* lisp/emacs-lisp/byte-lexbind.el: Delete.
[bpt/emacs.git] / lisp / emacs-lisp / cconv.el
... / ...
CommitLineData
1;;; cconv.el --- Closure conversion for statically scoped Emacs lisp. -*- lexical-binding: nil -*-
2
3;; Copyright (C) 2011 Free Software Foundation, Inc.
4
5;; Author: Igor Kuzmin <kzuminig@iro.umontreal.ca>
6;; Maintainer: FSF
7;; Keywords: lisp
8;; Package: emacs
9
10;; This file is part of GNU Emacs.
11
12;; GNU Emacs is free software: you can redistribute it and/or modify
13;; it under the terms of the GNU General Public License as published by
14;; the Free Software Foundation, either version 3 of the License, or
15;; (at your option) any later version.
16
17;; GNU Emacs is distributed in the hope that it will be useful,
18;; but WITHOUT ANY WARRANTY; without even the implied warranty of
19;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
20;; GNU General Public License for more details.
21
22;; You should have received a copy of the GNU General Public License
23;; along with GNU Emacs. If not, see <http://www.gnu.org/licenses/>.
24
25;;; Commentary:
26
27;; This takes a piece of Elisp code, and eliminates all free variables from
28;; lambda expressions. The user entry points are cconv-closure-convert and
29;; cconv-closure-convert-toplevel(for toplevel forms).
30;; All macros should be expanded beforehand.
31;;
32;; Here is a brief explanation how this code works.
33;; Firstly, we analyse the tree by calling cconv-analyse-form.
34;; This function finds all mutated variables, all functions that are suitable
35;; for lambda lifting and all variables captured by closure. It passes the tree
36;; once, returning a list of three lists.
37;;
38;; Then we calculate the intersection of first and third lists returned by
39;; cconv-analyse form to find all mutated variables that are captured by
40;; closure.
41
42;; Armed with this data, we call cconv-closure-convert-rec, that rewrites the
43;; tree recursivly, lifting lambdas where possible, building closures where it
44;; is needed and eliminating mutable variables used in closure.
45;;
46;; We do following replacements :
47;; (lambda (v1 ...) ... fv1 fv2 ...) => (lambda (v1 ... fv1 fv2 ) ... fv1 fv2 .)
48;; if the function is suitable for lambda lifting (if all calls are known)
49;;
50;; (lambda (v1 ...) ... fv ...) =>
51;; (curry (lambda (env v1 ...) ... env ...) env)
52;; if the function has only 1 free variable
53;;
54;; and finally
55;; (lambda (v1 ...) ... fv1 fv2 ...) =>
56;; (curry (lambda (env v1 ..) .. (aref env 0) (aref env 1) ..) (vector fv1 fv2))
57;; if the function has 2 or more free variables.
58;;
59;; If the function has no free variables, we don't do anything.
60;;
61;; If a variable is mutated (updated by setq), and it is used in a closure
62;; we wrap it's definition with list: (list val) and we also replace
63;; var => (car var) wherever this variable is used, and also
64;; (setq var value) => (setcar var value) where it is updated.
65;;
66;; If defun argument is closure mutable, we letbind it and wrap it's
67;; definition with list.
68;; (defun foo (... mutable-arg ...) ...) =>
69;; (defun foo (... m-arg ...) (let ((m-arg (list m-arg))) ...))
70;;
71;;; Code:
72
73(eval-when-compile (require 'cl))
74
75(defconst cconv-liftwhen 3
76 "Try to do lambda lifting if the number of arguments + free variables
77is less than this number.")
78(defvar cconv-mutated nil
79 "List of mutated variables in current form")
80(defvar cconv-captured nil
81 "List of closure captured variables in current form")
82(defvar cconv-captured+mutated nil
83 "An intersection between cconv-mutated and cconv-captured lists.")
84(defvar cconv-lambda-candidates nil
85 "List of candidates for lambda lifting.
86Each candidate has the form (VAR INCLOSURE BINDER PARENTFORM).")
87
88(defun cconv-freevars (form &optional fvrs)
89 "Find all free variables of given form.
90Arguments:
91-- FORM is a piece of Elisp code after macroexpansion.
92-- FVRS(optional) is a list of variables already found. Used for recursive tree
93traversal
94
95Returns a list of free variables."
96 ;; If a leaf in the tree is a symbol, but it is not a global variable, not a
97 ;; keyword, not 'nil or 't we consider this leaf as a variable.
98 ;; Free variables are the variables that are not declared above in this tree.
99 ;; For example free variables of (lambda (a1 a2 ..) body-forms) are
100 ;; free variables of body-forms excluding a1, a2 ..
101 ;; Free variables of (let ((v1 ..) (v2) ..)) body-forms) are
102 ;; free variables of body-forms excluding v1, v2 ...
103 ;; and so on.
104
105 ;; A list of free variables already found(FVRS) is passed in parameter
106 ;; to try to use cons or push where possible, and to minimize the usage
107 ;; of append.
108
109 ;; This function can return duplicates (because we use 'append instead
110 ;; of union of two sets - for performance reasons).
111 (pcase form
112 (`(let ,varsvalues . ,body-forms) ; let special form
113 (let ((fvrs-1 '()))
114 (dolist (exp body-forms)
115 (setq fvrs-1 (cconv-freevars exp fvrs-1)))
116 (dolist (elm varsvalues)
117 (setq fvrs-1 (delq (if (consp elm) (car elm) elm) fvrs-1)))
118 (setq fvrs (nconc fvrs-1 fvrs))
119 (dolist (exp varsvalues)
120 (when (consp exp) (setq fvrs (cconv-freevars (cadr exp) fvrs))))
121 fvrs))
122
123 (`(let* ,varsvalues . ,body-forms) ; let* special form
124 (let ((vrs '())
125 (fvrs-1 '()))
126 (dolist (exp varsvalues)
127 (if (consp exp)
128 (progn
129 (setq fvrs-1 (cconv-freevars (cadr exp) fvrs-1))
130 (dolist (elm vrs) (setq fvrs-1 (delq elm fvrs-1)))
131 (push (car exp) vrs))
132 (progn
133 (dolist (elm vrs) (setq fvrs-1 (delq elm fvrs-1)))
134 (push exp vrs))))
135 (dolist (exp body-forms)
136 (setq fvrs-1 (cconv-freevars exp fvrs-1)))
137 (dolist (elm vrs) (setq fvrs-1 (delq elm fvrs-1)))
138 (append fvrs fvrs-1)))
139
140 (`((lambda . ,_) . ,_) ; first element is lambda expression
141 (dolist (exp `((function ,(car form)) . ,(cdr form)))
142 (setq fvrs (cconv-freevars exp fvrs))) fvrs)
143
144 (`(cond . ,cond-forms) ; cond special form
145 (dolist (exp1 cond-forms)
146 (dolist (exp2 exp1)
147 (setq fvrs (cconv-freevars exp2 fvrs)))) fvrs)
148
149 (`(quote . ,_) fvrs) ; quote form
150
151 (`(function . ((lambda ,vars . ,body-forms)))
152 (let ((functionform (cadr form)) (fvrs-1 '()))
153 (dolist (exp body-forms)
154 (setq fvrs-1 (cconv-freevars exp fvrs-1)))
155 (dolist (elm vars) (setq fvrs-1 (delq elm fvrs-1)))
156 (append fvrs fvrs-1))) ; function form
157
158 (`(function . ,_) fvrs) ; same as quote
159 ;condition-case
160 (`(condition-case ,var ,protected-form . ,conditions-bodies)
161 (let ((fvrs-1 '()))
162 (dolist (exp conditions-bodies)
163 (setq fvrs-1 (cconv-freevars (cadr exp) fvrs-1)))
164 (setq fvrs-1 (delq var fvrs-1))
165 (setq fvrs-1 (cconv-freevars protected-form fvrs-1))
166 (append fvrs fvrs-1)))
167
168 (`(,(and sym (or `defun `defconst `defvar)) . ,_)
169 ;; We call cconv-freevars only for functions(lambdas)
170 ;; defun, defconst, defvar are not allowed to be inside
171 ;; a function (lambda).
172 ;; FIXME: should be a byte-compile-report-error!
173 (error "Invalid form: %s inside a function" sym))
174
175 (`(,_ . ,body-forms) ; First element is (like) a function.
176 (dolist (exp body-forms)
177 (setq fvrs (cconv-freevars exp fvrs))) fvrs)
178
179 (_ (if (byte-compile-not-lexical-var-p form)
180 fvrs
181 (cons form fvrs)))))
182
183;;;###autoload
184(defun cconv-closure-convert (form)
185 "Main entry point for closure conversion.
186-- FORM is a piece of Elisp code after macroexpansion.
187-- TOPLEVEL(optional) is a boolean variable, true if we are at the root of AST
188
189Returns a form where all lambdas don't have any free variables."
190 (message "Entering cconv-closure-convert...")
191 (let ((cconv-mutated '())
192 (cconv-lambda-candidates '())
193 (cconv-captured '())
194 (cconv-captured+mutated '()))
195 ;; Analyse form - fill these variables with new information
196 (cconv-analyse-form form '() 0)
197 ;; Calculate an intersection of cconv-mutated and cconv-captured
198 (dolist (mvr cconv-mutated)
199 (when (memq mvr cconv-captured) ;
200 (push mvr cconv-captured+mutated)))
201 (cconv-closure-convert-rec
202 form ; the tree
203 '() ;
204 '() ; fvrs initially empty
205 '() ; envs initially empty
206 '()
207 )))
208
209(defun cconv-lookup-let (table var binder form)
210 (let ((res nil))
211 (dolist (elem table)
212 (when (and (eq (nth 2 elem) binder)
213 (eq (nth 3 elem) form))
214 (assert (eq (car elem) var))
215 (setq res elem)))
216 res))
217
218(defconst cconv--dummy-var (make-symbol "ignored"))
219
220(defun cconv-closure-convert-rec
221 (form emvrs fvrs envs lmenvs)
222 ;; This function actually rewrites the tree.
223 "Eliminates all free variables of all lambdas in given forms.
224Arguments:
225-- FORM is a piece of Elisp code after macroexpansion.
226-- LMENVS is a list of environments used for lambda-lifting. Initially empty.
227-- EMVRS is a list that contains mutated variables that are visible
228within current environment.
229-- ENVS is an environment(list of free variables) of current closure.
230Initially empty.
231-- FVRS is a list of variables to substitute in each context.
232Initially empty.
233
234Returns a form where all lambdas don't have any free variables."
235 ;; What's the difference between fvrs and envs?
236 ;; Suppose that we have the code
237 ;; (lambda (..) fvr (let ((fvr 1)) (+ fvr 1)))
238 ;; only the first occurrence of fvr should be replaced by
239 ;; (aref env ...).
240 ;; So initially envs and fvrs are the same thing, but when we descend to
241 ;; the 'let, we delete fvr from fvrs. Why we don't delete fvr from envs?
242 ;; Because in envs the order of variables is important. We use this list
243 ;; to find the number of a specific variable in the environment vector,
244 ;; so we never touch it(unless we enter to the other closure).
245 ;;(if (listp form) (print (car form)) form)
246 (pcase form
247 (`(,(and letsym (or `let* `let)) ,binders . ,body-forms)
248
249 ; let and let* special forms
250 (let ((body-forms-new '())
251 (binders-new '())
252 ;; next for variables needed for delayed push
253 ;; because we should process <value(s)>
254 ;; before we change any arguments
255 (lmenvs-new '()) ;needed only in case of let
256 (emvrs-new '()) ;needed only in case of let
257 (emvr-push) ;needed only in case of let*
258 (lmenv-push)) ;needed only in case of let*
259
260 (dolist (binder binders)
261 (let* ((value nil)
262 (var (if (not (consp binder))
263 binder
264 (setq value (cadr binder))
265 (car binder)))
266 (new-val
267 (cond
268 ;; Check if var is a candidate for lambda lifting.
269 ((cconv-lookup-let cconv-lambda-candidates var binder form)
270
271 (let* ((fv (delete-dups (cconv-freevars value '())))
272 (funargs (cadr (cadr value)))
273 (funcvars (append fv funargs))
274 (funcbodies (cddadr value)) ; function bodies
275 (funcbodies-new '()))
276 ; lambda lifting condition
277 (if (or (not fv) (< cconv-liftwhen (length funcvars)))
278 ; do not lift
279 (cconv-closure-convert-rec
280 value emvrs fvrs envs lmenvs)
281 ; lift
282 (progn
283 (dolist (elm2 funcbodies)
284 (push ; convert function bodies
285 (cconv-closure-convert-rec
286 elm2 emvrs nil envs lmenvs)
287 funcbodies-new))
288 (if (eq letsym 'let*)
289 (setq lmenv-push (cons var fv))
290 (push (cons var fv) lmenvs-new))
291 ; push lifted function
292
293 `(function .
294 ((lambda ,funcvars .
295 ,(reverse funcbodies-new))))))))
296
297 ;; Check if it needs to be turned into a "ref-cell".
298 ((cconv-lookup-let cconv-captured+mutated var binder form)
299 ;; Declared variable is mutated and captured.
300 (prog1
301 `(list ,(cconv-closure-convert-rec
302 value emvrs
303 fvrs envs lmenvs))
304 (if (eq letsym 'let*)
305 (setq emvr-push var)
306 (push var emvrs-new))))
307
308 ;; Normal default case.
309 (t
310 (cconv-closure-convert-rec
311 value emvrs fvrs envs lmenvs)))))
312
313 ;; this piece of code below letbinds free
314 ;; variables of a lambda lifted function
315 ;; if they are redefined in this let
316 ;; example:
317 ;; (let* ((fun (lambda (x) (+ x y))) (y 1)) (funcall fun 1))
318 ;; Here we can not pass y as parameter because it is
319 ;; redefined. We add a (closed-y y) declaration.
320 ;; We do that even if the function is not used inside
321 ;; this let(*). The reason why we ignore this case is
322 ;; that we can't "look forward" to see if the function
323 ;; is called there or not. To treat well this case we
324 ;; need to traverse the tree one more time to collect this
325 ;; data, and I think that it's not worth it.
326
327 (when (eq letsym 'let*)
328 (let ((closedsym '())
329 (new-lmenv '())
330 (old-lmenv '()))
331 (dolist (lmenv lmenvs)
332 (when (memq var (cdr lmenv))
333 (setq closedsym
334 (make-symbol
335 (concat "closed-" (symbol-name var))))
336 (setq new-lmenv (list (car lmenv)))
337 (dolist (frv (cdr lmenv)) (if (eq frv var)
338 (push closedsym new-lmenv)
339 (push frv new-lmenv)))
340 (setq new-lmenv (reverse new-lmenv))
341 (setq old-lmenv lmenv)))
342 (when new-lmenv
343 (setq lmenvs (remq old-lmenv lmenvs))
344 (push new-lmenv lmenvs)
345 (push `(,closedsym ,var) binders-new))))
346 ;; we push the element after redefined free variables
347 ;; are processes. this is important to avoid the bug
348 ;; when free variable and the function have the same
349 ;; name
350 (push (list var new-val) binders-new)
351
352 (when (eq letsym 'let*) ; update fvrs
353 (setq fvrs (remq var fvrs))
354 (setq emvrs (remq var emvrs)) ; remove if redefined
355 (when emvr-push
356 (push emvr-push emvrs)
357 (setq emvr-push nil))
358 (let (lmenvs-1) ; remove var from lmenvs if redefined
359 (dolist (iter lmenvs)
360 (when (not (assq var lmenvs))
361 (push iter lmenvs-1)))
362 (setq lmenvs lmenvs-1))
363 (when lmenv-push
364 (push lmenv-push lmenvs)
365 (setq lmenv-push nil)))
366 )) ; end of dolist over binders
367 (when (eq letsym 'let)
368
369 (let (var fvrs-1 emvrs-1 lmenvs-1)
370 ;; Here we update emvrs, fvrs and lmenvs lists
371 (dolist (vr fvrs)
372 ; safely remove
373 (when (not (assq vr binders-new)) (push vr fvrs-1)))
374 (setq fvrs fvrs-1)
375 (dolist (vr emvrs)
376 ; safely remove
377 (when (not (assq vr binders-new)) (push vr emvrs-1)))
378 (setq emvrs emvrs-1)
379 ; push new
380 (setq emvrs (append emvrs emvrs-new))
381 (dolist (vr lmenvs)
382 (when (not (assq (car vr) binders-new))
383 (push vr lmenvs-1)))
384 (setq lmenvs (append lmenvs lmenvs-new)))
385
386 ;; Here we do the same letbinding as for let* above
387 ;; to avoid situation when a free variable of a lambda lifted
388 ;; function got redefined.
389
390 (let ((new-lmenv)
391 (var nil)
392 (closedsym nil)
393 (letbinds '()))
394 (dolist (binder binders)
395 (setq var (if (consp binder) (car binder) binder))
396
397 (let ((lmenvs-1 lmenvs)) ; just to avoid manipulating
398 (dolist (lmenv lmenvs-1) ; the counter inside the loop
399 (when (memq var (cdr lmenv))
400 (setq closedsym (make-symbol
401 (concat "closed-"
402 (symbol-name var))))
403
404 (setq new-lmenv (list (car lmenv)))
405 (dolist (frv (cdr lmenv)) (if (eq frv var)
406 (push closedsym new-lmenv)
407 (push frv new-lmenv)))
408 (setq new-lmenv (reverse new-lmenv))
409 (setq lmenvs (remq lmenv lmenvs))
410 (push new-lmenv lmenvs)
411 (push `(,closedsym ,var) letbinds)
412 ))))
413 (setq binders-new (append binders-new letbinds))))
414
415 (dolist (elm body-forms) ; convert body forms
416 (push (cconv-closure-convert-rec
417 elm emvrs fvrs envs lmenvs)
418 body-forms-new))
419 `(,letsym ,(reverse binders-new) . ,(reverse body-forms-new))))
420 ;end of let let* forms
421
422 ; first element is lambda expression
423 (`(,(and `(lambda . ,_) fun) . ,other-body-forms)
424
425 (let ((other-body-forms-new '()))
426 (dolist (elm other-body-forms)
427 (push (cconv-closure-convert-rec
428 elm emvrs fvrs envs lmenvs)
429 other-body-forms-new))
430 `(funcall
431 ,(cconv-closure-convert-rec
432 (list 'function fun) emvrs fvrs envs lmenvs)
433 ,@(nreverse other-body-forms-new))))
434
435 (`(cond . ,cond-forms) ; cond special form
436 (let ((cond-forms-new '()))
437 (dolist (elm cond-forms)
438 (push (let ((elm-new '()))
439 (dolist (elm-2 elm)
440 (push
441 (cconv-closure-convert-rec
442 elm-2 emvrs fvrs envs lmenvs)
443 elm-new))
444 (reverse elm-new))
445 cond-forms-new))
446 (cons 'cond
447 (reverse cond-forms-new))))
448
449 (`(quote . ,_) form) ; quote form
450
451 (`(function . ((lambda ,vars . ,body-forms))) ; function form
452 (let (fvrs-new) ; we remove vars from fvrs
453 (dolist (elm fvrs) ;i use such a tricky way to avoid side effects
454 (when (not (memq elm vars))
455 (push elm fvrs-new)))
456 (setq fvrs fvrs-new))
457 (let* ((fv (delete-dups (cconv-freevars form '())))
458 (leave fvrs) ; leave = non nil if we should leave env unchanged
459 (body-forms-new '())
460 (letbind '())
461 (mv nil)
462 (envector nil))
463 (when fv
464 ;; Here we form our environment vector.
465 ;; If outer closure contains all
466 ;; free variables of this function(and nothing else)
467 ;; then we use the same environment vector as for outer closure,
468 ;; i.e. we leave the environment vector unchanged
469 ;; otherwise we build a new environmet vector
470 (if (eq (length envs) (length fv))
471 (let ((fv-temp fv))
472 (while (and fv-temp leave)
473 (when (not (memq (car fv-temp) fvrs)) (setq leave nil))
474 (setq fv-temp (cdr fv-temp))))
475 (setq leave nil))
476
477 (if (not leave)
478 (progn
479 (dolist (elm fv)
480 (push
481 (cconv-closure-convert-rec
482 elm (remq elm emvrs) fvrs envs lmenvs)
483 envector)) ; process vars for closure vector
484 (setq envector (reverse envector))
485 (setq envs fv))
486 (setq envector `(env))) ; leave unchanged
487 (setq fvrs fv)) ; update substitution list
488
489 ;; the difference between envs and fvrs is explained
490 ;; in comment in the beginning of the function
491 (dolist (elm cconv-captured+mutated) ; find mutated arguments
492 (setq mv (car elm)) ; used in inner closures
493 (when (and (memq mv vars) (eq form (caddr elm)))
494 (progn (push mv emvrs)
495 (push `(,mv (list ,mv)) letbind))))
496 (dolist (elm body-forms) ; convert function body
497 (push (cconv-closure-convert-rec
498 elm emvrs fvrs envs lmenvs)
499 body-forms-new))
500
501 (setq body-forms-new
502 (if letbind `((let ,letbind . ,(reverse body-forms-new)))
503 (reverse body-forms-new)))
504
505 (cond
506 ;if no freevars - do nothing
507 ((null envector)
508 `(function (lambda ,vars . ,body-forms-new)))
509 ; 1 free variable - do not build vector
510 ((null (cdr envector))
511 `(curry
512 (function (lambda (env . ,vars) . ,body-forms-new))
513 ,(car envector)))
514 ; >=2 free variables - build vector
515 (t
516 `(curry
517 (function (lambda (env . ,vars) . ,body-forms-new))
518 (vector . ,envector))))))
519
520 (`(function . ,_) form) ; same as quote
521
522 ;defconst, defvar
523 (`(,(and sym (or `defconst `defvar)) ,definedsymbol . ,body-forms)
524
525 (let ((body-forms-new '()))
526 (dolist (elm body-forms)
527 (push (cconv-closure-convert-rec
528 elm emvrs fvrs envs lmenvs)
529 body-forms-new))
530 (setq body-forms-new (reverse body-forms-new))
531 `(,sym ,definedsymbol . ,body-forms-new)))
532
533 ;defun, defmacro
534 (`(,(and sym (or `defun `defmacro))
535 ,func ,vars . ,body-forms)
536 (let ((body-new '()) ; the whole body
537 (body-forms-new '()) ; body w\o docstring and interactive
538 (letbind '()))
539 ; find mutable arguments
540 (let ((lmutated cconv-captured+mutated) ismutated)
541 (dolist (elm vars)
542 (setq ismutated nil)
543 (while (and lmutated (not ismutated))
544 (when (and (eq (caar lmutated) elm)
545 (eq (cadar lmutated) form))
546 (setq ismutated t))
547 (setq lmutated (cdr lmutated)))
548 (when ismutated
549 (push elm letbind)
550 (push elm emvrs))))
551 ;transform body-forms
552 (when (stringp (car body-forms)) ; treat docstring well
553 (push (car body-forms) body-new)
554 (setq body-forms (cdr body-forms)))
555 (when (eq (car-safe (car body-forms)) 'interactive)
556 (push (cconv-closure-convert-rec
557 (car body-forms)
558 emvrs fvrs envs lmenvs)
559 body-new)
560 (setq body-forms (cdr body-forms)))
561
562 (dolist (elm body-forms)
563 (push (cconv-closure-convert-rec
564 elm emvrs fvrs envs lmenvs)
565 body-forms-new))
566 (setq body-forms-new (reverse body-forms-new))
567
568 (if letbind
569 ; letbind mutable arguments
570 (let ((binders-new '()))
571 (dolist (elm letbind) (push `(,elm (list ,elm))
572 binders-new))
573 (push `(let ,(reverse binders-new) .
574 ,body-forms-new) body-new)
575 (setq body-new (reverse body-new)))
576 (setq body-new (append (reverse body-new) body-forms-new)))
577
578 `(,sym ,func ,vars . ,body-new)))
579
580 ;condition-case
581 (`(condition-case ,var ,protected-form . ,handlers)
582 (let ((handlers-new '())
583 (newform (cconv-closure-convert-rec
584 `(function (lambda () ,protected-form))
585 emvrs fvrs envs lmenvs)))
586 (setq fvrs (remq var fvrs))
587 (dolist (handler handlers)
588 (push (list (car handler)
589 (cconv-closure-convert-rec
590 `(function (lambda (,(or var cconv--dummy-var))
591 ,@(cdr handler)))
592 emvrs fvrs envs lmenvs))
593 handlers-new))
594 `(condition-case :fun-body ,newform
595 ,@(nreverse handlers-new))))
596
597 (`(,(and head (or `catch `unwind-protect)) ,form . ,body)
598 `(,head ,(cconv-closure-convert-rec form emvrs fvrs envs lmenvs)
599 :fun-body
600 ,(cconv-closure-convert-rec `(function (lambda () ,@body))
601 emvrs fvrs envs lmenvs)))
602
603 (`(,(and head (or `save-window-excursion `track-mouse)) . ,body)
604 `(,head
605 :fun-body
606 ,(cconv-closure-convert-rec `(function (lambda () ,@body))
607 emvrs fvrs envs lmenvs)))
608
609 (`(setq . ,forms) ; setq special form
610 (let (prognlist sym sym-new value)
611 (while forms
612 (setq sym (car forms))
613 (setq sym-new (cconv-closure-convert-rec
614 sym
615 (remq sym emvrs) fvrs envs lmenvs))
616 (setq value
617 (cconv-closure-convert-rec
618 (cadr forms) emvrs fvrs envs lmenvs))
619 (if (memq sym emvrs)
620 (push `(setcar ,sym-new ,value) prognlist)
621 (if (symbolp sym-new)
622 (push `(setq ,sym-new ,value) prognlist)
623 (push `(set ,sym-new ,value) prognlist)))
624 (setq forms (cddr forms)))
625 (if (cdr prognlist)
626 `(progn . ,(reverse prognlist))
627 (car prognlist))))
628
629 (`(,(and (or `funcall `apply) callsym) ,fun . ,args)
630 ; funcall is not a special form
631 ; but we treat it separately
632 ; for the needs of lambda lifting
633 (let ((fv (cdr (assq fun lmenvs))))
634 (if fv
635 (let ((args-new '())
636 (processed-fv '()))
637 ;; All args (free variables and actual arguments)
638 ;; should be processed, because they can be fvrs
639 ;; (free variables of another closure)
640 (dolist (fvr fv)
641 (push (cconv-closure-convert-rec
642 fvr (remq fvr emvrs)
643 fvrs envs lmenvs)
644 processed-fv))
645 (setq processed-fv (reverse processed-fv))
646 (dolist (elm args)
647 (push (cconv-closure-convert-rec
648 elm emvrs fvrs envs lmenvs)
649 args-new))
650 (setq args-new (append processed-fv (reverse args-new)))
651 (setq fun (cconv-closure-convert-rec
652 fun emvrs fvrs envs lmenvs))
653 `(,callsym ,fun . ,args-new))
654 (let ((cdr-new '()))
655 (dolist (elm (cdr form))
656 (push (cconv-closure-convert-rec
657 elm emvrs fvrs envs lmenvs)
658 cdr-new))
659 `(,callsym . ,(reverse cdr-new))))))
660
661 (`(,func . ,body-forms) ; first element is function or whatever
662 ; function-like forms are:
663 ; or, and, if, progn, prog1, prog2,
664 ; while, until
665 (let ((body-forms-new '()))
666 (dolist (elm body-forms)
667 (push (cconv-closure-convert-rec
668 elm emvrs fvrs envs lmenvs)
669 body-forms-new))
670 (setq body-forms-new (reverse body-forms-new))
671 `(,func . ,body-forms-new)))
672
673 (_
674 (let ((free (memq form fvrs)))
675 (if free ;form is a free variable
676 (let* ((numero (- (length fvrs) (length free)))
677 (var '()))
678 (assert numero)
679 (if (null (cdr envs))
680 (setq var 'env)
681 ;replace form =>
682 ;(aref env #)
683 (setq var `(aref env ,numero)))
684 (if (memq form emvrs) ; form => (car (aref env #)) if mutable
685 `(car ,var)
686 var))
687 (if (memq form emvrs) ; if form is a mutable variable
688 `(car ,form) ; replace form => (car form)
689 form))))))
690
691(defun cconv-analyse-function (args body env parentform inclosure)
692 (dolist (arg args)
693 (cond
694 ((byte-compile-not-lexical-var-p arg)
695 (byte-compile-report-error
696 (format "Argument %S is not a lexical variable" arg)))
697 ((eq ?& (aref (symbol-name arg) 0)) nil) ;Ignore &rest, &optional, ...
698 (t (push (list arg inclosure parentform) env)))) ;Push vrs to vars.
699 (dolist (form body) ;Analyse body forms.
700 (cconv-analyse-form form env inclosure)))
701
702(defun cconv-analyse-form (form env inclosure)
703 "Find mutated variables and variables captured by closure. Analyse
704lambdas if they are suitable for lambda lifting.
705-- FORM is a piece of Elisp code after macroexpansion.
706-- ENV is a list of variables visible in current lexical environment.
707 Each entry has the form (VAR INCLOSURE BINDER PARENTFORM)
708 for let-bound vars and (VAR INCLOSURE PARENTFORM) for function arguments.
709-- INCLOSURE is the nesting level within lambdas."
710 (pcase form
711 ; let special form
712 (`(,(and (or `let* `let) letsym) ,binders . ,body-forms)
713
714 (let ((orig-env env)
715 (var nil)
716 (value nil))
717 (dolist (binder binders)
718 (if (not (consp binder))
719 (progn
720 (setq var binder) ; treat the form (let (x) ...) well
721 (setq value nil))
722 (setq var (car binder))
723 (setq value (cadr binder))
724
725 (cconv-analyse-form value (if (eq letsym 'let*) env orig-env)
726 inclosure))
727
728 (unless (byte-compile-not-lexical-var-p var)
729 (let ((varstruct (list var inclosure binder form)))
730 (push varstruct env) ; Push a new one.
731
732 (pcase value
733 (`(function (lambda . ,_))
734 ;; If var is a function push it to lambda list.
735 (push varstruct cconv-lambda-candidates)))))))
736
737 (dolist (form body-forms) ; Analyse body forms.
738 (cconv-analyse-form form env inclosure)))
739
740 ; defun special form
741 (`(,(or `defun `defmacro) ,func ,vrs . ,body-forms)
742 (when env
743 (byte-compile-log-warning
744 (format "Function %S will ignore its context %S"
745 func (mapcar #'car env))
746 t :warning))
747 (cconv-analyse-function vrs body-forms nil form 0))
748
749 (`(function (lambda ,vrs . ,body-forms))
750 (cconv-analyse-function vrs body-forms env form (1+ inclosure)))
751
752 (`(setq . ,forms)
753 ;; If a local variable (member of env) is modified by setq then
754 ;; it is a mutated variable.
755 (while forms
756 (let ((v (assq (car forms) env))) ; v = non nil if visible
757 (when v
758 (push v cconv-mutated)
759 ;; Delete from candidate list for lambda lifting.
760 (setq cconv-lambda-candidates (delq v cconv-lambda-candidates))
761 (unless (eq inclosure (cadr v)) ;Bound in a different closure level.
762 (push v cconv-captured))))
763 (cconv-analyse-form (cadr forms) env inclosure)
764 (setq forms (cddr forms))))
765
766 (`((lambda . ,_) . ,_) ; first element is lambda expression
767 (dolist (exp `((function ,(car form)) . ,(cdr form)))
768 (cconv-analyse-form exp env inclosure)))
769
770 (`(cond . ,cond-forms) ; cond special form
771 (dolist (forms cond-forms)
772 (dolist (form forms)
773 (cconv-analyse-form form env inclosure))))
774
775 (`(quote . ,_) nil) ; quote form
776 (`(function . ,_) nil) ; same as quote
777
778 (`(condition-case ,var ,protected-form . ,handlers)
779 ;; FIXME: The bytecode for condition-case forces us to wrap the
780 ;; form and handlers in closures (for handlers, it's probably
781 ;; unavoidable, but not for the protected form).
782 (setq inclosure (1+ inclosure))
783 (cconv-analyse-form protected-form env inclosure)
784 (push (list var inclosure form) env)
785 (dolist (handler handlers)
786 (dolist (form (cdr handler))
787 (cconv-analyse-form form env inclosure))))
788
789 ;; FIXME: The bytecode for catch forces us to wrap the body.
790 (`(,(or `catch `unwind-protect) ,form . ,body)
791 (cconv-analyse-form form env inclosure)
792 (setq inclosure (1+ inclosure))
793 (dolist (form body)
794 (cconv-analyse-form form env inclosure)))
795
796 ;; FIXME: The bytecode for save-window-excursion and the lack of
797 ;; bytecode for track-mouse forces us to wrap the body.
798 (`(,(or `save-window-excursion `track-mouse) . ,body)
799 (setq inclosure (1+ inclosure))
800 (dolist (form body)
801 (cconv-analyse-form form env inclosure)))
802
803 (`(,(or `defconst `defvar) ,var ,value . ,_)
804 (push var byte-compile-bound-variables)
805 (cconv-analyse-form value env inclosure))
806
807 (`(,(or `funcall `apply) ,fun . ,args)
808 ;; Here we ignore fun because funcall and apply are the only two
809 ;; functions where we can pass a candidate for lambda lifting as
810 ;; argument. So, if we see fun elsewhere, we'll delete it from
811 ;; lambda candidate list.
812 (if (symbolp fun)
813 (let ((lv (assq fun cconv-lambda-candidates)))
814 (when lv
815 (unless (eq (cadr lv) inclosure)
816 (push lv cconv-captured)
817 ;; If this funcall and the definition of fun are in
818 ;; different closures - we delete fun from candidate
819 ;; list, because it is too complicated to manage free
820 ;; variables in this case.
821 (setq cconv-lambda-candidates
822 (delq lv cconv-lambda-candidates)))))
823 (cconv-analyse-form fun env inclosure))
824 (dolist (form args)
825 (cconv-analyse-form form env inclosure)))
826
827 (`(,_ . ,body-forms) ; First element is a function or whatever.
828 (dolist (form body-forms)
829 (cconv-analyse-form form env inclosure)))
830
831 ((pred symbolp)
832 (let ((dv (assq form env))) ; dv = declared and visible
833 (when dv
834 (unless (eq inclosure (cadr dv)) ; capturing condition
835 (push dv cconv-captured))
836 ;; Delete lambda if it is found here, since it escapes.
837 (setq cconv-lambda-candidates
838 (delq dv cconv-lambda-candidates)))))))
839
840(provide 'cconv)
841;;; cconv.el ends here