(get_keyelt): Only eval the filter if `autoload' is set.
[bpt/emacs.git] / src / keymap.c
... / ...
CommitLineData
1/* Manipulation of keymaps
2 Copyright (C) 1985, 86,87,88,93,94,95,98,99, 2000
3 Free Software Foundation, Inc.
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
9the Free Software Foundation; either version 2, or (at your option)
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
19the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
20Boston, MA 02111-1307, USA. */
21
22
23#include <config.h>
24#include <stdio.h>
25#include "lisp.h"
26#include "commands.h"
27#include "buffer.h"
28#include "charset.h"
29#include "keyboard.h"
30#include "termhooks.h"
31#include "blockinput.h"
32#include "puresize.h"
33#include "intervals.h"
34
35#define min(a, b) ((a) < (b) ? (a) : (b))
36
37/* The number of elements in keymap vectors. */
38#define DENSE_TABLE_SIZE (0200)
39
40/* Actually allocate storage for these variables */
41
42Lisp_Object current_global_map; /* Current global keymap */
43
44Lisp_Object global_map; /* default global key bindings */
45
46Lisp_Object meta_map; /* The keymap used for globally bound
47 ESC-prefixed default commands */
48
49Lisp_Object control_x_map; /* The keymap used for globally bound
50 C-x-prefixed default commands */
51
52/* was MinibufLocalMap */
53Lisp_Object Vminibuffer_local_map;
54 /* The keymap used by the minibuf for local
55 bindings when spaces are allowed in the
56 minibuf */
57
58/* was MinibufLocalNSMap */
59Lisp_Object Vminibuffer_local_ns_map;
60 /* The keymap used by the minibuf for local
61 bindings when spaces are not encouraged
62 in the minibuf */
63
64/* keymap used for minibuffers when doing completion */
65/* was MinibufLocalCompletionMap */
66Lisp_Object Vminibuffer_local_completion_map;
67
68/* keymap used for minibuffers when doing completion and require a match */
69/* was MinibufLocalMustMatchMap */
70Lisp_Object Vminibuffer_local_must_match_map;
71
72/* Alist of minor mode variables and keymaps. */
73Lisp_Object Vminor_mode_map_alist;
74
75/* Alist of major-mode-specific overrides for
76 minor mode variables and keymaps. */
77Lisp_Object Vminor_mode_overriding_map_alist;
78
79/* Keymap mapping ASCII function key sequences onto their preferred forms.
80 Initialized by the terminal-specific lisp files. See DEFVAR for more
81 documentation. */
82Lisp_Object Vfunction_key_map;
83
84/* Keymap mapping ASCII function key sequences onto their preferred forms. */
85Lisp_Object Vkey_translation_map;
86
87/* A list of all commands given new bindings since a certain time
88 when nil was stored here.
89 This is used to speed up recomputation of menu key equivalents
90 when Emacs starts up. t means don't record anything here. */
91Lisp_Object Vdefine_key_rebound_commands;
92
93Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item;
94
95/* A char with the CHAR_META bit set in a vector or the 0200 bit set
96 in a string key sequence is equivalent to prefixing with this
97 character. */
98extern Lisp_Object meta_prefix_char;
99
100extern Lisp_Object Voverriding_local_map;
101
102/* Hash table used to cache a reverse-map to speed up calls to where-is. */
103static Lisp_Object where_is_cache;
104/* Which keymaps are reverse-stored in the cache. */
105static Lisp_Object where_is_cache_keymaps;
106
107static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
108static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
109
110static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
111static Lisp_Object describe_buffer_bindings P_ ((Lisp_Object));
112static void describe_command P_ ((Lisp_Object));
113static void describe_translation P_ ((Lisp_Object));
114static void describe_map P_ ((Lisp_Object, Lisp_Object,
115 void (*) P_ ((Lisp_Object)),
116 int, Lisp_Object, Lisp_Object*, int));
117\f
118/* Keymap object support - constructors and predicates. */
119
120DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
121 "Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).\n\
122CHARTABLE is a char-table that holds the bindings for the ASCII\n\
123characters. ALIST is an assoc-list which holds bindings for function keys,\n\
124mouse events, and any other things that appear in the input stream.\n\
125All entries in it are initially nil, meaning \"command undefined\".\n\n\
126The optional arg STRING supplies a menu name for the keymap\n\
127in case you use it as a menu with `x-popup-menu'.")
128 (string)
129 Lisp_Object string;
130{
131 Lisp_Object tail;
132 if (!NILP (string))
133 tail = Fcons (string, Qnil);
134 else
135 tail = Qnil;
136 return Fcons (Qkeymap,
137 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
138}
139
140DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
141 "Construct and return a new sparse keymap.\n\
142Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),\n\
143which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),\n\
144which binds the function key or mouse event SYMBOL to DEFINITION.\n\
145Initially the alist is nil.\n\n\
146The optional arg STRING supplies a menu name for the keymap\n\
147in case you use it as a menu with `x-popup-menu'.")
148 (string)
149 Lisp_Object string;
150{
151 if (!NILP (string))
152 return Fcons (Qkeymap, Fcons (string, Qnil));
153 return Fcons (Qkeymap, Qnil);
154}
155
156/* This function is used for installing the standard key bindings
157 at initialization time.
158
159 For example:
160
161 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
162
163void
164initial_define_key (keymap, key, defname)
165 Lisp_Object keymap;
166 int key;
167 char *defname;
168{
169 store_in_keymap (keymap, make_number (key), intern (defname));
170}
171
172void
173initial_define_lispy_key (keymap, keyname, defname)
174 Lisp_Object keymap;
175 char *keyname;
176 char *defname;
177{
178 store_in_keymap (keymap, intern (keyname), intern (defname));
179}
180
181DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
182 "Return t if OBJECT is a keymap.\n\
183\n\
184A keymap is a list (keymap . ALIST),\n\
185or a symbol whose function definition is itself a keymap.\n\
186ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);\n\
187a vector of densely packed bindings for small character codes\n\
188is also allowed as an element.")
189 (object)
190 Lisp_Object object;
191{
192 return (KEYMAPP (object) ? Qt : Qnil);
193}
194
195/* Check that OBJECT is a keymap (after dereferencing through any
196 symbols). If it is, return it.
197
198 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
199 is an autoload form, do the autoload and try again.
200 If AUTOLOAD is nonzero, callers must assume GC is possible.
201
202 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
203 is zero as well), return Qt.
204
205 ERROR controls how we respond if OBJECT isn't a keymap.
206 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
207
208 Note that most of the time, we don't want to pursue autoloads.
209 Functions like Faccessible_keymaps which scan entire keymap trees
210 shouldn't load every autoloaded keymap. I'm not sure about this,
211 but it seems to me that only read_key_sequence, Flookup_key, and
212 Fdefine_key should cause keymaps to be autoloaded.
213
214 This function can GC when AUTOLOAD is non-zero, because it calls
215 do_autoload which can GC. */
216
217Lisp_Object
218get_keymap (object, error, autoload)
219 Lisp_Object object;
220 int error, autoload;
221{
222 Lisp_Object tem;
223
224 autoload_retry:
225 if (NILP (object))
226 goto end;
227 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
228 return object;
229
230 tem = indirect_function (object);
231 if (CONSP (tem))
232 {
233 if (EQ (XCAR (tem), Qkeymap))
234 return tem;
235
236 /* Should we do an autoload? Autoload forms for keymaps have
237 Qkeymap as their fifth element. */
238 if ((autoload || !error) && EQ (XCAR (tem), Qautoload))
239 {
240 Lisp_Object tail;
241
242 tail = Fnth (make_number (4), tem);
243 if (EQ (tail, Qkeymap))
244 {
245 if (autoload)
246 {
247 struct gcpro gcpro1, gcpro2;
248
249 GCPRO2 (tem, object);
250 do_autoload (tem, object);
251 UNGCPRO;
252
253 goto autoload_retry;
254 }
255 else
256 return Qt;
257 }
258 }
259 }
260
261 end:
262 if (error)
263 wrong_type_argument (Qkeymapp, object);
264 return Qnil;
265}
266\f
267/* Return the parent map of the keymap MAP, or nil if it has none.
268 We assume that MAP is a valid keymap. */
269
270DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
271 "Return the parent keymap of KEYMAP.")
272 (keymap)
273 Lisp_Object keymap;
274{
275 Lisp_Object list;
276
277 keymap = get_keymap (keymap, 1, 1);
278
279 /* Skip past the initial element `keymap'. */
280 list = XCDR (keymap);
281 for (; CONSP (list); list = XCDR (list))
282 {
283 /* See if there is another `keymap'. */
284 if (KEYMAPP (list))
285 return list;
286 }
287
288 return get_keymap (list, 0, 1);
289}
290
291
292/* Check whether MAP is one of MAPS parents. */
293int
294keymap_memberp (map, maps)
295 Lisp_Object map, maps;
296{
297 if (NILP (map)) return 0;
298 while (KEYMAPP (maps) && !EQ (map, maps))
299 maps = Fkeymap_parent (maps);
300 return (EQ (map, maps));
301}
302
303/* Set the parent keymap of MAP to PARENT. */
304
305DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
306 "Modify KEYMAP to set its parent map to PARENT.\n\
307PARENT should be nil or another keymap.")
308 (keymap, parent)
309 Lisp_Object keymap, parent;
310{
311 Lisp_Object list, prev;
312 struct gcpro gcpro1;
313 int i;
314
315 /* Force a keymap flush for the next call to where-is.
316 Since this can be called from within where-is, we don't set where_is_cache
317 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
318 be changed during where-is, while where_is_cache_keymaps is only used at
319 the very beginning of where-is and can thus be changed here without any
320 adverse effect.
321 This is a very minor correctness (rather than safety) issue. */
322 where_is_cache_keymaps = Qt;
323
324 keymap = get_keymap (keymap, 1, 1);
325 GCPRO1 (keymap);
326
327 if (!NILP (parent))
328 {
329 parent = get_keymap (parent, 1, 1);
330
331 /* Check for cycles. */
332 if (keymap_memberp (keymap, parent))
333 error ("Cyclic keymap inheritance");
334 }
335
336 /* Skip past the initial element `keymap'. */
337 prev = keymap;
338 while (1)
339 {
340 list = XCDR (prev);
341 /* If there is a parent keymap here, replace it.
342 If we came to the end, add the parent in PREV. */
343 if (! CONSP (list) || KEYMAPP (list))
344 {
345 /* If we already have the right parent, return now
346 so that we avoid the loops below. */
347 if (EQ (XCDR (prev), parent))
348 RETURN_UNGCPRO (parent);
349
350 XCDR (prev) = parent;
351 break;
352 }
353 prev = list;
354 }
355
356 /* Scan through for submaps, and set their parents too. */
357
358 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
359 {
360 /* Stop the scan when we come to the parent. */
361 if (EQ (XCAR (list), Qkeymap))
362 break;
363
364 /* If this element holds a prefix map, deal with it. */
365 if (CONSP (XCAR (list))
366 && CONSP (XCDR (XCAR (list))))
367 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
368 XCDR (XCAR (list)));
369
370 if (VECTORP (XCAR (list)))
371 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
372 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
373 fix_submap_inheritance (keymap, make_number (i),
374 XVECTOR (XCAR (list))->contents[i]);
375
376 if (CHAR_TABLE_P (XCAR (list)))
377 {
378 Lisp_Object indices[3];
379
380 map_char_table (fix_submap_inheritance, Qnil, XCAR (list),
381 keymap, 0, indices);
382 }
383 }
384
385 RETURN_UNGCPRO (parent);
386}
387
388/* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
389 if EVENT is also a prefix in MAP's parent,
390 make sure that SUBMAP inherits that definition as its own parent. */
391
392static void
393fix_submap_inheritance (map, event, submap)
394 Lisp_Object map, event, submap;
395{
396 Lisp_Object map_parent, parent_entry;
397
398 /* SUBMAP is a cons that we found as a key binding.
399 Discard the other things found in a menu key binding. */
400
401 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
402
403 /* If it isn't a keymap now, there's no work to do. */
404 if (!CONSP (submap))
405 return;
406
407 map_parent = Fkeymap_parent (map);
408 if (!NILP (map_parent))
409 parent_entry =
410 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
411 else
412 parent_entry = Qnil;
413
414 /* If MAP's parent has something other than a keymap,
415 our own submap shadows it completely. */
416 if (!CONSP (parent_entry))
417 return;
418
419 if (! EQ (parent_entry, submap))
420 {
421 Lisp_Object submap_parent;
422 submap_parent = submap;
423 while (1)
424 {
425 Lisp_Object tem;
426
427 tem = Fkeymap_parent (submap_parent);
428
429 if (KEYMAPP (tem))
430 {
431 if (keymap_memberp (tem, parent_entry))
432 /* Fset_keymap_parent could create a cycle. */
433 return;
434 submap_parent = tem;
435 }
436 else
437 break;
438 }
439 Fset_keymap_parent (submap_parent, parent_entry);
440 }
441}
442\f
443/* Look up IDX in MAP. IDX may be any sort of event.
444 Note that this does only one level of lookup; IDX must be a single
445 event, not a sequence.
446
447 If T_OK is non-zero, bindings for Qt are treated as default
448 bindings; any key left unmentioned by other tables and bindings is
449 given the binding of Qt.
450
451 If T_OK is zero, bindings for Qt are not treated specially.
452
453 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
454
455Lisp_Object
456access_keymap (map, idx, t_ok, noinherit, autoload)
457 Lisp_Object map;
458 Lisp_Object idx;
459 int t_ok;
460 int noinherit;
461 int autoload;
462{
463 int noprefix = 0;
464 Lisp_Object val;
465
466 /* If idx is a list (some sort of mouse click, perhaps?),
467 the index we want to use is the car of the list, which
468 ought to be a symbol. */
469 idx = EVENT_HEAD (idx);
470
471 /* If idx is a symbol, it might have modifiers, which need to
472 be put in the canonical order. */
473 if (SYMBOLP (idx))
474 idx = reorder_modifiers (idx);
475 else if (INTEGERP (idx))
476 /* Clobber the high bits that can be present on a machine
477 with more than 24 bits of integer. */
478 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
479
480 /* Handle the special meta -> esc mapping. */
481 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
482 {
483 /* See if there is a meta-map. If there's none, there is
484 no binding for IDX, unless a default binding exists in MAP. */
485 Lisp_Object meta_map =
486 get_keymap (access_keymap (map, meta_prefix_char,
487 t_ok, noinherit, autoload),
488 0, autoload);
489 if (CONSP (meta_map))
490 {
491 map = meta_map;
492 idx = make_number (XUINT (idx) & ~meta_modifier);
493 }
494 else if (t_ok)
495 /* Set IDX to t, so that we only find a default binding. */
496 idx = Qt;
497 else
498 /* We know there is no binding. */
499 return Qnil;
500 }
501
502 {
503 Lisp_Object tail;
504 Lisp_Object t_binding;
505
506 t_binding = Qnil;
507 for (tail = XCDR (map);
508 (CONSP (tail)
509 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
510 tail = XCDR (tail))
511 {
512 Lisp_Object binding;
513
514 binding = XCAR (tail);
515 if (SYMBOLP (binding))
516 {
517 /* If NOINHERIT, stop finding prefix definitions
518 after we pass a second occurrence of the `keymap' symbol. */
519 if (noinherit && EQ (binding, Qkeymap))
520 noprefix = 1;
521 }
522 else if (CONSP (binding))
523 {
524 if (EQ (XCAR (binding), idx))
525 {
526 val = XCDR (binding);
527 if (noprefix && KEYMAPP (val))
528 return Qnil;
529 if (CONSP (val))
530 fix_submap_inheritance (map, idx, val);
531 return get_keyelt (val, autoload);
532 }
533 if (t_ok && EQ (XCAR (binding), Qt))
534 t_binding = XCDR (binding);
535 }
536 else if (VECTORP (binding))
537 {
538 if (NATNUMP (idx) && XFASTINT (idx) < XVECTOR (binding)->size)
539 {
540 val = XVECTOR (binding)->contents[XFASTINT (idx)];
541 if (noprefix && KEYMAPP (val))
542 return Qnil;
543 if (CONSP (val))
544 fix_submap_inheritance (map, idx, val);
545 return get_keyelt (val, autoload);
546 }
547 }
548 else if (CHAR_TABLE_P (binding))
549 {
550 /* Character codes with modifiers
551 are not included in a char-table.
552 All character codes without modifiers are included. */
553 if (NATNUMP (idx)
554 && ! (XFASTINT (idx)
555 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
556 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
557 {
558 val = Faref (binding, idx);
559 if (noprefix && KEYMAPP (val))
560 return Qnil;
561 if (CONSP (val))
562 fix_submap_inheritance (map, idx, val);
563 return get_keyelt (val, autoload);
564 }
565 }
566
567 QUIT;
568 }
569
570 return get_keyelt (t_binding, autoload);
571 }
572}
573
574/* Given OBJECT which was found in a slot in a keymap,
575 trace indirect definitions to get the actual definition of that slot.
576 An indirect definition is a list of the form
577 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
578 and INDEX is the object to look up in KEYMAP to yield the definition.
579
580 Also if OBJECT has a menu string as the first element,
581 remove that. Also remove a menu help string as second element.
582
583 If AUTOLOAD is nonzero, load autoloadable keymaps
584 that are referred to with indirection. */
585
586Lisp_Object
587get_keyelt (object, autoload)
588 register Lisp_Object object;
589 int autoload;
590{
591 while (1)
592 {
593 if (!(CONSP (object)))
594 /* This is really the value. */
595 return object;
596
597 /* If the keymap contents looks like (keymap ...) or (lambda ...)
598 then use itself. */
599 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
600 return object;
601
602 /* If the keymap contents looks like (menu-item name . DEFN)
603 or (menu-item name DEFN ...) then use DEFN.
604 This is a new format menu item. */
605 else if (EQ (XCAR (object), Qmenu_item))
606 {
607 if (CONSP (XCDR (object)))
608 {
609 Lisp_Object tem;
610
611 object = XCDR (XCDR (object));
612 tem = object;
613 if (CONSP (object))
614 object = XCAR (object);
615
616 /* If there's a `:filter FILTER', apply FILTER to the
617 menu-item's definition to get the real definition to
618 use. */
619 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
620 if (EQ (XCAR (tem), QCfilter) && autoload)
621 {
622 Lisp_Object filter;
623 filter = XCAR (XCDR (tem));
624 filter = list2 (filter, list2 (Qquote, object));
625 object = menu_item_eval_property (filter);
626 break;
627 }
628 }
629 else
630 /* Invalid keymap */
631 return object;
632 }
633
634 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
635 Keymap alist elements like (CHAR MENUSTRING . DEFN)
636 will be used by HierarKey menus. */
637 else if (STRINGP (XCAR (object)))
638 {
639 object = XCDR (object);
640 /* Also remove a menu help string, if any,
641 following the menu item name. */
642 if (CONSP (object) && STRINGP (XCAR (object)))
643 object = XCDR (object);
644 /* Also remove the sublist that caches key equivalences, if any. */
645 if (CONSP (object) && CONSP (XCAR (object)))
646 {
647 Lisp_Object carcar;
648 carcar = XCAR (XCAR (object));
649 if (NILP (carcar) || VECTORP (carcar))
650 object = XCDR (object);
651 }
652 }
653
654 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
655 else
656 {
657 Lisp_Object map;
658 map = get_keymap (Fcar_safe (object), 0, autoload);
659 return (!CONSP (map) ? object /* Invalid keymap */
660 : access_keymap (map, Fcdr (object), 0, 0, autoload));
661 }
662 }
663}
664
665static Lisp_Object
666store_in_keymap (keymap, idx, def)
667 Lisp_Object keymap;
668 register Lisp_Object idx;
669 register Lisp_Object def;
670{
671 /* Flush any reverse-map cache. */
672 where_is_cache = Qnil;
673 where_is_cache_keymaps = Qt;
674
675 /* If we are preparing to dump, and DEF is a menu element
676 with a menu item indicator, copy it to ensure it is not pure. */
677 if (CONSP (def) && PURE_P (def)
678 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
679 def = Fcons (XCAR (def), XCDR (def));
680
681 if (!CONSP (keymap) || ! EQ (XCAR (keymap), Qkeymap))
682 error ("attempt to define a key in a non-keymap");
683
684 /* If idx is a list (some sort of mouse click, perhaps?),
685 the index we want to use is the car of the list, which
686 ought to be a symbol. */
687 idx = EVENT_HEAD (idx);
688
689 /* If idx is a symbol, it might have modifiers, which need to
690 be put in the canonical order. */
691 if (SYMBOLP (idx))
692 idx = reorder_modifiers (idx);
693 else if (INTEGERP (idx))
694 /* Clobber the high bits that can be present on a machine
695 with more than 24 bits of integer. */
696 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
697
698 /* Scan the keymap for a binding of idx. */
699 {
700 Lisp_Object tail;
701
702 /* The cons after which we should insert new bindings. If the
703 keymap has a table element, we record its position here, so new
704 bindings will go after it; this way, the table will stay
705 towards the front of the alist and character lookups in dense
706 keymaps will remain fast. Otherwise, this just points at the
707 front of the keymap. */
708 Lisp_Object insertion_point;
709
710 insertion_point = keymap;
711 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
712 {
713 Lisp_Object elt;
714
715 elt = XCAR (tail);
716 if (VECTORP (elt))
717 {
718 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
719 {
720 ASET (elt, XFASTINT (idx), def);
721 return def;
722 }
723 insertion_point = tail;
724 }
725 else if (CHAR_TABLE_P (elt))
726 {
727 /* Character codes with modifiers
728 are not included in a char-table.
729 All character codes without modifiers are included. */
730 if (NATNUMP (idx)
731 && ! (XFASTINT (idx)
732 & (CHAR_ALT | CHAR_SUPER | CHAR_HYPER
733 | CHAR_SHIFT | CHAR_CTL | CHAR_META)))
734 {
735 Faset (elt, idx, def);
736 return def;
737 }
738 insertion_point = tail;
739 }
740 else if (CONSP (elt))
741 {
742 if (EQ (idx, XCAR (elt)))
743 {
744 XCDR (elt) = def;
745 return def;
746 }
747 }
748 else if (EQ (elt, Qkeymap))
749 /* If we find a 'keymap' symbol in the spine of KEYMAP,
750 then we must have found the start of a second keymap
751 being used as the tail of KEYMAP, and a binding for IDX
752 should be inserted before it. */
753 goto keymap_end;
754
755 QUIT;
756 }
757
758 keymap_end:
759 /* We have scanned the entire keymap, and not found a binding for
760 IDX. Let's add one. */
761 XCDR (insertion_point)
762 = Fcons (Fcons (idx, def), XCDR (insertion_point));
763 }
764
765 return def;
766}
767
768void
769copy_keymap_1 (chartable, idx, elt)
770 Lisp_Object chartable, idx, elt;
771{
772 if (CONSP (elt) && EQ (XCAR (elt), Qkeymap))
773 Faset (chartable, idx, Fcopy_keymap (elt));
774}
775
776DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
777 "Return a copy of the keymap KEYMAP.\n\
778The copy starts out with the same definitions of KEYMAP,\n\
779but changing either the copy or KEYMAP does not affect the other.\n\
780Any key definitions that are subkeymaps are recursively copied.\n\
781However, a key definition which is a symbol whose definition is a keymap\n\
782is not copied.")
783 (keymap)
784 Lisp_Object keymap;
785{
786 register Lisp_Object copy, tail;
787
788 copy = Fcopy_alist (get_keymap (keymap, 1, 0));
789
790 for (tail = copy; CONSP (tail); tail = XCDR (tail))
791 {
792 Lisp_Object elt;
793
794 elt = XCAR (tail);
795 if (CHAR_TABLE_P (elt))
796 {
797 Lisp_Object indices[3];
798
799 elt = Fcopy_sequence (elt);
800 XCAR (tail) = elt;
801
802 map_char_table (copy_keymap_1, Qnil, elt, elt, 0, indices);
803 }
804 else if (VECTORP (elt))
805 {
806 int i;
807
808 elt = Fcopy_sequence (elt);
809 XCAR (tail) = elt;
810
811 for (i = 0; i < ASIZE (elt); i++)
812 if (CONSP (AREF (elt, i)) && EQ (XCAR (AREF (elt, i)), Qkeymap))
813 ASET (elt, i, Fcopy_keymap (AREF (elt, i)));
814 }
815 else if (CONSP (elt) && CONSP (XCDR (elt)))
816 {
817 Lisp_Object tem;
818 tem = XCDR (elt);
819
820 /* Is this a new format menu item. */
821 if (EQ (XCAR (tem),Qmenu_item))
822 {
823 /* Copy cell with menu-item marker. */
824 XCDR (elt)
825 = Fcons (XCAR (tem), XCDR (tem));
826 elt = XCDR (elt);
827 tem = XCDR (elt);
828 if (CONSP (tem))
829 {
830 /* Copy cell with menu-item name. */
831 XCDR (elt)
832 = Fcons (XCAR (tem), XCDR (tem));
833 elt = XCDR (elt);
834 tem = XCDR (elt);
835 };
836 if (CONSP (tem))
837 {
838 /* Copy cell with binding and if the binding is a keymap,
839 copy that. */
840 XCDR (elt)
841 = Fcons (XCAR (tem), XCDR (tem));
842 elt = XCDR (elt);
843 tem = XCAR (elt);
844 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
845 XCAR (elt) = Fcopy_keymap (tem);
846 tem = XCDR (elt);
847 if (CONSP (tem) && CONSP (XCAR (tem)))
848 /* Delete cache for key equivalences. */
849 XCDR (elt) = XCDR (tem);
850 }
851 }
852 else
853 {
854 /* It may be an old fomat menu item.
855 Skip the optional menu string.
856 */
857 if (STRINGP (XCAR (tem)))
858 {
859 /* Copy the cell, since copy-alist didn't go this deep. */
860 XCDR (elt)
861 = Fcons (XCAR (tem), XCDR (tem));
862 elt = XCDR (elt);
863 tem = XCDR (elt);
864 /* Also skip the optional menu help string. */
865 if (CONSP (tem) && STRINGP (XCAR (tem)))
866 {
867 XCDR (elt)
868 = Fcons (XCAR (tem), XCDR (tem));
869 elt = XCDR (elt);
870 tem = XCDR (elt);
871 }
872 /* There may also be a list that caches key equivalences.
873 Just delete it for the new keymap. */
874 if (CONSP (tem)
875 && CONSP (XCAR (tem))
876 && (NILP (XCAR (XCAR (tem)))
877 || VECTORP (XCAR (XCAR (tem)))))
878 XCDR (elt) = XCDR (tem);
879 }
880 if (CONSP (elt)
881 && CONSP (XCDR (elt))
882 && EQ (XCAR (XCDR (elt)), Qkeymap))
883 XCDR (elt) = Fcopy_keymap (XCDR (elt));
884 }
885
886 }
887 }
888
889 return copy;
890}
891\f
892/* Simple Keymap mutators and accessors. */
893
894/* GC is possible in this function if it autoloads a keymap. */
895
896DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
897 "Args KEYMAP, KEY, DEF. Define key sequence KEY, in KEYMAP, as DEF.\n\
898KEYMAP is a keymap. KEY is a string or a vector of symbols and characters\n\
899meaning a sequence of keystrokes and events.\n\
900Non-ASCII characters with codes above 127 (such as ISO Latin-1)\n\
901can be included if you use a vector.\n\
902DEF is anything that can be a key's definition:\n\
903 nil (means key is undefined in this keymap),\n\
904 a command (a Lisp function suitable for interactive calling)\n\
905 a string (treated as a keyboard macro),\n\
906 a keymap (to define a prefix key),\n\
907 a symbol. When the key is looked up, the symbol will stand for its\n\
908 function definition, which should at that time be one of the above,\n\
909 or another symbol whose function definition is used, etc.\n\
910 a cons (STRING . DEFN), meaning that DEFN is the definition\n\
911 (DEFN should be a valid definition in its own right),\n\
912 or a cons (KEYMAP . CHAR), meaning use definition of CHAR in map KEYMAP.\n\
913\n\
914If KEYMAP is a sparse keymap, the pair binding KEY to DEF is added at\n\
915the front of KEYMAP.")
916 (keymap, key, def)
917 Lisp_Object keymap;
918 Lisp_Object key;
919 Lisp_Object def;
920{
921 register int idx;
922 register Lisp_Object c;
923 register Lisp_Object cmd;
924 int metized = 0;
925 int meta_bit;
926 int length;
927 struct gcpro gcpro1, gcpro2, gcpro3;
928
929 keymap = get_keymap (keymap, 1, 1);
930
931 if (!VECTORP (key) && !STRINGP (key))
932 key = wrong_type_argument (Qarrayp, key);
933
934 length = XFASTINT (Flength (key));
935 if (length == 0)
936 return Qnil;
937
938 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
939 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
940
941 GCPRO3 (keymap, key, def);
942
943 if (VECTORP (key))
944 meta_bit = meta_modifier;
945 else
946 meta_bit = 0x80;
947
948 idx = 0;
949 while (1)
950 {
951 c = Faref (key, make_number (idx));
952
953 if (CONSP (c) && lucid_event_type_list_p (c))
954 c = Fevent_convert_list (c);
955
956 if (INTEGERP (c)
957 && (XINT (c) & meta_bit)
958 && !metized)
959 {
960 c = meta_prefix_char;
961 metized = 1;
962 }
963 else
964 {
965 if (INTEGERP (c))
966 XSETINT (c, XINT (c) & ~meta_bit);
967
968 metized = 0;
969 idx++;
970 }
971
972 if (! INTEGERP (c) && ! SYMBOLP (c) && ! CONSP (c))
973 error ("Key sequence contains invalid events");
974
975 if (idx == length)
976 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
977
978 cmd = access_keymap (keymap, c, 0, 1, 1);
979
980 /* If this key is undefined, make it a prefix. */
981 if (NILP (cmd))
982 cmd = define_as_prefix (keymap, c);
983
984 keymap = get_keymap (cmd, 0, 1);
985 if (!CONSP (keymap))
986 /* We must use Fkey_description rather than just passing key to
987 error; key might be a vector, not a string. */
988 error ("Key sequence %s uses invalid prefix characters",
989 XSTRING (Fkey_description (key))->data);
990 }
991}
992
993/* Value is number if KEY is too long; NIL if valid but has no definition. */
994/* GC is possible in this function if it autoloads a keymap. */
995
996DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
997 "In keymap KEYMAP, look up key sequence KEY. Return the definition.\n\
998nil means undefined. See doc of `define-key' for kinds of definitions.\n\
999\n\
1000A number as value means KEY is \"too long\";\n\
1001that is, characters or symbols in it except for the last one\n\
1002fail to be a valid sequence of prefix characters in KEYMAP.\n\
1003The number is how many characters at the front of KEY\n\
1004it takes to reach a non-prefix command.\n\
1005\n\
1006Normally, `lookup-key' ignores bindings for t, which act as default\n\
1007bindings, used when nothing else in the keymap applies; this makes it\n\
1008usable as a general function for probing keymaps. However, if the\n\
1009third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will\n\
1010recognize the default bindings, just as `read-key-sequence' does.")
1011 (keymap, key, accept_default)
1012 register Lisp_Object keymap;
1013 Lisp_Object key;
1014 Lisp_Object accept_default;
1015{
1016 register int idx;
1017 register Lisp_Object cmd;
1018 register Lisp_Object c;
1019 int length;
1020 int t_ok = ! NILP (accept_default);
1021 struct gcpro gcpro1;
1022
1023 keymap = get_keymap (keymap, 1, 1);
1024
1025 if (!VECTORP (key) && !STRINGP (key))
1026 key = wrong_type_argument (Qarrayp, key);
1027
1028 length = XFASTINT (Flength (key));
1029 if (length == 0)
1030 return keymap;
1031
1032 GCPRO1 (key);
1033
1034 idx = 0;
1035 while (1)
1036 {
1037 c = Faref (key, make_number (idx++));
1038
1039 if (CONSP (c) && lucid_event_type_list_p (c))
1040 c = Fevent_convert_list (c);
1041
1042 /* Turn the 8th bit of string chars into a meta modifier. */
1043 if (XINT (c) & 0x80 && STRINGP (key))
1044 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1045
1046 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1047 if (idx == length)
1048 RETURN_UNGCPRO (cmd);
1049
1050 keymap = get_keymap (cmd, 0, 1);
1051 if (!CONSP (keymap))
1052 RETURN_UNGCPRO (make_number (idx));
1053
1054 QUIT;
1055 }
1056}
1057
1058/* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1059 Assume that currently it does not define C at all.
1060 Return the keymap. */
1061
1062static Lisp_Object
1063define_as_prefix (keymap, c)
1064 Lisp_Object keymap, c;
1065{
1066 Lisp_Object cmd;
1067
1068 cmd = Fmake_sparse_keymap (Qnil);
1069 /* If this key is defined as a prefix in an inherited keymap,
1070 make it a prefix in this map, and make its definition
1071 inherit the other prefix definition. */
1072 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1073 store_in_keymap (keymap, c, cmd);
1074
1075 return cmd;
1076}
1077
1078/* Append a key to the end of a key sequence. We always make a vector. */
1079
1080Lisp_Object
1081append_key (key_sequence, key)
1082 Lisp_Object key_sequence, key;
1083{
1084 Lisp_Object args[2];
1085
1086 args[0] = key_sequence;
1087
1088 args[1] = Fcons (key, Qnil);
1089 return Fvconcat (2, args);
1090}
1091
1092\f
1093/* Global, local, and minor mode keymap stuff. */
1094
1095/* We can't put these variables inside current_minor_maps, since under
1096 some systems, static gets macro-defined to be the empty string.
1097 Ickypoo. */
1098static Lisp_Object *cmm_modes, *cmm_maps;
1099static int cmm_size;
1100
1101/* Error handler used in current_minor_maps. */
1102static Lisp_Object
1103current_minor_maps_error ()
1104{
1105 return Qnil;
1106}
1107
1108/* Store a pointer to an array of the keymaps of the currently active
1109 minor modes in *buf, and return the number of maps it contains.
1110
1111 This function always returns a pointer to the same buffer, and may
1112 free or reallocate it, so if you want to keep it for a long time or
1113 hand it out to lisp code, copy it. This procedure will be called
1114 for every key sequence read, so the nice lispy approach (return a
1115 new assoclist, list, what have you) for each invocation would
1116 result in a lot of consing over time.
1117
1118 If we used xrealloc/xmalloc and ran out of memory, they would throw
1119 back to the command loop, which would try to read a key sequence,
1120 which would call this function again, resulting in an infinite
1121 loop. Instead, we'll use realloc/malloc and silently truncate the
1122 list, let the key sequence be read, and hope some other piece of
1123 code signals the error. */
1124int
1125current_minor_maps (modeptr, mapptr)
1126 Lisp_Object **modeptr, **mapptr;
1127{
1128 int i = 0;
1129 int list_number = 0;
1130 Lisp_Object alist, assoc, var, val;
1131 Lisp_Object lists[2];
1132
1133 lists[0] = Vminor_mode_overriding_map_alist;
1134 lists[1] = Vminor_mode_map_alist;
1135
1136 for (list_number = 0; list_number < 2; list_number++)
1137 for (alist = lists[list_number];
1138 CONSP (alist);
1139 alist = XCDR (alist))
1140 if ((assoc = XCAR (alist), CONSP (assoc))
1141 && (var = XCAR (assoc), SYMBOLP (var))
1142 && (val = find_symbol_value (var), ! EQ (val, Qunbound))
1143 && ! NILP (val))
1144 {
1145 Lisp_Object temp;
1146
1147 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1148 and also an entry in Vminor_mode_map_alist,
1149 ignore the latter. */
1150 if (list_number == 1)
1151 {
1152 val = assq_no_quit (var, lists[0]);
1153 if (!NILP (val))
1154 break;
1155 }
1156
1157 if (i >= cmm_size)
1158 {
1159 Lisp_Object *newmodes, *newmaps;
1160
1161 /* Use malloc/realloc here. See the comment above
1162 this function. */
1163 if (cmm_maps)
1164 {
1165 BLOCK_INPUT;
1166 cmm_size *= 2;
1167 newmodes
1168 = (Lisp_Object *) realloc (cmm_modes,
1169 cmm_size * sizeof *newmodes);
1170 newmaps
1171 = (Lisp_Object *) realloc (cmm_maps,
1172 cmm_size * sizeof *newmaps);
1173 UNBLOCK_INPUT;
1174 }
1175 else
1176 {
1177 BLOCK_INPUT;
1178 cmm_size = 30;
1179 newmodes
1180 = (Lisp_Object *) malloc (cmm_size * sizeof *newmodes);
1181 newmaps
1182 = (Lisp_Object *) malloc (cmm_size * sizeof *newmaps);
1183 UNBLOCK_INPUT;
1184 }
1185
1186 if (newmodes)
1187 cmm_modes = newmodes;
1188 if (newmaps)
1189 cmm_maps = newmaps;
1190
1191 if (newmodes == NULL || newmaps == NULL)
1192 break;
1193 }
1194
1195 /* Get the keymap definition--or nil if it is not defined. */
1196 temp = internal_condition_case_1 (Findirect_function,
1197 XCDR (assoc),
1198 Qerror, current_minor_maps_error);
1199 if (!NILP (temp))
1200 {
1201 cmm_modes[i] = var;
1202 cmm_maps [i] = temp;
1203 i++;
1204 }
1205 }
1206
1207 if (modeptr) *modeptr = cmm_modes;
1208 if (mapptr) *mapptr = cmm_maps;
1209 return i;
1210}
1211
1212/* GC is possible in this function if it autoloads a keymap. */
1213
1214DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 2, 0,
1215 "Return the binding for command KEY in current keymaps.\n\
1216KEY is a string or vector, a sequence of keystrokes.\n\
1217The binding is probably a symbol with a function definition.\n\
1218\n\
1219Normally, `key-binding' ignores bindings for t, which act as default\n\
1220bindings, used when nothing else in the keymap applies; this makes it\n\
1221usable as a general function for probing keymaps. However, if the\n\
1222optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does\n\
1223recognize the default bindings, just as `read-key-sequence' does.")
1224 (key, accept_default)
1225 Lisp_Object key, accept_default;
1226{
1227 Lisp_Object *maps, value;
1228 int nmaps, i;
1229 struct gcpro gcpro1;
1230
1231 GCPRO1 (key);
1232
1233 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1234 {
1235 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1236 key, accept_default);
1237 if (! NILP (value) && !INTEGERP (value))
1238 RETURN_UNGCPRO (value);
1239 }
1240 else if (!NILP (Voverriding_local_map))
1241 {
1242 value = Flookup_key (Voverriding_local_map, key, accept_default);
1243 if (! NILP (value) && !INTEGERP (value))
1244 RETURN_UNGCPRO (value);
1245 }
1246 else
1247 {
1248 Lisp_Object local;
1249
1250 nmaps = current_minor_maps (0, &maps);
1251 /* Note that all these maps are GCPRO'd
1252 in the places where we found them. */
1253
1254 for (i = 0; i < nmaps; i++)
1255 if (! NILP (maps[i]))
1256 {
1257 value = Flookup_key (maps[i], key, accept_default);
1258 if (! NILP (value) && !INTEGERP (value))
1259 RETURN_UNGCPRO (value);
1260 }
1261
1262 local = get_local_map (PT, current_buffer, keymap);
1263 if (! NILP (local))
1264 {
1265 value = Flookup_key (local, key, accept_default);
1266 if (! NILP (value) && !INTEGERP (value))
1267 RETURN_UNGCPRO (value);
1268 }
1269
1270 local = get_local_map (PT, current_buffer, local_map);
1271
1272 if (! NILP (local))
1273 {
1274 value = Flookup_key (local, key, accept_default);
1275 if (! NILP (value) && !INTEGERP (value))
1276 RETURN_UNGCPRO (value);
1277 }
1278 }
1279
1280 value = Flookup_key (current_global_map, key, accept_default);
1281 UNGCPRO;
1282 if (! NILP (value) && !INTEGERP (value))
1283 return value;
1284
1285 return Qnil;
1286}
1287
1288/* GC is possible in this function if it autoloads a keymap. */
1289
1290DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1291 "Return the binding for command KEYS in current local keymap only.\n\
1292KEYS is a string, a sequence of keystrokes.\n\
1293The binding is probably a symbol with a function definition.\n\
1294\n\
1295If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1296bindings; see the description of `lookup-key' for more details about this.")
1297 (keys, accept_default)
1298 Lisp_Object keys, accept_default;
1299{
1300 register Lisp_Object map;
1301 map = current_buffer->keymap;
1302 if (NILP (map))
1303 return Qnil;
1304 return Flookup_key (map, keys, accept_default);
1305}
1306
1307/* GC is possible in this function if it autoloads a keymap. */
1308
1309DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1310 "Return the binding for command KEYS in current global keymap only.\n\
1311KEYS is a string, a sequence of keystrokes.\n\
1312The binding is probably a symbol with a function definition.\n\
1313This function's return values are the same as those of lookup-key\n\
1314\(which see).\n\
1315\n\
1316If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1317bindings; see the description of `lookup-key' for more details about this.")
1318 (keys, accept_default)
1319 Lisp_Object keys, accept_default;
1320{
1321 return Flookup_key (current_global_map, keys, accept_default);
1322}
1323
1324/* GC is possible in this function if it autoloads a keymap. */
1325
1326DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1327 "Find the visible minor mode bindings of KEY.\n\
1328Return an alist of pairs (MODENAME . BINDING), where MODENAME is the\n\
1329the symbol which names the minor mode binding KEY, and BINDING is\n\
1330KEY's definition in that mode. In particular, if KEY has no\n\
1331minor-mode bindings, return nil. If the first binding is a\n\
1332non-prefix, all subsequent bindings will be omitted, since they would\n\
1333be ignored. Similarly, the list doesn't include non-prefix bindings\n\
1334that come after prefix bindings.\n\
1335\n\
1336If optional argument ACCEPT-DEFAULT is non-nil, recognize default\n\
1337bindings; see the description of `lookup-key' for more details about this.")
1338 (key, accept_default)
1339 Lisp_Object key, accept_default;
1340{
1341 Lisp_Object *modes, *maps;
1342 int nmaps;
1343 Lisp_Object binding;
1344 int i, j;
1345 struct gcpro gcpro1, gcpro2;
1346
1347 nmaps = current_minor_maps (&modes, &maps);
1348 /* Note that all these maps are GCPRO'd
1349 in the places where we found them. */
1350
1351 binding = Qnil;
1352 GCPRO2 (key, binding);
1353
1354 for (i = j = 0; i < nmaps; i++)
1355 if (!NILP (maps[i])
1356 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1357 && !INTEGERP (binding))
1358 {
1359 if (KEYMAPP (binding))
1360 maps[j++] = Fcons (modes[i], binding);
1361 else if (j == 0)
1362 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1363 }
1364
1365 UNGCPRO;
1366 return Flist (j, maps);
1367}
1368
1369DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1370 "Define COMMAND as a prefix command. COMMAND should be a symbol.\n\
1371A new sparse keymap is stored as COMMAND's function definition and its value.\n\
1372If a second optional argument MAPVAR is given, the map is stored as\n\
1373its value instead of as COMMAND's value; but COMMAND is still defined\n\
1374as a function.\n\
1375The third optional argument NAME, if given, supplies a menu name\n\
1376string for the map. This is required to use the keymap as a menu.")
1377 (command, mapvar, name)
1378 Lisp_Object command, mapvar, name;
1379{
1380 Lisp_Object map;
1381 map = Fmake_sparse_keymap (name);
1382 Ffset (command, map);
1383 if (!NILP (mapvar))
1384 Fset (mapvar, map);
1385 else
1386 Fset (command, map);
1387 return command;
1388}
1389
1390DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1391 "Select KEYMAP as the global keymap.")
1392 (keymap)
1393 Lisp_Object keymap;
1394{
1395 keymap = get_keymap (keymap, 1, 1);
1396 current_global_map = keymap;
1397
1398 return Qnil;
1399}
1400
1401DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1402 "Select KEYMAP as the local keymap.\n\
1403If KEYMAP is nil, that means no local keymap.")
1404 (keymap)
1405 Lisp_Object keymap;
1406{
1407 if (!NILP (keymap))
1408 keymap = get_keymap (keymap, 1, 1);
1409
1410 current_buffer->keymap = keymap;
1411
1412 return Qnil;
1413}
1414
1415DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1416 "Return current buffer's local keymap, or nil if it has none.")
1417 ()
1418{
1419 return current_buffer->keymap;
1420}
1421
1422DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1423 "Return the current global keymap.")
1424 ()
1425{
1426 return current_global_map;
1427}
1428
1429DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1430 "Return a list of keymaps for the minor modes of the current buffer.")
1431 ()
1432{
1433 Lisp_Object *maps;
1434 int nmaps = current_minor_maps (0, &maps);
1435
1436 return Flist (nmaps, maps);
1437}
1438\f
1439/* Help functions for describing and documenting keymaps. */
1440
1441static void accessible_keymaps_char_table ();
1442
1443/* This function cannot GC. */
1444
1445DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1446 1, 2, 0,
1447 "Find all keymaps accessible via prefix characters from KEYMAP.\n\
1448Returns a list of elements of the form (KEYS . MAP), where the sequence\n\
1449KEYS starting from KEYMAP gets you to MAP. These elements are ordered\n\
1450so that the KEYS increase in length. The first element is ([] . KEYMAP).\n\
1451An optional argument PREFIX, if non-nil, should be a key sequence;\n\
1452then the value includes only maps for prefixes that start with PREFIX.")
1453 (keymap, prefix)
1454 Lisp_Object keymap, prefix;
1455{
1456 Lisp_Object maps, good_maps, tail;
1457 int prefixlen = 0;
1458
1459 /* no need for gcpro because we don't autoload any keymaps. */
1460
1461 if (!NILP (prefix))
1462 prefixlen = XINT (Flength (prefix));
1463
1464 if (!NILP (prefix))
1465 {
1466 /* If a prefix was specified, start with the keymap (if any) for
1467 that prefix, so we don't waste time considering other prefixes. */
1468 Lisp_Object tem;
1469 tem = Flookup_key (keymap, prefix, Qt);
1470 /* Flookup_key may give us nil, or a number,
1471 if the prefix is not defined in this particular map.
1472 It might even give us a list that isn't a keymap. */
1473 tem = get_keymap (tem, 0, 0);
1474 if (CONSP (tem))
1475 {
1476 /* Convert PREFIX to a vector now, so that later on
1477 we don't have to deal with the possibility of a string. */
1478 if (STRINGP (prefix))
1479 {
1480 int i, i_byte, c;
1481 Lisp_Object copy;
1482
1483 copy = Fmake_vector (make_number (XSTRING (prefix)->size), Qnil);
1484 for (i = 0, i_byte = 0; i < XSTRING (prefix)->size;)
1485 {
1486 int i_before = i;
1487
1488 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1489 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1490 c ^= 0200 | meta_modifier;
1491 ASET (copy, i_before, make_number (c));
1492 }
1493 prefix = copy;
1494 }
1495 maps = Fcons (Fcons (prefix, tem), Qnil);
1496 }
1497 else
1498 return Qnil;
1499 }
1500 else
1501 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1502 get_keymap (keymap, 1, 0)),
1503 Qnil);
1504
1505 /* For each map in the list maps,
1506 look at any other maps it points to,
1507 and stick them at the end if they are not already in the list.
1508
1509 This is a breadth-first traversal, where tail is the queue of
1510 nodes, and maps accumulates a list of all nodes visited. */
1511
1512 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1513 {
1514 register Lisp_Object thisseq, thismap;
1515 Lisp_Object last;
1516 /* Does the current sequence end in the meta-prefix-char? */
1517 int is_metized;
1518
1519 thisseq = Fcar (Fcar (tail));
1520 thismap = Fcdr (Fcar (tail));
1521 last = make_number (XINT (Flength (thisseq)) - 1);
1522 is_metized = (XINT (last) >= 0
1523 /* Don't metize the last char of PREFIX. */
1524 && XINT (last) >= prefixlen
1525 && EQ (Faref (thisseq, last), meta_prefix_char));
1526
1527 for (; CONSP (thismap); thismap = XCDR (thismap))
1528 {
1529 Lisp_Object elt;
1530
1531 elt = XCAR (thismap);
1532
1533 QUIT;
1534
1535 if (CHAR_TABLE_P (elt))
1536 {
1537 Lisp_Object indices[3];
1538
1539 map_char_table (accessible_keymaps_char_table, Qnil,
1540 elt, Fcons (maps, Fcons (tail, thisseq)),
1541 0, indices);
1542 }
1543 else if (VECTORP (elt))
1544 {
1545 register int i;
1546
1547 /* Vector keymap. Scan all the elements. */
1548 for (i = 0; i < ASIZE (elt); i++)
1549 {
1550 register Lisp_Object tem;
1551 register Lisp_Object cmd;
1552
1553 cmd = get_keyelt (AREF (elt, i), 0);
1554 if (NILP (cmd)) continue;
1555 tem = get_keymap (cmd, 0, 0);
1556 if (CONSP (tem))
1557 {
1558 cmd = tem;
1559 /* Ignore keymaps that are already added to maps. */
1560 tem = Frassq (cmd, maps);
1561 if (NILP (tem))
1562 {
1563 /* If the last key in thisseq is meta-prefix-char,
1564 turn it into a meta-ized keystroke. We know
1565 that the event we're about to append is an
1566 ascii keystroke since we're processing a
1567 keymap table. */
1568 if (is_metized)
1569 {
1570 int meta_bit = meta_modifier;
1571 tem = Fcopy_sequence (thisseq);
1572
1573 Faset (tem, last, make_number (i | meta_bit));
1574
1575 /* This new sequence is the same length as
1576 thisseq, so stick it in the list right
1577 after this one. */
1578 XCDR (tail)
1579 = Fcons (Fcons (tem, cmd), XCDR (tail));
1580 }
1581 else
1582 {
1583 tem = append_key (thisseq, make_number (i));
1584 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1585 }
1586 }
1587 }
1588 }
1589 }
1590 else if (CONSP (elt))
1591 {
1592 register Lisp_Object cmd, tem;
1593
1594 cmd = get_keyelt (XCDR (elt), 0);
1595 /* Ignore definitions that aren't keymaps themselves. */
1596 tem = get_keymap (cmd, 0, 0);
1597 if (CONSP (tem))
1598 {
1599 /* Ignore keymaps that have been seen already. */
1600 cmd = tem;
1601 tem = Frassq (cmd, maps);
1602 if (NILP (tem))
1603 {
1604 /* Let elt be the event defined by this map entry. */
1605 elt = XCAR (elt);
1606
1607 /* If the last key in thisseq is meta-prefix-char, and
1608 this entry is a binding for an ascii keystroke,
1609 turn it into a meta-ized keystroke. */
1610 if (is_metized && INTEGERP (elt))
1611 {
1612 Lisp_Object element;
1613
1614 element = thisseq;
1615 tem = Fvconcat (1, &element);
1616 XSETFASTINT (AREF (tem, XINT (last)),
1617 XINT (elt) | meta_modifier);
1618
1619 /* This new sequence is the same length as
1620 thisseq, so stick it in the list right
1621 after this one. */
1622 XCDR (tail)
1623 = Fcons (Fcons (tem, cmd), XCDR (tail));
1624 }
1625 else
1626 nconc2 (tail,
1627 Fcons (Fcons (append_key (thisseq, elt), cmd),
1628 Qnil));
1629 }
1630 }
1631 }
1632 }
1633 }
1634
1635 if (NILP (prefix))
1636 return maps;
1637
1638 /* Now find just the maps whose access prefixes start with PREFIX. */
1639
1640 good_maps = Qnil;
1641 for (; CONSP (maps); maps = XCDR (maps))
1642 {
1643 Lisp_Object elt, thisseq;
1644 elt = XCAR (maps);
1645 thisseq = XCAR (elt);
1646 /* The access prefix must be at least as long as PREFIX,
1647 and the first elements must match those of PREFIX. */
1648 if (XINT (Flength (thisseq)) >= prefixlen)
1649 {
1650 int i;
1651 for (i = 0; i < prefixlen; i++)
1652 {
1653 Lisp_Object i1;
1654 XSETFASTINT (i1, i);
1655 if (!EQ (Faref (thisseq, i1), Faref (prefix, i1)))
1656 break;
1657 }
1658 if (i == prefixlen)
1659 good_maps = Fcons (elt, good_maps);
1660 }
1661 }
1662
1663 return Fnreverse (good_maps);
1664}
1665
1666static void
1667accessible_keymaps_char_table (args, index, cmd)
1668 Lisp_Object args, index, cmd;
1669{
1670 Lisp_Object tem;
1671 Lisp_Object maps, tail, thisseq;
1672
1673 if (NILP (cmd))
1674 return;
1675
1676 maps = XCAR (args);
1677 tail = XCAR (XCDR (args));
1678 thisseq = XCDR (XCDR (args));
1679
1680 tem = get_keymap (cmd, 0, 0);
1681 if (CONSP (tem))
1682 {
1683 cmd = tem;
1684 /* Ignore keymaps that are already added to maps. */
1685 tem = Frassq (cmd, maps);
1686 if (NILP (tem))
1687 {
1688 tem = append_key (thisseq, index);
1689 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1690 }
1691 }
1692}
1693\f
1694Lisp_Object Qsingle_key_description, Qkey_description;
1695
1696/* This function cannot GC. */
1697
1698DEFUN ("key-description", Fkey_description, Skey_description, 1, 1, 0,
1699 "Return a pretty description of key-sequence KEYS.\n\
1700Control characters turn into \"C-foo\" sequences, meta into \"M-foo\"\n\
1701spaces are put between sequence elements, etc.")
1702 (keys)
1703 Lisp_Object keys;
1704{
1705 int len = 0;
1706 int i, i_byte;
1707 Lisp_Object sep;
1708 Lisp_Object *args = NULL;
1709
1710 if (STRINGP (keys))
1711 {
1712 Lisp_Object vector;
1713 vector = Fmake_vector (Flength (keys), Qnil);
1714 for (i = 0, i_byte = 0; i < XSTRING (keys)->size; )
1715 {
1716 int c;
1717 int i_before = i;
1718
1719 FETCH_STRING_CHAR_ADVANCE (c, keys, i, i_byte);
1720 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1721 c ^= 0200 | meta_modifier;
1722 XSETFASTINT (AREF (vector, i_before), c);
1723 }
1724 keys = vector;
1725 }
1726
1727 if (VECTORP (keys))
1728 {
1729 /* In effect, this computes
1730 (mapconcat 'single-key-description keys " ")
1731 but we shouldn't use mapconcat because it can do GC. */
1732
1733 len = XVECTOR (keys)->size;
1734 sep = build_string (" ");
1735 /* This has one extra element at the end that we don't pass to Fconcat. */
1736 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1737
1738 for (i = 0; i < len; i++)
1739 {
1740 args[i * 2] = Fsingle_key_description (AREF (keys, i), Qnil);
1741 args[i * 2 + 1] = sep;
1742 }
1743 }
1744 else if (CONSP (keys))
1745 {
1746 /* In effect, this computes
1747 (mapconcat 'single-key-description keys " ")
1748 but we shouldn't use mapconcat because it can do GC. */
1749
1750 len = XFASTINT (Flength (keys));
1751 sep = build_string (" ");
1752 /* This has one extra element at the end that we don't pass to Fconcat. */
1753 args = (Lisp_Object *) alloca (len * 2 * sizeof (Lisp_Object));
1754
1755 for (i = 0; i < len; i++)
1756 {
1757 args[i * 2] = Fsingle_key_description (XCAR (keys), Qnil);
1758 args[i * 2 + 1] = sep;
1759 keys = XCDR (keys);
1760 }
1761 }
1762 else
1763 keys = wrong_type_argument (Qarrayp, keys);
1764
1765 if (len == 0)
1766 return build_string ("");
1767 return Fconcat (len * 2 - 1, args);
1768}
1769
1770char *
1771push_key_description (c, p)
1772 register unsigned int c;
1773 register char *p;
1774{
1775 unsigned c2;
1776
1777 /* Clear all the meaningless bits above the meta bit. */
1778 c &= meta_modifier | ~ - meta_modifier;
1779 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
1780 | meta_modifier | shift_modifier | super_modifier);
1781
1782 if (c & alt_modifier)
1783 {
1784 *p++ = 'A';
1785 *p++ = '-';
1786 c -= alt_modifier;
1787 }
1788 if ((c & ctrl_modifier) != 0
1789 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
1790 {
1791 *p++ = 'C';
1792 *p++ = '-';
1793 c &= ~ctrl_modifier;
1794 }
1795 if (c & hyper_modifier)
1796 {
1797 *p++ = 'H';
1798 *p++ = '-';
1799 c -= hyper_modifier;
1800 }
1801 if (c & meta_modifier)
1802 {
1803 *p++ = 'M';
1804 *p++ = '-';
1805 c -= meta_modifier;
1806 }
1807 if (c & shift_modifier)
1808 {
1809 *p++ = 'S';
1810 *p++ = '-';
1811 c -= shift_modifier;
1812 }
1813 if (c & super_modifier)
1814 {
1815 *p++ = 's';
1816 *p++ = '-';
1817 c -= super_modifier;
1818 }
1819 if (c < 040)
1820 {
1821 if (c == 033)
1822 {
1823 *p++ = 'E';
1824 *p++ = 'S';
1825 *p++ = 'C';
1826 }
1827 else if (c == '\t')
1828 {
1829 *p++ = 'T';
1830 *p++ = 'A';
1831 *p++ = 'B';
1832 }
1833 else if (c == Ctl ('M'))
1834 {
1835 *p++ = 'R';
1836 *p++ = 'E';
1837 *p++ = 'T';
1838 }
1839 else
1840 {
1841 /* `C-' already added above. */
1842 if (c > 0 && c <= Ctl ('Z'))
1843 *p++ = c + 0140;
1844 else
1845 *p++ = c + 0100;
1846 }
1847 }
1848 else if (c == 0177)
1849 {
1850 *p++ = 'D';
1851 *p++ = 'E';
1852 *p++ = 'L';
1853 }
1854 else if (c == ' ')
1855 {
1856 *p++ = 'S';
1857 *p++ = 'P';
1858 *p++ = 'C';
1859 }
1860 else if (c < 128
1861 || (NILP (current_buffer->enable_multibyte_characters)
1862 && SINGLE_BYTE_CHAR_P (c)))
1863 *p++ = c;
1864 else
1865 {
1866 if (! NILP (current_buffer->enable_multibyte_characters))
1867 c = unibyte_char_to_multibyte (c);
1868
1869 if (NILP (current_buffer->enable_multibyte_characters)
1870 || SINGLE_BYTE_CHAR_P (c)
1871 || ! char_valid_p (c, 0))
1872 {
1873 int bit_offset;
1874 *p++ = '\\';
1875 /* The biggest character code uses 19 bits. */
1876 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
1877 {
1878 if (c >= (1 << bit_offset))
1879 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
1880 }
1881 }
1882 else
1883 {
1884 p += CHAR_STRING (c, p);
1885 }
1886 }
1887
1888 return p;
1889}
1890
1891/* This function cannot GC. */
1892
1893DEFUN ("single-key-description", Fsingle_key_description,
1894 Ssingle_key_description, 1, 2, 0,
1895 "Return a pretty description of command character KEY.\n\
1896Control characters turn into C-whatever, etc.\n\
1897Optional argument NO-ANGLES non-nil means don't put angle brackets\n\
1898around function keys and event symbols.")
1899 (key, no_angles)
1900 Lisp_Object key, no_angles;
1901{
1902 if (CONSP (key) && lucid_event_type_list_p (key))
1903 key = Fevent_convert_list (key);
1904
1905 key = EVENT_HEAD (key);
1906
1907 if (INTEGERP (key)) /* Normal character */
1908 {
1909 unsigned int charset, c1, c2;
1910 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
1911
1912 if (SINGLE_BYTE_CHAR_P (without_bits))
1913 charset = 0;
1914 else
1915 SPLIT_CHAR (without_bits, charset, c1, c2);
1916
1917 if (charset
1918 && CHARSET_DEFINED_P (charset)
1919 && ((c1 >= 0 && c1 < 32)
1920 || (c2 >= 0 && c2 < 32)))
1921 {
1922 /* Handle a generic character. */
1923 Lisp_Object name;
1924 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
1925 CHECK_STRING (name, 0);
1926 return concat2 (build_string ("Character set "), name);
1927 }
1928 else
1929 {
1930 char tem[KEY_DESCRIPTION_SIZE];
1931
1932 *push_key_description (XUINT (key), tem) = 0;
1933 return build_string (tem);
1934 }
1935 }
1936 else if (SYMBOLP (key)) /* Function key or event-symbol */
1937 {
1938 if (NILP (no_angles))
1939 {
1940 char *buffer
1941 = (char *) alloca (STRING_BYTES (XSYMBOL (key)->name) + 5);
1942 sprintf (buffer, "<%s>", XSYMBOL (key)->name->data);
1943 return build_string (buffer);
1944 }
1945 else
1946 return Fsymbol_name (key);
1947 }
1948 else if (STRINGP (key)) /* Buffer names in the menubar. */
1949 return Fcopy_sequence (key);
1950 else
1951 error ("KEY must be an integer, cons, symbol, or string");
1952 return Qnil;
1953}
1954
1955char *
1956push_text_char_description (c, p)
1957 register unsigned int c;
1958 register char *p;
1959{
1960 if (c >= 0200)
1961 {
1962 *p++ = 'M';
1963 *p++ = '-';
1964 c -= 0200;
1965 }
1966 if (c < 040)
1967 {
1968 *p++ = '^';
1969 *p++ = c + 64; /* 'A' - 1 */
1970 }
1971 else if (c == 0177)
1972 {
1973 *p++ = '^';
1974 *p++ = '?';
1975 }
1976 else
1977 *p++ = c;
1978 return p;
1979}
1980
1981/* This function cannot GC. */
1982
1983DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
1984 "Return a pretty description of file-character CHARACTER.\n\
1985Control characters turn into \"^char\", etc.")
1986 (character)
1987 Lisp_Object character;
1988{
1989 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
1990 unsigned char str[6];
1991 int c;
1992
1993 CHECK_NUMBER (character, 0);
1994
1995 c = XINT (character);
1996 if (!SINGLE_BYTE_CHAR_P (c))
1997 {
1998 int len = CHAR_STRING (c, str);
1999
2000 return make_multibyte_string (str, 1, len);
2001 }
2002
2003 *push_text_char_description (c & 0377, str) = 0;
2004
2005 return build_string (str);
2006}
2007
2008/* Return non-zero if SEQ contains only ASCII characters, perhaps with
2009 a meta bit. */
2010static int
2011ascii_sequence_p (seq)
2012 Lisp_Object seq;
2013{
2014 int i;
2015 int len = XINT (Flength (seq));
2016
2017 for (i = 0; i < len; i++)
2018 {
2019 Lisp_Object ii, elt;
2020
2021 XSETFASTINT (ii, i);
2022 elt = Faref (seq, ii);
2023
2024 if (!INTEGERP (elt)
2025 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2026 return 0;
2027 }
2028
2029 return 1;
2030}
2031
2032\f
2033/* where-is - finding a command in a set of keymaps. */
2034
2035static Lisp_Object where_is_internal_1 ();
2036static void where_is_internal_2 ();
2037
2038static INLINE int
2039menu_item_p (item)
2040 Lisp_Object item;
2041{
2042 return (CONSP (item)
2043 && (EQ (XCAR (item),Qmenu_item)
2044 || STRINGP (XCAR (item))));
2045}
2046
2047/* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2048 Returns the first non-nil binding found in any of those maps. */
2049
2050static Lisp_Object
2051shadow_lookup (shadow, key, flag)
2052 Lisp_Object shadow, key, flag;
2053{
2054 Lisp_Object tail, value;
2055
2056 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2057 {
2058 value = Flookup_key (XCAR (tail), key, flag);
2059 if (!NILP (value) && !NATNUMP (value))
2060 return value;
2061 }
2062 return Qnil;
2063}
2064
2065/* This function can GC if Flookup_key autoloads any keymaps. */
2066
2067static Lisp_Object
2068where_is_internal (definition, keymaps, firstonly, noindirect)
2069 Lisp_Object definition, keymaps;
2070 Lisp_Object firstonly, noindirect;
2071{
2072 Lisp_Object maps = Qnil;
2073 Lisp_Object found, sequences;
2074 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2075 /* 1 means ignore all menu bindings entirely. */
2076 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2077
2078 found = keymaps;
2079 while (CONSP (found))
2080 {
2081 maps =
2082 nconc2 (maps,
2083 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2084 found = XCDR (found);
2085 }
2086
2087 GCPRO5 (definition, keymaps, maps, found, sequences);
2088 found = Qnil;
2089 sequences = Qnil;
2090
2091 for (; !NILP (maps); maps = Fcdr (maps))
2092 {
2093 /* Key sequence to reach map, and the map that it reaches */
2094 register Lisp_Object this, map;
2095
2096 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2097 [M-CHAR] sequences, check if last character of the sequence
2098 is the meta-prefix char. */
2099 Lisp_Object last;
2100 int last_is_meta;
2101
2102 this = Fcar (Fcar (maps));
2103 map = Fcdr (Fcar (maps));
2104 last = make_number (XINT (Flength (this)) - 1);
2105 last_is_meta = (XINT (last) >= 0
2106 && EQ (Faref (this, last), meta_prefix_char));
2107
2108 if (nomenus && XINT (last) >= 0)
2109 { /* If no menu entries should be returned, skip over the
2110 keymaps bound to `menu-bar' and `tool-bar'. */
2111 Lisp_Object tem = Faref (this, make_number (0));
2112 if (EQ (tem, Qmenu_bar) || EQ (tem, Qtool_bar))
2113 continue;
2114 }
2115
2116 QUIT;
2117
2118 while (CONSP (map))
2119 {
2120 /* Because the code we want to run on each binding is rather
2121 large, we don't want to have two separate loop bodies for
2122 sparse keymap bindings and tables; we want to iterate one
2123 loop body over both keymap and vector bindings.
2124
2125 For this reason, if Fcar (map) is a vector, we don't
2126 advance map to the next element until i indicates that we
2127 have finished off the vector. */
2128 Lisp_Object elt, key, binding;
2129 elt = XCAR (map);
2130 map = XCDR (map);
2131
2132 sequences = Qnil;
2133
2134 QUIT;
2135
2136 /* Set key and binding to the current key and binding, and
2137 advance map and i to the next binding. */
2138 if (VECTORP (elt))
2139 {
2140 Lisp_Object sequence;
2141 int i;
2142 /* In a vector, look at each element. */
2143 for (i = 0; i < XVECTOR (elt)->size; i++)
2144 {
2145 binding = AREF (elt, i);
2146 XSETFASTINT (key, i);
2147 sequence = where_is_internal_1 (binding, key, definition,
2148 noindirect, this,
2149 last, nomenus, last_is_meta);
2150 if (!NILP (sequence))
2151 sequences = Fcons (sequence, sequences);
2152 }
2153 }
2154 else if (CHAR_TABLE_P (elt))
2155 {
2156 Lisp_Object indices[3];
2157 Lisp_Object args;
2158
2159 args = Fcons (Fcons (Fcons (definition, noindirect),
2160 Qnil), /* Result accumulator. */
2161 Fcons (Fcons (this, last),
2162 Fcons (make_number (nomenus),
2163 make_number (last_is_meta))));
2164 map_char_table (where_is_internal_2, Qnil, elt, args,
2165 0, indices);
2166 sequences = XCDR (XCAR (args));
2167 }
2168 else if (CONSP (elt))
2169 {
2170 Lisp_Object sequence;
2171
2172 key = XCAR (elt);
2173 binding = XCDR (elt);
2174
2175 sequence = where_is_internal_1 (binding, key, definition,
2176 noindirect, this,
2177 last, nomenus, last_is_meta);
2178 if (!NILP (sequence))
2179 sequences = Fcons (sequence, sequences);
2180 }
2181
2182
2183 for (; ! NILP (sequences); sequences = XCDR (sequences))
2184 {
2185 Lisp_Object sequence;
2186
2187 sequence = XCAR (sequences);
2188
2189 /* Verify that this key binding is not shadowed by another
2190 binding for the same key, before we say it exists.
2191
2192 Mechanism: look for local definition of this key and if
2193 it is defined and does not match what we found then
2194 ignore this key.
2195
2196 Either nil or number as value from Flookup_key
2197 means undefined. */
2198 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2199 continue;
2200
2201 /* It is a true unshadowed match. Record it, unless it's already
2202 been seen (as could happen when inheriting keymaps). */
2203 if (NILP (Fmember (sequence, found)))
2204 found = Fcons (sequence, found);
2205
2206 /* If firstonly is Qnon_ascii, then we can return the first
2207 binding we find. If firstonly is not Qnon_ascii but not
2208 nil, then we should return the first ascii-only binding
2209 we find. */
2210 if (EQ (firstonly, Qnon_ascii))
2211 RETURN_UNGCPRO (sequence);
2212 else if (! NILP (firstonly) && ascii_sequence_p (sequence))
2213 RETURN_UNGCPRO (sequence);
2214 }
2215 }
2216 }
2217
2218 UNGCPRO;
2219
2220 found = Fnreverse (found);
2221
2222 /* firstonly may have been t, but we may have gone all the way through
2223 the keymaps without finding an all-ASCII key sequence. So just
2224 return the best we could find. */
2225 if (! NILP (firstonly))
2226 return Fcar (found);
2227
2228 return found;
2229}
2230
2231DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 4, 0,
2232 "Return list of keys that invoke DEFINITION.\n\
2233If KEYMAP is non-nil, search only KEYMAP and the global keymap.\n\
2234If KEYMAP is nil, search all the currently active keymaps.\n\
2235If KEYMAP is a list of keymaps, search only those keymaps.\n\
2236\n\
2237If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,\n\
2238rather than a list of all possible key sequences.\n\
2239If FIRSTONLY is the symbol `non-ascii', return the first binding found,\n\
2240no matter what it is.\n\
2241If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters,\n\
2242and entirely reject menu bindings.\n\
2243\n\
2244If optional 4th arg NOINDIRECT is non-nil, don't follow indirections\n\
2245to other keymaps or slots. This makes it possible to search for an\n\
2246indirect definition itself.")
2247 (definition, xkeymap, firstonly, noindirect)
2248 Lisp_Object definition, xkeymap;
2249 Lisp_Object firstonly, noindirect;
2250{
2251 Lisp_Object sequences, keymaps;
2252 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
2253 /* 1 means ignore all menu bindings entirely. */
2254 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2255
2256 /* Find the relevant keymaps. */
2257 if (CONSP (xkeymap) && KEYMAPP (XCAR (xkeymap)))
2258 keymaps = xkeymap;
2259 else if (! NILP (xkeymap))
2260 keymaps = Fcons (xkeymap, Fcons (current_global_map, Qnil));
2261 else
2262 keymaps =
2263 Fdelq (Qnil,
2264 nconc2 (Fcurrent_minor_mode_maps (),
2265 Fcons (get_local_map (PT, current_buffer, keymap),
2266 Fcons (get_local_map (PT, current_buffer, local_map),
2267 Fcons (current_global_map, Qnil)))));
2268
2269 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2270 We don't really need to check `xkeymap'. */
2271 if (nomenus && NILP (noindirect) && NILP (xkeymap))
2272 {
2273 /* Check heuristic-consistency of the cache. */
2274 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2275 where_is_cache = Qnil;
2276
2277 if (NILP (where_is_cache))
2278 {
2279 /* We need to create the cache. */
2280 Lisp_Object args[2];
2281 where_is_cache = Fmake_hash_table (0, args);
2282 where_is_cache_keymaps = Qt;
2283
2284 /* Fill in the cache. */
2285 GCPRO4 (definition, keymaps, firstonly, noindirect);
2286 where_is_internal (definition, keymaps, firstonly, noindirect);
2287 UNGCPRO;
2288
2289 where_is_cache_keymaps = keymaps;
2290 }
2291
2292 sequences = Fgethash (definition, where_is_cache, Qnil);
2293 /* Verify that the key bindings are not shadowed. */
2294 /* key-binding can GC. */
2295 GCPRO3 (definition, sequences, keymaps);
2296 for (sequences = Fnreverse (sequences);
2297 CONSP (sequences);
2298 sequences = XCDR (sequences))
2299 if (EQ (shadow_lookup (keymaps, XCAR (sequences), Qnil), definition))
2300 RETURN_UNGCPRO (XCAR (sequences));
2301 RETURN_UNGCPRO (Qnil);
2302 }
2303 else
2304 {
2305 /* Kill the cache so that where_is_internal_1 doesn't think
2306 we're filling it up. */
2307 where_is_cache = Qnil;
2308 return where_is_internal (definition, keymaps, firstonly, noindirect);
2309 }
2310}
2311
2312/* This is the function that Fwhere_is_internal calls using map_char_table.
2313 ARGS has the form
2314 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2315 .
2316 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2317 Since map_char_table doesn't really use the return value from this function,
2318 we the result append to RESULT, the slot in ARGS.
2319
2320 This function can GC because it calls where_is_internal_1 which can
2321 GC. */
2322
2323static void
2324where_is_internal_2 (args, key, binding)
2325 Lisp_Object args, key, binding;
2326{
2327 Lisp_Object definition, noindirect, this, last;
2328 Lisp_Object result, sequence;
2329 int nomenus, last_is_meta;
2330 struct gcpro gcpro1, gcpro2, gcpro3;
2331
2332 GCPRO3 (args, key, binding);
2333 result = XCDR (XCAR (args));
2334 definition = XCAR (XCAR (XCAR (args)));
2335 noindirect = XCDR (XCAR (XCAR (args)));
2336 this = XCAR (XCAR (XCDR (args)));
2337 last = XCDR (XCAR (XCDR (args)));
2338 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2339 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2340
2341 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2342 this, last, nomenus, last_is_meta);
2343
2344 if (!NILP (sequence))
2345 XCDR (XCAR (args)) = Fcons (sequence, result);
2346
2347 UNGCPRO;
2348}
2349
2350
2351/* This function cannot GC. */
2352
2353static Lisp_Object
2354where_is_internal_1 (binding, key, definition, noindirect, this, last,
2355 nomenus, last_is_meta)
2356 Lisp_Object binding, key, definition, noindirect, this, last;
2357 int nomenus, last_is_meta;
2358{
2359 Lisp_Object sequence;
2360
2361 /* Skip left-over menu-items.
2362 These can appear in a keymap bound to a mouse click, for example. */
2363 if (nomenus && menu_item_p (binding))
2364 return Qnil;
2365 /* Search through indirections unless that's not wanted. */
2366 if (NILP (noindirect))
2367 binding = get_keyelt (binding, 0);
2368
2369 /* End this iteration if this element does not match
2370 the target. */
2371
2372 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2373 || EQ (binding, definition)
2374 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2375 /* Doesn't match. */
2376 return Qnil;
2377
2378 /* We have found a match. Construct the key sequence where we found it. */
2379 if (INTEGERP (key) && last_is_meta)
2380 {
2381 sequence = Fcopy_sequence (this);
2382 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2383 }
2384 else
2385 sequence = append_key (this, key);
2386
2387 if (!NILP (where_is_cache))
2388 {
2389 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2390 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2391 return Qnil;
2392 }
2393 else
2394 return sequence;
2395}
2396\f
2397/* describe-bindings - summarizing all the bindings in a set of keymaps. */
2398
2399DEFUN ("describe-bindings-internal", Fdescribe_bindings_internal, Sdescribe_bindings_internal, 0, 2, "",
2400 "Show a list of all defined keys, and their definitions.\n\
2401We put that list in a buffer, and display the buffer.\n\
2402\n\
2403The optional argument MENUS, if non-nil, says to mention menu bindings.\n\
2404\(Ordinarily these are omitted from the output.)\n\
2405The optional argument PREFIX, if non-nil, should be a key sequence;\n\
2406then we display only bindings that start with that prefix.")
2407 (menus, prefix)
2408 Lisp_Object menus, prefix;
2409{
2410 register Lisp_Object thisbuf;
2411 XSETBUFFER (thisbuf, current_buffer);
2412 internal_with_output_to_temp_buffer ("*Help*",
2413 describe_buffer_bindings,
2414 list3 (thisbuf, prefix, menus));
2415 return Qnil;
2416}
2417
2418/* ARG is (BUFFER PREFIX MENU-FLAG). */
2419
2420static Lisp_Object
2421describe_buffer_bindings (arg)
2422 Lisp_Object arg;
2423{
2424 Lisp_Object descbuf, prefix, shadow;
2425 int nomenu;
2426 register Lisp_Object start1;
2427 struct gcpro gcpro1;
2428
2429 char *alternate_heading
2430 = "\
2431Keyboard translations:\n\n\
2432You type Translation\n\
2433-------- -----------\n";
2434
2435 descbuf = XCAR (arg);
2436 arg = XCDR (arg);
2437 prefix = XCAR (arg);
2438 arg = XCDR (arg);
2439 nomenu = NILP (XCAR (arg));
2440
2441 shadow = Qnil;
2442 GCPRO1 (shadow);
2443
2444 Fset_buffer (Vstandard_output);
2445
2446 /* Report on alternates for keys. */
2447 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2448 {
2449 int c;
2450 unsigned char *translate = XSTRING (Vkeyboard_translate_table)->data;
2451 int translate_len = XSTRING (Vkeyboard_translate_table)->size;
2452
2453 for (c = 0; c < translate_len; c++)
2454 if (translate[c] != c)
2455 {
2456 char buf[KEY_DESCRIPTION_SIZE];
2457 char *bufend;
2458
2459 if (alternate_heading)
2460 {
2461 insert_string (alternate_heading);
2462 alternate_heading = 0;
2463 }
2464
2465 bufend = push_key_description (translate[c], buf);
2466 insert (buf, bufend - buf);
2467 Findent_to (make_number (16), make_number (1));
2468 bufend = push_key_description (c, buf);
2469 insert (buf, bufend - buf);
2470
2471 insert ("\n", 1);
2472 }
2473
2474 insert ("\n", 1);
2475 }
2476
2477 if (!NILP (Vkey_translation_map))
2478 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2479 "Key translations", nomenu, 1, 0);
2480
2481 {
2482 int i, nmaps;
2483 Lisp_Object *modes, *maps;
2484
2485 /* Temporarily switch to descbuf, so that we can get that buffer's
2486 minor modes correctly. */
2487 Fset_buffer (descbuf);
2488
2489 if (!NILP (current_kboard->Voverriding_terminal_local_map)
2490 || !NILP (Voverriding_local_map))
2491 nmaps = 0;
2492 else
2493 nmaps = current_minor_maps (&modes, &maps);
2494 Fset_buffer (Vstandard_output);
2495
2496 /* Print the minor mode maps. */
2497 for (i = 0; i < nmaps; i++)
2498 {
2499 /* The title for a minor mode keymap
2500 is constructed at run time.
2501 We let describe_map_tree do the actual insertion
2502 because it takes care of other features when doing so. */
2503 char *title, *p;
2504
2505 if (!SYMBOLP (modes[i]))
2506 abort();
2507
2508 p = title = (char *) alloca (42 + XSYMBOL (modes[i])->name->size);
2509 *p++ = '\f';
2510 *p++ = '\n';
2511 *p++ = '`';
2512 bcopy (XSYMBOL (modes[i])->name->data, p,
2513 XSYMBOL (modes[i])->name->size);
2514 p += XSYMBOL (modes[i])->name->size;
2515 *p++ = '\'';
2516 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2517 p += sizeof (" Minor Mode Bindings") - 1;
2518 *p = 0;
2519
2520 describe_map_tree (maps[i], 1, shadow, prefix, title, nomenu, 0, 0);
2521 shadow = Fcons (maps[i], shadow);
2522 }
2523 }
2524
2525 /* Print the (major mode) local map. */
2526 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2527 start1 = current_kboard->Voverriding_terminal_local_map;
2528 else if (!NILP (Voverriding_local_map))
2529 start1 = Voverriding_local_map;
2530 else
2531 start1 = XBUFFER (descbuf)->keymap;
2532
2533 if (!NILP (start1))
2534 {
2535 describe_map_tree (start1, 1, shadow, prefix,
2536 "\f\nMajor Mode Bindings", nomenu, 0, 0);
2537 shadow = Fcons (start1, shadow);
2538 }
2539
2540 describe_map_tree (current_global_map, 1, shadow, prefix,
2541 "\f\nGlobal Bindings", nomenu, 0, 1);
2542
2543 /* Print the function-key-map translations under this prefix. */
2544 if (!NILP (Vfunction_key_map))
2545 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2546 "\f\nFunction key map translations", nomenu, 1, 0);
2547
2548 call0 (intern ("help-mode"));
2549 Fset_buffer (descbuf);
2550 UNGCPRO;
2551 return Qnil;
2552}
2553
2554/* Insert a description of the key bindings in STARTMAP,
2555 followed by those of all maps reachable through STARTMAP.
2556 If PARTIAL is nonzero, omit certain "uninteresting" commands
2557 (such as `undefined').
2558 If SHADOW is non-nil, it is a list of maps;
2559 don't mention keys which would be shadowed by any of them.
2560 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2561 TITLE, if not 0, is a string to insert at the beginning.
2562 TITLE should not end with a colon or a newline; we supply that.
2563 If NOMENU is not 0, then omit menu-bar commands.
2564
2565 If TRANSL is nonzero, the definitions are actually key translations
2566 so print strings and vectors differently.
2567
2568 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
2569 to look through. */
2570
2571void
2572describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
2573 always_title)
2574 Lisp_Object startmap, shadow, prefix;
2575 int partial;
2576 char *title;
2577 int nomenu;
2578 int transl;
2579 int always_title;
2580{
2581 Lisp_Object maps, orig_maps, seen, sub_shadows;
2582 struct gcpro gcpro1, gcpro2, gcpro3;
2583 int something = 0;
2584 char *key_heading
2585 = "\
2586key binding\n\
2587--- -------\n";
2588
2589 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
2590 seen = Qnil;
2591 sub_shadows = Qnil;
2592 GCPRO3 (maps, seen, sub_shadows);
2593
2594 if (nomenu)
2595 {
2596 Lisp_Object list;
2597
2598 /* Delete from MAPS each element that is for the menu bar. */
2599 for (list = maps; !NILP (list); list = XCDR (list))
2600 {
2601 Lisp_Object elt, prefix, tem;
2602
2603 elt = Fcar (list);
2604 prefix = Fcar (elt);
2605 if (XVECTOR (prefix)->size >= 1)
2606 {
2607 tem = Faref (prefix, make_number (0));
2608 if (EQ (tem, Qmenu_bar))
2609 maps = Fdelq (elt, maps);
2610 }
2611 }
2612 }
2613
2614 if (!NILP (maps) || always_title)
2615 {
2616 if (title)
2617 {
2618 insert_string (title);
2619 if (!NILP (prefix))
2620 {
2621 insert_string (" Starting With ");
2622 insert1 (Fkey_description (prefix));
2623 }
2624 insert_string (":\n");
2625 }
2626 insert_string (key_heading);
2627 something = 1;
2628 }
2629
2630 for (; !NILP (maps); maps = Fcdr (maps))
2631 {
2632 register Lisp_Object elt, prefix, tail;
2633
2634 elt = Fcar (maps);
2635 prefix = Fcar (elt);
2636
2637 sub_shadows = Qnil;
2638
2639 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2640 {
2641 Lisp_Object shmap;
2642
2643 shmap = XCAR (tail);
2644
2645 /* If the sequence by which we reach this keymap is zero-length,
2646 then the shadow map for this keymap is just SHADOW. */
2647 if ((STRINGP (prefix) && XSTRING (prefix)->size == 0)
2648 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
2649 ;
2650 /* If the sequence by which we reach this keymap actually has
2651 some elements, then the sequence's definition in SHADOW is
2652 what we should use. */
2653 else
2654 {
2655 shmap = Flookup_key (shmap, Fcar (elt), Qt);
2656 if (INTEGERP (shmap))
2657 shmap = Qnil;
2658 }
2659
2660 /* If shmap is not nil and not a keymap,
2661 it completely shadows this map, so don't
2662 describe this map at all. */
2663 if (!NILP (shmap) && !KEYMAPP (shmap))
2664 goto skip;
2665
2666 if (!NILP (shmap))
2667 sub_shadows = Fcons (shmap, sub_shadows);
2668 }
2669
2670 /* Maps we have already listed in this loop shadow this map. */
2671 for (tail = orig_maps; ! EQ (tail, maps); tail = XCDR (tail))
2672 {
2673 Lisp_Object tem;
2674 tem = Fequal (Fcar (XCAR (tail)), prefix);
2675 if (! NILP (tem))
2676 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
2677 }
2678
2679 describe_map (Fcdr (elt), prefix,
2680 transl ? describe_translation : describe_command,
2681 partial, sub_shadows, &seen, nomenu);
2682
2683 skip: ;
2684 }
2685
2686 if (something)
2687 insert_string ("\n");
2688
2689 UNGCPRO;
2690}
2691
2692static int previous_description_column;
2693
2694static void
2695describe_command (definition)
2696 Lisp_Object definition;
2697{
2698 register Lisp_Object tem1;
2699 int column = current_column ();
2700 int description_column;
2701
2702 /* If column 16 is no good, go to col 32;
2703 but don't push beyond that--go to next line instead. */
2704 if (column > 30)
2705 {
2706 insert_char ('\n');
2707 description_column = 32;
2708 }
2709 else if (column > 14 || (column > 10 && previous_description_column == 32))
2710 description_column = 32;
2711 else
2712 description_column = 16;
2713
2714 Findent_to (make_number (description_column), make_number (1));
2715 previous_description_column = description_column;
2716
2717 if (SYMBOLP (definition))
2718 {
2719 XSETSTRING (tem1, XSYMBOL (definition)->name);
2720 insert1 (tem1);
2721 insert_string ("\n");
2722 }
2723 else if (STRINGP (definition) || VECTORP (definition))
2724 insert_string ("Keyboard Macro\n");
2725 else if (KEYMAPP (definition))
2726 insert_string ("Prefix Command\n");
2727 else
2728 insert_string ("??\n");
2729}
2730
2731static void
2732describe_translation (definition)
2733 Lisp_Object definition;
2734{
2735 register Lisp_Object tem1;
2736
2737 Findent_to (make_number (16), make_number (1));
2738
2739 if (SYMBOLP (definition))
2740 {
2741 XSETSTRING (tem1, XSYMBOL (definition)->name);
2742 insert1 (tem1);
2743 insert_string ("\n");
2744 }
2745 else if (STRINGP (definition) || VECTORP (definition))
2746 {
2747 insert1 (Fkey_description (definition));
2748 insert_string ("\n");
2749 }
2750 else if (KEYMAPP (definition))
2751 insert_string ("Prefix Command\n");
2752 else
2753 insert_string ("??\n");
2754}
2755
2756/* Describe the contents of map MAP, assuming that this map itself is
2757 reached by the sequence of prefix keys KEYS (a string or vector).
2758 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
2759
2760static void
2761describe_map (map, keys, elt_describer, partial, shadow, seen, nomenu)
2762 register Lisp_Object map;
2763 Lisp_Object keys;
2764 void (*elt_describer) P_ ((Lisp_Object));
2765 int partial;
2766 Lisp_Object shadow;
2767 Lisp_Object *seen;
2768 int nomenu;
2769{
2770 Lisp_Object elt_prefix;
2771 Lisp_Object tail, definition, event;
2772 Lisp_Object tem;
2773 Lisp_Object suppress;
2774 Lisp_Object kludge;
2775 int first = 1;
2776 struct gcpro gcpro1, gcpro2, gcpro3;
2777
2778 suppress = Qnil;
2779
2780 if (!NILP (keys) && XFASTINT (Flength (keys)) > 0)
2781 {
2782 /* Call Fkey_description first, to avoid GC bug for the other string. */
2783 tem = Fkey_description (keys);
2784 elt_prefix = concat2 (tem, build_string (" "));
2785 }
2786 else
2787 elt_prefix = Qnil;
2788
2789 if (partial)
2790 suppress = intern ("suppress-keymap");
2791
2792 /* This vector gets used to present single keys to Flookup_key. Since
2793 that is done once per keymap element, we don't want to cons up a
2794 fresh vector every time. */
2795 kludge = Fmake_vector (make_number (1), Qnil);
2796 definition = Qnil;
2797
2798 GCPRO3 (elt_prefix, definition, kludge);
2799
2800 for (tail = map; CONSP (tail); tail = XCDR (tail))
2801 {
2802 QUIT;
2803
2804 if (VECTORP (XCAR (tail))
2805 || CHAR_TABLE_P (XCAR (tail)))
2806 describe_vector (XCAR (tail),
2807 elt_prefix, elt_describer, partial, shadow, map,
2808 (int *)0, 0);
2809 else if (CONSP (XCAR (tail)))
2810 {
2811 event = XCAR (XCAR (tail));
2812
2813 /* Ignore bindings whose "keys" are not really valid events.
2814 (We get these in the frames and buffers menu.) */
2815 if (! (SYMBOLP (event) || INTEGERP (event)))
2816 continue;
2817
2818 if (nomenu && EQ (event, Qmenu_bar))
2819 continue;
2820
2821 definition = get_keyelt (XCDR (XCAR (tail)), 0);
2822
2823 /* Don't show undefined commands or suppressed commands. */
2824 if (NILP (definition)) continue;
2825 if (SYMBOLP (definition) && partial)
2826 {
2827 tem = Fget (definition, suppress);
2828 if (!NILP (tem))
2829 continue;
2830 }
2831
2832 /* Don't show a command that isn't really visible
2833 because a local definition of the same key shadows it. */
2834
2835 ASET (kludge, 0, event);
2836 if (!NILP (shadow))
2837 {
2838 tem = shadow_lookup (shadow, kludge, Qt);
2839 if (!NILP (tem)) continue;
2840 }
2841
2842 tem = Flookup_key (map, kludge, Qt);
2843 if (! EQ (tem, definition)) continue;
2844
2845 if (first)
2846 {
2847 previous_description_column = 0;
2848 insert ("\n", 1);
2849 first = 0;
2850 }
2851
2852 if (!NILP (elt_prefix))
2853 insert1 (elt_prefix);
2854
2855 /* THIS gets the string to describe the character EVENT. */
2856 insert1 (Fsingle_key_description (event, Qnil));
2857
2858 /* Print a description of the definition of this character.
2859 elt_describer will take care of spacing out far enough
2860 for alignment purposes. */
2861 (*elt_describer) (definition);
2862 }
2863 else if (EQ (XCAR (tail), Qkeymap))
2864 {
2865 /* The same keymap might be in the structure twice, if we're
2866 using an inherited keymap. So skip anything we've already
2867 encountered. */
2868 tem = Fassq (tail, *seen);
2869 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), keys)))
2870 break;
2871 *seen = Fcons (Fcons (tail, keys), *seen);
2872 }
2873 }
2874
2875 UNGCPRO;
2876}
2877
2878static void
2879describe_vector_princ (elt)
2880 Lisp_Object elt;
2881{
2882 Findent_to (make_number (16), make_number (1));
2883 Fprinc (elt, Qnil);
2884 Fterpri (Qnil);
2885}
2886
2887DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 1, 0,
2888 "Insert a description of contents of VECTOR.\n\
2889This is text showing the elements of vector matched against indices.")
2890 (vector)
2891 Lisp_Object vector;
2892{
2893 int count = specpdl_ptr - specpdl;
2894
2895 specbind (Qstandard_output, Fcurrent_buffer ());
2896 CHECK_VECTOR_OR_CHAR_TABLE (vector, 0);
2897 describe_vector (vector, Qnil, describe_vector_princ, 0,
2898 Qnil, Qnil, (int *)0, 0);
2899
2900 return unbind_to (count, Qnil);
2901}
2902
2903/* Insert in the current buffer a description of the contents of VECTOR.
2904 We call ELT_DESCRIBER to insert the description of one value found
2905 in VECTOR.
2906
2907 ELT_PREFIX describes what "comes before" the keys or indices defined
2908 by this vector. This is a human-readable string whose size
2909 is not necessarily related to the situation.
2910
2911 If the vector is in a keymap, ELT_PREFIX is a prefix key which
2912 leads to this keymap.
2913
2914 If the vector is a chartable, ELT_PREFIX is the vector
2915 of bytes that lead to the character set or portion of a character
2916 set described by this chartable.
2917
2918 If PARTIAL is nonzero, it means do not mention suppressed commands
2919 (that assumes the vector is in a keymap).
2920
2921 SHADOW is a list of keymaps that shadow this map.
2922 If it is non-nil, then we look up the key in those maps
2923 and we don't mention it now if it is defined by any of them.
2924
2925 ENTIRE_MAP is the keymap in which this vector appears.
2926 If the definition in effect in the whole map does not match
2927 the one in this vector, we ignore this one.
2928
2929 When describing a sub-char-table, INDICES is a list of
2930 indices at higher levels in this char-table,
2931 and CHAR_TABLE_DEPTH says how many levels down we have gone. */
2932
2933void
2934describe_vector (vector, elt_prefix, elt_describer,
2935 partial, shadow, entire_map,
2936 indices, char_table_depth)
2937 register Lisp_Object vector;
2938 Lisp_Object elt_prefix;
2939 void (*elt_describer) P_ ((Lisp_Object));
2940 int partial;
2941 Lisp_Object shadow;
2942 Lisp_Object entire_map;
2943 int *indices;
2944 int char_table_depth;
2945{
2946 Lisp_Object definition;
2947 Lisp_Object tem2;
2948 register int i;
2949 Lisp_Object suppress;
2950 Lisp_Object kludge;
2951 int first = 1;
2952 struct gcpro gcpro1, gcpro2, gcpro3;
2953 /* Range of elements to be handled. */
2954 int from, to;
2955 /* A flag to tell if a leaf in this level of char-table is not a
2956 generic character (i.e. a complete multibyte character). */
2957 int complete_char;
2958 int character;
2959 int starting_i;
2960
2961 suppress = Qnil;
2962
2963 if (indices == 0)
2964 indices = (int *) alloca (3 * sizeof (int));
2965
2966 definition = Qnil;
2967
2968 /* This vector gets used to present single keys to Flookup_key. Since
2969 that is done once per vector element, we don't want to cons up a
2970 fresh vector every time. */
2971 kludge = Fmake_vector (make_number (1), Qnil);
2972 GCPRO3 (elt_prefix, definition, kludge);
2973
2974 if (partial)
2975 suppress = intern ("suppress-keymap");
2976
2977 if (CHAR_TABLE_P (vector))
2978 {
2979 if (char_table_depth == 0)
2980 {
2981 /* VECTOR is a top level char-table. */
2982 complete_char = 1;
2983 from = 0;
2984 to = CHAR_TABLE_ORDINARY_SLOTS;
2985 }
2986 else
2987 {
2988 /* VECTOR is a sub char-table. */
2989 if (char_table_depth >= 3)
2990 /* A char-table is never that deep. */
2991 error ("Too deep char table");
2992
2993 complete_char
2994 = (CHARSET_VALID_P (indices[0])
2995 && ((CHARSET_DIMENSION (indices[0]) == 1
2996 && char_table_depth == 1)
2997 || char_table_depth == 2));
2998
2999 /* Meaningful elements are from 32th to 127th. */
3000 from = 32;
3001 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3002 }
3003 }
3004 else
3005 {
3006 /* This does the right thing for ordinary vectors. */
3007
3008 complete_char = 1;
3009 from = 0;
3010 to = XVECTOR (vector)->size;
3011 }
3012
3013 for (i = from; i < to; i++)
3014 {
3015 QUIT;
3016
3017 if (CHAR_TABLE_P (vector))
3018 {
3019 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3020 complete_char = 0;
3021
3022 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3023 && !CHARSET_DEFINED_P (i - 128))
3024 continue;
3025
3026 definition
3027 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3028 }
3029 else
3030 definition = get_keyelt (AREF (vector, i), 0);
3031
3032 if (NILP (definition)) continue;
3033
3034 /* Don't mention suppressed commands. */
3035 if (SYMBOLP (definition) && partial)
3036 {
3037 Lisp_Object tem;
3038
3039 tem = Fget (definition, suppress);
3040
3041 if (!NILP (tem)) continue;
3042 }
3043
3044 /* Set CHARACTER to the character this entry describes, if any.
3045 Also update *INDICES. */
3046 if (CHAR_TABLE_P (vector))
3047 {
3048 indices[char_table_depth] = i;
3049
3050 if (char_table_depth == 0)
3051 {
3052 character = i;
3053 indices[0] = i - 128;
3054 }
3055 else if (complete_char)
3056 {
3057 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3058 }
3059 else
3060 character = 0;
3061 }
3062 else
3063 character = i;
3064
3065 /* If this binding is shadowed by some other map, ignore it. */
3066 if (!NILP (shadow) && complete_char)
3067 {
3068 Lisp_Object tem;
3069
3070 ASET (kludge, 0, make_number (character));
3071 tem = shadow_lookup (shadow, kludge, Qt);
3072
3073 if (!NILP (tem)) continue;
3074 }
3075
3076 /* Ignore this definition if it is shadowed by an earlier
3077 one in the same keymap. */
3078 if (!NILP (entire_map) && complete_char)
3079 {
3080 Lisp_Object tem;
3081
3082 ASET (kludge, 0, make_number (character));
3083 tem = Flookup_key (entire_map, kludge, Qt);
3084
3085 if (! EQ (tem, definition))
3086 continue;
3087 }
3088
3089 if (first)
3090 {
3091 if (char_table_depth == 0)
3092 insert ("\n", 1);
3093 first = 0;
3094 }
3095
3096 /* For a sub char-table, show the depth by indentation.
3097 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3098 if (char_table_depth > 0)
3099 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3100
3101 /* Output the prefix that applies to every entry in this map. */
3102 if (!NILP (elt_prefix))
3103 insert1 (elt_prefix);
3104
3105 /* Insert or describe the character this slot is for,
3106 or a description of what it is for. */
3107 if (SUB_CHAR_TABLE_P (vector))
3108 {
3109 if (complete_char)
3110 insert_char (character);
3111 else
3112 {
3113 /* We need an octal representation for this block of
3114 characters. */
3115 char work[16];
3116 sprintf (work, "(row %d)", i);
3117 insert (work, strlen (work));
3118 }
3119 }
3120 else if (CHAR_TABLE_P (vector))
3121 {
3122 if (complete_char)
3123 insert1 (Fsingle_key_description (make_number (character), Qnil));
3124 else
3125 {
3126 /* Print the information for this character set. */
3127 insert_string ("<");
3128 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3129 if (STRINGP (tem2))
3130 insert_from_string (tem2, 0, 0, XSTRING (tem2)->size,
3131 STRING_BYTES (XSTRING (tem2)), 0);
3132 else
3133 insert ("?", 1);
3134 insert (">", 1);
3135 }
3136 }
3137 else
3138 {
3139 insert1 (Fsingle_key_description (make_number (character), Qnil));
3140 }
3141
3142 /* If we find a sub char-table within a char-table,
3143 scan it recursively; it defines the details for
3144 a character set or a portion of a character set. */
3145 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3146 {
3147 insert ("\n", 1);
3148 describe_vector (definition, elt_prefix, elt_describer,
3149 partial, shadow, entire_map,
3150 indices, char_table_depth + 1);
3151 continue;
3152 }
3153
3154 starting_i = i;
3155
3156 /* Find all consecutive characters or rows that have the same
3157 definition. But, for elements of a top level char table, if
3158 they are for charsets, we had better describe one by one even
3159 if they have the same definition. */
3160 if (CHAR_TABLE_P (vector))
3161 {
3162 int limit = to;
3163
3164 if (char_table_depth == 0)
3165 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3166
3167 while (i + 1 < limit
3168 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3169 !NILP (tem2))
3170 && !NILP (Fequal (tem2, definition)))
3171 i++;
3172 }
3173 else
3174 while (i + 1 < to
3175 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3176 !NILP (tem2))
3177 && !NILP (Fequal (tem2, definition)))
3178 i++;
3179
3180
3181 /* If we have a range of more than one character,
3182 print where the range reaches to. */
3183
3184 if (i != starting_i)
3185 {
3186 insert (" .. ", 4);
3187
3188 if (!NILP (elt_prefix))
3189 insert1 (elt_prefix);
3190
3191 if (CHAR_TABLE_P (vector))
3192 {
3193 if (char_table_depth == 0)
3194 {
3195 insert1 (Fsingle_key_description (make_number (i), Qnil));
3196 }
3197 else if (complete_char)
3198 {
3199 indices[char_table_depth] = i;
3200 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3201 insert_char (character);
3202 }
3203 else
3204 {
3205 /* We need an octal representation for this block of
3206 characters. */
3207 char work[16];
3208 sprintf (work, "(row %d)", i);
3209 insert (work, strlen (work));
3210 }
3211 }
3212 else
3213 {
3214 insert1 (Fsingle_key_description (make_number (i), Qnil));
3215 }
3216 }
3217
3218 /* Print a description of the definition of this character.
3219 elt_describer will take care of spacing out far enough
3220 for alignment purposes. */
3221 (*elt_describer) (definition);
3222 }
3223
3224 /* For (sub) char-table, print `defalt' slot at last. */
3225 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3226 {
3227 insert (" ", char_table_depth * 2);
3228 insert_string ("<<default>>");
3229 (*elt_describer) (XCHAR_TABLE (vector)->defalt);
3230 }
3231
3232 UNGCPRO;
3233}
3234\f
3235/* Apropos - finding all symbols whose names match a regexp. */
3236Lisp_Object apropos_predicate;
3237Lisp_Object apropos_accumulate;
3238
3239static void
3240apropos_accum (symbol, string)
3241 Lisp_Object symbol, string;
3242{
3243 register Lisp_Object tem;
3244
3245 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3246 if (!NILP (tem) && !NILP (apropos_predicate))
3247 tem = call1 (apropos_predicate, symbol);
3248 if (!NILP (tem))
3249 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3250}
3251
3252DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3253 "Show all symbols whose names contain match for REGEXP.\n\
3254If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done\n\
3255for each symbol and a symbol is mentioned only if that returns non-nil.\n\
3256Return list of symbols found.")
3257 (regexp, predicate)
3258 Lisp_Object regexp, predicate;
3259{
3260 struct gcpro gcpro1, gcpro2;
3261 CHECK_STRING (regexp, 0);
3262 apropos_predicate = predicate;
3263 GCPRO2 (apropos_predicate, apropos_accumulate);
3264 apropos_accumulate = Qnil;
3265 map_obarray (Vobarray, apropos_accum, regexp);
3266 apropos_accumulate = Fsort (apropos_accumulate, Qstring_lessp);
3267 UNGCPRO;
3268 return apropos_accumulate;
3269}
3270\f
3271void
3272syms_of_keymap ()
3273{
3274 Qkeymap = intern ("keymap");
3275 staticpro (&Qkeymap);
3276
3277 /* Now we are ready to set up this property, so we can
3278 create char tables. */
3279 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3280
3281 /* Initialize the keymaps standardly used.
3282 Each one is the value of a Lisp variable, and is also
3283 pointed to by a C variable */
3284
3285 global_map = Fmake_keymap (Qnil);
3286 Fset (intern ("global-map"), global_map);
3287
3288 current_global_map = global_map;
3289 staticpro (&global_map);
3290 staticpro (&current_global_map);
3291
3292 meta_map = Fmake_keymap (Qnil);
3293 Fset (intern ("esc-map"), meta_map);
3294 Ffset (intern ("ESC-prefix"), meta_map);
3295
3296 control_x_map = Fmake_keymap (Qnil);
3297 Fset (intern ("ctl-x-map"), control_x_map);
3298 Ffset (intern ("Control-X-prefix"), control_x_map);
3299
3300 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3301 "List of commands given new key bindings recently.\n\
3302This is used for internal purposes during Emacs startup;\n\
3303don't alter it yourself.");
3304 Vdefine_key_rebound_commands = Qt;
3305
3306 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3307 "Default keymap to use when reading from the minibuffer.");
3308 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3309
3310 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3311 "Local keymap for the minibuffer when spaces are not allowed.");
3312 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3313
3314 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3315 "Local keymap for minibuffer input with completion.");
3316 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3317
3318 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3319 "Local keymap for minibuffer input with completion, for exact match.");
3320 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3321
3322 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3323 "Alist of keymaps to use for minor modes.\n\
3324Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read\n\
3325key sequences and look up bindings iff VARIABLE's value is non-nil.\n\
3326If two active keymaps bind the same key, the keymap appearing earlier\n\
3327in the list takes precedence.");
3328 Vminor_mode_map_alist = Qnil;
3329
3330 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3331 "Alist of keymaps to use for minor modes, in current major mode.\n\
3332This variable is a alist just like `minor-mode-map-alist', and it is\n\
3333used the same way (and before `minor-mode-map-alist'); however,\n\
3334it is provided for major modes to bind locally.");
3335 Vminor_mode_overriding_map_alist = Qnil;
3336
3337 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3338 "Keymap mapping ASCII function key sequences onto their preferred forms.\n\
3339This allows Emacs to recognize function keys sent from ASCII\n\
3340terminals at any point in a key sequence.\n\
3341\n\
3342The `read-key-sequence' function replaces any subsequence bound by\n\
3343`function-key-map' with its binding. More precisely, when the active\n\
3344keymaps have no binding for the current key sequence but\n\
3345`function-key-map' binds a suffix of the sequence to a vector or string,\n\
3346`read-key-sequence' replaces the matching suffix with its binding, and\n\
3347continues with the new sequence.\n\
3348\n\
3349The events that come from bindings in `function-key-map' are not\n\
3350themselves looked up in `function-key-map'.\n\
3351\n\
3352For example, suppose `function-key-map' binds `ESC O P' to [f1].\n\
3353Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing\n\
3354`C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix\n\
3355key, typing `ESC O P x' would return [f1 x].");
3356 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3357
3358 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3359 "Keymap of key translations that can override keymaps.\n\
3360This keymap works like `function-key-map', but comes after that,\n\
3361and applies even for keys that have ordinary bindings.");
3362 Vkey_translation_map = Qnil;
3363
3364 Qsingle_key_description = intern ("single-key-description");
3365 staticpro (&Qsingle_key_description);
3366
3367 Qkey_description = intern ("key-description");
3368 staticpro (&Qkey_description);
3369
3370 Qkeymapp = intern ("keymapp");
3371 staticpro (&Qkeymapp);
3372
3373 Qnon_ascii = intern ("non-ascii");
3374 staticpro (&Qnon_ascii);
3375
3376 Qmenu_item = intern ("menu-item");
3377 staticpro (&Qmenu_item);
3378
3379 where_is_cache_keymaps = Qt;
3380 where_is_cache = Qnil;
3381 staticpro (&where_is_cache);
3382 staticpro (&where_is_cache_keymaps);
3383
3384 defsubr (&Skeymapp);
3385 defsubr (&Skeymap_parent);
3386 defsubr (&Sset_keymap_parent);
3387 defsubr (&Smake_keymap);
3388 defsubr (&Smake_sparse_keymap);
3389 defsubr (&Scopy_keymap);
3390 defsubr (&Skey_binding);
3391 defsubr (&Slocal_key_binding);
3392 defsubr (&Sglobal_key_binding);
3393 defsubr (&Sminor_mode_key_binding);
3394 defsubr (&Sdefine_key);
3395 defsubr (&Slookup_key);
3396 defsubr (&Sdefine_prefix_command);
3397 defsubr (&Suse_global_map);
3398 defsubr (&Suse_local_map);
3399 defsubr (&Scurrent_local_map);
3400 defsubr (&Scurrent_global_map);
3401 defsubr (&Scurrent_minor_mode_maps);
3402 defsubr (&Saccessible_keymaps);
3403 defsubr (&Skey_description);
3404 defsubr (&Sdescribe_vector);
3405 defsubr (&Ssingle_key_description);
3406 defsubr (&Stext_char_description);
3407 defsubr (&Swhere_is_internal);
3408 defsubr (&Sdescribe_bindings_internal);
3409 defsubr (&Sapropos_internal);
3410}
3411
3412void
3413keys_of_keymap ()
3414{
3415 initial_define_key (global_map, 033, "ESC-prefix");
3416 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
3417}