(Fselect_frame, Fset_frame_selected_window)
[bpt/emacs.git] / src / alloc.c
... / ...
CommitLineData
1/* Storage allocation and gc for GNU Emacs Lisp interpreter.
2 Copyright (C) 1985,86,88,93,94,95,97,98,1999,2000,01,02,03,2004
3 Free Software Foundation, Inc.
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
19the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22#include <config.h>
23#include <stdio.h>
24#include <limits.h> /* For CHAR_BIT. */
25
26#ifdef ALLOC_DEBUG
27#undef INLINE
28#endif
29
30/* Note that this declares bzero on OSF/1. How dumb. */
31
32#include <signal.h>
33
34/* This file is part of the core Lisp implementation, and thus must
35 deal with the real data structures. If the Lisp implementation is
36 replaced, this file likely will not be used. */
37
38#undef HIDE_LISP_IMPLEMENTATION
39#include "lisp.h"
40#include "process.h"
41#include "intervals.h"
42#include "puresize.h"
43#include "buffer.h"
44#include "window.h"
45#include "keyboard.h"
46#include "frame.h"
47#include "blockinput.h"
48#include "charset.h"
49#include "syssignal.h"
50#include <setjmp.h>
51
52/* GC_MALLOC_CHECK defined means perform validity checks of malloc'd
53 memory. Can do this only if using gmalloc.c. */
54
55#if defined SYSTEM_MALLOC || defined DOUG_LEA_MALLOC
56#undef GC_MALLOC_CHECK
57#endif
58
59#ifdef HAVE_UNISTD_H
60#include <unistd.h>
61#else
62extern POINTER_TYPE *sbrk ();
63#endif
64
65#ifdef DOUG_LEA_MALLOC
66
67#include <malloc.h>
68/* malloc.h #defines this as size_t, at least in glibc2. */
69#ifndef __malloc_size_t
70#define __malloc_size_t int
71#endif
72
73/* Specify maximum number of areas to mmap. It would be nice to use a
74 value that explicitly means "no limit". */
75
76#define MMAP_MAX_AREAS 100000000
77
78#else /* not DOUG_LEA_MALLOC */
79
80/* The following come from gmalloc.c. */
81
82#define __malloc_size_t size_t
83extern __malloc_size_t _bytes_used;
84extern __malloc_size_t __malloc_extra_blocks;
85
86#endif /* not DOUG_LEA_MALLOC */
87
88/* Value of _bytes_used, when spare_memory was freed. */
89
90static __malloc_size_t bytes_used_when_full;
91
92/* Mark, unmark, query mark bit of a Lisp string. S must be a pointer
93 to a struct Lisp_String. */
94
95#define MARK_STRING(S) ((S)->size |= ARRAY_MARK_FLAG)
96#define UNMARK_STRING(S) ((S)->size &= ~ARRAY_MARK_FLAG)
97#define STRING_MARKED_P(S) ((S)->size & ARRAY_MARK_FLAG)
98
99#define VECTOR_MARK(V) ((V)->size |= ARRAY_MARK_FLAG)
100#define VECTOR_UNMARK(V) ((V)->size &= ~ARRAY_MARK_FLAG)
101#define VECTOR_MARKED_P(V) ((V)->size & ARRAY_MARK_FLAG)
102
103/* Value is the number of bytes/chars of S, a pointer to a struct
104 Lisp_String. This must be used instead of STRING_BYTES (S) or
105 S->size during GC, because S->size contains the mark bit for
106 strings. */
107
108#define GC_STRING_BYTES(S) (STRING_BYTES (S))
109#define GC_STRING_CHARS(S) ((S)->size & ~ARRAY_MARK_FLAG)
110
111/* Number of bytes of consing done since the last gc. */
112
113int consing_since_gc;
114
115/* Count the amount of consing of various sorts of space. */
116
117EMACS_INT cons_cells_consed;
118EMACS_INT floats_consed;
119EMACS_INT vector_cells_consed;
120EMACS_INT symbols_consed;
121EMACS_INT string_chars_consed;
122EMACS_INT misc_objects_consed;
123EMACS_INT intervals_consed;
124EMACS_INT strings_consed;
125
126/* Number of bytes of consing since GC before another GC should be done. */
127
128EMACS_INT gc_cons_threshold;
129
130/* Nonzero during GC. */
131
132int gc_in_progress;
133
134/* Nonzero means abort if try to GC.
135 This is for code which is written on the assumption that
136 no GC will happen, so as to verify that assumption. */
137
138int abort_on_gc;
139
140/* Nonzero means display messages at beginning and end of GC. */
141
142int garbage_collection_messages;
143
144#ifndef VIRT_ADDR_VARIES
145extern
146#endif /* VIRT_ADDR_VARIES */
147int malloc_sbrk_used;
148
149#ifndef VIRT_ADDR_VARIES
150extern
151#endif /* VIRT_ADDR_VARIES */
152int malloc_sbrk_unused;
153
154/* Two limits controlling how much undo information to keep. */
155
156EMACS_INT undo_limit;
157EMACS_INT undo_strong_limit;
158EMACS_INT undo_outer_limit;
159
160/* Number of live and free conses etc. */
161
162static int total_conses, total_markers, total_symbols, total_vector_size;
163static int total_free_conses, total_free_markers, total_free_symbols;
164static int total_free_floats, total_floats;
165
166/* Points to memory space allocated as "spare", to be freed if we run
167 out of memory. */
168
169static char *spare_memory;
170
171/* Amount of spare memory to keep in reserve. */
172
173#define SPARE_MEMORY (1 << 14)
174
175/* Number of extra blocks malloc should get when it needs more core. */
176
177static int malloc_hysteresis;
178
179/* Non-nil means defun should do purecopy on the function definition. */
180
181Lisp_Object Vpurify_flag;
182
183/* Non-nil means we are handling a memory-full error. */
184
185Lisp_Object Vmemory_full;
186
187#ifndef HAVE_SHM
188
189/* Force it into data space! Initialize it to a nonzero value;
190 otherwise some compilers put it into BSS. */
191
192EMACS_INT pure[PURESIZE / sizeof (EMACS_INT)] = {1,};
193#define PUREBEG (char *) pure
194
195#else /* HAVE_SHM */
196
197#define pure PURE_SEG_BITS /* Use shared memory segment */
198#define PUREBEG (char *)PURE_SEG_BITS
199
200#endif /* HAVE_SHM */
201
202/* Pointer to the pure area, and its size. */
203
204static char *purebeg;
205static size_t pure_size;
206
207/* Number of bytes of pure storage used before pure storage overflowed.
208 If this is non-zero, this implies that an overflow occurred. */
209
210static size_t pure_bytes_used_before_overflow;
211
212/* Value is non-zero if P points into pure space. */
213
214#define PURE_POINTER_P(P) \
215 (((PNTR_COMPARISON_TYPE) (P) \
216 < (PNTR_COMPARISON_TYPE) ((char *) purebeg + pure_size)) \
217 && ((PNTR_COMPARISON_TYPE) (P) \
218 >= (PNTR_COMPARISON_TYPE) purebeg))
219
220/* Index in pure at which next pure object will be allocated.. */
221
222EMACS_INT pure_bytes_used;
223
224/* If nonzero, this is a warning delivered by malloc and not yet
225 displayed. */
226
227char *pending_malloc_warning;
228
229/* Pre-computed signal argument for use when memory is exhausted. */
230
231Lisp_Object Vmemory_signal_data;
232
233/* Maximum amount of C stack to save when a GC happens. */
234
235#ifndef MAX_SAVE_STACK
236#define MAX_SAVE_STACK 16000
237#endif
238
239/* Buffer in which we save a copy of the C stack at each GC. */
240
241char *stack_copy;
242int stack_copy_size;
243
244/* Non-zero means ignore malloc warnings. Set during initialization.
245 Currently not used. */
246
247int ignore_warnings;
248
249Lisp_Object Qgc_cons_threshold, Qchar_table_extra_slots;
250
251/* Hook run after GC has finished. */
252
253Lisp_Object Vpost_gc_hook, Qpost_gc_hook;
254
255Lisp_Object Vgc_elapsed; /* accumulated elapsed time in GC */
256EMACS_INT gcs_done; /* accumulated GCs */
257
258static void mark_buffer P_ ((Lisp_Object));
259extern void mark_kboards P_ ((void));
260extern void mark_backtrace P_ ((void));
261static void gc_sweep P_ ((void));
262static void mark_glyph_matrix P_ ((struct glyph_matrix *));
263static void mark_face_cache P_ ((struct face_cache *));
264
265#ifdef HAVE_WINDOW_SYSTEM
266static void mark_image P_ ((struct image *));
267static void mark_image_cache P_ ((struct frame *));
268#endif /* HAVE_WINDOW_SYSTEM */
269
270static struct Lisp_String *allocate_string P_ ((void));
271static void compact_small_strings P_ ((void));
272static void free_large_strings P_ ((void));
273static void sweep_strings P_ ((void));
274
275extern int message_enable_multibyte;
276
277/* When scanning the C stack for live Lisp objects, Emacs keeps track
278 of what memory allocated via lisp_malloc is intended for what
279 purpose. This enumeration specifies the type of memory. */
280
281enum mem_type
282{
283 MEM_TYPE_NON_LISP,
284 MEM_TYPE_BUFFER,
285 MEM_TYPE_CONS,
286 MEM_TYPE_STRING,
287 MEM_TYPE_MISC,
288 MEM_TYPE_SYMBOL,
289 MEM_TYPE_FLOAT,
290 /* Keep the following vector-like types together, with
291 MEM_TYPE_WINDOW being the last, and MEM_TYPE_VECTOR the
292 first. Or change the code of live_vector_p, for instance. */
293 MEM_TYPE_VECTOR,
294 MEM_TYPE_PROCESS,
295 MEM_TYPE_HASH_TABLE,
296 MEM_TYPE_FRAME,
297 MEM_TYPE_WINDOW
298};
299
300#if GC_MARK_STACK || defined GC_MALLOC_CHECK
301
302#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
303#include <stdio.h> /* For fprintf. */
304#endif
305
306/* A unique object in pure space used to make some Lisp objects
307 on free lists recognizable in O(1). */
308
309Lisp_Object Vdead;
310
311#ifdef GC_MALLOC_CHECK
312
313enum mem_type allocated_mem_type;
314int dont_register_blocks;
315
316#endif /* GC_MALLOC_CHECK */
317
318/* A node in the red-black tree describing allocated memory containing
319 Lisp data. Each such block is recorded with its start and end
320 address when it is allocated, and removed from the tree when it
321 is freed.
322
323 A red-black tree is a balanced binary tree with the following
324 properties:
325
326 1. Every node is either red or black.
327 2. Every leaf is black.
328 3. If a node is red, then both of its children are black.
329 4. Every simple path from a node to a descendant leaf contains
330 the same number of black nodes.
331 5. The root is always black.
332
333 When nodes are inserted into the tree, or deleted from the tree,
334 the tree is "fixed" so that these properties are always true.
335
336 A red-black tree with N internal nodes has height at most 2
337 log(N+1). Searches, insertions and deletions are done in O(log N).
338 Please see a text book about data structures for a detailed
339 description of red-black trees. Any book worth its salt should
340 describe them. */
341
342struct mem_node
343{
344 /* Children of this node. These pointers are never NULL. When there
345 is no child, the value is MEM_NIL, which points to a dummy node. */
346 struct mem_node *left, *right;
347
348 /* The parent of this node. In the root node, this is NULL. */
349 struct mem_node *parent;
350
351 /* Start and end of allocated region. */
352 void *start, *end;
353
354 /* Node color. */
355 enum {MEM_BLACK, MEM_RED} color;
356
357 /* Memory type. */
358 enum mem_type type;
359};
360
361/* Base address of stack. Set in main. */
362
363Lisp_Object *stack_base;
364
365/* Root of the tree describing allocated Lisp memory. */
366
367static struct mem_node *mem_root;
368
369/* Lowest and highest known address in the heap. */
370
371static void *min_heap_address, *max_heap_address;
372
373/* Sentinel node of the tree. */
374
375static struct mem_node mem_z;
376#define MEM_NIL &mem_z
377
378static POINTER_TYPE *lisp_malloc P_ ((size_t, enum mem_type));
379static struct Lisp_Vector *allocate_vectorlike P_ ((EMACS_INT, enum mem_type));
380static void lisp_free P_ ((POINTER_TYPE *));
381static void mark_stack P_ ((void));
382static int live_vector_p P_ ((struct mem_node *, void *));
383static int live_buffer_p P_ ((struct mem_node *, void *));
384static int live_string_p P_ ((struct mem_node *, void *));
385static int live_cons_p P_ ((struct mem_node *, void *));
386static int live_symbol_p P_ ((struct mem_node *, void *));
387static int live_float_p P_ ((struct mem_node *, void *));
388static int live_misc_p P_ ((struct mem_node *, void *));
389static void mark_maybe_object P_ ((Lisp_Object));
390static void mark_memory P_ ((void *, void *));
391static void mem_init P_ ((void));
392static struct mem_node *mem_insert P_ ((void *, void *, enum mem_type));
393static void mem_insert_fixup P_ ((struct mem_node *));
394static void mem_rotate_left P_ ((struct mem_node *));
395static void mem_rotate_right P_ ((struct mem_node *));
396static void mem_delete P_ ((struct mem_node *));
397static void mem_delete_fixup P_ ((struct mem_node *));
398static INLINE struct mem_node *mem_find P_ ((void *));
399
400#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
401static void check_gcpros P_ ((void));
402#endif
403
404#endif /* GC_MARK_STACK || GC_MALLOC_CHECK */
405
406/* Recording what needs to be marked for gc. */
407
408struct gcpro *gcprolist;
409
410/* Addresses of staticpro'd variables. Initialize it to a nonzero
411 value; otherwise some compilers put it into BSS. */
412
413#define NSTATICS 1280
414Lisp_Object *staticvec[NSTATICS] = {&Vpurify_flag};
415
416/* Index of next unused slot in staticvec. */
417
418int staticidx = 0;
419
420static POINTER_TYPE *pure_alloc P_ ((size_t, int));
421
422
423/* Value is SZ rounded up to the next multiple of ALIGNMENT.
424 ALIGNMENT must be a power of 2. */
425
426#define ALIGN(ptr, ALIGNMENT) \
427 ((POINTER_TYPE *) ((((EMACS_UINT)(ptr)) + (ALIGNMENT) - 1) \
428 & ~((ALIGNMENT) - 1)))
429
430
431\f
432/************************************************************************
433 Malloc
434 ************************************************************************/
435
436/* Function malloc calls this if it finds we are near exhausting storage. */
437
438void
439malloc_warning (str)
440 char *str;
441{
442 pending_malloc_warning = str;
443}
444
445
446/* Display an already-pending malloc warning. */
447
448void
449display_malloc_warning ()
450{
451 call3 (intern ("display-warning"),
452 intern ("alloc"),
453 build_string (pending_malloc_warning),
454 intern ("emergency"));
455 pending_malloc_warning = 0;
456}
457
458
459#ifdef DOUG_LEA_MALLOC
460# define BYTES_USED (mallinfo ().arena)
461#else
462# define BYTES_USED _bytes_used
463#endif
464
465
466/* Called if malloc returns zero. */
467
468void
469memory_full ()
470{
471 Vmemory_full = Qt;
472
473#ifndef SYSTEM_MALLOC
474 bytes_used_when_full = BYTES_USED;
475#endif
476
477 /* The first time we get here, free the spare memory. */
478 if (spare_memory)
479 {
480 free (spare_memory);
481 spare_memory = 0;
482 }
483
484 /* This used to call error, but if we've run out of memory, we could
485 get infinite recursion trying to build the string. */
486 while (1)
487 Fsignal (Qnil, Vmemory_signal_data);
488}
489
490
491/* Called if we can't allocate relocatable space for a buffer. */
492
493void
494buffer_memory_full ()
495{
496 /* If buffers use the relocating allocator, no need to free
497 spare_memory, because we may have plenty of malloc space left
498 that we could get, and if we don't, the malloc that fails will
499 itself cause spare_memory to be freed. If buffers don't use the
500 relocating allocator, treat this like any other failing
501 malloc. */
502
503#ifndef REL_ALLOC
504 memory_full ();
505#endif
506
507 Vmemory_full = Qt;
508
509 /* This used to call error, but if we've run out of memory, we could
510 get infinite recursion trying to build the string. */
511 while (1)
512 Fsignal (Qnil, Vmemory_signal_data);
513}
514
515
516/* Like malloc but check for no memory and block interrupt input.. */
517
518POINTER_TYPE *
519xmalloc (size)
520 size_t size;
521{
522 register POINTER_TYPE *val;
523
524 BLOCK_INPUT;
525 val = (POINTER_TYPE *) malloc (size);
526 UNBLOCK_INPUT;
527
528 if (!val && size)
529 memory_full ();
530 return val;
531}
532
533
534/* Like realloc but check for no memory and block interrupt input.. */
535
536POINTER_TYPE *
537xrealloc (block, size)
538 POINTER_TYPE *block;
539 size_t size;
540{
541 register POINTER_TYPE *val;
542
543 BLOCK_INPUT;
544 /* We must call malloc explicitly when BLOCK is 0, since some
545 reallocs don't do this. */
546 if (! block)
547 val = (POINTER_TYPE *) malloc (size);
548 else
549 val = (POINTER_TYPE *) realloc (block, size);
550 UNBLOCK_INPUT;
551
552 if (!val && size) memory_full ();
553 return val;
554}
555
556
557/* Like free but block interrupt input. */
558
559void
560xfree (block)
561 POINTER_TYPE *block;
562{
563 BLOCK_INPUT;
564 free (block);
565 UNBLOCK_INPUT;
566}
567
568
569/* Like strdup, but uses xmalloc. */
570
571char *
572xstrdup (s)
573 const char *s;
574{
575 size_t len = strlen (s) + 1;
576 char *p = (char *) xmalloc (len);
577 bcopy (s, p, len);
578 return p;
579}
580
581
582/* Unwind for SAFE_ALLOCA */
583
584Lisp_Object
585safe_alloca_unwind (arg)
586 Lisp_Object arg;
587{
588 register struct Lisp_Save_Value *p = XSAVE_VALUE (arg);
589
590 p->dogc = 0;
591 xfree (p->pointer);
592 p->pointer = 0;
593 free_misc (arg);
594 return Qnil;
595}
596
597
598/* Like malloc but used for allocating Lisp data. NBYTES is the
599 number of bytes to allocate, TYPE describes the intended use of the
600 allcated memory block (for strings, for conses, ...). */
601
602static void *lisp_malloc_loser;
603
604static POINTER_TYPE *
605lisp_malloc (nbytes, type)
606 size_t nbytes;
607 enum mem_type type;
608{
609 register void *val;
610
611 BLOCK_INPUT;
612
613#ifdef GC_MALLOC_CHECK
614 allocated_mem_type = type;
615#endif
616
617 val = (void *) malloc (nbytes);
618
619#ifndef USE_LSB_TAG
620 /* If the memory just allocated cannot be addressed thru a Lisp
621 object's pointer, and it needs to be,
622 that's equivalent to running out of memory. */
623 if (val && type != MEM_TYPE_NON_LISP)
624 {
625 Lisp_Object tem;
626 XSETCONS (tem, (char *) val + nbytes - 1);
627 if ((char *) XCONS (tem) != (char *) val + nbytes - 1)
628 {
629 lisp_malloc_loser = val;
630 free (val);
631 val = 0;
632 }
633 }
634#endif
635
636#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
637 if (val && type != MEM_TYPE_NON_LISP)
638 mem_insert (val, (char *) val + nbytes, type);
639#endif
640
641 UNBLOCK_INPUT;
642 if (!val && nbytes)
643 memory_full ();
644 return val;
645}
646
647/* Free BLOCK. This must be called to free memory allocated with a
648 call to lisp_malloc. */
649
650static void
651lisp_free (block)
652 POINTER_TYPE *block;
653{
654 BLOCK_INPUT;
655 free (block);
656#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
657 mem_delete (mem_find (block));
658#endif
659 UNBLOCK_INPUT;
660}
661
662/* Allocation of aligned blocks of memory to store Lisp data. */
663/* The entry point is lisp_align_malloc which returns blocks of at most */
664/* BLOCK_BYTES and guarantees they are aligned on a BLOCK_ALIGN boundary. */
665
666
667/* BLOCK_ALIGN has to be a power of 2. */
668#define BLOCK_ALIGN (1 << 10)
669
670/* Padding to leave at the end of a malloc'd block. This is to give
671 malloc a chance to minimize the amount of memory wasted to alignment.
672 It should be tuned to the particular malloc library used.
673 On glibc-2.3.2, malloc never tries to align, so a padding of 0 is best.
674 posix_memalign on the other hand would ideally prefer a value of 4
675 because otherwise, there's 1020 bytes wasted between each ablocks.
676 But testing shows that those 1020 will most of the time be efficiently
677 used by malloc to place other objects, so a value of 0 is still preferable
678 unless you have a lot of cons&floats and virtually nothing else. */
679#define BLOCK_PADDING 0
680#define BLOCK_BYTES \
681 (BLOCK_ALIGN - sizeof (struct aligned_block *) - BLOCK_PADDING)
682
683/* Internal data structures and constants. */
684
685#define ABLOCKS_SIZE 16
686
687/* An aligned block of memory. */
688struct ablock
689{
690 union
691 {
692 char payload[BLOCK_BYTES];
693 struct ablock *next_free;
694 } x;
695 /* `abase' is the aligned base of the ablocks. */
696 /* It is overloaded to hold the virtual `busy' field that counts
697 the number of used ablock in the parent ablocks.
698 The first ablock has the `busy' field, the others have the `abase'
699 field. To tell the difference, we assume that pointers will have
700 integer values larger than 2 * ABLOCKS_SIZE. The lowest bit of `busy'
701 is used to tell whether the real base of the parent ablocks is `abase'
702 (if not, the word before the first ablock holds a pointer to the
703 real base). */
704 struct ablocks *abase;
705 /* The padding of all but the last ablock is unused. The padding of
706 the last ablock in an ablocks is not allocated. */
707#if BLOCK_PADDING
708 char padding[BLOCK_PADDING];
709#endif
710};
711
712/* A bunch of consecutive aligned blocks. */
713struct ablocks
714{
715 struct ablock blocks[ABLOCKS_SIZE];
716};
717
718/* Size of the block requested from malloc or memalign. */
719#define ABLOCKS_BYTES (sizeof (struct ablocks) - BLOCK_PADDING)
720
721#define ABLOCK_ABASE(block) \
722 (((unsigned long) (block)->abase) <= (1 + 2 * ABLOCKS_SIZE) \
723 ? (struct ablocks *)(block) \
724 : (block)->abase)
725
726/* Virtual `busy' field. */
727#define ABLOCKS_BUSY(abase) ((abase)->blocks[0].abase)
728
729/* Pointer to the (not necessarily aligned) malloc block. */
730#ifdef HAVE_POSIX_MEMALIGN
731#define ABLOCKS_BASE(abase) (abase)
732#else
733#define ABLOCKS_BASE(abase) \
734 (1 & (long) ABLOCKS_BUSY (abase) ? abase : ((void**)abase)[-1])
735#endif
736
737/* The list of free ablock. */
738static struct ablock *free_ablock;
739
740/* Allocate an aligned block of nbytes.
741 Alignment is on a multiple of BLOCK_ALIGN and `nbytes' has to be
742 smaller or equal to BLOCK_BYTES. */
743static POINTER_TYPE *
744lisp_align_malloc (nbytes, type)
745 size_t nbytes;
746 enum mem_type type;
747{
748 void *base, *val;
749 struct ablocks *abase;
750
751 eassert (nbytes <= BLOCK_BYTES);
752
753 BLOCK_INPUT;
754
755#ifdef GC_MALLOC_CHECK
756 allocated_mem_type = type;
757#endif
758
759 if (!free_ablock)
760 {
761 int i;
762 EMACS_INT aligned; /* int gets warning casting to 64-bit pointer. */
763
764#ifdef DOUG_LEA_MALLOC
765 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
766 because mapped region contents are not preserved in
767 a dumped Emacs. */
768 mallopt (M_MMAP_MAX, 0);
769#endif
770
771#ifdef HAVE_POSIX_MEMALIGN
772 {
773 int err = posix_memalign (&base, BLOCK_ALIGN, ABLOCKS_BYTES);
774 if (err)
775 base = NULL;
776 abase = base;
777 }
778#else
779 base = malloc (ABLOCKS_BYTES);
780 abase = ALIGN (base, BLOCK_ALIGN);
781#endif
782
783 if (base == 0)
784 {
785 UNBLOCK_INPUT;
786 memory_full ();
787 }
788
789 aligned = (base == abase);
790 if (!aligned)
791 ((void**)abase)[-1] = base;
792
793#ifdef DOUG_LEA_MALLOC
794 /* Back to a reasonable maximum of mmap'ed areas. */
795 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
796#endif
797
798#ifndef USE_LSB_TAG
799 /* If the memory just allocated cannot be addressed thru a Lisp
800 object's pointer, and it needs to be, that's equivalent to
801 running out of memory. */
802 if (type != MEM_TYPE_NON_LISP)
803 {
804 Lisp_Object tem;
805 char *end = (char *) base + ABLOCKS_BYTES - 1;
806 XSETCONS (tem, end);
807 if ((char *) XCONS (tem) != end)
808 {
809 lisp_malloc_loser = base;
810 free (base);
811 UNBLOCK_INPUT;
812 memory_full ();
813 }
814 }
815#endif
816
817 /* Initialize the blocks and put them on the free list.
818 Is `base' was not properly aligned, we can't use the last block. */
819 for (i = 0; i < (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1); i++)
820 {
821 abase->blocks[i].abase = abase;
822 abase->blocks[i].x.next_free = free_ablock;
823 free_ablock = &abase->blocks[i];
824 }
825 ABLOCKS_BUSY (abase) = (struct ablocks *) (long) aligned;
826
827 eassert (0 == ((EMACS_UINT)abase) % BLOCK_ALIGN);
828 eassert (ABLOCK_ABASE (&abase->blocks[3]) == abase); /* 3 is arbitrary */
829 eassert (ABLOCK_ABASE (&abase->blocks[0]) == abase);
830 eassert (ABLOCKS_BASE (abase) == base);
831 eassert (aligned == (long) ABLOCKS_BUSY (abase));
832 }
833
834 abase = ABLOCK_ABASE (free_ablock);
835 ABLOCKS_BUSY (abase) = (struct ablocks *) (2 + (long) ABLOCKS_BUSY (abase));
836 val = free_ablock;
837 free_ablock = free_ablock->x.next_free;
838
839#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
840 if (val && type != MEM_TYPE_NON_LISP)
841 mem_insert (val, (char *) val + nbytes, type);
842#endif
843
844 UNBLOCK_INPUT;
845 if (!val && nbytes)
846 memory_full ();
847
848 eassert (0 == ((EMACS_UINT)val) % BLOCK_ALIGN);
849 return val;
850}
851
852static void
853lisp_align_free (block)
854 POINTER_TYPE *block;
855{
856 struct ablock *ablock = block;
857 struct ablocks *abase = ABLOCK_ABASE (ablock);
858
859 BLOCK_INPUT;
860#if GC_MARK_STACK && !defined GC_MALLOC_CHECK
861 mem_delete (mem_find (block));
862#endif
863 /* Put on free list. */
864 ablock->x.next_free = free_ablock;
865 free_ablock = ablock;
866 /* Update busy count. */
867 ABLOCKS_BUSY (abase) = (struct ablocks *) (-2 + (long) ABLOCKS_BUSY (abase));
868
869 if (2 > (long) ABLOCKS_BUSY (abase))
870 { /* All the blocks are free. */
871 int i = 0, aligned = (long) ABLOCKS_BUSY (abase);
872 struct ablock **tem = &free_ablock;
873 struct ablock *atop = &abase->blocks[aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1];
874
875 while (*tem)
876 {
877 if (*tem >= (struct ablock *) abase && *tem < atop)
878 {
879 i++;
880 *tem = (*tem)->x.next_free;
881 }
882 else
883 tem = &(*tem)->x.next_free;
884 }
885 eassert ((aligned & 1) == aligned);
886 eassert (i == (aligned ? ABLOCKS_SIZE : ABLOCKS_SIZE - 1));
887 free (ABLOCKS_BASE (abase));
888 }
889 UNBLOCK_INPUT;
890}
891
892/* Return a new buffer structure allocated from the heap with
893 a call to lisp_malloc. */
894
895struct buffer *
896allocate_buffer ()
897{
898 struct buffer *b
899 = (struct buffer *) lisp_malloc (sizeof (struct buffer),
900 MEM_TYPE_BUFFER);
901 return b;
902}
903
904\f
905/* Arranging to disable input signals while we're in malloc.
906
907 This only works with GNU malloc. To help out systems which can't
908 use GNU malloc, all the calls to malloc, realloc, and free
909 elsewhere in the code should be inside a BLOCK_INPUT/UNBLOCK_INPUT
910 pairs; unfortunately, we have no idea what C library functions
911 might call malloc, so we can't really protect them unless you're
912 using GNU malloc. Fortunately, most of the major operating systems
913 can use GNU malloc. */
914
915#ifndef SYSTEM_MALLOC
916#ifndef DOUG_LEA_MALLOC
917extern void * (*__malloc_hook) P_ ((size_t));
918extern void * (*__realloc_hook) P_ ((void *, size_t));
919extern void (*__free_hook) P_ ((void *));
920/* Else declared in malloc.h, perhaps with an extra arg. */
921#endif /* DOUG_LEA_MALLOC */
922static void * (*old_malloc_hook) ();
923static void * (*old_realloc_hook) ();
924static void (*old_free_hook) ();
925
926/* This function is used as the hook for free to call. */
927
928static void
929emacs_blocked_free (ptr)
930 void *ptr;
931{
932 BLOCK_INPUT;
933
934#ifdef GC_MALLOC_CHECK
935 if (ptr)
936 {
937 struct mem_node *m;
938
939 m = mem_find (ptr);
940 if (m == MEM_NIL || m->start != ptr)
941 {
942 fprintf (stderr,
943 "Freeing `%p' which wasn't allocated with malloc\n", ptr);
944 abort ();
945 }
946 else
947 {
948 /* fprintf (stderr, "free %p...%p (%p)\n", m->start, m->end, ptr); */
949 mem_delete (m);
950 }
951 }
952#endif /* GC_MALLOC_CHECK */
953
954 __free_hook = old_free_hook;
955 free (ptr);
956
957 /* If we released our reserve (due to running out of memory),
958 and we have a fair amount free once again,
959 try to set aside another reserve in case we run out once more. */
960 if (spare_memory == 0
961 /* Verify there is enough space that even with the malloc
962 hysteresis this call won't run out again.
963 The code here is correct as long as SPARE_MEMORY
964 is substantially larger than the block size malloc uses. */
965 && (bytes_used_when_full
966 > BYTES_USED + max (malloc_hysteresis, 4) * SPARE_MEMORY))
967 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
968
969 __free_hook = emacs_blocked_free;
970 UNBLOCK_INPUT;
971}
972
973
974/* If we released our reserve (due to running out of memory),
975 and we have a fair amount free once again,
976 try to set aside another reserve in case we run out once more.
977
978 This is called when a relocatable block is freed in ralloc.c. */
979
980void
981refill_memory_reserve ()
982{
983 if (spare_memory == 0)
984 spare_memory = (char *) malloc ((size_t) SPARE_MEMORY);
985}
986
987
988/* This function is the malloc hook that Emacs uses. */
989
990static void *
991emacs_blocked_malloc (size)
992 size_t size;
993{
994 void *value;
995
996 BLOCK_INPUT;
997 __malloc_hook = old_malloc_hook;
998#ifdef DOUG_LEA_MALLOC
999 mallopt (M_TOP_PAD, malloc_hysteresis * 4096);
1000#else
1001 __malloc_extra_blocks = malloc_hysteresis;
1002#endif
1003
1004 value = (void *) malloc (size);
1005
1006#ifdef GC_MALLOC_CHECK
1007 {
1008 struct mem_node *m = mem_find (value);
1009 if (m != MEM_NIL)
1010 {
1011 fprintf (stderr, "Malloc returned %p which is already in use\n",
1012 value);
1013 fprintf (stderr, "Region in use is %p...%p, %u bytes, type %d\n",
1014 m->start, m->end, (char *) m->end - (char *) m->start,
1015 m->type);
1016 abort ();
1017 }
1018
1019 if (!dont_register_blocks)
1020 {
1021 mem_insert (value, (char *) value + max (1, size), allocated_mem_type);
1022 allocated_mem_type = MEM_TYPE_NON_LISP;
1023 }
1024 }
1025#endif /* GC_MALLOC_CHECK */
1026
1027 __malloc_hook = emacs_blocked_malloc;
1028 UNBLOCK_INPUT;
1029
1030 /* fprintf (stderr, "%p malloc\n", value); */
1031 return value;
1032}
1033
1034
1035/* This function is the realloc hook that Emacs uses. */
1036
1037static void *
1038emacs_blocked_realloc (ptr, size)
1039 void *ptr;
1040 size_t size;
1041{
1042 void *value;
1043
1044 BLOCK_INPUT;
1045 __realloc_hook = old_realloc_hook;
1046
1047#ifdef GC_MALLOC_CHECK
1048 if (ptr)
1049 {
1050 struct mem_node *m = mem_find (ptr);
1051 if (m == MEM_NIL || m->start != ptr)
1052 {
1053 fprintf (stderr,
1054 "Realloc of %p which wasn't allocated with malloc\n",
1055 ptr);
1056 abort ();
1057 }
1058
1059 mem_delete (m);
1060 }
1061
1062 /* fprintf (stderr, "%p -> realloc\n", ptr); */
1063
1064 /* Prevent malloc from registering blocks. */
1065 dont_register_blocks = 1;
1066#endif /* GC_MALLOC_CHECK */
1067
1068 value = (void *) realloc (ptr, size);
1069
1070#ifdef GC_MALLOC_CHECK
1071 dont_register_blocks = 0;
1072
1073 {
1074 struct mem_node *m = mem_find (value);
1075 if (m != MEM_NIL)
1076 {
1077 fprintf (stderr, "Realloc returns memory that is already in use\n");
1078 abort ();
1079 }
1080
1081 /* Can't handle zero size regions in the red-black tree. */
1082 mem_insert (value, (char *) value + max (size, 1), MEM_TYPE_NON_LISP);
1083 }
1084
1085 /* fprintf (stderr, "%p <- realloc\n", value); */
1086#endif /* GC_MALLOC_CHECK */
1087
1088 __realloc_hook = emacs_blocked_realloc;
1089 UNBLOCK_INPUT;
1090
1091 return value;
1092}
1093
1094
1095/* Called from main to set up malloc to use our hooks. */
1096
1097void
1098uninterrupt_malloc ()
1099{
1100 if (__free_hook != emacs_blocked_free)
1101 old_free_hook = __free_hook;
1102 __free_hook = emacs_blocked_free;
1103
1104 if (__malloc_hook != emacs_blocked_malloc)
1105 old_malloc_hook = __malloc_hook;
1106 __malloc_hook = emacs_blocked_malloc;
1107
1108 if (__realloc_hook != emacs_blocked_realloc)
1109 old_realloc_hook = __realloc_hook;
1110 __realloc_hook = emacs_blocked_realloc;
1111}
1112
1113#endif /* not SYSTEM_MALLOC */
1114
1115
1116\f
1117/***********************************************************************
1118 Interval Allocation
1119 ***********************************************************************/
1120
1121/* Number of intervals allocated in an interval_block structure.
1122 The 1020 is 1024 minus malloc overhead. */
1123
1124#define INTERVAL_BLOCK_SIZE \
1125 ((1020 - sizeof (struct interval_block *)) / sizeof (struct interval))
1126
1127/* Intervals are allocated in chunks in form of an interval_block
1128 structure. */
1129
1130struct interval_block
1131{
1132 /* Place `intervals' first, to preserve alignment. */
1133 struct interval intervals[INTERVAL_BLOCK_SIZE];
1134 struct interval_block *next;
1135};
1136
1137/* Current interval block. Its `next' pointer points to older
1138 blocks. */
1139
1140struct interval_block *interval_block;
1141
1142/* Index in interval_block above of the next unused interval
1143 structure. */
1144
1145static int interval_block_index;
1146
1147/* Number of free and live intervals. */
1148
1149static int total_free_intervals, total_intervals;
1150
1151/* List of free intervals. */
1152
1153INTERVAL interval_free_list;
1154
1155/* Total number of interval blocks now in use. */
1156
1157int n_interval_blocks;
1158
1159
1160/* Initialize interval allocation. */
1161
1162static void
1163init_intervals ()
1164{
1165 interval_block = NULL;
1166 interval_block_index = INTERVAL_BLOCK_SIZE;
1167 interval_free_list = 0;
1168 n_interval_blocks = 0;
1169}
1170
1171
1172/* Return a new interval. */
1173
1174INTERVAL
1175make_interval ()
1176{
1177 INTERVAL val;
1178
1179 if (interval_free_list)
1180 {
1181 val = interval_free_list;
1182 interval_free_list = INTERVAL_PARENT (interval_free_list);
1183 }
1184 else
1185 {
1186 if (interval_block_index == INTERVAL_BLOCK_SIZE)
1187 {
1188 register struct interval_block *newi;
1189
1190 newi = (struct interval_block *) lisp_malloc (sizeof *newi,
1191 MEM_TYPE_NON_LISP);
1192
1193 newi->next = interval_block;
1194 interval_block = newi;
1195 interval_block_index = 0;
1196 n_interval_blocks++;
1197 }
1198 val = &interval_block->intervals[interval_block_index++];
1199 }
1200 consing_since_gc += sizeof (struct interval);
1201 intervals_consed++;
1202 RESET_INTERVAL (val);
1203 val->gcmarkbit = 0;
1204 return val;
1205}
1206
1207
1208/* Mark Lisp objects in interval I. */
1209
1210static void
1211mark_interval (i, dummy)
1212 register INTERVAL i;
1213 Lisp_Object dummy;
1214{
1215 eassert (!i->gcmarkbit); /* Intervals are never shared. */
1216 i->gcmarkbit = 1;
1217 mark_object (i->plist);
1218}
1219
1220
1221/* Mark the interval tree rooted in TREE. Don't call this directly;
1222 use the macro MARK_INTERVAL_TREE instead. */
1223
1224static void
1225mark_interval_tree (tree)
1226 register INTERVAL tree;
1227{
1228 /* No need to test if this tree has been marked already; this
1229 function is always called through the MARK_INTERVAL_TREE macro,
1230 which takes care of that. */
1231
1232 traverse_intervals_noorder (tree, mark_interval, Qnil);
1233}
1234
1235
1236/* Mark the interval tree rooted in I. */
1237
1238#define MARK_INTERVAL_TREE(i) \
1239 do { \
1240 if (!NULL_INTERVAL_P (i) && !i->gcmarkbit) \
1241 mark_interval_tree (i); \
1242 } while (0)
1243
1244
1245#define UNMARK_BALANCE_INTERVALS(i) \
1246 do { \
1247 if (! NULL_INTERVAL_P (i)) \
1248 (i) = balance_intervals (i); \
1249 } while (0)
1250
1251\f
1252/* Number support. If NO_UNION_TYPE isn't in effect, we
1253 can't create number objects in macros. */
1254#ifndef make_number
1255Lisp_Object
1256make_number (n)
1257 int n;
1258{
1259 Lisp_Object obj;
1260 obj.s.val = n;
1261 obj.s.type = Lisp_Int;
1262 return obj;
1263}
1264#endif
1265\f
1266/***********************************************************************
1267 String Allocation
1268 ***********************************************************************/
1269
1270/* Lisp_Strings are allocated in string_block structures. When a new
1271 string_block is allocated, all the Lisp_Strings it contains are
1272 added to a free-list string_free_list. When a new Lisp_String is
1273 needed, it is taken from that list. During the sweep phase of GC,
1274 string_blocks that are entirely free are freed, except two which
1275 we keep.
1276
1277 String data is allocated from sblock structures. Strings larger
1278 than LARGE_STRING_BYTES, get their own sblock, data for smaller
1279 strings is sub-allocated out of sblocks of size SBLOCK_SIZE.
1280
1281 Sblocks consist internally of sdata structures, one for each
1282 Lisp_String. The sdata structure points to the Lisp_String it
1283 belongs to. The Lisp_String points back to the `u.data' member of
1284 its sdata structure.
1285
1286 When a Lisp_String is freed during GC, it is put back on
1287 string_free_list, and its `data' member and its sdata's `string'
1288 pointer is set to null. The size of the string is recorded in the
1289 `u.nbytes' member of the sdata. So, sdata structures that are no
1290 longer used, can be easily recognized, and it's easy to compact the
1291 sblocks of small strings which we do in compact_small_strings. */
1292
1293/* Size in bytes of an sblock structure used for small strings. This
1294 is 8192 minus malloc overhead. */
1295
1296#define SBLOCK_SIZE 8188
1297
1298/* Strings larger than this are considered large strings. String data
1299 for large strings is allocated from individual sblocks. */
1300
1301#define LARGE_STRING_BYTES 1024
1302
1303/* Structure describing string memory sub-allocated from an sblock.
1304 This is where the contents of Lisp strings are stored. */
1305
1306struct sdata
1307{
1308 /* Back-pointer to the string this sdata belongs to. If null, this
1309 structure is free, and the NBYTES member of the union below
1310 contains the string's byte size (the same value that STRING_BYTES
1311 would return if STRING were non-null). If non-null, STRING_BYTES
1312 (STRING) is the size of the data, and DATA contains the string's
1313 contents. */
1314 struct Lisp_String *string;
1315
1316#ifdef GC_CHECK_STRING_BYTES
1317
1318 EMACS_INT nbytes;
1319 unsigned char data[1];
1320
1321#define SDATA_NBYTES(S) (S)->nbytes
1322#define SDATA_DATA(S) (S)->data
1323
1324#else /* not GC_CHECK_STRING_BYTES */
1325
1326 union
1327 {
1328 /* When STRING in non-null. */
1329 unsigned char data[1];
1330
1331 /* When STRING is null. */
1332 EMACS_INT nbytes;
1333 } u;
1334
1335
1336#define SDATA_NBYTES(S) (S)->u.nbytes
1337#define SDATA_DATA(S) (S)->u.data
1338
1339#endif /* not GC_CHECK_STRING_BYTES */
1340};
1341
1342
1343/* Structure describing a block of memory which is sub-allocated to
1344 obtain string data memory for strings. Blocks for small strings
1345 are of fixed size SBLOCK_SIZE. Blocks for large strings are made
1346 as large as needed. */
1347
1348struct sblock
1349{
1350 /* Next in list. */
1351 struct sblock *next;
1352
1353 /* Pointer to the next free sdata block. This points past the end
1354 of the sblock if there isn't any space left in this block. */
1355 struct sdata *next_free;
1356
1357 /* Start of data. */
1358 struct sdata first_data;
1359};
1360
1361/* Number of Lisp strings in a string_block structure. The 1020 is
1362 1024 minus malloc overhead. */
1363
1364#define STRING_BLOCK_SIZE \
1365 ((1020 - sizeof (struct string_block *)) / sizeof (struct Lisp_String))
1366
1367/* Structure describing a block from which Lisp_String structures
1368 are allocated. */
1369
1370struct string_block
1371{
1372 /* Place `strings' first, to preserve alignment. */
1373 struct Lisp_String strings[STRING_BLOCK_SIZE];
1374 struct string_block *next;
1375};
1376
1377/* Head and tail of the list of sblock structures holding Lisp string
1378 data. We always allocate from current_sblock. The NEXT pointers
1379 in the sblock structures go from oldest_sblock to current_sblock. */
1380
1381static struct sblock *oldest_sblock, *current_sblock;
1382
1383/* List of sblocks for large strings. */
1384
1385static struct sblock *large_sblocks;
1386
1387/* List of string_block structures, and how many there are. */
1388
1389static struct string_block *string_blocks;
1390static int n_string_blocks;
1391
1392/* Free-list of Lisp_Strings. */
1393
1394static struct Lisp_String *string_free_list;
1395
1396/* Number of live and free Lisp_Strings. */
1397
1398static int total_strings, total_free_strings;
1399
1400/* Number of bytes used by live strings. */
1401
1402static int total_string_size;
1403
1404/* Given a pointer to a Lisp_String S which is on the free-list
1405 string_free_list, return a pointer to its successor in the
1406 free-list. */
1407
1408#define NEXT_FREE_LISP_STRING(S) (*(struct Lisp_String **) (S))
1409
1410/* Return a pointer to the sdata structure belonging to Lisp string S.
1411 S must be live, i.e. S->data must not be null. S->data is actually
1412 a pointer to the `u.data' member of its sdata structure; the
1413 structure starts at a constant offset in front of that. */
1414
1415#ifdef GC_CHECK_STRING_BYTES
1416
1417#define SDATA_OF_STRING(S) \
1418 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *) \
1419 - sizeof (EMACS_INT)))
1420
1421#else /* not GC_CHECK_STRING_BYTES */
1422
1423#define SDATA_OF_STRING(S) \
1424 ((struct sdata *) ((S)->data - sizeof (struct Lisp_String *)))
1425
1426#endif /* not GC_CHECK_STRING_BYTES */
1427
1428/* Value is the size of an sdata structure large enough to hold NBYTES
1429 bytes of string data. The value returned includes a terminating
1430 NUL byte, the size of the sdata structure, and padding. */
1431
1432#ifdef GC_CHECK_STRING_BYTES
1433
1434#define SDATA_SIZE(NBYTES) \
1435 ((sizeof (struct Lisp_String *) \
1436 + (NBYTES) + 1 \
1437 + sizeof (EMACS_INT) \
1438 + sizeof (EMACS_INT) - 1) \
1439 & ~(sizeof (EMACS_INT) - 1))
1440
1441#else /* not GC_CHECK_STRING_BYTES */
1442
1443#define SDATA_SIZE(NBYTES) \
1444 ((sizeof (struct Lisp_String *) \
1445 + (NBYTES) + 1 \
1446 + sizeof (EMACS_INT) - 1) \
1447 & ~(sizeof (EMACS_INT) - 1))
1448
1449#endif /* not GC_CHECK_STRING_BYTES */
1450
1451/* Initialize string allocation. Called from init_alloc_once. */
1452
1453void
1454init_strings ()
1455{
1456 total_strings = total_free_strings = total_string_size = 0;
1457 oldest_sblock = current_sblock = large_sblocks = NULL;
1458 string_blocks = NULL;
1459 n_string_blocks = 0;
1460 string_free_list = NULL;
1461}
1462
1463
1464#ifdef GC_CHECK_STRING_BYTES
1465
1466static int check_string_bytes_count;
1467
1468void check_string_bytes P_ ((int));
1469void check_sblock P_ ((struct sblock *));
1470
1471#define CHECK_STRING_BYTES(S) STRING_BYTES (S)
1472
1473
1474/* Like GC_STRING_BYTES, but with debugging check. */
1475
1476int
1477string_bytes (s)
1478 struct Lisp_String *s;
1479{
1480 int nbytes = (s->size_byte < 0 ? s->size & ~ARRAY_MARK_FLAG : s->size_byte);
1481 if (!PURE_POINTER_P (s)
1482 && s->data
1483 && nbytes != SDATA_NBYTES (SDATA_OF_STRING (s)))
1484 abort ();
1485 return nbytes;
1486}
1487
1488/* Check validity of Lisp strings' string_bytes member in B. */
1489
1490void
1491check_sblock (b)
1492 struct sblock *b;
1493{
1494 struct sdata *from, *end, *from_end;
1495
1496 end = b->next_free;
1497
1498 for (from = &b->first_data; from < end; from = from_end)
1499 {
1500 /* Compute the next FROM here because copying below may
1501 overwrite data we need to compute it. */
1502 int nbytes;
1503
1504 /* Check that the string size recorded in the string is the
1505 same as the one recorded in the sdata structure. */
1506 if (from->string)
1507 CHECK_STRING_BYTES (from->string);
1508
1509 if (from->string)
1510 nbytes = GC_STRING_BYTES (from->string);
1511 else
1512 nbytes = SDATA_NBYTES (from);
1513
1514 nbytes = SDATA_SIZE (nbytes);
1515 from_end = (struct sdata *) ((char *) from + nbytes);
1516 }
1517}
1518
1519
1520/* Check validity of Lisp strings' string_bytes member. ALL_P
1521 non-zero means check all strings, otherwise check only most
1522 recently allocated strings. Used for hunting a bug. */
1523
1524void
1525check_string_bytes (all_p)
1526 int all_p;
1527{
1528 if (all_p)
1529 {
1530 struct sblock *b;
1531
1532 for (b = large_sblocks; b; b = b->next)
1533 {
1534 struct Lisp_String *s = b->first_data.string;
1535 if (s)
1536 CHECK_STRING_BYTES (s);
1537 }
1538
1539 for (b = oldest_sblock; b; b = b->next)
1540 check_sblock (b);
1541 }
1542 else
1543 check_sblock (current_sblock);
1544}
1545
1546#endif /* GC_CHECK_STRING_BYTES */
1547
1548
1549/* Return a new Lisp_String. */
1550
1551static struct Lisp_String *
1552allocate_string ()
1553{
1554 struct Lisp_String *s;
1555
1556 /* If the free-list is empty, allocate a new string_block, and
1557 add all the Lisp_Strings in it to the free-list. */
1558 if (string_free_list == NULL)
1559 {
1560 struct string_block *b;
1561 int i;
1562
1563 b = (struct string_block *) lisp_malloc (sizeof *b, MEM_TYPE_STRING);
1564 bzero (b, sizeof *b);
1565 b->next = string_blocks;
1566 string_blocks = b;
1567 ++n_string_blocks;
1568
1569 for (i = STRING_BLOCK_SIZE - 1; i >= 0; --i)
1570 {
1571 s = b->strings + i;
1572 NEXT_FREE_LISP_STRING (s) = string_free_list;
1573 string_free_list = s;
1574 }
1575
1576 total_free_strings += STRING_BLOCK_SIZE;
1577 }
1578
1579 /* Pop a Lisp_String off the free-list. */
1580 s = string_free_list;
1581 string_free_list = NEXT_FREE_LISP_STRING (s);
1582
1583 /* Probably not strictly necessary, but play it safe. */
1584 bzero (s, sizeof *s);
1585
1586 --total_free_strings;
1587 ++total_strings;
1588 ++strings_consed;
1589 consing_since_gc += sizeof *s;
1590
1591#ifdef GC_CHECK_STRING_BYTES
1592 if (!noninteractive
1593#ifdef MAC_OS8
1594 && current_sblock
1595#endif
1596 )
1597 {
1598 if (++check_string_bytes_count == 200)
1599 {
1600 check_string_bytes_count = 0;
1601 check_string_bytes (1);
1602 }
1603 else
1604 check_string_bytes (0);
1605 }
1606#endif /* GC_CHECK_STRING_BYTES */
1607
1608 return s;
1609}
1610
1611
1612/* Set up Lisp_String S for holding NCHARS characters, NBYTES bytes,
1613 plus a NUL byte at the end. Allocate an sdata structure for S, and
1614 set S->data to its `u.data' member. Store a NUL byte at the end of
1615 S->data. Set S->size to NCHARS and S->size_byte to NBYTES. Free
1616 S->data if it was initially non-null. */
1617
1618void
1619allocate_string_data (s, nchars, nbytes)
1620 struct Lisp_String *s;
1621 int nchars, nbytes;
1622{
1623 struct sdata *data, *old_data;
1624 struct sblock *b;
1625 int needed, old_nbytes;
1626
1627 /* Determine the number of bytes needed to store NBYTES bytes
1628 of string data. */
1629 needed = SDATA_SIZE (nbytes);
1630
1631 if (nbytes > LARGE_STRING_BYTES)
1632 {
1633 size_t size = sizeof *b - sizeof (struct sdata) + needed;
1634
1635#ifdef DOUG_LEA_MALLOC
1636 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
1637 because mapped region contents are not preserved in
1638 a dumped Emacs.
1639
1640 In case you think of allowing it in a dumped Emacs at the
1641 cost of not being able to re-dump, there's another reason:
1642 mmap'ed data typically have an address towards the top of the
1643 address space, which won't fit into an EMACS_INT (at least on
1644 32-bit systems with the current tagging scheme). --fx */
1645 mallopt (M_MMAP_MAX, 0);
1646#endif
1647
1648 b = (struct sblock *) lisp_malloc (size, MEM_TYPE_NON_LISP);
1649
1650#ifdef DOUG_LEA_MALLOC
1651 /* Back to a reasonable maximum of mmap'ed areas. */
1652 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
1653#endif
1654
1655 b->next_free = &b->first_data;
1656 b->first_data.string = NULL;
1657 b->next = large_sblocks;
1658 large_sblocks = b;
1659 }
1660 else if (current_sblock == NULL
1661 || (((char *) current_sblock + SBLOCK_SIZE
1662 - (char *) current_sblock->next_free)
1663 < needed))
1664 {
1665 /* Not enough room in the current sblock. */
1666 b = (struct sblock *) lisp_malloc (SBLOCK_SIZE, MEM_TYPE_NON_LISP);
1667 b->next_free = &b->first_data;
1668 b->first_data.string = NULL;
1669 b->next = NULL;
1670
1671 if (current_sblock)
1672 current_sblock->next = b;
1673 else
1674 oldest_sblock = b;
1675 current_sblock = b;
1676 }
1677 else
1678 b = current_sblock;
1679
1680 old_data = s->data ? SDATA_OF_STRING (s) : NULL;
1681 old_nbytes = GC_STRING_BYTES (s);
1682
1683 data = b->next_free;
1684 data->string = s;
1685 s->data = SDATA_DATA (data);
1686#ifdef GC_CHECK_STRING_BYTES
1687 SDATA_NBYTES (data) = nbytes;
1688#endif
1689 s->size = nchars;
1690 s->size_byte = nbytes;
1691 s->data[nbytes] = '\0';
1692 b->next_free = (struct sdata *) ((char *) data + needed);
1693
1694 /* If S had already data assigned, mark that as free by setting its
1695 string back-pointer to null, and recording the size of the data
1696 in it. */
1697 if (old_data)
1698 {
1699 SDATA_NBYTES (old_data) = old_nbytes;
1700 old_data->string = NULL;
1701 }
1702
1703 consing_since_gc += needed;
1704}
1705
1706
1707/* Sweep and compact strings. */
1708
1709static void
1710sweep_strings ()
1711{
1712 struct string_block *b, *next;
1713 struct string_block *live_blocks = NULL;
1714
1715 string_free_list = NULL;
1716 total_strings = total_free_strings = 0;
1717 total_string_size = 0;
1718
1719 /* Scan strings_blocks, free Lisp_Strings that aren't marked. */
1720 for (b = string_blocks; b; b = next)
1721 {
1722 int i, nfree = 0;
1723 struct Lisp_String *free_list_before = string_free_list;
1724
1725 next = b->next;
1726
1727 for (i = 0; i < STRING_BLOCK_SIZE; ++i)
1728 {
1729 struct Lisp_String *s = b->strings + i;
1730
1731 if (s->data)
1732 {
1733 /* String was not on free-list before. */
1734 if (STRING_MARKED_P (s))
1735 {
1736 /* String is live; unmark it and its intervals. */
1737 UNMARK_STRING (s);
1738
1739 if (!NULL_INTERVAL_P (s->intervals))
1740 UNMARK_BALANCE_INTERVALS (s->intervals);
1741
1742 ++total_strings;
1743 total_string_size += STRING_BYTES (s);
1744 }
1745 else
1746 {
1747 /* String is dead. Put it on the free-list. */
1748 struct sdata *data = SDATA_OF_STRING (s);
1749
1750 /* Save the size of S in its sdata so that we know
1751 how large that is. Reset the sdata's string
1752 back-pointer so that we know it's free. */
1753#ifdef GC_CHECK_STRING_BYTES
1754 if (GC_STRING_BYTES (s) != SDATA_NBYTES (data))
1755 abort ();
1756#else
1757 data->u.nbytes = GC_STRING_BYTES (s);
1758#endif
1759 data->string = NULL;
1760
1761 /* Reset the strings's `data' member so that we
1762 know it's free. */
1763 s->data = NULL;
1764
1765 /* Put the string on the free-list. */
1766 NEXT_FREE_LISP_STRING (s) = string_free_list;
1767 string_free_list = s;
1768 ++nfree;
1769 }
1770 }
1771 else
1772 {
1773 /* S was on the free-list before. Put it there again. */
1774 NEXT_FREE_LISP_STRING (s) = string_free_list;
1775 string_free_list = s;
1776 ++nfree;
1777 }
1778 }
1779
1780 /* Free blocks that contain free Lisp_Strings only, except
1781 the first two of them. */
1782 if (nfree == STRING_BLOCK_SIZE
1783 && total_free_strings > STRING_BLOCK_SIZE)
1784 {
1785 lisp_free (b);
1786 --n_string_blocks;
1787 string_free_list = free_list_before;
1788 }
1789 else
1790 {
1791 total_free_strings += nfree;
1792 b->next = live_blocks;
1793 live_blocks = b;
1794 }
1795 }
1796
1797 string_blocks = live_blocks;
1798 free_large_strings ();
1799 compact_small_strings ();
1800}
1801
1802
1803/* Free dead large strings. */
1804
1805static void
1806free_large_strings ()
1807{
1808 struct sblock *b, *next;
1809 struct sblock *live_blocks = NULL;
1810
1811 for (b = large_sblocks; b; b = next)
1812 {
1813 next = b->next;
1814
1815 if (b->first_data.string == NULL)
1816 lisp_free (b);
1817 else
1818 {
1819 b->next = live_blocks;
1820 live_blocks = b;
1821 }
1822 }
1823
1824 large_sblocks = live_blocks;
1825}
1826
1827
1828/* Compact data of small strings. Free sblocks that don't contain
1829 data of live strings after compaction. */
1830
1831static void
1832compact_small_strings ()
1833{
1834 struct sblock *b, *tb, *next;
1835 struct sdata *from, *to, *end, *tb_end;
1836 struct sdata *to_end, *from_end;
1837
1838 /* TB is the sblock we copy to, TO is the sdata within TB we copy
1839 to, and TB_END is the end of TB. */
1840 tb = oldest_sblock;
1841 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1842 to = &tb->first_data;
1843
1844 /* Step through the blocks from the oldest to the youngest. We
1845 expect that old blocks will stabilize over time, so that less
1846 copying will happen this way. */
1847 for (b = oldest_sblock; b; b = b->next)
1848 {
1849 end = b->next_free;
1850 xassert ((char *) end <= (char *) b + SBLOCK_SIZE);
1851
1852 for (from = &b->first_data; from < end; from = from_end)
1853 {
1854 /* Compute the next FROM here because copying below may
1855 overwrite data we need to compute it. */
1856 int nbytes;
1857
1858#ifdef GC_CHECK_STRING_BYTES
1859 /* Check that the string size recorded in the string is the
1860 same as the one recorded in the sdata structure. */
1861 if (from->string
1862 && GC_STRING_BYTES (from->string) != SDATA_NBYTES (from))
1863 abort ();
1864#endif /* GC_CHECK_STRING_BYTES */
1865
1866 if (from->string)
1867 nbytes = GC_STRING_BYTES (from->string);
1868 else
1869 nbytes = SDATA_NBYTES (from);
1870
1871 nbytes = SDATA_SIZE (nbytes);
1872 from_end = (struct sdata *) ((char *) from + nbytes);
1873
1874 /* FROM->string non-null means it's alive. Copy its data. */
1875 if (from->string)
1876 {
1877 /* If TB is full, proceed with the next sblock. */
1878 to_end = (struct sdata *) ((char *) to + nbytes);
1879 if (to_end > tb_end)
1880 {
1881 tb->next_free = to;
1882 tb = tb->next;
1883 tb_end = (struct sdata *) ((char *) tb + SBLOCK_SIZE);
1884 to = &tb->first_data;
1885 to_end = (struct sdata *) ((char *) to + nbytes);
1886 }
1887
1888 /* Copy, and update the string's `data' pointer. */
1889 if (from != to)
1890 {
1891 xassert (tb != b || to <= from);
1892 safe_bcopy ((char *) from, (char *) to, nbytes);
1893 to->string->data = SDATA_DATA (to);
1894 }
1895
1896 /* Advance past the sdata we copied to. */
1897 to = to_end;
1898 }
1899 }
1900 }
1901
1902 /* The rest of the sblocks following TB don't contain live data, so
1903 we can free them. */
1904 for (b = tb->next; b; b = next)
1905 {
1906 next = b->next;
1907 lisp_free (b);
1908 }
1909
1910 tb->next_free = to;
1911 tb->next = NULL;
1912 current_sblock = tb;
1913}
1914
1915
1916DEFUN ("make-string", Fmake_string, Smake_string, 2, 2, 0,
1917 doc: /* Return a newly created string of length LENGTH, with INIT in each element.
1918LENGTH must be an integer.
1919INIT must be an integer that represents a character. */)
1920 (length, init)
1921 Lisp_Object length, init;
1922{
1923 register Lisp_Object val;
1924 register unsigned char *p, *end;
1925 int c, nbytes;
1926
1927 CHECK_NATNUM (length);
1928 CHECK_NUMBER (init);
1929
1930 c = XINT (init);
1931 if (SINGLE_BYTE_CHAR_P (c))
1932 {
1933 nbytes = XINT (length);
1934 val = make_uninit_string (nbytes);
1935 p = SDATA (val);
1936 end = p + SCHARS (val);
1937 while (p != end)
1938 *p++ = c;
1939 }
1940 else
1941 {
1942 unsigned char str[MAX_MULTIBYTE_LENGTH];
1943 int len = CHAR_STRING (c, str);
1944
1945 nbytes = len * XINT (length);
1946 val = make_uninit_multibyte_string (XINT (length), nbytes);
1947 p = SDATA (val);
1948 end = p + nbytes;
1949 while (p != end)
1950 {
1951 bcopy (str, p, len);
1952 p += len;
1953 }
1954 }
1955
1956 *p = 0;
1957 return val;
1958}
1959
1960
1961DEFUN ("make-bool-vector", Fmake_bool_vector, Smake_bool_vector, 2, 2, 0,
1962 doc: /* Return a new bool-vector of length LENGTH, using INIT for as each element.
1963LENGTH must be a number. INIT matters only in whether it is t or nil. */)
1964 (length, init)
1965 Lisp_Object length, init;
1966{
1967 register Lisp_Object val;
1968 struct Lisp_Bool_Vector *p;
1969 int real_init, i;
1970 int length_in_chars, length_in_elts, bits_per_value;
1971
1972 CHECK_NATNUM (length);
1973
1974 bits_per_value = sizeof (EMACS_INT) * BOOL_VECTOR_BITS_PER_CHAR;
1975
1976 length_in_elts = (XFASTINT (length) + bits_per_value - 1) / bits_per_value;
1977 length_in_chars = ((XFASTINT (length) + BOOL_VECTOR_BITS_PER_CHAR - 1)
1978 / BOOL_VECTOR_BITS_PER_CHAR);
1979
1980 /* We must allocate one more elements than LENGTH_IN_ELTS for the
1981 slot `size' of the struct Lisp_Bool_Vector. */
1982 val = Fmake_vector (make_number (length_in_elts + 1), Qnil);
1983 p = XBOOL_VECTOR (val);
1984
1985 /* Get rid of any bits that would cause confusion. */
1986 p->vector_size = 0;
1987 XSETBOOL_VECTOR (val, p);
1988 p->size = XFASTINT (length);
1989
1990 real_init = (NILP (init) ? 0 : -1);
1991 for (i = 0; i < length_in_chars ; i++)
1992 p->data[i] = real_init;
1993
1994 /* Clear the extraneous bits in the last byte. */
1995 if (XINT (length) != length_in_chars * BOOL_VECTOR_BITS_PER_CHAR)
1996 XBOOL_VECTOR (val)->data[length_in_chars - 1]
1997 &= (1 << (XINT (length) % BOOL_VECTOR_BITS_PER_CHAR)) - 1;
1998
1999 return val;
2000}
2001
2002
2003/* Make a string from NBYTES bytes at CONTENTS, and compute the number
2004 of characters from the contents. This string may be unibyte or
2005 multibyte, depending on the contents. */
2006
2007Lisp_Object
2008make_string (contents, nbytes)
2009 const char *contents;
2010 int nbytes;
2011{
2012 register Lisp_Object val;
2013 int nchars, multibyte_nbytes;
2014
2015 parse_str_as_multibyte (contents, nbytes, &nchars, &multibyte_nbytes);
2016 if (nbytes == nchars || nbytes != multibyte_nbytes)
2017 /* CONTENTS contains no multibyte sequences or contains an invalid
2018 multibyte sequence. We must make unibyte string. */
2019 val = make_unibyte_string (contents, nbytes);
2020 else
2021 val = make_multibyte_string (contents, nchars, nbytes);
2022 return val;
2023}
2024
2025
2026/* Make an unibyte string from LENGTH bytes at CONTENTS. */
2027
2028Lisp_Object
2029make_unibyte_string (contents, length)
2030 const char *contents;
2031 int length;
2032{
2033 register Lisp_Object val;
2034 val = make_uninit_string (length);
2035 bcopy (contents, SDATA (val), length);
2036 STRING_SET_UNIBYTE (val);
2037 return val;
2038}
2039
2040
2041/* Make a multibyte string from NCHARS characters occupying NBYTES
2042 bytes at CONTENTS. */
2043
2044Lisp_Object
2045make_multibyte_string (contents, nchars, nbytes)
2046 const char *contents;
2047 int nchars, nbytes;
2048{
2049 register Lisp_Object val;
2050 val = make_uninit_multibyte_string (nchars, nbytes);
2051 bcopy (contents, SDATA (val), nbytes);
2052 return val;
2053}
2054
2055
2056/* Make a string from NCHARS characters occupying NBYTES bytes at
2057 CONTENTS. It is a multibyte string if NBYTES != NCHARS. */
2058
2059Lisp_Object
2060make_string_from_bytes (contents, nchars, nbytes)
2061 const char *contents;
2062 int nchars, nbytes;
2063{
2064 register Lisp_Object val;
2065 val = make_uninit_multibyte_string (nchars, nbytes);
2066 bcopy (contents, SDATA (val), nbytes);
2067 if (SBYTES (val) == SCHARS (val))
2068 STRING_SET_UNIBYTE (val);
2069 return val;
2070}
2071
2072
2073/* Make a string from NCHARS characters occupying NBYTES bytes at
2074 CONTENTS. The argument MULTIBYTE controls whether to label the
2075 string as multibyte. If NCHARS is negative, it counts the number of
2076 characters by itself. */
2077
2078Lisp_Object
2079make_specified_string (contents, nchars, nbytes, multibyte)
2080 const char *contents;
2081 int nchars, nbytes;
2082 int multibyte;
2083{
2084 register Lisp_Object val;
2085
2086 if (nchars < 0)
2087 {
2088 if (multibyte)
2089 nchars = multibyte_chars_in_text (contents, nbytes);
2090 else
2091 nchars = nbytes;
2092 }
2093 val = make_uninit_multibyte_string (nchars, nbytes);
2094 bcopy (contents, SDATA (val), nbytes);
2095 if (!multibyte)
2096 STRING_SET_UNIBYTE (val);
2097 return val;
2098}
2099
2100
2101/* Make a string from the data at STR, treating it as multibyte if the
2102 data warrants. */
2103
2104Lisp_Object
2105build_string (str)
2106 const char *str;
2107{
2108 return make_string (str, strlen (str));
2109}
2110
2111
2112/* Return an unibyte Lisp_String set up to hold LENGTH characters
2113 occupying LENGTH bytes. */
2114
2115Lisp_Object
2116make_uninit_string (length)
2117 int length;
2118{
2119 Lisp_Object val;
2120 val = make_uninit_multibyte_string (length, length);
2121 STRING_SET_UNIBYTE (val);
2122 return val;
2123}
2124
2125
2126/* Return a multibyte Lisp_String set up to hold NCHARS characters
2127 which occupy NBYTES bytes. */
2128
2129Lisp_Object
2130make_uninit_multibyte_string (nchars, nbytes)
2131 int nchars, nbytes;
2132{
2133 Lisp_Object string;
2134 struct Lisp_String *s;
2135
2136 if (nchars < 0)
2137 abort ();
2138
2139 s = allocate_string ();
2140 allocate_string_data (s, nchars, nbytes);
2141 XSETSTRING (string, s);
2142 string_chars_consed += nbytes;
2143 return string;
2144}
2145
2146
2147\f
2148/***********************************************************************
2149 Float Allocation
2150 ***********************************************************************/
2151
2152/* We store float cells inside of float_blocks, allocating a new
2153 float_block with malloc whenever necessary. Float cells reclaimed
2154 by GC are put on a free list to be reallocated before allocating
2155 any new float cells from the latest float_block. */
2156
2157#define FLOAT_BLOCK_SIZE \
2158 (((BLOCK_BYTES - sizeof (struct float_block *) \
2159 /* The compiler might add padding at the end. */ \
2160 - (sizeof (struct Lisp_Float) - sizeof (int))) * CHAR_BIT) \
2161 / (sizeof (struct Lisp_Float) * CHAR_BIT + 1))
2162
2163#define GETMARKBIT(block,n) \
2164 (((block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2165 >> ((n) % (sizeof(int) * CHAR_BIT))) \
2166 & 1)
2167
2168#define SETMARKBIT(block,n) \
2169 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2170 |= 1 << ((n) % (sizeof(int) * CHAR_BIT))
2171
2172#define UNSETMARKBIT(block,n) \
2173 (block)->gcmarkbits[(n) / (sizeof(int) * CHAR_BIT)] \
2174 &= ~(1 << ((n) % (sizeof(int) * CHAR_BIT)))
2175
2176#define FLOAT_BLOCK(fptr) \
2177 ((struct float_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2178
2179#define FLOAT_INDEX(fptr) \
2180 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Float))
2181
2182struct float_block
2183{
2184 /* Place `floats' at the beginning, to ease up FLOAT_INDEX's job. */
2185 struct Lisp_Float floats[FLOAT_BLOCK_SIZE];
2186 int gcmarkbits[1 + FLOAT_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2187 struct float_block *next;
2188};
2189
2190#define FLOAT_MARKED_P(fptr) \
2191 GETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2192
2193#define FLOAT_MARK(fptr) \
2194 SETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2195
2196#define FLOAT_UNMARK(fptr) \
2197 UNSETMARKBIT (FLOAT_BLOCK (fptr), FLOAT_INDEX ((fptr)))
2198
2199/* Current float_block. */
2200
2201struct float_block *float_block;
2202
2203/* Index of first unused Lisp_Float in the current float_block. */
2204
2205int float_block_index;
2206
2207/* Total number of float blocks now in use. */
2208
2209int n_float_blocks;
2210
2211/* Free-list of Lisp_Floats. */
2212
2213struct Lisp_Float *float_free_list;
2214
2215
2216/* Initialize float allocation. */
2217
2218void
2219init_float ()
2220{
2221 float_block = NULL;
2222 float_block_index = FLOAT_BLOCK_SIZE; /* Force alloc of new float_block. */
2223 float_free_list = 0;
2224 n_float_blocks = 0;
2225}
2226
2227
2228/* Explicitly free a float cell by putting it on the free-list. */
2229
2230void
2231free_float (ptr)
2232 struct Lisp_Float *ptr;
2233{
2234 *(struct Lisp_Float **)&ptr->data = float_free_list;
2235 float_free_list = ptr;
2236}
2237
2238
2239/* Return a new float object with value FLOAT_VALUE. */
2240
2241Lisp_Object
2242make_float (float_value)
2243 double float_value;
2244{
2245 register Lisp_Object val;
2246
2247 if (float_free_list)
2248 {
2249 /* We use the data field for chaining the free list
2250 so that we won't use the same field that has the mark bit. */
2251 XSETFLOAT (val, float_free_list);
2252 float_free_list = *(struct Lisp_Float **)&float_free_list->data;
2253 }
2254 else
2255 {
2256 if (float_block_index == FLOAT_BLOCK_SIZE)
2257 {
2258 register struct float_block *new;
2259
2260 new = (struct float_block *) lisp_align_malloc (sizeof *new,
2261 MEM_TYPE_FLOAT);
2262 new->next = float_block;
2263 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2264 float_block = new;
2265 float_block_index = 0;
2266 n_float_blocks++;
2267 }
2268 XSETFLOAT (val, &float_block->floats[float_block_index]);
2269 float_block_index++;
2270 }
2271
2272 XFLOAT_DATA (val) = float_value;
2273 eassert (!FLOAT_MARKED_P (XFLOAT (val)));
2274 consing_since_gc += sizeof (struct Lisp_Float);
2275 floats_consed++;
2276 return val;
2277}
2278
2279
2280\f
2281/***********************************************************************
2282 Cons Allocation
2283 ***********************************************************************/
2284
2285/* We store cons cells inside of cons_blocks, allocating a new
2286 cons_block with malloc whenever necessary. Cons cells reclaimed by
2287 GC are put on a free list to be reallocated before allocating
2288 any new cons cells from the latest cons_block. */
2289
2290#define CONS_BLOCK_SIZE \
2291 (((BLOCK_BYTES - sizeof (struct cons_block *)) * CHAR_BIT) \
2292 / (sizeof (struct Lisp_Cons) * CHAR_BIT + 1))
2293
2294#define CONS_BLOCK(fptr) \
2295 ((struct cons_block *)(((EMACS_UINT)(fptr)) & ~(BLOCK_ALIGN - 1)))
2296
2297#define CONS_INDEX(fptr) \
2298 ((((EMACS_UINT)(fptr)) & (BLOCK_ALIGN - 1)) / sizeof (struct Lisp_Cons))
2299
2300struct cons_block
2301{
2302 /* Place `conses' at the beginning, to ease up CONS_INDEX's job. */
2303 struct Lisp_Cons conses[CONS_BLOCK_SIZE];
2304 int gcmarkbits[1 + CONS_BLOCK_SIZE / (sizeof(int) * CHAR_BIT)];
2305 struct cons_block *next;
2306};
2307
2308#define CONS_MARKED_P(fptr) \
2309 GETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2310
2311#define CONS_MARK(fptr) \
2312 SETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2313
2314#define CONS_UNMARK(fptr) \
2315 UNSETMARKBIT (CONS_BLOCK (fptr), CONS_INDEX ((fptr)))
2316
2317/* Current cons_block. */
2318
2319struct cons_block *cons_block;
2320
2321/* Index of first unused Lisp_Cons in the current block. */
2322
2323int cons_block_index;
2324
2325/* Free-list of Lisp_Cons structures. */
2326
2327struct Lisp_Cons *cons_free_list;
2328
2329/* Total number of cons blocks now in use. */
2330
2331int n_cons_blocks;
2332
2333
2334/* Initialize cons allocation. */
2335
2336void
2337init_cons ()
2338{
2339 cons_block = NULL;
2340 cons_block_index = CONS_BLOCK_SIZE; /* Force alloc of new cons_block. */
2341 cons_free_list = 0;
2342 n_cons_blocks = 0;
2343}
2344
2345
2346/* Explicitly free a cons cell by putting it on the free-list. */
2347
2348void
2349free_cons (ptr)
2350 struct Lisp_Cons *ptr;
2351{
2352 *(struct Lisp_Cons **)&ptr->cdr = cons_free_list;
2353#if GC_MARK_STACK
2354 ptr->car = Vdead;
2355#endif
2356 cons_free_list = ptr;
2357}
2358
2359DEFUN ("cons", Fcons, Scons, 2, 2, 0,
2360 doc: /* Create a new cons, give it CAR and CDR as components, and return it. */)
2361 (car, cdr)
2362 Lisp_Object car, cdr;
2363{
2364 register Lisp_Object val;
2365
2366 if (cons_free_list)
2367 {
2368 /* We use the cdr for chaining the free list
2369 so that we won't use the same field that has the mark bit. */
2370 XSETCONS (val, cons_free_list);
2371 cons_free_list = *(struct Lisp_Cons **)&cons_free_list->cdr;
2372 }
2373 else
2374 {
2375 if (cons_block_index == CONS_BLOCK_SIZE)
2376 {
2377 register struct cons_block *new;
2378 new = (struct cons_block *) lisp_align_malloc (sizeof *new,
2379 MEM_TYPE_CONS);
2380 bzero ((char *) new->gcmarkbits, sizeof new->gcmarkbits);
2381 new->next = cons_block;
2382 cons_block = new;
2383 cons_block_index = 0;
2384 n_cons_blocks++;
2385 }
2386 XSETCONS (val, &cons_block->conses[cons_block_index]);
2387 cons_block_index++;
2388 }
2389
2390 XSETCAR (val, car);
2391 XSETCDR (val, cdr);
2392 eassert (!CONS_MARKED_P (XCONS (val)));
2393 consing_since_gc += sizeof (struct Lisp_Cons);
2394 cons_cells_consed++;
2395 return val;
2396}
2397
2398
2399/* Make a list of 2, 3, 4 or 5 specified objects. */
2400
2401Lisp_Object
2402list2 (arg1, arg2)
2403 Lisp_Object arg1, arg2;
2404{
2405 return Fcons (arg1, Fcons (arg2, Qnil));
2406}
2407
2408
2409Lisp_Object
2410list3 (arg1, arg2, arg3)
2411 Lisp_Object arg1, arg2, arg3;
2412{
2413 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Qnil)));
2414}
2415
2416
2417Lisp_Object
2418list4 (arg1, arg2, arg3, arg4)
2419 Lisp_Object arg1, arg2, arg3, arg4;
2420{
2421 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4, Qnil))));
2422}
2423
2424
2425Lisp_Object
2426list5 (arg1, arg2, arg3, arg4, arg5)
2427 Lisp_Object arg1, arg2, arg3, arg4, arg5;
2428{
2429 return Fcons (arg1, Fcons (arg2, Fcons (arg3, Fcons (arg4,
2430 Fcons (arg5, Qnil)))));
2431}
2432
2433
2434DEFUN ("list", Flist, Slist, 0, MANY, 0,
2435 doc: /* Return a newly created list with specified arguments as elements.
2436Any number of arguments, even zero arguments, are allowed.
2437usage: (list &rest OBJECTS) */)
2438 (nargs, args)
2439 int nargs;
2440 register Lisp_Object *args;
2441{
2442 register Lisp_Object val;
2443 val = Qnil;
2444
2445 while (nargs > 0)
2446 {
2447 nargs--;
2448 val = Fcons (args[nargs], val);
2449 }
2450 return val;
2451}
2452
2453
2454DEFUN ("make-list", Fmake_list, Smake_list, 2, 2, 0,
2455 doc: /* Return a newly created list of length LENGTH, with each element being INIT. */)
2456 (length, init)
2457 register Lisp_Object length, init;
2458{
2459 register Lisp_Object val;
2460 register int size;
2461
2462 CHECK_NATNUM (length);
2463 size = XFASTINT (length);
2464
2465 val = Qnil;
2466 while (size > 0)
2467 {
2468 val = Fcons (init, val);
2469 --size;
2470
2471 if (size > 0)
2472 {
2473 val = Fcons (init, val);
2474 --size;
2475
2476 if (size > 0)
2477 {
2478 val = Fcons (init, val);
2479 --size;
2480
2481 if (size > 0)
2482 {
2483 val = Fcons (init, val);
2484 --size;
2485
2486 if (size > 0)
2487 {
2488 val = Fcons (init, val);
2489 --size;
2490 }
2491 }
2492 }
2493 }
2494
2495 QUIT;
2496 }
2497
2498 return val;
2499}
2500
2501
2502\f
2503/***********************************************************************
2504 Vector Allocation
2505 ***********************************************************************/
2506
2507/* Singly-linked list of all vectors. */
2508
2509struct Lisp_Vector *all_vectors;
2510
2511/* Total number of vector-like objects now in use. */
2512
2513int n_vectors;
2514
2515
2516/* Value is a pointer to a newly allocated Lisp_Vector structure
2517 with room for LEN Lisp_Objects. */
2518
2519static struct Lisp_Vector *
2520allocate_vectorlike (len, type)
2521 EMACS_INT len;
2522 enum mem_type type;
2523{
2524 struct Lisp_Vector *p;
2525 size_t nbytes;
2526
2527#ifdef DOUG_LEA_MALLOC
2528 /* Prevent mmap'ing the chunk. Lisp data may not be mmap'ed
2529 because mapped region contents are not preserved in
2530 a dumped Emacs. */
2531 BLOCK_INPUT;
2532 mallopt (M_MMAP_MAX, 0);
2533 UNBLOCK_INPUT;
2534#endif
2535
2536 nbytes = sizeof *p + (len - 1) * sizeof p->contents[0];
2537 p = (struct Lisp_Vector *) lisp_malloc (nbytes, type);
2538
2539#ifdef DOUG_LEA_MALLOC
2540 /* Back to a reasonable maximum of mmap'ed areas. */
2541 BLOCK_INPUT;
2542 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS);
2543 UNBLOCK_INPUT;
2544#endif
2545
2546 consing_since_gc += nbytes;
2547 vector_cells_consed += len;
2548
2549 p->next = all_vectors;
2550 all_vectors = p;
2551 ++n_vectors;
2552 return p;
2553}
2554
2555
2556/* Allocate a vector with NSLOTS slots. */
2557
2558struct Lisp_Vector *
2559allocate_vector (nslots)
2560 EMACS_INT nslots;
2561{
2562 struct Lisp_Vector *v = allocate_vectorlike (nslots, MEM_TYPE_VECTOR);
2563 v->size = nslots;
2564 return v;
2565}
2566
2567
2568/* Allocate other vector-like structures. */
2569
2570struct Lisp_Hash_Table *
2571allocate_hash_table ()
2572{
2573 EMACS_INT len = VECSIZE (struct Lisp_Hash_Table);
2574 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_HASH_TABLE);
2575 EMACS_INT i;
2576
2577 v->size = len;
2578 for (i = 0; i < len; ++i)
2579 v->contents[i] = Qnil;
2580
2581 return (struct Lisp_Hash_Table *) v;
2582}
2583
2584
2585struct window *
2586allocate_window ()
2587{
2588 EMACS_INT len = VECSIZE (struct window);
2589 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_WINDOW);
2590 EMACS_INT i;
2591
2592 for (i = 0; i < len; ++i)
2593 v->contents[i] = Qnil;
2594 v->size = len;
2595
2596 return (struct window *) v;
2597}
2598
2599
2600struct frame *
2601allocate_frame ()
2602{
2603 EMACS_INT len = VECSIZE (struct frame);
2604 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_FRAME);
2605 EMACS_INT i;
2606
2607 for (i = 0; i < len; ++i)
2608 v->contents[i] = make_number (0);
2609 v->size = len;
2610 return (struct frame *) v;
2611}
2612
2613
2614struct Lisp_Process *
2615allocate_process ()
2616{
2617 EMACS_INT len = VECSIZE (struct Lisp_Process);
2618 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_PROCESS);
2619 EMACS_INT i;
2620
2621 for (i = 0; i < len; ++i)
2622 v->contents[i] = Qnil;
2623 v->size = len;
2624
2625 return (struct Lisp_Process *) v;
2626}
2627
2628
2629struct Lisp_Vector *
2630allocate_other_vector (len)
2631 EMACS_INT len;
2632{
2633 struct Lisp_Vector *v = allocate_vectorlike (len, MEM_TYPE_VECTOR);
2634 EMACS_INT i;
2635
2636 for (i = 0; i < len; ++i)
2637 v->contents[i] = Qnil;
2638 v->size = len;
2639
2640 return v;
2641}
2642
2643
2644DEFUN ("make-vector", Fmake_vector, Smake_vector, 2, 2, 0,
2645 doc: /* Return a newly created vector of length LENGTH, with each element being INIT.
2646See also the function `vector'. */)
2647 (length, init)
2648 register Lisp_Object length, init;
2649{
2650 Lisp_Object vector;
2651 register EMACS_INT sizei;
2652 register int index;
2653 register struct Lisp_Vector *p;
2654
2655 CHECK_NATNUM (length);
2656 sizei = XFASTINT (length);
2657
2658 p = allocate_vector (sizei);
2659 for (index = 0; index < sizei; index++)
2660 p->contents[index] = init;
2661
2662 XSETVECTOR (vector, p);
2663 return vector;
2664}
2665
2666
2667DEFUN ("make-char-table", Fmake_char_table, Smake_char_table, 1, 2, 0,
2668 doc: /* Return a newly created char-table, with purpose PURPOSE.
2669Each element is initialized to INIT, which defaults to nil.
2670PURPOSE should be a symbol which has a `char-table-extra-slots' property.
2671The property's value should be an integer between 0 and 10. */)
2672 (purpose, init)
2673 register Lisp_Object purpose, init;
2674{
2675 Lisp_Object vector;
2676 Lisp_Object n;
2677 CHECK_SYMBOL (purpose);
2678 n = Fget (purpose, Qchar_table_extra_slots);
2679 CHECK_NUMBER (n);
2680 if (XINT (n) < 0 || XINT (n) > 10)
2681 args_out_of_range (n, Qnil);
2682 /* Add 2 to the size for the defalt and parent slots. */
2683 vector = Fmake_vector (make_number (CHAR_TABLE_STANDARD_SLOTS + XINT (n)),
2684 init);
2685 XCHAR_TABLE (vector)->top = Qt;
2686 XCHAR_TABLE (vector)->parent = Qnil;
2687 XCHAR_TABLE (vector)->purpose = purpose;
2688 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2689 return vector;
2690}
2691
2692
2693/* Return a newly created sub char table with default value DEFALT.
2694 Since a sub char table does not appear as a top level Emacs Lisp
2695 object, we don't need a Lisp interface to make it. */
2696
2697Lisp_Object
2698make_sub_char_table (defalt)
2699 Lisp_Object defalt;
2700{
2701 Lisp_Object vector
2702 = Fmake_vector (make_number (SUB_CHAR_TABLE_STANDARD_SLOTS), Qnil);
2703 XCHAR_TABLE (vector)->top = Qnil;
2704 XCHAR_TABLE (vector)->defalt = defalt;
2705 XSETCHAR_TABLE (vector, XCHAR_TABLE (vector));
2706 return vector;
2707}
2708
2709
2710DEFUN ("vector", Fvector, Svector, 0, MANY, 0,
2711 doc: /* Return a newly created vector with specified arguments as elements.
2712Any number of arguments, even zero arguments, are allowed.
2713usage: (vector &rest OBJECTS) */)
2714 (nargs, args)
2715 register int nargs;
2716 Lisp_Object *args;
2717{
2718 register Lisp_Object len, val;
2719 register int index;
2720 register struct Lisp_Vector *p;
2721
2722 XSETFASTINT (len, nargs);
2723 val = Fmake_vector (len, Qnil);
2724 p = XVECTOR (val);
2725 for (index = 0; index < nargs; index++)
2726 p->contents[index] = args[index];
2727 return val;
2728}
2729
2730
2731DEFUN ("make-byte-code", Fmake_byte_code, Smake_byte_code, 4, MANY, 0,
2732 doc: /* Create a byte-code object with specified arguments as elements.
2733The arguments should be the arglist, bytecode-string, constant vector,
2734stack size, (optional) doc string, and (optional) interactive spec.
2735The first four arguments are required; at most six have any
2736significance.
2737usage: (make-byte-code ARGLIST BYTE-CODE CONSTANTS DEPTH &optional DOCSTRING INTERACTIVE-SPEC &rest ELEMENTS) */)
2738 (nargs, args)
2739 register int nargs;
2740 Lisp_Object *args;
2741{
2742 register Lisp_Object len, val;
2743 register int index;
2744 register struct Lisp_Vector *p;
2745
2746 XSETFASTINT (len, nargs);
2747 if (!NILP (Vpurify_flag))
2748 val = make_pure_vector ((EMACS_INT) nargs);
2749 else
2750 val = Fmake_vector (len, Qnil);
2751
2752 if (STRINGP (args[1]) && STRING_MULTIBYTE (args[1]))
2753 /* BYTECODE-STRING must have been produced by Emacs 20.2 or the
2754 earlier because they produced a raw 8-bit string for byte-code
2755 and now such a byte-code string is loaded as multibyte while
2756 raw 8-bit characters converted to multibyte form. Thus, now we
2757 must convert them back to the original unibyte form. */
2758 args[1] = Fstring_as_unibyte (args[1]);
2759
2760 p = XVECTOR (val);
2761 for (index = 0; index < nargs; index++)
2762 {
2763 if (!NILP (Vpurify_flag))
2764 args[index] = Fpurecopy (args[index]);
2765 p->contents[index] = args[index];
2766 }
2767 XSETCOMPILED (val, p);
2768 return val;
2769}
2770
2771
2772\f
2773/***********************************************************************
2774 Symbol Allocation
2775 ***********************************************************************/
2776
2777/* Each symbol_block is just under 1020 bytes long, since malloc
2778 really allocates in units of powers of two and uses 4 bytes for its
2779 own overhead. */
2780
2781#define SYMBOL_BLOCK_SIZE \
2782 ((1020 - sizeof (struct symbol_block *)) / sizeof (struct Lisp_Symbol))
2783
2784struct symbol_block
2785{
2786 /* Place `symbols' first, to preserve alignment. */
2787 struct Lisp_Symbol symbols[SYMBOL_BLOCK_SIZE];
2788 struct symbol_block *next;
2789};
2790
2791/* Current symbol block and index of first unused Lisp_Symbol
2792 structure in it. */
2793
2794struct symbol_block *symbol_block;
2795int symbol_block_index;
2796
2797/* List of free symbols. */
2798
2799struct Lisp_Symbol *symbol_free_list;
2800
2801/* Total number of symbol blocks now in use. */
2802
2803int n_symbol_blocks;
2804
2805
2806/* Initialize symbol allocation. */
2807
2808void
2809init_symbol ()
2810{
2811 symbol_block = NULL;
2812 symbol_block_index = SYMBOL_BLOCK_SIZE;
2813 symbol_free_list = 0;
2814 n_symbol_blocks = 0;
2815}
2816
2817
2818DEFUN ("make-symbol", Fmake_symbol, Smake_symbol, 1, 1, 0,
2819 doc: /* Return a newly allocated uninterned symbol whose name is NAME.
2820Its value and function definition are void, and its property list is nil. */)
2821 (name)
2822 Lisp_Object name;
2823{
2824 register Lisp_Object val;
2825 register struct Lisp_Symbol *p;
2826
2827 CHECK_STRING (name);
2828
2829 if (symbol_free_list)
2830 {
2831 XSETSYMBOL (val, symbol_free_list);
2832 symbol_free_list = *(struct Lisp_Symbol **)&symbol_free_list->value;
2833 }
2834 else
2835 {
2836 if (symbol_block_index == SYMBOL_BLOCK_SIZE)
2837 {
2838 struct symbol_block *new;
2839 new = (struct symbol_block *) lisp_malloc (sizeof *new,
2840 MEM_TYPE_SYMBOL);
2841 new->next = symbol_block;
2842 symbol_block = new;
2843 symbol_block_index = 0;
2844 n_symbol_blocks++;
2845 }
2846 XSETSYMBOL (val, &symbol_block->symbols[symbol_block_index]);
2847 symbol_block_index++;
2848 }
2849
2850 p = XSYMBOL (val);
2851 p->xname = name;
2852 p->plist = Qnil;
2853 p->value = Qunbound;
2854 p->function = Qunbound;
2855 p->next = NULL;
2856 p->gcmarkbit = 0;
2857 p->interned = SYMBOL_UNINTERNED;
2858 p->constant = 0;
2859 p->indirect_variable = 0;
2860 consing_since_gc += sizeof (struct Lisp_Symbol);
2861 symbols_consed++;
2862 return val;
2863}
2864
2865
2866\f
2867/***********************************************************************
2868 Marker (Misc) Allocation
2869 ***********************************************************************/
2870
2871/* Allocation of markers and other objects that share that structure.
2872 Works like allocation of conses. */
2873
2874#define MARKER_BLOCK_SIZE \
2875 ((1020 - sizeof (struct marker_block *)) / sizeof (union Lisp_Misc))
2876
2877struct marker_block
2878{
2879 /* Place `markers' first, to preserve alignment. */
2880 union Lisp_Misc markers[MARKER_BLOCK_SIZE];
2881 struct marker_block *next;
2882};
2883
2884struct marker_block *marker_block;
2885int marker_block_index;
2886
2887union Lisp_Misc *marker_free_list;
2888
2889/* Total number of marker blocks now in use. */
2890
2891int n_marker_blocks;
2892
2893void
2894init_marker ()
2895{
2896 marker_block = NULL;
2897 marker_block_index = MARKER_BLOCK_SIZE;
2898 marker_free_list = 0;
2899 n_marker_blocks = 0;
2900}
2901
2902/* Return a newly allocated Lisp_Misc object, with no substructure. */
2903
2904Lisp_Object
2905allocate_misc ()
2906{
2907 Lisp_Object val;
2908
2909 if (marker_free_list)
2910 {
2911 XSETMISC (val, marker_free_list);
2912 marker_free_list = marker_free_list->u_free.chain;
2913 }
2914 else
2915 {
2916 if (marker_block_index == MARKER_BLOCK_SIZE)
2917 {
2918 struct marker_block *new;
2919 new = (struct marker_block *) lisp_malloc (sizeof *new,
2920 MEM_TYPE_MISC);
2921 new->next = marker_block;
2922 marker_block = new;
2923 marker_block_index = 0;
2924 n_marker_blocks++;
2925 total_free_markers += MARKER_BLOCK_SIZE;
2926 }
2927 XSETMISC (val, &marker_block->markers[marker_block_index]);
2928 marker_block_index++;
2929 }
2930
2931 --total_free_markers;
2932 consing_since_gc += sizeof (union Lisp_Misc);
2933 misc_objects_consed++;
2934 XMARKER (val)->gcmarkbit = 0;
2935 return val;
2936}
2937
2938/* Free a Lisp_Misc object */
2939
2940void
2941free_misc (misc)
2942 Lisp_Object misc;
2943{
2944 XMISC (misc)->u_marker.type = Lisp_Misc_Free;
2945 XMISC (misc)->u_free.chain = marker_free_list;
2946 marker_free_list = XMISC (misc);
2947
2948 total_free_markers++;
2949}
2950
2951/* Return a Lisp_Misc_Save_Value object containing POINTER and
2952 INTEGER. This is used to package C values to call record_unwind_protect.
2953 The unwind function can get the C values back using XSAVE_VALUE. */
2954
2955Lisp_Object
2956make_save_value (pointer, integer)
2957 void *pointer;
2958 int integer;
2959{
2960 register Lisp_Object val;
2961 register struct Lisp_Save_Value *p;
2962
2963 val = allocate_misc ();
2964 XMISCTYPE (val) = Lisp_Misc_Save_Value;
2965 p = XSAVE_VALUE (val);
2966 p->pointer = pointer;
2967 p->integer = integer;
2968 p->dogc = 0;
2969 return val;
2970}
2971
2972DEFUN ("make-marker", Fmake_marker, Smake_marker, 0, 0, 0,
2973 doc: /* Return a newly allocated marker which does not point at any place. */)
2974 ()
2975{
2976 register Lisp_Object val;
2977 register struct Lisp_Marker *p;
2978
2979 val = allocate_misc ();
2980 XMISCTYPE (val) = Lisp_Misc_Marker;
2981 p = XMARKER (val);
2982 p->buffer = 0;
2983 p->bytepos = 0;
2984 p->charpos = 0;
2985 p->next = NULL;
2986 p->insertion_type = 0;
2987 return val;
2988}
2989
2990/* Put MARKER back on the free list after using it temporarily. */
2991
2992void
2993free_marker (marker)
2994 Lisp_Object marker;
2995{
2996 unchain_marker (XMARKER (marker));
2997 free_misc (marker);
2998}
2999
3000\f
3001/* Return a newly created vector or string with specified arguments as
3002 elements. If all the arguments are characters that can fit
3003 in a string of events, make a string; otherwise, make a vector.
3004
3005 Any number of arguments, even zero arguments, are allowed. */
3006
3007Lisp_Object
3008make_event_array (nargs, args)
3009 register int nargs;
3010 Lisp_Object *args;
3011{
3012 int i;
3013
3014 for (i = 0; i < nargs; i++)
3015 /* The things that fit in a string
3016 are characters that are in 0...127,
3017 after discarding the meta bit and all the bits above it. */
3018 if (!INTEGERP (args[i])
3019 || (XUINT (args[i]) & ~(-CHAR_META)) >= 0200)
3020 return Fvector (nargs, args);
3021
3022 /* Since the loop exited, we know that all the things in it are
3023 characters, so we can make a string. */
3024 {
3025 Lisp_Object result;
3026
3027 result = Fmake_string (make_number (nargs), make_number (0));
3028 for (i = 0; i < nargs; i++)
3029 {
3030 SSET (result, i, XINT (args[i]));
3031 /* Move the meta bit to the right place for a string char. */
3032 if (XINT (args[i]) & CHAR_META)
3033 SSET (result, i, SREF (result, i) | 0x80);
3034 }
3035
3036 return result;
3037 }
3038}
3039
3040
3041\f
3042/************************************************************************
3043 C Stack Marking
3044 ************************************************************************/
3045
3046#if GC_MARK_STACK || defined GC_MALLOC_CHECK
3047
3048/* Conservative C stack marking requires a method to identify possibly
3049 live Lisp objects given a pointer value. We do this by keeping
3050 track of blocks of Lisp data that are allocated in a red-black tree
3051 (see also the comment of mem_node which is the type of nodes in
3052 that tree). Function lisp_malloc adds information for an allocated
3053 block to the red-black tree with calls to mem_insert, and function
3054 lisp_free removes it with mem_delete. Functions live_string_p etc
3055 call mem_find to lookup information about a given pointer in the
3056 tree, and use that to determine if the pointer points to a Lisp
3057 object or not. */
3058
3059/* Initialize this part of alloc.c. */
3060
3061static void
3062mem_init ()
3063{
3064 mem_z.left = mem_z.right = MEM_NIL;
3065 mem_z.parent = NULL;
3066 mem_z.color = MEM_BLACK;
3067 mem_z.start = mem_z.end = NULL;
3068 mem_root = MEM_NIL;
3069}
3070
3071
3072/* Value is a pointer to the mem_node containing START. Value is
3073 MEM_NIL if there is no node in the tree containing START. */
3074
3075static INLINE struct mem_node *
3076mem_find (start)
3077 void *start;
3078{
3079 struct mem_node *p;
3080
3081 if (start < min_heap_address || start > max_heap_address)
3082 return MEM_NIL;
3083
3084 /* Make the search always successful to speed up the loop below. */
3085 mem_z.start = start;
3086 mem_z.end = (char *) start + 1;
3087
3088 p = mem_root;
3089 while (start < p->start || start >= p->end)
3090 p = start < p->start ? p->left : p->right;
3091 return p;
3092}
3093
3094
3095/* Insert a new node into the tree for a block of memory with start
3096 address START, end address END, and type TYPE. Value is a
3097 pointer to the node that was inserted. */
3098
3099static struct mem_node *
3100mem_insert (start, end, type)
3101 void *start, *end;
3102 enum mem_type type;
3103{
3104 struct mem_node *c, *parent, *x;
3105
3106 if (start < min_heap_address)
3107 min_heap_address = start;
3108 if (end > max_heap_address)
3109 max_heap_address = end;
3110
3111 /* See where in the tree a node for START belongs. In this
3112 particular application, it shouldn't happen that a node is already
3113 present. For debugging purposes, let's check that. */
3114 c = mem_root;
3115 parent = NULL;
3116
3117#if GC_MARK_STACK != GC_MAKE_GCPROS_NOOPS
3118
3119 while (c != MEM_NIL)
3120 {
3121 if (start >= c->start && start < c->end)
3122 abort ();
3123 parent = c;
3124 c = start < c->start ? c->left : c->right;
3125 }
3126
3127#else /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3128
3129 while (c != MEM_NIL)
3130 {
3131 parent = c;
3132 c = start < c->start ? c->left : c->right;
3133 }
3134
3135#endif /* GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS */
3136
3137 /* Create a new node. */
3138#ifdef GC_MALLOC_CHECK
3139 x = (struct mem_node *) _malloc_internal (sizeof *x);
3140 if (x == NULL)
3141 abort ();
3142#else
3143 x = (struct mem_node *) xmalloc (sizeof *x);
3144#endif
3145 x->start = start;
3146 x->end = end;
3147 x->type = type;
3148 x->parent = parent;
3149 x->left = x->right = MEM_NIL;
3150 x->color = MEM_RED;
3151
3152 /* Insert it as child of PARENT or install it as root. */
3153 if (parent)
3154 {
3155 if (start < parent->start)
3156 parent->left = x;
3157 else
3158 parent->right = x;
3159 }
3160 else
3161 mem_root = x;
3162
3163 /* Re-establish red-black tree properties. */
3164 mem_insert_fixup (x);
3165
3166 return x;
3167}
3168
3169
3170/* Re-establish the red-black properties of the tree, and thereby
3171 balance the tree, after node X has been inserted; X is always red. */
3172
3173static void
3174mem_insert_fixup (x)
3175 struct mem_node *x;
3176{
3177 while (x != mem_root && x->parent->color == MEM_RED)
3178 {
3179 /* X is red and its parent is red. This is a violation of
3180 red-black tree property #3. */
3181
3182 if (x->parent == x->parent->parent->left)
3183 {
3184 /* We're on the left side of our grandparent, and Y is our
3185 "uncle". */
3186 struct mem_node *y = x->parent->parent->right;
3187
3188 if (y->color == MEM_RED)
3189 {
3190 /* Uncle and parent are red but should be black because
3191 X is red. Change the colors accordingly and proceed
3192 with the grandparent. */
3193 x->parent->color = MEM_BLACK;
3194 y->color = MEM_BLACK;
3195 x->parent->parent->color = MEM_RED;
3196 x = x->parent->parent;
3197 }
3198 else
3199 {
3200 /* Parent and uncle have different colors; parent is
3201 red, uncle is black. */
3202 if (x == x->parent->right)
3203 {
3204 x = x->parent;
3205 mem_rotate_left (x);
3206 }
3207
3208 x->parent->color = MEM_BLACK;
3209 x->parent->parent->color = MEM_RED;
3210 mem_rotate_right (x->parent->parent);
3211 }
3212 }
3213 else
3214 {
3215 /* This is the symmetrical case of above. */
3216 struct mem_node *y = x->parent->parent->left;
3217
3218 if (y->color == MEM_RED)
3219 {
3220 x->parent->color = MEM_BLACK;
3221 y->color = MEM_BLACK;
3222 x->parent->parent->color = MEM_RED;
3223 x = x->parent->parent;
3224 }
3225 else
3226 {
3227 if (x == x->parent->left)
3228 {
3229 x = x->parent;
3230 mem_rotate_right (x);
3231 }
3232
3233 x->parent->color = MEM_BLACK;
3234 x->parent->parent->color = MEM_RED;
3235 mem_rotate_left (x->parent->parent);
3236 }
3237 }
3238 }
3239
3240 /* The root may have been changed to red due to the algorithm. Set
3241 it to black so that property #5 is satisfied. */
3242 mem_root->color = MEM_BLACK;
3243}
3244
3245
3246/* (x) (y)
3247 / \ / \
3248 a (y) ===> (x) c
3249 / \ / \
3250 b c a b */
3251
3252static void
3253mem_rotate_left (x)
3254 struct mem_node *x;
3255{
3256 struct mem_node *y;
3257
3258 /* Turn y's left sub-tree into x's right sub-tree. */
3259 y = x->right;
3260 x->right = y->left;
3261 if (y->left != MEM_NIL)
3262 y->left->parent = x;
3263
3264 /* Y's parent was x's parent. */
3265 if (y != MEM_NIL)
3266 y->parent = x->parent;
3267
3268 /* Get the parent to point to y instead of x. */
3269 if (x->parent)
3270 {
3271 if (x == x->parent->left)
3272 x->parent->left = y;
3273 else
3274 x->parent->right = y;
3275 }
3276 else
3277 mem_root = y;
3278
3279 /* Put x on y's left. */
3280 y->left = x;
3281 if (x != MEM_NIL)
3282 x->parent = y;
3283}
3284
3285
3286/* (x) (Y)
3287 / \ / \
3288 (y) c ===> a (x)
3289 / \ / \
3290 a b b c */
3291
3292static void
3293mem_rotate_right (x)
3294 struct mem_node *x;
3295{
3296 struct mem_node *y = x->left;
3297
3298 x->left = y->right;
3299 if (y->right != MEM_NIL)
3300 y->right->parent = x;
3301
3302 if (y != MEM_NIL)
3303 y->parent = x->parent;
3304 if (x->parent)
3305 {
3306 if (x == x->parent->right)
3307 x->parent->right = y;
3308 else
3309 x->parent->left = y;
3310 }
3311 else
3312 mem_root = y;
3313
3314 y->right = x;
3315 if (x != MEM_NIL)
3316 x->parent = y;
3317}
3318
3319
3320/* Delete node Z from the tree. If Z is null or MEM_NIL, do nothing. */
3321
3322static void
3323mem_delete (z)
3324 struct mem_node *z;
3325{
3326 struct mem_node *x, *y;
3327
3328 if (!z || z == MEM_NIL)
3329 return;
3330
3331 if (z->left == MEM_NIL || z->right == MEM_NIL)
3332 y = z;
3333 else
3334 {
3335 y = z->right;
3336 while (y->left != MEM_NIL)
3337 y = y->left;
3338 }
3339
3340 if (y->left != MEM_NIL)
3341 x = y->left;
3342 else
3343 x = y->right;
3344
3345 x->parent = y->parent;
3346 if (y->parent)
3347 {
3348 if (y == y->parent->left)
3349 y->parent->left = x;
3350 else
3351 y->parent->right = x;
3352 }
3353 else
3354 mem_root = x;
3355
3356 if (y != z)
3357 {
3358 z->start = y->start;
3359 z->end = y->end;
3360 z->type = y->type;
3361 }
3362
3363 if (y->color == MEM_BLACK)
3364 mem_delete_fixup (x);
3365
3366#ifdef GC_MALLOC_CHECK
3367 _free_internal (y);
3368#else
3369 xfree (y);
3370#endif
3371}
3372
3373
3374/* Re-establish the red-black properties of the tree, after a
3375 deletion. */
3376
3377static void
3378mem_delete_fixup (x)
3379 struct mem_node *x;
3380{
3381 while (x != mem_root && x->color == MEM_BLACK)
3382 {
3383 if (x == x->parent->left)
3384 {
3385 struct mem_node *w = x->parent->right;
3386
3387 if (w->color == MEM_RED)
3388 {
3389 w->color = MEM_BLACK;
3390 x->parent->color = MEM_RED;
3391 mem_rotate_left (x->parent);
3392 w = x->parent->right;
3393 }
3394
3395 if (w->left->color == MEM_BLACK && w->right->color == MEM_BLACK)
3396 {
3397 w->color = MEM_RED;
3398 x = x->parent;
3399 }
3400 else
3401 {
3402 if (w->right->color == MEM_BLACK)
3403 {
3404 w->left->color = MEM_BLACK;
3405 w->color = MEM_RED;
3406 mem_rotate_right (w);
3407 w = x->parent->right;
3408 }
3409 w->color = x->parent->color;
3410 x->parent->color = MEM_BLACK;
3411 w->right->color = MEM_BLACK;
3412 mem_rotate_left (x->parent);
3413 x = mem_root;
3414 }
3415 }
3416 else
3417 {
3418 struct mem_node *w = x->parent->left;
3419
3420 if (w->color == MEM_RED)
3421 {
3422 w->color = MEM_BLACK;
3423 x->parent->color = MEM_RED;
3424 mem_rotate_right (x->parent);
3425 w = x->parent->left;
3426 }
3427
3428 if (w->right->color == MEM_BLACK && w->left->color == MEM_BLACK)
3429 {
3430 w->color = MEM_RED;
3431 x = x->parent;
3432 }
3433 else
3434 {
3435 if (w->left->color == MEM_BLACK)
3436 {
3437 w->right->color = MEM_BLACK;
3438 w->color = MEM_RED;
3439 mem_rotate_left (w);
3440 w = x->parent->left;
3441 }
3442
3443 w->color = x->parent->color;
3444 x->parent->color = MEM_BLACK;
3445 w->left->color = MEM_BLACK;
3446 mem_rotate_right (x->parent);
3447 x = mem_root;
3448 }
3449 }
3450 }
3451
3452 x->color = MEM_BLACK;
3453}
3454
3455
3456/* Value is non-zero if P is a pointer to a live Lisp string on
3457 the heap. M is a pointer to the mem_block for P. */
3458
3459static INLINE int
3460live_string_p (m, p)
3461 struct mem_node *m;
3462 void *p;
3463{
3464 if (m->type == MEM_TYPE_STRING)
3465 {
3466 struct string_block *b = (struct string_block *) m->start;
3467 int offset = (char *) p - (char *) &b->strings[0];
3468
3469 /* P must point to the start of a Lisp_String structure, and it
3470 must not be on the free-list. */
3471 return (offset >= 0
3472 && offset % sizeof b->strings[0] == 0
3473 && offset < (STRING_BLOCK_SIZE * sizeof b->strings[0])
3474 && ((struct Lisp_String *) p)->data != NULL);
3475 }
3476 else
3477 return 0;
3478}
3479
3480
3481/* Value is non-zero if P is a pointer to a live Lisp cons on
3482 the heap. M is a pointer to the mem_block for P. */
3483
3484static INLINE int
3485live_cons_p (m, p)
3486 struct mem_node *m;
3487 void *p;
3488{
3489 if (m->type == MEM_TYPE_CONS)
3490 {
3491 struct cons_block *b = (struct cons_block *) m->start;
3492 int offset = (char *) p - (char *) &b->conses[0];
3493
3494 /* P must point to the start of a Lisp_Cons, not be
3495 one of the unused cells in the current cons block,
3496 and not be on the free-list. */
3497 return (offset >= 0
3498 && offset % sizeof b->conses[0] == 0
3499 && offset < (CONS_BLOCK_SIZE * sizeof b->conses[0])
3500 && (b != cons_block
3501 || offset / sizeof b->conses[0] < cons_block_index)
3502 && !EQ (((struct Lisp_Cons *) p)->car, Vdead));
3503 }
3504 else
3505 return 0;
3506}
3507
3508
3509/* Value is non-zero if P is a pointer to a live Lisp symbol on
3510 the heap. M is a pointer to the mem_block for P. */
3511
3512static INLINE int
3513live_symbol_p (m, p)
3514 struct mem_node *m;
3515 void *p;
3516{
3517 if (m->type == MEM_TYPE_SYMBOL)
3518 {
3519 struct symbol_block *b = (struct symbol_block *) m->start;
3520 int offset = (char *) p - (char *) &b->symbols[0];
3521
3522 /* P must point to the start of a Lisp_Symbol, not be
3523 one of the unused cells in the current symbol block,
3524 and not be on the free-list. */
3525 return (offset >= 0
3526 && offset % sizeof b->symbols[0] == 0
3527 && offset < (SYMBOL_BLOCK_SIZE * sizeof b->symbols[0])
3528 && (b != symbol_block
3529 || offset / sizeof b->symbols[0] < symbol_block_index)
3530 && !EQ (((struct Lisp_Symbol *) p)->function, Vdead));
3531 }
3532 else
3533 return 0;
3534}
3535
3536
3537/* Value is non-zero if P is a pointer to a live Lisp float on
3538 the heap. M is a pointer to the mem_block for P. */
3539
3540static INLINE int
3541live_float_p (m, p)
3542 struct mem_node *m;
3543 void *p;
3544{
3545 if (m->type == MEM_TYPE_FLOAT)
3546 {
3547 struct float_block *b = (struct float_block *) m->start;
3548 int offset = (char *) p - (char *) &b->floats[0];
3549
3550 /* P must point to the start of a Lisp_Float and not be
3551 one of the unused cells in the current float block. */
3552 return (offset >= 0
3553 && offset % sizeof b->floats[0] == 0
3554 && offset < (FLOAT_BLOCK_SIZE * sizeof b->floats[0])
3555 && (b != float_block
3556 || offset / sizeof b->floats[0] < float_block_index));
3557 }
3558 else
3559 return 0;
3560}
3561
3562
3563/* Value is non-zero if P is a pointer to a live Lisp Misc on
3564 the heap. M is a pointer to the mem_block for P. */
3565
3566static INLINE int
3567live_misc_p (m, p)
3568 struct mem_node *m;
3569 void *p;
3570{
3571 if (m->type == MEM_TYPE_MISC)
3572 {
3573 struct marker_block *b = (struct marker_block *) m->start;
3574 int offset = (char *) p - (char *) &b->markers[0];
3575
3576 /* P must point to the start of a Lisp_Misc, not be
3577 one of the unused cells in the current misc block,
3578 and not be on the free-list. */
3579 return (offset >= 0
3580 && offset % sizeof b->markers[0] == 0
3581 && offset < (MARKER_BLOCK_SIZE * sizeof b->markers[0])
3582 && (b != marker_block
3583 || offset / sizeof b->markers[0] < marker_block_index)
3584 && ((union Lisp_Misc *) p)->u_marker.type != Lisp_Misc_Free);
3585 }
3586 else
3587 return 0;
3588}
3589
3590
3591/* Value is non-zero if P is a pointer to a live vector-like object.
3592 M is a pointer to the mem_block for P. */
3593
3594static INLINE int
3595live_vector_p (m, p)
3596 struct mem_node *m;
3597 void *p;
3598{
3599 return (p == m->start
3600 && m->type >= MEM_TYPE_VECTOR
3601 && m->type <= MEM_TYPE_WINDOW);
3602}
3603
3604
3605/* Value is non-zero if P is a pointer to a live buffer. M is a
3606 pointer to the mem_block for P. */
3607
3608static INLINE int
3609live_buffer_p (m, p)
3610 struct mem_node *m;
3611 void *p;
3612{
3613 /* P must point to the start of the block, and the buffer
3614 must not have been killed. */
3615 return (m->type == MEM_TYPE_BUFFER
3616 && p == m->start
3617 && !NILP (((struct buffer *) p)->name));
3618}
3619
3620#endif /* GC_MARK_STACK || defined GC_MALLOC_CHECK */
3621
3622#if GC_MARK_STACK
3623
3624#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3625
3626/* Array of objects that are kept alive because the C stack contains
3627 a pattern that looks like a reference to them . */
3628
3629#define MAX_ZOMBIES 10
3630static Lisp_Object zombies[MAX_ZOMBIES];
3631
3632/* Number of zombie objects. */
3633
3634static int nzombies;
3635
3636/* Number of garbage collections. */
3637
3638static int ngcs;
3639
3640/* Average percentage of zombies per collection. */
3641
3642static double avg_zombies;
3643
3644/* Max. number of live and zombie objects. */
3645
3646static int max_live, max_zombies;
3647
3648/* Average number of live objects per GC. */
3649
3650static double avg_live;
3651
3652DEFUN ("gc-status", Fgc_status, Sgc_status, 0, 0, "",
3653 doc: /* Show information about live and zombie objects. */)
3654 ()
3655{
3656 Lisp_Object args[8], zombie_list = Qnil;
3657 int i;
3658 for (i = 0; i < nzombies; i++)
3659 zombie_list = Fcons (zombies[i], zombie_list);
3660 args[0] = build_string ("%d GCs, avg live/zombies = %.2f/%.2f (%f%%), max %d/%d\nzombies: %S");
3661 args[1] = make_number (ngcs);
3662 args[2] = make_float (avg_live);
3663 args[3] = make_float (avg_zombies);
3664 args[4] = make_float (avg_zombies / avg_live / 100);
3665 args[5] = make_number (max_live);
3666 args[6] = make_number (max_zombies);
3667 args[7] = zombie_list;
3668 return Fmessage (8, args);
3669}
3670
3671#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3672
3673
3674/* Mark OBJ if we can prove it's a Lisp_Object. */
3675
3676static INLINE void
3677mark_maybe_object (obj)
3678 Lisp_Object obj;
3679{
3680 void *po = (void *) XPNTR (obj);
3681 struct mem_node *m = mem_find (po);
3682
3683 if (m != MEM_NIL)
3684 {
3685 int mark_p = 0;
3686
3687 switch (XGCTYPE (obj))
3688 {
3689 case Lisp_String:
3690 mark_p = (live_string_p (m, po)
3691 && !STRING_MARKED_P ((struct Lisp_String *) po));
3692 break;
3693
3694 case Lisp_Cons:
3695 mark_p = (live_cons_p (m, po) && !CONS_MARKED_P (XCONS (obj)));
3696 break;
3697
3698 case Lisp_Symbol:
3699 mark_p = (live_symbol_p (m, po) && !XSYMBOL (obj)->gcmarkbit);
3700 break;
3701
3702 case Lisp_Float:
3703 mark_p = (live_float_p (m, po) && !FLOAT_MARKED_P (XFLOAT (obj)));
3704 break;
3705
3706 case Lisp_Vectorlike:
3707 /* Note: can't check GC_BUFFERP before we know it's a
3708 buffer because checking that dereferences the pointer
3709 PO which might point anywhere. */
3710 if (live_vector_p (m, po))
3711 mark_p = !GC_SUBRP (obj) && !VECTOR_MARKED_P (XVECTOR (obj));
3712 else if (live_buffer_p (m, po))
3713 mark_p = GC_BUFFERP (obj) && !VECTOR_MARKED_P (XBUFFER (obj));
3714 break;
3715
3716 case Lisp_Misc:
3717 mark_p = (live_misc_p (m, po) && !XMARKER (obj)->gcmarkbit);
3718 break;
3719
3720 case Lisp_Int:
3721 case Lisp_Type_Limit:
3722 break;
3723 }
3724
3725 if (mark_p)
3726 {
3727#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3728 if (nzombies < MAX_ZOMBIES)
3729 zombies[nzombies] = obj;
3730 ++nzombies;
3731#endif
3732 mark_object (obj);
3733 }
3734 }
3735}
3736
3737
3738/* If P points to Lisp data, mark that as live if it isn't already
3739 marked. */
3740
3741static INLINE void
3742mark_maybe_pointer (p)
3743 void *p;
3744{
3745 struct mem_node *m;
3746
3747 /* Quickly rule out some values which can't point to Lisp data. We
3748 assume that Lisp data is aligned on even addresses. */
3749 if ((EMACS_INT) p & 1)
3750 return;
3751
3752 m = mem_find (p);
3753 if (m != MEM_NIL)
3754 {
3755 Lisp_Object obj = Qnil;
3756
3757 switch (m->type)
3758 {
3759 case MEM_TYPE_NON_LISP:
3760 /* Nothing to do; not a pointer to Lisp memory. */
3761 break;
3762
3763 case MEM_TYPE_BUFFER:
3764 if (live_buffer_p (m, p) && !VECTOR_MARKED_P((struct buffer *)p))
3765 XSETVECTOR (obj, p);
3766 break;
3767
3768 case MEM_TYPE_CONS:
3769 if (live_cons_p (m, p) && !CONS_MARKED_P ((struct Lisp_Cons *) p))
3770 XSETCONS (obj, p);
3771 break;
3772
3773 case MEM_TYPE_STRING:
3774 if (live_string_p (m, p)
3775 && !STRING_MARKED_P ((struct Lisp_String *) p))
3776 XSETSTRING (obj, p);
3777 break;
3778
3779 case MEM_TYPE_MISC:
3780 if (live_misc_p (m, p) && !((struct Lisp_Free *) p)->gcmarkbit)
3781 XSETMISC (obj, p);
3782 break;
3783
3784 case MEM_TYPE_SYMBOL:
3785 if (live_symbol_p (m, p) && !((struct Lisp_Symbol *) p)->gcmarkbit)
3786 XSETSYMBOL (obj, p);
3787 break;
3788
3789 case MEM_TYPE_FLOAT:
3790 if (live_float_p (m, p) && !FLOAT_MARKED_P (p))
3791 XSETFLOAT (obj, p);
3792 break;
3793
3794 case MEM_TYPE_VECTOR:
3795 case MEM_TYPE_PROCESS:
3796 case MEM_TYPE_HASH_TABLE:
3797 case MEM_TYPE_FRAME:
3798 case MEM_TYPE_WINDOW:
3799 if (live_vector_p (m, p))
3800 {
3801 Lisp_Object tem;
3802 XSETVECTOR (tem, p);
3803 if (!GC_SUBRP (tem) && !VECTOR_MARKED_P (XVECTOR (tem)))
3804 obj = tem;
3805 }
3806 break;
3807
3808 default:
3809 abort ();
3810 }
3811
3812 if (!GC_NILP (obj))
3813 mark_object (obj);
3814 }
3815}
3816
3817
3818/* Mark Lisp objects referenced from the address range START..END. */
3819
3820static void
3821mark_memory (start, end)
3822 void *start, *end;
3823{
3824 Lisp_Object *p;
3825 void **pp;
3826
3827#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3828 nzombies = 0;
3829#endif
3830
3831 /* Make START the pointer to the start of the memory region,
3832 if it isn't already. */
3833 if (end < start)
3834 {
3835 void *tem = start;
3836 start = end;
3837 end = tem;
3838 }
3839
3840 /* Mark Lisp_Objects. */
3841 for (p = (Lisp_Object *) start; (void *) p < end; ++p)
3842 mark_maybe_object (*p);
3843
3844 /* Mark Lisp data pointed to. This is necessary because, in some
3845 situations, the C compiler optimizes Lisp objects away, so that
3846 only a pointer to them remains. Example:
3847
3848 DEFUN ("testme", Ftestme, Stestme, 0, 0, 0, "")
3849 ()
3850 {
3851 Lisp_Object obj = build_string ("test");
3852 struct Lisp_String *s = XSTRING (obj);
3853 Fgarbage_collect ();
3854 fprintf (stderr, "test `%s'\n", s->data);
3855 return Qnil;
3856 }
3857
3858 Here, `obj' isn't really used, and the compiler optimizes it
3859 away. The only reference to the life string is through the
3860 pointer `s'. */
3861
3862 for (pp = (void **) start; (void *) pp < end; ++pp)
3863 mark_maybe_pointer (*pp);
3864}
3865
3866/* setjmp will work with GCC unless NON_SAVING_SETJMP is defined in
3867 the GCC system configuration. In gcc 3.2, the only systems for
3868 which this is so are i386-sco5 non-ELF, i386-sysv3 (maybe included
3869 by others?) and ns32k-pc532-min. */
3870
3871#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
3872
3873static int setjmp_tested_p, longjmps_done;
3874
3875#define SETJMP_WILL_LIKELY_WORK "\
3876\n\
3877Emacs garbage collector has been changed to use conservative stack\n\
3878marking. Emacs has determined that the method it uses to do the\n\
3879marking will likely work on your system, but this isn't sure.\n\
3880\n\
3881If you are a system-programmer, or can get the help of a local wizard\n\
3882who is, please take a look at the function mark_stack in alloc.c, and\n\
3883verify that the methods used are appropriate for your system.\n\
3884\n\
3885Please mail the result to <emacs-devel@gnu.org>.\n\
3886"
3887
3888#define SETJMP_WILL_NOT_WORK "\
3889\n\
3890Emacs garbage collector has been changed to use conservative stack\n\
3891marking. Emacs has determined that the default method it uses to do the\n\
3892marking will not work on your system. We will need a system-dependent\n\
3893solution for your system.\n\
3894\n\
3895Please take a look at the function mark_stack in alloc.c, and\n\
3896try to find a way to make it work on your system.\n\
3897\n\
3898Note that you may get false negatives, depending on the compiler.\n\
3899In particular, you need to use -O with GCC for this test.\n\
3900\n\
3901Please mail the result to <emacs-devel@gnu.org>.\n\
3902"
3903
3904
3905/* Perform a quick check if it looks like setjmp saves registers in a
3906 jmp_buf. Print a message to stderr saying so. When this test
3907 succeeds, this is _not_ a proof that setjmp is sufficient for
3908 conservative stack marking. Only the sources or a disassembly
3909 can prove that. */
3910
3911static void
3912test_setjmp ()
3913{
3914 char buf[10];
3915 register int x;
3916 jmp_buf jbuf;
3917 int result = 0;
3918
3919 /* Arrange for X to be put in a register. */
3920 sprintf (buf, "1");
3921 x = strlen (buf);
3922 x = 2 * x - 1;
3923
3924 setjmp (jbuf);
3925 if (longjmps_done == 1)
3926 {
3927 /* Came here after the longjmp at the end of the function.
3928
3929 If x == 1, the longjmp has restored the register to its
3930 value before the setjmp, and we can hope that setjmp
3931 saves all such registers in the jmp_buf, although that
3932 isn't sure.
3933
3934 For other values of X, either something really strange is
3935 taking place, or the setjmp just didn't save the register. */
3936
3937 if (x == 1)
3938 fprintf (stderr, SETJMP_WILL_LIKELY_WORK);
3939 else
3940 {
3941 fprintf (stderr, SETJMP_WILL_NOT_WORK);
3942 exit (1);
3943 }
3944 }
3945
3946 ++longjmps_done;
3947 x = 2;
3948 if (longjmps_done == 1)
3949 longjmp (jbuf, 1);
3950}
3951
3952#endif /* not GC_SAVE_REGISTERS_ON_STACK && not GC_SETJMP_WORKS */
3953
3954
3955#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
3956
3957/* Abort if anything GCPRO'd doesn't survive the GC. */
3958
3959static void
3960check_gcpros ()
3961{
3962 struct gcpro *p;
3963 int i;
3964
3965 for (p = gcprolist; p; p = p->next)
3966 for (i = 0; i < p->nvars; ++i)
3967 if (!survives_gc_p (p->var[i]))
3968 /* FIXME: It's not necessarily a bug. It might just be that the
3969 GCPRO is unnecessary or should release the object sooner. */
3970 abort ();
3971}
3972
3973#elif GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
3974
3975static void
3976dump_zombies ()
3977{
3978 int i;
3979
3980 fprintf (stderr, "\nZombies kept alive = %d:\n", nzombies);
3981 for (i = 0; i < min (MAX_ZOMBIES, nzombies); ++i)
3982 {
3983 fprintf (stderr, " %d = ", i);
3984 debug_print (zombies[i]);
3985 }
3986}
3987
3988#endif /* GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES */
3989
3990
3991/* Mark live Lisp objects on the C stack.
3992
3993 There are several system-dependent problems to consider when
3994 porting this to new architectures:
3995
3996 Processor Registers
3997
3998 We have to mark Lisp objects in CPU registers that can hold local
3999 variables or are used to pass parameters.
4000
4001 If GC_SAVE_REGISTERS_ON_STACK is defined, it should expand to
4002 something that either saves relevant registers on the stack, or
4003 calls mark_maybe_object passing it each register's contents.
4004
4005 If GC_SAVE_REGISTERS_ON_STACK is not defined, the current
4006 implementation assumes that calling setjmp saves registers we need
4007 to see in a jmp_buf which itself lies on the stack. This doesn't
4008 have to be true! It must be verified for each system, possibly
4009 by taking a look at the source code of setjmp.
4010
4011 Stack Layout
4012
4013 Architectures differ in the way their processor stack is organized.
4014 For example, the stack might look like this
4015
4016 +----------------+
4017 | Lisp_Object | size = 4
4018 +----------------+
4019 | something else | size = 2
4020 +----------------+
4021 | Lisp_Object | size = 4
4022 +----------------+
4023 | ... |
4024
4025 In such a case, not every Lisp_Object will be aligned equally. To
4026 find all Lisp_Object on the stack it won't be sufficient to walk
4027 the stack in steps of 4 bytes. Instead, two passes will be
4028 necessary, one starting at the start of the stack, and a second
4029 pass starting at the start of the stack + 2. Likewise, if the
4030 minimal alignment of Lisp_Objects on the stack is 1, four passes
4031 would be necessary, each one starting with one byte more offset
4032 from the stack start.
4033
4034 The current code assumes by default that Lisp_Objects are aligned
4035 equally on the stack. */
4036
4037static void
4038mark_stack ()
4039{
4040 int i;
4041 jmp_buf j;
4042 volatile int stack_grows_down_p = (char *) &j > (char *) stack_base;
4043 void *end;
4044
4045 /* This trick flushes the register windows so that all the state of
4046 the process is contained in the stack. */
4047 /* Fixme: Code in the Boehm GC suggests flushing (with `flushrs') is
4048 needed on ia64 too. See mach_dep.c, where it also says inline
4049 assembler doesn't work with relevant proprietary compilers. */
4050#ifdef sparc
4051 asm ("ta 3");
4052#endif
4053
4054 /* Save registers that we need to see on the stack. We need to see
4055 registers used to hold register variables and registers used to
4056 pass parameters. */
4057#ifdef GC_SAVE_REGISTERS_ON_STACK
4058 GC_SAVE_REGISTERS_ON_STACK (end);
4059#else /* not GC_SAVE_REGISTERS_ON_STACK */
4060
4061#ifndef GC_SETJMP_WORKS /* If it hasn't been checked yet that
4062 setjmp will definitely work, test it
4063 and print a message with the result
4064 of the test. */
4065 if (!setjmp_tested_p)
4066 {
4067 setjmp_tested_p = 1;
4068 test_setjmp ();
4069 }
4070#endif /* GC_SETJMP_WORKS */
4071
4072 setjmp (j);
4073 end = stack_grows_down_p ? (char *) &j + sizeof j : (char *) &j;
4074#endif /* not GC_SAVE_REGISTERS_ON_STACK */
4075
4076 /* This assumes that the stack is a contiguous region in memory. If
4077 that's not the case, something has to be done here to iterate
4078 over the stack segments. */
4079#ifndef GC_LISP_OBJECT_ALIGNMENT
4080#ifdef __GNUC__
4081#define GC_LISP_OBJECT_ALIGNMENT __alignof__ (Lisp_Object)
4082#else
4083#define GC_LISP_OBJECT_ALIGNMENT sizeof (Lisp_Object)
4084#endif
4085#endif
4086 for (i = 0; i < sizeof (Lisp_Object); i += GC_LISP_OBJECT_ALIGNMENT)
4087 mark_memory ((char *) stack_base + i, end);
4088
4089#if GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS
4090 check_gcpros ();
4091#endif
4092}
4093
4094
4095#endif /* GC_MARK_STACK != 0 */
4096
4097
4098\f
4099/***********************************************************************
4100 Pure Storage Management
4101 ***********************************************************************/
4102
4103/* Allocate room for SIZE bytes from pure Lisp storage and return a
4104 pointer to it. TYPE is the Lisp type for which the memory is
4105 allocated. TYPE < 0 means it's not used for a Lisp object.
4106
4107 If store_pure_type_info is set and TYPE is >= 0, the type of
4108 the allocated object is recorded in pure_types. */
4109
4110static POINTER_TYPE *
4111pure_alloc (size, type)
4112 size_t size;
4113 int type;
4114{
4115 POINTER_TYPE *result;
4116#ifdef USE_LSB_TAG
4117 size_t alignment = (1 << GCTYPEBITS);
4118#else
4119 size_t alignment = sizeof (EMACS_INT);
4120
4121 /* Give Lisp_Floats an extra alignment. */
4122 if (type == Lisp_Float)
4123 {
4124#if defined __GNUC__ && __GNUC__ >= 2
4125 alignment = __alignof (struct Lisp_Float);
4126#else
4127 alignment = sizeof (struct Lisp_Float);
4128#endif
4129 }
4130#endif
4131
4132 again:
4133 result = ALIGN (purebeg + pure_bytes_used, alignment);
4134 pure_bytes_used = ((char *)result - (char *)purebeg) + size;
4135
4136 if (pure_bytes_used <= pure_size)
4137 return result;
4138
4139 /* Don't allocate a large amount here,
4140 because it might get mmap'd and then its address
4141 might not be usable. */
4142 purebeg = (char *) xmalloc (10000);
4143 pure_size = 10000;
4144 pure_bytes_used_before_overflow += pure_bytes_used - size;
4145 pure_bytes_used = 0;
4146 goto again;
4147}
4148
4149
4150/* Print a warning if PURESIZE is too small. */
4151
4152void
4153check_pure_size ()
4154{
4155 if (pure_bytes_used_before_overflow)
4156 message ("Pure Lisp storage overflow (approx. %d bytes needed)",
4157 (int) (pure_bytes_used + pure_bytes_used_before_overflow));
4158}
4159
4160
4161/* Return a string allocated in pure space. DATA is a buffer holding
4162 NCHARS characters, and NBYTES bytes of string data. MULTIBYTE
4163 non-zero means make the result string multibyte.
4164
4165 Must get an error if pure storage is full, since if it cannot hold
4166 a large string it may be able to hold conses that point to that
4167 string; then the string is not protected from gc. */
4168
4169Lisp_Object
4170make_pure_string (data, nchars, nbytes, multibyte)
4171 char *data;
4172 int nchars, nbytes;
4173 int multibyte;
4174{
4175 Lisp_Object string;
4176 struct Lisp_String *s;
4177
4178 s = (struct Lisp_String *) pure_alloc (sizeof *s, Lisp_String);
4179 s->data = (unsigned char *) pure_alloc (nbytes + 1, -1);
4180 s->size = nchars;
4181 s->size_byte = multibyte ? nbytes : -1;
4182 bcopy (data, s->data, nbytes);
4183 s->data[nbytes] = '\0';
4184 s->intervals = NULL_INTERVAL;
4185 XSETSTRING (string, s);
4186 return string;
4187}
4188
4189
4190/* Return a cons allocated from pure space. Give it pure copies
4191 of CAR as car and CDR as cdr. */
4192
4193Lisp_Object
4194pure_cons (car, cdr)
4195 Lisp_Object car, cdr;
4196{
4197 register Lisp_Object new;
4198 struct Lisp_Cons *p;
4199
4200 p = (struct Lisp_Cons *) pure_alloc (sizeof *p, Lisp_Cons);
4201 XSETCONS (new, p);
4202 XSETCAR (new, Fpurecopy (car));
4203 XSETCDR (new, Fpurecopy (cdr));
4204 return new;
4205}
4206
4207
4208/* Value is a float object with value NUM allocated from pure space. */
4209
4210Lisp_Object
4211make_pure_float (num)
4212 double num;
4213{
4214 register Lisp_Object new;
4215 struct Lisp_Float *p;
4216
4217 p = (struct Lisp_Float *) pure_alloc (sizeof *p, Lisp_Float);
4218 XSETFLOAT (new, p);
4219 XFLOAT_DATA (new) = num;
4220 return new;
4221}
4222
4223
4224/* Return a vector with room for LEN Lisp_Objects allocated from
4225 pure space. */
4226
4227Lisp_Object
4228make_pure_vector (len)
4229 EMACS_INT len;
4230{
4231 Lisp_Object new;
4232 struct Lisp_Vector *p;
4233 size_t size = sizeof *p + (len - 1) * sizeof (Lisp_Object);
4234
4235 p = (struct Lisp_Vector *) pure_alloc (size, Lisp_Vectorlike);
4236 XSETVECTOR (new, p);
4237 XVECTOR (new)->size = len;
4238 return new;
4239}
4240
4241
4242DEFUN ("purecopy", Fpurecopy, Spurecopy, 1, 1, 0,
4243 doc: /* Make a copy of OBJECT in pure storage.
4244Recursively copies contents of vectors and cons cells.
4245Does not copy symbols. Copies strings without text properties. */)
4246 (obj)
4247 register Lisp_Object obj;
4248{
4249 if (NILP (Vpurify_flag))
4250 return obj;
4251
4252 if (PURE_POINTER_P (XPNTR (obj)))
4253 return obj;
4254
4255 if (CONSP (obj))
4256 return pure_cons (XCAR (obj), XCDR (obj));
4257 else if (FLOATP (obj))
4258 return make_pure_float (XFLOAT_DATA (obj));
4259 else if (STRINGP (obj))
4260 return make_pure_string (SDATA (obj), SCHARS (obj),
4261 SBYTES (obj),
4262 STRING_MULTIBYTE (obj));
4263 else if (COMPILEDP (obj) || VECTORP (obj))
4264 {
4265 register struct Lisp_Vector *vec;
4266 register int i;
4267 EMACS_INT size;
4268
4269 size = XVECTOR (obj)->size;
4270 if (size & PSEUDOVECTOR_FLAG)
4271 size &= PSEUDOVECTOR_SIZE_MASK;
4272 vec = XVECTOR (make_pure_vector (size));
4273 for (i = 0; i < size; i++)
4274 vec->contents[i] = Fpurecopy (XVECTOR (obj)->contents[i]);
4275 if (COMPILEDP (obj))
4276 XSETCOMPILED (obj, vec);
4277 else
4278 XSETVECTOR (obj, vec);
4279 return obj;
4280 }
4281 else if (MARKERP (obj))
4282 error ("Attempt to copy a marker to pure storage");
4283
4284 return obj;
4285}
4286
4287
4288\f
4289/***********************************************************************
4290 Protection from GC
4291 ***********************************************************************/
4292
4293/* Put an entry in staticvec, pointing at the variable with address
4294 VARADDRESS. */
4295
4296void
4297staticpro (varaddress)
4298 Lisp_Object *varaddress;
4299{
4300 staticvec[staticidx++] = varaddress;
4301 if (staticidx >= NSTATICS)
4302 abort ();
4303}
4304
4305struct catchtag
4306{
4307 Lisp_Object tag;
4308 Lisp_Object val;
4309 struct catchtag *next;
4310};
4311
4312\f
4313/***********************************************************************
4314 Protection from GC
4315 ***********************************************************************/
4316
4317/* Temporarily prevent garbage collection. */
4318
4319int
4320inhibit_garbage_collection ()
4321{
4322 int count = SPECPDL_INDEX ();
4323 int nbits = min (VALBITS, BITS_PER_INT);
4324
4325 specbind (Qgc_cons_threshold, make_number (((EMACS_INT) 1 << (nbits - 1)) - 1));
4326 return count;
4327}
4328
4329
4330DEFUN ("garbage-collect", Fgarbage_collect, Sgarbage_collect, 0, 0, "",
4331 doc: /* Reclaim storage for Lisp objects no longer needed.
4332Garbage collection happens automatically if you cons more than
4333`gc-cons-threshold' bytes of Lisp data since previous garbage collection.
4334`garbage-collect' normally returns a list with info on amount of space in use:
4335 ((USED-CONSES . FREE-CONSES) (USED-SYMS . FREE-SYMS)
4336 (USED-MARKERS . FREE-MARKERS) USED-STRING-CHARS USED-VECTOR-SLOTS
4337 (USED-FLOATS . FREE-FLOATS) (USED-INTERVALS . FREE-INTERVALS)
4338 (USED-STRINGS . FREE-STRINGS))
4339However, if there was overflow in pure space, `garbage-collect'
4340returns nil, because real GC can't be done. */)
4341 ()
4342{
4343 register struct specbinding *bind;
4344 struct catchtag *catch;
4345 struct handler *handler;
4346 char stack_top_variable;
4347 register int i;
4348 int message_p;
4349 Lisp_Object total[8];
4350 int count = SPECPDL_INDEX ();
4351 EMACS_TIME t1, t2, t3;
4352
4353 if (abort_on_gc)
4354 abort ();
4355
4356 EMACS_GET_TIME (t1);
4357
4358 /* Can't GC if pure storage overflowed because we can't determine
4359 if something is a pure object or not. */
4360 if (pure_bytes_used_before_overflow)
4361 return Qnil;
4362
4363 /* In case user calls debug_print during GC,
4364 don't let that cause a recursive GC. */
4365 consing_since_gc = 0;
4366
4367 /* Save what's currently displayed in the echo area. */
4368 message_p = push_message ();
4369 record_unwind_protect (pop_message_unwind, Qnil);
4370
4371 /* Save a copy of the contents of the stack, for debugging. */
4372#if MAX_SAVE_STACK > 0
4373 if (NILP (Vpurify_flag))
4374 {
4375 i = &stack_top_variable - stack_bottom;
4376 if (i < 0) i = -i;
4377 if (i < MAX_SAVE_STACK)
4378 {
4379 if (stack_copy == 0)
4380 stack_copy = (char *) xmalloc (stack_copy_size = i);
4381 else if (stack_copy_size < i)
4382 stack_copy = (char *) xrealloc (stack_copy, (stack_copy_size = i));
4383 if (stack_copy)
4384 {
4385 if ((EMACS_INT) (&stack_top_variable - stack_bottom) > 0)
4386 bcopy (stack_bottom, stack_copy, i);
4387 else
4388 bcopy (&stack_top_variable, stack_copy, i);
4389 }
4390 }
4391 }
4392#endif /* MAX_SAVE_STACK > 0 */
4393
4394 if (garbage_collection_messages)
4395 message1_nolog ("Garbage collecting...");
4396
4397 BLOCK_INPUT;
4398
4399 shrink_regexp_cache ();
4400
4401 /* Don't keep undo information around forever. */
4402 {
4403 register struct buffer *nextb = all_buffers;
4404
4405 while (nextb)
4406 {
4407 /* If a buffer's undo list is Qt, that means that undo is
4408 turned off in that buffer. Calling truncate_undo_list on
4409 Qt tends to return NULL, which effectively turns undo back on.
4410 So don't call truncate_undo_list if undo_list is Qt. */
4411 if (! EQ (nextb->undo_list, Qt))
4412 nextb->undo_list
4413 = truncate_undo_list (nextb->undo_list, undo_limit,
4414 undo_strong_limit, undo_outer_limit);
4415
4416 /* Shrink buffer gaps, but skip indirect and dead buffers. */
4417 if (nextb->base_buffer == 0 && !NILP (nextb->name))
4418 {
4419 /* If a buffer's gap size is more than 10% of the buffer
4420 size, or larger than 2000 bytes, then shrink it
4421 accordingly. Keep a minimum size of 20 bytes. */
4422 int size = min (2000, max (20, (nextb->text->z_byte / 10)));
4423
4424 if (nextb->text->gap_size > size)
4425 {
4426 struct buffer *save_current = current_buffer;
4427 current_buffer = nextb;
4428 make_gap (-(nextb->text->gap_size - size));
4429 current_buffer = save_current;
4430 }
4431 }
4432
4433 nextb = nextb->next;
4434 }
4435 }
4436
4437 gc_in_progress = 1;
4438
4439 /* clear_marks (); */
4440
4441 /* Mark all the special slots that serve as the roots of accessibility. */
4442
4443 for (i = 0; i < staticidx; i++)
4444 mark_object (*staticvec[i]);
4445
4446#if (GC_MARK_STACK == GC_MAKE_GCPROS_NOOPS \
4447 || GC_MARK_STACK == GC_MARK_STACK_CHECK_GCPROS)
4448 mark_stack ();
4449#else
4450 {
4451 register struct gcpro *tail;
4452 for (tail = gcprolist; tail; tail = tail->next)
4453 for (i = 0; i < tail->nvars; i++)
4454 mark_object (tail->var[i]);
4455 }
4456#endif
4457
4458 mark_byte_stack ();
4459 for (bind = specpdl; bind != specpdl_ptr; bind++)
4460 {
4461 mark_object (bind->symbol);
4462 mark_object (bind->old_value);
4463 }
4464 for (catch = catchlist; catch; catch = catch->next)
4465 {
4466 mark_object (catch->tag);
4467 mark_object (catch->val);
4468 }
4469 for (handler = handlerlist; handler; handler = handler->next)
4470 {
4471 mark_object (handler->handler);
4472 mark_object (handler->var);
4473 }
4474 mark_backtrace ();
4475 mark_kboards ();
4476
4477#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4478 mark_stack ();
4479#endif
4480
4481#ifdef USE_GTK
4482 {
4483 extern void xg_mark_data ();
4484 xg_mark_data ();
4485 }
4486#endif
4487
4488 /* Everything is now marked, except for the things that require special
4489 finalization, i.e. the undo_list.
4490 Look thru every buffer's undo list
4491 for elements that update markers that were not marked,
4492 and delete them. */
4493 {
4494 register struct buffer *nextb = all_buffers;
4495
4496 while (nextb)
4497 {
4498 /* If a buffer's undo list is Qt, that means that undo is
4499 turned off in that buffer. Calling truncate_undo_list on
4500 Qt tends to return NULL, which effectively turns undo back on.
4501 So don't call truncate_undo_list if undo_list is Qt. */
4502 if (! EQ (nextb->undo_list, Qt))
4503 {
4504 Lisp_Object tail, prev;
4505 tail = nextb->undo_list;
4506 prev = Qnil;
4507 while (CONSP (tail))
4508 {
4509 if (GC_CONSP (XCAR (tail))
4510 && GC_MARKERP (XCAR (XCAR (tail)))
4511 && !XMARKER (XCAR (XCAR (tail)))->gcmarkbit)
4512 {
4513 if (NILP (prev))
4514 nextb->undo_list = tail = XCDR (tail);
4515 else
4516 {
4517 tail = XCDR (tail);
4518 XSETCDR (prev, tail);
4519 }
4520 }
4521 else
4522 {
4523 prev = tail;
4524 tail = XCDR (tail);
4525 }
4526 }
4527 }
4528 /* Now that we have stripped the elements that need not be in the
4529 undo_list any more, we can finally mark the list. */
4530 mark_object (nextb->undo_list);
4531
4532 nextb = nextb->next;
4533 }
4534 }
4535
4536 gc_sweep ();
4537
4538 /* Clear the mark bits that we set in certain root slots. */
4539
4540 unmark_byte_stack ();
4541 VECTOR_UNMARK (&buffer_defaults);
4542 VECTOR_UNMARK (&buffer_local_symbols);
4543
4544#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES && 0
4545 dump_zombies ();
4546#endif
4547
4548 UNBLOCK_INPUT;
4549
4550 /* clear_marks (); */
4551 gc_in_progress = 0;
4552
4553 consing_since_gc = 0;
4554 if (gc_cons_threshold < 10000)
4555 gc_cons_threshold = 10000;
4556
4557 if (garbage_collection_messages)
4558 {
4559 if (message_p || minibuf_level > 0)
4560 restore_message ();
4561 else
4562 message1_nolog ("Garbage collecting...done");
4563 }
4564
4565 unbind_to (count, Qnil);
4566
4567 total[0] = Fcons (make_number (total_conses),
4568 make_number (total_free_conses));
4569 total[1] = Fcons (make_number (total_symbols),
4570 make_number (total_free_symbols));
4571 total[2] = Fcons (make_number (total_markers),
4572 make_number (total_free_markers));
4573 total[3] = make_number (total_string_size);
4574 total[4] = make_number (total_vector_size);
4575 total[5] = Fcons (make_number (total_floats),
4576 make_number (total_free_floats));
4577 total[6] = Fcons (make_number (total_intervals),
4578 make_number (total_free_intervals));
4579 total[7] = Fcons (make_number (total_strings),
4580 make_number (total_free_strings));
4581
4582#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
4583 {
4584 /* Compute average percentage of zombies. */
4585 double nlive = 0;
4586
4587 for (i = 0; i < 7; ++i)
4588 if (CONSP (total[i]))
4589 nlive += XFASTINT (XCAR (total[i]));
4590
4591 avg_live = (avg_live * ngcs + nlive) / (ngcs + 1);
4592 max_live = max (nlive, max_live);
4593 avg_zombies = (avg_zombies * ngcs + nzombies) / (ngcs + 1);
4594 max_zombies = max (nzombies, max_zombies);
4595 ++ngcs;
4596 }
4597#endif
4598
4599 if (!NILP (Vpost_gc_hook))
4600 {
4601 int count = inhibit_garbage_collection ();
4602 safe_run_hooks (Qpost_gc_hook);
4603 unbind_to (count, Qnil);
4604 }
4605
4606 /* Accumulate statistics. */
4607 EMACS_GET_TIME (t2);
4608 EMACS_SUB_TIME (t3, t2, t1);
4609 if (FLOATP (Vgc_elapsed))
4610 Vgc_elapsed = make_float (XFLOAT_DATA (Vgc_elapsed) +
4611 EMACS_SECS (t3) +
4612 EMACS_USECS (t3) * 1.0e-6);
4613 gcs_done++;
4614
4615 return Flist (sizeof total / sizeof *total, total);
4616}
4617
4618
4619/* Mark Lisp objects in glyph matrix MATRIX. Currently the
4620 only interesting objects referenced from glyphs are strings. */
4621
4622static void
4623mark_glyph_matrix (matrix)
4624 struct glyph_matrix *matrix;
4625{
4626 struct glyph_row *row = matrix->rows;
4627 struct glyph_row *end = row + matrix->nrows;
4628
4629 for (; row < end; ++row)
4630 if (row->enabled_p)
4631 {
4632 int area;
4633 for (area = LEFT_MARGIN_AREA; area < LAST_AREA; ++area)
4634 {
4635 struct glyph *glyph = row->glyphs[area];
4636 struct glyph *end_glyph = glyph + row->used[area];
4637
4638 for (; glyph < end_glyph; ++glyph)
4639 if (GC_STRINGP (glyph->object)
4640 && !STRING_MARKED_P (XSTRING (glyph->object)))
4641 mark_object (glyph->object);
4642 }
4643 }
4644}
4645
4646
4647/* Mark Lisp faces in the face cache C. */
4648
4649static void
4650mark_face_cache (c)
4651 struct face_cache *c;
4652{
4653 if (c)
4654 {
4655 int i, j;
4656 for (i = 0; i < c->used; ++i)
4657 {
4658 struct face *face = FACE_FROM_ID (c->f, i);
4659
4660 if (face)
4661 {
4662 for (j = 0; j < LFACE_VECTOR_SIZE; ++j)
4663 mark_object (face->lface[j]);
4664 }
4665 }
4666 }
4667}
4668
4669
4670#ifdef HAVE_WINDOW_SYSTEM
4671
4672/* Mark Lisp objects in image IMG. */
4673
4674static void
4675mark_image (img)
4676 struct image *img;
4677{
4678 mark_object (img->spec);
4679
4680 if (!NILP (img->data.lisp_val))
4681 mark_object (img->data.lisp_val);
4682}
4683
4684
4685/* Mark Lisp objects in image cache of frame F. It's done this way so
4686 that we don't have to include xterm.h here. */
4687
4688static void
4689mark_image_cache (f)
4690 struct frame *f;
4691{
4692 forall_images_in_image_cache (f, mark_image);
4693}
4694
4695#endif /* HAVE_X_WINDOWS */
4696
4697
4698\f
4699/* Mark reference to a Lisp_Object.
4700 If the object referred to has not been seen yet, recursively mark
4701 all the references contained in it. */
4702
4703#define LAST_MARKED_SIZE 500
4704Lisp_Object last_marked[LAST_MARKED_SIZE];
4705int last_marked_index;
4706
4707/* For debugging--call abort when we cdr down this many
4708 links of a list, in mark_object. In debugging,
4709 the call to abort will hit a breakpoint.
4710 Normally this is zero and the check never goes off. */
4711int mark_object_loop_halt;
4712
4713void
4714mark_object (arg)
4715 Lisp_Object arg;
4716{
4717 register Lisp_Object obj = arg;
4718#ifdef GC_CHECK_MARKED_OBJECTS
4719 void *po;
4720 struct mem_node *m;
4721#endif
4722 int cdr_count = 0;
4723
4724 loop:
4725
4726 if (PURE_POINTER_P (XPNTR (obj)))
4727 return;
4728
4729 last_marked[last_marked_index++] = obj;
4730 if (last_marked_index == LAST_MARKED_SIZE)
4731 last_marked_index = 0;
4732
4733 /* Perform some sanity checks on the objects marked here. Abort if
4734 we encounter an object we know is bogus. This increases GC time
4735 by ~80%, and requires compilation with GC_MARK_STACK != 0. */
4736#ifdef GC_CHECK_MARKED_OBJECTS
4737
4738 po = (void *) XPNTR (obj);
4739
4740 /* Check that the object pointed to by PO is known to be a Lisp
4741 structure allocated from the heap. */
4742#define CHECK_ALLOCATED() \
4743 do { \
4744 m = mem_find (po); \
4745 if (m == MEM_NIL) \
4746 abort (); \
4747 } while (0)
4748
4749 /* Check that the object pointed to by PO is live, using predicate
4750 function LIVEP. */
4751#define CHECK_LIVE(LIVEP) \
4752 do { \
4753 if (!LIVEP (m, po)) \
4754 abort (); \
4755 } while (0)
4756
4757 /* Check both of the above conditions. */
4758#define CHECK_ALLOCATED_AND_LIVE(LIVEP) \
4759 do { \
4760 CHECK_ALLOCATED (); \
4761 CHECK_LIVE (LIVEP); \
4762 } while (0) \
4763
4764#else /* not GC_CHECK_MARKED_OBJECTS */
4765
4766#define CHECK_ALLOCATED() (void) 0
4767#define CHECK_LIVE(LIVEP) (void) 0
4768#define CHECK_ALLOCATED_AND_LIVE(LIVEP) (void) 0
4769
4770#endif /* not GC_CHECK_MARKED_OBJECTS */
4771
4772 switch (SWITCH_ENUM_CAST (XGCTYPE (obj)))
4773 {
4774 case Lisp_String:
4775 {
4776 register struct Lisp_String *ptr = XSTRING (obj);
4777 CHECK_ALLOCATED_AND_LIVE (live_string_p);
4778 MARK_INTERVAL_TREE (ptr->intervals);
4779 MARK_STRING (ptr);
4780#ifdef GC_CHECK_STRING_BYTES
4781 /* Check that the string size recorded in the string is the
4782 same as the one recorded in the sdata structure. */
4783 CHECK_STRING_BYTES (ptr);
4784#endif /* GC_CHECK_STRING_BYTES */
4785 }
4786 break;
4787
4788 case Lisp_Vectorlike:
4789#ifdef GC_CHECK_MARKED_OBJECTS
4790 m = mem_find (po);
4791 if (m == MEM_NIL && !GC_SUBRP (obj)
4792 && po != &buffer_defaults
4793 && po != &buffer_local_symbols)
4794 abort ();
4795#endif /* GC_CHECK_MARKED_OBJECTS */
4796
4797 if (GC_BUFFERP (obj))
4798 {
4799 if (!VECTOR_MARKED_P (XBUFFER (obj)))
4800 {
4801#ifdef GC_CHECK_MARKED_OBJECTS
4802 if (po != &buffer_defaults && po != &buffer_local_symbols)
4803 {
4804 struct buffer *b;
4805 for (b = all_buffers; b && b != po; b = b->next)
4806 ;
4807 if (b == NULL)
4808 abort ();
4809 }
4810#endif /* GC_CHECK_MARKED_OBJECTS */
4811 mark_buffer (obj);
4812 }
4813 }
4814 else if (GC_SUBRP (obj))
4815 break;
4816 else if (GC_COMPILEDP (obj))
4817 /* We could treat this just like a vector, but it is better to
4818 save the COMPILED_CONSTANTS element for last and avoid
4819 recursion there. */
4820 {
4821 register struct Lisp_Vector *ptr = XVECTOR (obj);
4822 register EMACS_INT size = ptr->size;
4823 register int i;
4824
4825 if (VECTOR_MARKED_P (ptr))
4826 break; /* Already marked */
4827
4828 CHECK_LIVE (live_vector_p);
4829 VECTOR_MARK (ptr); /* Else mark it */
4830 size &= PSEUDOVECTOR_SIZE_MASK;
4831 for (i = 0; i < size; i++) /* and then mark its elements */
4832 {
4833 if (i != COMPILED_CONSTANTS)
4834 mark_object (ptr->contents[i]);
4835 }
4836 obj = ptr->contents[COMPILED_CONSTANTS];
4837 goto loop;
4838 }
4839 else if (GC_FRAMEP (obj))
4840 {
4841 register struct frame *ptr = XFRAME (obj);
4842
4843 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4844 VECTOR_MARK (ptr); /* Else mark it */
4845
4846 CHECK_LIVE (live_vector_p);
4847 mark_object (ptr->name);
4848 mark_object (ptr->icon_name);
4849 mark_object (ptr->title);
4850 mark_object (ptr->focus_frame);
4851 mark_object (ptr->selected_window);
4852 mark_object (ptr->minibuffer_window);
4853 mark_object (ptr->param_alist);
4854 mark_object (ptr->scroll_bars);
4855 mark_object (ptr->condemned_scroll_bars);
4856 mark_object (ptr->menu_bar_items);
4857 mark_object (ptr->face_alist);
4858 mark_object (ptr->menu_bar_vector);
4859 mark_object (ptr->buffer_predicate);
4860 mark_object (ptr->buffer_list);
4861 mark_object (ptr->menu_bar_window);
4862 mark_object (ptr->tool_bar_window);
4863 mark_face_cache (ptr->face_cache);
4864#ifdef HAVE_WINDOW_SYSTEM
4865 mark_image_cache (ptr);
4866 mark_object (ptr->tool_bar_items);
4867 mark_object (ptr->desired_tool_bar_string);
4868 mark_object (ptr->current_tool_bar_string);
4869#endif /* HAVE_WINDOW_SYSTEM */
4870 }
4871 else if (GC_BOOL_VECTOR_P (obj))
4872 {
4873 register struct Lisp_Vector *ptr = XVECTOR (obj);
4874
4875 if (VECTOR_MARKED_P (ptr))
4876 break; /* Already marked */
4877 CHECK_LIVE (live_vector_p);
4878 VECTOR_MARK (ptr); /* Else mark it */
4879 }
4880 else if (GC_WINDOWP (obj))
4881 {
4882 register struct Lisp_Vector *ptr = XVECTOR (obj);
4883 struct window *w = XWINDOW (obj);
4884 register int i;
4885
4886 /* Stop if already marked. */
4887 if (VECTOR_MARKED_P (ptr))
4888 break;
4889
4890 /* Mark it. */
4891 CHECK_LIVE (live_vector_p);
4892 VECTOR_MARK (ptr);
4893
4894 /* There is no Lisp data above The member CURRENT_MATRIX in
4895 struct WINDOW. Stop marking when that slot is reached. */
4896 for (i = 0;
4897 (char *) &ptr->contents[i] < (char *) &w->current_matrix;
4898 i++)
4899 mark_object (ptr->contents[i]);
4900
4901 /* Mark glyphs for leaf windows. Marking window matrices is
4902 sufficient because frame matrices use the same glyph
4903 memory. */
4904 if (NILP (w->hchild)
4905 && NILP (w->vchild)
4906 && w->current_matrix)
4907 {
4908 mark_glyph_matrix (w->current_matrix);
4909 mark_glyph_matrix (w->desired_matrix);
4910 }
4911 }
4912 else if (GC_HASH_TABLE_P (obj))
4913 {
4914 struct Lisp_Hash_Table *h = XHASH_TABLE (obj);
4915
4916 /* Stop if already marked. */
4917 if (VECTOR_MARKED_P (h))
4918 break;
4919
4920 /* Mark it. */
4921 CHECK_LIVE (live_vector_p);
4922 VECTOR_MARK (h);
4923
4924 /* Mark contents. */
4925 /* Do not mark next_free or next_weak.
4926 Being in the next_weak chain
4927 should not keep the hash table alive.
4928 No need to mark `count' since it is an integer. */
4929 mark_object (h->test);
4930 mark_object (h->weak);
4931 mark_object (h->rehash_size);
4932 mark_object (h->rehash_threshold);
4933 mark_object (h->hash);
4934 mark_object (h->next);
4935 mark_object (h->index);
4936 mark_object (h->user_hash_function);
4937 mark_object (h->user_cmp_function);
4938
4939 /* If hash table is not weak, mark all keys and values.
4940 For weak tables, mark only the vector. */
4941 if (GC_NILP (h->weak))
4942 mark_object (h->key_and_value);
4943 else
4944 VECTOR_MARK (XVECTOR (h->key_and_value));
4945 }
4946 else
4947 {
4948 register struct Lisp_Vector *ptr = XVECTOR (obj);
4949 register EMACS_INT size = ptr->size;
4950 register int i;
4951
4952 if (VECTOR_MARKED_P (ptr)) break; /* Already marked */
4953 CHECK_LIVE (live_vector_p);
4954 VECTOR_MARK (ptr); /* Else mark it */
4955 if (size & PSEUDOVECTOR_FLAG)
4956 size &= PSEUDOVECTOR_SIZE_MASK;
4957
4958 for (i = 0; i < size; i++) /* and then mark its elements */
4959 mark_object (ptr->contents[i]);
4960 }
4961 break;
4962
4963 case Lisp_Symbol:
4964 {
4965 register struct Lisp_Symbol *ptr = XSYMBOL (obj);
4966 struct Lisp_Symbol *ptrx;
4967
4968 if (ptr->gcmarkbit) break;
4969 CHECK_ALLOCATED_AND_LIVE (live_symbol_p);
4970 ptr->gcmarkbit = 1;
4971 mark_object (ptr->value);
4972 mark_object (ptr->function);
4973 mark_object (ptr->plist);
4974
4975 if (!PURE_POINTER_P (XSTRING (ptr->xname)))
4976 MARK_STRING (XSTRING (ptr->xname));
4977 MARK_INTERVAL_TREE (STRING_INTERVALS (ptr->xname));
4978
4979 /* Note that we do not mark the obarray of the symbol.
4980 It is safe not to do so because nothing accesses that
4981 slot except to check whether it is nil. */
4982 ptr = ptr->next;
4983 if (ptr)
4984 {
4985 ptrx = ptr; /* Use of ptrx avoids compiler bug on Sun */
4986 XSETSYMBOL (obj, ptrx);
4987 goto loop;
4988 }
4989 }
4990 break;
4991
4992 case Lisp_Misc:
4993 CHECK_ALLOCATED_AND_LIVE (live_misc_p);
4994 if (XMARKER (obj)->gcmarkbit)
4995 break;
4996 XMARKER (obj)->gcmarkbit = 1;
4997
4998 switch (XMISCTYPE (obj))
4999 {
5000 case Lisp_Misc_Buffer_Local_Value:
5001 case Lisp_Misc_Some_Buffer_Local_Value:
5002 {
5003 register struct Lisp_Buffer_Local_Value *ptr
5004 = XBUFFER_LOCAL_VALUE (obj);
5005 /* If the cdr is nil, avoid recursion for the car. */
5006 if (EQ (ptr->cdr, Qnil))
5007 {
5008 obj = ptr->realvalue;
5009 goto loop;
5010 }
5011 mark_object (ptr->realvalue);
5012 mark_object (ptr->buffer);
5013 mark_object (ptr->frame);
5014 obj = ptr->cdr;
5015 goto loop;
5016 }
5017
5018 case Lisp_Misc_Marker:
5019 /* DO NOT mark thru the marker's chain.
5020 The buffer's markers chain does not preserve markers from gc;
5021 instead, markers are removed from the chain when freed by gc. */
5022 break;
5023
5024 case Lisp_Misc_Intfwd:
5025 case Lisp_Misc_Boolfwd:
5026 case Lisp_Misc_Objfwd:
5027 case Lisp_Misc_Buffer_Objfwd:
5028 case Lisp_Misc_Kboard_Objfwd:
5029 /* Don't bother with Lisp_Buffer_Objfwd,
5030 since all markable slots in current buffer marked anyway. */
5031 /* Don't need to do Lisp_Objfwd, since the places they point
5032 are protected with staticpro. */
5033 break;
5034
5035 case Lisp_Misc_Save_Value:
5036#if GC_MARK_STACK
5037 {
5038 register struct Lisp_Save_Value *ptr = XSAVE_VALUE (obj);
5039 /* If DOGC is set, POINTER is the address of a memory
5040 area containing INTEGER potential Lisp_Objects. */
5041 if (ptr->dogc)
5042 {
5043 Lisp_Object *p = (Lisp_Object *) ptr->pointer;
5044 int nelt;
5045 for (nelt = ptr->integer; nelt > 0; nelt--, p++)
5046 mark_maybe_object (*p);
5047 }
5048 }
5049#endif
5050 break;
5051
5052 case Lisp_Misc_Overlay:
5053 {
5054 struct Lisp_Overlay *ptr = XOVERLAY (obj);
5055 mark_object (ptr->start);
5056 mark_object (ptr->end);
5057 mark_object (ptr->plist);
5058 if (ptr->next)
5059 {
5060 XSETMISC (obj, ptr->next);
5061 goto loop;
5062 }
5063 }
5064 break;
5065
5066 default:
5067 abort ();
5068 }
5069 break;
5070
5071 case Lisp_Cons:
5072 {
5073 register struct Lisp_Cons *ptr = XCONS (obj);
5074 if (CONS_MARKED_P (ptr)) break;
5075 CHECK_ALLOCATED_AND_LIVE (live_cons_p);
5076 CONS_MARK (ptr);
5077 /* If the cdr is nil, avoid recursion for the car. */
5078 if (EQ (ptr->cdr, Qnil))
5079 {
5080 obj = ptr->car;
5081 cdr_count = 0;
5082 goto loop;
5083 }
5084 mark_object (ptr->car);
5085 obj = ptr->cdr;
5086 cdr_count++;
5087 if (cdr_count == mark_object_loop_halt)
5088 abort ();
5089 goto loop;
5090 }
5091
5092 case Lisp_Float:
5093 CHECK_ALLOCATED_AND_LIVE (live_float_p);
5094 FLOAT_MARK (XFLOAT (obj));
5095 break;
5096
5097 case Lisp_Int:
5098 break;
5099
5100 default:
5101 abort ();
5102 }
5103
5104#undef CHECK_LIVE
5105#undef CHECK_ALLOCATED
5106#undef CHECK_ALLOCATED_AND_LIVE
5107}
5108
5109/* Mark the pointers in a buffer structure. */
5110
5111static void
5112mark_buffer (buf)
5113 Lisp_Object buf;
5114{
5115 register struct buffer *buffer = XBUFFER (buf);
5116 register Lisp_Object *ptr, tmp;
5117 Lisp_Object base_buffer;
5118
5119 VECTOR_MARK (buffer);
5120
5121 MARK_INTERVAL_TREE (BUF_INTERVALS (buffer));
5122
5123 /* For now, we just don't mark the undo_list. It's done later in
5124 a special way just before the sweep phase, and after stripping
5125 some of its elements that are not needed any more. */
5126
5127 if (buffer->overlays_before)
5128 {
5129 XSETMISC (tmp, buffer->overlays_before);
5130 mark_object (tmp);
5131 }
5132 if (buffer->overlays_after)
5133 {
5134 XSETMISC (tmp, buffer->overlays_after);
5135 mark_object (tmp);
5136 }
5137
5138 for (ptr = &buffer->name;
5139 (char *)ptr < (char *)buffer + sizeof (struct buffer);
5140 ptr++)
5141 mark_object (*ptr);
5142
5143 /* If this is an indirect buffer, mark its base buffer. */
5144 if (buffer->base_buffer && !VECTOR_MARKED_P (buffer->base_buffer))
5145 {
5146 XSETBUFFER (base_buffer, buffer->base_buffer);
5147 mark_buffer (base_buffer);
5148 }
5149}
5150
5151
5152/* Value is non-zero if OBJ will survive the current GC because it's
5153 either marked or does not need to be marked to survive. */
5154
5155int
5156survives_gc_p (obj)
5157 Lisp_Object obj;
5158{
5159 int survives_p;
5160
5161 switch (XGCTYPE (obj))
5162 {
5163 case Lisp_Int:
5164 survives_p = 1;
5165 break;
5166
5167 case Lisp_Symbol:
5168 survives_p = XSYMBOL (obj)->gcmarkbit;
5169 break;
5170
5171 case Lisp_Misc:
5172 survives_p = XMARKER (obj)->gcmarkbit;
5173 break;
5174
5175 case Lisp_String:
5176 survives_p = STRING_MARKED_P (XSTRING (obj));
5177 break;
5178
5179 case Lisp_Vectorlike:
5180 survives_p = GC_SUBRP (obj) || VECTOR_MARKED_P (XVECTOR (obj));
5181 break;
5182
5183 case Lisp_Cons:
5184 survives_p = CONS_MARKED_P (XCONS (obj));
5185 break;
5186
5187 case Lisp_Float:
5188 survives_p = FLOAT_MARKED_P (XFLOAT (obj));
5189 break;
5190
5191 default:
5192 abort ();
5193 }
5194
5195 return survives_p || PURE_POINTER_P ((void *) XPNTR (obj));
5196}
5197
5198
5199\f
5200/* Sweep: find all structures not marked, and free them. */
5201
5202static void
5203gc_sweep ()
5204{
5205 /* Remove or mark entries in weak hash tables.
5206 This must be done before any object is unmarked. */
5207 sweep_weak_hash_tables ();
5208
5209 sweep_strings ();
5210#ifdef GC_CHECK_STRING_BYTES
5211 if (!noninteractive)
5212 check_string_bytes (1);
5213#endif
5214
5215 /* Put all unmarked conses on free list */
5216 {
5217 register struct cons_block *cblk;
5218 struct cons_block **cprev = &cons_block;
5219 register int lim = cons_block_index;
5220 register int num_free = 0, num_used = 0;
5221
5222 cons_free_list = 0;
5223
5224 for (cblk = cons_block; cblk; cblk = *cprev)
5225 {
5226 register int i;
5227 int this_free = 0;
5228 for (i = 0; i < lim; i++)
5229 if (!CONS_MARKED_P (&cblk->conses[i]))
5230 {
5231 this_free++;
5232 *(struct Lisp_Cons **)&cblk->conses[i].cdr = cons_free_list;
5233 cons_free_list = &cblk->conses[i];
5234#if GC_MARK_STACK
5235 cons_free_list->car = Vdead;
5236#endif
5237 }
5238 else
5239 {
5240 num_used++;
5241 CONS_UNMARK (&cblk->conses[i]);
5242 }
5243 lim = CONS_BLOCK_SIZE;
5244 /* If this block contains only free conses and we have already
5245 seen more than two blocks worth of free conses then deallocate
5246 this block. */
5247 if (this_free == CONS_BLOCK_SIZE && num_free > CONS_BLOCK_SIZE)
5248 {
5249 *cprev = cblk->next;
5250 /* Unhook from the free list. */
5251 cons_free_list = *(struct Lisp_Cons **) &cblk->conses[0].cdr;
5252 lisp_align_free (cblk);
5253 n_cons_blocks--;
5254 }
5255 else
5256 {
5257 num_free += this_free;
5258 cprev = &cblk->next;
5259 }
5260 }
5261 total_conses = num_used;
5262 total_free_conses = num_free;
5263 }
5264
5265 /* Put all unmarked floats on free list */
5266 {
5267 register struct float_block *fblk;
5268 struct float_block **fprev = &float_block;
5269 register int lim = float_block_index;
5270 register int num_free = 0, num_used = 0;
5271
5272 float_free_list = 0;
5273
5274 for (fblk = float_block; fblk; fblk = *fprev)
5275 {
5276 register int i;
5277 int this_free = 0;
5278 for (i = 0; i < lim; i++)
5279 if (!FLOAT_MARKED_P (&fblk->floats[i]))
5280 {
5281 this_free++;
5282 *(struct Lisp_Float **)&fblk->floats[i].data = float_free_list;
5283 float_free_list = &fblk->floats[i];
5284 }
5285 else
5286 {
5287 num_used++;
5288 FLOAT_UNMARK (&fblk->floats[i]);
5289 }
5290 lim = FLOAT_BLOCK_SIZE;
5291 /* If this block contains only free floats and we have already
5292 seen more than two blocks worth of free floats then deallocate
5293 this block. */
5294 if (this_free == FLOAT_BLOCK_SIZE && num_free > FLOAT_BLOCK_SIZE)
5295 {
5296 *fprev = fblk->next;
5297 /* Unhook from the free list. */
5298 float_free_list = *(struct Lisp_Float **) &fblk->floats[0].data;
5299 lisp_align_free (fblk);
5300 n_float_blocks--;
5301 }
5302 else
5303 {
5304 num_free += this_free;
5305 fprev = &fblk->next;
5306 }
5307 }
5308 total_floats = num_used;
5309 total_free_floats = num_free;
5310 }
5311
5312 /* Put all unmarked intervals on free list */
5313 {
5314 register struct interval_block *iblk;
5315 struct interval_block **iprev = &interval_block;
5316 register int lim = interval_block_index;
5317 register int num_free = 0, num_used = 0;
5318
5319 interval_free_list = 0;
5320
5321 for (iblk = interval_block; iblk; iblk = *iprev)
5322 {
5323 register int i;
5324 int this_free = 0;
5325
5326 for (i = 0; i < lim; i++)
5327 {
5328 if (!iblk->intervals[i].gcmarkbit)
5329 {
5330 SET_INTERVAL_PARENT (&iblk->intervals[i], interval_free_list);
5331 interval_free_list = &iblk->intervals[i];
5332 this_free++;
5333 }
5334 else
5335 {
5336 num_used++;
5337 iblk->intervals[i].gcmarkbit = 0;
5338 }
5339 }
5340 lim = INTERVAL_BLOCK_SIZE;
5341 /* If this block contains only free intervals and we have already
5342 seen more than two blocks worth of free intervals then
5343 deallocate this block. */
5344 if (this_free == INTERVAL_BLOCK_SIZE && num_free > INTERVAL_BLOCK_SIZE)
5345 {
5346 *iprev = iblk->next;
5347 /* Unhook from the free list. */
5348 interval_free_list = INTERVAL_PARENT (&iblk->intervals[0]);
5349 lisp_free (iblk);
5350 n_interval_blocks--;
5351 }
5352 else
5353 {
5354 num_free += this_free;
5355 iprev = &iblk->next;
5356 }
5357 }
5358 total_intervals = num_used;
5359 total_free_intervals = num_free;
5360 }
5361
5362 /* Put all unmarked symbols on free list */
5363 {
5364 register struct symbol_block *sblk;
5365 struct symbol_block **sprev = &symbol_block;
5366 register int lim = symbol_block_index;
5367 register int num_free = 0, num_used = 0;
5368
5369 symbol_free_list = NULL;
5370
5371 for (sblk = symbol_block; sblk; sblk = *sprev)
5372 {
5373 int this_free = 0;
5374 struct Lisp_Symbol *sym = sblk->symbols;
5375 struct Lisp_Symbol *end = sym + lim;
5376
5377 for (; sym < end; ++sym)
5378 {
5379 /* Check if the symbol was created during loadup. In such a case
5380 it might be pointed to by pure bytecode which we don't trace,
5381 so we conservatively assume that it is live. */
5382 int pure_p = PURE_POINTER_P (XSTRING (sym->xname));
5383
5384 if (!sym->gcmarkbit && !pure_p)
5385 {
5386 *(struct Lisp_Symbol **) &sym->value = symbol_free_list;
5387 symbol_free_list = sym;
5388#if GC_MARK_STACK
5389 symbol_free_list->function = Vdead;
5390#endif
5391 ++this_free;
5392 }
5393 else
5394 {
5395 ++num_used;
5396 if (!pure_p)
5397 UNMARK_STRING (XSTRING (sym->xname));
5398 sym->gcmarkbit = 0;
5399 }
5400 }
5401
5402 lim = SYMBOL_BLOCK_SIZE;
5403 /* If this block contains only free symbols and we have already
5404 seen more than two blocks worth of free symbols then deallocate
5405 this block. */
5406 if (this_free == SYMBOL_BLOCK_SIZE && num_free > SYMBOL_BLOCK_SIZE)
5407 {
5408 *sprev = sblk->next;
5409 /* Unhook from the free list. */
5410 symbol_free_list = *(struct Lisp_Symbol **)&sblk->symbols[0].value;
5411 lisp_free (sblk);
5412 n_symbol_blocks--;
5413 }
5414 else
5415 {
5416 num_free += this_free;
5417 sprev = &sblk->next;
5418 }
5419 }
5420 total_symbols = num_used;
5421 total_free_symbols = num_free;
5422 }
5423
5424 /* Put all unmarked misc's on free list.
5425 For a marker, first unchain it from the buffer it points into. */
5426 {
5427 register struct marker_block *mblk;
5428 struct marker_block **mprev = &marker_block;
5429 register int lim = marker_block_index;
5430 register int num_free = 0, num_used = 0;
5431
5432 marker_free_list = 0;
5433
5434 for (mblk = marker_block; mblk; mblk = *mprev)
5435 {
5436 register int i;
5437 int this_free = 0;
5438
5439 for (i = 0; i < lim; i++)
5440 {
5441 if (!mblk->markers[i].u_marker.gcmarkbit)
5442 {
5443 if (mblk->markers[i].u_marker.type == Lisp_Misc_Marker)
5444 unchain_marker (&mblk->markers[i].u_marker);
5445 /* Set the type of the freed object to Lisp_Misc_Free.
5446 We could leave the type alone, since nobody checks it,
5447 but this might catch bugs faster. */
5448 mblk->markers[i].u_marker.type = Lisp_Misc_Free;
5449 mblk->markers[i].u_free.chain = marker_free_list;
5450 marker_free_list = &mblk->markers[i];
5451 this_free++;
5452 }
5453 else
5454 {
5455 num_used++;
5456 mblk->markers[i].u_marker.gcmarkbit = 0;
5457 }
5458 }
5459 lim = MARKER_BLOCK_SIZE;
5460 /* If this block contains only free markers and we have already
5461 seen more than two blocks worth of free markers then deallocate
5462 this block. */
5463 if (this_free == MARKER_BLOCK_SIZE && num_free > MARKER_BLOCK_SIZE)
5464 {
5465 *mprev = mblk->next;
5466 /* Unhook from the free list. */
5467 marker_free_list = mblk->markers[0].u_free.chain;
5468 lisp_free (mblk);
5469 n_marker_blocks--;
5470 }
5471 else
5472 {
5473 num_free += this_free;
5474 mprev = &mblk->next;
5475 }
5476 }
5477
5478 total_markers = num_used;
5479 total_free_markers = num_free;
5480 }
5481
5482 /* Free all unmarked buffers */
5483 {
5484 register struct buffer *buffer = all_buffers, *prev = 0, *next;
5485
5486 while (buffer)
5487 if (!VECTOR_MARKED_P (buffer))
5488 {
5489 if (prev)
5490 prev->next = buffer->next;
5491 else
5492 all_buffers = buffer->next;
5493 next = buffer->next;
5494 lisp_free (buffer);
5495 buffer = next;
5496 }
5497 else
5498 {
5499 VECTOR_UNMARK (buffer);
5500 UNMARK_BALANCE_INTERVALS (BUF_INTERVALS (buffer));
5501 prev = buffer, buffer = buffer->next;
5502 }
5503 }
5504
5505 /* Free all unmarked vectors */
5506 {
5507 register struct Lisp_Vector *vector = all_vectors, *prev = 0, *next;
5508 total_vector_size = 0;
5509
5510 while (vector)
5511 if (!VECTOR_MARKED_P (vector))
5512 {
5513 if (prev)
5514 prev->next = vector->next;
5515 else
5516 all_vectors = vector->next;
5517 next = vector->next;
5518 lisp_free (vector);
5519 n_vectors--;
5520 vector = next;
5521
5522 }
5523 else
5524 {
5525 VECTOR_UNMARK (vector);
5526 if (vector->size & PSEUDOVECTOR_FLAG)
5527 total_vector_size += (PSEUDOVECTOR_SIZE_MASK & vector->size);
5528 else
5529 total_vector_size += vector->size;
5530 prev = vector, vector = vector->next;
5531 }
5532 }
5533
5534#ifdef GC_CHECK_STRING_BYTES
5535 if (!noninteractive)
5536 check_string_bytes (1);
5537#endif
5538}
5539
5540
5541
5542\f
5543/* Debugging aids. */
5544
5545DEFUN ("memory-limit", Fmemory_limit, Smemory_limit, 0, 0, 0,
5546 doc: /* Return the address of the last byte Emacs has allocated, divided by 1024.
5547This may be helpful in debugging Emacs's memory usage.
5548We divide the value by 1024 to make sure it fits in a Lisp integer. */)
5549 ()
5550{
5551 Lisp_Object end;
5552
5553 XSETINT (end, (EMACS_INT) sbrk (0) / 1024);
5554
5555 return end;
5556}
5557
5558DEFUN ("memory-use-counts", Fmemory_use_counts, Smemory_use_counts, 0, 0, 0,
5559 doc: /* Return a list of counters that measure how much consing there has been.
5560Each of these counters increments for a certain kind of object.
5561The counters wrap around from the largest positive integer to zero.
5562Garbage collection does not decrease them.
5563The elements of the value are as follows:
5564 (CONSES FLOATS VECTOR-CELLS SYMBOLS STRING-CHARS MISCS INTERVALS STRINGS)
5565All are in units of 1 = one object consed
5566except for VECTOR-CELLS and STRING-CHARS, which count the total length of
5567objects consed.
5568MISCS include overlays, markers, and some internal types.
5569Frames, windows, buffers, and subprocesses count as vectors
5570 (but the contents of a buffer's text do not count here). */)
5571 ()
5572{
5573 Lisp_Object consed[8];
5574
5575 consed[0] = make_number (min (MOST_POSITIVE_FIXNUM, cons_cells_consed));
5576 consed[1] = make_number (min (MOST_POSITIVE_FIXNUM, floats_consed));
5577 consed[2] = make_number (min (MOST_POSITIVE_FIXNUM, vector_cells_consed));
5578 consed[3] = make_number (min (MOST_POSITIVE_FIXNUM, symbols_consed));
5579 consed[4] = make_number (min (MOST_POSITIVE_FIXNUM, string_chars_consed));
5580 consed[5] = make_number (min (MOST_POSITIVE_FIXNUM, misc_objects_consed));
5581 consed[6] = make_number (min (MOST_POSITIVE_FIXNUM, intervals_consed));
5582 consed[7] = make_number (min (MOST_POSITIVE_FIXNUM, strings_consed));
5583
5584 return Flist (8, consed);
5585}
5586
5587int suppress_checking;
5588void
5589die (msg, file, line)
5590 const char *msg;
5591 const char *file;
5592 int line;
5593{
5594 fprintf (stderr, "\r\nEmacs fatal error: %s:%d: %s\r\n",
5595 file, line, msg);
5596 abort ();
5597}
5598\f
5599/* Initialization */
5600
5601void
5602init_alloc_once ()
5603{
5604 /* Used to do Vpurify_flag = Qt here, but Qt isn't set up yet! */
5605 purebeg = PUREBEG;
5606 pure_size = PURESIZE;
5607 pure_bytes_used = 0;
5608 pure_bytes_used_before_overflow = 0;
5609
5610 /* Initialize the list of free aligned blocks. */
5611 free_ablock = NULL;
5612
5613#if GC_MARK_STACK || defined GC_MALLOC_CHECK
5614 mem_init ();
5615 Vdead = make_pure_string ("DEAD", 4, 4, 0);
5616#endif
5617
5618 all_vectors = 0;
5619 ignore_warnings = 1;
5620#ifdef DOUG_LEA_MALLOC
5621 mallopt (M_TRIM_THRESHOLD, 128*1024); /* trim threshold */
5622 mallopt (M_MMAP_THRESHOLD, 64*1024); /* mmap threshold */
5623 mallopt (M_MMAP_MAX, MMAP_MAX_AREAS); /* max. number of mmap'ed areas */
5624#endif
5625 init_strings ();
5626 init_cons ();
5627 init_symbol ();
5628 init_marker ();
5629 init_float ();
5630 init_intervals ();
5631
5632#ifdef REL_ALLOC
5633 malloc_hysteresis = 32;
5634#else
5635 malloc_hysteresis = 0;
5636#endif
5637
5638 spare_memory = (char *) malloc (SPARE_MEMORY);
5639
5640 ignore_warnings = 0;
5641 gcprolist = 0;
5642 byte_stack_list = 0;
5643 staticidx = 0;
5644 consing_since_gc = 0;
5645 gc_cons_threshold = 100000 * sizeof (Lisp_Object);
5646#ifdef VIRT_ADDR_VARIES
5647 malloc_sbrk_unused = 1<<22; /* A large number */
5648 malloc_sbrk_used = 100000; /* as reasonable as any number */
5649#endif /* VIRT_ADDR_VARIES */
5650}
5651
5652void
5653init_alloc ()
5654{
5655 gcprolist = 0;
5656 byte_stack_list = 0;
5657#if GC_MARK_STACK
5658#if !defined GC_SAVE_REGISTERS_ON_STACK && !defined GC_SETJMP_WORKS
5659 setjmp_tested_p = longjmps_done = 0;
5660#endif
5661#endif
5662 Vgc_elapsed = make_float (0.0);
5663 gcs_done = 0;
5664}
5665
5666void
5667syms_of_alloc ()
5668{
5669 DEFVAR_INT ("gc-cons-threshold", &gc_cons_threshold,
5670 doc: /* *Number of bytes of consing between garbage collections.
5671Garbage collection can happen automatically once this many bytes have been
5672allocated since the last garbage collection. All data types count.
5673
5674Garbage collection happens automatically only when `eval' is called.
5675
5676By binding this temporarily to a large number, you can effectively
5677prevent garbage collection during a part of the program. */);
5678
5679 DEFVAR_INT ("pure-bytes-used", &pure_bytes_used,
5680 doc: /* Number of bytes of sharable Lisp data allocated so far. */);
5681
5682 DEFVAR_INT ("cons-cells-consed", &cons_cells_consed,
5683 doc: /* Number of cons cells that have been consed so far. */);
5684
5685 DEFVAR_INT ("floats-consed", &floats_consed,
5686 doc: /* Number of floats that have been consed so far. */);
5687
5688 DEFVAR_INT ("vector-cells-consed", &vector_cells_consed,
5689 doc: /* Number of vector cells that have been consed so far. */);
5690
5691 DEFVAR_INT ("symbols-consed", &symbols_consed,
5692 doc: /* Number of symbols that have been consed so far. */);
5693
5694 DEFVAR_INT ("string-chars-consed", &string_chars_consed,
5695 doc: /* Number of string characters that have been consed so far. */);
5696
5697 DEFVAR_INT ("misc-objects-consed", &misc_objects_consed,
5698 doc: /* Number of miscellaneous objects that have been consed so far. */);
5699
5700 DEFVAR_INT ("intervals-consed", &intervals_consed,
5701 doc: /* Number of intervals that have been consed so far. */);
5702
5703 DEFVAR_INT ("strings-consed", &strings_consed,
5704 doc: /* Number of strings that have been consed so far. */);
5705
5706 DEFVAR_LISP ("purify-flag", &Vpurify_flag,
5707 doc: /* Non-nil means loading Lisp code in order to dump an executable.
5708This means that certain objects should be allocated in shared (pure) space. */);
5709
5710 DEFVAR_INT ("undo-limit", &undo_limit,
5711 doc: /* Keep no more undo information once it exceeds this size.
5712This limit is applied when garbage collection happens.
5713The size is counted as the number of bytes occupied,
5714which includes both saved text and other data. */);
5715 undo_limit = 20000;
5716
5717 DEFVAR_INT ("undo-strong-limit", &undo_strong_limit,
5718 doc: /* Don't keep more than this much size of undo information.
5719A previous command which pushes the undo list past this size
5720is entirely forgotten when GC happens.
5721The size is counted as the number of bytes occupied,
5722which includes both saved text and other data. */);
5723 undo_strong_limit = 30000;
5724
5725 DEFVAR_INT ("undo-outer-limit", &undo_outer_limit,
5726 doc: /* Don't keep more than this much size of undo information.
5727If the current command has produced more than this much undo information,
5728GC discards it. This is a last-ditch limit to prevent memory overflow.
5729The size is counted as the number of bytes occupied,
5730which includes both saved text and other data. */);
5731 undo_outer_limit = 300000;
5732
5733 DEFVAR_BOOL ("garbage-collection-messages", &garbage_collection_messages,
5734 doc: /* Non-nil means display messages at start and end of garbage collection. */);
5735 garbage_collection_messages = 0;
5736
5737 DEFVAR_LISP ("post-gc-hook", &Vpost_gc_hook,
5738 doc: /* Hook run after garbage collection has finished. */);
5739 Vpost_gc_hook = Qnil;
5740 Qpost_gc_hook = intern ("post-gc-hook");
5741 staticpro (&Qpost_gc_hook);
5742
5743 DEFVAR_LISP ("memory-signal-data", &Vmemory_signal_data,
5744 doc: /* Precomputed `signal' argument for memory-full error. */);
5745 /* We build this in advance because if we wait until we need it, we might
5746 not be able to allocate the memory to hold it. */
5747 Vmemory_signal_data
5748 = list2 (Qerror,
5749 build_string ("Memory exhausted--use M-x save-some-buffers then exit and restart Emacs"));
5750
5751 DEFVAR_LISP ("memory-full", &Vmemory_full,
5752 doc: /* Non-nil means we are handling a memory-full error. */);
5753 Vmemory_full = Qnil;
5754
5755 staticpro (&Qgc_cons_threshold);
5756 Qgc_cons_threshold = intern ("gc-cons-threshold");
5757
5758 staticpro (&Qchar_table_extra_slots);
5759 Qchar_table_extra_slots = intern ("char-table-extra-slots");
5760
5761 DEFVAR_LISP ("gc-elapsed", &Vgc_elapsed,
5762 doc: /* Accumulated time elapsed in garbage collections.
5763The time is in seconds as a floating point value. */);
5764 DEFVAR_INT ("gcs-done", &gcs_done,
5765 doc: /* Accumulated number of garbage collections done. */);
5766
5767 defsubr (&Scons);
5768 defsubr (&Slist);
5769 defsubr (&Svector);
5770 defsubr (&Smake_byte_code);
5771 defsubr (&Smake_list);
5772 defsubr (&Smake_vector);
5773 defsubr (&Smake_char_table);
5774 defsubr (&Smake_string);
5775 defsubr (&Smake_bool_vector);
5776 defsubr (&Smake_symbol);
5777 defsubr (&Smake_marker);
5778 defsubr (&Spurecopy);
5779 defsubr (&Sgarbage_collect);
5780 defsubr (&Smemory_limit);
5781 defsubr (&Smemory_use_counts);
5782
5783#if GC_MARK_STACK == GC_USE_GCPROS_CHECK_ZOMBIES
5784 defsubr (&Sgc_status);
5785#endif
5786}
5787
5788/* arch-tag: 6695ca10-e3c5-4c2c-8bc3-ed26a7dda857
5789 (do not change this comment) */