* lisp/emacs-lisp/cl-macs.el (cl-symbol-macrolet): Print warning for
[bpt/emacs.git] / src / alloc.c
... / ...
CommitLineData
1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
2
3Copyright (C) 1985-1986, 1988, 1993-1995, 1997-2013 Free Software
4Foundation, Inc.
5
6This file is part of GNU Emacs.
7
8GNU Emacs is free software: you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation, either version 3 of the License, or
11(at your option) any later version.
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
20
21#include <config.h>
22
23#include <stdio.h>
24#include <limits.h> /* For CHAR_BIT. */
25
26#ifdef ENABLE_CHECKING
27#include <signal.h> /* For SIGABRT. */
28#endif
29
30#ifdef HAVE_PTHREAD
31#include <pthread.h>
32#endif
33
34#include "lisp.h"
35#include "process.h"
36#include "intervals.h"
37#include "puresize.h"
38#include "character.h"
39#include "buffer.h"
40#include "window.h"
41#include "keyboard.h"
42#include "frame.h"
43#include "blockinput.h"
44#include "termhooks.h" /* For struct terminal. */
45#ifdef HAVE_WINDOW_SYSTEM
46#include TERM_HEADER
47#endif /* HAVE_WINDOW_SYSTEM */
48
49#include <verify.h>
50
51#if (defined ENABLE_CHECKING \
52 && defined HAVE_VALGRIND_VALGRIND_H \
53 && !defined USE_VALGRIND)
54# define USE_VALGRIND 1
55#endif
56
57#if USE_VALGRIND
58#include <valgrind/valgrind.h>
59#include <valgrind/memcheck.h>
60static bool valgrind_p;
61#endif
62
63/* GC_CHECK_MARKED_OBJECTS means do sanity checks on allocated objects.
64 Doable only if GC_MARK_STACK. */
65#if ! GC_MARK_STACK
66# undef GC_CHECK_MARKED_OBJECTS
67#endif
68
69/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
70 memory. Can do this only if using gmalloc.c and if not checking
71 marked objects. */
72
73#if (defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC \
74 || defined GC_CHECK_MARKED_OBJECTS)
75#undef GC_MALLOC_CHECK
76#endif
77
78#include <unistd.h>
79#include <fcntl.h>
80
81#ifdef USE_GTK
82# include "gtkutil.h"
83#endif
84#ifdef WINDOWSNT
85#include "w32.h"
86#include "w32heap.h" /* for sbrk */
87#endif
88
89#ifdef DOUG_LEA_MALLOC
90
91#include <malloc.h>
92
93/* Specify maximum number of areas to mmap. It would be nice to use a
94 value that explicitly means "no limit". */
95
96#define MMAP_MAX_AREAS 100000000
97
98#endif /* not DOUG_LEA_MALLOC */
99
100/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
101 to a struct Lisp_String. */
102
103#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
104#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
105#define STRING_MARKED_P(S) (((S)->size & ARRAY_MARK_FLAG) != 0)
106
107#define VECTOR_MARK(V) ((V)->header.size |= ARRAY_MARK_FLAG)
108#define VECTOR_UNMARK(V) ((V)->header.size &= ~ARRAY_MARK_FLAG)
109#define VECTOR_MARKED_P(V) (((V)->header.size & ARRAY_MARK_FLAG) != 0)
110
111/* Default value of gc_cons_threshold (see below). */
112
113#define GC_DEFAULT_THRESHOLD (100000 * word_size)
114
115/* Global variables. */
116struct emacs_globals globals;
117
118/* Number of bytes of consing done since the last gc. */
119
120EMACS_INT consing_since_gc;
121
122/* Similar minimum, computed from Vgc_cons_percentage. */
123
124EMACS_INT gc_relative_threshold;
125
126/* Minimum number of bytes of consing since GC before next GC,
127 when memory is full. */
128
129EMACS_INT memory_full_cons_threshold;
130
131/* True during GC. */
132
133bool gc_in_progress;
134
135/* True means abort if try to GC.
136 This is for code which is written on the assumption that
137 no GC will happen, so as to verify that assumption. */
138
139bool abort_on_gc;
140
141/* Number of live and free conses etc. */
142
143static EMACS_INT total_conses, total_markers, total_symbols, total_buffers;
144static EMACS_INT total_free_conses, total_free_markers, total_free_symbols;
145static EMACS_INT total_free_floats, total_floats;
146
147/* Points to memory space allocated as "spare", to be freed if we run
148 out of memory. We keep one large block, four cons-blocks, and
149 two string blocks. */
150
151static char *spare_memory[7];
152
153/* Amount of spare memory to keep in large reserve block, or to see
154 whether this much is available when malloc fails on a larger request. */
155
156#define SPARE_MEMORY (1 << 14)
157
158/* Initialize it to a nonzero value to force it into data space
159 (rather than bss space). That way unexec will remap it into text
160 space (pure), on some systems. We have not implemented the
161 remapping on more recent systems because this is less important
162 nowadays than in the days of small memories and timesharing. */
163
164EMACS_INT pure[(PURESIZE + sizeof (EMACS_INT) - 1) / sizeof (EMACS_INT)] = {1,};
165#define PUREBEG (char *) pure
166
167/* Pointer to the pure area, and its size. */
168
169static char *purebeg;
170static ptrdiff_t pure_size;
171
172/* Number of bytes of pure storage used before pure storage overflowed.
173 If this is non-zero, this implies that an overflow occurred. */
174
175static ptrdiff_t pure_bytes_used_before_overflow;
176
177/* True if P points into pure space. */
178
179#define PURE_POINTER_P(P) \
180 ((uintptr_t) (P) - (uintptr_t) purebeg <= pure_size)
181
182/* Index in pure at which next pure Lisp object will be allocated.. */
183
184static ptrdiff_t pure_bytes_used_lisp;
185
186/* Number of bytes allocated for non-Lisp objects in pure storage. */
187
188static ptrdiff_t pure_bytes_used_non_lisp;
189
190/* If nonzero, this is a warning delivered by malloc and not yet
191 displayed. */
192
193const char *pending_malloc_warning;
194
195/* Maximum amount of C stack to save when a GC happens. */
196
197#ifndef MAX_SAVE_STACK
198#define MAX_SAVE_STACK 16000
199#endif
200
201/* Buffer in which we save a copy of the C stack at each GC. */
202
203#if MAX_SAVE_STACK > 0
204static char *stack_copy;
205static ptrdiff_t stack_copy_size;
206#endif
207
208static Lisp_Object Qconses;
209static Lisp_Object Qsymbols;
210static Lisp_Object Qmiscs;
211static Lisp_Object Qstrings;
212static Lisp_Object Qvectors;
213static Lisp_Object Qfloats;
214static Lisp_Object Qintervals;
215static Lisp_Object Qbuffers;
216static Lisp_Object Qstring_bytes, Qvector_slots, Qheap;
217static Lisp_Object Qgc_cons_threshold;
218Lisp_Object Qautomatic_gc;
219Lisp_Object Qchar_table_extra_slots;
220
221/* Hook run after GC has finished. */
222
223static Lisp_Object Qpost_gc_hook;
224
225static void mark_terminals (void);
226static void gc_sweep (void);
227static Lisp_Object make_pure_vector (ptrdiff_t);
228static void mark_buffer (struct buffer *);
229
230#if !defined REL_ALLOC || defined SYSTEM_MALLOC
231static void refill_memory_reserve (void);
232#endif
233static void compact_small_strings (void);
234static void free_large_strings (void);
235extern Lisp_Object which_symbols (Lisp_Object, EMACS_INT) EXTERNALLY_VISIBLE;
236
237/* When scanning the C stack for live Lisp objects, Emacs keeps track of
238 what memory allocated via lisp_malloc and lisp_align_malloc is intended
239 for what purpose. This enumeration specifies the type of memory. */
240
241enum mem_type
242{
243 MEM_TYPE_NON_LISP,
244 MEM_TYPE_BUFFER,
245 MEM_TYPE_CONS,
246 MEM_TYPE_STRING,
247 MEM_TYPE_MISC,
248 MEM_TYPE_SYMBOL,
249 MEM_TYPE_FLOAT,
250 /* Since all non-bool pseudovectors are small enough to be
251 allocated from vector blocks, this memory type denotes
252 large regular vectors and large bool pseudovectors. */
253 MEM_TYPE_VECTORLIKE,
254 /* Special type to denote vector blocks. */
255 MEM_TYPE_VECTOR_BLOCK,
256 /* Special type to denote reserved memory. */
257 MEM_TYPE_SPARE
258};
259
260#if GC_MARK_STACK || defined GC_MALLOC_CHECK
261
262/* A unique object in pure space used to make some Lisp objects
263 on free lists recognizable in O(1). */
264
265static Lisp_Object Vdead;
266#define DEADP(x) EQ (x, Vdead)
267
268#ifdef GC_MALLOC_CHECK
269
270enum mem_type allocated_mem_type;
271
272#endif /* GC_MALLOC_CHECK */
273
274/* A node in the red-black tree describing allocated memory containing
275 Lisp data. Each such block is recorded with its start and end
276 address when it is allocated, and removed from the tree when it
277 is freed.
278
279 A red-black tree is a balanced binary tree with the following
280 properties:
281
282 1. Every node is either red or black.
283 2. Every leaf is black.
284 3. If a node is red, then both of its children are black.
285 4. Every simple path from a node to a descendant leaf contains
286 the same number of black nodes.
287 5. The root is always black.
288
289 When nodes are inserted into the tree, or deleted from the tree,
290 the tree is "fixed" so that these properties are always true.
291
292 A red-black tree with N internal nodes has height at most 2
293 log(N+1). Searches, insertions and deletions are done in O(log N).
294 Please see a text book about data structures for a detailed
295 description of red-black trees. Any book worth its salt should
296 describe them. */
297
298struct mem_node
299{
300 /* Children of this node. These pointers are never NULL. When there
301 is no child, the value is MEM_NIL, which points to a dummy node. */
302 struct mem_node *left, *right;
303
304 /* The parent of this node. In the root node, this is NULL. */
305 struct mem_node *parent;
306
307 /* Start and end of allocated region. */
308 void *start, *end;
309
310 /* Node color. */
311 enum {MEM_BLACK, MEM_RED} color;
312
313 /* Memory type. */
314 enum mem_type type;
315};
316
317/* Base address of stack. Set in main. */
318
319Lisp_Object *stack_base;
320
321/* Root of the tree describing allocated Lisp memory. */
322
323static struct mem_node *mem_root;
324
325/* Lowest and highest known address in the heap. */
326
327static void *min_heap_address, *max_heap_address;
328
329/* Sentinel node of the tree. */
330
331static struct mem_node mem_z;
332#define MEM_NIL &mem_z
333
334static struct mem_node *mem_insert (void *, void *, enum mem_type);
335static void mem_insert_fixup (struct mem_node *);
336static void mem_rotate_left (struct mem_node *);
337static void mem_rotate_right (struct mem_node *);
338static void mem_delete (struct mem_node *);
339static void mem_delete_fixup (struct mem_node *);
340static struct mem_node *mem_find (void *);
341
342#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
343
344#ifndef DEADP
345# define DEADP(x) 0
346#endif
347
348/* Recording what needs to be marked for gc. */
349
350struct gcpro *gcprolist;
351
352/* Addresses of staticpro'd variables. Initialize it to a nonzero
353 value; otherwise some compilers put it into BSS. */
354
355enum { NSTATICS = 2048 };
356static Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
357
358/* Index of next unused slot in staticvec. */
359
360static int staticidx;
361
362static void *pure_alloc (size_t, int);
363
364/* Return X rounded to the next multiple of Y. Arguments should not
365 have side effects, as they are evaluated more than once. Assume X
366 + Y - 1 does not overflow. Tune for Y being a power of 2. */
367
368#define ROUNDUP(x, y) ((y) & ((y) - 1) \
369 ? ((x) + (y) - 1) - ((x) + (y) - 1) % (y) \
370 : ((x) + (y) - 1) & ~ ((y) - 1))
371
372/* Return PTR rounded up to the next multiple of ALIGNMENT. */
373
374static void *
375ALIGN (void *ptr, int alignment)
376{
377 return (void *) ROUNDUP ((uintptr_t) ptr, alignment);
378}
379
380static void
381XFLOAT_INIT (Lisp_Object f, double n)
382{
383 XFLOAT (f)->u.data = n;
384}
385
386\f
387/************************************************************************
388 Malloc
389 ************************************************************************/
390
391/* Function malloc calls this if it finds we are near exhausting storage. */
392
393void
394malloc_warning (const char *str)
395{
396 pending_malloc_warning = str;
397}
398
399
400/* Display an already-pending malloc warning. */
401
402void
403display_malloc_warning (void)
404{
405 call3 (intern ("display-warning"),
406 intern ("alloc"),
407 build_string (pending_malloc_warning),
408 intern ("emergency"));
409 pending_malloc_warning = 0;
410}
411\f
412/* Called if we can't allocate relocatable space for a buffer. */
413
414void
415buffer_memory_full (ptrdiff_t nbytes)
416{
417 /* If buffers use the relocating allocator, no need to free
418 spare_memory, because we may have plenty of malloc space left
419 that we could get, and if we don't, the malloc that fails will
420 itself cause spare_memory to be freed. If buffers don't use the
421 relocating allocator, treat this like any other failing
422 malloc. */
423
424#ifndef REL_ALLOC
425 memory_full (nbytes);
426#else
427 /* This used to call error, but if we've run out of memory, we could
428 get infinite recursion trying to build the string. */
429 xsignal (Qnil, Vmemory_signal_data);
430#endif
431}
432
433/* A common multiple of the positive integers A and B. Ideally this
434 would be the least common multiple, but there's no way to do that
435 as a constant expression in C, so do the best that we can easily do. */
436#define COMMON_MULTIPLE(a, b) \
437 ((a) % (b) == 0 ? (a) : (b) % (a) == 0 ? (b) : (a) * (b))
438
439#ifndef XMALLOC_OVERRUN_CHECK
440#define XMALLOC_OVERRUN_CHECK_OVERHEAD 0
441#else
442
443/* Check for overrun in malloc'ed buffers by wrapping a header and trailer
444 around each block.
445
446 The header consists of XMALLOC_OVERRUN_CHECK_SIZE fixed bytes
447 followed by XMALLOC_OVERRUN_SIZE_SIZE bytes containing the original
448 block size in little-endian order. The trailer consists of
449 XMALLOC_OVERRUN_CHECK_SIZE fixed bytes.
450
451 The header is used to detect whether this block has been allocated
452 through these functions, as some low-level libc functions may
453 bypass the malloc hooks. */
454
455#define XMALLOC_OVERRUN_CHECK_SIZE 16
456#define XMALLOC_OVERRUN_CHECK_OVERHEAD \
457 (2 * XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE)
458
459/* Define XMALLOC_OVERRUN_SIZE_SIZE so that (1) it's large enough to
460 hold a size_t value and (2) the header size is a multiple of the
461 alignment that Emacs needs for C types and for USE_LSB_TAG. */
462#define XMALLOC_BASE_ALIGNMENT \
463 alignof (union { long double d; intmax_t i; void *p; })
464
465#if USE_LSB_TAG
466# define XMALLOC_HEADER_ALIGNMENT \
467 COMMON_MULTIPLE (GCALIGNMENT, XMALLOC_BASE_ALIGNMENT)
468#else
469# define XMALLOC_HEADER_ALIGNMENT XMALLOC_BASE_ALIGNMENT
470#endif
471#define XMALLOC_OVERRUN_SIZE_SIZE \
472 (((XMALLOC_OVERRUN_CHECK_SIZE + sizeof (size_t) \
473 + XMALLOC_HEADER_ALIGNMENT - 1) \
474 / XMALLOC_HEADER_ALIGNMENT * XMALLOC_HEADER_ALIGNMENT) \
475 - XMALLOC_OVERRUN_CHECK_SIZE)
476
477static char const xmalloc_overrun_check_header[XMALLOC_OVERRUN_CHECK_SIZE] =
478 { '\x9a', '\x9b', '\xae', '\xaf',
479 '\xbf', '\xbe', '\xce', '\xcf',
480 '\xea', '\xeb', '\xec', '\xed',
481 '\xdf', '\xde', '\x9c', '\x9d' };
482
483static char const xmalloc_overrun_check_trailer[XMALLOC_OVERRUN_CHECK_SIZE] =
484 { '\xaa', '\xab', '\xac', '\xad',
485 '\xba', '\xbb', '\xbc', '\xbd',
486 '\xca', '\xcb', '\xcc', '\xcd',
487 '\xda', '\xdb', '\xdc', '\xdd' };
488
489/* Insert and extract the block size in the header. */
490
491static void
492xmalloc_put_size (unsigned char *ptr, size_t size)
493{
494 int i;
495 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
496 {
497 *--ptr = size & ((1 << CHAR_BIT) - 1);
498 size >>= CHAR_BIT;
499 }
500}
501
502static size_t
503xmalloc_get_size (unsigned char *ptr)
504{
505 size_t size = 0;
506 int i;
507 ptr -= XMALLOC_OVERRUN_SIZE_SIZE;
508 for (i = 0; i < XMALLOC_OVERRUN_SIZE_SIZE; i++)
509 {
510 size <<= CHAR_BIT;
511 size += *ptr++;
512 }
513 return size;
514}
515
516
517/* Like malloc, but wraps allocated block with header and trailer. */
518
519static void *
520overrun_check_malloc (size_t size)
521{
522 register unsigned char *val;
523 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
524 emacs_abort ();
525
526 val = malloc (size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
527 if (val)
528 {
529 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
530 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
531 xmalloc_put_size (val, size);
532 memcpy (val + size, xmalloc_overrun_check_trailer,
533 XMALLOC_OVERRUN_CHECK_SIZE);
534 }
535 return val;
536}
537
538
539/* Like realloc, but checks old block for overrun, and wraps new block
540 with header and trailer. */
541
542static void *
543overrun_check_realloc (void *block, size_t size)
544{
545 register unsigned char *val = (unsigned char *) block;
546 if (SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD < size)
547 emacs_abort ();
548
549 if (val
550 && memcmp (xmalloc_overrun_check_header,
551 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
552 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
553 {
554 size_t osize = xmalloc_get_size (val);
555 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
556 XMALLOC_OVERRUN_CHECK_SIZE))
557 emacs_abort ();
558 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
559 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
560 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
561 }
562
563 val = realloc (val, size + XMALLOC_OVERRUN_CHECK_OVERHEAD);
564
565 if (val)
566 {
567 memcpy (val, xmalloc_overrun_check_header, XMALLOC_OVERRUN_CHECK_SIZE);
568 val += XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
569 xmalloc_put_size (val, size);
570 memcpy (val + size, xmalloc_overrun_check_trailer,
571 XMALLOC_OVERRUN_CHECK_SIZE);
572 }
573 return val;
574}
575
576/* Like free, but checks block for overrun. */
577
578static void
579overrun_check_free (void *block)
580{
581 unsigned char *val = (unsigned char *) block;
582
583 if (val
584 && memcmp (xmalloc_overrun_check_header,
585 val - XMALLOC_OVERRUN_CHECK_SIZE - XMALLOC_OVERRUN_SIZE_SIZE,
586 XMALLOC_OVERRUN_CHECK_SIZE) == 0)
587 {
588 size_t osize = xmalloc_get_size (val);
589 if (memcmp (xmalloc_overrun_check_trailer, val + osize,
590 XMALLOC_OVERRUN_CHECK_SIZE))
591 emacs_abort ();
592#ifdef XMALLOC_CLEAR_FREE_MEMORY
593 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
594 memset (val, 0xff, osize + XMALLOC_OVERRUN_CHECK_OVERHEAD);
595#else
596 memset (val + osize, 0, XMALLOC_OVERRUN_CHECK_SIZE);
597 val -= XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE;
598 memset (val, 0, XMALLOC_OVERRUN_CHECK_SIZE + XMALLOC_OVERRUN_SIZE_SIZE);
599#endif
600 }
601
602 free (val);
603}
604
605#undef malloc
606#undef realloc
607#undef free
608#define malloc overrun_check_malloc
609#define realloc overrun_check_realloc
610#define free overrun_check_free
611#endif
612
613/* If compiled with XMALLOC_BLOCK_INPUT_CHECK, define a symbol
614 BLOCK_INPUT_IN_MEMORY_ALLOCATORS that is visible to the debugger.
615 If that variable is set, block input while in one of Emacs's memory
616 allocation functions. There should be no need for this debugging
617 option, since signal handlers do not allocate memory, but Emacs
618 formerly allocated memory in signal handlers and this compile-time
619 option remains as a way to help debug the issue should it rear its
620 ugly head again. */
621#ifdef XMALLOC_BLOCK_INPUT_CHECK
622bool block_input_in_memory_allocators EXTERNALLY_VISIBLE;
623static void
624malloc_block_input (void)
625{
626 if (block_input_in_memory_allocators)
627 block_input ();
628}
629static void
630malloc_unblock_input (void)
631{
632 if (block_input_in_memory_allocators)
633 unblock_input ();
634}
635# define MALLOC_BLOCK_INPUT malloc_block_input ()
636# define MALLOC_UNBLOCK_INPUT malloc_unblock_input ()
637#else
638# define MALLOC_BLOCK_INPUT ((void) 0)
639# define MALLOC_UNBLOCK_INPUT ((void) 0)
640#endif
641
642#define MALLOC_PROBE(size) \
643 do { \
644 if (profiler_memory_running) \
645 malloc_probe (size); \
646 } while (0)
647
648
649/* Like malloc but check for no memory and block interrupt input.. */
650
651void *
652xmalloc (size_t size)
653{
654 void *val;
655
656 MALLOC_BLOCK_INPUT;
657 val = malloc (size);
658 MALLOC_UNBLOCK_INPUT;
659
660 if (!val && size)
661 memory_full (size);
662 MALLOC_PROBE (size);
663 return val;
664}
665
666/* Like the above, but zeroes out the memory just allocated. */
667
668void *
669xzalloc (size_t size)
670{
671 void *val;
672
673 MALLOC_BLOCK_INPUT;
674 val = malloc (size);
675 MALLOC_UNBLOCK_INPUT;
676
677 if (!val && size)
678 memory_full (size);
679 memset (val, 0, size);
680 MALLOC_PROBE (size);
681 return val;
682}
683
684/* Like realloc but check for no memory and block interrupt input.. */
685
686void *
687xrealloc (void *block, size_t size)
688{
689 void *val;
690
691 MALLOC_BLOCK_INPUT;
692 /* We must call malloc explicitly when BLOCK is 0, since some
693 reallocs don't do this. */
694 if (! block)
695 val = malloc (size);
696 else
697 val = realloc (block, size);
698 MALLOC_UNBLOCK_INPUT;
699
700 if (!val && size)
701 memory_full (size);
702 MALLOC_PROBE (size);
703 return val;
704}
705
706
707/* Like free but block interrupt input. */
708
709void
710xfree (void *block)
711{
712 if (!block)
713 return;
714 MALLOC_BLOCK_INPUT;
715 free (block);
716 MALLOC_UNBLOCK_INPUT;
717 /* We don't call refill_memory_reserve here
718 because in practice the call in r_alloc_free seems to suffice. */
719}
720
721
722/* Other parts of Emacs pass large int values to allocator functions
723 expecting ptrdiff_t. This is portable in practice, but check it to
724 be safe. */
725verify (INT_MAX <= PTRDIFF_MAX);
726
727
728/* Allocate an array of NITEMS items, each of size ITEM_SIZE.
729 Signal an error on memory exhaustion, and block interrupt input. */
730
731void *
732xnmalloc (ptrdiff_t nitems, ptrdiff_t item_size)
733{
734 eassert (0 <= nitems && 0 < item_size);
735 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
736 memory_full (SIZE_MAX);
737 return xmalloc (nitems * item_size);
738}
739
740
741/* Reallocate an array PA to make it of NITEMS items, each of size ITEM_SIZE.
742 Signal an error on memory exhaustion, and block interrupt input. */
743
744void *
745xnrealloc (void *pa, ptrdiff_t nitems, ptrdiff_t item_size)
746{
747 eassert (0 <= nitems && 0 < item_size);
748 if (min (PTRDIFF_MAX, SIZE_MAX) / item_size < nitems)
749 memory_full (SIZE_MAX);
750 return xrealloc (pa, nitems * item_size);
751}
752
753
754/* Grow PA, which points to an array of *NITEMS items, and return the
755 location of the reallocated array, updating *NITEMS to reflect its
756 new size. The new array will contain at least NITEMS_INCR_MIN more
757 items, but will not contain more than NITEMS_MAX items total.
758 ITEM_SIZE is the size of each item, in bytes.
759
760 ITEM_SIZE and NITEMS_INCR_MIN must be positive. *NITEMS must be
761 nonnegative. If NITEMS_MAX is -1, it is treated as if it were
762 infinity.
763
764 If PA is null, then allocate a new array instead of reallocating
765 the old one.
766
767 Block interrupt input as needed. If memory exhaustion occurs, set
768 *NITEMS to zero if PA is null, and signal an error (i.e., do not
769 return).
770
771 Thus, to grow an array A without saving its old contents, do
772 { xfree (A); A = NULL; A = xpalloc (NULL, &AITEMS, ...); }.
773 The A = NULL avoids a dangling pointer if xpalloc exhausts memory
774 and signals an error, and later this code is reexecuted and
775 attempts to free A. */
776
777void *
778xpalloc (void *pa, ptrdiff_t *nitems, ptrdiff_t nitems_incr_min,
779 ptrdiff_t nitems_max, ptrdiff_t item_size)
780{
781 /* The approximate size to use for initial small allocation
782 requests. This is the largest "small" request for the GNU C
783 library malloc. */
784 enum { DEFAULT_MXFAST = 64 * sizeof (size_t) / 4 };
785
786 /* If the array is tiny, grow it to about (but no greater than)
787 DEFAULT_MXFAST bytes. Otherwise, grow it by about 50%. */
788 ptrdiff_t n = *nitems;
789 ptrdiff_t tiny_max = DEFAULT_MXFAST / item_size - n;
790 ptrdiff_t half_again = n >> 1;
791 ptrdiff_t incr_estimate = max (tiny_max, half_again);
792
793 /* Adjust the increment according to three constraints: NITEMS_INCR_MIN,
794 NITEMS_MAX, and what the C language can represent safely. */
795 ptrdiff_t C_language_max = min (PTRDIFF_MAX, SIZE_MAX) / item_size;
796 ptrdiff_t n_max = (0 <= nitems_max && nitems_max < C_language_max
797 ? nitems_max : C_language_max);
798 ptrdiff_t nitems_incr_max = n_max - n;
799 ptrdiff_t incr = max (nitems_incr_min, min (incr_estimate, nitems_incr_max));
800
801 eassert (0 < item_size && 0 < nitems_incr_min && 0 <= n && -1 <= nitems_max);
802 if (! pa)
803 *nitems = 0;
804 if (nitems_incr_max < incr)
805 memory_full (SIZE_MAX);
806 n += incr;
807 pa = xrealloc (pa, n * item_size);
808 *nitems = n;
809 return pa;
810}
811
812
813/* Like strdup, but uses xmalloc. */
814
815char *
816xstrdup (const char *s)
817{
818 ptrdiff_t size;
819 eassert (s);
820 size = strlen (s) + 1;
821 return memcpy (xmalloc (size), s, size);
822}
823
824/* Like above, but duplicates Lisp string to C string. */
825
826char *
827xlispstrdup (Lisp_Object string)
828{
829 ptrdiff_t size = SBYTES (string) + 1;
830 return memcpy (xmalloc (size), SSDATA (string), size);
831}
832
833/* Like putenv, but (1) use the equivalent of xmalloc and (2) the
834 argument is a const pointer. */
835
836void
837xputenv (char const *string)
838{
839 if (putenv ((char *) string) != 0)
840 memory_full (0);
841}
842
843/* Return a newly allocated memory block of SIZE bytes, remembering
844 to free it when unwinding. */
845void *
846record_xmalloc (size_t size)
847{
848 void *p = xmalloc (size);
849 record_unwind_protect_ptr (xfree, p);
850 return p;
851}
852
853
854/* Like malloc but used for allocating Lisp data. NBYTES is the
855 number of bytes to allocate, TYPE describes the intended use of the
856 allocated memory block (for strings, for conses, ...). */
857
858#if ! USE_LSB_TAG
859void *lisp_malloc_loser EXTERNALLY_VISIBLE;
860#endif
861
862static void *
863lisp_malloc (size_t nbytes, enum mem_type type)
864{
865 register void *val;
866
867 MALLOC_BLOCK_INPUT;
868
869#ifdef GC_MALLOC_CHECK
870 allocated_mem_type = type;
871#endif
872
873 val = malloc (nbytes);
874
875#if ! USE_LSB_TAG
876 /* If the memory just allocated cannot be addressed thru a Lisp
877 object's pointer, and it needs to be,
878 that's equivalent to running out of memory. */
879 if (val && type != MEM_TYPE_NON_LISP)
880 {
881 Lisp_Object tem;
882 XSETCONS (tem, (char *) val + nbytes - 1);
883 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
884 {
885 lisp_malloc_loser = val;
886 free (val);
887 val = 0;
888 }
889 }
890#endif
891
892#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
893 if (val && type != MEM_TYPE_NON_LISP)
894 mem_insert (val, (char *) val + nbytes, type);
895#endif
896
897 MALLOC_UNBLOCK_INPUT;
898 if (!val && nbytes)
899 memory_full (nbytes);
900 MALLOC_PROBE (nbytes);
901 return val;
902}
903
904/* Free BLOCK. This must be called to free memory allocated with a
905 call to lisp_malloc. */
906
907static void
908lisp_free (void *block)
909{
910 MALLOC_BLOCK_INPUT;
911 free (block);
912#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
913 mem_delete (mem_find (block));
914#endif
915 MALLOC_UNBLOCK_INPUT;
916}
917
918/***** Allocation of aligned blocks of memory to store Lisp data. *****/
919
920/* The entry point is lisp_align_malloc which returns blocks of at most
921 BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
922
923#if defined (HAVE_POSIX_MEMALIGN) && defined (SYSTEM_MALLOC)
924#define USE_POSIX_MEMALIGN 1
925#endif
926
927/* BLOCK_ALIGN has to be a power of 2. */
928#define BLOCK_ALIGN (1 << 10)
929
930/* Padding to leave at the end of a malloc'd block. This is to give
931 malloc a chance to minimize the amount of memory wasted to alignment.
932 It should be tuned to the particular malloc library used.
933 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
934 posix_memalign on the other hand would ideally prefer a value of 4
935 because otherwise, there's 1020 bytes wasted between each ablocks.
936 In Emacs, testing shows that those 1020 can most of the time be
937 efficiently used by malloc to place other objects, so a value of 0 can
938 still preferable unless you have a lot of aligned blocks and virtually
939 nothing else. */
940#define BLOCK_PADDING 0
941#define BLOCK_BYTES \
942 (BLOCK_ALIGN - sizeof (struct ablocks *) - BLOCK_PADDING)
943
944/* Internal data structures and constants. */
945
946#define ABLOCKS_SIZE 16
947
948/* An aligned block of memory. */
949struct ablock
950{
951 union
952 {
953 char payload[BLOCK_BYTES];
954 struct ablock *next_free;
955 } x;
956 /* `abase' is the aligned base of the ablocks. */
957 /* It is overloaded to hold the virtual `busy' field that counts
958 the number of used ablock in the parent ablocks.
959 The first ablock has the `busy' field, the others have the `abase'
960 field. To tell the difference, we assume that pointers will have
961 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
962 is used to tell whether the real base of the parent ablocks is `abase'
963 (if not, the word before the first ablock holds a pointer to the
964 real base). */
965 struct ablocks *abase;
966 /* The padding of all but the last ablock is unused. The padding of
967 the last ablock in an ablocks is not allocated. */
968#if BLOCK_PADDING
969 char padding[BLOCK_PADDING];
970#endif
971};
972
973/* A bunch of consecutive aligned blocks. */
974struct ablocks
975{
976 struct ablock blocks[ABLOCKS_SIZE];
977};
978
979/* Size of the block requested from malloc or posix_memalign. */
980#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
981
982#define ABLOCK_ABASE(block) \
983 (((uintptr_t) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
984 ? (struct ablocks *)(block) \
985 : (block)->abase)
986
987/* Virtual `busy' field. */
988#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
989
990/* Pointer to the (not necessarily aligned) malloc block. */
991#ifdef USE_POSIX_MEMALIGN
992#define ABLOCKS_BASE(abase) (abase)
993#else
994#define ABLOCKS_BASE(abase) \
995 (1 & (intptr_t) ABLOCKS_BUSY (abase) ? abase : ((void **)abase)[-1])
996#endif
997
998/* The list of free ablock. */
999static struct ablock *free_ablock;
1000
1001/* Allocate an aligned block of nbytes.
1002 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
1003 smaller or equal to BLOCK_BYTES. */
1004static void *
1005lisp_align_malloc (size_t nbytes, enum mem_type type)
1006{
1007 void *base, *val;
1008 struct ablocks *abase;
1009
1010 eassert (nbytes <= BLOCK_BYTES);
1011
1012 MALLOC_BLOCK_INPUT;
1013
1014#ifdef GC_MALLOC_CHECK
1015 allocated_mem_type = type;
1016#endif
1017
1018 if (!free_ablock)
1019 {
1020 int i;
1021 intptr_t aligned; /* int gets warning casting to 64-bit pointer. */
1022
1023#ifdef DOUG_LEA_MALLOC
1024 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1025 because mapped region contents are not preserved in
1026 a dumped Emacs. */
1027 mallopt (M_MMAP_MAX, 0);
1028#endif
1029
1030#ifdef USE_POSIX_MEMALIGN
1031 {
1032 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
1033 if (err)
1034 base = NULL;
1035 abase = base;
1036 }
1037#else
1038 base = malloc (ABLOCKS_BYTES);
1039 abase = ALIGN (base, BLOCK_ALIGN);
1040#endif
1041
1042 if (base == 0)
1043 {
1044 MALLOC_UNBLOCK_INPUT;
1045 memory_full (ABLOCKS_BYTES);
1046 }
1047
1048 aligned = (base == abase);
1049 if (!aligned)
1050 ((void **) abase)[-1] = base;
1051
1052#ifdef DOUG_LEA_MALLOC
1053 /* Back to a reasonable maximum of mmap'ed areas. */
1054 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1055#endif
1056
1057#if ! USE_LSB_TAG
1058 /* If the memory just allocated cannot be addressed thru a Lisp
1059 object's pointer, and it needs to be, that's equivalent to
1060 running out of memory. */
1061 if (type != MEM_TYPE_NON_LISP)
1062 {
1063 Lisp_Object tem;
1064 char *end = (char *) base + ABLOCKS_BYTES - 1;
1065 XSETCONS (tem, end);
1066 if ((char *) XCONS (tem) != end)
1067 {
1068 lisp_malloc_loser = base;
1069 free (base);
1070 MALLOC_UNBLOCK_INPUT;
1071 memory_full (SIZE_MAX);
1072 }
1073 }
1074#endif
1075
1076 /* Initialize the blocks and put them on the free list.
1077 If `base' was not properly aligned, we can't use the last block. */
1078 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
1079 {
1080 abase->blocks[i].abase = abase;
1081 abase->blocks[i].x.next_free = free_ablock;
1082 free_ablock = &abase->blocks[i];
1083 }
1084 ABLOCKS_BUSY (abase) = (struct ablocks *) aligned;
1085
1086 eassert (0 == ((uintptr_t) abase) % BLOCK_ALIGN);
1087 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
1088 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
1089 eassert (ABLOCKS_BASE (abase) == base);
1090 eassert (aligned == (intptr_t) ABLOCKS_BUSY (abase));
1091 }
1092
1093 abase = ABLOCK_ABASE (free_ablock);
1094 ABLOCKS_BUSY (abase) =
1095 (struct ablocks *) (2 + (intptr_t) ABLOCKS_BUSY (abase));
1096 val = free_ablock;
1097 free_ablock = free_ablock->x.next_free;
1098
1099#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1100 if (type != MEM_TYPE_NON_LISP)
1101 mem_insert (val, (char *) val + nbytes, type);
1102#endif
1103
1104 MALLOC_UNBLOCK_INPUT;
1105
1106 MALLOC_PROBE (nbytes);
1107
1108 eassert (0 == ((uintptr_t) val) % BLOCK_ALIGN);
1109 return val;
1110}
1111
1112static void
1113lisp_align_free (void *block)
1114{
1115 struct ablock *ablock = block;
1116 struct ablocks *abase = ABLOCK_ABASE (ablock);
1117
1118 MALLOC_BLOCK_INPUT;
1119#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
1120 mem_delete (mem_find (block));
1121#endif
1122 /* Put on free list. */
1123 ablock->x.next_free = free_ablock;
1124 free_ablock = ablock;
1125 /* Update busy count. */
1126 ABLOCKS_BUSY (abase)
1127 = (struct ablocks *) (-2 + (intptr_t) ABLOCKS_BUSY (abase));
1128
1129 if (2 > (intptr_t) ABLOCKS_BUSY (abase))
1130 { /* All the blocks are free. */
1131 int i = 0, aligned = (intptr_t) ABLOCKS_BUSY (abase);
1132 struct ablock **tem = &free_ablock;
1133 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
1134
1135 while (*tem)
1136 {
1137 if (*tem >= (struct ablock *) abase && *tem < atop)
1138 {
1139 i++;
1140 *tem = (*tem)->x.next_free;
1141 }
1142 else
1143 tem = &(*tem)->x.next_free;
1144 }
1145 eassert ((aligned & 1) == aligned);
1146 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
1147#ifdef USE_POSIX_MEMALIGN
1148 eassert ((uintptr_t) ABLOCKS_BASE (abase) % BLOCK_ALIGN == 0);
1149#endif
1150 free (ABLOCKS_BASE (abase));
1151 }
1152 MALLOC_UNBLOCK_INPUT;
1153}
1154
1155\f
1156/***********************************************************************
1157 Interval Allocation
1158 ***********************************************************************/
1159
1160/* Number of intervals allocated in an interval_block structure.
1161 The 1020 is 1024 minus malloc overhead. */
1162
1163#define INTERVAL_BLOCK_SIZE \
1164 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1165
1166/* Intervals are allocated in chunks in the form of an interval_block
1167 structure. */
1168
1169struct interval_block
1170{
1171 /* Place `intervals' first, to preserve alignment. */
1172 struct interval intervals[INTERVAL_BLOCK_SIZE];
1173 struct interval_block *next;
1174};
1175
1176/* Current interval block. Its `next' pointer points to older
1177 blocks. */
1178
1179static struct interval_block *interval_block;
1180
1181/* Index in interval_block above of the next unused interval
1182 structure. */
1183
1184static int interval_block_index = INTERVAL_BLOCK_SIZE;
1185
1186/* Number of free and live intervals. */
1187
1188static EMACS_INT total_free_intervals, total_intervals;
1189
1190/* List of free intervals. */
1191
1192static INTERVAL interval_free_list;
1193
1194/* Return a new interval. */
1195
1196INTERVAL
1197make_interval (void)
1198{
1199 INTERVAL val;
1200
1201 MALLOC_BLOCK_INPUT;
1202
1203 if (interval_free_list)
1204 {
1205 val = interval_free_list;
1206 interval_free_list = INTERVAL_PARENT (interval_free_list);
1207 }
1208 else
1209 {
1210 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1211 {
1212 struct interval_block *newi
1213 = lisp_malloc (sizeof *newi, MEM_TYPE_NON_LISP);
1214
1215 newi->next = interval_block;
1216 interval_block = newi;
1217 interval_block_index = 0;
1218 total_free_intervals += INTERVAL_BLOCK_SIZE;
1219 }
1220 val = &interval_block->intervals[interval_block_index++];
1221 }
1222
1223 MALLOC_UNBLOCK_INPUT;
1224
1225 consing_since_gc += sizeof (struct interval);
1226 intervals_consed++;
1227 total_free_intervals--;
1228 RESET_INTERVAL (val);
1229 val->gcmarkbit = 0;
1230 return val;
1231}
1232
1233
1234/* Mark Lisp objects in interval I. */
1235
1236static void
1237mark_interval (register INTERVAL i, Lisp_Object dummy)
1238{
1239 /* Intervals should never be shared. So, if extra internal checking is
1240 enabled, GC aborts if it seems to have visited an interval twice. */
1241 eassert (!i->gcmarkbit);
1242 i->gcmarkbit = 1;
1243 mark_object (i->plist);
1244}
1245
1246/* Mark the interval tree rooted in I. */
1247
1248#define MARK_INTERVAL_TREE(i) \
1249 do { \
1250 if (i && !i->gcmarkbit) \
1251 traverse_intervals_noorder (i, mark_interval, Qnil); \
1252 } while (0)
1253
1254/***********************************************************************
1255 String Allocation
1256 ***********************************************************************/
1257
1258/* Lisp_Strings are allocated in string_block structures. When a new
1259 string_block is allocated, all the Lisp_Strings it contains are
1260 added to a free-list string_free_list. When a new Lisp_String is
1261 needed, it is taken from that list. During the sweep phase of GC,
1262 string_blocks that are entirely free are freed, except two which
1263 we keep.
1264
1265 String data is allocated from sblock structures. Strings larger
1266 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1267 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1268
1269 Sblocks consist internally of sdata structures, one for each
1270 Lisp_String. The sdata structure points to the Lisp_String it
1271 belongs to. The Lisp_String points back to the `u.data' member of
1272 its sdata structure.
1273
1274 When a Lisp_String is freed during GC, it is put back on
1275 string_free_list, and its `data' member and its sdata's `string'
1276 pointer is set to null. The size of the string is recorded in the
1277 `n.nbytes' member of the sdata. So, sdata structures that are no
1278 longer used, can be easily recognized, and it's easy to compact the
1279 sblocks of small strings which we do in compact_small_strings. */
1280
1281/* Size in bytes of an sblock structure used for small strings. This
1282 is 8192 minus malloc overhead. */
1283
1284#define SBLOCK_SIZE 8188
1285
1286/* Strings larger than this are considered large strings. String data
1287 for large strings is allocated from individual sblocks. */
1288
1289#define LARGE_STRING_BYTES 1024
1290
1291/* The SDATA typedef is a struct or union describing string memory
1292 sub-allocated from an sblock. This is where the contents of Lisp
1293 strings are stored. */
1294
1295struct sdata
1296{
1297 /* Back-pointer to the string this sdata belongs to. If null, this
1298 structure is free, and NBYTES (in this structure or in the union below)
1299 contains the string's byte size (the same value that STRING_BYTES
1300 would return if STRING were non-null). If non-null, STRING_BYTES
1301 (STRING) is the size of the data, and DATA contains the string's
1302 contents. */
1303 struct Lisp_String *string;
1304
1305#ifdef GC_CHECK_STRING_BYTES
1306 ptrdiff_t nbytes;
1307#endif
1308
1309 unsigned char data[FLEXIBLE_ARRAY_MEMBER];
1310};
1311
1312#ifdef GC_CHECK_STRING_BYTES
1313
1314typedef struct sdata sdata;
1315#define SDATA_NBYTES(S) (S)->nbytes
1316#define SDATA_DATA(S) (S)->data
1317
1318#else
1319
1320typedef union
1321{
1322 struct Lisp_String *string;
1323
1324 /* When STRING is nonnull, this union is actually of type 'struct sdata',
1325 which has a flexible array member. However, if implemented by
1326 giving this union a member of type 'struct sdata', the union
1327 could not be the last (flexible) member of 'struct sblock',
1328 because C99 prohibits a flexible array member from having a type
1329 that is itself a flexible array. So, comment this member out here,
1330 but remember that the option's there when using this union. */
1331#if 0
1332 struct sdata u;
1333#endif
1334
1335 /* When STRING is null. */
1336 struct
1337 {
1338 struct Lisp_String *string;
1339 ptrdiff_t nbytes;
1340 } n;
1341} sdata;
1342
1343#define SDATA_NBYTES(S) (S)->n.nbytes
1344#define SDATA_DATA(S) ((struct sdata *) (S))->data
1345
1346#endif /* not GC_CHECK_STRING_BYTES */
1347
1348enum { SDATA_DATA_OFFSET = offsetof (struct sdata, data) };
1349
1350/* Structure describing a block of memory which is sub-allocated to
1351 obtain string data memory for strings. Blocks for small strings
1352 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1353 as large as needed. */
1354
1355struct sblock
1356{
1357 /* Next in list. */
1358 struct sblock *next;
1359
1360 /* Pointer to the next free sdata block. This points past the end
1361 of the sblock if there isn't any space left in this block. */
1362 sdata *next_free;
1363
1364 /* String data. */
1365 sdata data[FLEXIBLE_ARRAY_MEMBER];
1366};
1367
1368/* Number of Lisp strings in a string_block structure. The 1020 is
1369 1024 minus malloc overhead. */
1370
1371#define STRING_BLOCK_SIZE \
1372 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1373
1374/* Structure describing a block from which Lisp_String structures
1375 are allocated. */
1376
1377struct string_block
1378{
1379 /* Place `strings' first, to preserve alignment. */
1380 struct Lisp_String strings[STRING_BLOCK_SIZE];
1381 struct string_block *next;
1382};
1383
1384/* Head and tail of the list of sblock structures holding Lisp string
1385 data. We always allocate from current_sblock. The NEXT pointers
1386 in the sblock structures go from oldest_sblock to current_sblock. */
1387
1388static struct sblock *oldest_sblock, *current_sblock;
1389
1390/* List of sblocks for large strings. */
1391
1392static struct sblock *large_sblocks;
1393
1394/* List of string_block structures. */
1395
1396static struct string_block *string_blocks;
1397
1398/* Free-list of Lisp_Strings. */
1399
1400static struct Lisp_String *string_free_list;
1401
1402/* Number of live and free Lisp_Strings. */
1403
1404static EMACS_INT total_strings, total_free_strings;
1405
1406/* Number of bytes used by live strings. */
1407
1408static EMACS_INT total_string_bytes;
1409
1410/* Given a pointer to a Lisp_String S which is on the free-list
1411 string_free_list, return a pointer to its successor in the
1412 free-list. */
1413
1414#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1415
1416/* Return a pointer to the sdata structure belonging to Lisp string S.
1417 S must be live, i.e. S->data must not be null. S->data is actually
1418 a pointer to the `u.data' member of its sdata structure; the
1419 structure starts at a constant offset in front of that. */
1420
1421#define SDATA_OF_STRING(S) ((sdata *) ((S)->data - SDATA_DATA_OFFSET))
1422
1423
1424#ifdef GC_CHECK_STRING_OVERRUN
1425
1426/* We check for overrun in string data blocks by appending a small
1427 "cookie" after each allocated string data block, and check for the
1428 presence of this cookie during GC. */
1429
1430#define GC_STRING_OVERRUN_COOKIE_SIZE 4
1431static char const string_overrun_cookie[GC_STRING_OVERRUN_COOKIE_SIZE] =
1432 { '\xde', '\xad', '\xbe', '\xef' };
1433
1434#else
1435#define GC_STRING_OVERRUN_COOKIE_SIZE 0
1436#endif
1437
1438/* Value is the size of an sdata structure large enough to hold NBYTES
1439 bytes of string data. The value returned includes a terminating
1440 NUL byte, the size of the sdata structure, and padding. */
1441
1442#ifdef GC_CHECK_STRING_BYTES
1443
1444#define SDATA_SIZE(NBYTES) \
1445 ((SDATA_DATA_OFFSET \
1446 + (NBYTES) + 1 \
1447 + sizeof (ptrdiff_t) - 1) \
1448 & ~(sizeof (ptrdiff_t) - 1))
1449
1450#else /* not GC_CHECK_STRING_BYTES */
1451
1452/* The 'max' reserves space for the nbytes union member even when NBYTES + 1 is
1453 less than the size of that member. The 'max' is not needed when
1454 SDATA_DATA_OFFSET is a multiple of sizeof (ptrdiff_t), because then the
1455 alignment code reserves enough space. */
1456
1457#define SDATA_SIZE(NBYTES) \
1458 ((SDATA_DATA_OFFSET \
1459 + (SDATA_DATA_OFFSET % sizeof (ptrdiff_t) == 0 \
1460 ? NBYTES \
1461 : max (NBYTES, sizeof (ptrdiff_t) - 1)) \
1462 + 1 \
1463 + sizeof (ptrdiff_t) - 1) \
1464 & ~(sizeof (ptrdiff_t) - 1))
1465
1466#endif /* not GC_CHECK_STRING_BYTES */
1467
1468/* Extra bytes to allocate for each string. */
1469
1470#define GC_STRING_EXTRA (GC_STRING_OVERRUN_COOKIE_SIZE)
1471
1472/* Exact bound on the number of bytes in a string, not counting the
1473 terminating null. A string cannot contain more bytes than
1474 STRING_BYTES_BOUND, nor can it be so long that the size_t
1475 arithmetic in allocate_string_data would overflow while it is
1476 calculating a value to be passed to malloc. */
1477static ptrdiff_t const STRING_BYTES_MAX =
1478 min (STRING_BYTES_BOUND,
1479 ((SIZE_MAX - XMALLOC_OVERRUN_CHECK_OVERHEAD
1480 - GC_STRING_EXTRA
1481 - offsetof (struct sblock, data)
1482 - SDATA_DATA_OFFSET)
1483 & ~(sizeof (EMACS_INT) - 1)));
1484
1485/* Initialize string allocation. Called from init_alloc_once. */
1486
1487static void
1488init_strings (void)
1489{
1490 empty_unibyte_string = make_pure_string ("", 0, 0, 0);
1491 empty_multibyte_string = make_pure_string ("", 0, 0, 1);
1492}
1493
1494
1495#ifdef GC_CHECK_STRING_BYTES
1496
1497static int check_string_bytes_count;
1498
1499/* Like STRING_BYTES, but with debugging check. Can be
1500 called during GC, so pay attention to the mark bit. */
1501
1502ptrdiff_t
1503string_bytes (struct Lisp_String *s)
1504{
1505 ptrdiff_t nbytes =
1506 (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1507
1508 if (!PURE_POINTER_P (s)
1509 && s->data
1510 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1511 emacs_abort ();
1512 return nbytes;
1513}
1514
1515/* Check validity of Lisp strings' string_bytes member in B. */
1516
1517static void
1518check_sblock (struct sblock *b)
1519{
1520 sdata *from, *end, *from_end;
1521
1522 end = b->next_free;
1523
1524 for (from = b->data; from < end; from = from_end)
1525 {
1526 /* Compute the next FROM here because copying below may
1527 overwrite data we need to compute it. */
1528 ptrdiff_t nbytes;
1529
1530 /* Check that the string size recorded in the string is the
1531 same as the one recorded in the sdata structure. */
1532 nbytes = SDATA_SIZE (from->string ? string_bytes (from->string)
1533 : SDATA_NBYTES (from));
1534 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1535 }
1536}
1537
1538
1539/* Check validity of Lisp strings' string_bytes member. ALL_P
1540 means check all strings, otherwise check only most
1541 recently allocated strings. Used for hunting a bug. */
1542
1543static void
1544check_string_bytes (bool all_p)
1545{
1546 if (all_p)
1547 {
1548 struct sblock *b;
1549
1550 for (b = large_sblocks; b; b = b->next)
1551 {
1552 struct Lisp_String *s = b->data[0].string;
1553 if (s)
1554 string_bytes (s);
1555 }
1556
1557 for (b = oldest_sblock; b; b = b->next)
1558 check_sblock (b);
1559 }
1560 else if (current_sblock)
1561 check_sblock (current_sblock);
1562}
1563
1564#else /* not GC_CHECK_STRING_BYTES */
1565
1566#define check_string_bytes(all) ((void) 0)
1567
1568#endif /* GC_CHECK_STRING_BYTES */
1569
1570#ifdef GC_CHECK_STRING_FREE_LIST
1571
1572/* Walk through the string free list looking for bogus next pointers.
1573 This may catch buffer overrun from a previous string. */
1574
1575static void
1576check_string_free_list (void)
1577{
1578 struct Lisp_String *s;
1579
1580 /* Pop a Lisp_String off the free-list. */
1581 s = string_free_list;
1582 while (s != NULL)
1583 {
1584 if ((uintptr_t) s < 1024)
1585 emacs_abort ();
1586 s = NEXT_FREE_LISP_STRING (s);
1587 }
1588}
1589#else
1590#define check_string_free_list()
1591#endif
1592
1593/* Return a new Lisp_String. */
1594
1595static struct Lisp_String *
1596allocate_string (void)
1597{
1598 struct Lisp_String *s;
1599
1600 MALLOC_BLOCK_INPUT;
1601
1602 /* If the free-list is empty, allocate a new string_block, and
1603 add all the Lisp_Strings in it to the free-list. */
1604 if (string_free_list == NULL)
1605 {
1606 struct string_block *b = lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1607 int i;
1608
1609 b->next = string_blocks;
1610 string_blocks = b;
1611
1612 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1613 {
1614 s = b->strings + i;
1615 /* Every string on a free list should have NULL data pointer. */
1616 s->data = NULL;
1617 NEXT_FREE_LISP_STRING (s) = string_free_list;
1618 string_free_list = s;
1619 }
1620
1621 total_free_strings += STRING_BLOCK_SIZE;
1622 }
1623
1624 check_string_free_list ();
1625
1626 /* Pop a Lisp_String off the free-list. */
1627 s = string_free_list;
1628 string_free_list = NEXT_FREE_LISP_STRING (s);
1629
1630 MALLOC_UNBLOCK_INPUT;
1631
1632 --total_free_strings;
1633 ++total_strings;
1634 ++strings_consed;
1635 consing_since_gc += sizeof *s;
1636
1637#ifdef GC_CHECK_STRING_BYTES
1638 if (!noninteractive)
1639 {
1640 if (++check_string_bytes_count == 200)
1641 {
1642 check_string_bytes_count = 0;
1643 check_string_bytes (1);
1644 }
1645 else
1646 check_string_bytes (0);
1647 }
1648#endif /* GC_CHECK_STRING_BYTES */
1649
1650 return s;
1651}
1652
1653
1654/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1655 plus a NUL byte at the end. Allocate an sdata structure for S, and
1656 set S->data to its `u.data' member. Store a NUL byte at the end of
1657 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1658 S->data if it was initially non-null. */
1659
1660void
1661allocate_string_data (struct Lisp_String *s,
1662 EMACS_INT nchars, EMACS_INT nbytes)
1663{
1664 sdata *data, *old_data;
1665 struct sblock *b;
1666 ptrdiff_t needed, old_nbytes;
1667
1668 if (STRING_BYTES_MAX < nbytes)
1669 string_overflow ();
1670
1671 /* Determine the number of bytes needed to store NBYTES bytes
1672 of string data. */
1673 needed = SDATA_SIZE (nbytes);
1674 if (s->data)
1675 {
1676 old_data = SDATA_OF_STRING (s);
1677 old_nbytes = STRING_BYTES (s);
1678 }
1679 else
1680 old_data = NULL;
1681
1682 MALLOC_BLOCK_INPUT;
1683
1684 if (nbytes > LARGE_STRING_BYTES)
1685 {
1686 size_t size = offsetof (struct sblock, data) + needed;
1687
1688#ifdef DOUG_LEA_MALLOC
1689 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1690 because mapped region contents are not preserved in
1691 a dumped Emacs.
1692
1693 In case you think of allowing it in a dumped Emacs at the
1694 cost of not being able to re-dump, there's another reason:
1695 mmap'ed data typically have an address towards the top of the
1696 address space, which won't fit into an EMACS_INT (at least on
1697 32-bit systems with the current tagging scheme). --fx */
1698 mallopt (M_MMAP_MAX, 0);
1699#endif
1700
1701 b = lisp_malloc (size + GC_STRING_EXTRA, MEM_TYPE_NON_LISP);
1702
1703#ifdef DOUG_LEA_MALLOC
1704 /* Back to a reasonable maximum of mmap'ed areas. */
1705 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1706#endif
1707
1708 b->next_free = b->data;
1709 b->data[0].string = NULL;
1710 b->next = large_sblocks;
1711 large_sblocks = b;
1712 }
1713 else if (current_sblock == NULL
1714 || (((char *) current_sblock + SBLOCK_SIZE
1715 - (char *) current_sblock->next_free)
1716 < (needed + GC_STRING_EXTRA)))
1717 {
1718 /* Not enough room in the current sblock. */
1719 b = lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1720 b->next_free = b->data;
1721 b->data[0].string = NULL;
1722 b->next = NULL;
1723
1724 if (current_sblock)
1725 current_sblock->next = b;
1726 else
1727 oldest_sblock = b;
1728 current_sblock = b;
1729 }
1730 else
1731 b = current_sblock;
1732
1733 data = b->next_free;
1734 b->next_free = (sdata *) ((char *) data + needed + GC_STRING_EXTRA);
1735
1736 MALLOC_UNBLOCK_INPUT;
1737
1738 data->string = s;
1739 s->data = SDATA_DATA (data);
1740#ifdef GC_CHECK_STRING_BYTES
1741 SDATA_NBYTES (data) = nbytes;
1742#endif
1743 s->size = nchars;
1744 s->size_byte = nbytes;
1745 s->data[nbytes] = '\0';
1746#ifdef GC_CHECK_STRING_OVERRUN
1747 memcpy ((char *) data + needed, string_overrun_cookie,
1748 GC_STRING_OVERRUN_COOKIE_SIZE);
1749#endif
1750
1751 /* Note that Faset may call to this function when S has already data
1752 assigned. In this case, mark data as free by setting it's string
1753 back-pointer to null, and record the size of the data in it. */
1754 if (old_data)
1755 {
1756 SDATA_NBYTES (old_data) = old_nbytes;
1757 old_data->string = NULL;
1758 }
1759
1760 consing_since_gc += needed;
1761}
1762
1763
1764/* Sweep and compact strings. */
1765
1766static void
1767sweep_strings (void)
1768{
1769 struct string_block *b, *next;
1770 struct string_block *live_blocks = NULL;
1771
1772 string_free_list = NULL;
1773 total_strings = total_free_strings = 0;
1774 total_string_bytes = 0;
1775
1776 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1777 for (b = string_blocks; b; b = next)
1778 {
1779 int i, nfree = 0;
1780 struct Lisp_String *free_list_before = string_free_list;
1781
1782 next = b->next;
1783
1784 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1785 {
1786 struct Lisp_String *s = b->strings + i;
1787
1788 if (s->data)
1789 {
1790 /* String was not on free-list before. */
1791 if (STRING_MARKED_P (s))
1792 {
1793 /* String is live; unmark it and its intervals. */
1794 UNMARK_STRING (s);
1795
1796 /* Do not use string_(set|get)_intervals here. */
1797 s->intervals = balance_intervals (s->intervals);
1798
1799 ++total_strings;
1800 total_string_bytes += STRING_BYTES (s);
1801 }
1802 else
1803 {
1804 /* String is dead. Put it on the free-list. */
1805 sdata *data = SDATA_OF_STRING (s);
1806
1807 /* Save the size of S in its sdata so that we know
1808 how large that is. Reset the sdata's string
1809 back-pointer so that we know it's free. */
1810#ifdef GC_CHECK_STRING_BYTES
1811 if (string_bytes (s) != SDATA_NBYTES (data))
1812 emacs_abort ();
1813#else
1814 data->n.nbytes = STRING_BYTES (s);
1815#endif
1816 data->string = NULL;
1817
1818 /* Reset the strings's `data' member so that we
1819 know it's free. */
1820 s->data = NULL;
1821
1822 /* Put the string on the free-list. */
1823 NEXT_FREE_LISP_STRING (s) = string_free_list;
1824 string_free_list = s;
1825 ++nfree;
1826 }
1827 }
1828 else
1829 {
1830 /* S was on the free-list before. Put it there again. */
1831 NEXT_FREE_LISP_STRING (s) = string_free_list;
1832 string_free_list = s;
1833 ++nfree;
1834 }
1835 }
1836
1837 /* Free blocks that contain free Lisp_Strings only, except
1838 the first two of them. */
1839 if (nfree == STRING_BLOCK_SIZE
1840 && total_free_strings > STRING_BLOCK_SIZE)
1841 {
1842 lisp_free (b);
1843 string_free_list = free_list_before;
1844 }
1845 else
1846 {
1847 total_free_strings += nfree;
1848 b->next = live_blocks;
1849 live_blocks = b;
1850 }
1851 }
1852
1853 check_string_free_list ();
1854
1855 string_blocks = live_blocks;
1856 free_large_strings ();
1857 compact_small_strings ();
1858
1859 check_string_free_list ();
1860}
1861
1862
1863/* Free dead large strings. */
1864
1865static void
1866free_large_strings (void)
1867{
1868 struct sblock *b, *next;
1869 struct sblock *live_blocks = NULL;
1870
1871 for (b = large_sblocks; b; b = next)
1872 {
1873 next = b->next;
1874
1875 if (b->data[0].string == NULL)
1876 lisp_free (b);
1877 else
1878 {
1879 b->next = live_blocks;
1880 live_blocks = b;
1881 }
1882 }
1883
1884 large_sblocks = live_blocks;
1885}
1886
1887
1888/* Compact data of small strings. Free sblocks that don't contain
1889 data of live strings after compaction. */
1890
1891static void
1892compact_small_strings (void)
1893{
1894 struct sblock *b, *tb, *next;
1895 sdata *from, *to, *end, *tb_end;
1896 sdata *to_end, *from_end;
1897
1898 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1899 to, and TB_END is the end of TB. */
1900 tb = oldest_sblock;
1901 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1902 to = tb->data;
1903
1904 /* Step through the blocks from the oldest to the youngest. We
1905 expect that old blocks will stabilize over time, so that less
1906 copying will happen this way. */
1907 for (b = oldest_sblock; b; b = b->next)
1908 {
1909 end = b->next_free;
1910 eassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1911
1912 for (from = b->data; from < end; from = from_end)
1913 {
1914 /* Compute the next FROM here because copying below may
1915 overwrite data we need to compute it. */
1916 ptrdiff_t nbytes;
1917 struct Lisp_String *s = from->string;
1918
1919#ifdef GC_CHECK_STRING_BYTES
1920 /* Check that the string size recorded in the string is the
1921 same as the one recorded in the sdata structure. */
1922 if (s && string_bytes (s) != SDATA_NBYTES (from))
1923 emacs_abort ();
1924#endif /* GC_CHECK_STRING_BYTES */
1925
1926 nbytes = s ? STRING_BYTES (s) : SDATA_NBYTES (from);
1927 eassert (nbytes <= LARGE_STRING_BYTES);
1928
1929 nbytes = SDATA_SIZE (nbytes);
1930 from_end = (sdata *) ((char *) from + nbytes + GC_STRING_EXTRA);
1931
1932#ifdef GC_CHECK_STRING_OVERRUN
1933 if (memcmp (string_overrun_cookie,
1934 (char *) from_end - GC_STRING_OVERRUN_COOKIE_SIZE,
1935 GC_STRING_OVERRUN_COOKIE_SIZE))
1936 emacs_abort ();
1937#endif
1938
1939 /* Non-NULL S means it's alive. Copy its data. */
1940 if (s)
1941 {
1942 /* If TB is full, proceed with the next sblock. */
1943 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1944 if (to_end > tb_end)
1945 {
1946 tb->next_free = to;
1947 tb = tb->next;
1948 tb_end = (sdata *) ((char *) tb + SBLOCK_SIZE);
1949 to = tb->data;
1950 to_end = (sdata *) ((char *) to + nbytes + GC_STRING_EXTRA);
1951 }
1952
1953 /* Copy, and update the string's `data' pointer. */
1954 if (from != to)
1955 {
1956 eassert (tb != b || to < from);
1957 memmove (to, from, nbytes + GC_STRING_EXTRA);
1958 to->string->data = SDATA_DATA (to);
1959 }
1960
1961 /* Advance past the sdata we copied to. */
1962 to = to_end;
1963 }
1964 }
1965 }
1966
1967 /* The rest of the sblocks following TB don't contain live data, so
1968 we can free them. */
1969 for (b = tb->next; b; b = next)
1970 {
1971 next = b->next;
1972 lisp_free (b);
1973 }
1974
1975 tb->next_free = to;
1976 tb->next = NULL;
1977 current_sblock = tb;
1978}
1979
1980void
1981string_overflow (void)
1982{
1983 error ("Maximum string size exceeded");
1984}
1985
1986DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1987 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1988LENGTH must be an integer.
1989INIT must be an integer that represents a character. */)
1990 (Lisp_Object length, Lisp_Object init)
1991{
1992 register Lisp_Object val;
1993 int c;
1994 EMACS_INT nbytes;
1995
1996 CHECK_NATNUM (length);
1997 CHECK_CHARACTER (init);
1998
1999 c = XFASTINT (init);
2000 if (ASCII_CHAR_P (c))
2001 {
2002 nbytes = XINT (length);
2003 val = make_uninit_string (nbytes);
2004 memset (SDATA (val), c, nbytes);
2005 SDATA (val)[nbytes] = 0;
2006 }
2007 else
2008 {
2009 unsigned char str[MAX_MULTIBYTE_LENGTH];
2010 ptrdiff_t len = CHAR_STRING (c, str);
2011 EMACS_INT string_len = XINT (length);
2012 unsigned char *p, *beg, *end;
2013
2014 if (string_len > STRING_BYTES_MAX / len)
2015 string_overflow ();
2016 nbytes = len * string_len;
2017 val = make_uninit_multibyte_string (string_len, nbytes);
2018 for (beg = SDATA (val), p = beg, end = beg + nbytes; p < end; p += len)
2019 {
2020 /* First time we just copy `str' to the data of `val'. */
2021 if (p == beg)
2022 memcpy (p, str, len);
2023 else
2024 {
2025 /* Next time we copy largest possible chunk from
2026 initialized to uninitialized part of `val'. */
2027 len = min (p - beg, end - p);
2028 memcpy (p, beg, len);
2029 }
2030 }
2031 *p = 0;
2032 }
2033
2034 return val;
2035}
2036
2037static EMACS_INT
2038bool_vector_exact_payload_bytes (EMACS_INT nbits)
2039{
2040 eassume (0 <= nbits);
2041 return (nbits + BOOL_VECTOR_BITS_PER_CHAR - 1) / BOOL_VECTOR_BITS_PER_CHAR;
2042}
2043
2044static EMACS_INT
2045bool_vector_payload_bytes (EMACS_INT nbits)
2046{
2047 EMACS_INT exact_needed_bytes = bool_vector_exact_payload_bytes (nbits);
2048
2049 /* Always allocate at least one machine word of payload so that
2050 bool-vector operations in data.c don't need a special case
2051 for empty vectors. */
2052 return ROUNDUP (exact_needed_bytes + !exact_needed_bytes,
2053 sizeof (bits_word));
2054}
2055
2056void
2057bool_vector_fill (Lisp_Object a, Lisp_Object init)
2058{
2059 EMACS_INT nbits = bool_vector_size (a);
2060 if (0 < nbits)
2061 {
2062 unsigned char *data = bool_vector_uchar_data (a);
2063 int pattern = NILP (init) ? 0 : (1 << BOOL_VECTOR_BITS_PER_CHAR) - 1;
2064 ptrdiff_t nbytes = ((nbits + BOOL_VECTOR_BITS_PER_CHAR - 1)
2065 / BOOL_VECTOR_BITS_PER_CHAR);
2066 int last_mask = ~ (~0 << ((nbits - 1) % BOOL_VECTOR_BITS_PER_CHAR + 1));
2067 memset (data, pattern, nbytes - 1);
2068 data[nbytes - 1] = pattern & last_mask;
2069 }
2070}
2071
2072DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
2073 doc: /* Return a new bool-vector of length LENGTH, using INIT for each element.
2074LENGTH must be a number. INIT matters only in whether it is t or nil. */)
2075 (Lisp_Object length, Lisp_Object init)
2076{
2077 Lisp_Object val;
2078 struct Lisp_Bool_Vector *p;
2079 EMACS_INT exact_payload_bytes, total_payload_bytes, needed_elements;
2080
2081 CHECK_NATNUM (length);
2082
2083 exact_payload_bytes = bool_vector_exact_payload_bytes (XFASTINT (length));
2084 total_payload_bytes = bool_vector_payload_bytes (XFASTINT (length));
2085
2086 needed_elements = ((bool_header_size - header_size + total_payload_bytes
2087 + word_size - 1)
2088 / word_size);
2089
2090 p = (struct Lisp_Bool_Vector *) allocate_vector (needed_elements);
2091 XSETVECTOR (val, p);
2092 XSETPVECTYPESIZE (XVECTOR (val), PVEC_BOOL_VECTOR, 0, 0);
2093
2094 p->size = XFASTINT (length);
2095 bool_vector_fill (val, init);
2096
2097 /* Clear padding at the end. */
2098 eassume (exact_payload_bytes <= total_payload_bytes);
2099 memset (bool_vector_uchar_data (val) + exact_payload_bytes,
2100 0,
2101 total_payload_bytes - exact_payload_bytes);
2102
2103 return val;
2104}
2105
2106
2107/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2108 of characters from the contents. This string may be unibyte or
2109 multibyte, depending on the contents. */
2110
2111Lisp_Object
2112make_string (const char *contents, ptrdiff_t nbytes)
2113{
2114 register Lisp_Object val;
2115 ptrdiff_t nchars, multibyte_nbytes;
2116
2117 parse_str_as_multibyte ((const unsigned char *) contents, nbytes,
2118 &nchars, &multibyte_nbytes);
2119 if (nbytes == nchars || nbytes != multibyte_nbytes)
2120 /* CONTENTS contains no multibyte sequences or contains an invalid
2121 multibyte sequence. We must make unibyte string. */
2122 val = make_unibyte_string (contents, nbytes);
2123 else
2124 val = make_multibyte_string (contents, nchars, nbytes);
2125 return val;
2126}
2127
2128
2129/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2130
2131Lisp_Object
2132make_unibyte_string (const char *contents, ptrdiff_t length)
2133{
2134 register Lisp_Object val;
2135 val = make_uninit_string (length);
2136 memcpy (SDATA (val), contents, length);
2137 return val;
2138}
2139
2140
2141/* Make a multibyte string from NCHARS characters occupying NBYTES
2142 bytes at CONTENTS. */
2143
2144Lisp_Object
2145make_multibyte_string (const char *contents,
2146 ptrdiff_t nchars, ptrdiff_t nbytes)
2147{
2148 register Lisp_Object val;
2149 val = make_uninit_multibyte_string (nchars, nbytes);
2150 memcpy (SDATA (val), contents, nbytes);
2151 return val;
2152}
2153
2154
2155/* Make a string from NCHARS characters occupying NBYTES bytes at
2156 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2157
2158Lisp_Object
2159make_string_from_bytes (const char *contents,
2160 ptrdiff_t nchars, ptrdiff_t nbytes)
2161{
2162 register Lisp_Object val;
2163 val = make_uninit_multibyte_string (nchars, nbytes);
2164 memcpy (SDATA (val), contents, nbytes);
2165 if (SBYTES (val) == SCHARS (val))
2166 STRING_SET_UNIBYTE (val);
2167 return val;
2168}
2169
2170
2171/* Make a string from NCHARS characters occupying NBYTES bytes at
2172 CONTENTS. The argument MULTIBYTE controls whether to label the
2173 string as multibyte. If NCHARS is negative, it counts the number of
2174 characters by itself. */
2175
2176Lisp_Object
2177make_specified_string (const char *contents,
2178 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
2179{
2180 Lisp_Object val;
2181
2182 if (nchars < 0)
2183 {
2184 if (multibyte)
2185 nchars = multibyte_chars_in_text ((const unsigned char *) contents,
2186 nbytes);
2187 else
2188 nchars = nbytes;
2189 }
2190 val = make_uninit_multibyte_string (nchars, nbytes);
2191 memcpy (SDATA (val), contents, nbytes);
2192 if (!multibyte)
2193 STRING_SET_UNIBYTE (val);
2194 return val;
2195}
2196
2197
2198/* Return an unibyte Lisp_String set up to hold LENGTH characters
2199 occupying LENGTH bytes. */
2200
2201Lisp_Object
2202make_uninit_string (EMACS_INT length)
2203{
2204 Lisp_Object val;
2205
2206 if (!length)
2207 return empty_unibyte_string;
2208 val = make_uninit_multibyte_string (length, length);
2209 STRING_SET_UNIBYTE (val);
2210 return val;
2211}
2212
2213
2214/* Return a multibyte Lisp_String set up to hold NCHARS characters
2215 which occupy NBYTES bytes. */
2216
2217Lisp_Object
2218make_uninit_multibyte_string (EMACS_INT nchars, EMACS_INT nbytes)
2219{
2220 Lisp_Object string;
2221 struct Lisp_String *s;
2222
2223 if (nchars < 0)
2224 emacs_abort ();
2225 if (!nbytes)
2226 return empty_multibyte_string;
2227
2228 s = allocate_string ();
2229 s->intervals = NULL;
2230 allocate_string_data (s, nchars, nbytes);
2231 XSETSTRING (string, s);
2232 string_chars_consed += nbytes;
2233 return string;
2234}
2235
2236/* Print arguments to BUF according to a FORMAT, then return
2237 a Lisp_String initialized with the data from BUF. */
2238
2239Lisp_Object
2240make_formatted_string (char *buf, const char *format, ...)
2241{
2242 va_list ap;
2243 int length;
2244
2245 va_start (ap, format);
2246 length = vsprintf (buf, format, ap);
2247 va_end (ap);
2248 return make_string (buf, length);
2249}
2250
2251\f
2252/***********************************************************************
2253 Float Allocation
2254 ***********************************************************************/
2255
2256/* We store float cells inside of float_blocks, allocating a new
2257 float_block with malloc whenever necessary. Float cells reclaimed
2258 by GC are put on a free list to be reallocated before allocating
2259 any new float cells from the latest float_block. */
2260
2261#define FLOAT_BLOCK_SIZE \
2262 (((BLOCK_BYTES - sizeof (struct float_block *) \
2263 /* The compiler might add padding at the end. */ \
2264 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2265 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2266
2267#define GETMARKBIT(block,n) \
2268 (((block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2269 >> ((n) % (sizeof (int) * CHAR_BIT))) \
2270 & 1)
2271
2272#define SETMARKBIT(block,n) \
2273 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2274 |= 1 << ((n) % (sizeof (int) * CHAR_BIT))
2275
2276#define UNSETMARKBIT(block,n) \
2277 (block)->gcmarkbits[(n) / (sizeof (int) * CHAR_BIT)] \
2278 &= ~(1 << ((n) % (sizeof (int) * CHAR_BIT)))
2279
2280#define FLOAT_BLOCK(fptr) \
2281 ((struct float_block *) (((uintptr_t) (fptr)) & ~(BLOCK_ALIGN - 1)))
2282
2283#define FLOAT_INDEX(fptr) \
2284 ((((uintptr_t) (fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2285
2286struct float_block
2287{
2288 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2289 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2290 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2291 struct float_block *next;
2292};
2293
2294#define FLOAT_MARKED_P(fptr) \
2295 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2296
2297#define FLOAT_MARK(fptr) \
2298 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2299
2300#define FLOAT_UNMARK(fptr) \
2301 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2302
2303/* Current float_block. */
2304
2305static struct float_block *float_block;
2306
2307/* Index of first unused Lisp_Float in the current float_block. */
2308
2309static int float_block_index = FLOAT_BLOCK_SIZE;
2310
2311/* Free-list of Lisp_Floats. */
2312
2313static struct Lisp_Float *float_free_list;
2314
2315/* Return a new float object with value FLOAT_VALUE. */
2316
2317Lisp_Object
2318make_float (double float_value)
2319{
2320 register Lisp_Object val;
2321
2322 MALLOC_BLOCK_INPUT;
2323
2324 if (float_free_list)
2325 {
2326 /* We use the data field for chaining the free list
2327 so that we won't use the same field that has the mark bit. */
2328 XSETFLOAT (val, float_free_list);
2329 float_free_list = float_free_list->u.chain;
2330 }
2331 else
2332 {
2333 if (float_block_index == FLOAT_BLOCK_SIZE)
2334 {
2335 struct float_block *new
2336 = lisp_align_malloc (sizeof *new, MEM_TYPE_FLOAT);
2337 new->next = float_block;
2338 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2339 float_block = new;
2340 float_block_index = 0;
2341 total_free_floats += FLOAT_BLOCK_SIZE;
2342 }
2343 XSETFLOAT (val, &float_block->floats[float_block_index]);
2344 float_block_index++;
2345 }
2346
2347 MALLOC_UNBLOCK_INPUT;
2348
2349 XFLOAT_INIT (val, float_value);
2350 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2351 consing_since_gc += sizeof (struct Lisp_Float);
2352 floats_consed++;
2353 total_free_floats--;
2354 return val;
2355}
2356
2357
2358\f
2359/***********************************************************************
2360 Cons Allocation
2361 ***********************************************************************/
2362
2363/* We store cons cells inside of cons_blocks, allocating a new
2364 cons_block with malloc whenever necessary. Cons cells reclaimed by
2365 GC are put on a free list to be reallocated before allocating
2366 any new cons cells from the latest cons_block. */
2367
2368#define CONS_BLOCK_SIZE \
2369 (((BLOCK_BYTES - sizeof (struct cons_block *) \
2370 /* The compiler might add padding at the end. */ \
2371 - (sizeof (struct Lisp_Cons) - sizeof (int))) * CHAR_BIT) \
2372 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2373
2374#define CONS_BLOCK(fptr) \
2375 ((struct cons_block *) ((uintptr_t) (fptr) & ~(BLOCK_ALIGN - 1)))
2376
2377#define CONS_INDEX(fptr) \
2378 (((uintptr_t) (fptr) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2379
2380struct cons_block
2381{
2382 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2383 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2384 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof (int) * CHAR_BIT)];
2385 struct cons_block *next;
2386};
2387
2388#define CONS_MARKED_P(fptr) \
2389 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2390
2391#define CONS_MARK(fptr) \
2392 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2393
2394#define CONS_UNMARK(fptr) \
2395 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2396
2397/* Current cons_block. */
2398
2399static struct cons_block *cons_block;
2400
2401/* Index of first unused Lisp_Cons in the current block. */
2402
2403static int cons_block_index = CONS_BLOCK_SIZE;
2404
2405/* Free-list of Lisp_Cons structures. */
2406
2407static struct Lisp_Cons *cons_free_list;
2408
2409/* Explicitly free a cons cell by putting it on the free-list. */
2410
2411void
2412free_cons (struct Lisp_Cons *ptr)
2413{
2414 ptr->u.chain = cons_free_list;
2415#if GC_MARK_STACK
2416 ptr->car = Vdead;
2417#endif
2418 cons_free_list = ptr;
2419 consing_since_gc -= sizeof *ptr;
2420 total_free_conses++;
2421}
2422
2423DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2424 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2425 (Lisp_Object car, Lisp_Object cdr)
2426{
2427 register Lisp_Object val;
2428
2429 MALLOC_BLOCK_INPUT;
2430
2431 if (cons_free_list)
2432 {
2433 /* We use the cdr for chaining the free list
2434 so that we won't use the same field that has the mark bit. */
2435 XSETCONS (val, cons_free_list);
2436 cons_free_list = cons_free_list->u.chain;
2437 }
2438 else
2439 {
2440 if (cons_block_index == CONS_BLOCK_SIZE)
2441 {
2442 struct cons_block *new
2443 = lisp_align_malloc (sizeof *new, MEM_TYPE_CONS);
2444 memset (new->gcmarkbits, 0, sizeof new->gcmarkbits);
2445 new->next = cons_block;
2446 cons_block = new;
2447 cons_block_index = 0;
2448 total_free_conses += CONS_BLOCK_SIZE;
2449 }
2450 XSETCONS (val, &cons_block->conses[cons_block_index]);
2451 cons_block_index++;
2452 }
2453
2454 MALLOC_UNBLOCK_INPUT;
2455
2456 XSETCAR (val, car);
2457 XSETCDR (val, cdr);
2458 eassert (!CONS_MARKED_P (XCONS (val)));
2459 consing_since_gc += sizeof (struct Lisp_Cons);
2460 total_free_conses--;
2461 cons_cells_consed++;
2462 return val;
2463}
2464
2465#ifdef GC_CHECK_CONS_LIST
2466/* Get an error now if there's any junk in the cons free list. */
2467void
2468check_cons_list (void)
2469{
2470 struct Lisp_Cons *tail = cons_free_list;
2471
2472 while (tail)
2473 tail = tail->u.chain;
2474}
2475#endif
2476
2477/* Make a list of 1, 2, 3, 4 or 5 specified objects. */
2478
2479Lisp_Object
2480list1 (Lisp_Object arg1)
2481{
2482 return Fcons (arg1, Qnil);
2483}
2484
2485Lisp_Object
2486list2 (Lisp_Object arg1, Lisp_Object arg2)
2487{
2488 return Fcons (arg1, Fcons (arg2, Qnil));
2489}
2490
2491
2492Lisp_Object
2493list3 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3)
2494{
2495 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2496}
2497
2498
2499Lisp_Object
2500list4 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4)
2501{
2502 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2503}
2504
2505
2506Lisp_Object
2507list5 (Lisp_Object arg1, Lisp_Object arg2, Lisp_Object arg3, Lisp_Object arg4, Lisp_Object arg5)
2508{
2509 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2510 Fcons (arg5, Qnil)))));
2511}
2512
2513/* Make a list of COUNT Lisp_Objects, where ARG is the
2514 first one. Allocate conses from pure space if TYPE
2515 is CONSTYPE_PURE, or allocate as usual if type is CONSTYPE_HEAP. */
2516
2517Lisp_Object
2518listn (enum constype type, ptrdiff_t count, Lisp_Object arg, ...)
2519{
2520 va_list ap;
2521 ptrdiff_t i;
2522 Lisp_Object val, *objp;
2523
2524 /* Change to SAFE_ALLOCA if you hit this eassert. */
2525 eassert (count <= MAX_ALLOCA / word_size);
2526
2527 objp = alloca (count * word_size);
2528 objp[0] = arg;
2529 va_start (ap, arg);
2530 for (i = 1; i < count; i++)
2531 objp[i] = va_arg (ap, Lisp_Object);
2532 va_end (ap);
2533
2534 for (val = Qnil, i = count - 1; i >= 0; i--)
2535 {
2536 if (type == CONSTYPE_PURE)
2537 val = pure_cons (objp[i], val);
2538 else if (type == CONSTYPE_HEAP)
2539 val = Fcons (objp[i], val);
2540 else
2541 emacs_abort ();
2542 }
2543 return val;
2544}
2545
2546DEFUN ("list", Flist, Slist, 0, MANY, 0,
2547 doc: /* Return a newly created list with specified arguments as elements.
2548Any number of arguments, even zero arguments, are allowed.
2549usage: (list &rest OBJECTS) */)
2550 (ptrdiff_t nargs, Lisp_Object *args)
2551{
2552 register Lisp_Object val;
2553 val = Qnil;
2554
2555 while (nargs > 0)
2556 {
2557 nargs--;
2558 val = Fcons (args[nargs], val);
2559 }
2560 return val;
2561}
2562
2563
2564DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2565 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2566 (register Lisp_Object length, Lisp_Object init)
2567{
2568 register Lisp_Object val;
2569 register EMACS_INT size;
2570
2571 CHECK_NATNUM (length);
2572 size = XFASTINT (length);
2573
2574 val = Qnil;
2575 while (size > 0)
2576 {
2577 val = Fcons (init, val);
2578 --size;
2579
2580 if (size > 0)
2581 {
2582 val = Fcons (init, val);
2583 --size;
2584
2585 if (size > 0)
2586 {
2587 val = Fcons (init, val);
2588 --size;
2589
2590 if (size > 0)
2591 {
2592 val = Fcons (init, val);
2593 --size;
2594
2595 if (size > 0)
2596 {
2597 val = Fcons (init, val);
2598 --size;
2599 }
2600 }
2601 }
2602 }
2603
2604 QUIT;
2605 }
2606
2607 return val;
2608}
2609
2610
2611\f
2612/***********************************************************************
2613 Vector Allocation
2614 ***********************************************************************/
2615
2616/* Sometimes a vector's contents are merely a pointer internally used
2617 in vector allocation code. Usually you don't want to touch this. */
2618
2619static struct Lisp_Vector *
2620next_vector (struct Lisp_Vector *v)
2621{
2622 return XUNTAG (v->contents[0], 0);
2623}
2624
2625static void
2626set_next_vector (struct Lisp_Vector *v, struct Lisp_Vector *p)
2627{
2628 v->contents[0] = make_lisp_ptr (p, 0);
2629}
2630
2631/* This value is balanced well enough to avoid too much internal overhead
2632 for the most common cases; it's not required to be a power of two, but
2633 it's expected to be a mult-of-ROUNDUP_SIZE (see below). */
2634
2635#define VECTOR_BLOCK_SIZE 4096
2636
2637enum
2638 {
2639 /* Alignment of struct Lisp_Vector objects. */
2640 vector_alignment = COMMON_MULTIPLE (ALIGNOF_STRUCT_LISP_VECTOR,
2641 USE_LSB_TAG ? GCALIGNMENT : 1),
2642
2643 /* Vector size requests are a multiple of this. */
2644 roundup_size = COMMON_MULTIPLE (vector_alignment, word_size)
2645 };
2646
2647/* Verify assumptions described above. */
2648verify ((VECTOR_BLOCK_SIZE % roundup_size) == 0);
2649verify (VECTOR_BLOCK_SIZE <= (1 << PSEUDOVECTOR_SIZE_BITS));
2650
2651/* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at compile time. */
2652#define vroundup_ct(x) ROUNDUP (x, roundup_size)
2653/* Round up X to nearest mult-of-ROUNDUP_SIZE --- use at runtime. */
2654#define vroundup(x) (eassume ((x) >= 0), vroundup_ct (x))
2655
2656/* Rounding helps to maintain alignment constraints if USE_LSB_TAG. */
2657
2658#define VECTOR_BLOCK_BYTES (VECTOR_BLOCK_SIZE - vroundup_ct (sizeof (void *)))
2659
2660/* Size of the minimal vector allocated from block. */
2661
2662#define VBLOCK_BYTES_MIN vroundup_ct (header_size + sizeof (Lisp_Object))
2663
2664/* Size of the largest vector allocated from block. */
2665
2666#define VBLOCK_BYTES_MAX \
2667 vroundup ((VECTOR_BLOCK_BYTES / 2) - word_size)
2668
2669/* We maintain one free list for each possible block-allocated
2670 vector size, and this is the number of free lists we have. */
2671
2672#define VECTOR_MAX_FREE_LIST_INDEX \
2673 ((VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN) / roundup_size + 1)
2674
2675/* Common shortcut to advance vector pointer over a block data. */
2676
2677#define ADVANCE(v, nbytes) ((struct Lisp_Vector *) ((char *) (v) + (nbytes)))
2678
2679/* Common shortcut to calculate NBYTES-vector index in VECTOR_FREE_LISTS. */
2680
2681#define VINDEX(nbytes) (((nbytes) - VBLOCK_BYTES_MIN) / roundup_size)
2682
2683/* Common shortcut to setup vector on a free list. */
2684
2685#define SETUP_ON_FREE_LIST(v, nbytes, tmp) \
2686 do { \
2687 (tmp) = ((nbytes - header_size) / word_size); \
2688 XSETPVECTYPESIZE (v, PVEC_FREE, 0, (tmp)); \
2689 eassert ((nbytes) % roundup_size == 0); \
2690 (tmp) = VINDEX (nbytes); \
2691 eassert ((tmp) < VECTOR_MAX_FREE_LIST_INDEX); \
2692 set_next_vector (v, vector_free_lists[tmp]); \
2693 vector_free_lists[tmp] = (v); \
2694 total_free_vector_slots += (nbytes) / word_size; \
2695 } while (0)
2696
2697/* This internal type is used to maintain the list of large vectors
2698 which are allocated at their own, e.g. outside of vector blocks.
2699
2700 struct large_vector itself cannot contain a struct Lisp_Vector, as
2701 the latter contains a flexible array member and C99 does not allow
2702 such structs to be nested. Instead, each struct large_vector
2703 object LV is followed by a struct Lisp_Vector, which is at offset
2704 large_vector_offset from LV, and whose address is therefore
2705 large_vector_vec (&LV). */
2706
2707struct large_vector
2708{
2709 struct large_vector *next;
2710};
2711
2712enum
2713{
2714 large_vector_offset = ROUNDUP (sizeof (struct large_vector), vector_alignment)
2715};
2716
2717static struct Lisp_Vector *
2718large_vector_vec (struct large_vector *p)
2719{
2720 return (struct Lisp_Vector *) ((char *) p + large_vector_offset);
2721}
2722
2723/* This internal type is used to maintain an underlying storage
2724 for small vectors. */
2725
2726struct vector_block
2727{
2728 char data[VECTOR_BLOCK_BYTES];
2729 struct vector_block *next;
2730};
2731
2732/* Chain of vector blocks. */
2733
2734static struct vector_block *vector_blocks;
2735
2736/* Vector free lists, where NTH item points to a chain of free
2737 vectors of the same NBYTES size, so NTH == VINDEX (NBYTES). */
2738
2739static struct Lisp_Vector *vector_free_lists[VECTOR_MAX_FREE_LIST_INDEX];
2740
2741/* Singly-linked list of large vectors. */
2742
2743static struct large_vector *large_vectors;
2744
2745/* The only vector with 0 slots, allocated from pure space. */
2746
2747Lisp_Object zero_vector;
2748
2749/* Number of live vectors. */
2750
2751static EMACS_INT total_vectors;
2752
2753/* Total size of live and free vectors, in Lisp_Object units. */
2754
2755static EMACS_INT total_vector_slots, total_free_vector_slots;
2756
2757/* Get a new vector block. */
2758
2759static struct vector_block *
2760allocate_vector_block (void)
2761{
2762 struct vector_block *block = xmalloc (sizeof *block);
2763
2764#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2765 mem_insert (block->data, block->data + VECTOR_BLOCK_BYTES,
2766 MEM_TYPE_VECTOR_BLOCK);
2767#endif
2768
2769 block->next = vector_blocks;
2770 vector_blocks = block;
2771 return block;
2772}
2773
2774/* Called once to initialize vector allocation. */
2775
2776static void
2777init_vectors (void)
2778{
2779 zero_vector = make_pure_vector (0);
2780}
2781
2782/* Allocate vector from a vector block. */
2783
2784static struct Lisp_Vector *
2785allocate_vector_from_block (size_t nbytes)
2786{
2787 struct Lisp_Vector *vector;
2788 struct vector_block *block;
2789 size_t index, restbytes;
2790
2791 eassert (VBLOCK_BYTES_MIN <= nbytes && nbytes <= VBLOCK_BYTES_MAX);
2792 eassert (nbytes % roundup_size == 0);
2793
2794 /* First, try to allocate from a free list
2795 containing vectors of the requested size. */
2796 index = VINDEX (nbytes);
2797 if (vector_free_lists[index])
2798 {
2799 vector = vector_free_lists[index];
2800 vector_free_lists[index] = next_vector (vector);
2801 total_free_vector_slots -= nbytes / word_size;
2802 return vector;
2803 }
2804
2805 /* Next, check free lists containing larger vectors. Since
2806 we will split the result, we should have remaining space
2807 large enough to use for one-slot vector at least. */
2808 for (index = VINDEX (nbytes + VBLOCK_BYTES_MIN);
2809 index < VECTOR_MAX_FREE_LIST_INDEX; index++)
2810 if (vector_free_lists[index])
2811 {
2812 /* This vector is larger than requested. */
2813 vector = vector_free_lists[index];
2814 vector_free_lists[index] = next_vector (vector);
2815 total_free_vector_slots -= nbytes / word_size;
2816
2817 /* Excess bytes are used for the smaller vector,
2818 which should be set on an appropriate free list. */
2819 restbytes = index * roundup_size + VBLOCK_BYTES_MIN - nbytes;
2820 eassert (restbytes % roundup_size == 0);
2821 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2822 return vector;
2823 }
2824
2825 /* Finally, need a new vector block. */
2826 block = allocate_vector_block ();
2827
2828 /* New vector will be at the beginning of this block. */
2829 vector = (struct Lisp_Vector *) block->data;
2830
2831 /* If the rest of space from this block is large enough
2832 for one-slot vector at least, set up it on a free list. */
2833 restbytes = VECTOR_BLOCK_BYTES - nbytes;
2834 if (restbytes >= VBLOCK_BYTES_MIN)
2835 {
2836 eassert (restbytes % roundup_size == 0);
2837 SETUP_ON_FREE_LIST (ADVANCE (vector, nbytes), restbytes, index);
2838 }
2839 return vector;
2840}
2841
2842/* Nonzero if VECTOR pointer is valid pointer inside BLOCK. */
2843
2844#define VECTOR_IN_BLOCK(vector, block) \
2845 ((char *) (vector) <= (block)->data \
2846 + VECTOR_BLOCK_BYTES - VBLOCK_BYTES_MIN)
2847
2848/* Return the memory footprint of V in bytes. */
2849
2850static ptrdiff_t
2851vector_nbytes (struct Lisp_Vector *v)
2852{
2853 ptrdiff_t size = v->header.size & ~ARRAY_MARK_FLAG;
2854
2855 if (size & PSEUDOVECTOR_FLAG)
2856 {
2857 if (PSEUDOVECTOR_TYPEP (&v->header, PVEC_BOOL_VECTOR))
2858 {
2859 struct Lisp_Bool_Vector *bv = (struct Lisp_Bool_Vector *) v;
2860 ptrdiff_t payload_bytes = bool_vector_payload_bytes (bv->size);
2861 size = bool_header_size + payload_bytes;
2862 }
2863 else
2864 size = (header_size
2865 + ((size & PSEUDOVECTOR_SIZE_MASK)
2866 + ((size & PSEUDOVECTOR_REST_MASK)
2867 >> PSEUDOVECTOR_SIZE_BITS)) * word_size);
2868 }
2869 else
2870 size = header_size + size * word_size;
2871 return vroundup (size);
2872}
2873
2874/* Release extra resources still in use by VECTOR, which may be any
2875 vector-like object. For now, this is used just to free data in
2876 font objects. */
2877
2878static void
2879cleanup_vector (struct Lisp_Vector *vector)
2880{
2881 if (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FONT)
2882 && ((vector->header.size & PSEUDOVECTOR_SIZE_MASK)
2883 == FONT_OBJECT_MAX))
2884 ((struct font *) vector)->driver->close ((struct font *) vector);
2885}
2886
2887/* Reclaim space used by unmarked vectors. */
2888
2889static void
2890sweep_vectors (void)
2891{
2892 struct vector_block *block, **bprev = &vector_blocks;
2893 struct large_vector *lv, **lvprev = &large_vectors;
2894 struct Lisp_Vector *vector, *next;
2895
2896 total_vectors = total_vector_slots = total_free_vector_slots = 0;
2897 memset (vector_free_lists, 0, sizeof (vector_free_lists));
2898
2899 /* Looking through vector blocks. */
2900
2901 for (block = vector_blocks; block; block = *bprev)
2902 {
2903 bool free_this_block = 0;
2904 ptrdiff_t nbytes;
2905
2906 for (vector = (struct Lisp_Vector *) block->data;
2907 VECTOR_IN_BLOCK (vector, block); vector = next)
2908 {
2909 if (VECTOR_MARKED_P (vector))
2910 {
2911 VECTOR_UNMARK (vector);
2912 total_vectors++;
2913 nbytes = vector_nbytes (vector);
2914 total_vector_slots += nbytes / word_size;
2915 next = ADVANCE (vector, nbytes);
2916 }
2917 else
2918 {
2919 ptrdiff_t total_bytes;
2920
2921 cleanup_vector (vector);
2922 nbytes = vector_nbytes (vector);
2923 total_bytes = nbytes;
2924 next = ADVANCE (vector, nbytes);
2925
2926 /* While NEXT is not marked, try to coalesce with VECTOR,
2927 thus making VECTOR of the largest possible size. */
2928
2929 while (VECTOR_IN_BLOCK (next, block))
2930 {
2931 if (VECTOR_MARKED_P (next))
2932 break;
2933 cleanup_vector (next);
2934 nbytes = vector_nbytes (next);
2935 total_bytes += nbytes;
2936 next = ADVANCE (next, nbytes);
2937 }
2938
2939 eassert (total_bytes % roundup_size == 0);
2940
2941 if (vector == (struct Lisp_Vector *) block->data
2942 && !VECTOR_IN_BLOCK (next, block))
2943 /* This block should be freed because all of it's
2944 space was coalesced into the only free vector. */
2945 free_this_block = 1;
2946 else
2947 {
2948 size_t tmp;
2949 SETUP_ON_FREE_LIST (vector, total_bytes, tmp);
2950 }
2951 }
2952 }
2953
2954 if (free_this_block)
2955 {
2956 *bprev = block->next;
2957#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
2958 mem_delete (mem_find (block->data));
2959#endif
2960 xfree (block);
2961 }
2962 else
2963 bprev = &block->next;
2964 }
2965
2966 /* Sweep large vectors. */
2967
2968 for (lv = large_vectors; lv; lv = *lvprev)
2969 {
2970 vector = large_vector_vec (lv);
2971 if (VECTOR_MARKED_P (vector))
2972 {
2973 VECTOR_UNMARK (vector);
2974 total_vectors++;
2975 if (vector->header.size & PSEUDOVECTOR_FLAG)
2976 {
2977 /* All non-bool pseudovectors are small enough to be allocated
2978 from vector blocks. This code should be redesigned if some
2979 pseudovector type grows beyond VBLOCK_BYTES_MAX. */
2980 eassert (PSEUDOVECTOR_TYPEP (&vector->header, PVEC_BOOL_VECTOR));
2981 total_vector_slots += vector_nbytes (vector) / word_size;
2982 }
2983 else
2984 total_vector_slots
2985 += header_size / word_size + vector->header.size;
2986 lvprev = &lv->next;
2987 }
2988 else
2989 {
2990 *lvprev = lv->next;
2991 lisp_free (lv);
2992 }
2993 }
2994}
2995
2996/* Value is a pointer to a newly allocated Lisp_Vector structure
2997 with room for LEN Lisp_Objects. */
2998
2999static struct Lisp_Vector *
3000allocate_vectorlike (ptrdiff_t len)
3001{
3002 struct Lisp_Vector *p;
3003
3004 MALLOC_BLOCK_INPUT;
3005
3006 if (len == 0)
3007 p = XVECTOR (zero_vector);
3008 else
3009 {
3010 size_t nbytes = header_size + len * word_size;
3011
3012#ifdef DOUG_LEA_MALLOC
3013 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
3014 because mapped region contents are not preserved in
3015 a dumped Emacs. */
3016 mallopt (M_MMAP_MAX, 0);
3017#endif
3018
3019 if (nbytes <= VBLOCK_BYTES_MAX)
3020 p = allocate_vector_from_block (vroundup (nbytes));
3021 else
3022 {
3023 struct large_vector *lv
3024 = lisp_malloc ((large_vector_offset + header_size
3025 + len * word_size),
3026 MEM_TYPE_VECTORLIKE);
3027 lv->next = large_vectors;
3028 large_vectors = lv;
3029 p = large_vector_vec (lv);
3030 }
3031
3032#ifdef DOUG_LEA_MALLOC
3033 /* Back to a reasonable maximum of mmap'ed areas. */
3034 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
3035#endif
3036
3037 consing_since_gc += nbytes;
3038 vector_cells_consed += len;
3039 }
3040
3041 MALLOC_UNBLOCK_INPUT;
3042
3043 return p;
3044}
3045
3046
3047/* Allocate a vector with LEN slots. */
3048
3049struct Lisp_Vector *
3050allocate_vector (EMACS_INT len)
3051{
3052 struct Lisp_Vector *v;
3053 ptrdiff_t nbytes_max = min (PTRDIFF_MAX, SIZE_MAX);
3054
3055 if (min ((nbytes_max - header_size) / word_size, MOST_POSITIVE_FIXNUM) < len)
3056 memory_full (SIZE_MAX);
3057 v = allocate_vectorlike (len);
3058 v->header.size = len;
3059 return v;
3060}
3061
3062
3063/* Allocate other vector-like structures. */
3064
3065struct Lisp_Vector *
3066allocate_pseudovector (int memlen, int lisplen, enum pvec_type tag)
3067{
3068 struct Lisp_Vector *v = allocate_vectorlike (memlen);
3069 int i;
3070
3071 /* Catch bogus values. */
3072 eassert (tag <= PVEC_FONT);
3073 eassert (memlen - lisplen <= (1 << PSEUDOVECTOR_REST_BITS) - 1);
3074 eassert (lisplen <= (1 << PSEUDOVECTOR_SIZE_BITS) - 1);
3075
3076 /* Only the first lisplen slots will be traced normally by the GC. */
3077 for (i = 0; i < lisplen; ++i)
3078 v->contents[i] = Qnil;
3079
3080 XSETPVECTYPESIZE (v, tag, lisplen, memlen - lisplen);
3081 return v;
3082}
3083
3084struct buffer *
3085allocate_buffer (void)
3086{
3087 struct buffer *b = lisp_malloc (sizeof *b, MEM_TYPE_BUFFER);
3088
3089 BUFFER_PVEC_INIT (b);
3090 /* Put B on the chain of all buffers including killed ones. */
3091 b->next = all_buffers;
3092 all_buffers = b;
3093 /* Note that the rest fields of B are not initialized. */
3094 return b;
3095}
3096
3097struct Lisp_Hash_Table *
3098allocate_hash_table (void)
3099{
3100 return ALLOCATE_PSEUDOVECTOR (struct Lisp_Hash_Table, count, PVEC_HASH_TABLE);
3101}
3102
3103struct window *
3104allocate_window (void)
3105{
3106 struct window *w;
3107
3108 w = ALLOCATE_PSEUDOVECTOR (struct window, current_matrix, PVEC_WINDOW);
3109 /* Users assumes that non-Lisp data is zeroed. */
3110 memset (&w->current_matrix, 0,
3111 sizeof (*w) - offsetof (struct window, current_matrix));
3112 return w;
3113}
3114
3115struct terminal *
3116allocate_terminal (void)
3117{
3118 struct terminal *t;
3119
3120 t = ALLOCATE_PSEUDOVECTOR (struct terminal, next_terminal, PVEC_TERMINAL);
3121 /* Users assumes that non-Lisp data is zeroed. */
3122 memset (&t->next_terminal, 0,
3123 sizeof (*t) - offsetof (struct terminal, next_terminal));
3124 return t;
3125}
3126
3127struct frame *
3128allocate_frame (void)
3129{
3130 struct frame *f;
3131
3132 f = ALLOCATE_PSEUDOVECTOR (struct frame, face_cache, PVEC_FRAME);
3133 /* Users assumes that non-Lisp data is zeroed. */
3134 memset (&f->face_cache, 0,
3135 sizeof (*f) - offsetof (struct frame, face_cache));
3136 return f;
3137}
3138
3139struct Lisp_Process *
3140allocate_process (void)
3141{
3142 struct Lisp_Process *p;
3143
3144 p = ALLOCATE_PSEUDOVECTOR (struct Lisp_Process, pid, PVEC_PROCESS);
3145 /* Users assumes that non-Lisp data is zeroed. */
3146 memset (&p->pid, 0,
3147 sizeof (*p) - offsetof (struct Lisp_Process, pid));
3148 return p;
3149}
3150
3151DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
3152 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
3153See also the function `vector'. */)
3154 (register Lisp_Object length, Lisp_Object init)
3155{
3156 Lisp_Object vector;
3157 register ptrdiff_t sizei;
3158 register ptrdiff_t i;
3159 register struct Lisp_Vector *p;
3160
3161 CHECK_NATNUM (length);
3162
3163 p = allocate_vector (XFASTINT (length));
3164 sizei = XFASTINT (length);
3165 for (i = 0; i < sizei; i++)
3166 p->contents[i] = init;
3167
3168 XSETVECTOR (vector, p);
3169 return vector;
3170}
3171
3172
3173DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
3174 doc: /* Return a newly created vector with specified arguments as elements.
3175Any number of arguments, even zero arguments, are allowed.
3176usage: (vector &rest OBJECTS) */)
3177 (ptrdiff_t nargs, Lisp_Object *args)
3178{
3179 ptrdiff_t i;
3180 register Lisp_Object val = make_uninit_vector (nargs);
3181 register struct Lisp_Vector *p = XVECTOR (val);
3182
3183 for (i = 0; i < nargs; i++)
3184 p->contents[i] = args[i];
3185 return val;
3186}
3187
3188void
3189make_byte_code (struct Lisp_Vector *v)
3190{
3191 /* Don't allow the global zero_vector to become a byte code object. */
3192 eassert(0 < v->header.size);
3193 if (v->header.size > 1 && STRINGP (v->contents[1])
3194 && STRING_MULTIBYTE (v->contents[1]))
3195 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
3196 earlier because they produced a raw 8-bit string for byte-code
3197 and now such a byte-code string is loaded as multibyte while
3198 raw 8-bit characters converted to multibyte form. Thus, now we
3199 must convert them back to the original unibyte form. */
3200 v->contents[1] = Fstring_as_unibyte (v->contents[1]);
3201 XSETPVECTYPE (v, PVEC_COMPILED);
3202}
3203
3204DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
3205 doc: /* Create a byte-code object with specified arguments as elements.
3206The arguments should be the ARGLIST, bytecode-string BYTE-CODE, constant
3207vector CONSTANTS, maximum stack size DEPTH, (optional) DOCSTRING,
3208and (optional) INTERACTIVE-SPEC.
3209The first four arguments are required; at most six have any
3210significance.
3211The ARGLIST can be either like the one of `lambda', in which case the arguments
3212will be dynamically bound before executing the byte code, or it can be an
3213integer of the form NNNNNNNRMMMMMMM where the 7bit MMMMMMM specifies the
3214minimum number of arguments, the 7-bit NNNNNNN specifies the maximum number
3215of arguments (ignoring &rest) and the R bit specifies whether there is a &rest
3216argument to catch the left-over arguments. If such an integer is used, the
3217arguments will not be dynamically bound but will be instead pushed on the
3218stack before executing the byte-code.
3219usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
3220 (ptrdiff_t nargs, Lisp_Object *args)
3221{
3222 ptrdiff_t i;
3223 register Lisp_Object val = make_uninit_vector (nargs);
3224 register struct Lisp_Vector *p = XVECTOR (val);
3225
3226 /* We used to purecopy everything here, if purify-flag was set. This worked
3227 OK for Emacs-23, but with Emacs-24's lexical binding code, it can be
3228 dangerous, since make-byte-code is used during execution to build
3229 closures, so any closure built during the preload phase would end up
3230 copied into pure space, including its free variables, which is sometimes
3231 just wasteful and other times plainly wrong (e.g. those free vars may want
3232 to be setcar'd). */
3233
3234 for (i = 0; i < nargs; i++)
3235 p->contents[i] = args[i];
3236 make_byte_code (p);
3237 XSETCOMPILED (val, p);
3238 return val;
3239}
3240
3241
3242\f
3243/***********************************************************************
3244 Symbol Allocation
3245 ***********************************************************************/
3246
3247/* Like struct Lisp_Symbol, but padded so that the size is a multiple
3248 of the required alignment if LSB tags are used. */
3249
3250union aligned_Lisp_Symbol
3251{
3252 struct Lisp_Symbol s;
3253#if USE_LSB_TAG
3254 unsigned char c[(sizeof (struct Lisp_Symbol) + GCALIGNMENT - 1)
3255 & -GCALIGNMENT];
3256#endif
3257};
3258
3259/* Each symbol_block is just under 1020 bytes long, since malloc
3260 really allocates in units of powers of two and uses 4 bytes for its
3261 own overhead. */
3262
3263#define SYMBOL_BLOCK_SIZE \
3264 ((1020 - sizeof (struct symbol_block *)) / sizeof (union aligned_Lisp_Symbol))
3265
3266struct symbol_block
3267{
3268 /* Place `symbols' first, to preserve alignment. */
3269 union aligned_Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
3270 struct symbol_block *next;
3271};
3272
3273/* Current symbol block and index of first unused Lisp_Symbol
3274 structure in it. */
3275
3276static struct symbol_block *symbol_block;
3277static int symbol_block_index = SYMBOL_BLOCK_SIZE;
3278
3279/* List of free symbols. */
3280
3281static struct Lisp_Symbol *symbol_free_list;
3282
3283static void
3284set_symbol_name (Lisp_Object sym, Lisp_Object name)
3285{
3286 XSYMBOL (sym)->name = name;
3287}
3288
3289DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
3290 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
3291Its value is void, and its function definition and property list are nil. */)
3292 (Lisp_Object name)
3293{
3294 register Lisp_Object val;
3295 register struct Lisp_Symbol *p;
3296
3297 CHECK_STRING (name);
3298
3299 MALLOC_BLOCK_INPUT;
3300
3301 if (symbol_free_list)
3302 {
3303 XSETSYMBOL (val, symbol_free_list);
3304 symbol_free_list = symbol_free_list->next;
3305 }
3306 else
3307 {
3308 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
3309 {
3310 struct symbol_block *new
3311 = lisp_malloc (sizeof *new, MEM_TYPE_SYMBOL);
3312 new->next = symbol_block;
3313 symbol_block = new;
3314 symbol_block_index = 0;
3315 total_free_symbols += SYMBOL_BLOCK_SIZE;
3316 }
3317 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index].s);
3318 symbol_block_index++;
3319 }
3320
3321 MALLOC_UNBLOCK_INPUT;
3322
3323 p = XSYMBOL (val);
3324 set_symbol_name (val, name);
3325 set_symbol_plist (val, Qnil);
3326 p->redirect = SYMBOL_PLAINVAL;
3327 SET_SYMBOL_VAL (p, Qunbound);
3328 set_symbol_function (val, Qnil);
3329 set_symbol_next (val, NULL);
3330 p->gcmarkbit = 0;
3331 p->interned = SYMBOL_UNINTERNED;
3332 p->constant = 0;
3333 p->declared_special = 0;
3334 consing_since_gc += sizeof (struct Lisp_Symbol);
3335 symbols_consed++;
3336 total_free_symbols--;
3337 return val;
3338}
3339
3340
3341\f
3342/***********************************************************************
3343 Marker (Misc) Allocation
3344 ***********************************************************************/
3345
3346/* Like union Lisp_Misc, but padded so that its size is a multiple of
3347 the required alignment when LSB tags are used. */
3348
3349union aligned_Lisp_Misc
3350{
3351 union Lisp_Misc m;
3352#if USE_LSB_TAG
3353 unsigned char c[(sizeof (union Lisp_Misc) + GCALIGNMENT - 1)
3354 & -GCALIGNMENT];
3355#endif
3356};
3357
3358/* Allocation of markers and other objects that share that structure.
3359 Works like allocation of conses. */
3360
3361#define MARKER_BLOCK_SIZE \
3362 ((1020 - sizeof (struct marker_block *)) / sizeof (union aligned_Lisp_Misc))
3363
3364struct marker_block
3365{
3366 /* Place `markers' first, to preserve alignment. */
3367 union aligned_Lisp_Misc markers[MARKER_BLOCK_SIZE];
3368 struct marker_block *next;
3369};
3370
3371static struct marker_block *marker_block;
3372static int marker_block_index = MARKER_BLOCK_SIZE;
3373
3374static union Lisp_Misc *marker_free_list;
3375
3376/* Return a newly allocated Lisp_Misc object of specified TYPE. */
3377
3378static Lisp_Object
3379allocate_misc (enum Lisp_Misc_Type type)
3380{
3381 Lisp_Object val;
3382
3383 MALLOC_BLOCK_INPUT;
3384
3385 if (marker_free_list)
3386 {
3387 XSETMISC (val, marker_free_list);
3388 marker_free_list = marker_free_list->u_free.chain;
3389 }
3390 else
3391 {
3392 if (marker_block_index == MARKER_BLOCK_SIZE)
3393 {
3394 struct marker_block *new = lisp_malloc (sizeof *new, MEM_TYPE_MISC);
3395 new->next = marker_block;
3396 marker_block = new;
3397 marker_block_index = 0;
3398 total_free_markers += MARKER_BLOCK_SIZE;
3399 }
3400 XSETMISC (val, &marker_block->markers[marker_block_index].m);
3401 marker_block_index++;
3402 }
3403
3404 MALLOC_UNBLOCK_INPUT;
3405
3406 --total_free_markers;
3407 consing_since_gc += sizeof (union Lisp_Misc);
3408 misc_objects_consed++;
3409 XMISCANY (val)->type = type;
3410 XMISCANY (val)->gcmarkbit = 0;
3411 return val;
3412}
3413
3414/* Free a Lisp_Misc object. */
3415
3416void
3417free_misc (Lisp_Object misc)
3418{
3419 XMISCANY (misc)->type = Lisp_Misc_Free;
3420 XMISC (misc)->u_free.chain = marker_free_list;
3421 marker_free_list = XMISC (misc);
3422 consing_since_gc -= sizeof (union Lisp_Misc);
3423 total_free_markers++;
3424}
3425
3426/* Verify properties of Lisp_Save_Value's representation
3427 that are assumed here and elsewhere. */
3428
3429verify (SAVE_UNUSED == 0);
3430verify (((SAVE_INTEGER | SAVE_POINTER | SAVE_FUNCPOINTER | SAVE_OBJECT)
3431 >> SAVE_SLOT_BITS)
3432 == 0);
3433
3434/* Return Lisp_Save_Value objects for the various combinations
3435 that callers need. */
3436
3437Lisp_Object
3438make_save_int_int_int (ptrdiff_t a, ptrdiff_t b, ptrdiff_t c)
3439{
3440 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3441 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3442 p->save_type = SAVE_TYPE_INT_INT_INT;
3443 p->data[0].integer = a;
3444 p->data[1].integer = b;
3445 p->data[2].integer = c;
3446 return val;
3447}
3448
3449Lisp_Object
3450make_save_obj_obj_obj_obj (Lisp_Object a, Lisp_Object b, Lisp_Object c,
3451 Lisp_Object d)
3452{
3453 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3454 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3455 p->save_type = SAVE_TYPE_OBJ_OBJ_OBJ_OBJ;
3456 p->data[0].object = a;
3457 p->data[1].object = b;
3458 p->data[2].object = c;
3459 p->data[3].object = d;
3460 return val;
3461}
3462
3463Lisp_Object
3464make_save_ptr (void *a)
3465{
3466 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3467 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3468 p->save_type = SAVE_POINTER;
3469 p->data[0].pointer = a;
3470 return val;
3471}
3472
3473Lisp_Object
3474make_save_ptr_int (void *a, ptrdiff_t b)
3475{
3476 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3477 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3478 p->save_type = SAVE_TYPE_PTR_INT;
3479 p->data[0].pointer = a;
3480 p->data[1].integer = b;
3481 return val;
3482}
3483
3484#if defined HAVE_MENUS && ! (defined USE_X_TOOLKIT || defined USE_GTK)
3485Lisp_Object
3486make_save_ptr_ptr (void *a, void *b)
3487{
3488 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3489 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3490 p->save_type = SAVE_TYPE_PTR_PTR;
3491 p->data[0].pointer = a;
3492 p->data[1].pointer = b;
3493 return val;
3494}
3495#endif
3496
3497Lisp_Object
3498make_save_funcptr_ptr_obj (void (*a) (void), void *b, Lisp_Object c)
3499{
3500 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3501 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3502 p->save_type = SAVE_TYPE_FUNCPTR_PTR_OBJ;
3503 p->data[0].funcpointer = a;
3504 p->data[1].pointer = b;
3505 p->data[2].object = c;
3506 return val;
3507}
3508
3509/* Return a Lisp_Save_Value object that represents an array A
3510 of N Lisp objects. */
3511
3512Lisp_Object
3513make_save_memory (Lisp_Object *a, ptrdiff_t n)
3514{
3515 Lisp_Object val = allocate_misc (Lisp_Misc_Save_Value);
3516 struct Lisp_Save_Value *p = XSAVE_VALUE (val);
3517 p->save_type = SAVE_TYPE_MEMORY;
3518 p->data[0].pointer = a;
3519 p->data[1].integer = n;
3520 return val;
3521}
3522
3523/* Free a Lisp_Save_Value object. Do not use this function
3524 if SAVE contains pointer other than returned by xmalloc. */
3525
3526void
3527free_save_value (Lisp_Object save)
3528{
3529 xfree (XSAVE_POINTER (save, 0));
3530 free_misc (save);
3531}
3532
3533/* Return a Lisp_Misc_Overlay object with specified START, END and PLIST. */
3534
3535Lisp_Object
3536build_overlay (Lisp_Object start, Lisp_Object end, Lisp_Object plist)
3537{
3538 register Lisp_Object overlay;
3539
3540 overlay = allocate_misc (Lisp_Misc_Overlay);
3541 OVERLAY_START (overlay) = start;
3542 OVERLAY_END (overlay) = end;
3543 set_overlay_plist (overlay, plist);
3544 XOVERLAY (overlay)->next = NULL;
3545 return overlay;
3546}
3547
3548DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
3549 doc: /* Return a newly allocated marker which does not point at any place. */)
3550 (void)
3551{
3552 register Lisp_Object val;
3553 register struct Lisp_Marker *p;
3554
3555 val = allocate_misc (Lisp_Misc_Marker);
3556 p = XMARKER (val);
3557 p->buffer = 0;
3558 p->bytepos = 0;
3559 p->charpos = 0;
3560 p->next = NULL;
3561 p->insertion_type = 0;
3562 p->need_adjustment = 0;
3563 return val;
3564}
3565
3566/* Return a newly allocated marker which points into BUF
3567 at character position CHARPOS and byte position BYTEPOS. */
3568
3569Lisp_Object
3570build_marker (struct buffer *buf, ptrdiff_t charpos, ptrdiff_t bytepos)
3571{
3572 Lisp_Object obj;
3573 struct Lisp_Marker *m;
3574
3575 /* No dead buffers here. */
3576 eassert (BUFFER_LIVE_P (buf));
3577
3578 /* Every character is at least one byte. */
3579 eassert (charpos <= bytepos);
3580
3581 obj = allocate_misc (Lisp_Misc_Marker);
3582 m = XMARKER (obj);
3583 m->buffer = buf;
3584 m->charpos = charpos;
3585 m->bytepos = bytepos;
3586 m->insertion_type = 0;
3587 m->need_adjustment = 0;
3588 m->next = BUF_MARKERS (buf);
3589 BUF_MARKERS (buf) = m;
3590 return obj;
3591}
3592
3593/* Put MARKER back on the free list after using it temporarily. */
3594
3595void
3596free_marker (Lisp_Object marker)
3597{
3598 unchain_marker (XMARKER (marker));
3599 free_misc (marker);
3600}
3601
3602\f
3603/* Return a newly created vector or string with specified arguments as
3604 elements. If all the arguments are characters that can fit
3605 in a string of events, make a string; otherwise, make a vector.
3606
3607 Any number of arguments, even zero arguments, are allowed. */
3608
3609Lisp_Object
3610make_event_array (ptrdiff_t nargs, Lisp_Object *args)
3611{
3612 ptrdiff_t i;
3613
3614 for (i = 0; i < nargs; i++)
3615 /* The things that fit in a string
3616 are characters that are in 0...127,
3617 after discarding the meta bit and all the bits above it. */
3618 if (!INTEGERP (args[i])
3619 || (XINT (args[i]) & ~(-CHAR_META)) >= 0200)
3620 return Fvector (nargs, args);
3621
3622 /* Since the loop exited, we know that all the things in it are
3623 characters, so we can make a string. */
3624 {
3625 Lisp_Object result;
3626
3627 result = Fmake_string (make_number (nargs), make_number (0));
3628 for (i = 0; i < nargs; i++)
3629 {
3630 SSET (result, i, XINT (args[i]));
3631 /* Move the meta bit to the right place for a string char. */
3632 if (XINT (args[i]) & CHAR_META)
3633 SSET (result, i, SREF (result, i) | 0x80);
3634 }
3635
3636 return result;
3637 }
3638}
3639
3640
3641\f
3642/************************************************************************
3643 Memory Full Handling
3644 ************************************************************************/
3645
3646
3647/* Called if malloc (NBYTES) returns zero. If NBYTES == SIZE_MAX,
3648 there may have been size_t overflow so that malloc was never
3649 called, or perhaps malloc was invoked successfully but the
3650 resulting pointer had problems fitting into a tagged EMACS_INT. In
3651 either case this counts as memory being full even though malloc did
3652 not fail. */
3653
3654void
3655memory_full (size_t nbytes)
3656{
3657 /* Do not go into hysterics merely because a large request failed. */
3658 bool enough_free_memory = 0;
3659 if (SPARE_MEMORY < nbytes)
3660 {
3661 void *p;
3662
3663 MALLOC_BLOCK_INPUT;
3664 p = malloc (SPARE_MEMORY);
3665 if (p)
3666 {
3667 free (p);
3668 enough_free_memory = 1;
3669 }
3670 MALLOC_UNBLOCK_INPUT;
3671 }
3672
3673 if (! enough_free_memory)
3674 {
3675 int i;
3676
3677 Vmemory_full = Qt;
3678
3679 memory_full_cons_threshold = sizeof (struct cons_block);
3680
3681 /* The first time we get here, free the spare memory. */
3682 for (i = 0; i < sizeof (spare_memory) / sizeof (char *); i++)
3683 if (spare_memory[i])
3684 {
3685 if (i == 0)
3686 free (spare_memory[i]);
3687 else if (i >= 1 && i <= 4)
3688 lisp_align_free (spare_memory[i]);
3689 else
3690 lisp_free (spare_memory[i]);
3691 spare_memory[i] = 0;
3692 }
3693 }
3694
3695 /* This used to call error, but if we've run out of memory, we could
3696 get infinite recursion trying to build the string. */
3697 xsignal (Qnil, Vmemory_signal_data);
3698}
3699
3700/* If we released our reserve (due to running out of memory),
3701 and we have a fair amount free once again,
3702 try to set aside another reserve in case we run out once more.
3703
3704 This is called when a relocatable block is freed in ralloc.c,
3705 and also directly from this file, in case we're not using ralloc.c. */
3706
3707void
3708refill_memory_reserve (void)
3709{
3710#ifndef SYSTEM_MALLOC
3711 if (spare_memory[0] == 0)
3712 spare_memory[0] = malloc (SPARE_MEMORY);
3713 if (spare_memory[1] == 0)
3714 spare_memory[1] = lisp_align_malloc (sizeof (struct cons_block),
3715 MEM_TYPE_SPARE);
3716 if (spare_memory[2] == 0)
3717 spare_memory[2] = lisp_align_malloc (sizeof (struct cons_block),
3718 MEM_TYPE_SPARE);
3719 if (spare_memory[3] == 0)
3720 spare_memory[3] = lisp_align_malloc (sizeof (struct cons_block),
3721 MEM_TYPE_SPARE);
3722 if (spare_memory[4] == 0)
3723 spare_memory[4] = lisp_align_malloc (sizeof (struct cons_block),
3724 MEM_TYPE_SPARE);
3725 if (spare_memory[5] == 0)
3726 spare_memory[5] = lisp_malloc (sizeof (struct string_block),
3727 MEM_TYPE_SPARE);
3728 if (spare_memory[6] == 0)
3729 spare_memory[6] = lisp_malloc (sizeof (struct string_block),
3730 MEM_TYPE_SPARE);
3731 if (spare_memory[0] && spare_memory[1] && spare_memory[5])
3732 Vmemory_full = Qnil;
3733#endif
3734}
3735\f
3736/************************************************************************
3737 C Stack Marking
3738 ************************************************************************/
3739
3740#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3741
3742/* Conservative C stack marking requires a method to identify possibly
3743 live Lisp objects given a pointer value. We do this by keeping
3744 track of blocks of Lisp data that are allocated in a red-black tree
3745 (see also the comment of mem_node which is the type of nodes in
3746 that tree). Function lisp_malloc adds information for an allocated
3747 block to the red-black tree with calls to mem_insert, and function
3748 lisp_free removes it with mem_delete. Functions live_string_p etc
3749 call mem_find to lookup information about a given pointer in the
3750 tree, and use that to determine if the pointer points to a Lisp
3751 object or not. */
3752
3753/* Initialize this part of alloc.c. */
3754
3755static void
3756mem_init (void)
3757{
3758 mem_z.left = mem_z.right = MEM_NIL;
3759 mem_z.parent = NULL;
3760 mem_z.color = MEM_BLACK;
3761 mem_z.start = mem_z.end = NULL;
3762 mem_root = MEM_NIL;
3763}
3764
3765
3766/* Value is a pointer to the mem_node containing START. Value is
3767 MEM_NIL if there is no node in the tree containing START. */
3768
3769static struct mem_node *
3770mem_find (void *start)
3771{
3772 struct mem_node *p;
3773
3774 if (start < min_heap_address || start > max_heap_address)
3775 return MEM_NIL;
3776
3777 /* Make the search always successful to speed up the loop below. */
3778 mem_z.start = start;
3779 mem_z.end = (char *) start + 1;
3780
3781 p = mem_root;
3782 while (start < p->start || start >= p->end)
3783 p = start < p->start ? p->left : p->right;
3784 return p;
3785}
3786
3787
3788/* Insert a new node into the tree for a block of memory with start
3789 address START, end address END, and type TYPE. Value is a
3790 pointer to the node that was inserted. */
3791
3792static struct mem_node *
3793mem_insert (void *start, void *end, enum mem_type type)
3794{
3795 struct mem_node *c, *parent, *x;
3796
3797 if (min_heap_address == NULL || start < min_heap_address)
3798 min_heap_address = start;
3799 if (max_heap_address == NULL || end > max_heap_address)
3800 max_heap_address = end;
3801
3802 /* See where in the tree a node for START belongs. In this
3803 particular application, it shouldn't happen that a node is already
3804 present. For debugging purposes, let's check that. */
3805 c = mem_root;
3806 parent = NULL;
3807
3808#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3809
3810 while (c != MEM_NIL)
3811 {
3812 if (start >= c->start && start < c->end)
3813 emacs_abort ();
3814 parent = c;
3815 c = start < c->start ? c->left : c->right;
3816 }
3817
3818#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3819
3820 while (c != MEM_NIL)
3821 {
3822 parent = c;
3823 c = start < c->start ? c->left : c->right;
3824 }
3825
3826#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3827
3828 /* Create a new node. */
3829#ifdef GC_MALLOC_CHECK
3830 x = malloc (sizeof *x);
3831 if (x == NULL)
3832 emacs_abort ();
3833#else
3834 x = xmalloc (sizeof *x);
3835#endif
3836 x->start = start;
3837 x->end = end;
3838 x->type = type;
3839 x->parent = parent;
3840 x->left = x->right = MEM_NIL;
3841 x->color = MEM_RED;
3842
3843 /* Insert it as child of PARENT or install it as root. */
3844 if (parent)
3845 {
3846 if (start < parent->start)
3847 parent->left = x;
3848 else
3849 parent->right = x;
3850 }
3851 else
3852 mem_root = x;
3853
3854 /* Re-establish red-black tree properties. */
3855 mem_insert_fixup (x);
3856
3857 return x;
3858}
3859
3860
3861/* Re-establish the red-black properties of the tree, and thereby
3862 balance the tree, after node X has been inserted; X is always red. */
3863
3864static void
3865mem_insert_fixup (struct mem_node *x)
3866{
3867 while (x != mem_root && x->parent->color == MEM_RED)
3868 {
3869 /* X is red and its parent is red. This is a violation of
3870 red-black tree property #3. */
3871
3872 if (x->parent == x->parent->parent->left)
3873 {
3874 /* We're on the left side of our grandparent, and Y is our
3875 "uncle". */
3876 struct mem_node *y = x->parent->parent->right;
3877
3878 if (y->color == MEM_RED)
3879 {
3880 /* Uncle and parent are red but should be black because
3881 X is red. Change the colors accordingly and proceed
3882 with the grandparent. */
3883 x->parent->color = MEM_BLACK;
3884 y->color = MEM_BLACK;
3885 x->parent->parent->color = MEM_RED;
3886 x = x->parent->parent;
3887 }
3888 else
3889 {
3890 /* Parent and uncle have different colors; parent is
3891 red, uncle is black. */
3892 if (x == x->parent->right)
3893 {
3894 x = x->parent;
3895 mem_rotate_left (x);
3896 }
3897
3898 x->parent->color = MEM_BLACK;
3899 x->parent->parent->color = MEM_RED;
3900 mem_rotate_right (x->parent->parent);
3901 }
3902 }
3903 else
3904 {
3905 /* This is the symmetrical case of above. */
3906 struct mem_node *y = x->parent->parent->left;
3907
3908 if (y->color == MEM_RED)
3909 {
3910 x->parent->color = MEM_BLACK;
3911 y->color = MEM_BLACK;
3912 x->parent->parent->color = MEM_RED;
3913 x = x->parent->parent;
3914 }
3915 else
3916 {
3917 if (x == x->parent->left)
3918 {
3919 x = x->parent;
3920 mem_rotate_right (x);
3921 }
3922
3923 x->parent->color = MEM_BLACK;
3924 x->parent->parent->color = MEM_RED;
3925 mem_rotate_left (x->parent->parent);
3926 }
3927 }
3928 }
3929
3930 /* The root may have been changed to red due to the algorithm. Set
3931 it to black so that property #5 is satisfied. */
3932 mem_root->color = MEM_BLACK;
3933}
3934
3935
3936/* (x) (y)
3937 / \ / \
3938 a (y) ===> (x) c
3939 / \ / \
3940 b c a b */
3941
3942static void
3943mem_rotate_left (struct mem_node *x)
3944{
3945 struct mem_node *y;
3946
3947 /* Turn y's left sub-tree into x's right sub-tree. */
3948 y = x->right;
3949 x->right = y->left;
3950 if (y->left != MEM_NIL)
3951 y->left->parent = x;
3952
3953 /* Y's parent was x's parent. */
3954 if (y != MEM_NIL)
3955 y->parent = x->parent;
3956
3957 /* Get the parent to point to y instead of x. */
3958 if (x->parent)
3959 {
3960 if (x == x->parent->left)
3961 x->parent->left = y;
3962 else
3963 x->parent->right = y;
3964 }
3965 else
3966 mem_root = y;
3967
3968 /* Put x on y's left. */
3969 y->left = x;
3970 if (x != MEM_NIL)
3971 x->parent = y;
3972}
3973
3974
3975/* (x) (Y)
3976 / \ / \
3977 (y) c ===> a (x)
3978 / \ / \
3979 a b b c */
3980
3981static void
3982mem_rotate_right (struct mem_node *x)
3983{
3984 struct mem_node *y = x->left;
3985
3986 x->left = y->right;
3987 if (y->right != MEM_NIL)
3988 y->right->parent = x;
3989
3990 if (y != MEM_NIL)
3991 y->parent = x->parent;
3992 if (x->parent)
3993 {
3994 if (x == x->parent->right)
3995 x->parent->right = y;
3996 else
3997 x->parent->left = y;
3998 }
3999 else
4000 mem_root = y;
4001
4002 y->right = x;
4003 if (x != MEM_NIL)
4004 x->parent = y;
4005}
4006
4007
4008/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
4009
4010static void
4011mem_delete (struct mem_node *z)
4012{
4013 struct mem_node *x, *y;
4014
4015 if (!z || z == MEM_NIL)
4016 return;
4017
4018 if (z->left == MEM_NIL || z->right == MEM_NIL)
4019 y = z;
4020 else
4021 {
4022 y = z->right;
4023 while (y->left != MEM_NIL)
4024 y = y->left;
4025 }
4026
4027 if (y->left != MEM_NIL)
4028 x = y->left;
4029 else
4030 x = y->right;
4031
4032 x->parent = y->parent;
4033 if (y->parent)
4034 {
4035 if (y == y->parent->left)
4036 y->parent->left = x;
4037 else
4038 y->parent->right = x;
4039 }
4040 else
4041 mem_root = x;
4042
4043 if (y != z)
4044 {
4045 z->start = y->start;
4046 z->end = y->end;
4047 z->type = y->type;
4048 }
4049
4050 if (y->color == MEM_BLACK)
4051 mem_delete_fixup (x);
4052
4053#ifdef GC_MALLOC_CHECK
4054 free (y);
4055#else
4056 xfree (y);
4057#endif
4058}
4059
4060
4061/* Re-establish the red-black properties of the tree, after a
4062 deletion. */
4063
4064static void
4065mem_delete_fixup (struct mem_node *x)
4066{
4067 while (x != mem_root && x->color == MEM_BLACK)
4068 {
4069 if (x == x->parent->left)
4070 {
4071 struct mem_node *w = x->parent->right;
4072
4073 if (w->color == MEM_RED)
4074 {
4075 w->color = MEM_BLACK;
4076 x->parent->color = MEM_RED;
4077 mem_rotate_left (x->parent);
4078 w = x->parent->right;
4079 }
4080
4081 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
4082 {
4083 w->color = MEM_RED;
4084 x = x->parent;
4085 }
4086 else
4087 {
4088 if (w->right->color == MEM_BLACK)
4089 {
4090 w->left->color = MEM_BLACK;
4091 w->color = MEM_RED;
4092 mem_rotate_right (w);
4093 w = x->parent->right;
4094 }
4095 w->color = x->parent->color;
4096 x->parent->color = MEM_BLACK;
4097 w->right->color = MEM_BLACK;
4098 mem_rotate_left (x->parent);
4099 x = mem_root;
4100 }
4101 }
4102 else
4103 {
4104 struct mem_node *w = x->parent->left;
4105
4106 if (w->color == MEM_RED)
4107 {
4108 w->color = MEM_BLACK;
4109 x->parent->color = MEM_RED;
4110 mem_rotate_right (x->parent);
4111 w = x->parent->left;
4112 }
4113
4114 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
4115 {
4116 w->color = MEM_RED;
4117 x = x->parent;
4118 }
4119 else
4120 {
4121 if (w->left->color == MEM_BLACK)
4122 {
4123 w->right->color = MEM_BLACK;
4124 w->color = MEM_RED;
4125 mem_rotate_left (w);
4126 w = x->parent->left;
4127 }
4128
4129 w->color = x->parent->color;
4130 x->parent->color = MEM_BLACK;
4131 w->left->color = MEM_BLACK;
4132 mem_rotate_right (x->parent);
4133 x = mem_root;
4134 }
4135 }
4136 }
4137
4138 x->color = MEM_BLACK;
4139}
4140
4141
4142/* Value is non-zero if P is a pointer to a live Lisp string on
4143 the heap. M is a pointer to the mem_block for P. */
4144
4145static bool
4146live_string_p (struct mem_node *m, void *p)
4147{
4148 if (m->type == MEM_TYPE_STRING)
4149 {
4150 struct string_block *b = m->start;
4151 ptrdiff_t offset = (char *) p - (char *) &b->strings[0];
4152
4153 /* P must point to the start of a Lisp_String structure, and it
4154 must not be on the free-list. */
4155 return (offset >= 0
4156 && offset % sizeof b->strings[0] == 0
4157 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
4158 && ((struct Lisp_String *) p)->data != NULL);
4159 }
4160 else
4161 return 0;
4162}
4163
4164
4165/* Value is non-zero if P is a pointer to a live Lisp cons on
4166 the heap. M is a pointer to the mem_block for P. */
4167
4168static bool
4169live_cons_p (struct mem_node *m, void *p)
4170{
4171 if (m->type == MEM_TYPE_CONS)
4172 {
4173 struct cons_block *b = m->start;
4174 ptrdiff_t offset = (char *) p - (char *) &b->conses[0];
4175
4176 /* P must point to the start of a Lisp_Cons, not be
4177 one of the unused cells in the current cons block,
4178 and not be on the free-list. */
4179 return (offset >= 0
4180 && offset % sizeof b->conses[0] == 0
4181 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
4182 && (b != cons_block
4183 || offset / sizeof b->conses[0] < cons_block_index)
4184 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
4185 }
4186 else
4187 return 0;
4188}
4189
4190
4191/* Value is non-zero if P is a pointer to a live Lisp symbol on
4192 the heap. M is a pointer to the mem_block for P. */
4193
4194static bool
4195live_symbol_p (struct mem_node *m, void *p)
4196{
4197 if (m->type == MEM_TYPE_SYMBOL)
4198 {
4199 struct symbol_block *b = m->start;
4200 ptrdiff_t offset = (char *) p - (char *) &b->symbols[0];
4201
4202 /* P must point to the start of a Lisp_Symbol, not be
4203 one of the unused cells in the current symbol block,
4204 and not be on the free-list. */
4205 return (offset >= 0
4206 && offset % sizeof b->symbols[0] == 0
4207 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
4208 && (b != symbol_block
4209 || offset / sizeof b->symbols[0] < symbol_block_index)
4210 && !EQ (((struct Lisp_Symbol *)p)->function, Vdead));
4211 }
4212 else
4213 return 0;
4214}
4215
4216
4217/* Value is non-zero if P is a pointer to a live Lisp float on
4218 the heap. M is a pointer to the mem_block for P. */
4219
4220static bool
4221live_float_p (struct mem_node *m, void *p)
4222{
4223 if (m->type == MEM_TYPE_FLOAT)
4224 {
4225 struct float_block *b = m->start;
4226 ptrdiff_t offset = (char *) p - (char *) &b->floats[0];
4227
4228 /* P must point to the start of a Lisp_Float and not be
4229 one of the unused cells in the current float block. */
4230 return (offset >= 0
4231 && offset % sizeof b->floats[0] == 0
4232 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
4233 && (b != float_block
4234 || offset / sizeof b->floats[0] < float_block_index));
4235 }
4236 else
4237 return 0;
4238}
4239
4240
4241/* Value is non-zero if P is a pointer to a live Lisp Misc on
4242 the heap. M is a pointer to the mem_block for P. */
4243
4244static bool
4245live_misc_p (struct mem_node *m, void *p)
4246{
4247 if (m->type == MEM_TYPE_MISC)
4248 {
4249 struct marker_block *b = m->start;
4250 ptrdiff_t offset = (char *) p - (char *) &b->markers[0];
4251
4252 /* P must point to the start of a Lisp_Misc, not be
4253 one of the unused cells in the current misc block,
4254 and not be on the free-list. */
4255 return (offset >= 0
4256 && offset % sizeof b->markers[0] == 0
4257 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
4258 && (b != marker_block
4259 || offset / sizeof b->markers[0] < marker_block_index)
4260 && ((union Lisp_Misc *) p)->u_any.type != Lisp_Misc_Free);
4261 }
4262 else
4263 return 0;
4264}
4265
4266
4267/* Value is non-zero if P is a pointer to a live vector-like object.
4268 M is a pointer to the mem_block for P. */
4269
4270static bool
4271live_vector_p (struct mem_node *m, void *p)
4272{
4273 if (m->type == MEM_TYPE_VECTOR_BLOCK)
4274 {
4275 /* This memory node corresponds to a vector block. */
4276 struct vector_block *block = m->start;
4277 struct Lisp_Vector *vector = (struct Lisp_Vector *) block->data;
4278
4279 /* P is in the block's allocation range. Scan the block
4280 up to P and see whether P points to the start of some
4281 vector which is not on a free list. FIXME: check whether
4282 some allocation patterns (probably a lot of short vectors)
4283 may cause a substantial overhead of this loop. */
4284 while (VECTOR_IN_BLOCK (vector, block)
4285 && vector <= (struct Lisp_Vector *) p)
4286 {
4287 if (!PSEUDOVECTOR_TYPEP (&vector->header, PVEC_FREE) && vector == p)
4288 return 1;
4289 else
4290 vector = ADVANCE (vector, vector_nbytes (vector));
4291 }
4292 }
4293 else if (m->type == MEM_TYPE_VECTORLIKE && p == large_vector_vec (m->start))
4294 /* This memory node corresponds to a large vector. */
4295 return 1;
4296 return 0;
4297}
4298
4299
4300/* Value is non-zero if P is a pointer to a live buffer. M is a
4301 pointer to the mem_block for P. */
4302
4303static bool
4304live_buffer_p (struct mem_node *m, void *p)
4305{
4306 /* P must point to the start of the block, and the buffer
4307 must not have been killed. */
4308 return (m->type == MEM_TYPE_BUFFER
4309 && p == m->start
4310 && !NILP (((struct buffer *) p)->INTERNAL_FIELD (name)));
4311}
4312
4313#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
4314
4315#if GC_MARK_STACK
4316
4317#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4318
4319/* Currently not used, but may be called from gdb. */
4320
4321void dump_zombies (void) EXTERNALLY_VISIBLE;
4322
4323/* Array of objects that are kept alive because the C stack contains
4324 a pattern that looks like a reference to them . */
4325
4326#define MAX_ZOMBIES 10
4327static Lisp_Object zombies[MAX_ZOMBIES];
4328
4329/* Number of zombie objects. */
4330
4331static EMACS_INT nzombies;
4332
4333/* Number of garbage collections. */
4334
4335static EMACS_INT ngcs;
4336
4337/* Average percentage of zombies per collection. */
4338
4339static double avg_zombies;
4340
4341/* Max. number of live and zombie objects. */
4342
4343static EMACS_INT max_live, max_zombies;
4344
4345/* Average number of live objects per GC. */
4346
4347static double avg_live;
4348
4349DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
4350 doc: /* Show information about live and zombie objects. */)
4351 (void)
4352{
4353 Lisp_Object args[8], zombie_list = Qnil;
4354 EMACS_INT i;
4355 for (i = 0; i < min (MAX_ZOMBIES, nzombies); i++)
4356 zombie_list = Fcons (zombies[i], zombie_list);
4357 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
4358 args[1] = make_number (ngcs);
4359 args[2] = make_float (avg_live);
4360 args[3] = make_float (avg_zombies);
4361 args[4] = make_float (avg_zombies / avg_live / 100);
4362 args[5] = make_number (max_live);
4363 args[6] = make_number (max_zombies);
4364 args[7] = zombie_list;
4365 return Fmessage (8, args);
4366}
4367
4368#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4369
4370
4371/* Mark OBJ if we can prove it's a Lisp_Object. */
4372
4373static void
4374mark_maybe_object (Lisp_Object obj)
4375{
4376 void *po;
4377 struct mem_node *m;
4378
4379#if USE_VALGRIND
4380 if (valgrind_p)
4381 VALGRIND_MAKE_MEM_DEFINED (&obj, sizeof (obj));
4382#endif
4383
4384 if (INTEGERP (obj))
4385 return;
4386
4387 po = (void *) XPNTR (obj);
4388 m = mem_find (po);
4389
4390 if (m != MEM_NIL)
4391 {
4392 bool mark_p = 0;
4393
4394 switch (XTYPE (obj))
4395 {
4396 case Lisp_String:
4397 mark_p = (live_string_p (m, po)
4398 && !STRING_MARKED_P ((struct Lisp_String *) po));
4399 break;
4400
4401 case Lisp_Cons:
4402 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
4403 break;
4404
4405 case Lisp_Symbol:
4406 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
4407 break;
4408
4409 case Lisp_Float:
4410 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
4411 break;
4412
4413 case Lisp_Vectorlike:
4414 /* Note: can't check BUFFERP before we know it's a
4415 buffer because checking that dereferences the pointer
4416 PO which might point anywhere. */
4417 if (live_vector_p (m, po))
4418 mark_p = !SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
4419 else if (live_buffer_p (m, po))
4420 mark_p = BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
4421 break;
4422
4423 case Lisp_Misc:
4424 mark_p = (live_misc_p (m, po) && !XMISCANY (obj)->gcmarkbit);
4425 break;
4426
4427 default:
4428 break;
4429 }
4430
4431 if (mark_p)
4432 {
4433#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4434 if (nzombies < MAX_ZOMBIES)
4435 zombies[nzombies] = obj;
4436 ++nzombies;
4437#endif
4438 mark_object (obj);
4439 }
4440 }
4441}
4442
4443
4444/* If P points to Lisp data, mark that as live if it isn't already
4445 marked. */
4446
4447static void
4448mark_maybe_pointer (void *p)
4449{
4450 struct mem_node *m;
4451
4452#if USE_VALGRIND
4453 if (valgrind_p)
4454 VALGRIND_MAKE_MEM_DEFINED (&p, sizeof (p));
4455#endif
4456
4457 /* Quickly rule out some values which can't point to Lisp data.
4458 USE_LSB_TAG needs Lisp data to be aligned on multiples of GCALIGNMENT.
4459 Otherwise, assume that Lisp data is aligned on even addresses. */
4460 if ((intptr_t) p % (USE_LSB_TAG ? GCALIGNMENT : 2))
4461 return;
4462
4463 m = mem_find (p);
4464 if (m != MEM_NIL)
4465 {
4466 Lisp_Object obj = Qnil;
4467
4468 switch (m->type)
4469 {
4470 case MEM_TYPE_NON_LISP:
4471 case MEM_TYPE_SPARE:
4472 /* Nothing to do; not a pointer to Lisp memory. */
4473 break;
4474
4475 case MEM_TYPE_BUFFER:
4476 if (live_buffer_p (m, p) && !VECTOR_MARKED_P ((struct buffer *)p))
4477 XSETVECTOR (obj, p);
4478 break;
4479
4480 case MEM_TYPE_CONS:
4481 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
4482 XSETCONS (obj, p);
4483 break;
4484
4485 case MEM_TYPE_STRING:
4486 if (live_string_p (m, p)
4487 && !STRING_MARKED_P ((struct Lisp_String *) p))
4488 XSETSTRING (obj, p);
4489 break;
4490
4491 case MEM_TYPE_MISC:
4492 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
4493 XSETMISC (obj, p);
4494 break;
4495
4496 case MEM_TYPE_SYMBOL:
4497 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
4498 XSETSYMBOL (obj, p);
4499 break;
4500
4501 case MEM_TYPE_FLOAT:
4502 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
4503 XSETFLOAT (obj, p);
4504 break;
4505
4506 case MEM_TYPE_VECTORLIKE:
4507 case MEM_TYPE_VECTOR_BLOCK:
4508 if (live_vector_p (m, p))
4509 {
4510 Lisp_Object tem;
4511 XSETVECTOR (tem, p);
4512 if (!SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
4513 obj = tem;
4514 }
4515 break;
4516
4517 default:
4518 emacs_abort ();
4519 }
4520
4521 if (!NILP (obj))
4522 mark_object (obj);
4523 }
4524}
4525
4526
4527/* Alignment of pointer values. Use alignof, as it sometimes returns
4528 a smaller alignment than GCC's __alignof__ and mark_memory might
4529 miss objects if __alignof__ were used. */
4530#define GC_POINTER_ALIGNMENT alignof (void *)
4531
4532/* Define POINTERS_MIGHT_HIDE_IN_OBJECTS to 1 if marking via C pointers does
4533 not suffice, which is the typical case. A host where a Lisp_Object is
4534 wider than a pointer might allocate a Lisp_Object in non-adjacent halves.
4535 If USE_LSB_TAG, the bottom half is not a valid pointer, but it should
4536 suffice to widen it to to a Lisp_Object and check it that way. */
4537#if USE_LSB_TAG || VAL_MAX < UINTPTR_MAX
4538# if !USE_LSB_TAG && VAL_MAX < UINTPTR_MAX >> GCTYPEBITS
4539 /* If tag bits straddle pointer-word boundaries, neither mark_maybe_pointer
4540 nor mark_maybe_object can follow the pointers. This should not occur on
4541 any practical porting target. */
4542# error "MSB type bits straddle pointer-word boundaries"
4543# endif
4544 /* Marking via C pointers does not suffice, because Lisp_Objects contain
4545 pointer words that hold pointers ORed with type bits. */
4546# define POINTERS_MIGHT_HIDE_IN_OBJECTS 1
4547#else
4548 /* Marking via C pointers suffices, because Lisp_Objects contain pointer
4549 words that hold unmodified pointers. */
4550# define POINTERS_MIGHT_HIDE_IN_OBJECTS 0
4551#endif
4552
4553/* Mark Lisp objects referenced from the address range START+OFFSET..END
4554 or END+OFFSET..START. */
4555
4556static void
4557mark_memory (void *start, void *end)
4558#if defined (__clang__) && defined (__has_feature)
4559#if __has_feature(address_sanitizer)
4560 /* Do not allow -faddress-sanitizer to check this function, since it
4561 crosses the function stack boundary, and thus would yield many
4562 false positives. */
4563 __attribute__((no_address_safety_analysis))
4564#endif
4565#endif
4566{
4567 void **pp;
4568 int i;
4569
4570#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4571 nzombies = 0;
4572#endif
4573
4574 /* Make START the pointer to the start of the memory region,
4575 if it isn't already. */
4576 if (end < start)
4577 {
4578 void *tem = start;
4579 start = end;
4580 end = tem;
4581 }
4582
4583 /* Mark Lisp data pointed to. This is necessary because, in some
4584 situations, the C compiler optimizes Lisp objects away, so that
4585 only a pointer to them remains. Example:
4586
4587 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
4588 ()
4589 {
4590 Lisp_Object obj = build_string ("test");
4591 struct Lisp_String *s = XSTRING (obj);
4592 Fgarbage_collect ();
4593 fprintf (stderr, "test `%s'\n", s->data);
4594 return Qnil;
4595 }
4596
4597 Here, `obj' isn't really used, and the compiler optimizes it
4598 away. The only reference to the life string is through the
4599 pointer `s'. */
4600
4601 for (pp = start; (void *) pp < end; pp++)
4602 for (i = 0; i < sizeof *pp; i += GC_POINTER_ALIGNMENT)
4603 {
4604 void *p = *(void **) ((char *) pp + i);
4605 mark_maybe_pointer (p);
4606 if (POINTERS_MIGHT_HIDE_IN_OBJECTS)
4607 mark_maybe_object (XIL ((intptr_t) p));
4608 }
4609}
4610
4611#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
4612
4613static bool setjmp_tested_p;
4614static int longjmps_done;
4615
4616#define SETJMP_WILL_LIKELY_WORK "\
4617\n\
4618Emacs garbage collector has been changed to use conservative stack\n\
4619marking. Emacs has determined that the method it uses to do the\n\
4620marking will likely work on your system, but this isn't sure.\n\
4621\n\
4622If you are a system-programmer, or can get the help of a local wizard\n\
4623who is, please take a look at the function mark_stack in alloc.c, and\n\
4624verify that the methods used are appropriate for your system.\n\
4625\n\
4626Please mail the result to <emacs-devel@gnu.org>.\n\
4627"
4628
4629#define SETJMP_WILL_NOT_WORK "\
4630\n\
4631Emacs garbage collector has been changed to use conservative stack\n\
4632marking. Emacs has determined that the default method it uses to do the\n\
4633marking will not work on your system. We will need a system-dependent\n\
4634solution for your system.\n\
4635\n\
4636Please take a look at the function mark_stack in alloc.c, and\n\
4637try to find a way to make it work on your system.\n\
4638\n\
4639Note that you may get false negatives, depending on the compiler.\n\
4640In particular, you need to use -O with GCC for this test.\n\
4641\n\
4642Please mail the result to <emacs-devel@gnu.org>.\n\
4643"
4644
4645
4646/* Perform a quick check if it looks like setjmp saves registers in a
4647 jmp_buf. Print a message to stderr saying so. When this test
4648 succeeds, this is _not_ a proof that setjmp is sufficient for
4649 conservative stack marking. Only the sources or a disassembly
4650 can prove that. */
4651
4652static void
4653test_setjmp (void)
4654{
4655 char buf[10];
4656 register int x;
4657 sys_jmp_buf jbuf;
4658
4659 /* Arrange for X to be put in a register. */
4660 sprintf (buf, "1");
4661 x = strlen (buf);
4662 x = 2 * x - 1;
4663
4664 sys_setjmp (jbuf);
4665 if (longjmps_done == 1)
4666 {
4667 /* Came here after the longjmp at the end of the function.
4668
4669 If x == 1, the longjmp has restored the register to its
4670 value before the setjmp, and we can hope that setjmp
4671 saves all such registers in the jmp_buf, although that
4672 isn't sure.
4673
4674 For other values of X, either something really strange is
4675 taking place, or the setjmp just didn't save the register. */
4676
4677 if (x == 1)
4678 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
4679 else
4680 {
4681 fprintf (stderr, SETJMP_WILL_NOT_WORK);
4682 exit (1);
4683 }
4684 }
4685
4686 ++longjmps_done;
4687 x = 2;
4688 if (longjmps_done == 1)
4689 sys_longjmp (jbuf, 1);
4690}
4691
4692#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
4693
4694
4695#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4696
4697/* Abort if anything GCPRO'd doesn't survive the GC. */
4698
4699static void
4700check_gcpros (void)
4701{
4702 struct gcpro *p;
4703 ptrdiff_t i;
4704
4705 for (p = gcprolist; p; p = p->next)
4706 for (i = 0; i < p->nvars; ++i)
4707 if (!survives_gc_p (p->var[i]))
4708 /* FIXME: It's not necessarily a bug. It might just be that the
4709 GCPRO is unnecessary or should release the object sooner. */
4710 emacs_abort ();
4711}
4712
4713#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4714
4715void
4716dump_zombies (void)
4717{
4718 int i;
4719
4720 fprintf (stderr, "\nZombies kept alive = %"pI"d:\n", nzombies);
4721 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
4722 {
4723 fprintf (stderr, " %d = ", i);
4724 debug_print (zombies[i]);
4725 }
4726}
4727
4728#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
4729
4730
4731/* Mark live Lisp objects on the C stack.
4732
4733 There are several system-dependent problems to consider when
4734 porting this to new architectures:
4735
4736 Processor Registers
4737
4738 We have to mark Lisp objects in CPU registers that can hold local
4739 variables or are used to pass parameters.
4740
4741 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4742 something that either saves relevant registers on the stack, or
4743 calls mark_maybe_object passing it each register's contents.
4744
4745 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4746 implementation assumes that calling setjmp saves registers we need
4747 to see in a jmp_buf which itself lies on the stack. This doesn't
4748 have to be true! It must be verified for each system, possibly
4749 by taking a look at the source code of setjmp.
4750
4751 If __builtin_unwind_init is available (defined by GCC >= 2.8) we
4752 can use it as a machine independent method to store all registers
4753 to the stack. In this case the macros described in the previous
4754 two paragraphs are not used.
4755
4756 Stack Layout
4757
4758 Architectures differ in the way their processor stack is organized.
4759 For example, the stack might look like this
4760
4761 +----------------+
4762 | Lisp_Object | size = 4
4763 +----------------+
4764 | something else | size = 2
4765 +----------------+
4766 | Lisp_Object | size = 4
4767 +----------------+
4768 | ... |
4769
4770 In such a case, not every Lisp_Object will be aligned equally. To
4771 find all Lisp_Object on the stack it won't be sufficient to walk
4772 the stack in steps of 4 bytes. Instead, two passes will be
4773 necessary, one starting at the start of the stack, and a second
4774 pass starting at the start of the stack + 2. Likewise, if the
4775 minimal alignment of Lisp_Objects on the stack is 1, four passes
4776 would be necessary, each one starting with one byte more offset
4777 from the stack start. */
4778
4779static void
4780mark_stack (void)
4781{
4782 void *end;
4783
4784#ifdef HAVE___BUILTIN_UNWIND_INIT
4785 /* Force callee-saved registers and register windows onto the stack.
4786 This is the preferred method if available, obviating the need for
4787 machine dependent methods. */
4788 __builtin_unwind_init ();
4789 end = &end;
4790#else /* not HAVE___BUILTIN_UNWIND_INIT */
4791#ifndef GC_SAVE_REGISTERS_ON_STACK
4792 /* jmp_buf may not be aligned enough on darwin-ppc64 */
4793 union aligned_jmpbuf {
4794 Lisp_Object o;
4795 sys_jmp_buf j;
4796 } j;
4797 volatile bool stack_grows_down_p = (char *) &j > (char *) stack_base;
4798#endif
4799 /* This trick flushes the register windows so that all the state of
4800 the process is contained in the stack. */
4801 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4802 needed on ia64 too. See mach_dep.c, where it also says inline
4803 assembler doesn't work with relevant proprietary compilers. */
4804#ifdef __sparc__
4805#if defined (__sparc64__) && defined (__FreeBSD__)
4806 /* FreeBSD does not have a ta 3 handler. */
4807 asm ("flushw");
4808#else
4809 asm ("ta 3");
4810#endif
4811#endif
4812
4813 /* Save registers that we need to see on the stack. We need to see
4814 registers used to hold register variables and registers used to
4815 pass parameters. */
4816#ifdef GC_SAVE_REGISTERS_ON_STACK
4817 GC_SAVE_REGISTERS_ON_STACK (end);
4818#else /* not GC_SAVE_REGISTERS_ON_STACK */
4819
4820#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4821 setjmp will definitely work, test it
4822 and print a message with the result
4823 of the test. */
4824 if (!setjmp_tested_p)
4825 {
4826 setjmp_tested_p = 1;
4827 test_setjmp ();
4828 }
4829#endif /* GC_SETJMP_WORKS */
4830
4831 sys_setjmp (j.j);
4832 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4833#endif /* not GC_SAVE_REGISTERS_ON_STACK */
4834#endif /* not HAVE___BUILTIN_UNWIND_INIT */
4835
4836 /* This assumes that the stack is a contiguous region in memory. If
4837 that's not the case, something has to be done here to iterate
4838 over the stack segments. */
4839 mark_memory (stack_base, end);
4840
4841 /* Allow for marking a secondary stack, like the register stack on the
4842 ia64. */
4843#ifdef GC_MARK_SECONDARY_STACK
4844 GC_MARK_SECONDARY_STACK ();
4845#endif
4846
4847#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4848 check_gcpros ();
4849#endif
4850}
4851
4852#else /* GC_MARK_STACK == 0 */
4853
4854#define mark_maybe_object(obj) emacs_abort ()
4855
4856#endif /* GC_MARK_STACK != 0 */
4857
4858
4859/* Determine whether it is safe to access memory at address P. */
4860static int
4861valid_pointer_p (void *p)
4862{
4863#ifdef WINDOWSNT
4864 return w32_valid_pointer_p (p, 16);
4865#else
4866 int fd[2];
4867
4868 /* Obviously, we cannot just access it (we would SEGV trying), so we
4869 trick the o/s to tell us whether p is a valid pointer.
4870 Unfortunately, we cannot use NULL_DEVICE here, as emacs_write may
4871 not validate p in that case. */
4872
4873 if (emacs_pipe (fd) == 0)
4874 {
4875 bool valid = emacs_write (fd[1], p, 16) == 16;
4876 emacs_close (fd[1]);
4877 emacs_close (fd[0]);
4878 return valid;
4879 }
4880
4881 return -1;
4882#endif
4883}
4884
4885/* Return 2 if OBJ is a killed or special buffer object, 1 if OBJ is a
4886 valid lisp object, 0 if OBJ is NOT a valid lisp object, or -1 if we
4887 cannot validate OBJ. This function can be quite slow, so its primary
4888 use is the manual debugging. The only exception is print_object, where
4889 we use it to check whether the memory referenced by the pointer of
4890 Lisp_Save_Value object contains valid objects. */
4891
4892int
4893valid_lisp_object_p (Lisp_Object obj)
4894{
4895 void *p;
4896#if GC_MARK_STACK
4897 struct mem_node *m;
4898#endif
4899
4900 if (INTEGERP (obj))
4901 return 1;
4902
4903 p = (void *) XPNTR (obj);
4904 if (PURE_POINTER_P (p))
4905 return 1;
4906
4907 if (p == &buffer_defaults || p == &buffer_local_symbols)
4908 return 2;
4909
4910#if !GC_MARK_STACK
4911 return valid_pointer_p (p);
4912#else
4913
4914 m = mem_find (p);
4915
4916 if (m == MEM_NIL)
4917 {
4918 int valid = valid_pointer_p (p);
4919 if (valid <= 0)
4920 return valid;
4921
4922 if (SUBRP (obj))
4923 return 1;
4924
4925 return 0;
4926 }
4927
4928 switch (m->type)
4929 {
4930 case MEM_TYPE_NON_LISP:
4931 case MEM_TYPE_SPARE:
4932 return 0;
4933
4934 case MEM_TYPE_BUFFER:
4935 return live_buffer_p (m, p) ? 1 : 2;
4936
4937 case MEM_TYPE_CONS:
4938 return live_cons_p (m, p);
4939
4940 case MEM_TYPE_STRING:
4941 return live_string_p (m, p);
4942
4943 case MEM_TYPE_MISC:
4944 return live_misc_p (m, p);
4945
4946 case MEM_TYPE_SYMBOL:
4947 return live_symbol_p (m, p);
4948
4949 case MEM_TYPE_FLOAT:
4950 return live_float_p (m, p);
4951
4952 case MEM_TYPE_VECTORLIKE:
4953 case MEM_TYPE_VECTOR_BLOCK:
4954 return live_vector_p (m, p);
4955
4956 default:
4957 break;
4958 }
4959
4960 return 0;
4961#endif
4962}
4963
4964
4965
4966\f
4967/***********************************************************************
4968 Pure Storage Management
4969 ***********************************************************************/
4970
4971/* Allocate room for SIZE bytes from pure Lisp storage and return a
4972 pointer to it. TYPE is the Lisp type for which the memory is
4973 allocated. TYPE < 0 means it's not used for a Lisp object. */
4974
4975static void *
4976pure_alloc (size_t size, int type)
4977{
4978 void *result;
4979#if USE_LSB_TAG
4980 size_t alignment = GCALIGNMENT;
4981#else
4982 size_t alignment = alignof (EMACS_INT);
4983
4984 /* Give Lisp_Floats an extra alignment. */
4985 if (type == Lisp_Float)
4986 alignment = alignof (struct Lisp_Float);
4987#endif
4988
4989 again:
4990 if (type >= 0)
4991 {
4992 /* Allocate space for a Lisp object from the beginning of the free
4993 space with taking account of alignment. */
4994 result = ALIGN (purebeg + pure_bytes_used_lisp, alignment);
4995 pure_bytes_used_lisp = ((char *)result - (char *)purebeg) + size;
4996 }
4997 else
4998 {
4999 /* Allocate space for a non-Lisp object from the end of the free
5000 space. */
5001 pure_bytes_used_non_lisp += size;
5002 result = purebeg + pure_size - pure_bytes_used_non_lisp;
5003 }
5004 pure_bytes_used = pure_bytes_used_lisp + pure_bytes_used_non_lisp;
5005
5006 if (pure_bytes_used <= pure_size)
5007 return result;
5008
5009 /* Don't allocate a large amount here,
5010 because it might get mmap'd and then its address
5011 might not be usable. */
5012 purebeg = xmalloc (10000);
5013 pure_size = 10000;
5014 pure_bytes_used_before_overflow += pure_bytes_used - size;
5015 pure_bytes_used = 0;
5016 pure_bytes_used_lisp = pure_bytes_used_non_lisp = 0;
5017 goto again;
5018}
5019
5020
5021/* Print a warning if PURESIZE is too small. */
5022
5023void
5024check_pure_size (void)
5025{
5026 if (pure_bytes_used_before_overflow)
5027 message (("emacs:0:Pure Lisp storage overflow (approx. %"pI"d"
5028 " bytes needed)"),
5029 pure_bytes_used + pure_bytes_used_before_overflow);
5030}
5031
5032
5033/* Find the byte sequence {DATA[0], ..., DATA[NBYTES-1], '\0'} from
5034 the non-Lisp data pool of the pure storage, and return its start
5035 address. Return NULL if not found. */
5036
5037static char *
5038find_string_data_in_pure (const char *data, ptrdiff_t nbytes)
5039{
5040 int i;
5041 ptrdiff_t skip, bm_skip[256], last_char_skip, infinity, start, start_max;
5042 const unsigned char *p;
5043 char *non_lisp_beg;
5044
5045 if (pure_bytes_used_non_lisp <= nbytes)
5046 return NULL;
5047
5048 /* Set up the Boyer-Moore table. */
5049 skip = nbytes + 1;
5050 for (i = 0; i < 256; i++)
5051 bm_skip[i] = skip;
5052
5053 p = (const unsigned char *) data;
5054 while (--skip > 0)
5055 bm_skip[*p++] = skip;
5056
5057 last_char_skip = bm_skip['\0'];
5058
5059 non_lisp_beg = purebeg + pure_size - pure_bytes_used_non_lisp;
5060 start_max = pure_bytes_used_non_lisp - (nbytes + 1);
5061
5062 /* See the comments in the function `boyer_moore' (search.c) for the
5063 use of `infinity'. */
5064 infinity = pure_bytes_used_non_lisp + 1;
5065 bm_skip['\0'] = infinity;
5066
5067 p = (const unsigned char *) non_lisp_beg + nbytes;
5068 start = 0;
5069 do
5070 {
5071 /* Check the last character (== '\0'). */
5072 do
5073 {
5074 start += bm_skip[*(p + start)];
5075 }
5076 while (start <= start_max);
5077
5078 if (start < infinity)
5079 /* Couldn't find the last character. */
5080 return NULL;
5081
5082 /* No less than `infinity' means we could find the last
5083 character at `p[start - infinity]'. */
5084 start -= infinity;
5085
5086 /* Check the remaining characters. */
5087 if (memcmp (data, non_lisp_beg + start, nbytes) == 0)
5088 /* Found. */
5089 return non_lisp_beg + start;
5090
5091 start += last_char_skip;
5092 }
5093 while (start <= start_max);
5094
5095 return NULL;
5096}
5097
5098
5099/* Return a string allocated in pure space. DATA is a buffer holding
5100 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
5101 means make the result string multibyte.
5102
5103 Must get an error if pure storage is full, since if it cannot hold
5104 a large string it may be able to hold conses that point to that
5105 string; then the string is not protected from gc. */
5106
5107Lisp_Object
5108make_pure_string (const char *data,
5109 ptrdiff_t nchars, ptrdiff_t nbytes, bool multibyte)
5110{
5111 Lisp_Object string;
5112 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5113 s->data = (unsigned char *) find_string_data_in_pure (data, nbytes);
5114 if (s->data == NULL)
5115 {
5116 s->data = pure_alloc (nbytes + 1, -1);
5117 memcpy (s->data, data, nbytes);
5118 s->data[nbytes] = '\0';
5119 }
5120 s->size = nchars;
5121 s->size_byte = multibyte ? nbytes : -1;
5122 s->intervals = NULL;
5123 XSETSTRING (string, s);
5124 return string;
5125}
5126
5127/* Return a string allocated in pure space. Do not
5128 allocate the string data, just point to DATA. */
5129
5130Lisp_Object
5131make_pure_c_string (const char *data, ptrdiff_t nchars)
5132{
5133 Lisp_Object string;
5134 struct Lisp_String *s = pure_alloc (sizeof *s, Lisp_String);
5135 s->size = nchars;
5136 s->size_byte = -1;
5137 s->data = (unsigned char *) data;
5138 s->intervals = NULL;
5139 XSETSTRING (string, s);
5140 return string;
5141}
5142
5143/* Return a cons allocated from pure space. Give it pure copies
5144 of CAR as car and CDR as cdr. */
5145
5146Lisp_Object
5147pure_cons (Lisp_Object car, Lisp_Object cdr)
5148{
5149 Lisp_Object new;
5150 struct Lisp_Cons *p = pure_alloc (sizeof *p, Lisp_Cons);
5151 XSETCONS (new, p);
5152 XSETCAR (new, Fpurecopy (car));
5153 XSETCDR (new, Fpurecopy (cdr));
5154 return new;
5155}
5156
5157
5158/* Value is a float object with value NUM allocated from pure space. */
5159
5160static Lisp_Object
5161make_pure_float (double num)
5162{
5163 Lisp_Object new;
5164 struct Lisp_Float *p = pure_alloc (sizeof *p, Lisp_Float);
5165 XSETFLOAT (new, p);
5166 XFLOAT_INIT (new, num);
5167 return new;
5168}
5169
5170
5171/* Return a vector with room for LEN Lisp_Objects allocated from
5172 pure space. */
5173
5174static Lisp_Object
5175make_pure_vector (ptrdiff_t len)
5176{
5177 Lisp_Object new;
5178 size_t size = header_size + len * word_size;
5179 struct Lisp_Vector *p = pure_alloc (size, Lisp_Vectorlike);
5180 XSETVECTOR (new, p);
5181 XVECTOR (new)->header.size = len;
5182 return new;
5183}
5184
5185
5186DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
5187 doc: /* Make a copy of object OBJ in pure storage.
5188Recursively copies contents of vectors and cons cells.
5189Does not copy symbols. Copies strings without text properties. */)
5190 (register Lisp_Object obj)
5191{
5192 if (NILP (Vpurify_flag))
5193 return obj;
5194
5195 if (PURE_POINTER_P (XPNTR (obj)))
5196 return obj;
5197
5198 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5199 {
5200 Lisp_Object tmp = Fgethash (obj, Vpurify_flag, Qnil);
5201 if (!NILP (tmp))
5202 return tmp;
5203 }
5204
5205 if (CONSP (obj))
5206 obj = pure_cons (XCAR (obj), XCDR (obj));
5207 else if (FLOATP (obj))
5208 obj = make_pure_float (XFLOAT_DATA (obj));
5209 else if (STRINGP (obj))
5210 obj = make_pure_string (SSDATA (obj), SCHARS (obj),
5211 SBYTES (obj),
5212 STRING_MULTIBYTE (obj));
5213 else if (COMPILEDP (obj) || VECTORP (obj))
5214 {
5215 register struct Lisp_Vector *vec;
5216 register ptrdiff_t i;
5217 ptrdiff_t size;
5218
5219 size = ASIZE (obj);
5220 if (size & PSEUDOVECTOR_FLAG)
5221 size &= PSEUDOVECTOR_SIZE_MASK;
5222 vec = XVECTOR (make_pure_vector (size));
5223 for (i = 0; i < size; i++)
5224 vec->contents[i] = Fpurecopy (AREF (obj, i));
5225 if (COMPILEDP (obj))
5226 {
5227 XSETPVECTYPE (vec, PVEC_COMPILED);
5228 XSETCOMPILED (obj, vec);
5229 }
5230 else
5231 XSETVECTOR (obj, vec);
5232 }
5233 else if (MARKERP (obj))
5234 error ("Attempt to copy a marker to pure storage");
5235 else
5236 /* Not purified, don't hash-cons. */
5237 return obj;
5238
5239 if (HASH_TABLE_P (Vpurify_flag)) /* Hash consing. */
5240 Fputhash (obj, obj, Vpurify_flag);
5241
5242 return obj;
5243}
5244
5245
5246\f
5247/***********************************************************************
5248 Protection from GC
5249 ***********************************************************************/
5250
5251/* Put an entry in staticvec, pointing at the variable with address
5252 VARADDRESS. */
5253
5254void
5255staticpro (Lisp_Object *varaddress)
5256{
5257 if (staticidx >= NSTATICS)
5258 fatal ("NSTATICS too small; try increasing and recompiling Emacs.");
5259 staticvec[staticidx++] = varaddress;
5260}
5261
5262\f
5263/***********************************************************************
5264 Protection from GC
5265 ***********************************************************************/
5266
5267/* Temporarily prevent garbage collection. */
5268
5269ptrdiff_t
5270inhibit_garbage_collection (void)
5271{
5272 ptrdiff_t count = SPECPDL_INDEX ();
5273
5274 specbind (Qgc_cons_threshold, make_number (MOST_POSITIVE_FIXNUM));
5275 return count;
5276}
5277
5278/* Used to avoid possible overflows when
5279 converting from C to Lisp integers. */
5280
5281static Lisp_Object
5282bounded_number (EMACS_INT number)
5283{
5284 return make_number (min (MOST_POSITIVE_FIXNUM, number));
5285}
5286
5287/* Calculate total bytes of live objects. */
5288
5289static size_t
5290total_bytes_of_live_objects (void)
5291{
5292 size_t tot = 0;
5293 tot += total_conses * sizeof (struct Lisp_Cons);
5294 tot += total_symbols * sizeof (struct Lisp_Symbol);
5295 tot += total_markers * sizeof (union Lisp_Misc);
5296 tot += total_string_bytes;
5297 tot += total_vector_slots * word_size;
5298 tot += total_floats * sizeof (struct Lisp_Float);
5299 tot += total_intervals * sizeof (struct interval);
5300 tot += total_strings * sizeof (struct Lisp_String);
5301 return tot;
5302}
5303
5304#ifdef HAVE_WINDOW_SYSTEM
5305
5306/* Remove unmarked font-spec and font-entity objects from ENTRY, which is
5307 (DRIVER-TYPE NUM-FRAMES FONT-CACHE-DATA ...), and return changed entry. */
5308
5309static Lisp_Object
5310compact_font_cache_entry (Lisp_Object entry)
5311{
5312 Lisp_Object tail, *prev = &entry;
5313
5314 for (tail = entry; CONSP (tail); tail = XCDR (tail))
5315 {
5316 bool drop = 0;
5317 Lisp_Object obj = XCAR (tail);
5318
5319 /* Consider OBJ if it is (font-spec . [font-entity font-entity ...]). */
5320 if (CONSP (obj) && FONT_SPEC_P (XCAR (obj))
5321 && !VECTOR_MARKED_P (XFONT_SPEC (XCAR (obj)))
5322 && VECTORP (XCDR (obj)))
5323 {
5324 ptrdiff_t i, size = ASIZE (XCDR (obj)) & ~ARRAY_MARK_FLAG;
5325
5326 /* If font-spec is not marked, most likely all font-entities
5327 are not marked too. But we must be sure that nothing is
5328 marked within OBJ before we really drop it. */
5329 for (i = 0; i < size; i++)
5330 if (VECTOR_MARKED_P (XFONT_ENTITY (AREF (XCDR (obj), i))))
5331 break;
5332
5333 if (i == size)
5334 drop = 1;
5335 }
5336 if (drop)
5337 *prev = XCDR (tail);
5338 else
5339 prev = xcdr_addr (tail);
5340 }
5341 return entry;
5342}
5343
5344/* Compact font caches on all terminals and mark
5345 everything which is still here after compaction. */
5346
5347static void
5348compact_font_caches (void)
5349{
5350 struct terminal *t;
5351
5352 for (t = terminal_list; t; t = t->next_terminal)
5353 {
5354 Lisp_Object cache = TERMINAL_FONT_CACHE (t);
5355
5356 if (CONSP (cache))
5357 {
5358 Lisp_Object entry;
5359
5360 for (entry = XCDR (cache); CONSP (entry); entry = XCDR (entry))
5361 XSETCAR (entry, compact_font_cache_entry (XCAR (entry)));
5362 }
5363 mark_object (cache);
5364 }
5365}
5366
5367#else /* not HAVE_WINDOW_SYSTEM */
5368
5369#define compact_font_caches() (void)(0)
5370
5371#endif /* HAVE_WINDOW_SYSTEM */
5372
5373/* Remove (MARKER . DATA) entries with unmarked MARKER
5374 from buffer undo LIST and return changed list. */
5375
5376static Lisp_Object
5377compact_undo_list (Lisp_Object list)
5378{
5379 Lisp_Object tail, *prev = &list;
5380
5381 for (tail = list; CONSP (tail); tail = XCDR (tail))
5382 {
5383 if (CONSP (XCAR (tail))
5384 && MARKERP (XCAR (XCAR (tail)))
5385 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
5386 *prev = XCDR (tail);
5387 else
5388 prev = xcdr_addr (tail);
5389 }
5390 return list;
5391}
5392
5393DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
5394 doc: /* Reclaim storage for Lisp objects no longer needed.
5395Garbage collection happens automatically if you cons more than
5396`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
5397`garbage-collect' normally returns a list with info on amount of space in use,
5398where each entry has the form (NAME SIZE USED FREE), where:
5399- NAME is a symbol describing the kind of objects this entry represents,
5400- SIZE is the number of bytes used by each one,
5401- USED is the number of those objects that were found live in the heap,
5402- FREE is the number of those objects that are not live but that Emacs
5403 keeps around for future allocations (maybe because it does not know how
5404 to return them to the OS).
5405However, if there was overflow in pure space, `garbage-collect'
5406returns nil, because real GC can't be done.
5407See Info node `(elisp)Garbage Collection'. */)
5408 (void)
5409{
5410 struct buffer *nextb;
5411 char stack_top_variable;
5412 ptrdiff_t i;
5413 bool message_p;
5414 ptrdiff_t count = SPECPDL_INDEX ();
5415 struct timespec start;
5416 Lisp_Object retval = Qnil;
5417 size_t tot_before = 0;
5418
5419 if (abort_on_gc)
5420 emacs_abort ();
5421
5422 /* Can't GC if pure storage overflowed because we can't determine
5423 if something is a pure object or not. */
5424 if (pure_bytes_used_before_overflow)
5425 return Qnil;
5426
5427 /* Record this function, so it appears on the profiler's backtraces. */
5428 record_in_backtrace (Qautomatic_gc, &Qnil, 0);
5429
5430 check_cons_list ();
5431
5432 /* Don't keep undo information around forever.
5433 Do this early on, so it is no problem if the user quits. */
5434 FOR_EACH_BUFFER (nextb)
5435 compact_buffer (nextb);
5436
5437 if (profiler_memory_running)
5438 tot_before = total_bytes_of_live_objects ();
5439
5440 start = current_timespec ();
5441
5442 /* In case user calls debug_print during GC,
5443 don't let that cause a recursive GC. */
5444 consing_since_gc = 0;
5445
5446 /* Save what's currently displayed in the echo area. */
5447 message_p = push_message ();
5448 record_unwind_protect_void (pop_message_unwind);
5449
5450 /* Save a copy of the contents of the stack, for debugging. */
5451#if MAX_SAVE_STACK > 0
5452 if (NILP (Vpurify_flag))
5453 {
5454 char *stack;
5455 ptrdiff_t stack_size;
5456 if (&stack_top_variable < stack_bottom)
5457 {
5458 stack = &stack_top_variable;
5459 stack_size = stack_bottom - &stack_top_variable;
5460 }
5461 else
5462 {
5463 stack = stack_bottom;
5464 stack_size = &stack_top_variable - stack_bottom;
5465 }
5466 if (stack_size <= MAX_SAVE_STACK)
5467 {
5468 if (stack_copy_size < stack_size)
5469 {
5470 stack_copy = xrealloc (stack_copy, stack_size);
5471 stack_copy_size = stack_size;
5472 }
5473 memcpy (stack_copy, stack, stack_size);
5474 }
5475 }
5476#endif /* MAX_SAVE_STACK > 0 */
5477
5478 if (garbage_collection_messages)
5479 message1_nolog ("Garbage collecting...");
5480
5481 block_input ();
5482
5483 shrink_regexp_cache ();
5484
5485 gc_in_progress = 1;
5486
5487 /* Mark all the special slots that serve as the roots of accessibility. */
5488
5489 mark_buffer (&buffer_defaults);
5490 mark_buffer (&buffer_local_symbols);
5491
5492 for (i = 0; i < staticidx; i++)
5493 mark_object (*staticvec[i]);
5494
5495 mark_specpdl ();
5496 mark_terminals ();
5497 mark_kboards ();
5498
5499#ifdef USE_GTK
5500 xg_mark_data ();
5501#endif
5502
5503#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
5504 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
5505 mark_stack ();
5506#else
5507 {
5508 register struct gcpro *tail;
5509 for (tail = gcprolist; tail; tail = tail->next)
5510 for (i = 0; i < tail->nvars; i++)
5511 mark_object (tail->var[i]);
5512 }
5513 mark_byte_stack ();
5514#endif
5515 {
5516 struct handler *handler;
5517 for (handler = handlerlist; handler; handler = handler->next)
5518 {
5519 mark_object (handler->tag_or_ch);
5520 mark_object (handler->val);
5521 }
5522 }
5523#ifdef HAVE_WINDOW_SYSTEM
5524 mark_fringe_data ();
5525#endif
5526
5527#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5528 mark_stack ();
5529#endif
5530
5531 /* Everything is now marked, except for the data in font caches
5532 and undo lists. They're compacted by removing an items which
5533 aren't reachable otherwise. */
5534
5535 compact_font_caches ();
5536
5537 FOR_EACH_BUFFER (nextb)
5538 {
5539 if (!EQ (BVAR (nextb, undo_list), Qt))
5540 bset_undo_list (nextb, compact_undo_list (BVAR (nextb, undo_list)));
5541 /* Now that we have stripped the elements that need not be
5542 in the undo_list any more, we can finally mark the list. */
5543 mark_object (BVAR (nextb, undo_list));
5544 }
5545
5546 gc_sweep ();
5547
5548 /* Clear the mark bits that we set in certain root slots. */
5549
5550 unmark_byte_stack ();
5551 VECTOR_UNMARK (&buffer_defaults);
5552 VECTOR_UNMARK (&buffer_local_symbols);
5553
5554#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
5555 dump_zombies ();
5556#endif
5557
5558 check_cons_list ();
5559
5560 gc_in_progress = 0;
5561
5562 unblock_input ();
5563
5564 consing_since_gc = 0;
5565 if (gc_cons_threshold < GC_DEFAULT_THRESHOLD / 10)
5566 gc_cons_threshold = GC_DEFAULT_THRESHOLD / 10;
5567
5568 gc_relative_threshold = 0;
5569 if (FLOATP (Vgc_cons_percentage))
5570 { /* Set gc_cons_combined_threshold. */
5571 double tot = total_bytes_of_live_objects ();
5572
5573 tot *= XFLOAT_DATA (Vgc_cons_percentage);
5574 if (0 < tot)
5575 {
5576 if (tot < TYPE_MAXIMUM (EMACS_INT))
5577 gc_relative_threshold = tot;
5578 else
5579 gc_relative_threshold = TYPE_MAXIMUM (EMACS_INT);
5580 }
5581 }
5582
5583 if (garbage_collection_messages)
5584 {
5585 if (message_p || minibuf_level > 0)
5586 restore_message ();
5587 else
5588 message1_nolog ("Garbage collecting...done");
5589 }
5590
5591 unbind_to (count, Qnil);
5592 {
5593 Lisp_Object total[11];
5594 int total_size = 10;
5595
5596 total[0] = list4 (Qconses, make_number (sizeof (struct Lisp_Cons)),
5597 bounded_number (total_conses),
5598 bounded_number (total_free_conses));
5599
5600 total[1] = list4 (Qsymbols, make_number (sizeof (struct Lisp_Symbol)),
5601 bounded_number (total_symbols),
5602 bounded_number (total_free_symbols));
5603
5604 total[2] = list4 (Qmiscs, make_number (sizeof (union Lisp_Misc)),
5605 bounded_number (total_markers),
5606 bounded_number (total_free_markers));
5607
5608 total[3] = list4 (Qstrings, make_number (sizeof (struct Lisp_String)),
5609 bounded_number (total_strings),
5610 bounded_number (total_free_strings));
5611
5612 total[4] = list3 (Qstring_bytes, make_number (1),
5613 bounded_number (total_string_bytes));
5614
5615 total[5] = list3 (Qvectors,
5616 make_number (header_size + sizeof (Lisp_Object)),
5617 bounded_number (total_vectors));
5618
5619 total[6] = list4 (Qvector_slots, make_number (word_size),
5620 bounded_number (total_vector_slots),
5621 bounded_number (total_free_vector_slots));
5622
5623 total[7] = list4 (Qfloats, make_number (sizeof (struct Lisp_Float)),
5624 bounded_number (total_floats),
5625 bounded_number (total_free_floats));
5626
5627 total[8] = list4 (Qintervals, make_number (sizeof (struct interval)),
5628 bounded_number (total_intervals),
5629 bounded_number (total_free_intervals));
5630
5631 total[9] = list3 (Qbuffers, make_number (sizeof (struct buffer)),
5632 bounded_number (total_buffers));
5633
5634#ifdef DOUG_LEA_MALLOC
5635 total_size++;
5636 total[10] = list4 (Qheap, make_number (1024),
5637 bounded_number ((mallinfo ().uordblks + 1023) >> 10),
5638 bounded_number ((mallinfo ().fordblks + 1023) >> 10));
5639#endif
5640 retval = Flist (total_size, total);
5641 }
5642
5643#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5644 {
5645 /* Compute average percentage of zombies. */
5646 double nlive
5647 = (total_conses + total_symbols + total_markers + total_strings
5648 + total_vectors + total_floats + total_intervals + total_buffers);
5649
5650 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
5651 max_live = max (nlive, max_live);
5652 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
5653 max_zombies = max (nzombies, max_zombies);
5654 ++ngcs;
5655 }
5656#endif
5657
5658 if (!NILP (Vpost_gc_hook))
5659 {
5660 ptrdiff_t gc_count = inhibit_garbage_collection ();
5661 safe_run_hooks (Qpost_gc_hook);
5662 unbind_to (gc_count, Qnil);
5663 }
5664
5665 /* Accumulate statistics. */
5666 if (FLOATP (Vgc_elapsed))
5667 {
5668 struct timespec since_start = timespec_sub (current_timespec (), start);
5669 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed)
5670 + timespectod (since_start));
5671 }
5672
5673 gcs_done++;
5674
5675 /* Collect profiling data. */
5676 if (profiler_memory_running)
5677 {
5678 size_t swept = 0;
5679 size_t tot_after = total_bytes_of_live_objects ();
5680 if (tot_before > tot_after)
5681 swept = tot_before - tot_after;
5682 malloc_probe (swept);
5683 }
5684
5685 return retval;
5686}
5687
5688
5689/* Mark Lisp objects in glyph matrix MATRIX. Currently the
5690 only interesting objects referenced from glyphs are strings. */
5691
5692static void
5693mark_glyph_matrix (struct glyph_matrix *matrix)
5694{
5695 struct glyph_row *row = matrix->rows;
5696 struct glyph_row *end = row + matrix->nrows;
5697
5698 for (; row < end; ++row)
5699 if (row->enabled_p)
5700 {
5701 int area;
5702 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
5703 {
5704 struct glyph *glyph = row->glyphs[area];
5705 struct glyph *end_glyph = glyph + row->used[area];
5706
5707 for (; glyph < end_glyph; ++glyph)
5708 if (STRINGP (glyph->object)
5709 && !STRING_MARKED_P (XSTRING (glyph->object)))
5710 mark_object (glyph->object);
5711 }
5712 }
5713}
5714
5715/* Mark reference to a Lisp_Object.
5716 If the object referred to has not been seen yet, recursively mark
5717 all the references contained in it. */
5718
5719#define LAST_MARKED_SIZE 500
5720static Lisp_Object last_marked[LAST_MARKED_SIZE];
5721static int last_marked_index;
5722
5723/* For debugging--call abort when we cdr down this many
5724 links of a list, in mark_object. In debugging,
5725 the call to abort will hit a breakpoint.
5726 Normally this is zero and the check never goes off. */
5727ptrdiff_t mark_object_loop_halt EXTERNALLY_VISIBLE;
5728
5729static void
5730mark_vectorlike (struct Lisp_Vector *ptr)
5731{
5732 ptrdiff_t size = ptr->header.size;
5733 ptrdiff_t i;
5734
5735 eassert (!VECTOR_MARKED_P (ptr));
5736 VECTOR_MARK (ptr); /* Else mark it. */
5737 if (size & PSEUDOVECTOR_FLAG)
5738 size &= PSEUDOVECTOR_SIZE_MASK;
5739
5740 /* Note that this size is not the memory-footprint size, but only
5741 the number of Lisp_Object fields that we should trace.
5742 The distinction is used e.g. by Lisp_Process which places extra
5743 non-Lisp_Object fields at the end of the structure... */
5744 for (i = 0; i < size; i++) /* ...and then mark its elements. */
5745 mark_object (ptr->contents[i]);
5746}
5747
5748/* Like mark_vectorlike but optimized for char-tables (and
5749 sub-char-tables) assuming that the contents are mostly integers or
5750 symbols. */
5751
5752static void
5753mark_char_table (struct Lisp_Vector *ptr)
5754{
5755 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5756 int i;
5757
5758 eassert (!VECTOR_MARKED_P (ptr));
5759 VECTOR_MARK (ptr);
5760 for (i = 0; i < size; i++)
5761 {
5762 Lisp_Object val = ptr->contents[i];
5763
5764 if (INTEGERP (val) || (SYMBOLP (val) && XSYMBOL (val)->gcmarkbit))
5765 continue;
5766 if (SUB_CHAR_TABLE_P (val))
5767 {
5768 if (! VECTOR_MARKED_P (XVECTOR (val)))
5769 mark_char_table (XVECTOR (val));
5770 }
5771 else
5772 mark_object (val);
5773 }
5774}
5775
5776/* Mark the chain of overlays starting at PTR. */
5777
5778static void
5779mark_overlay (struct Lisp_Overlay *ptr)
5780{
5781 for (; ptr && !ptr->gcmarkbit; ptr = ptr->next)
5782 {
5783 ptr->gcmarkbit = 1;
5784 mark_object (ptr->start);
5785 mark_object (ptr->end);
5786 mark_object (ptr->plist);
5787 }
5788}
5789
5790/* Mark Lisp_Objects and special pointers in BUFFER. */
5791
5792static void
5793mark_buffer (struct buffer *buffer)
5794{
5795 /* This is handled much like other pseudovectors... */
5796 mark_vectorlike ((struct Lisp_Vector *) buffer);
5797
5798 /* ...but there are some buffer-specific things. */
5799
5800 MARK_INTERVAL_TREE (buffer_intervals (buffer));
5801
5802 /* For now, we just don't mark the undo_list. It's done later in
5803 a special way just before the sweep phase, and after stripping
5804 some of its elements that are not needed any more. */
5805
5806 mark_overlay (buffer->overlays_before);
5807 mark_overlay (buffer->overlays_after);
5808
5809 /* If this is an indirect buffer, mark its base buffer. */
5810 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5811 mark_buffer (buffer->base_buffer);
5812}
5813
5814/* Mark Lisp faces in the face cache C. */
5815
5816static void
5817mark_face_cache (struct face_cache *c)
5818{
5819 if (c)
5820 {
5821 int i, j;
5822 for (i = 0; i < c->used; ++i)
5823 {
5824 struct face *face = FACE_FROM_ID (c->f, i);
5825
5826 if (face)
5827 {
5828 if (face->font && !VECTOR_MARKED_P (face->font))
5829 mark_vectorlike ((struct Lisp_Vector *) face->font);
5830
5831 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
5832 mark_object (face->lface[j]);
5833 }
5834 }
5835 }
5836}
5837
5838/* Remove killed buffers or items whose car is a killed buffer from
5839 LIST, and mark other items. Return changed LIST, which is marked. */
5840
5841static Lisp_Object
5842mark_discard_killed_buffers (Lisp_Object list)
5843{
5844 Lisp_Object tail, *prev = &list;
5845
5846 for (tail = list; CONSP (tail) && !CONS_MARKED_P (XCONS (tail));
5847 tail = XCDR (tail))
5848 {
5849 Lisp_Object tem = XCAR (tail);
5850 if (CONSP (tem))
5851 tem = XCAR (tem);
5852 if (BUFFERP (tem) && !BUFFER_LIVE_P (XBUFFER (tem)))
5853 *prev = XCDR (tail);
5854 else
5855 {
5856 CONS_MARK (XCONS (tail));
5857 mark_object (XCAR (tail));
5858 prev = xcdr_addr (tail);
5859 }
5860 }
5861 mark_object (tail);
5862 return list;
5863}
5864
5865/* Determine type of generic Lisp_Object and mark it accordingly. */
5866
5867void
5868mark_object (Lisp_Object arg)
5869{
5870 register Lisp_Object obj = arg;
5871#ifdef GC_CHECK_MARKED_OBJECTS
5872 void *po;
5873 struct mem_node *m;
5874#endif
5875 ptrdiff_t cdr_count = 0;
5876
5877 loop:
5878
5879 if (PURE_POINTER_P (XPNTR (obj)))
5880 return;
5881
5882 last_marked[last_marked_index++] = obj;
5883 if (last_marked_index == LAST_MARKED_SIZE)
5884 last_marked_index = 0;
5885
5886 /* Perform some sanity checks on the objects marked here. Abort if
5887 we encounter an object we know is bogus. This increases GC time
5888 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
5889#ifdef GC_CHECK_MARKED_OBJECTS
5890
5891 po = (void *) XPNTR (obj);
5892
5893 /* Check that the object pointed to by PO is known to be a Lisp
5894 structure allocated from the heap. */
5895#define CHECK_ALLOCATED() \
5896 do { \
5897 m = mem_find (po); \
5898 if (m == MEM_NIL) \
5899 emacs_abort (); \
5900 } while (0)
5901
5902 /* Check that the object pointed to by PO is live, using predicate
5903 function LIVEP. */
5904#define CHECK_LIVE(LIVEP) \
5905 do { \
5906 if (!LIVEP (m, po)) \
5907 emacs_abort (); \
5908 } while (0)
5909
5910 /* Check both of the above conditions. */
5911#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
5912 do { \
5913 CHECK_ALLOCATED (); \
5914 CHECK_LIVE (LIVEP); \
5915 } while (0) \
5916
5917#else /* not GC_CHECK_MARKED_OBJECTS */
5918
5919#define CHECK_LIVE(LIVEP) (void) 0
5920#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
5921
5922#endif /* not GC_CHECK_MARKED_OBJECTS */
5923
5924 switch (XTYPE (obj))
5925 {
5926 case Lisp_String:
5927 {
5928 register struct Lisp_String *ptr = XSTRING (obj);
5929 if (STRING_MARKED_P (ptr))
5930 break;
5931 CHECK_ALLOCATED_AND_LIVE (live_string_p);
5932 MARK_STRING (ptr);
5933 MARK_INTERVAL_TREE (ptr->intervals);
5934#ifdef GC_CHECK_STRING_BYTES
5935 /* Check that the string size recorded in the string is the
5936 same as the one recorded in the sdata structure. */
5937 string_bytes (ptr);
5938#endif /* GC_CHECK_STRING_BYTES */
5939 }
5940 break;
5941
5942 case Lisp_Vectorlike:
5943 {
5944 register struct Lisp_Vector *ptr = XVECTOR (obj);
5945 register ptrdiff_t pvectype;
5946
5947 if (VECTOR_MARKED_P (ptr))
5948 break;
5949
5950#ifdef GC_CHECK_MARKED_OBJECTS
5951 m = mem_find (po);
5952 if (m == MEM_NIL && !SUBRP (obj))
5953 emacs_abort ();
5954#endif /* GC_CHECK_MARKED_OBJECTS */
5955
5956 if (ptr->header.size & PSEUDOVECTOR_FLAG)
5957 pvectype = ((ptr->header.size & PVEC_TYPE_MASK)
5958 >> PSEUDOVECTOR_AREA_BITS);
5959 else
5960 pvectype = PVEC_NORMAL_VECTOR;
5961
5962 if (pvectype != PVEC_SUBR && pvectype != PVEC_BUFFER)
5963 CHECK_LIVE (live_vector_p);
5964
5965 switch (pvectype)
5966 {
5967 case PVEC_BUFFER:
5968#ifdef GC_CHECK_MARKED_OBJECTS
5969 {
5970 struct buffer *b;
5971 FOR_EACH_BUFFER (b)
5972 if (b == po)
5973 break;
5974 if (b == NULL)
5975 emacs_abort ();
5976 }
5977#endif /* GC_CHECK_MARKED_OBJECTS */
5978 mark_buffer ((struct buffer *) ptr);
5979 break;
5980
5981 case PVEC_COMPILED:
5982 { /* We could treat this just like a vector, but it is better
5983 to save the COMPILED_CONSTANTS element for last and avoid
5984 recursion there. */
5985 int size = ptr->header.size & PSEUDOVECTOR_SIZE_MASK;
5986 int i;
5987
5988 VECTOR_MARK (ptr);
5989 for (i = 0; i < size; i++)
5990 if (i != COMPILED_CONSTANTS)
5991 mark_object (ptr->contents[i]);
5992 if (size > COMPILED_CONSTANTS)
5993 {
5994 obj = ptr->contents[COMPILED_CONSTANTS];
5995 goto loop;
5996 }
5997 }
5998 break;
5999
6000 case PVEC_FRAME:
6001 {
6002 struct frame *f = (struct frame *) ptr;
6003
6004 mark_vectorlike (ptr);
6005 mark_face_cache (f->face_cache);
6006#ifdef HAVE_WINDOW_SYSTEM
6007 if (FRAME_WINDOW_P (f) && FRAME_X_OUTPUT (f))
6008 {
6009 struct font *font = FRAME_FONT (f);
6010
6011 if (font && !VECTOR_MARKED_P (font))
6012 mark_vectorlike ((struct Lisp_Vector *) font);
6013 }
6014#endif
6015 }
6016 break;
6017
6018 case PVEC_WINDOW:
6019 {
6020 struct window *w = (struct window *) ptr;
6021
6022 mark_vectorlike (ptr);
6023
6024 /* Mark glyph matrices, if any. Marking window
6025 matrices is sufficient because frame matrices
6026 use the same glyph memory. */
6027 if (w->current_matrix)
6028 {
6029 mark_glyph_matrix (w->current_matrix);
6030 mark_glyph_matrix (w->desired_matrix);
6031 }
6032
6033 /* Filter out killed buffers from both buffer lists
6034 in attempt to help GC to reclaim killed buffers faster.
6035 We can do it elsewhere for live windows, but this is the
6036 best place to do it for dead windows. */
6037 wset_prev_buffers
6038 (w, mark_discard_killed_buffers (w->prev_buffers));
6039 wset_next_buffers
6040 (w, mark_discard_killed_buffers (w->next_buffers));
6041 }
6042 break;
6043
6044 case PVEC_HASH_TABLE:
6045 {
6046 struct Lisp_Hash_Table *h = (struct Lisp_Hash_Table *) ptr;
6047
6048 mark_vectorlike (ptr);
6049 mark_object (h->test.name);
6050 mark_object (h->test.user_hash_function);
6051 mark_object (h->test.user_cmp_function);
6052 /* If hash table is not weak, mark all keys and values.
6053 For weak tables, mark only the vector. */
6054 if (NILP (h->weak))
6055 mark_object (h->key_and_value);
6056 else
6057 VECTOR_MARK (XVECTOR (h->key_and_value));
6058 }
6059 break;
6060
6061 case PVEC_CHAR_TABLE:
6062 mark_char_table (ptr);
6063 break;
6064
6065 case PVEC_BOOL_VECTOR:
6066 /* No Lisp_Objects to mark in a bool vector. */
6067 VECTOR_MARK (ptr);
6068 break;
6069
6070 case PVEC_SUBR:
6071 break;
6072
6073 case PVEC_FREE:
6074 emacs_abort ();
6075
6076 default:
6077 mark_vectorlike (ptr);
6078 }
6079 }
6080 break;
6081
6082 case Lisp_Symbol:
6083 {
6084 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
6085 struct Lisp_Symbol *ptrx;
6086
6087 if (ptr->gcmarkbit)
6088 break;
6089 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
6090 ptr->gcmarkbit = 1;
6091 mark_object (ptr->function);
6092 mark_object (ptr->plist);
6093 switch (ptr->redirect)
6094 {
6095 case SYMBOL_PLAINVAL: mark_object (SYMBOL_VAL (ptr)); break;
6096 case SYMBOL_VARALIAS:
6097 {
6098 Lisp_Object tem;
6099 XSETSYMBOL (tem, SYMBOL_ALIAS (ptr));
6100 mark_object (tem);
6101 break;
6102 }
6103 case SYMBOL_LOCALIZED:
6104 {
6105 struct Lisp_Buffer_Local_Value *blv = SYMBOL_BLV (ptr);
6106 Lisp_Object where = blv->where;
6107 /* If the value is set up for a killed buffer or deleted
6108 frame, restore it's global binding. If the value is
6109 forwarded to a C variable, either it's not a Lisp_Object
6110 var, or it's staticpro'd already. */
6111 if ((BUFFERP (where) && !BUFFER_LIVE_P (XBUFFER (where)))
6112 || (FRAMEP (where) && !FRAME_LIVE_P (XFRAME (where))))
6113 swap_in_global_binding (ptr);
6114 mark_object (blv->where);
6115 mark_object (blv->valcell);
6116 mark_object (blv->defcell);
6117 break;
6118 }
6119 case SYMBOL_FORWARDED:
6120 /* If the value is forwarded to a buffer or keyboard field,
6121 these are marked when we see the corresponding object.
6122 And if it's forwarded to a C variable, either it's not
6123 a Lisp_Object var, or it's staticpro'd already. */
6124 break;
6125 default: emacs_abort ();
6126 }
6127 if (!PURE_POINTER_P (XSTRING (ptr->name)))
6128 MARK_STRING (XSTRING (ptr->name));
6129 MARK_INTERVAL_TREE (string_intervals (ptr->name));
6130
6131 ptr = ptr->next;
6132 if (ptr)
6133 {
6134 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun. */
6135 XSETSYMBOL (obj, ptrx);
6136 goto loop;
6137 }
6138 }
6139 break;
6140
6141 case Lisp_Misc:
6142 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
6143
6144 if (XMISCANY (obj)->gcmarkbit)
6145 break;
6146
6147 switch (XMISCTYPE (obj))
6148 {
6149 case Lisp_Misc_Marker:
6150 /* DO NOT mark thru the marker's chain.
6151 The buffer's markers chain does not preserve markers from gc;
6152 instead, markers are removed from the chain when freed by gc. */
6153 XMISCANY (obj)->gcmarkbit = 1;
6154 break;
6155
6156 case Lisp_Misc_Save_Value:
6157 XMISCANY (obj)->gcmarkbit = 1;
6158 {
6159 struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
6160 /* If `save_type' is zero, `data[0].pointer' is the address
6161 of a memory area containing `data[1].integer' potential
6162 Lisp_Objects. */
6163 if (GC_MARK_STACK && ptr->save_type == SAVE_TYPE_MEMORY)
6164 {
6165 Lisp_Object *p = ptr->data[0].pointer;
6166 ptrdiff_t nelt;
6167 for (nelt = ptr->data[1].integer; nelt > 0; nelt--, p++)
6168 mark_maybe_object (*p);
6169 }
6170 else
6171 {
6172 /* Find Lisp_Objects in `data[N]' slots and mark them. */
6173 int i;
6174 for (i = 0; i < SAVE_VALUE_SLOTS; i++)
6175 if (save_type (ptr, i) == SAVE_OBJECT)
6176 mark_object (ptr->data[i].object);
6177 }
6178 }
6179 break;
6180
6181 case Lisp_Misc_Overlay:
6182 mark_overlay (XOVERLAY (obj));
6183 break;
6184
6185 default:
6186 emacs_abort ();
6187 }
6188 break;
6189
6190 case Lisp_Cons:
6191 {
6192 register struct Lisp_Cons *ptr = XCONS (obj);
6193 if (CONS_MARKED_P (ptr))
6194 break;
6195 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
6196 CONS_MARK (ptr);
6197 /* If the cdr is nil, avoid recursion for the car. */
6198 if (EQ (ptr->u.cdr, Qnil))
6199 {
6200 obj = ptr->car;
6201 cdr_count = 0;
6202 goto loop;
6203 }
6204 mark_object (ptr->car);
6205 obj = ptr->u.cdr;
6206 cdr_count++;
6207 if (cdr_count == mark_object_loop_halt)
6208 emacs_abort ();
6209 goto loop;
6210 }
6211
6212 case Lisp_Float:
6213 CHECK_ALLOCATED_AND_LIVE (live_float_p);
6214 FLOAT_MARK (XFLOAT (obj));
6215 break;
6216
6217 case_Lisp_Int:
6218 break;
6219
6220 default:
6221 emacs_abort ();
6222 }
6223
6224#undef CHECK_LIVE
6225#undef CHECK_ALLOCATED
6226#undef CHECK_ALLOCATED_AND_LIVE
6227}
6228/* Mark the Lisp pointers in the terminal objects.
6229 Called by Fgarbage_collect. */
6230
6231static void
6232mark_terminals (void)
6233{
6234 struct terminal *t;
6235 for (t = terminal_list; t; t = t->next_terminal)
6236 {
6237 eassert (t->name != NULL);
6238#ifdef HAVE_WINDOW_SYSTEM
6239 /* If a terminal object is reachable from a stacpro'ed object,
6240 it might have been marked already. Make sure the image cache
6241 gets marked. */
6242 mark_image_cache (t->image_cache);
6243#endif /* HAVE_WINDOW_SYSTEM */
6244 if (!VECTOR_MARKED_P (t))
6245 mark_vectorlike ((struct Lisp_Vector *)t);
6246 }
6247}
6248
6249
6250
6251/* Value is non-zero if OBJ will survive the current GC because it's
6252 either marked or does not need to be marked to survive. */
6253
6254bool
6255survives_gc_p (Lisp_Object obj)
6256{
6257 bool survives_p;
6258
6259 switch (XTYPE (obj))
6260 {
6261 case_Lisp_Int:
6262 survives_p = 1;
6263 break;
6264
6265 case Lisp_Symbol:
6266 survives_p = XSYMBOL (obj)->gcmarkbit;
6267 break;
6268
6269 case Lisp_Misc:
6270 survives_p = XMISCANY (obj)->gcmarkbit;
6271 break;
6272
6273 case Lisp_String:
6274 survives_p = STRING_MARKED_P (XSTRING (obj));
6275 break;
6276
6277 case Lisp_Vectorlike:
6278 survives_p = SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
6279 break;
6280
6281 case Lisp_Cons:
6282 survives_p = CONS_MARKED_P (XCONS (obj));
6283 break;
6284
6285 case Lisp_Float:
6286 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
6287 break;
6288
6289 default:
6290 emacs_abort ();
6291 }
6292
6293 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
6294}
6295
6296
6297\f
6298/* Sweep: find all structures not marked, and free them. */
6299
6300static void
6301gc_sweep (void)
6302{
6303 /* Remove or mark entries in weak hash tables.
6304 This must be done before any object is unmarked. */
6305 sweep_weak_hash_tables ();
6306
6307 sweep_strings ();
6308 check_string_bytes (!noninteractive);
6309
6310 /* Put all unmarked conses on free list */
6311 {
6312 register struct cons_block *cblk;
6313 struct cons_block **cprev = &cons_block;
6314 register int lim = cons_block_index;
6315 EMACS_INT num_free = 0, num_used = 0;
6316
6317 cons_free_list = 0;
6318
6319 for (cblk = cons_block; cblk; cblk = *cprev)
6320 {
6321 register int i = 0;
6322 int this_free = 0;
6323 int ilim = (lim + BITS_PER_INT - 1) / BITS_PER_INT;
6324
6325 /* Scan the mark bits an int at a time. */
6326 for (i = 0; i < ilim; i++)
6327 {
6328 if (cblk->gcmarkbits[i] == -1)
6329 {
6330 /* Fast path - all cons cells for this int are marked. */
6331 cblk->gcmarkbits[i] = 0;
6332 num_used += BITS_PER_INT;
6333 }
6334 else
6335 {
6336 /* Some cons cells for this int are not marked.
6337 Find which ones, and free them. */
6338 int start, pos, stop;
6339
6340 start = i * BITS_PER_INT;
6341 stop = lim - start;
6342 if (stop > BITS_PER_INT)
6343 stop = BITS_PER_INT;
6344 stop += start;
6345
6346 for (pos = start; pos < stop; pos++)
6347 {
6348 if (!CONS_MARKED_P (&cblk->conses[pos]))
6349 {
6350 this_free++;
6351 cblk->conses[pos].u.chain = cons_free_list;
6352 cons_free_list = &cblk->conses[pos];
6353#if GC_MARK_STACK
6354 cons_free_list->car = Vdead;
6355#endif
6356 }
6357 else
6358 {
6359 num_used++;
6360 CONS_UNMARK (&cblk->conses[pos]);
6361 }
6362 }
6363 }
6364 }
6365
6366 lim = CONS_BLOCK_SIZE;
6367 /* If this block contains only free conses and we have already
6368 seen more than two blocks worth of free conses then deallocate
6369 this block. */
6370 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
6371 {
6372 *cprev = cblk->next;
6373 /* Unhook from the free list. */
6374 cons_free_list = cblk->conses[0].u.chain;
6375 lisp_align_free (cblk);
6376 }
6377 else
6378 {
6379 num_free += this_free;
6380 cprev = &cblk->next;
6381 }
6382 }
6383 total_conses = num_used;
6384 total_free_conses = num_free;
6385 }
6386
6387 /* Put all unmarked floats on free list */
6388 {
6389 register struct float_block *fblk;
6390 struct float_block **fprev = &float_block;
6391 register int lim = float_block_index;
6392 EMACS_INT num_free = 0, num_used = 0;
6393
6394 float_free_list = 0;
6395
6396 for (fblk = float_block; fblk; fblk = *fprev)
6397 {
6398 register int i;
6399 int this_free = 0;
6400 for (i = 0; i < lim; i++)
6401 if (!FLOAT_MARKED_P (&fblk->floats[i]))
6402 {
6403 this_free++;
6404 fblk->floats[i].u.chain = float_free_list;
6405 float_free_list = &fblk->floats[i];
6406 }
6407 else
6408 {
6409 num_used++;
6410 FLOAT_UNMARK (&fblk->floats[i]);
6411 }
6412 lim = FLOAT_BLOCK_SIZE;
6413 /* If this block contains only free floats and we have already
6414 seen more than two blocks worth of free floats then deallocate
6415 this block. */
6416 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
6417 {
6418 *fprev = fblk->next;
6419 /* Unhook from the free list. */
6420 float_free_list = fblk->floats[0].u.chain;
6421 lisp_align_free (fblk);
6422 }
6423 else
6424 {
6425 num_free += this_free;
6426 fprev = &fblk->next;
6427 }
6428 }
6429 total_floats = num_used;
6430 total_free_floats = num_free;
6431 }
6432
6433 /* Put all unmarked intervals on free list */
6434 {
6435 register struct interval_block *iblk;
6436 struct interval_block **iprev = &interval_block;
6437 register int lim = interval_block_index;
6438 EMACS_INT num_free = 0, num_used = 0;
6439
6440 interval_free_list = 0;
6441
6442 for (iblk = interval_block; iblk; iblk = *iprev)
6443 {
6444 register int i;
6445 int this_free = 0;
6446
6447 for (i = 0; i < lim; i++)
6448 {
6449 if (!iblk->intervals[i].gcmarkbit)
6450 {
6451 set_interval_parent (&iblk->intervals[i], interval_free_list);
6452 interval_free_list = &iblk->intervals[i];
6453 this_free++;
6454 }
6455 else
6456 {
6457 num_used++;
6458 iblk->intervals[i].gcmarkbit = 0;
6459 }
6460 }
6461 lim = INTERVAL_BLOCK_SIZE;
6462 /* If this block contains only free intervals and we have already
6463 seen more than two blocks worth of free intervals then
6464 deallocate this block. */
6465 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
6466 {
6467 *iprev = iblk->next;
6468 /* Unhook from the free list. */
6469 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
6470 lisp_free (iblk);
6471 }
6472 else
6473 {
6474 num_free += this_free;
6475 iprev = &iblk->next;
6476 }
6477 }
6478 total_intervals = num_used;
6479 total_free_intervals = num_free;
6480 }
6481
6482 /* Put all unmarked symbols on free list */
6483 {
6484 register struct symbol_block *sblk;
6485 struct symbol_block **sprev = &symbol_block;
6486 register int lim = symbol_block_index;
6487 EMACS_INT num_free = 0, num_used = 0;
6488
6489 symbol_free_list = NULL;
6490
6491 for (sblk = symbol_block; sblk; sblk = *sprev)
6492 {
6493 int this_free = 0;
6494 union aligned_Lisp_Symbol *sym = sblk->symbols;
6495 union aligned_Lisp_Symbol *end = sym + lim;
6496
6497 for (; sym < end; ++sym)
6498 {
6499 /* Check if the symbol was created during loadup. In such a case
6500 it might be pointed to by pure bytecode which we don't trace,
6501 so we conservatively assume that it is live. */
6502 bool pure_p = PURE_POINTER_P (XSTRING (sym->s.name));
6503
6504 if (!sym->s.gcmarkbit && !pure_p)
6505 {
6506 if (sym->s.redirect == SYMBOL_LOCALIZED)
6507 xfree (SYMBOL_BLV (&sym->s));
6508 sym->s.next = symbol_free_list;
6509 symbol_free_list = &sym->s;
6510#if GC_MARK_STACK
6511 symbol_free_list->function = Vdead;
6512#endif
6513 ++this_free;
6514 }
6515 else
6516 {
6517 ++num_used;
6518 if (!pure_p)
6519 UNMARK_STRING (XSTRING (sym->s.name));
6520 sym->s.gcmarkbit = 0;
6521 }
6522 }
6523
6524 lim = SYMBOL_BLOCK_SIZE;
6525 /* If this block contains only free symbols and we have already
6526 seen more than two blocks worth of free symbols then deallocate
6527 this block. */
6528 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
6529 {
6530 *sprev = sblk->next;
6531 /* Unhook from the free list. */
6532 symbol_free_list = sblk->symbols[0].s.next;
6533 lisp_free (sblk);
6534 }
6535 else
6536 {
6537 num_free += this_free;
6538 sprev = &sblk->next;
6539 }
6540 }
6541 total_symbols = num_used;
6542 total_free_symbols = num_free;
6543 }
6544
6545 /* Put all unmarked misc's on free list.
6546 For a marker, first unchain it from the buffer it points into. */
6547 {
6548 register struct marker_block *mblk;
6549 struct marker_block **mprev = &marker_block;
6550 register int lim = marker_block_index;
6551 EMACS_INT num_free = 0, num_used = 0;
6552
6553 marker_free_list = 0;
6554
6555 for (mblk = marker_block; mblk; mblk = *mprev)
6556 {
6557 register int i;
6558 int this_free = 0;
6559
6560 for (i = 0; i < lim; i++)
6561 {
6562 if (!mblk->markers[i].m.u_any.gcmarkbit)
6563 {
6564 if (mblk->markers[i].m.u_any.type == Lisp_Misc_Marker)
6565 unchain_marker (&mblk->markers[i].m.u_marker);
6566 /* Set the type of the freed object to Lisp_Misc_Free.
6567 We could leave the type alone, since nobody checks it,
6568 but this might catch bugs faster. */
6569 mblk->markers[i].m.u_marker.type = Lisp_Misc_Free;
6570 mblk->markers[i].m.u_free.chain = marker_free_list;
6571 marker_free_list = &mblk->markers[i].m;
6572 this_free++;
6573 }
6574 else
6575 {
6576 num_used++;
6577 mblk->markers[i].m.u_any.gcmarkbit = 0;
6578 }
6579 }
6580 lim = MARKER_BLOCK_SIZE;
6581 /* If this block contains only free markers and we have already
6582 seen more than two blocks worth of free markers then deallocate
6583 this block. */
6584 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
6585 {
6586 *mprev = mblk->next;
6587 /* Unhook from the free list. */
6588 marker_free_list = mblk->markers[0].m.u_free.chain;
6589 lisp_free (mblk);
6590 }
6591 else
6592 {
6593 num_free += this_free;
6594 mprev = &mblk->next;
6595 }
6596 }
6597
6598 total_markers = num_used;
6599 total_free_markers = num_free;
6600 }
6601
6602 /* Free all unmarked buffers */
6603 {
6604 register struct buffer *buffer, **bprev = &all_buffers;
6605
6606 total_buffers = 0;
6607 for (buffer = all_buffers; buffer; buffer = *bprev)
6608 if (!VECTOR_MARKED_P (buffer))
6609 {
6610 *bprev = buffer->next;
6611 lisp_free (buffer);
6612 }
6613 else
6614 {
6615 VECTOR_UNMARK (buffer);
6616 /* Do not use buffer_(set|get)_intervals here. */
6617 buffer->text->intervals = balance_intervals (buffer->text->intervals);
6618 total_buffers++;
6619 bprev = &buffer->next;
6620 }
6621 }
6622
6623 sweep_vectors ();
6624 check_string_bytes (!noninteractive);
6625}
6626
6627
6628
6629\f
6630/* Debugging aids. */
6631
6632DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
6633 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
6634This may be helpful in debugging Emacs's memory usage.
6635We divide the value by 1024 to make sure it fits in a Lisp integer. */)
6636 (void)
6637{
6638 Lisp_Object end;
6639
6640 XSETINT (end, (intptr_t) (char *) sbrk (0) / 1024);
6641
6642 return end;
6643}
6644
6645DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
6646 doc: /* Return a list of counters that measure how much consing there has been.
6647Each of these counters increments for a certain kind of object.
6648The counters wrap around from the largest positive integer to zero.
6649Garbage collection does not decrease them.
6650The elements of the value are as follows:
6651 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
6652All are in units of 1 = one object consed
6653except for VECTOR-CELLS and STRING-CHARS, which count the total length of
6654objects consed.
6655MISCS include overlays, markers, and some internal types.
6656Frames, windows, buffers, and subprocesses count as vectors
6657 (but the contents of a buffer's text do not count here). */)
6658 (void)
6659{
6660 return listn (CONSTYPE_HEAP, 8,
6661 bounded_number (cons_cells_consed),
6662 bounded_number (floats_consed),
6663 bounded_number (vector_cells_consed),
6664 bounded_number (symbols_consed),
6665 bounded_number (string_chars_consed),
6666 bounded_number (misc_objects_consed),
6667 bounded_number (intervals_consed),
6668 bounded_number (strings_consed));
6669}
6670
6671/* Find at most FIND_MAX symbols which have OBJ as their value or
6672 function. This is used in gdbinit's `xwhichsymbols' command. */
6673
6674Lisp_Object
6675which_symbols (Lisp_Object obj, EMACS_INT find_max)
6676{
6677 struct symbol_block *sblk;
6678 ptrdiff_t gc_count = inhibit_garbage_collection ();
6679 Lisp_Object found = Qnil;
6680
6681 if (! DEADP (obj))
6682 {
6683 for (sblk = symbol_block; sblk; sblk = sblk->next)
6684 {
6685 union aligned_Lisp_Symbol *aligned_sym = sblk->symbols;
6686 int bn;
6687
6688 for (bn = 0; bn < SYMBOL_BLOCK_SIZE; bn++, aligned_sym++)
6689 {
6690 struct Lisp_Symbol *sym = &aligned_sym->s;
6691 Lisp_Object val;
6692 Lisp_Object tem;
6693
6694 if (sblk == symbol_block && bn >= symbol_block_index)
6695 break;
6696
6697 XSETSYMBOL (tem, sym);
6698 val = find_symbol_value (tem);
6699 if (EQ (val, obj)
6700 || EQ (sym->function, obj)
6701 || (!NILP (sym->function)
6702 && COMPILEDP (sym->function)
6703 && EQ (AREF (sym->function, COMPILED_BYTECODE), obj))
6704 || (!NILP (val)
6705 && COMPILEDP (val)
6706 && EQ (AREF (val, COMPILED_BYTECODE), obj)))
6707 {
6708 found = Fcons (tem, found);
6709 if (--find_max == 0)
6710 goto out;
6711 }
6712 }
6713 }
6714 }
6715
6716 out:
6717 unbind_to (gc_count, Qnil);
6718 return found;
6719}
6720
6721#ifdef ENABLE_CHECKING
6722
6723bool suppress_checking;
6724
6725void
6726die (const char *msg, const char *file, int line)
6727{
6728 fprintf (stderr, "\r\n%s:%d: Emacs fatal error: assertion failed: %s\r\n",
6729 file, line, msg);
6730 terminate_due_to_signal (SIGABRT, INT_MAX);
6731}
6732#endif
6733\f
6734/* Initialization. */
6735
6736void
6737init_alloc_once (void)
6738{
6739 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
6740 purebeg = PUREBEG;
6741 pure_size = PURESIZE;
6742
6743#if GC_MARK_STACK || defined GC_MALLOC_CHECK
6744 mem_init ();
6745 Vdead = make_pure_string ("DEAD", 4, 4, 0);
6746#endif
6747
6748#ifdef DOUG_LEA_MALLOC
6749 mallopt (M_TRIM_THRESHOLD, 128 * 1024); /* Trim threshold. */
6750 mallopt (M_MMAP_THRESHOLD, 64 * 1024); /* Mmap threshold. */
6751 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* Max. number of mmap'ed areas. */
6752#endif
6753 init_strings ();
6754 init_vectors ();
6755
6756 refill_memory_reserve ();
6757 gc_cons_threshold = GC_DEFAULT_THRESHOLD;
6758}
6759
6760void
6761init_alloc (void)
6762{
6763 gcprolist = 0;
6764 byte_stack_list = 0;
6765#if GC_MARK_STACK
6766#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
6767 setjmp_tested_p = longjmps_done = 0;
6768#endif
6769#endif
6770 Vgc_elapsed = make_float (0.0);
6771 gcs_done = 0;
6772
6773#if USE_VALGRIND
6774 valgrind_p = RUNNING_ON_VALGRIND != 0;
6775#endif
6776}
6777
6778void
6779syms_of_alloc (void)
6780{
6781 DEFVAR_INT ("gc-cons-threshold", gc_cons_threshold,
6782 doc: /* Number of bytes of consing between garbage collections.
6783Garbage collection can happen automatically once this many bytes have been
6784allocated since the last garbage collection. All data types count.
6785
6786Garbage collection happens automatically only when `eval' is called.
6787
6788By binding this temporarily to a large number, you can effectively
6789prevent garbage collection during a part of the program.
6790See also `gc-cons-percentage'. */);
6791
6792 DEFVAR_LISP ("gc-cons-percentage", Vgc_cons_percentage,
6793 doc: /* Portion of the heap used for allocation.
6794Garbage collection can happen automatically once this portion of the heap
6795has been allocated since the last garbage collection.
6796If this portion is smaller than `gc-cons-threshold', this is ignored. */);
6797 Vgc_cons_percentage = make_float (0.1);
6798
6799 DEFVAR_INT ("pure-bytes-used", pure_bytes_used,
6800 doc: /* Number of bytes of shareable Lisp data allocated so far. */);
6801
6802 DEFVAR_INT ("cons-cells-consed", cons_cells_consed,
6803 doc: /* Number of cons cells that have been consed so far. */);
6804
6805 DEFVAR_INT ("floats-consed", floats_consed,
6806 doc: /* Number of floats that have been consed so far. */);
6807
6808 DEFVAR_INT ("vector-cells-consed", vector_cells_consed,
6809 doc: /* Number of vector cells that have been consed so far. */);
6810
6811 DEFVAR_INT ("symbols-consed", symbols_consed,
6812 doc: /* Number of symbols that have been consed so far. */);
6813
6814 DEFVAR_INT ("string-chars-consed", string_chars_consed,
6815 doc: /* Number of string characters that have been consed so far. */);
6816
6817 DEFVAR_INT ("misc-objects-consed", misc_objects_consed,
6818 doc: /* Number of miscellaneous objects that have been consed so far.
6819These include markers and overlays, plus certain objects not visible
6820to users. */);
6821
6822 DEFVAR_INT ("intervals-consed", intervals_consed,
6823 doc: /* Number of intervals that have been consed so far. */);
6824
6825 DEFVAR_INT ("strings-consed", strings_consed,
6826 doc: /* Number of strings that have been consed so far. */);
6827
6828 DEFVAR_LISP ("purify-flag", Vpurify_flag,
6829 doc: /* Non-nil means loading Lisp code in order to dump an executable.
6830This means that certain objects should be allocated in shared (pure) space.
6831It can also be set to a hash-table, in which case this table is used to
6832do hash-consing of the objects allocated to pure space. */);
6833
6834 DEFVAR_BOOL ("garbage-collection-messages", garbage_collection_messages,
6835 doc: /* Non-nil means display messages at start and end of garbage collection. */);
6836 garbage_collection_messages = 0;
6837
6838 DEFVAR_LISP ("post-gc-hook", Vpost_gc_hook,
6839 doc: /* Hook run after garbage collection has finished. */);
6840 Vpost_gc_hook = Qnil;
6841 DEFSYM (Qpost_gc_hook, "post-gc-hook");
6842
6843 DEFVAR_LISP ("memory-signal-data", Vmemory_signal_data,
6844 doc: /* Precomputed `signal' argument for memory-full error. */);
6845 /* We build this in advance because if we wait until we need it, we might
6846 not be able to allocate the memory to hold it. */
6847 Vmemory_signal_data
6848 = listn (CONSTYPE_PURE, 2, Qerror,
6849 build_pure_c_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
6850
6851 DEFVAR_LISP ("memory-full", Vmemory_full,
6852 doc: /* Non-nil means Emacs cannot get much more Lisp memory. */);
6853 Vmemory_full = Qnil;
6854
6855 DEFSYM (Qconses, "conses");
6856 DEFSYM (Qsymbols, "symbols");
6857 DEFSYM (Qmiscs, "miscs");
6858 DEFSYM (Qstrings, "strings");
6859 DEFSYM (Qvectors, "vectors");
6860 DEFSYM (Qfloats, "floats");
6861 DEFSYM (Qintervals, "intervals");
6862 DEFSYM (Qbuffers, "buffers");
6863 DEFSYM (Qstring_bytes, "string-bytes");
6864 DEFSYM (Qvector_slots, "vector-slots");
6865 DEFSYM (Qheap, "heap");
6866 DEFSYM (Qautomatic_gc, "Automatic GC");
6867
6868 DEFSYM (Qgc_cons_threshold, "gc-cons-threshold");
6869 DEFSYM (Qchar_table_extra_slots, "char-table-extra-slots");
6870
6871 DEFVAR_LISP ("gc-elapsed", Vgc_elapsed,
6872 doc: /* Accumulated time elapsed in garbage collections.
6873The time is in seconds as a floating point value. */);
6874 DEFVAR_INT ("gcs-done", gcs_done,
6875 doc: /* Accumulated number of garbage collections done. */);
6876
6877 defsubr (&Scons);
6878 defsubr (&Slist);
6879 defsubr (&Svector);
6880 defsubr (&Smake_byte_code);
6881 defsubr (&Smake_list);
6882 defsubr (&Smake_vector);
6883 defsubr (&Smake_string);
6884 defsubr (&Smake_bool_vector);
6885 defsubr (&Smake_symbol);
6886 defsubr (&Smake_marker);
6887 defsubr (&Spurecopy);
6888 defsubr (&Sgarbage_collect);
6889 defsubr (&Smemory_limit);
6890 defsubr (&Smemory_use_counts);
6891
6892#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
6893 defsubr (&Sgc_status);
6894#endif
6895}
6896
6897/* When compiled with GCC, GDB might say "No enum type named
6898 pvec_type" if we don't have at least one symbol with that type, and
6899 then xbacktrace could fail. Similarly for the other enums and
6900 their values. Some non-GCC compilers don't like these constructs. */
6901#ifdef __GNUC__
6902union
6903{
6904 enum CHARTAB_SIZE_BITS CHARTAB_SIZE_BITS;
6905 enum CHAR_TABLE_STANDARD_SLOTS CHAR_TABLE_STANDARD_SLOTS;
6906 enum char_bits char_bits;
6907 enum CHECK_LISP_OBJECT_TYPE CHECK_LISP_OBJECT_TYPE;
6908 enum DEFAULT_HASH_SIZE DEFAULT_HASH_SIZE;
6909 enum enum_USE_LSB_TAG enum_USE_LSB_TAG;
6910 enum FLOAT_TO_STRING_BUFSIZE FLOAT_TO_STRING_BUFSIZE;
6911 enum Lisp_Bits Lisp_Bits;
6912 enum Lisp_Compiled Lisp_Compiled;
6913 enum maxargs maxargs;
6914 enum MAX_ALLOCA MAX_ALLOCA;
6915 enum More_Lisp_Bits More_Lisp_Bits;
6916 enum pvec_type pvec_type;
6917} const EXTERNALLY_VISIBLE gdb_make_enums_visible = {0};
6918#endif /* __GNUC__ */