* alloc.c (pure_bytes_used_lisp, pure_bytes_used_non_lisp):
[bpt/emacs.git] / src / ccl.c
... / ...
CommitLineData
1/* CCL (Code Conversion Language) interpreter.
2 Copyright (C) 2001-2011 Free Software Foundation, Inc.
3 Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006, 2007, 2008, 2009, 2010, 2011
5 National Institute of Advanced Industrial Science and Technology (AIST)
6 Registration Number H14PRO021
7 Copyright (C) 2003
8 National Institute of Advanced Industrial Science and Technology (AIST)
9 Registration Number H13PRO009
10
11This file is part of GNU Emacs.
12
13GNU Emacs is free software: you can redistribute it and/or modify
14it under the terms of the GNU General Public License as published by
15the Free Software Foundation, either version 3 of the License, or
16(at your option) any later version.
17
18GNU Emacs is distributed in the hope that it will be useful,
19but WITHOUT ANY WARRANTY; without even the implied warranty of
20MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
21GNU General Public License for more details.
22
23You should have received a copy of the GNU General Public License
24along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>. */
25
26#include <config.h>
27
28#include <stdio.h>
29#include <setjmp.h>
30#include <limits.h>
31
32#include "lisp.h"
33#include "character.h"
34#include "charset.h"
35#include "ccl.h"
36#include "coding.h"
37
38Lisp_Object Qccl, Qcclp;
39
40/* This symbol is a property which associates with ccl program vector.
41 Ex: (get 'ccl-big5-encoder 'ccl-program) returns ccl program vector. */
42static Lisp_Object Qccl_program;
43
44/* These symbols are properties which associate with code conversion
45 map and their ID respectively. */
46static Lisp_Object Qcode_conversion_map;
47static Lisp_Object Qcode_conversion_map_id;
48
49/* Symbols of ccl program have this property, a value of the property
50 is an index for Vccl_protram_table. */
51static Lisp_Object Qccl_program_idx;
52
53/* Table of registered CCL programs. Each element is a vector of
54 NAME, CCL_PROG, RESOLVEDP, and UPDATEDP, where NAME (symbol) is the
55 name of the program, CCL_PROG (vector) is the compiled code of the
56 program, RESOLVEDP (t or nil) is the flag to tell if symbols in
57 CCL_PROG is already resolved to index numbers or not, UPDATEDP (t
58 or nil) is the flat to tell if the CCL program is updated after it
59 was once used. */
60static Lisp_Object Vccl_program_table;
61
62/* Return a hash table of id number ID. */
63#define GET_HASH_TABLE(id) \
64 (XHASH_TABLE (XCDR (XVECTOR (Vtranslation_hash_table_vector)->contents[(id)])))
65
66/* CCL (Code Conversion Language) is a simple language which has
67 operations on one input buffer, one output buffer, and 7 registers.
68 The syntax of CCL is described in `ccl.el'. Emacs Lisp function
69 `ccl-compile' compiles a CCL program and produces a CCL code which
70 is a vector of integers. The structure of this vector is as
71 follows: The 1st element: buffer-magnification, a factor for the
72 size of output buffer compared with the size of input buffer. The
73 2nd element: address of CCL code to be executed when encountered
74 with end of input stream. The 3rd and the remaining elements: CCL
75 codes. */
76
77/* Header of CCL compiled code */
78#define CCL_HEADER_BUF_MAG 0
79#define CCL_HEADER_EOF 1
80#define CCL_HEADER_MAIN 2
81
82/* CCL code is a sequence of 28-bit integers. Each contains a CCL
83 command and/or arguments in the following format:
84
85 |----------------- integer (28-bit) ------------------|
86 |------- 17-bit ------|- 3-bit --|- 3-bit --|- 5-bit -|
87 |--constant argument--|-register-|-register-|-command-|
88 ccccccccccccccccc RRR rrr XXXXX
89 or
90 |------- relative address -------|-register-|-command-|
91 cccccccccccccccccccc rrr XXXXX
92 or
93 |------------- constant or other args ----------------|
94 cccccccccccccccccccccccccccc
95
96 where `cc...c' is a 17-bit, 20-bit, or 28-bit integer indicating a
97 constant value or a relative/absolute jump address, `RRR'
98 and `rrr' are CCL register number, `XXXXX' is one of the following
99 CCL commands. */
100
101#define CCL_CODE_MAX ((1 << (28 - 1)) - 1)
102#define CCL_CODE_MIN (-1 - CCL_CODE_MAX)
103
104/* CCL commands
105
106 Each comment fields shows one or more lines for command syntax and
107 the following lines for semantics of the command. In semantics, IC
108 stands for Instruction Counter. */
109
110#define CCL_SetRegister 0x00 /* Set register a register value:
111 1:00000000000000000RRRrrrXXXXX
112 ------------------------------
113 reg[rrr] = reg[RRR];
114 */
115
116#define CCL_SetShortConst 0x01 /* Set register a short constant value:
117 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
118 ------------------------------
119 reg[rrr] = CCCCCCCCCCCCCCCCCCC;
120 */
121
122#define CCL_SetConst 0x02 /* Set register a constant value:
123 1:00000000000000000000rrrXXXXX
124 2:CONSTANT
125 ------------------------------
126 reg[rrr] = CONSTANT;
127 IC++;
128 */
129
130#define CCL_SetArray 0x03 /* Set register an element of array:
131 1:CCCCCCCCCCCCCCCCCRRRrrrXXXXX
132 2:ELEMENT[0]
133 3:ELEMENT[1]
134 ...
135 ------------------------------
136 if (0 <= reg[RRR] < CC..C)
137 reg[rrr] = ELEMENT[reg[RRR]];
138 IC += CC..C;
139 */
140
141#define CCL_Jump 0x04 /* Jump:
142 1:A--D--D--R--E--S--S-000XXXXX
143 ------------------------------
144 IC += ADDRESS;
145 */
146
147/* Note: If CC..C is greater than 0, the second code is omitted. */
148
149#define CCL_JumpCond 0x05 /* Jump conditional:
150 1:A--D--D--R--E--S--S-rrrXXXXX
151 ------------------------------
152 if (!reg[rrr])
153 IC += ADDRESS;
154 */
155
156
157#define CCL_WriteRegisterJump 0x06 /* Write register and jump:
158 1:A--D--D--R--E--S--S-rrrXXXXX
159 ------------------------------
160 write (reg[rrr]);
161 IC += ADDRESS;
162 */
163
164#define CCL_WriteRegisterReadJump 0x07 /* Write register, read, and jump:
165 1:A--D--D--R--E--S--S-rrrXXXXX
166 2:A--D--D--R--E--S--S-rrrYYYYY
167 -----------------------------
168 write (reg[rrr]);
169 IC++;
170 read (reg[rrr]);
171 IC += ADDRESS;
172 */
173/* Note: If read is suspended, the resumed execution starts from the
174 second code (YYYYY == CCL_ReadJump). */
175
176#define CCL_WriteConstJump 0x08 /* Write constant and jump:
177 1:A--D--D--R--E--S--S-000XXXXX
178 2:CONST
179 ------------------------------
180 write (CONST);
181 IC += ADDRESS;
182 */
183
184#define CCL_WriteConstReadJump 0x09 /* Write constant, read, and jump:
185 1:A--D--D--R--E--S--S-rrrXXXXX
186 2:CONST
187 3:A--D--D--R--E--S--S-rrrYYYYY
188 -----------------------------
189 write (CONST);
190 IC += 2;
191 read (reg[rrr]);
192 IC += ADDRESS;
193 */
194/* Note: If read is suspended, the resumed execution starts from the
195 second code (YYYYY == CCL_ReadJump). */
196
197#define CCL_WriteStringJump 0x0A /* Write string and jump:
198 1:A--D--D--R--E--S--S-000XXXXX
199 2:LENGTH
200 3:000MSTRIN[0]STRIN[1]STRIN[2]
201 ...
202 ------------------------------
203 if (M)
204 write_multibyte_string (STRING, LENGTH);
205 else
206 write_string (STRING, LENGTH);
207 IC += ADDRESS;
208 */
209
210#define CCL_WriteArrayReadJump 0x0B /* Write an array element, read, and jump:
211 1:A--D--D--R--E--S--S-rrrXXXXX
212 2:LENGTH
213 3:ELEMENET[0]
214 4:ELEMENET[1]
215 ...
216 N:A--D--D--R--E--S--S-rrrYYYYY
217 ------------------------------
218 if (0 <= reg[rrr] < LENGTH)
219 write (ELEMENT[reg[rrr]]);
220 IC += LENGTH + 2; (... pointing at N+1)
221 read (reg[rrr]);
222 IC += ADDRESS;
223 */
224/* Note: If read is suspended, the resumed execution starts from the
225 Nth code (YYYYY == CCL_ReadJump). */
226
227#define CCL_ReadJump 0x0C /* Read and jump:
228 1:A--D--D--R--E--S--S-rrrYYYYY
229 -----------------------------
230 read (reg[rrr]);
231 IC += ADDRESS;
232 */
233
234#define CCL_Branch 0x0D /* Jump by branch table:
235 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
236 2:A--D--D--R--E-S-S[0]000XXXXX
237 3:A--D--D--R--E-S-S[1]000XXXXX
238 ...
239 ------------------------------
240 if (0 <= reg[rrr] < CC..C)
241 IC += ADDRESS[reg[rrr]];
242 else
243 IC += ADDRESS[CC..C];
244 */
245
246#define CCL_ReadRegister 0x0E /* Read bytes into registers:
247 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
248 2:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
249 ...
250 ------------------------------
251 while (CCC--)
252 read (reg[rrr]);
253 */
254
255#define CCL_WriteExprConst 0x0F /* write result of expression:
256 1:00000OPERATION000RRR000XXXXX
257 2:CONSTANT
258 ------------------------------
259 write (reg[RRR] OPERATION CONSTANT);
260 IC++;
261 */
262
263/* Note: If the Nth read is suspended, the resumed execution starts
264 from the Nth code. */
265
266#define CCL_ReadBranch 0x10 /* Read one byte into a register,
267 and jump by branch table:
268 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
269 2:A--D--D--R--E-S-S[0]000XXXXX
270 3:A--D--D--R--E-S-S[1]000XXXXX
271 ...
272 ------------------------------
273 read (read[rrr]);
274 if (0 <= reg[rrr] < CC..C)
275 IC += ADDRESS[reg[rrr]];
276 else
277 IC += ADDRESS[CC..C];
278 */
279
280#define CCL_WriteRegister 0x11 /* Write registers:
281 1:CCCCCCCCCCCCCCCCCCCrrrXXXXX
282 2:CCCCCCCCCCCCCCCCCCCrrrXXXXX
283 ...
284 ------------------------------
285 while (CCC--)
286 write (reg[rrr]);
287 ...
288 */
289
290/* Note: If the Nth write is suspended, the resumed execution
291 starts from the Nth code. */
292
293#define CCL_WriteExprRegister 0x12 /* Write result of expression
294 1:00000OPERATIONRrrRRR000XXXXX
295 ------------------------------
296 write (reg[RRR] OPERATION reg[Rrr]);
297 */
298
299#define CCL_Call 0x13 /* Call the CCL program whose ID is
300 CC..C or cc..c.
301 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX
302 [2:00000000cccccccccccccccccccc]
303 ------------------------------
304 if (FFF)
305 call (cc..c)
306 IC++;
307 else
308 call (CC..C)
309 */
310
311#define CCL_WriteConstString 0x14 /* Write a constant or a string:
312 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
313 [2:000MSTRIN[0]STRIN[1]STRIN[2]]
314 [...]
315 -----------------------------
316 if (!rrr)
317 write (CC..C)
318 else
319 if (M)
320 write_multibyte_string (STRING, CC..C);
321 else
322 write_string (STRING, CC..C);
323 IC += (CC..C + 2) / 3;
324 */
325
326#define CCL_WriteArray 0x15 /* Write an element of array:
327 1:CCCCCCCCCCCCCCCCCCCCrrrXXXXX
328 2:ELEMENT[0]
329 3:ELEMENT[1]
330 ...
331 ------------------------------
332 if (0 <= reg[rrr] < CC..C)
333 write (ELEMENT[reg[rrr]]);
334 IC += CC..C;
335 */
336
337#define CCL_End 0x16 /* Terminate:
338 1:00000000000000000000000XXXXX
339 ------------------------------
340 terminate ();
341 */
342
343/* The following two codes execute an assignment arithmetic/logical
344 operation. The form of the operation is like REG OP= OPERAND. */
345
346#define CCL_ExprSelfConst 0x17 /* REG OP= constant:
347 1:00000OPERATION000000rrrXXXXX
348 2:CONSTANT
349 ------------------------------
350 reg[rrr] OPERATION= CONSTANT;
351 */
352
353#define CCL_ExprSelfReg 0x18 /* REG1 OP= REG2:
354 1:00000OPERATION000RRRrrrXXXXX
355 ------------------------------
356 reg[rrr] OPERATION= reg[RRR];
357 */
358
359/* The following codes execute an arithmetic/logical operation. The
360 form of the operation is like REG_X = REG_Y OP OPERAND2. */
361
362#define CCL_SetExprConst 0x19 /* REG_X = REG_Y OP constant:
363 1:00000OPERATION000RRRrrrXXXXX
364 2:CONSTANT
365 ------------------------------
366 reg[rrr] = reg[RRR] OPERATION CONSTANT;
367 IC++;
368 */
369
370#define CCL_SetExprReg 0x1A /* REG1 = REG2 OP REG3:
371 1:00000OPERATIONRrrRRRrrrXXXXX
372 ------------------------------
373 reg[rrr] = reg[RRR] OPERATION reg[Rrr];
374 */
375
376#define CCL_JumpCondExprConst 0x1B /* Jump conditional according to
377 an operation on constant:
378 1:A--D--D--R--E--S--S-rrrXXXXX
379 2:OPERATION
380 3:CONSTANT
381 -----------------------------
382 reg[7] = reg[rrr] OPERATION CONSTANT;
383 if (!(reg[7]))
384 IC += ADDRESS;
385 else
386 IC += 2
387 */
388
389#define CCL_JumpCondExprReg 0x1C /* Jump conditional according to
390 an operation on register:
391 1:A--D--D--R--E--S--S-rrrXXXXX
392 2:OPERATION
393 3:RRR
394 -----------------------------
395 reg[7] = reg[rrr] OPERATION reg[RRR];
396 if (!reg[7])
397 IC += ADDRESS;
398 else
399 IC += 2;
400 */
401
402#define CCL_ReadJumpCondExprConst 0x1D /* Read and jump conditional according
403 to an operation on constant:
404 1:A--D--D--R--E--S--S-rrrXXXXX
405 2:OPERATION
406 3:CONSTANT
407 -----------------------------
408 read (reg[rrr]);
409 reg[7] = reg[rrr] OPERATION CONSTANT;
410 if (!reg[7])
411 IC += ADDRESS;
412 else
413 IC += 2;
414 */
415
416#define CCL_ReadJumpCondExprReg 0x1E /* Read and jump conditional according
417 to an operation on register:
418 1:A--D--D--R--E--S--S-rrrXXXXX
419 2:OPERATION
420 3:RRR
421 -----------------------------
422 read (reg[rrr]);
423 reg[7] = reg[rrr] OPERATION reg[RRR];
424 if (!reg[7])
425 IC += ADDRESS;
426 else
427 IC += 2;
428 */
429
430#define CCL_Extension 0x1F /* Extended CCL code
431 1:ExtendedCOMMNDRrrRRRrrrXXXXX
432 2:ARGUEMENT
433 3:...
434 ------------------------------
435 extended_command (rrr,RRR,Rrr,ARGS)
436 */
437
438/*
439 Here after, Extended CCL Instructions.
440 Bit length of extended command is 14.
441 Therefore, the instruction code range is 0..16384(0x3fff).
442 */
443
444/* Read a multibyte character.
445 A code point is stored into reg[rrr]. A charset ID is stored into
446 reg[RRR]. */
447
448#define CCL_ReadMultibyteChar2 0x00 /* Read Multibyte Character
449 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
450
451/* Write a multibyte character.
452 Write a character whose code point is reg[rrr] and the charset ID
453 is reg[RRR]. */
454
455#define CCL_WriteMultibyteChar2 0x01 /* Write Multibyte Character
456 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
457
458/* Translate a character whose code point is reg[rrr] and the charset
459 ID is reg[RRR] by a translation table whose ID is reg[Rrr].
460
461 A translated character is set in reg[rrr] (code point) and reg[RRR]
462 (charset ID). */
463
464#define CCL_TranslateCharacter 0x02 /* Translate a multibyte character
465 1:ExtendedCOMMNDRrrRRRrrrXXXXX */
466
467/* Translate a character whose code point is reg[rrr] and the charset
468 ID is reg[RRR] by a translation table whose ID is ARGUMENT.
469
470 A translated character is set in reg[rrr] (code point) and reg[RRR]
471 (charset ID). */
472
473#define CCL_TranslateCharacterConstTbl 0x03 /* Translate a multibyte character
474 1:ExtendedCOMMNDRrrRRRrrrXXXXX
475 2:ARGUMENT(Translation Table ID)
476 */
477
478/* Iterate looking up MAPs for reg[rrr] starting from the Nth (N =
479 reg[RRR]) MAP until some value is found.
480
481 Each MAP is a Lisp vector whose element is number, nil, t, or
482 lambda.
483 If the element is nil, ignore the map and proceed to the next map.
484 If the element is t or lambda, finish without changing reg[rrr].
485 If the element is a number, set reg[rrr] to the number and finish.
486
487 Detail of the map structure is descibed in the comment for
488 CCL_MapMultiple below. */
489
490#define CCL_IterateMultipleMap 0x10 /* Iterate multiple maps
491 1:ExtendedCOMMNDXXXRRRrrrXXXXX
492 2:NUMBER of MAPs
493 3:MAP-ID1
494 4:MAP-ID2
495 ...
496 */
497
498/* Map the code in reg[rrr] by MAPs starting from the Nth (N =
499 reg[RRR]) map.
500
501 MAPs are supplied in the succeeding CCL codes as follows:
502
503 When CCL program gives this nested structure of map to this command:
504 ((MAP-ID11
505 MAP-ID12
506 (MAP-ID121 MAP-ID122 MAP-ID123)
507 MAP-ID13)
508 (MAP-ID21
509 (MAP-ID211 (MAP-ID2111) MAP-ID212)
510 MAP-ID22)),
511 the compiled CCL codes has this sequence:
512 CCL_MapMultiple (CCL code of this command)
513 16 (total number of MAPs and SEPARATORs)
514 -7 (1st SEPARATOR)
515 MAP-ID11
516 MAP-ID12
517 -3 (2nd SEPARATOR)
518 MAP-ID121
519 MAP-ID122
520 MAP-ID123
521 MAP-ID13
522 -7 (3rd SEPARATOR)
523 MAP-ID21
524 -4 (4th SEPARATOR)
525 MAP-ID211
526 -1 (5th SEPARATOR)
527 MAP_ID2111
528 MAP-ID212
529 MAP-ID22
530
531 A value of each SEPARATOR follows this rule:
532 MAP-SET := SEPARATOR [(MAP-ID | MAP-SET)]+
533 SEPARATOR := -(number of MAP-IDs and SEPARATORs in the MAP-SET)
534
535 (*)....Nest level of MAP-SET must not be over than MAX_MAP_SET_LEVEL.
536
537 When some map fails to map (i.e. it doesn't have a value for
538 reg[rrr]), the mapping is treated as identity.
539
540 The mapping is iterated for all maps in each map set (set of maps
541 separated by SEPARATOR) except in the case that lambda is
542 encountered. More precisely, the mapping proceeds as below:
543
544 At first, VAL0 is set to reg[rrr], and it is translated by the
545 first map to VAL1. Then, VAL1 is translated by the next map to
546 VAL2. This mapping is iterated until the last map is used. The
547 result of the mapping is the last value of VAL?. When the mapping
548 process reached to the end of the map set, it moves to the next
549 map set. If the next does not exit, the mapping process terminates,
550 and regard the last value as a result.
551
552 But, when VALm is mapped to VALn and VALn is not a number, the
553 mapping proceed as below:
554
555 If VALn is nil, the lastest map is ignored and the mapping of VALm
556 proceed to the next map.
557
558 In VALn is t, VALm is reverted to reg[rrr] and the mapping of VALm
559 proceed to the next map.
560
561 If VALn is lambda, move to the next map set like reaching to the
562 end of the current map set.
563
564 If VALn is a symbol, call the CCL program refered by it.
565 Then, use reg[rrr] as a mapped value except for -1, -2 and -3.
566 Such special values are regarded as nil, t, and lambda respectively.
567
568 Each map is a Lisp vector of the following format (a) or (b):
569 (a)......[STARTPOINT VAL1 VAL2 ...]
570 (b)......[t VAL STARTPOINT ENDPOINT],
571 where
572 STARTPOINT is an offset to be used for indexing a map,
573 ENDPOINT is a maximum index number of a map,
574 VAL and VALn is a number, nil, t, or lambda.
575
576 Valid index range of a map of type (a) is:
577 STARTPOINT <= index < STARTPOINT + map_size - 1
578 Valid index range of a map of type (b) is:
579 STARTPOINT <= index < ENDPOINT */
580
581#define CCL_MapMultiple 0x11 /* Mapping by multiple code conversion maps
582 1:ExtendedCOMMNDXXXRRRrrrXXXXX
583 2:N-2
584 3:SEPARATOR_1 (< 0)
585 4:MAP-ID_1
586 5:MAP-ID_2
587 ...
588 M:SEPARATOR_x (< 0)
589 M+1:MAP-ID_y
590 ...
591 N:SEPARATOR_z (< 0)
592 */
593
594#define MAX_MAP_SET_LEVEL 30
595
596typedef struct
597{
598 int rest_length;
599 int orig_val;
600} tr_stack;
601
602static tr_stack mapping_stack[MAX_MAP_SET_LEVEL];
603static tr_stack *mapping_stack_pointer;
604
605/* If this variable is non-zero, it indicates the stack_idx
606 of immediately called by CCL_MapMultiple. */
607static int stack_idx_of_map_multiple;
608
609#define PUSH_MAPPING_STACK(restlen, orig) \
610do \
611 { \
612 mapping_stack_pointer->rest_length = (restlen); \
613 mapping_stack_pointer->orig_val = (orig); \
614 mapping_stack_pointer++; \
615 } \
616while (0)
617
618#define POP_MAPPING_STACK(restlen, orig) \
619do \
620 { \
621 mapping_stack_pointer--; \
622 (restlen) = mapping_stack_pointer->rest_length; \
623 (orig) = mapping_stack_pointer->orig_val; \
624 } \
625while (0)
626
627#define CCL_CALL_FOR_MAP_INSTRUCTION(symbol, ret_ic) \
628do \
629 { \
630 struct ccl_program called_ccl; \
631 if (stack_idx >= 256 \
632 || (setup_ccl_program (&called_ccl, (symbol)) != 0)) \
633 { \
634 if (stack_idx > 0) \
635 { \
636 ccl_prog = ccl_prog_stack_struct[0].ccl_prog; \
637 ic = ccl_prog_stack_struct[0].ic; \
638 eof_ic = ccl_prog_stack_struct[0].eof_ic; \
639 } \
640 CCL_INVALID_CMD; \
641 } \
642 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog; \
643 ccl_prog_stack_struct[stack_idx].ic = (ret_ic); \
644 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic; \
645 stack_idx++; \
646 ccl_prog = called_ccl.prog; \
647 ic = CCL_HEADER_MAIN; \
648 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]); \
649 goto ccl_repeat; \
650 } \
651while (0)
652
653#define CCL_MapSingle 0x12 /* Map by single code conversion map
654 1:ExtendedCOMMNDXXXRRRrrrXXXXX
655 2:MAP-ID
656 ------------------------------
657 Map reg[rrr] by MAP-ID.
658 If some valid mapping is found,
659 set reg[rrr] to the result,
660 else
661 set reg[RRR] to -1.
662 */
663
664#define CCL_LookupIntConstTbl 0x13 /* Lookup multibyte character by
665 integer key. Afterwards R7 set
666 to 1 if lookup succeeded.
667 1:ExtendedCOMMNDRrrRRRXXXXXXXX
668 2:ARGUMENT(Hash table ID) */
669
670#define CCL_LookupCharConstTbl 0x14 /* Lookup integer by multibyte
671 character key. Afterwards R7 set
672 to 1 if lookup succeeded.
673 1:ExtendedCOMMNDRrrRRRrrrXXXXX
674 2:ARGUMENT(Hash table ID) */
675
676/* CCL arithmetic/logical operators. */
677#define CCL_PLUS 0x00 /* X = Y + Z */
678#define CCL_MINUS 0x01 /* X = Y - Z */
679#define CCL_MUL 0x02 /* X = Y * Z */
680#define CCL_DIV 0x03 /* X = Y / Z */
681#define CCL_MOD 0x04 /* X = Y % Z */
682#define CCL_AND 0x05 /* X = Y & Z */
683#define CCL_OR 0x06 /* X = Y | Z */
684#define CCL_XOR 0x07 /* X = Y ^ Z */
685#define CCL_LSH 0x08 /* X = Y << Z */
686#define CCL_RSH 0x09 /* X = Y >> Z */
687#define CCL_LSH8 0x0A /* X = (Y << 8) | Z */
688#define CCL_RSH8 0x0B /* X = Y >> 8, r[7] = Y & 0xFF */
689#define CCL_DIVMOD 0x0C /* X = Y / Z, r[7] = Y % Z */
690#define CCL_LS 0x10 /* X = (X < Y) */
691#define CCL_GT 0x11 /* X = (X > Y) */
692#define CCL_EQ 0x12 /* X = (X == Y) */
693#define CCL_LE 0x13 /* X = (X <= Y) */
694#define CCL_GE 0x14 /* X = (X >= Y) */
695#define CCL_NE 0x15 /* X = (X != Y) */
696
697#define CCL_DECODE_SJIS 0x16 /* X = HIGHER_BYTE (DE-SJIS (Y, Z))
698 r[7] = LOWER_BYTE (DE-SJIS (Y, Z)) */
699#define CCL_ENCODE_SJIS 0x17 /* X = HIGHER_BYTE (SJIS (Y, Z))
700 r[7] = LOWER_BYTE (SJIS (Y, Z) */
701
702/* Terminate CCL program successfully. */
703#define CCL_SUCCESS \
704do \
705 { \
706 ccl->status = CCL_STAT_SUCCESS; \
707 goto ccl_finish; \
708 } \
709while (0)
710
711/* Suspend CCL program because of reading from empty input buffer or
712 writing to full output buffer. When this program is resumed, the
713 same I/O command is executed. */
714#define CCL_SUSPEND(stat) \
715do \
716 { \
717 ic--; \
718 ccl->status = stat; \
719 goto ccl_finish; \
720 } \
721while (0)
722
723/* Terminate CCL program because of invalid command. Should not occur
724 in the normal case. */
725#ifndef CCL_DEBUG
726
727#define CCL_INVALID_CMD \
728do \
729 { \
730 ccl->status = CCL_STAT_INVALID_CMD; \
731 goto ccl_error_handler; \
732 } \
733while (0)
734
735#else
736
737#define CCL_INVALID_CMD \
738do \
739 { \
740 ccl_debug_hook (this_ic); \
741 ccl->status = CCL_STAT_INVALID_CMD; \
742 goto ccl_error_handler; \
743 } \
744while (0)
745
746#endif
747
748/* Use "&" rather than "&&" to suppress a bogus GCC warning; see
749 <http://gcc.gnu.org/bugzilla/show_bug.cgi?id=43772>. */
750#define ASCENDING_ORDER(lo, med, hi) (((lo) <= (med)) & ((med) <= (hi)))
751
752#define GET_CCL_RANGE(var, ccl_prog, ic, lo, hi) \
753 do \
754 { \
755 EMACS_INT prog_word = XINT ((ccl_prog)[ic]); \
756 if (! ASCENDING_ORDER (lo, prog_word, hi)) \
757 CCL_INVALID_CMD; \
758 (var) = prog_word; \
759 } \
760 while (0)
761
762#define GET_CCL_CODE(code, ccl_prog, ic) \
763 GET_CCL_RANGE (code, ccl_prog, ic, CCL_CODE_MIN, CCL_CODE_MAX)
764
765#define IN_INT_RANGE(val) ASCENDING_ORDER (INT_MIN, val, INT_MAX)
766
767/* Encode one character CH to multibyte form and write to the current
768 output buffer. If CH is less than 256, CH is written as is. */
769#define CCL_WRITE_CHAR(ch) \
770 do { \
771 if (! dst) \
772 CCL_INVALID_CMD; \
773 else if (dst < dst_end) \
774 *dst++ = (ch); \
775 else \
776 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
777 } while (0)
778
779/* Write a string at ccl_prog[IC] of length LEN to the current output
780 buffer. */
781#define CCL_WRITE_STRING(len) \
782 do { \
783 int ccli; \
784 if (!dst) \
785 CCL_INVALID_CMD; \
786 else if (dst + len <= dst_end) \
787 { \
788 if (XFASTINT (ccl_prog[ic]) & 0x1000000) \
789 for (ccli = 0; ccli < len; ccli++) \
790 *dst++ = XFASTINT (ccl_prog[ic + ccli]) & 0xFFFFFF; \
791 else \
792 for (ccli = 0; ccli < len; ccli++) \
793 *dst++ = ((XFASTINT (ccl_prog[ic + (ccli / 3)])) \
794 >> ((2 - (ccli % 3)) * 8)) & 0xFF; \
795 } \
796 else \
797 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_DST); \
798 } while (0)
799
800/* Read one byte from the current input buffer into Rth register. */
801#define CCL_READ_CHAR(r) \
802 do { \
803 if (! src) \
804 CCL_INVALID_CMD; \
805 else if (src < src_end) \
806 r = *src++; \
807 else if (ccl->last_block) \
808 { \
809 r = -1; \
810 ic = ccl->eof_ic; \
811 goto ccl_repeat; \
812 } \
813 else \
814 CCL_SUSPEND (CCL_STAT_SUSPEND_BY_SRC); \
815 } while (0)
816
817/* Decode CODE by a charset whose id is ID. If ID is 0, return CODE
818 as is for backward compatibility. Assume that we can use the
819 variable `charset'. */
820
821#define CCL_DECODE_CHAR(id, code) \
822 ((id) == 0 ? (code) \
823 : (charset = CHARSET_FROM_ID ((id)), DECODE_CHAR (charset, (code))))
824
825/* Encode character C by some of charsets in CHARSET_LIST. Set ID to
826 the id of the used charset, ENCODED to the resulf of encoding.
827 Assume that we can use the variable `charset'. */
828
829#define CCL_ENCODE_CHAR(c, charset_list, id, encoded) \
830 do { \
831 unsigned ncode; \
832 \
833 charset = char_charset ((c), (charset_list), &ncode); \
834 if (! charset && ! NILP (charset_list)) \
835 charset = char_charset ((c), Qnil, &ncode); \
836 if (charset) \
837 { \
838 (id) = CHARSET_ID (charset); \
839 (encoded) = ncode; \
840 } \
841 } while (0)
842
843/* Execute CCL code on characters at SOURCE (length SRC_SIZE). The
844 resulting text goes to a place pointed by DESTINATION, the length
845 of which should not exceed DST_SIZE. As a side effect, how many
846 characters are consumed and produced are recorded in CCL->consumed
847 and CCL->produced, and the contents of CCL registers are updated.
848 If SOURCE or DESTINATION is NULL, only operations on registers are
849 permitted. */
850
851#ifdef CCL_DEBUG
852#define CCL_DEBUG_BACKTRACE_LEN 256
853int ccl_backtrace_table[CCL_DEBUG_BACKTRACE_LEN];
854int ccl_backtrace_idx;
855
856int
857ccl_debug_hook (int ic)
858{
859 return ic;
860}
861
862#endif
863
864struct ccl_prog_stack
865 {
866 Lisp_Object *ccl_prog; /* Pointer to an array of CCL code. */
867 int ic; /* Instruction Counter. */
868 int eof_ic; /* Instruction Counter to jump on EOF. */
869 };
870
871/* For the moment, we only support depth 256 of stack. */
872static struct ccl_prog_stack ccl_prog_stack_struct[256];
873
874void
875ccl_driver (struct ccl_program *ccl, int *source, int *destination, int src_size, int dst_size, Lisp_Object charset_list)
876{
877 register int *reg = ccl->reg;
878 register int ic = ccl->ic;
879 register int code = 0, field1, field2;
880 register Lisp_Object *ccl_prog = ccl->prog;
881 int *src = source, *src_end = src + src_size;
882 int *dst = destination, *dst_end = dst + dst_size;
883 int jump_address;
884 int i = 0, j, op;
885 int stack_idx = ccl->stack_idx;
886 /* Instruction counter of the current CCL code. */
887 int this_ic = 0;
888 struct charset *charset;
889 int eof_ic = ccl->eof_ic;
890 int eof_hit = 0;
891
892 if (ccl->buf_magnification == 0) /* We can't read/produce any bytes. */
893 dst = NULL;
894
895 /* Set mapping stack pointer. */
896 mapping_stack_pointer = mapping_stack;
897
898#ifdef CCL_DEBUG
899 ccl_backtrace_idx = 0;
900#endif
901
902 for (;;)
903 {
904 ccl_repeat:
905#ifdef CCL_DEBUG
906 ccl_backtrace_table[ccl_backtrace_idx++] = ic;
907 if (ccl_backtrace_idx >= CCL_DEBUG_BACKTRACE_LEN)
908 ccl_backtrace_idx = 0;
909 ccl_backtrace_table[ccl_backtrace_idx] = 0;
910#endif
911
912 if (!NILP (Vquit_flag) && NILP (Vinhibit_quit))
913 {
914 /* We can't just signal Qquit, instead break the loop as if
915 the whole data is processed. Don't reset Vquit_flag, it
916 must be handled later at a safer place. */
917 if (src)
918 src = source + src_size;
919 ccl->status = CCL_STAT_QUIT;
920 break;
921 }
922
923 this_ic = ic;
924 GET_CCL_CODE (code, ccl_prog, ic++);
925 field1 = code >> 8;
926 field2 = (code & 0xFF) >> 5;
927
928#define rrr field2
929#define RRR (field1 & 7)
930#define Rrr ((field1 >> 3) & 7)
931#define ADDR field1
932#define EXCMD (field1 >> 6)
933
934 switch (code & 0x1F)
935 {
936 case CCL_SetRegister: /* 00000000000000000RRRrrrXXXXX */
937 reg[rrr] = reg[RRR];
938 break;
939
940 case CCL_SetShortConst: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
941 reg[rrr] = field1;
942 break;
943
944 case CCL_SetConst: /* 00000000000000000000rrrXXXXX */
945 reg[rrr] = XINT (ccl_prog[ic++]);
946 break;
947
948 case CCL_SetArray: /* CCCCCCCCCCCCCCCCCCCCRRRrrrXXXXX */
949 i = reg[RRR];
950 j = field1 >> 3;
951 if (0 <= i && i < j)
952 reg[rrr] = XINT (ccl_prog[ic + i]);
953 ic += j;
954 break;
955
956 case CCL_Jump: /* A--D--D--R--E--S--S-000XXXXX */
957 ic += ADDR;
958 break;
959
960 case CCL_JumpCond: /* A--D--D--R--E--S--S-rrrXXXXX */
961 if (!reg[rrr])
962 ic += ADDR;
963 break;
964
965 case CCL_WriteRegisterJump: /* A--D--D--R--E--S--S-rrrXXXXX */
966 i = reg[rrr];
967 CCL_WRITE_CHAR (i);
968 ic += ADDR;
969 break;
970
971 case CCL_WriteRegisterReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
972 i = reg[rrr];
973 CCL_WRITE_CHAR (i);
974 ic++;
975 CCL_READ_CHAR (reg[rrr]);
976 ic += ADDR - 1;
977 break;
978
979 case CCL_WriteConstJump: /* A--D--D--R--E--S--S-000XXXXX */
980 i = XINT (ccl_prog[ic]);
981 CCL_WRITE_CHAR (i);
982 ic += ADDR;
983 break;
984
985 case CCL_WriteConstReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
986 i = XINT (ccl_prog[ic]);
987 CCL_WRITE_CHAR (i);
988 ic++;
989 CCL_READ_CHAR (reg[rrr]);
990 ic += ADDR - 1;
991 break;
992
993 case CCL_WriteStringJump: /* A--D--D--R--E--S--S-000XXXXX */
994 j = XINT (ccl_prog[ic++]);
995 CCL_WRITE_STRING (j);
996 ic += ADDR - 1;
997 break;
998
999 case CCL_WriteArrayReadJump: /* A--D--D--R--E--S--S-rrrXXXXX */
1000 i = reg[rrr];
1001 j = XINT (ccl_prog[ic]);
1002 if (0 <= i && i < j)
1003 {
1004 i = XINT (ccl_prog[ic + 1 + i]);
1005 CCL_WRITE_CHAR (i);
1006 }
1007 ic += j + 2;
1008 CCL_READ_CHAR (reg[rrr]);
1009 ic += ADDR - (j + 2);
1010 break;
1011
1012 case CCL_ReadJump: /* A--D--D--R--E--S--S-rrrYYYYY */
1013 CCL_READ_CHAR (reg[rrr]);
1014 ic += ADDR;
1015 break;
1016
1017 case CCL_ReadBranch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1018 CCL_READ_CHAR (reg[rrr]);
1019 /* fall through ... */
1020 case CCL_Branch: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1021 {
1022 int ioff = 0 <= reg[rrr] && reg[rrr] < field1 ? reg[rrr] : field1;
1023 int incr = XINT (ccl_prog[ic + ioff]);
1024 ic += incr;
1025 }
1026 break;
1027
1028 case CCL_ReadRegister: /* CCCCCCCCCCCCCCCCCCCCrrXXXXX */
1029 while (1)
1030 {
1031 CCL_READ_CHAR (reg[rrr]);
1032 if (!field1) break;
1033 GET_CCL_CODE (code, ccl_prog, ic++);
1034 field1 = code >> 8;
1035 field2 = (code & 0xFF) >> 5;
1036 }
1037 break;
1038
1039 case CCL_WriteExprConst: /* 1:00000OPERATION000RRR000XXXXX */
1040 rrr = 7;
1041 i = reg[RRR];
1042 j = XINT (ccl_prog[ic]);
1043 op = field1 >> 6;
1044 jump_address = ic + 1;
1045 goto ccl_set_expr;
1046
1047 case CCL_WriteRegister: /* CCCCCCCCCCCCCCCCCCCrrrXXXXX */
1048 while (1)
1049 {
1050 i = reg[rrr];
1051 CCL_WRITE_CHAR (i);
1052 if (!field1) break;
1053 GET_CCL_CODE (code, ccl_prog, ic++);
1054 field1 = code >> 8;
1055 field2 = (code & 0xFF) >> 5;
1056 }
1057 break;
1058
1059 case CCL_WriteExprRegister: /* 1:00000OPERATIONRrrRRR000XXXXX */
1060 rrr = 7;
1061 i = reg[RRR];
1062 j = reg[Rrr];
1063 op = field1 >> 6;
1064 jump_address = ic;
1065 goto ccl_set_expr;
1066
1067 case CCL_Call: /* 1:CCCCCCCCCCCCCCCCCCCCFFFXXXXX */
1068 {
1069 Lisp_Object slot;
1070 int prog_id;
1071
1072 /* If FFF is nonzero, the CCL program ID is in the
1073 following code. */
1074 if (rrr)
1075 prog_id = XINT (ccl_prog[ic++]);
1076 else
1077 prog_id = field1;
1078
1079 if (stack_idx >= 256
1080 || prog_id < 0
1081 || prog_id >= ASIZE (Vccl_program_table)
1082 || (slot = AREF (Vccl_program_table, prog_id), !VECTORP (slot))
1083 || !VECTORP (AREF (slot, 1)))
1084 {
1085 if (stack_idx > 0)
1086 {
1087 ccl_prog = ccl_prog_stack_struct[0].ccl_prog;
1088 ic = ccl_prog_stack_struct[0].ic;
1089 eof_ic = ccl_prog_stack_struct[0].eof_ic;
1090 }
1091 CCL_INVALID_CMD;
1092 }
1093
1094 ccl_prog_stack_struct[stack_idx].ccl_prog = ccl_prog;
1095 ccl_prog_stack_struct[stack_idx].ic = ic;
1096 ccl_prog_stack_struct[stack_idx].eof_ic = eof_ic;
1097 stack_idx++;
1098 ccl_prog = XVECTOR (AREF (slot, 1))->contents;
1099 ic = CCL_HEADER_MAIN;
1100 eof_ic = XFASTINT (ccl_prog[CCL_HEADER_EOF]);
1101 }
1102 break;
1103
1104 case CCL_WriteConstString: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1105 if (!rrr)
1106 CCL_WRITE_CHAR (field1);
1107 else
1108 {
1109 CCL_WRITE_STRING (field1);
1110 ic += (field1 + 2) / 3;
1111 }
1112 break;
1113
1114 case CCL_WriteArray: /* CCCCCCCCCCCCCCCCCCCCrrrXXXXX */
1115 i = reg[rrr];
1116 if (0 <= i && i < field1)
1117 {
1118 j = XINT (ccl_prog[ic + i]);
1119 CCL_WRITE_CHAR (j);
1120 }
1121 ic += field1;
1122 break;
1123
1124 case CCL_End: /* 0000000000000000000000XXXXX */
1125 if (stack_idx > 0)
1126 {
1127 stack_idx--;
1128 ccl_prog = ccl_prog_stack_struct[stack_idx].ccl_prog;
1129 ic = ccl_prog_stack_struct[stack_idx].ic;
1130 eof_ic = ccl_prog_stack_struct[stack_idx].eof_ic;
1131 if (eof_hit)
1132 ic = eof_ic;
1133 break;
1134 }
1135 if (src)
1136 src = src_end;
1137 /* ccl->ic should points to this command code again to
1138 suppress further processing. */
1139 ic--;
1140 CCL_SUCCESS;
1141
1142 case CCL_ExprSelfConst: /* 00000OPERATION000000rrrXXXXX */
1143 i = XINT (ccl_prog[ic++]);
1144 op = field1 >> 6;
1145 goto ccl_expr_self;
1146
1147 case CCL_ExprSelfReg: /* 00000OPERATION000RRRrrrXXXXX */
1148 i = reg[RRR];
1149 op = field1 >> 6;
1150
1151 ccl_expr_self:
1152 switch (op)
1153 {
1154 case CCL_PLUS: reg[rrr] += i; break;
1155 case CCL_MINUS: reg[rrr] -= i; break;
1156 case CCL_MUL: reg[rrr] *= i; break;
1157 case CCL_DIV: reg[rrr] /= i; break;
1158 case CCL_MOD: reg[rrr] %= i; break;
1159 case CCL_AND: reg[rrr] &= i; break;
1160 case CCL_OR: reg[rrr] |= i; break;
1161 case CCL_XOR: reg[rrr] ^= i; break;
1162 case CCL_LSH: reg[rrr] <<= i; break;
1163 case CCL_RSH: reg[rrr] >>= i; break;
1164 case CCL_LSH8: reg[rrr] <<= 8; reg[rrr] |= i; break;
1165 case CCL_RSH8: reg[7] = reg[rrr] & 0xFF; reg[rrr] >>= 8; break;
1166 case CCL_DIVMOD: reg[7] = reg[rrr] % i; reg[rrr] /= i; break;
1167 case CCL_LS: reg[rrr] = reg[rrr] < i; break;
1168 case CCL_GT: reg[rrr] = reg[rrr] > i; break;
1169 case CCL_EQ: reg[rrr] = reg[rrr] == i; break;
1170 case CCL_LE: reg[rrr] = reg[rrr] <= i; break;
1171 case CCL_GE: reg[rrr] = reg[rrr] >= i; break;
1172 case CCL_NE: reg[rrr] = reg[rrr] != i; break;
1173 default: CCL_INVALID_CMD;
1174 }
1175 break;
1176
1177 case CCL_SetExprConst: /* 00000OPERATION000RRRrrrXXXXX */
1178 i = reg[RRR];
1179 j = XINT (ccl_prog[ic++]);
1180 op = field1 >> 6;
1181 jump_address = ic;
1182 goto ccl_set_expr;
1183
1184 case CCL_SetExprReg: /* 00000OPERATIONRrrRRRrrrXXXXX */
1185 i = reg[RRR];
1186 j = reg[Rrr];
1187 op = field1 >> 6;
1188 jump_address = ic;
1189 goto ccl_set_expr;
1190
1191 case CCL_ReadJumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1192 CCL_READ_CHAR (reg[rrr]);
1193 case CCL_JumpCondExprConst: /* A--D--D--R--E--S--S-rrrXXXXX */
1194 i = reg[rrr];
1195 jump_address = ic + ADDR;
1196 op = XINT (ccl_prog[ic++]);
1197 j = XINT (ccl_prog[ic++]);
1198 rrr = 7;
1199 goto ccl_set_expr;
1200
1201 case CCL_ReadJumpCondExprReg: /* A--D--D--R--E--S--S-rrrXXXXX */
1202 CCL_READ_CHAR (reg[rrr]);
1203 case CCL_JumpCondExprReg:
1204 i = reg[rrr];
1205 jump_address = ic + ADDR;
1206 op = XINT (ccl_prog[ic++]);
1207 GET_CCL_RANGE (j, ccl_prog, ic++, 0, 7);
1208 j = reg[j];
1209 rrr = 7;
1210
1211 ccl_set_expr:
1212 switch (op)
1213 {
1214 case CCL_PLUS: reg[rrr] = i + j; break;
1215 case CCL_MINUS: reg[rrr] = i - j; break;
1216 case CCL_MUL: reg[rrr] = i * j; break;
1217 case CCL_DIV: reg[rrr] = i / j; break;
1218 case CCL_MOD: reg[rrr] = i % j; break;
1219 case CCL_AND: reg[rrr] = i & j; break;
1220 case CCL_OR: reg[rrr] = i | j; break;
1221 case CCL_XOR: reg[rrr] = i ^ j; break;
1222 case CCL_LSH: reg[rrr] = i << j; break;
1223 case CCL_RSH: reg[rrr] = i >> j; break;
1224 case CCL_LSH8: reg[rrr] = (i << 8) | j; break;
1225 case CCL_RSH8: reg[rrr] = i >> 8; reg[7] = i & 0xFF; break;
1226 case CCL_DIVMOD: reg[rrr] = i / j; reg[7] = i % j; break;
1227 case CCL_LS: reg[rrr] = i < j; break;
1228 case CCL_GT: reg[rrr] = i > j; break;
1229 case CCL_EQ: reg[rrr] = i == j; break;
1230 case CCL_LE: reg[rrr] = i <= j; break;
1231 case CCL_GE: reg[rrr] = i >= j; break;
1232 case CCL_NE: reg[rrr] = i != j; break;
1233 case CCL_DECODE_SJIS:
1234 {
1235 i = (i << 8) | j;
1236 SJIS_TO_JIS (i);
1237 reg[rrr] = i >> 8;
1238 reg[7] = i & 0xFF;
1239 break;
1240 }
1241 case CCL_ENCODE_SJIS:
1242 {
1243 i = (i << 8) | j;
1244 JIS_TO_SJIS (i);
1245 reg[rrr] = i >> 8;
1246 reg[7] = i & 0xFF;
1247 break;
1248 }
1249 default: CCL_INVALID_CMD;
1250 }
1251 code &= 0x1F;
1252 if (code == CCL_WriteExprConst || code == CCL_WriteExprRegister)
1253 {
1254 i = reg[rrr];
1255 CCL_WRITE_CHAR (i);
1256 ic = jump_address;
1257 }
1258 else if (!reg[rrr])
1259 ic = jump_address;
1260 break;
1261
1262 case CCL_Extension:
1263 switch (EXCMD)
1264 {
1265 case CCL_ReadMultibyteChar2:
1266 if (!src)
1267 CCL_INVALID_CMD;
1268 CCL_READ_CHAR (i);
1269 CCL_ENCODE_CHAR (i, charset_list, reg[RRR], reg[rrr]);
1270 break;
1271
1272 case CCL_WriteMultibyteChar2:
1273 if (! dst)
1274 CCL_INVALID_CMD;
1275 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
1276 CCL_WRITE_CHAR (i);
1277 break;
1278
1279 case CCL_TranslateCharacter:
1280 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
1281 op = translate_char (GET_TRANSLATION_TABLE (reg[Rrr]), i);
1282 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
1283 break;
1284
1285 case CCL_TranslateCharacterConstTbl:
1286 {
1287 ptrdiff_t eop;
1288 GET_CCL_RANGE (eop, ccl_prog, ic++, 0,
1289 (VECTORP (Vtranslation_table_vector)
1290 ? ASIZE (Vtranslation_table_vector)
1291 : -1));
1292 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
1293 op = translate_char (GET_TRANSLATION_TABLE (eop), i);
1294 CCL_ENCODE_CHAR (op, charset_list, reg[RRR], reg[rrr]);
1295 }
1296 break;
1297
1298 case CCL_LookupIntConstTbl:
1299 {
1300 ptrdiff_t eop;
1301 struct Lisp_Hash_Table *h;
1302 GET_CCL_RANGE (eop, ccl_prog, ic++, 0,
1303 (VECTORP (Vtranslation_hash_table_vector)
1304 ? ASIZE (Vtranslation_hash_table_vector)
1305 : -1));
1306 h = GET_HASH_TABLE (eop);
1307
1308 eop = hash_lookup (h, make_number (reg[RRR]), NULL);
1309 if (eop >= 0)
1310 {
1311 Lisp_Object opl;
1312 opl = HASH_VALUE (h, eop);
1313 if (! (IN_INT_RANGE (eop) && CHARACTERP (opl)))
1314 CCL_INVALID_CMD;
1315 reg[RRR] = charset_unicode;
1316 reg[rrr] = eop;
1317 reg[7] = 1; /* r7 true for success */
1318 }
1319 else
1320 reg[7] = 0;
1321 }
1322 break;
1323
1324 case CCL_LookupCharConstTbl:
1325 {
1326 ptrdiff_t eop;
1327 struct Lisp_Hash_Table *h;
1328 GET_CCL_RANGE (eop, ccl_prog, ic++, 0,
1329 (VECTORP (Vtranslation_hash_table_vector)
1330 ? ASIZE (Vtranslation_hash_table_vector)
1331 : -1));
1332 i = CCL_DECODE_CHAR (reg[RRR], reg[rrr]);
1333 h = GET_HASH_TABLE (eop);
1334
1335 eop = hash_lookup (h, make_number (i), NULL);
1336 if (eop >= 0)
1337 {
1338 Lisp_Object opl;
1339 opl = HASH_VALUE (h, eop);
1340 if (! (INTEGERP (opl) && IN_INT_RANGE (XINT (opl))))
1341 CCL_INVALID_CMD;
1342 reg[RRR] = XINT (opl);
1343 reg[7] = 1; /* r7 true for success */
1344 }
1345 else
1346 reg[7] = 0;
1347 }
1348 break;
1349
1350 case CCL_IterateMultipleMap:
1351 {
1352 Lisp_Object map, content, attrib, value;
1353 EMACS_INT point;
1354 ptrdiff_t size;
1355 int fin_ic;
1356
1357 j = XINT (ccl_prog[ic++]); /* number of maps. */
1358 fin_ic = ic + j;
1359 op = reg[rrr];
1360 if ((j > reg[RRR]) && (j >= 0))
1361 {
1362 ic += reg[RRR];
1363 i = reg[RRR];
1364 }
1365 else
1366 {
1367 reg[RRR] = -1;
1368 ic = fin_ic;
1369 break;
1370 }
1371
1372 for (;i < j;i++)
1373 {
1374
1375 size = ASIZE (Vcode_conversion_map_vector);
1376 point = XINT (ccl_prog[ic++]);
1377 if (! (0 <= point && point < size)) continue;
1378 map = AREF (Vcode_conversion_map_vector, point);
1379
1380 /* Check map validity. */
1381 if (!CONSP (map)) continue;
1382 map = XCDR (map);
1383 if (!VECTORP (map)) continue;
1384 size = ASIZE (map);
1385 if (size <= 1) continue;
1386
1387 content = AREF (map, 0);
1388
1389 /* check map type,
1390 [STARTPOINT VAL1 VAL2 ...] or
1391 [t ELEMENT STARTPOINT ENDPOINT] */
1392 if (INTEGERP (content))
1393 {
1394 point = XINT (content);
1395 if (!(point <= op && op - point + 1 < size)) continue;
1396 content = AREF (map, op - point + 1);
1397 }
1398 else if (EQ (content, Qt))
1399 {
1400 if (size != 4) continue;
1401 if (INTEGERP (AREF (map, 2))
1402 && XINT (AREF (map, 2)) <= op
1403 && INTEGERP (AREF (map, 3))
1404 && op < XINT (AREF (map, 3)))
1405 content = AREF (map, 1);
1406 else
1407 continue;
1408 }
1409 else
1410 continue;
1411
1412 if (NILP (content))
1413 continue;
1414 else if (INTEGERP (content) && IN_INT_RANGE (XINT (content)))
1415 {
1416 reg[RRR] = i;
1417 reg[rrr] = XINT (content);
1418 break;
1419 }
1420 else if (EQ (content, Qt) || EQ (content, Qlambda))
1421 {
1422 reg[RRR] = i;
1423 break;
1424 }
1425 else if (CONSP (content))
1426 {
1427 attrib = XCAR (content);
1428 value = XCDR (content);
1429 if (! (INTEGERP (attrib) && INTEGERP (value)
1430 && IN_INT_RANGE (XINT (value))))
1431 continue;
1432 reg[RRR] = i;
1433 reg[rrr] = XINT (value);
1434 break;
1435 }
1436 else if (SYMBOLP (content))
1437 CCL_CALL_FOR_MAP_INSTRUCTION (content, fin_ic);
1438 else
1439 CCL_INVALID_CMD;
1440 }
1441 if (i == j)
1442 reg[RRR] = -1;
1443 ic = fin_ic;
1444 }
1445 break;
1446
1447 case CCL_MapMultiple:
1448 {
1449 Lisp_Object map, content, attrib, value;
1450 int point, size, map_vector_size;
1451 int map_set_rest_length, fin_ic;
1452 int current_ic = this_ic;
1453
1454 /* inhibit recursive call on MapMultiple. */
1455 if (stack_idx_of_map_multiple > 0)
1456 {
1457 if (stack_idx_of_map_multiple <= stack_idx)
1458 {
1459 stack_idx_of_map_multiple = 0;
1460 mapping_stack_pointer = mapping_stack;
1461 CCL_INVALID_CMD;
1462 }
1463 }
1464 else
1465 mapping_stack_pointer = mapping_stack;
1466 stack_idx_of_map_multiple = 0;
1467
1468 /* Get number of maps and separators. */
1469 map_set_rest_length = XINT (ccl_prog[ic++]);
1470
1471 fin_ic = ic + map_set_rest_length;
1472 op = reg[rrr];
1473
1474 if ((map_set_rest_length > reg[RRR]) && (reg[RRR] >= 0))
1475 {
1476 ic += reg[RRR];
1477 i = reg[RRR];
1478 map_set_rest_length -= i;
1479 }
1480 else
1481 {
1482 ic = fin_ic;
1483 reg[RRR] = -1;
1484 mapping_stack_pointer = mapping_stack;
1485 break;
1486 }
1487
1488 if (mapping_stack_pointer <= (mapping_stack + 1))
1489 {
1490 /* Set up initial state. */
1491 mapping_stack_pointer = mapping_stack;
1492 PUSH_MAPPING_STACK (0, op);
1493 reg[RRR] = -1;
1494 }
1495 else
1496 {
1497 /* Recover after calling other ccl program. */
1498 int orig_op;
1499
1500 POP_MAPPING_STACK (map_set_rest_length, orig_op);
1501 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1502 switch (op)
1503 {
1504 case -1:
1505 /* Regard it as Qnil. */
1506 op = orig_op;
1507 i++;
1508 ic++;
1509 map_set_rest_length--;
1510 break;
1511 case -2:
1512 /* Regard it as Qt. */
1513 op = reg[rrr];
1514 i++;
1515 ic++;
1516 map_set_rest_length--;
1517 break;
1518 case -3:
1519 /* Regard it as Qlambda. */
1520 op = orig_op;
1521 i += map_set_rest_length;
1522 ic += map_set_rest_length;
1523 map_set_rest_length = 0;
1524 break;
1525 default:
1526 /* Regard it as normal mapping. */
1527 i += map_set_rest_length;
1528 ic += map_set_rest_length;
1529 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1530 break;
1531 }
1532 }
1533 map_vector_size = ASIZE (Vcode_conversion_map_vector);
1534
1535 do {
1536 for (;map_set_rest_length > 0;i++, ic++, map_set_rest_length--)
1537 {
1538 point = XINT (ccl_prog[ic]);
1539 if (point < 0)
1540 {
1541 /* +1 is for including separator. */
1542 point = -point + 1;
1543 if (mapping_stack_pointer
1544 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1545 CCL_INVALID_CMD;
1546 PUSH_MAPPING_STACK (map_set_rest_length - point,
1547 reg[rrr]);
1548 map_set_rest_length = point;
1549 reg[rrr] = op;
1550 continue;
1551 }
1552
1553 if (point >= map_vector_size) continue;
1554 map = AREF (Vcode_conversion_map_vector, point);
1555
1556 /* Check map validity. */
1557 if (!CONSP (map)) continue;
1558 map = XCDR (map);
1559 if (!VECTORP (map)) continue;
1560 size = ASIZE (map);
1561 if (size <= 1) continue;
1562
1563 content = AREF (map, 0);
1564
1565 /* check map type,
1566 [STARTPOINT VAL1 VAL2 ...] or
1567 [t ELEMENT STARTPOINT ENDPOINT] */
1568 if (INTEGERP (content))
1569 {
1570 point = XINT (content);
1571 if (!(point <= op && op - point + 1 < size)) continue;
1572 content = AREF (map, op - point + 1);
1573 }
1574 else if (EQ (content, Qt))
1575 {
1576 if (size != 4) continue;
1577 if (INTEGERP (AREF (map, 2))
1578 && XINT (AREF (map, 2)) <= op
1579 && INTEGERP (AREF (map, 3))
1580 && op < XINT (AREF (map, 3)))
1581 content = AREF (map, 1);
1582 else
1583 continue;
1584 }
1585 else
1586 continue;
1587
1588 if (NILP (content))
1589 continue;
1590
1591 reg[RRR] = i;
1592 if (INTEGERP (content) && IN_INT_RANGE (XINT (content)))
1593 {
1594 op = XINT (content);
1595 i += map_set_rest_length - 1;
1596 ic += map_set_rest_length - 1;
1597 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1598 map_set_rest_length++;
1599 }
1600 else if (CONSP (content))
1601 {
1602 attrib = XCAR (content);
1603 value = XCDR (content);
1604 if (! (INTEGERP (attrib) && INTEGERP (value)
1605 && IN_INT_RANGE (XINT (value))))
1606 continue;
1607 op = XINT (value);
1608 i += map_set_rest_length - 1;
1609 ic += map_set_rest_length - 1;
1610 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1611 map_set_rest_length++;
1612 }
1613 else if (EQ (content, Qt))
1614 {
1615 op = reg[rrr];
1616 }
1617 else if (EQ (content, Qlambda))
1618 {
1619 i += map_set_rest_length;
1620 ic += map_set_rest_length;
1621 break;
1622 }
1623 else if (SYMBOLP (content))
1624 {
1625 if (mapping_stack_pointer
1626 >= &mapping_stack[MAX_MAP_SET_LEVEL])
1627 CCL_INVALID_CMD;
1628 PUSH_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1629 PUSH_MAPPING_STACK (map_set_rest_length, op);
1630 stack_idx_of_map_multiple = stack_idx + 1;
1631 CCL_CALL_FOR_MAP_INSTRUCTION (content, current_ic);
1632 }
1633 else
1634 CCL_INVALID_CMD;
1635 }
1636 if (mapping_stack_pointer <= (mapping_stack + 1))
1637 break;
1638 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1639 i += map_set_rest_length;
1640 ic += map_set_rest_length;
1641 POP_MAPPING_STACK (map_set_rest_length, reg[rrr]);
1642 } while (1);
1643
1644 ic = fin_ic;
1645 }
1646 reg[rrr] = op;
1647 break;
1648
1649 case CCL_MapSingle:
1650 {
1651 Lisp_Object map, attrib, value, content;
1652 int point;
1653 j = XINT (ccl_prog[ic++]); /* map_id */
1654 op = reg[rrr];
1655 if (j >= ASIZE (Vcode_conversion_map_vector))
1656 {
1657 reg[RRR] = -1;
1658 break;
1659 }
1660 map = AREF (Vcode_conversion_map_vector, j);
1661 if (!CONSP (map))
1662 {
1663 reg[RRR] = -1;
1664 break;
1665 }
1666 map = XCDR (map);
1667 if (! (VECTORP (map)
1668 && INTEGERP (AREF (map, 0))
1669 && XINT (AREF (map, 0)) <= op
1670 && op - XINT (AREF (map, 0)) + 1 < ASIZE (map)))
1671 {
1672 reg[RRR] = -1;
1673 break;
1674 }
1675 point = op - XINT (AREF (map, 0)) + 1;
1676 reg[RRR] = 0;
1677 content = AREF (map, point);
1678 if (NILP (content))
1679 reg[RRR] = -1;
1680 else if (TYPE_RANGED_INTEGERP (int, content))
1681 reg[rrr] = XINT (content);
1682 else if (EQ (content, Qt));
1683 else if (CONSP (content))
1684 {
1685 attrib = XCAR (content);
1686 value = XCDR (content);
1687 if (!INTEGERP (attrib)
1688 || !TYPE_RANGED_INTEGERP (int, value))
1689 continue;
1690 reg[rrr] = XINT (value);
1691 break;
1692 }
1693 else if (SYMBOLP (content))
1694 CCL_CALL_FOR_MAP_INSTRUCTION (content, ic);
1695 else
1696 reg[RRR] = -1;
1697 }
1698 break;
1699
1700 default:
1701 CCL_INVALID_CMD;
1702 }
1703 break;
1704
1705 default:
1706 CCL_INVALID_CMD;
1707 }
1708 }
1709
1710 ccl_error_handler:
1711 /* The suppress_error member is set when e.g. a CCL-based coding
1712 system is used for terminal output. */
1713 if (!ccl->suppress_error && destination)
1714 {
1715 /* We can insert an error message only if DESTINATION is
1716 specified and we still have a room to store the message
1717 there. */
1718 char msg[256];
1719 int msglen;
1720
1721 if (!dst)
1722 dst = destination;
1723
1724 switch (ccl->status)
1725 {
1726 case CCL_STAT_INVALID_CMD:
1727 sprintf (msg, "\nCCL: Invalid command %x (ccl_code = %x) at %d.",
1728 code & 0x1F, code, this_ic);
1729#ifdef CCL_DEBUG
1730 {
1731 int i = ccl_backtrace_idx - 1;
1732 int j;
1733
1734 msglen = strlen (msg);
1735 if (dst + msglen <= (dst_bytes ? dst_end : src))
1736 {
1737 memcpy (dst, msg, msglen);
1738 dst += msglen;
1739 }
1740
1741 for (j = 0; j < CCL_DEBUG_BACKTRACE_LEN; j++, i--)
1742 {
1743 if (i < 0) i = CCL_DEBUG_BACKTRACE_LEN - 1;
1744 if (ccl_backtrace_table[i] == 0)
1745 break;
1746 sprintf (msg, " %d", ccl_backtrace_table[i]);
1747 msglen = strlen (msg);
1748 if (dst + msglen > (dst_bytes ? dst_end : src))
1749 break;
1750 memcpy (dst, msg, msglen);
1751 dst += msglen;
1752 }
1753 goto ccl_finish;
1754 }
1755#endif
1756 break;
1757
1758 case CCL_STAT_QUIT:
1759 if (! ccl->quit_silently)
1760 sprintf (msg, "\nCCL: Quited.");
1761 break;
1762
1763 default:
1764 sprintf (msg, "\nCCL: Unknown error type (%d)", ccl->status);
1765 }
1766
1767 msglen = strlen (msg);
1768 if (msglen <= dst_end - dst)
1769 {
1770 for (i = 0; i < msglen; i++)
1771 *dst++ = msg[i];
1772 }
1773
1774 if (ccl->status == CCL_STAT_INVALID_CMD)
1775 {
1776#if 0 /* If the remaining bytes contain 0x80..0x9F, copying them
1777 results in an invalid multibyte sequence. */
1778
1779 /* Copy the remaining source data. */
1780 int i = src_end - src;
1781 if (dst_bytes && (dst_end - dst) < i)
1782 i = dst_end - dst;
1783 memcpy (dst, src, i);
1784 src += i;
1785 dst += i;
1786#else
1787 /* Signal that we've consumed everything. */
1788 src = src_end;
1789#endif
1790 }
1791 }
1792
1793 ccl_finish:
1794 ccl->ic = ic;
1795 ccl->stack_idx = stack_idx;
1796 ccl->prog = ccl_prog;
1797 ccl->consumed = src - source;
1798 if (dst != NULL)
1799 ccl->produced = dst - destination;
1800 else
1801 ccl->produced = 0;
1802}
1803
1804/* Resolve symbols in the specified CCL code (Lisp vector). This
1805 function converts symbols of code conversion maps and character
1806 translation tables embeded in the CCL code into their ID numbers.
1807
1808 The return value is a new vector in which all symbols are resolved,
1809 Qt if resolving of some symbol failed,
1810 or nil if CCL contains invalid data. */
1811
1812static Lisp_Object
1813resolve_symbol_ccl_program (Lisp_Object ccl)
1814{
1815 int i, veclen, unresolved = 0;
1816 Lisp_Object result, contents, val;
1817
1818 if (! (CCL_HEADER_MAIN < ASIZE (ccl) && ASIZE (ccl) <= INT_MAX))
1819 return Qnil;
1820 result = Fcopy_sequence (ccl);
1821 veclen = ASIZE (result);
1822
1823 for (i = 0; i < veclen; i++)
1824 {
1825 contents = AREF (result, i);
1826 if (TYPE_RANGED_INTEGERP (int, contents))
1827 continue;
1828 else if (CONSP (contents)
1829 && SYMBOLP (XCAR (contents))
1830 && SYMBOLP (XCDR (contents)))
1831 {
1832 /* This is the new style for embedding symbols. The form is
1833 (SYMBOL . PROPERTY). (get SYMBOL PROPERTY) should give
1834 an index number. */
1835 val = Fget (XCAR (contents), XCDR (contents));
1836 if (RANGED_INTEGERP (0, val, INT_MAX))
1837 ASET (result, i, val);
1838 else
1839 unresolved = 1;
1840 continue;
1841 }
1842 else if (SYMBOLP (contents))
1843 {
1844 /* This is the old style for embedding symbols. This style
1845 may lead to a bug if, for instance, a translation table
1846 and a code conversion map have the same name. */
1847 val = Fget (contents, Qtranslation_table_id);
1848 if (RANGED_INTEGERP (0, val, INT_MAX))
1849 ASET (result, i, val);
1850 else
1851 {
1852 val = Fget (contents, Qcode_conversion_map_id);
1853 if (RANGED_INTEGERP (0, val, INT_MAX))
1854 ASET (result, i, val);
1855 else
1856 {
1857 val = Fget (contents, Qccl_program_idx);
1858 if (RANGED_INTEGERP (0, val, INT_MAX))
1859 ASET (result, i, val);
1860 else
1861 unresolved = 1;
1862 }
1863 }
1864 continue;
1865 }
1866 return Qnil;
1867 }
1868
1869 if (! (0 <= XINT (AREF (result, CCL_HEADER_BUF_MAG))
1870 && ASCENDING_ORDER (0, XINT (AREF (result, CCL_HEADER_EOF)),
1871 ASIZE (ccl))))
1872 return Qnil;
1873
1874 return (unresolved ? Qt : result);
1875}
1876
1877/* Return the compiled code (vector) of CCL program CCL_PROG.
1878 CCL_PROG is a name (symbol) of the program or already compiled
1879 code. If necessary, resolve symbols in the compiled code to index
1880 numbers. If we failed to get the compiled code or to resolve
1881 symbols, return Qnil. */
1882
1883static Lisp_Object
1884ccl_get_compiled_code (Lisp_Object ccl_prog, ptrdiff_t *idx)
1885{
1886 Lisp_Object val, slot;
1887
1888 if (VECTORP (ccl_prog))
1889 {
1890 val = resolve_symbol_ccl_program (ccl_prog);
1891 *idx = -1;
1892 return (VECTORP (val) ? val : Qnil);
1893 }
1894 if (!SYMBOLP (ccl_prog))
1895 return Qnil;
1896
1897 val = Fget (ccl_prog, Qccl_program_idx);
1898 if (! NATNUMP (val)
1899 || XINT (val) >= ASIZE (Vccl_program_table))
1900 return Qnil;
1901 slot = AREF (Vccl_program_table, XINT (val));
1902 if (! VECTORP (slot)
1903 || ASIZE (slot) != 4
1904 || ! VECTORP (AREF (slot, 1)))
1905 return Qnil;
1906 *idx = XINT (val);
1907 if (NILP (AREF (slot, 2)))
1908 {
1909 val = resolve_symbol_ccl_program (AREF (slot, 1));
1910 if (! VECTORP (val))
1911 return Qnil;
1912 ASET (slot, 1, val);
1913 ASET (slot, 2, Qt);
1914 }
1915 return AREF (slot, 1);
1916}
1917
1918/* Setup fields of the structure pointed by CCL appropriately for the
1919 execution of CCL program CCL_PROG. CCL_PROG is the name (symbol)
1920 of the CCL program or the already compiled code (vector).
1921 Return 0 if we succeed this setup, else return -1.
1922
1923 If CCL_PROG is nil, we just reset the structure pointed by CCL. */
1924int
1925setup_ccl_program (struct ccl_program *ccl, Lisp_Object ccl_prog)
1926{
1927 int i;
1928
1929 if (! NILP (ccl_prog))
1930 {
1931 struct Lisp_Vector *vp;
1932
1933 ccl_prog = ccl_get_compiled_code (ccl_prog, &ccl->idx);
1934 if (! VECTORP (ccl_prog))
1935 return -1;
1936 vp = XVECTOR (ccl_prog);
1937 ccl->size = vp->header.size;
1938 ccl->prog = vp->contents;
1939 ccl->eof_ic = XINT (vp->contents[CCL_HEADER_EOF]);
1940 ccl->buf_magnification = XINT (vp->contents[CCL_HEADER_BUF_MAG]);
1941 if (ccl->idx >= 0)
1942 {
1943 Lisp_Object slot;
1944
1945 slot = AREF (Vccl_program_table, ccl->idx);
1946 ASET (slot, 3, Qnil);
1947 }
1948 }
1949 ccl->ic = CCL_HEADER_MAIN;
1950 for (i = 0; i < 8; i++)
1951 ccl->reg[i] = 0;
1952 ccl->last_block = 0;
1953 ccl->private_state = 0;
1954 ccl->status = 0;
1955 ccl->stack_idx = 0;
1956 ccl->suppress_error = 0;
1957 ccl->eight_bit_control = 0;
1958 ccl->quit_silently = 0;
1959 return 0;
1960}
1961
1962
1963DEFUN ("ccl-program-p", Fccl_program_p, Sccl_program_p, 1, 1, 0,
1964 doc: /* Return t if OBJECT is a CCL program name or a compiled CCL program code.
1965See the documentation of `define-ccl-program' for the detail of CCL program. */)
1966 (Lisp_Object object)
1967{
1968 Lisp_Object val;
1969
1970 if (VECTORP (object))
1971 {
1972 val = resolve_symbol_ccl_program (object);
1973 return (VECTORP (val) ? Qt : Qnil);
1974 }
1975 if (!SYMBOLP (object))
1976 return Qnil;
1977
1978 val = Fget (object, Qccl_program_idx);
1979 return ((! NATNUMP (val)
1980 || XINT (val) >= ASIZE (Vccl_program_table))
1981 ? Qnil : Qt);
1982}
1983
1984DEFUN ("ccl-execute", Fccl_execute, Sccl_execute, 2, 2, 0,
1985 doc: /* Execute CCL-PROGRAM with registers initialized by REGISTERS.
1986
1987CCL-PROGRAM is a CCL program name (symbol)
1988or compiled code generated by `ccl-compile' (for backward compatibility.
1989In the latter case, the execution overhead is bigger than in the former).
1990No I/O commands should appear in CCL-PROGRAM.
1991
1992REGISTERS is a vector of [R0 R1 ... R7] where RN is an initial value
1993for the Nth register.
1994
1995As side effect, each element of REGISTERS holds the value of
1996the corresponding register after the execution.
1997
1998See the documentation of `define-ccl-program' for a definition of CCL
1999programs. */)
2000 (Lisp_Object ccl_prog, Lisp_Object reg)
2001{
2002 struct ccl_program ccl;
2003 int i;
2004
2005 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2006 error ("Invalid CCL program");
2007
2008 CHECK_VECTOR (reg);
2009 if (ASIZE (reg) != 8)
2010 error ("Length of vector REGISTERS is not 8");
2011
2012 for (i = 0; i < 8; i++)
2013 ccl.reg[i] = (TYPE_RANGED_INTEGERP (int, AREF (reg, i))
2014 ? XINT (AREF (reg, i))
2015 : 0);
2016
2017 ccl_driver (&ccl, NULL, NULL, 0, 0, Qnil);
2018 QUIT;
2019 if (ccl.status != CCL_STAT_SUCCESS)
2020 error ("Error in CCL program at %dth code", ccl.ic);
2021
2022 for (i = 0; i < 8; i++)
2023 ASET (reg, i, make_number (ccl.reg[i]));
2024 return Qnil;
2025}
2026
2027DEFUN ("ccl-execute-on-string", Fccl_execute_on_string, Sccl_execute_on_string,
2028 3, 5, 0,
2029 doc: /* Execute CCL-PROGRAM with initial STATUS on STRING.
2030
2031CCL-PROGRAM is a symbol registered by `register-ccl-program',
2032or a compiled code generated by `ccl-compile' (for backward compatibility,
2033in this case, the execution is slower).
2034
2035Read buffer is set to STRING, and write buffer is allocated automatically.
2036
2037STATUS is a vector of [R0 R1 ... R7 IC], where
2038 R0..R7 are initial values of corresponding registers,
2039 IC is the instruction counter specifying from where to start the program.
2040If R0..R7 are nil, they are initialized to 0.
2041If IC is nil, it is initialized to head of the CCL program.
2042
2043If optional 4th arg CONTINUE is non-nil, keep IC on read operation
2044when read buffer is exhausted, else, IC is always set to the end of
2045CCL-PROGRAM on exit.
2046
2047It returns the contents of write buffer as a string,
2048 and as side effect, STATUS is updated.
2049If the optional 5th arg UNIBYTE-P is non-nil, the returned string
2050is a unibyte string. By default it is a multibyte string.
2051
2052See the documentation of `define-ccl-program' for the detail of CCL program.
2053usage: (ccl-execute-on-string CCL-PROGRAM STATUS STRING &optional CONTINUE UNIBYTE-P) */)
2054 (Lisp_Object ccl_prog, Lisp_Object status, Lisp_Object str, Lisp_Object contin, Lisp_Object unibyte_p)
2055{
2056 Lisp_Object val;
2057 struct ccl_program ccl;
2058 int i;
2059 ptrdiff_t outbufsize;
2060 unsigned char *outbuf, *outp;
2061 ptrdiff_t str_chars, str_bytes;
2062#define CCL_EXECUTE_BUF_SIZE 1024
2063 int source[CCL_EXECUTE_BUF_SIZE], destination[CCL_EXECUTE_BUF_SIZE];
2064 ptrdiff_t consumed_chars, consumed_bytes, produced_chars;
2065 int buf_magnification;
2066
2067 if (setup_ccl_program (&ccl, ccl_prog) < 0)
2068 error ("Invalid CCL program");
2069
2070 CHECK_VECTOR (status);
2071 if (ASIZE (status) != 9)
2072 error ("Length of vector STATUS is not 9");
2073 CHECK_STRING (str);
2074
2075 str_chars = SCHARS (str);
2076 str_bytes = SBYTES (str);
2077
2078 for (i = 0; i < 8; i++)
2079 {
2080 if (NILP (AREF (status, i)))
2081 ASET (status, i, make_number (0));
2082 if (TYPE_RANGED_INTEGERP (int, AREF (status, i)))
2083 ccl.reg[i] = XINT (AREF (status, i));
2084 }
2085 if (INTEGERP (AREF (status, i)))
2086 {
2087 i = XFASTINT (AREF (status, 8));
2088 if (ccl.ic < i && i < ccl.size)
2089 ccl.ic = i;
2090 }
2091
2092 buf_magnification = ccl.buf_magnification ? ccl.buf_magnification : 1;
2093
2094 if ((min (PTRDIFF_MAX, SIZE_MAX) - 256) / buf_magnification < str_bytes)
2095 memory_full (SIZE_MAX);
2096 outbufsize = (ccl.buf_magnification
2097 ? str_bytes * ccl.buf_magnification + 256
2098 : str_bytes + 256);
2099 outp = outbuf = (unsigned char *) xmalloc (outbufsize);
2100
2101 consumed_chars = consumed_bytes = 0;
2102 produced_chars = 0;
2103 while (1)
2104 {
2105 const unsigned char *p = SDATA (str) + consumed_bytes;
2106 const unsigned char *endp = SDATA (str) + str_bytes;
2107 int j = 0;
2108 int *src, src_size;
2109
2110 if (endp - p == str_chars - consumed_chars)
2111 while (j < CCL_EXECUTE_BUF_SIZE && p < endp)
2112 source[j++] = *p++;
2113 else
2114 while (j < CCL_EXECUTE_BUF_SIZE && p < endp)
2115 source[j++] = STRING_CHAR_ADVANCE (p);
2116 consumed_chars += j;
2117 consumed_bytes = p - SDATA (str);
2118
2119 if (consumed_bytes == str_bytes)
2120 ccl.last_block = NILP (contin);
2121 src = source;
2122 src_size = j;
2123 while (1)
2124 {
2125 int max_expansion = NILP (unibyte_p) ? MAX_MULTIBYTE_LENGTH : 1;
2126 ptrdiff_t offset, shortfall;
2127 ccl_driver (&ccl, src, destination, src_size, CCL_EXECUTE_BUF_SIZE,
2128 Qnil);
2129 produced_chars += ccl.produced;
2130 offset = outp - outbuf;
2131 shortfall = ccl.produced * max_expansion - (outbufsize - offset);
2132 if (0 < shortfall)
2133 {
2134 outbuf = xpalloc (outbuf, &outbufsize, shortfall, -1, 1);
2135 outp = outbuf + offset;
2136 }
2137 if (NILP (unibyte_p))
2138 {
2139 for (j = 0; j < ccl.produced; j++)
2140 CHAR_STRING_ADVANCE (destination[j], outp);
2141 }
2142 else
2143 {
2144 for (j = 0; j < ccl.produced; j++)
2145 *outp++ = destination[j];
2146 }
2147 src += ccl.consumed;
2148 src_size -= ccl.consumed;
2149 if (ccl.status != CCL_STAT_SUSPEND_BY_DST)
2150 break;
2151 }
2152
2153 if (ccl.status != CCL_STAT_SUSPEND_BY_SRC
2154 || str_chars == consumed_chars)
2155 break;
2156 }
2157
2158 if (ccl.status == CCL_STAT_INVALID_CMD)
2159 error ("Error in CCL program at %dth code", ccl.ic);
2160 if (ccl.status == CCL_STAT_QUIT)
2161 error ("CCL program interrupted at %dth code", ccl.ic);
2162
2163 for (i = 0; i < 8; i++)
2164 ASET (status, i, make_number (ccl.reg[i]));
2165 ASET (status, 8, make_number (ccl.ic));
2166
2167 if (NILP (unibyte_p))
2168 val = make_multibyte_string ((char *) outbuf, produced_chars,
2169 outp - outbuf);
2170 else
2171 val = make_unibyte_string ((char *) outbuf, produced_chars);
2172 xfree (outbuf);
2173
2174 return val;
2175}
2176
2177DEFUN ("register-ccl-program", Fregister_ccl_program, Sregister_ccl_program,
2178 2, 2, 0,
2179 doc: /* Register CCL program CCL-PROG as NAME in `ccl-program-table'.
2180CCL-PROG should be a compiled CCL program (vector), or nil.
2181If it is nil, just reserve NAME as a CCL program name.
2182Return index number of the registered CCL program. */)
2183 (Lisp_Object name, Lisp_Object ccl_prog)
2184{
2185 ptrdiff_t len = ASIZE (Vccl_program_table);
2186 ptrdiff_t idx;
2187 Lisp_Object resolved;
2188
2189 CHECK_SYMBOL (name);
2190 resolved = Qnil;
2191 if (!NILP (ccl_prog))
2192 {
2193 CHECK_VECTOR (ccl_prog);
2194 resolved = resolve_symbol_ccl_program (ccl_prog);
2195 if (NILP (resolved))
2196 error ("Error in CCL program");
2197 if (VECTORP (resolved))
2198 {
2199 ccl_prog = resolved;
2200 resolved = Qt;
2201 }
2202 else
2203 resolved = Qnil;
2204 }
2205
2206 for (idx = 0; idx < len; idx++)
2207 {
2208 Lisp_Object slot;
2209
2210 slot = AREF (Vccl_program_table, idx);
2211 if (!VECTORP (slot))
2212 /* This is the first unused slot. Register NAME here. */
2213 break;
2214
2215 if (EQ (name, AREF (slot, 0)))
2216 {
2217 /* Update this slot. */
2218 ASET (slot, 1, ccl_prog);
2219 ASET (slot, 2, resolved);
2220 ASET (slot, 3, Qt);
2221 return make_number (idx);
2222 }
2223 }
2224
2225 if (idx == len)
2226 /* Extend the table. */
2227 Vccl_program_table = larger_vector (Vccl_program_table, 1, -1);
2228
2229 {
2230 Lisp_Object elt;
2231
2232 elt = Fmake_vector (make_number (4), Qnil);
2233 ASET (elt, 0, name);
2234 ASET (elt, 1, ccl_prog);
2235 ASET (elt, 2, resolved);
2236 ASET (elt, 3, Qt);
2237 ASET (Vccl_program_table, idx, elt);
2238 }
2239
2240 Fput (name, Qccl_program_idx, make_number (idx));
2241 return make_number (idx);
2242}
2243
2244/* Register code conversion map.
2245 A code conversion map consists of numbers, Qt, Qnil, and Qlambda.
2246 The first element is the start code point.
2247 The other elements are mapped numbers.
2248 Symbol t means to map to an original number before mapping.
2249 Symbol nil means that the corresponding element is empty.
2250 Symbol lambda means to terminate mapping here.
2251*/
2252
2253DEFUN ("register-code-conversion-map", Fregister_code_conversion_map,
2254 Sregister_code_conversion_map,
2255 2, 2, 0,
2256 doc: /* Register SYMBOL as code conversion map MAP.
2257Return index number of the registered map. */)
2258 (Lisp_Object symbol, Lisp_Object map)
2259{
2260 ptrdiff_t len = ASIZE (Vcode_conversion_map_vector);
2261 ptrdiff_t i;
2262 Lisp_Object idx;
2263
2264 CHECK_SYMBOL (symbol);
2265 CHECK_VECTOR (map);
2266
2267 for (i = 0; i < len; i++)
2268 {
2269 Lisp_Object slot = AREF (Vcode_conversion_map_vector, i);
2270
2271 if (!CONSP (slot))
2272 break;
2273
2274 if (EQ (symbol, XCAR (slot)))
2275 {
2276 idx = make_number (i);
2277 XSETCDR (slot, map);
2278 Fput (symbol, Qcode_conversion_map, map);
2279 Fput (symbol, Qcode_conversion_map_id, idx);
2280 return idx;
2281 }
2282 }
2283
2284 if (i == len)
2285 Vcode_conversion_map_vector = larger_vector (Vcode_conversion_map_vector,
2286 1, -1);
2287
2288 idx = make_number (i);
2289 Fput (symbol, Qcode_conversion_map, map);
2290 Fput (symbol, Qcode_conversion_map_id, idx);
2291 ASET (Vcode_conversion_map_vector, i, Fcons (symbol, map));
2292 return idx;
2293}
2294
2295
2296void
2297syms_of_ccl (void)
2298{
2299 staticpro (&Vccl_program_table);
2300 Vccl_program_table = Fmake_vector (make_number (32), Qnil);
2301
2302 DEFSYM (Qccl, "ccl");
2303 DEFSYM (Qcclp, "cclp");
2304 DEFSYM (Qccl_program, "ccl-program");
2305 DEFSYM (Qccl_program_idx, "ccl-program-idx");
2306 DEFSYM (Qcode_conversion_map, "code-conversion-map");
2307 DEFSYM (Qcode_conversion_map_id, "code-conversion-map-id");
2308
2309 DEFVAR_LISP ("code-conversion-map-vector", Vcode_conversion_map_vector,
2310 doc: /* Vector of code conversion maps. */);
2311 Vcode_conversion_map_vector = Fmake_vector (make_number (16), Qnil);
2312
2313 DEFVAR_LISP ("font-ccl-encoder-alist", Vfont_ccl_encoder_alist,
2314 doc: /* Alist of fontname patterns vs corresponding CCL program.
2315Each element looks like (REGEXP . CCL-CODE),
2316 where CCL-CODE is a compiled CCL program.
2317When a font whose name matches REGEXP is used for displaying a character,
2318 CCL-CODE is executed to calculate the code point in the font
2319 from the charset number and position code(s) of the character which are set
2320 in CCL registers R0, R1, and R2 before the execution.
2321The code point in the font is set in CCL registers R1 and R2
2322 when the execution terminated.
2323 If the font is single-byte font, the register R2 is not used. */);
2324 Vfont_ccl_encoder_alist = Qnil;
2325
2326 DEFVAR_LISP ("translation-hash-table-vector", Vtranslation_hash_table_vector,
2327 doc: /* Vector containing all translation hash tables ever defined.
2328Comprises pairs (SYMBOL . TABLE) where SYMBOL and TABLE were set up by calls
2329to `define-translation-hash-table'. The vector is indexed by the table id
2330used by CCL. */);
2331 Vtranslation_hash_table_vector = Qnil;
2332
2333 defsubr (&Sccl_program_p);
2334 defsubr (&Sccl_execute);
2335 defsubr (&Sccl_execute_on_string);
2336 defsubr (&Sregister_ccl_program);
2337 defsubr (&Sregister_code_conversion_map);
2338}