expression matching a network service name\n\
5321or is a port number to connect to,\n\
5322VAL is a coding system, a cons of coding systems, or a function symbol.\n\
5323If VAL is a coding system, it is used for both decoding what received\n\
5324from the network stream and encoding what sent to the network stream.\n\
5325If VAL is a cons of coding systems, the car part is used for decoding,\n\
5326and the cdr part is used for encoding.\n\
5327If VAL is a function symbol, the function must return a coding system\n\
5328or a cons of coding systems which are used as above.\n\
5329\n\
5330See also the function `find-operation-coding-system'.");
5331 Vnetwork_coding_system_alist = Qnil;
5332
5333 DEFVAR_INT ("eol-mnemonic-unix", &eol_mnemonic_unix,
5334 "Mnemonic character indicating UNIX-like end-of-line format (i.e. LF) .");
5335 eol_mnemonic_unix = ':';
5336
5337 DEFVAR_INT ("eol-mnemonic-dos", &eol_mnemonic_dos,
5338 "Mnemonic character indicating DOS-like end-of-line format (i.e. CRLF).");
5339 eol_mnemonic_dos = '\\';
5340
5341 DEFVAR_INT ("eol-mnemonic-mac", &eol_mnemonic_mac,
5342 "Mnemonic character indicating MAC-like end-of-line format (i.e. CR).");
5343 eol_mnemonic_mac = '/';
5344
5345 DEFVAR_INT ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
5346 "Mnemonic character indicating end-of-line format is not yet decided.");
5347 eol_mnemonic_undecided = ':';
5348
5349 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
5350 "*Non-nil enables character translation while encoding and decoding.");
5351 Venable_character_translation = Qt;
5352
5353 DEFVAR_LISP ("standard-translation-table-for-decode",
5354 &Vstandard_translation_table_for_decode,
5355 "Table for translating characters while decoding.");
5356 Vstandard_translation_table_for_decode = Qnil;
5357
5358 DEFVAR_LISP ("standard-translation-table-for-encode",
5359 &Vstandard_translation_table_for_encode,
5360 "Table for translationg characters while encoding.");
5361 Vstandard_translation_table_for_encode = Qnil;
5362
5363 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
5364 "Alist of charsets vs revision numbers.\n\
5365While encoding, if a charset (car part of an element) is found,\n\
5366designate it with the escape sequence identifing revision (cdr part of the element).");
5367 Vcharset_revision_alist = Qnil;
5368
5369 DEFVAR_LISP ("default-process-coding-system",
5370 &Vdefault_process_coding_system,
5371 "Cons of coding systems used for process I/O by default.\n\
5372The car part is used for decoding a process output,\n\
5373the cdr part is used for encoding a text to be sent to a process.");
5374 Vdefault_process_coding_system = Qnil;
5375
5376 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
5377 "Table of extra Latin codes in the range 128..159 (inclusive).\n\
5378This is a vector of length 256.\n\
5379If Nth element is non-nil, the existence of code N in a file\n\
5380\(or output of subprocess) doesn't prevent it to be detected as\n\
5381a coding system of ISO 2022 variant which has a flag\n\
5382`accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file\n\
5383or reading output of a subprocess.\n\
5384Only 128th through 159th elements has a meaning.");
5385 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
5386
5387 DEFVAR_LISP ("select-safe-coding-system-function",
5388 &Vselect_safe_coding_system_function,
5389 "Function to call to select safe coding system for encoding a text.\n\
5390\n\
5391If set, this function is called to force a user to select a proper\n\
5392coding system which can encode the text in the case that a default\n\
5393coding system used in each operation can't encode the text.\n\
5394\n\
5395The default value is `select-safe-codign-system' (which see).");
5396 Vselect_safe_coding_system_function = Qnil;
5397
5398}
5399
5400#endif /* emacs */