*** empty log message ***
[bpt/emacs.git] / src / coding.c
... / ...
CommitLineData
1/* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995,97,1998,2002,2003 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4 Copyright (C) 2001,2002,2003 Free Software Foundation, Inc.
5
6This file is part of GNU Emacs.
7
8GNU Emacs is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU Emacs; see the file COPYING. If not, write to
20the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
22
23/*** TABLE OF CONTENTS ***
24
25 0. General comments
26 1. Preamble
27 2. Emacs' internal format (emacs-mule) handlers
28 3. ISO2022 handlers
29 4. Shift-JIS and BIG5 handlers
30 5. CCL handlers
31 6. End-of-line handlers
32 7. C library functions
33 8. Emacs Lisp library functions
34 9. Post-amble
35
36*/
37
38/*** 0. General comments ***/
39
40
41/*** GENERAL NOTE on CODING SYSTEMS ***
42
43 A coding system is an encoding mechanism for one or more character
44 sets. Here's a list of coding systems which Emacs can handle. When
45 we say "decode", it means converting some other coding system to
46 Emacs' internal format (emacs-mule), and when we say "encode",
47 it means converting the coding system emacs-mule to some other
48 coding system.
49
50 0. Emacs' internal format (emacs-mule)
51
52 Emacs itself holds a multi-lingual character in buffers and strings
53 in a special format. Details are described in section 2.
54
55 1. ISO2022
56
57 The most famous coding system for multiple character sets. X's
58 Compound Text, various EUCs (Extended Unix Code), and coding
59 systems used in Internet communication such as ISO-2022-JP are
60 all variants of ISO2022. Details are described in section 3.
61
62 2. SJIS (or Shift-JIS or MS-Kanji-Code)
63
64 A coding system to encode character sets: ASCII, JISX0201, and
65 JISX0208. Widely used for PC's in Japan. Details are described in
66 section 4.
67
68 3. BIG5
69
70 A coding system to encode the character sets ASCII and Big5. Widely
71 used for Chinese (mainly in Taiwan and Hong Kong). Details are
72 described in section 4. In this file, when we write "BIG5"
73 (all uppercase), we mean the coding system, and when we write
74 "Big5" (capitalized), we mean the character set.
75
76 4. Raw text
77
78 A coding system for text containing random 8-bit code. Emacs does
79 no code conversion on such text except for end-of-line format.
80
81 5. Other
82
83 If a user wants to read/write text encoded in a coding system not
84 listed above, he can supply a decoder and an encoder for it as CCL
85 (Code Conversion Language) programs. Emacs executes the CCL program
86 while reading/writing.
87
88 Emacs represents a coding system by a Lisp symbol that has a property
89 `coding-system'. But, before actually using the coding system, the
90 information about it is set in a structure of type `struct
91 coding_system' for rapid processing. See section 6 for more details.
92
93*/
94
95/*** GENERAL NOTES on END-OF-LINE FORMAT ***
96
97 How end-of-line of text is encoded depends on the operating system.
98 For instance, Unix's format is just one byte of `line-feed' code,
99 whereas DOS's format is two-byte sequence of `carriage-return' and
100 `line-feed' codes. MacOS's format is usually one byte of
101 `carriage-return'.
102
103 Since text character encoding and end-of-line encoding are
104 independent, any coding system described above can have any
105 end-of-line format. So Emacs has information about end-of-line
106 format in each coding-system. See section 6 for more details.
107
108*/
109
110/*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
111
112 These functions check if a text between SRC and SRC_END is encoded
113 in the coding system category XXX. Each returns an integer value in
114 which appropriate flag bits for the category XXX are set. The flag
115 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
116 template for these functions. If MULTIBYTEP is nonzero, 8-bit codes
117 of the range 0x80..0x9F are in multibyte form. */
118#if 0
119int
120detect_coding_emacs_mule (src, src_end, multibytep)
121 unsigned char *src, *src_end;
122 int multibytep;
123{
124 ...
125}
126#endif
127
128/*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
129
130 These functions decode SRC_BYTES length of unibyte text at SOURCE
131 encoded in CODING to Emacs' internal format. The resulting
132 multibyte text goes to a place pointed to by DESTINATION, the length
133 of which should not exceed DST_BYTES.
134
135 These functions set the information about original and decoded texts
136 in the members `produced', `produced_char', `consumed', and
137 `consumed_char' of the structure *CODING. They also set the member
138 `result' to one of CODING_FINISH_XXX indicating how the decoding
139 finished.
140
141 DST_BYTES zero means that the source area and destination area are
142 overlapped, which means that we can produce a decoded text until it
143 reaches the head of the not-yet-decoded source text.
144
145 Below is a template for these functions. */
146#if 0
147static void
148decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
149 struct coding_system *coding;
150 const unsigned char *source;
151 unsigned char *destination;
152 int src_bytes, dst_bytes;
153{
154 ...
155}
156#endif
157
158/*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
159
160 These functions encode SRC_BYTES length text at SOURCE from Emacs'
161 internal multibyte format to CODING. The resulting unibyte text
162 goes to a place pointed to by DESTINATION, the length of which
163 should not exceed DST_BYTES.
164
165 These functions set the information about original and encoded texts
166 in the members `produced', `produced_char', `consumed', and
167 `consumed_char' of the structure *CODING. They also set the member
168 `result' to one of CODING_FINISH_XXX indicating how the encoding
169 finished.
170
171 DST_BYTES zero means that the source area and destination area are
172 overlapped, which means that we can produce encoded text until it
173 reaches at the head of the not-yet-encoded source text.
174
175 Below is a template for these functions. */
176#if 0
177static void
178encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
179 struct coding_system *coding;
180 unsigned char *source, *destination;
181 int src_bytes, dst_bytes;
182{
183 ...
184}
185#endif
186
187/*** COMMONLY USED MACROS ***/
188
189/* The following two macros ONE_MORE_BYTE and TWO_MORE_BYTES safely
190 get one, two, and three bytes from the source text respectively.
191 If there are not enough bytes in the source, they jump to
192 `label_end_of_loop'. The caller should set variables `coding',
193 `src' and `src_end' to appropriate pointer in advance. These
194 macros are called from decoding routines `decode_coding_XXX', thus
195 it is assumed that the source text is unibyte. */
196
197#define ONE_MORE_BYTE(c1) \
198 do { \
199 if (src >= src_end) \
200 { \
201 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
202 goto label_end_of_loop; \
203 } \
204 c1 = *src++; \
205 } while (0)
206
207#define TWO_MORE_BYTES(c1, c2) \
208 do { \
209 if (src + 1 >= src_end) \
210 { \
211 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
212 goto label_end_of_loop; \
213 } \
214 c1 = *src++; \
215 c2 = *src++; \
216 } while (0)
217
218
219/* Like ONE_MORE_BYTE, but 8-bit bytes of data at SRC are in multibyte
220 form if MULTIBYTEP is nonzero. */
221
222#define ONE_MORE_BYTE_CHECK_MULTIBYTE(c1, multibytep) \
223 do { \
224 if (src >= src_end) \
225 { \
226 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
227 goto label_end_of_loop; \
228 } \
229 c1 = *src++; \
230 if (multibytep && c1 == LEADING_CODE_8_BIT_CONTROL) \
231 c1 = *src++ - 0x20; \
232 } while (0)
233
234/* Set C to the next character at the source text pointed by `src'.
235 If there are not enough characters in the source, jump to
236 `label_end_of_loop'. The caller should set variables `coding'
237 `src', `src_end', and `translation_table' to appropriate pointers
238 in advance. This macro is used in encoding routines
239 `encode_coding_XXX', thus it assumes that the source text is in
240 multibyte form except for 8-bit characters. 8-bit characters are
241 in multibyte form if coding->src_multibyte is nonzero, else they
242 are represented by a single byte. */
243
244#define ONE_MORE_CHAR(c) \
245 do { \
246 int len = src_end - src; \
247 int bytes; \
248 if (len <= 0) \
249 { \
250 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
251 goto label_end_of_loop; \
252 } \
253 if (coding->src_multibyte \
254 || UNIBYTE_STR_AS_MULTIBYTE_P (src, len, bytes)) \
255 c = STRING_CHAR_AND_LENGTH (src, len, bytes); \
256 else \
257 c = *src, bytes = 1; \
258 if (!NILP (translation_table)) \
259 c = translate_char (translation_table, c, -1, 0, 0); \
260 src += bytes; \
261 } while (0)
262
263
264/* Produce a multibyte form of character C to `dst'. Jump to
265 `label_end_of_loop' if there's not enough space at `dst'.
266
267 If we are now in the middle of a composition sequence, the decoded
268 character may be ALTCHAR (for the current composition). In that
269 case, the character goes to coding->cmp_data->data instead of
270 `dst'.
271
272 This macro is used in decoding routines. */
273
274#define EMIT_CHAR(c) \
275 do { \
276 if (! COMPOSING_P (coding) \
277 || coding->composing == COMPOSITION_RELATIVE \
278 || coding->composing == COMPOSITION_WITH_RULE) \
279 { \
280 int bytes = CHAR_BYTES (c); \
281 if ((dst + bytes) > (dst_bytes ? dst_end : src)) \
282 { \
283 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
284 goto label_end_of_loop; \
285 } \
286 dst += CHAR_STRING (c, dst); \
287 coding->produced_char++; \
288 } \
289 \
290 if (COMPOSING_P (coding) \
291 && coding->composing != COMPOSITION_RELATIVE) \
292 { \
293 CODING_ADD_COMPOSITION_COMPONENT (coding, c); \
294 coding->composition_rule_follows \
295 = coding->composing != COMPOSITION_WITH_ALTCHARS; \
296 } \
297 } while (0)
298
299
300#define EMIT_ONE_BYTE(c) \
301 do { \
302 if (dst >= (dst_bytes ? dst_end : src)) \
303 { \
304 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
305 goto label_end_of_loop; \
306 } \
307 *dst++ = c; \
308 } while (0)
309
310#define EMIT_TWO_BYTES(c1, c2) \
311 do { \
312 if (dst + 2 > (dst_bytes ? dst_end : src)) \
313 { \
314 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
315 goto label_end_of_loop; \
316 } \
317 *dst++ = c1, *dst++ = c2; \
318 } while (0)
319
320#define EMIT_BYTES(from, to) \
321 do { \
322 if (dst + (to - from) > (dst_bytes ? dst_end : src)) \
323 { \
324 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
325 goto label_end_of_loop; \
326 } \
327 while (from < to) \
328 *dst++ = *from++; \
329 } while (0)
330
331\f
332/*** 1. Preamble ***/
333
334#ifdef emacs
335#include <config.h>
336#endif
337
338#include <stdio.h>
339
340#ifdef emacs
341
342#include "lisp.h"
343#include "buffer.h"
344#include "charset.h"
345#include "composite.h"
346#include "ccl.h"
347#include "coding.h"
348#include "window.h"
349#include "intervals.h"
350
351#else /* not emacs */
352
353#include "mulelib.h"
354
355#endif /* not emacs */
356
357Lisp_Object Qcoding_system, Qeol_type;
358Lisp_Object Qbuffer_file_coding_system;
359Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
360Lisp_Object Qno_conversion, Qundecided;
361Lisp_Object Qcoding_system_history;
362Lisp_Object Qsafe_chars;
363Lisp_Object Qvalid_codes;
364
365extern Lisp_Object Qinsert_file_contents, Qwrite_region;
366Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
367Lisp_Object Qstart_process, Qopen_network_stream;
368Lisp_Object Qtarget_idx;
369
370/* If a symbol has this property, evaluate the value to define the
371 symbol as a coding system. */
372Lisp_Object Qcoding_system_define_form;
373
374Lisp_Object Vselect_safe_coding_system_function;
375
376int coding_system_require_warning;
377
378/* Mnemonic string for each format of end-of-line. */
379Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
380/* Mnemonic string to indicate format of end-of-line is not yet
381 decided. */
382Lisp_Object eol_mnemonic_undecided;
383
384/* Format of end-of-line decided by system. This is CODING_EOL_LF on
385 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
386int system_eol_type;
387
388#ifdef emacs
389
390/* Information about which coding system is safe for which chars.
391 The value has the form (GENERIC-LIST . NON-GENERIC-ALIST).
392
393 GENERIC-LIST is a list of generic coding systems which can encode
394 any characters.
395
396 NON-GENERIC-ALIST is an alist of non generic coding systems vs the
397 corresponding char table that contains safe chars. */
398Lisp_Object Vcoding_system_safe_chars;
399
400Lisp_Object Vcoding_system_list, Vcoding_system_alist;
401
402Lisp_Object Qcoding_system_p, Qcoding_system_error;
403
404/* Coding system emacs-mule and raw-text are for converting only
405 end-of-line format. */
406Lisp_Object Qemacs_mule, Qraw_text;
407
408Lisp_Object Qutf_8;
409
410/* Coding-systems are handed between Emacs Lisp programs and C internal
411 routines by the following three variables. */
412/* Coding-system for reading files and receiving data from process. */
413Lisp_Object Vcoding_system_for_read;
414/* Coding-system for writing files and sending data to process. */
415Lisp_Object Vcoding_system_for_write;
416/* Coding-system actually used in the latest I/O. */
417Lisp_Object Vlast_coding_system_used;
418
419/* A vector of length 256 which contains information about special
420 Latin codes (especially for dealing with Microsoft codes). */
421Lisp_Object Vlatin_extra_code_table;
422
423/* Flag to inhibit code conversion of end-of-line format. */
424int inhibit_eol_conversion;
425
426/* Flag to inhibit ISO2022 escape sequence detection. */
427int inhibit_iso_escape_detection;
428
429/* Flag to make buffer-file-coding-system inherit from process-coding. */
430int inherit_process_coding_system;
431
432/* Coding system to be used to encode text for terminal display. */
433struct coding_system terminal_coding;
434
435/* Coding system to be used to encode text for terminal display when
436 terminal coding system is nil. */
437struct coding_system safe_terminal_coding;
438
439/* Coding system of what is sent from terminal keyboard. */
440struct coding_system keyboard_coding;
441
442/* Default coding system to be used to write a file. */
443struct coding_system default_buffer_file_coding;
444
445Lisp_Object Vfile_coding_system_alist;
446Lisp_Object Vprocess_coding_system_alist;
447Lisp_Object Vnetwork_coding_system_alist;
448
449Lisp_Object Vlocale_coding_system;
450
451#endif /* emacs */
452
453Lisp_Object Qcoding_category, Qcoding_category_index;
454
455/* List of symbols `coding-category-xxx' ordered by priority. */
456Lisp_Object Vcoding_category_list;
457
458/* Table of coding categories (Lisp symbols). */
459Lisp_Object Vcoding_category_table;
460
461/* Table of names of symbol for each coding-category. */
462char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
463 "coding-category-emacs-mule",
464 "coding-category-sjis",
465 "coding-category-iso-7",
466 "coding-category-iso-7-tight",
467 "coding-category-iso-8-1",
468 "coding-category-iso-8-2",
469 "coding-category-iso-7-else",
470 "coding-category-iso-8-else",
471 "coding-category-ccl",
472 "coding-category-big5",
473 "coding-category-utf-8",
474 "coding-category-utf-16-be",
475 "coding-category-utf-16-le",
476 "coding-category-raw-text",
477 "coding-category-binary"
478};
479
480/* Table of pointers to coding systems corresponding to each coding
481 categories. */
482struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
483
484/* Table of coding category masks. Nth element is a mask for a coding
485 category of which priority is Nth. */
486static
487int coding_priorities[CODING_CATEGORY_IDX_MAX];
488
489/* Flag to tell if we look up translation table on character code
490 conversion. */
491Lisp_Object Venable_character_translation;
492/* Standard translation table to look up on decoding (reading). */
493Lisp_Object Vstandard_translation_table_for_decode;
494/* Standard translation table to look up on encoding (writing). */
495Lisp_Object Vstandard_translation_table_for_encode;
496
497Lisp_Object Qtranslation_table;
498Lisp_Object Qtranslation_table_id;
499Lisp_Object Qtranslation_table_for_decode;
500Lisp_Object Qtranslation_table_for_encode;
501
502/* Alist of charsets vs revision number. */
503Lisp_Object Vcharset_revision_alist;
504
505/* Default coding systems used for process I/O. */
506Lisp_Object Vdefault_process_coding_system;
507
508/* Char table for translating Quail and self-inserting input. */
509Lisp_Object Vtranslation_table_for_input;
510
511/* Global flag to tell that we can't call post-read-conversion and
512 pre-write-conversion functions. Usually the value is zero, but it
513 is set to 1 temporarily while such functions are running. This is
514 to avoid infinite recursive call. */
515static int inhibit_pre_post_conversion;
516
517Lisp_Object Qchar_coding_system;
518
519/* Return `safe-chars' property of CODING_SYSTEM (symbol). Don't check
520 its validity. */
521
522Lisp_Object
523coding_safe_chars (coding_system)
524 Lisp_Object coding_system;
525{
526 Lisp_Object coding_spec, plist, safe_chars;
527
528 coding_spec = Fget (coding_system, Qcoding_system);
529 plist = XVECTOR (coding_spec)->contents[3];
530 safe_chars = Fplist_get (XVECTOR (coding_spec)->contents[3], Qsafe_chars);
531 return (CHAR_TABLE_P (safe_chars) ? safe_chars : Qt);
532}
533
534#define CODING_SAFE_CHAR_P(safe_chars, c) \
535 (EQ (safe_chars, Qt) || !NILP (CHAR_TABLE_REF (safe_chars, c)))
536
537\f
538/*** 2. Emacs internal format (emacs-mule) handlers ***/
539
540/* Emacs' internal format for representation of multiple character
541 sets is a kind of multi-byte encoding, i.e. characters are
542 represented by variable-length sequences of one-byte codes.
543
544 ASCII characters and control characters (e.g. `tab', `newline') are
545 represented by one-byte sequences which are their ASCII codes, in
546 the range 0x00 through 0x7F.
547
548 8-bit characters of the range 0x80..0x9F are represented by
549 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
550 code + 0x20).
551
552 8-bit characters of the range 0xA0..0xFF are represented by
553 one-byte sequences which are their 8-bit code.
554
555 The other characters are represented by a sequence of `base
556 leading-code', optional `extended leading-code', and one or two
557 `position-code's. The length of the sequence is determined by the
558 base leading-code. Leading-code takes the range 0x81 through 0x9D,
559 whereas extended leading-code and position-code take the range 0xA0
560 through 0xFF. See `charset.h' for more details about leading-code
561 and position-code.
562
563 --- CODE RANGE of Emacs' internal format ---
564 character set range
565 ------------- -----
566 ascii 0x00..0x7F
567 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
568 eight-bit-graphic 0xA0..0xBF
569 ELSE 0x81..0x9D + [0xA0..0xFF]+
570 ---------------------------------------------
571
572 As this is the internal character representation, the format is
573 usually not used externally (i.e. in a file or in a data sent to a
574 process). But, it is possible to have a text externally in this
575 format (i.e. by encoding by the coding system `emacs-mule').
576
577 In that case, a sequence of one-byte codes has a slightly different
578 form.
579
580 Firstly, all characters in eight-bit-control are represented by
581 one-byte sequences which are their 8-bit code.
582
583 Next, character composition data are represented by the byte
584 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
585 where,
586 METHOD is 0xF0 plus one of composition method (enum
587 composition_method),
588
589 BYTES is 0xA0 plus the byte length of these composition data,
590
591 CHARS is 0xA0 plus the number of characters composed by these
592 data,
593
594 COMPONENTs are characters of multibyte form or composition
595 rules encoded by two-byte of ASCII codes.
596
597 In addition, for backward compatibility, the following formats are
598 also recognized as composition data on decoding.
599
600 0x80 MSEQ ...
601 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
602
603 Here,
604 MSEQ is a multibyte form but in these special format:
605 ASCII: 0xA0 ASCII_CODE+0x80,
606 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
607 RULE is a one byte code of the range 0xA0..0xF0 that
608 represents a composition rule.
609 */
610
611enum emacs_code_class_type emacs_code_class[256];
612
613/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
614 Check if a text is encoded in Emacs' internal format. If it is,
615 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
616
617static int
618detect_coding_emacs_mule (src, src_end, multibytep)
619 unsigned char *src, *src_end;
620 int multibytep;
621{
622 unsigned char c;
623 int composing = 0;
624 /* Dummy for ONE_MORE_BYTE. */
625 struct coding_system dummy_coding;
626 struct coding_system *coding = &dummy_coding;
627
628 while (1)
629 {
630 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
631
632 if (composing)
633 {
634 if (c < 0xA0)
635 composing = 0;
636 else if (c == 0xA0)
637 {
638 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
639 c &= 0x7F;
640 }
641 else
642 c -= 0x20;
643 }
644
645 if (c < 0x20)
646 {
647 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
648 return 0;
649 }
650 else if (c >= 0x80 && c < 0xA0)
651 {
652 if (c == 0x80)
653 /* Old leading code for a composite character. */
654 composing = 1;
655 else
656 {
657 unsigned char *src_base = src - 1;
658 int bytes;
659
660 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src_base, src_end - src_base,
661 bytes))
662 return 0;
663 src = src_base + bytes;
664 }
665 }
666 }
667 label_end_of_loop:
668 return CODING_CATEGORY_MASK_EMACS_MULE;
669}
670
671
672/* Record the starting position START and METHOD of one composition. */
673
674#define CODING_ADD_COMPOSITION_START(coding, start, method) \
675 do { \
676 struct composition_data *cmp_data = coding->cmp_data; \
677 int *data = cmp_data->data + cmp_data->used; \
678 coding->cmp_data_start = cmp_data->used; \
679 data[0] = -1; \
680 data[1] = cmp_data->char_offset + start; \
681 data[3] = (int) method; \
682 cmp_data->used += 4; \
683 } while (0)
684
685/* Record the ending position END of the current composition. */
686
687#define CODING_ADD_COMPOSITION_END(coding, end) \
688 do { \
689 struct composition_data *cmp_data = coding->cmp_data; \
690 int *data = cmp_data->data + coding->cmp_data_start; \
691 data[0] = cmp_data->used - coding->cmp_data_start; \
692 data[2] = cmp_data->char_offset + end; \
693 } while (0)
694
695/* Record one COMPONENT (alternate character or composition rule). */
696
697#define CODING_ADD_COMPOSITION_COMPONENT(coding, component) \
698 do { \
699 coding->cmp_data->data[coding->cmp_data->used++] = component; \
700 if (coding->cmp_data->used - coding->cmp_data_start \
701 == COMPOSITION_DATA_MAX_BUNCH_LENGTH) \
702 { \
703 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
704 coding->composing = COMPOSITION_NO; \
705 } \
706 } while (0)
707
708
709/* Get one byte from a data pointed by SRC and increment SRC. If SRC
710 is not less than SRC_END, return -1 without incrementing Src. */
711
712#define SAFE_ONE_MORE_BYTE() (src >= src_end ? -1 : *src++)
713
714
715/* Decode a character represented as a component of composition
716 sequence of Emacs 20 style at SRC. Set C to that character, store
717 its multibyte form sequence at P, and set P to the end of that
718 sequence. If no valid character is found, set C to -1. */
719
720#define DECODE_EMACS_MULE_COMPOSITION_CHAR(c, p) \
721 do { \
722 int bytes; \
723 \
724 c = SAFE_ONE_MORE_BYTE (); \
725 if (c < 0) \
726 break; \
727 if (CHAR_HEAD_P (c)) \
728 c = -1; \
729 else if (c == 0xA0) \
730 { \
731 c = SAFE_ONE_MORE_BYTE (); \
732 if (c < 0xA0) \
733 c = -1; \
734 else \
735 { \
736 c -= 0xA0; \
737 *p++ = c; \
738 } \
739 } \
740 else if (BASE_LEADING_CODE_P (c - 0x20)) \
741 { \
742 unsigned char *p0 = p; \
743 \
744 c -= 0x20; \
745 *p++ = c; \
746 bytes = BYTES_BY_CHAR_HEAD (c); \
747 while (--bytes) \
748 { \
749 c = SAFE_ONE_MORE_BYTE (); \
750 if (c < 0) \
751 break; \
752 *p++ = c; \
753 } \
754 if (UNIBYTE_STR_AS_MULTIBYTE_P (p0, p - p0, bytes) \
755 || (coding->flags /* We are recovering a file. */ \
756 && p0[0] == LEADING_CODE_8_BIT_CONTROL \
757 && ! CHAR_HEAD_P (p0[1]))) \
758 c = STRING_CHAR (p0, bytes); \
759 else \
760 c = -1; \
761 } \
762 else \
763 c = -1; \
764 } while (0)
765
766
767/* Decode a composition rule represented as a component of composition
768 sequence of Emacs 20 style at SRC. Set C to the rule. If not
769 valid rule is found, set C to -1. */
770
771#define DECODE_EMACS_MULE_COMPOSITION_RULE(c) \
772 do { \
773 c = SAFE_ONE_MORE_BYTE (); \
774 c -= 0xA0; \
775 if (c < 0 || c >= 81) \
776 c = -1; \
777 else \
778 { \
779 gref = c / 9, nref = c % 9; \
780 c = COMPOSITION_ENCODE_RULE (gref, nref); \
781 } \
782 } while (0)
783
784
785/* Decode composition sequence encoded by `emacs-mule' at the source
786 pointed by SRC. SRC_END is the end of source. Store information
787 of the composition in CODING->cmp_data.
788
789 For backward compatibility, decode also a composition sequence of
790 Emacs 20 style. In that case, the composition sequence contains
791 characters that should be extracted into a buffer or string. Store
792 those characters at *DESTINATION in multibyte form.
793
794 If we encounter an invalid byte sequence, return 0.
795 If we encounter an insufficient source or destination, or
796 insufficient space in CODING->cmp_data, return 1.
797 Otherwise, return consumed bytes in the source.
798
799*/
800static INLINE int
801decode_composition_emacs_mule (coding, src, src_end,
802 destination, dst_end, dst_bytes)
803 struct coding_system *coding;
804 const unsigned char *src, *src_end;
805 unsigned char **destination, *dst_end;
806 int dst_bytes;
807{
808 unsigned char *dst = *destination;
809 int method, data_len, nchars;
810 const unsigned char *src_base = src++;
811 /* Store components of composition. */
812 int component[COMPOSITION_DATA_MAX_BUNCH_LENGTH];
813 int ncomponent;
814 /* Store multibyte form of characters to be composed. This is for
815 Emacs 20 style composition sequence. */
816 unsigned char buf[MAX_COMPOSITION_COMPONENTS * MAX_MULTIBYTE_LENGTH];
817 unsigned char *bufp = buf;
818 int c, i, gref, nref;
819
820 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
821 >= COMPOSITION_DATA_SIZE)
822 {
823 coding->result = CODING_FINISH_INSUFFICIENT_CMP;
824 return -1;
825 }
826
827 ONE_MORE_BYTE (c);
828 if (c - 0xF0 >= COMPOSITION_RELATIVE
829 && c - 0xF0 <= COMPOSITION_WITH_RULE_ALTCHARS)
830 {
831 int with_rule;
832
833 method = c - 0xF0;
834 with_rule = (method == COMPOSITION_WITH_RULE
835 || method == COMPOSITION_WITH_RULE_ALTCHARS);
836 ONE_MORE_BYTE (c);
837 data_len = c - 0xA0;
838 if (data_len < 4
839 || src_base + data_len > src_end)
840 return 0;
841 ONE_MORE_BYTE (c);
842 nchars = c - 0xA0;
843 if (c < 1)
844 return 0;
845 for (ncomponent = 0; src < src_base + data_len; ncomponent++)
846 {
847 /* If it is longer than this, it can't be valid. */
848 if (ncomponent >= COMPOSITION_DATA_MAX_BUNCH_LENGTH)
849 return 0;
850
851 if (ncomponent % 2 && with_rule)
852 {
853 ONE_MORE_BYTE (gref);
854 gref -= 32;
855 ONE_MORE_BYTE (nref);
856 nref -= 32;
857 c = COMPOSITION_ENCODE_RULE (gref, nref);
858 }
859 else
860 {
861 int bytes;
862 if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes)
863 || (coding->flags /* We are recovering a file. */
864 && src[0] == LEADING_CODE_8_BIT_CONTROL
865 && ! CHAR_HEAD_P (src[1])))
866 c = STRING_CHAR (src, bytes);
867 else
868 c = *src, bytes = 1;
869 src += bytes;
870 }
871 component[ncomponent] = c;
872 }
873 }
874 else
875 {
876 /* This may be an old Emacs 20 style format. See the comment at
877 the section 2 of this file. */
878 while (src < src_end && !CHAR_HEAD_P (*src)) src++;
879 if (src == src_end
880 && !(coding->mode & CODING_MODE_LAST_BLOCK))
881 goto label_end_of_loop;
882
883 src_end = src;
884 src = src_base + 1;
885 if (c < 0xC0)
886 {
887 method = COMPOSITION_RELATIVE;
888 for (ncomponent = 0; ncomponent < MAX_COMPOSITION_COMPONENTS;)
889 {
890 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
891 if (c < 0)
892 break;
893 component[ncomponent++] = c;
894 }
895 if (ncomponent < 2)
896 return 0;
897 nchars = ncomponent;
898 }
899 else if (c == 0xFF)
900 {
901 method = COMPOSITION_WITH_RULE;
902 src++;
903 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
904 if (c < 0)
905 return 0;
906 component[0] = c;
907 for (ncomponent = 1;
908 ncomponent < MAX_COMPOSITION_COMPONENTS * 2 - 1;)
909 {
910 DECODE_EMACS_MULE_COMPOSITION_RULE (c);
911 if (c < 0)
912 break;
913 component[ncomponent++] = c;
914 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
915 if (c < 0)
916 break;
917 component[ncomponent++] = c;
918 }
919 if (ncomponent < 3)
920 return 0;
921 nchars = (ncomponent + 1) / 2;
922 }
923 else
924 return 0;
925 }
926
927 if (buf == bufp || dst + (bufp - buf) <= (dst_bytes ? dst_end : src))
928 {
929 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, method);
930 for (i = 0; i < ncomponent; i++)
931 CODING_ADD_COMPOSITION_COMPONENT (coding, component[i]);
932 CODING_ADD_COMPOSITION_END (coding, coding->produced_char + nchars);
933 if (buf < bufp)
934 {
935 unsigned char *p = buf;
936 EMIT_BYTES (p, bufp);
937 *destination += bufp - buf;
938 coding->produced_char += nchars;
939 }
940 return (src - src_base);
941 }
942 label_end_of_loop:
943 return -1;
944}
945
946/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
947
948static void
949decode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
950 struct coding_system *coding;
951 const unsigned char *source;
952 unsigned char *destination;
953 int src_bytes, dst_bytes;
954{
955 const unsigned char *src = source;
956 const unsigned char *src_end = source + src_bytes;
957 unsigned char *dst = destination;
958 unsigned char *dst_end = destination + dst_bytes;
959 /* SRC_BASE remembers the start position in source in each loop.
960 The loop will be exited when there's not enough source code, or
961 when there's not enough destination area to produce a
962 character. */
963 const unsigned char *src_base;
964
965 coding->produced_char = 0;
966 while ((src_base = src) < src_end)
967 {
968 unsigned char tmp[MAX_MULTIBYTE_LENGTH];
969 const unsigned char *p;
970 int bytes;
971
972 if (*src == '\r')
973 {
974 int c = *src++;
975
976 if (coding->eol_type == CODING_EOL_CR)
977 c = '\n';
978 else if (coding->eol_type == CODING_EOL_CRLF)
979 {
980 ONE_MORE_BYTE (c);
981 if (c != '\n')
982 {
983 src--;
984 c = '\r';
985 }
986 }
987 *dst++ = c;
988 coding->produced_char++;
989 continue;
990 }
991 else if (*src == '\n')
992 {
993 if ((coding->eol_type == CODING_EOL_CR
994 || coding->eol_type == CODING_EOL_CRLF)
995 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
996 {
997 coding->result = CODING_FINISH_INCONSISTENT_EOL;
998 goto label_end_of_loop;
999 }
1000 *dst++ = *src++;
1001 coding->produced_char++;
1002 continue;
1003 }
1004 else if (*src == 0x80 && coding->cmp_data)
1005 {
1006 /* Start of composition data. */
1007 int consumed = decode_composition_emacs_mule (coding, src, src_end,
1008 &dst, dst_end,
1009 dst_bytes);
1010 if (consumed < 0)
1011 goto label_end_of_loop;
1012 else if (consumed > 0)
1013 {
1014 src += consumed;
1015 continue;
1016 }
1017 bytes = CHAR_STRING (*src, tmp);
1018 p = tmp;
1019 src++;
1020 }
1021 else if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes)
1022 || (coding->flags /* We are recovering a file. */
1023 && src[0] == LEADING_CODE_8_BIT_CONTROL
1024 && ! CHAR_HEAD_P (src[1])))
1025 {
1026 p = src;
1027 src += bytes;
1028 }
1029 else
1030 {
1031 int i, c;
1032
1033 bytes = BYTES_BY_CHAR_HEAD (*src);
1034 src++;
1035 for (i = 1; i < bytes; i++)
1036 {
1037 ONE_MORE_BYTE (c);
1038 if (CHAR_HEAD_P (c))
1039 break;
1040 }
1041 if (i < bytes)
1042 {
1043 bytes = CHAR_STRING (*src_base, tmp);
1044 p = tmp;
1045 src = src_base + 1;
1046 }
1047 else
1048 {
1049 p = src_base;
1050 }
1051 }
1052 if (dst + bytes >= (dst_bytes ? dst_end : src))
1053 {
1054 coding->result = CODING_FINISH_INSUFFICIENT_DST;
1055 break;
1056 }
1057 while (bytes--) *dst++ = *p++;
1058 coding->produced_char++;
1059 }
1060 label_end_of_loop:
1061 coding->consumed = coding->consumed_char = src_base - source;
1062 coding->produced = dst - destination;
1063}
1064
1065
1066/* Encode composition data stored at DATA into a special byte sequence
1067 starting by 0x80. Update CODING->cmp_data_start and maybe
1068 CODING->cmp_data for the next call. */
1069
1070#define ENCODE_COMPOSITION_EMACS_MULE(coding, data) \
1071 do { \
1072 unsigned char buf[1024], *p0 = buf, *p; \
1073 int len = data[0]; \
1074 int i; \
1075 \
1076 buf[0] = 0x80; \
1077 buf[1] = 0xF0 + data[3]; /* METHOD */ \
1078 buf[3] = 0xA0 + (data[2] - data[1]); /* COMPOSED-CHARS */ \
1079 p = buf + 4; \
1080 if (data[3] == COMPOSITION_WITH_RULE \
1081 || data[3] == COMPOSITION_WITH_RULE_ALTCHARS) \
1082 { \
1083 p += CHAR_STRING (data[4], p); \
1084 for (i = 5; i < len; i += 2) \
1085 { \
1086 int gref, nref; \
1087 COMPOSITION_DECODE_RULE (data[i], gref, nref); \
1088 *p++ = 0x20 + gref; \
1089 *p++ = 0x20 + nref; \
1090 p += CHAR_STRING (data[i + 1], p); \
1091 } \
1092 } \
1093 else \
1094 { \
1095 for (i = 4; i < len; i++) \
1096 p += CHAR_STRING (data[i], p); \
1097 } \
1098 buf[2] = 0xA0 + (p - buf); /* COMPONENTS-BYTES */ \
1099 \
1100 if (dst + (p - buf) + 4 > (dst_bytes ? dst_end : src)) \
1101 { \
1102 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
1103 goto label_end_of_loop; \
1104 } \
1105 while (p0 < p) \
1106 *dst++ = *p0++; \
1107 coding->cmp_data_start += data[0]; \
1108 if (coding->cmp_data_start == coding->cmp_data->used \
1109 && coding->cmp_data->next) \
1110 { \
1111 coding->cmp_data = coding->cmp_data->next; \
1112 coding->cmp_data_start = 0; \
1113 } \
1114 } while (0)
1115
1116
1117static void encode_eol P_ ((struct coding_system *, const unsigned char *,
1118 unsigned char *, int, int));
1119
1120static void
1121encode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
1122 struct coding_system *coding;
1123 const unsigned char *source;
1124 unsigned char *destination;
1125 int src_bytes, dst_bytes;
1126{
1127 const unsigned char *src = source;
1128 const unsigned char *src_end = source + src_bytes;
1129 unsigned char *dst = destination;
1130 unsigned char *dst_end = destination + dst_bytes;
1131 const unsigned char *src_base;
1132 int c;
1133 int char_offset;
1134 int *data;
1135
1136 Lisp_Object translation_table;
1137
1138 translation_table = Qnil;
1139
1140 /* Optimization for the case that there's no composition. */
1141 if (!coding->cmp_data || coding->cmp_data->used == 0)
1142 {
1143 encode_eol (coding, source, destination, src_bytes, dst_bytes);
1144 return;
1145 }
1146
1147 char_offset = coding->cmp_data->char_offset;
1148 data = coding->cmp_data->data + coding->cmp_data_start;
1149 while (1)
1150 {
1151 src_base = src;
1152
1153 /* If SRC starts a composition, encode the information about the
1154 composition in advance. */
1155 if (coding->cmp_data_start < coding->cmp_data->used
1156 && char_offset + coding->consumed_char == data[1])
1157 {
1158 ENCODE_COMPOSITION_EMACS_MULE (coding, data);
1159 char_offset = coding->cmp_data->char_offset;
1160 data = coding->cmp_data->data + coding->cmp_data_start;
1161 }
1162
1163 ONE_MORE_CHAR (c);
1164 if (c == '\n' && (coding->eol_type == CODING_EOL_CRLF
1165 || coding->eol_type == CODING_EOL_CR))
1166 {
1167 if (coding->eol_type == CODING_EOL_CRLF)
1168 EMIT_TWO_BYTES ('\r', c);
1169 else
1170 EMIT_ONE_BYTE ('\r');
1171 }
1172 else if (SINGLE_BYTE_CHAR_P (c))
1173 {
1174 if (coding->flags && ! ASCII_BYTE_P (c))
1175 {
1176 /* As we are auto saving, retain the multibyte form for
1177 8-bit chars. */
1178 unsigned char buf[MAX_MULTIBYTE_LENGTH];
1179 int bytes = CHAR_STRING (c, buf);
1180
1181 if (bytes == 1)
1182 EMIT_ONE_BYTE (buf[0]);
1183 else
1184 EMIT_TWO_BYTES (buf[0], buf[1]);
1185 }
1186 else
1187 EMIT_ONE_BYTE (c);
1188 }
1189 else
1190 EMIT_BYTES (src_base, src);
1191 coding->consumed_char++;
1192 }
1193 label_end_of_loop:
1194 coding->consumed = src_base - source;
1195 coding->produced = coding->produced_char = dst - destination;
1196 return;
1197}
1198
1199\f
1200/*** 3. ISO2022 handlers ***/
1201
1202/* The following note describes the coding system ISO2022 briefly.
1203 Since the intention of this note is to help understand the
1204 functions in this file, some parts are NOT ACCURATE or are OVERLY
1205 SIMPLIFIED. For thorough understanding, please refer to the
1206 original document of ISO2022. This is equivalent to the standard
1207 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
1208
1209 ISO2022 provides many mechanisms to encode several character sets
1210 in 7-bit and 8-bit environments. For 7-bit environments, all text
1211 is encoded using bytes less than 128. This may make the encoded
1212 text a little bit longer, but the text passes more easily through
1213 several types of gateway, some of which strip off the MSB (Most
1214 Significant Bit).
1215
1216 There are two kinds of character sets: control character sets and
1217 graphic character sets. The former contain control characters such
1218 as `newline' and `escape' to provide control functions (control
1219 functions are also provided by escape sequences). The latter
1220 contain graphic characters such as 'A' and '-'. Emacs recognizes
1221 two control character sets and many graphic character sets.
1222
1223 Graphic character sets are classified into one of the following
1224 four classes, according to the number of bytes (DIMENSION) and
1225 number of characters in one dimension (CHARS) of the set:
1226 - DIMENSION1_CHARS94
1227 - DIMENSION1_CHARS96
1228 - DIMENSION2_CHARS94
1229 - DIMENSION2_CHARS96
1230
1231 In addition, each character set is assigned an identification tag,
1232 unique for each set, called the "final character" (denoted as <F>
1233 hereafter). The <F> of each character set is decided by ECMA(*)
1234 when it is registered in ISO. The code range of <F> is 0x30..0x7F
1235 (0x30..0x3F are for private use only).
1236
1237 Note (*): ECMA = European Computer Manufacturers Association
1238
1239 Here are examples of graphic character sets [NAME(<F>)]:
1240 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
1241 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
1242 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
1243 o DIMENSION2_CHARS96 -- none for the moment
1244
1245 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
1246 C0 [0x00..0x1F] -- control character plane 0
1247 GL [0x20..0x7F] -- graphic character plane 0
1248 C1 [0x80..0x9F] -- control character plane 1
1249 GR [0xA0..0xFF] -- graphic character plane 1
1250
1251 A control character set is directly designated and invoked to C0 or
1252 C1 by an escape sequence. The most common case is that:
1253 - ISO646's control character set is designated/invoked to C0, and
1254 - ISO6429's control character set is designated/invoked to C1,
1255 and usually these designations/invocations are omitted in encoded
1256 text. In a 7-bit environment, only C0 can be used, and a control
1257 character for C1 is encoded by an appropriate escape sequence to
1258 fit into the environment. All control characters for C1 are
1259 defined to have corresponding escape sequences.
1260
1261 A graphic character set is at first designated to one of four
1262 graphic registers (G0 through G3), then these graphic registers are
1263 invoked to GL or GR. These designations and invocations can be
1264 done independently. The most common case is that G0 is invoked to
1265 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
1266 these invocations and designations are omitted in encoded text.
1267 In a 7-bit environment, only GL can be used.
1268
1269 When a graphic character set of CHARS94 is invoked to GL, codes
1270 0x20 and 0x7F of the GL area work as control characters SPACE and
1271 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
1272 be used.
1273
1274 There are two ways of invocation: locking-shift and single-shift.
1275 With locking-shift, the invocation lasts until the next different
1276 invocation, whereas with single-shift, the invocation affects the
1277 following character only and doesn't affect the locking-shift
1278 state. Invocations are done by the following control characters or
1279 escape sequences:
1280
1281 ----------------------------------------------------------------------
1282 abbrev function cntrl escape seq description
1283 ----------------------------------------------------------------------
1284 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
1285 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
1286 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
1287 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
1288 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
1289 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
1290 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
1291 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
1292 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
1293 ----------------------------------------------------------------------
1294 (*) These are not used by any known coding system.
1295
1296 Control characters for these functions are defined by macros
1297 ISO_CODE_XXX in `coding.h'.
1298
1299 Designations are done by the following escape sequences:
1300 ----------------------------------------------------------------------
1301 escape sequence description
1302 ----------------------------------------------------------------------
1303 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
1304 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
1305 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
1306 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
1307 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
1308 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
1309 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
1310 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
1311 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
1312 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
1313 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
1314 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
1315 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
1316 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
1317 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
1318 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
1319 ----------------------------------------------------------------------
1320
1321 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
1322 of dimension 1, chars 94, and final character <F>, etc...
1323
1324 Note (*): Although these designations are not allowed in ISO2022,
1325 Emacs accepts them on decoding, and produces them on encoding
1326 CHARS96 character sets in a coding system which is characterized as
1327 7-bit environment, non-locking-shift, and non-single-shift.
1328
1329 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
1330 '(' can be omitted. We refer to this as "short-form" hereafter.
1331
1332 Now you may notice that there are a lot of ways of encoding the
1333 same multilingual text in ISO2022. Actually, there exist many
1334 coding systems such as Compound Text (used in X11's inter client
1335 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
1336 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
1337 localized platforms), and all of these are variants of ISO2022.
1338
1339 In addition to the above, Emacs handles two more kinds of escape
1340 sequences: ISO6429's direction specification and Emacs' private
1341 sequence for specifying character composition.
1342
1343 ISO6429's direction specification takes the following form:
1344 o CSI ']' -- end of the current direction
1345 o CSI '0' ']' -- end of the current direction
1346 o CSI '1' ']' -- start of left-to-right text
1347 o CSI '2' ']' -- start of right-to-left text
1348 The control character CSI (0x9B: control sequence introducer) is
1349 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
1350
1351 Character composition specification takes the following form:
1352 o ESC '0' -- start relative composition
1353 o ESC '1' -- end composition
1354 o ESC '2' -- start rule-base composition (*)
1355 o ESC '3' -- start relative composition with alternate chars (**)
1356 o ESC '4' -- start rule-base composition with alternate chars (**)
1357 Since these are not standard escape sequences of any ISO standard,
1358 the use of them with these meanings is restricted to Emacs only.
1359
1360 (*) This form is used only in Emacs 20.5 and older versions,
1361 but the newer versions can safely decode it.
1362 (**) This form is used only in Emacs 21.1 and newer versions,
1363 and the older versions can't decode it.
1364
1365 Here's a list of example usages of these composition escape
1366 sequences (categorized by `enum composition_method').
1367
1368 COMPOSITION_RELATIVE:
1369 ESC 0 CHAR [ CHAR ] ESC 1
1370 COMPOSITION_WITH_RULE:
1371 ESC 2 CHAR [ RULE CHAR ] ESC 1
1372 COMPOSITION_WITH_ALTCHARS:
1373 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
1374 COMPOSITION_WITH_RULE_ALTCHARS:
1375 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
1376
1377enum iso_code_class_type iso_code_class[256];
1378
1379#define CHARSET_OK(idx, charset, c) \
1380 (coding_system_table[idx] \
1381 && (charset == CHARSET_ASCII \
1382 || (safe_chars = coding_safe_chars (coding_system_table[idx]->symbol), \
1383 CODING_SAFE_CHAR_P (safe_chars, c))) \
1384 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding_system_table[idx], \
1385 charset) \
1386 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
1387
1388#define SHIFT_OUT_OK(idx) \
1389 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
1390
1391#define COMPOSITION_OK(idx) \
1392 (coding_system_table[idx]->composing != COMPOSITION_DISABLED)
1393
1394/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1395 Check if a text is encoded in ISO2022. If it is, return an
1396 integer in which appropriate flag bits any of:
1397 CODING_CATEGORY_MASK_ISO_7
1398 CODING_CATEGORY_MASK_ISO_7_TIGHT
1399 CODING_CATEGORY_MASK_ISO_8_1
1400 CODING_CATEGORY_MASK_ISO_8_2
1401 CODING_CATEGORY_MASK_ISO_7_ELSE
1402 CODING_CATEGORY_MASK_ISO_8_ELSE
1403 are set. If a code which should never appear in ISO2022 is found,
1404 returns 0. */
1405
1406static int
1407detect_coding_iso2022 (src, src_end, multibytep)
1408 unsigned char *src, *src_end;
1409 int multibytep;
1410{
1411 int mask = CODING_CATEGORY_MASK_ISO;
1412 int mask_found = 0;
1413 int reg[4], shift_out = 0, single_shifting = 0;
1414 int c, c1, charset;
1415 /* Dummy for ONE_MORE_BYTE. */
1416 struct coding_system dummy_coding;
1417 struct coding_system *coding = &dummy_coding;
1418 Lisp_Object safe_chars;
1419
1420 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
1421 while (mask && src < src_end)
1422 {
1423 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1424 retry:
1425 switch (c)
1426 {
1427 case ISO_CODE_ESC:
1428 if (inhibit_iso_escape_detection)
1429 break;
1430 single_shifting = 0;
1431 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1432 if (c >= '(' && c <= '/')
1433 {
1434 /* Designation sequence for a charset of dimension 1. */
1435 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1436 if (c1 < ' ' || c1 >= 0x80
1437 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
1438 /* Invalid designation sequence. Just ignore. */
1439 break;
1440 reg[(c - '(') % 4] = charset;
1441 }
1442 else if (c == '$')
1443 {
1444 /* Designation sequence for a charset of dimension 2. */
1445 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1446 if (c >= '@' && c <= 'B')
1447 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
1448 reg[0] = charset = iso_charset_table[1][0][c];
1449 else if (c >= '(' && c <= '/')
1450 {
1451 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1452 if (c1 < ' ' || c1 >= 0x80
1453 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
1454 /* Invalid designation sequence. Just ignore. */
1455 break;
1456 reg[(c - '(') % 4] = charset;
1457 }
1458 else
1459 /* Invalid designation sequence. Just ignore. */
1460 break;
1461 }
1462 else if (c == 'N' || c == 'O')
1463 {
1464 /* ESC <Fe> for SS2 or SS3. */
1465 mask &= CODING_CATEGORY_MASK_ISO_7_ELSE;
1466 break;
1467 }
1468 else if (c >= '0' && c <= '4')
1469 {
1470 /* ESC <Fp> for start/end composition. */
1471 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_7))
1472 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1473 else
1474 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1475 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT))
1476 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1477 else
1478 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1479 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_8_1))
1480 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1481 else
1482 mask &= ~CODING_CATEGORY_MASK_ISO_8_1;
1483 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_8_2))
1484 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1485 else
1486 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1487 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_7_ELSE))
1488 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1489 else
1490 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1491 if (COMPOSITION_OK (CODING_CATEGORY_IDX_ISO_8_ELSE))
1492 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1493 else
1494 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1495 break;
1496 }
1497 else
1498 /* Invalid escape sequence. Just ignore. */
1499 break;
1500
1501 /* We found a valid designation sequence for CHARSET. */
1502 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
1503 c = MAKE_CHAR (charset, 0, 0);
1504 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset, c))
1505 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1506 else
1507 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1508 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset, c))
1509 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1510 else
1511 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1512 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset, c))
1513 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1514 else
1515 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1516 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset, c))
1517 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1518 else
1519 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1520 break;
1521
1522 case ISO_CODE_SO:
1523 if (inhibit_iso_escape_detection)
1524 break;
1525 single_shifting = 0;
1526 if (shift_out == 0
1527 && (reg[1] >= 0
1528 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
1529 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
1530 {
1531 /* Locking shift out. */
1532 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1533 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1534 }
1535 break;
1536
1537 case ISO_CODE_SI:
1538 if (inhibit_iso_escape_detection)
1539 break;
1540 single_shifting = 0;
1541 if (shift_out == 1)
1542 {
1543 /* Locking shift in. */
1544 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1545 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1546 }
1547 break;
1548
1549 case ISO_CODE_CSI:
1550 single_shifting = 0;
1551 case ISO_CODE_SS2:
1552 case ISO_CODE_SS3:
1553 {
1554 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
1555
1556 if (inhibit_iso_escape_detection)
1557 break;
1558 if (c != ISO_CODE_CSI)
1559 {
1560 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1561 & CODING_FLAG_ISO_SINGLE_SHIFT)
1562 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1563 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1564 & CODING_FLAG_ISO_SINGLE_SHIFT)
1565 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1566 single_shifting = 1;
1567 }
1568 if (VECTORP (Vlatin_extra_code_table)
1569 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1570 {
1571 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1572 & CODING_FLAG_ISO_LATIN_EXTRA)
1573 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1574 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1575 & CODING_FLAG_ISO_LATIN_EXTRA)
1576 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1577 }
1578 mask &= newmask;
1579 mask_found |= newmask;
1580 }
1581 break;
1582
1583 default:
1584 if (c < 0x80)
1585 {
1586 single_shifting = 0;
1587 break;
1588 }
1589 else if (c < 0xA0)
1590 {
1591 single_shifting = 0;
1592 if (VECTORP (Vlatin_extra_code_table)
1593 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1594 {
1595 int newmask = 0;
1596
1597 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1598 & CODING_FLAG_ISO_LATIN_EXTRA)
1599 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1600 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1601 & CODING_FLAG_ISO_LATIN_EXTRA)
1602 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1603 mask &= newmask;
1604 mask_found |= newmask;
1605 }
1606 else
1607 return 0;
1608 }
1609 else
1610 {
1611 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
1612 | CODING_CATEGORY_MASK_ISO_7_ELSE);
1613 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1614 /* Check the length of succeeding codes of the range
1615 0xA0..0FF. If the byte length is odd, we exclude
1616 CODING_CATEGORY_MASK_ISO_8_2. We can check this only
1617 when we are not single shifting. */
1618 if (!single_shifting
1619 && mask & CODING_CATEGORY_MASK_ISO_8_2)
1620 {
1621 int i = 1;
1622
1623 c = -1;
1624 while (src < src_end)
1625 {
1626 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1627 if (c < 0xA0)
1628 break;
1629 i++;
1630 }
1631
1632 if (i & 1 && src < src_end)
1633 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1634 else
1635 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1636 if (c >= 0)
1637 /* This means that we have read one extra byte. */
1638 goto retry;
1639 }
1640 }
1641 break;
1642 }
1643 }
1644 label_end_of_loop:
1645 return (mask & mask_found);
1646}
1647
1648/* Decode a character of which charset is CHARSET, the 1st position
1649 code is C1, the 2nd position code is C2, and return the decoded
1650 character code. If the variable `translation_table' is non-nil,
1651 returned the translated code. */
1652
1653#define DECODE_ISO_CHARACTER(charset, c1, c2) \
1654 (NILP (translation_table) \
1655 ? MAKE_CHAR (charset, c1, c2) \
1656 : translate_char (translation_table, -1, charset, c1, c2))
1657
1658/* Set designation state into CODING. */
1659#define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
1660 do { \
1661 int charset, c; \
1662 \
1663 if (final_char < '0' || final_char >= 128) \
1664 goto label_invalid_code; \
1665 charset = ISO_CHARSET_TABLE (make_number (dimension), \
1666 make_number (chars), \
1667 make_number (final_char)); \
1668 c = MAKE_CHAR (charset, 0, 0); \
1669 if (charset >= 0 \
1670 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
1671 || CODING_SAFE_CHAR_P (safe_chars, c))) \
1672 { \
1673 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
1674 && reg == 0 \
1675 && charset == CHARSET_ASCII) \
1676 { \
1677 /* We should insert this designation sequence as is so \
1678 that it is surely written back to a file. */ \
1679 coding->spec.iso2022.last_invalid_designation_register = -1; \
1680 goto label_invalid_code; \
1681 } \
1682 coding->spec.iso2022.last_invalid_designation_register = -1; \
1683 if ((coding->mode & CODING_MODE_DIRECTION) \
1684 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
1685 charset = CHARSET_REVERSE_CHARSET (charset); \
1686 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1687 } \
1688 else \
1689 { \
1690 coding->spec.iso2022.last_invalid_designation_register = reg; \
1691 goto label_invalid_code; \
1692 } \
1693 } while (0)
1694
1695/* Allocate a memory block for storing information about compositions.
1696 The block is chained to the already allocated blocks. */
1697
1698void
1699coding_allocate_composition_data (coding, char_offset)
1700 struct coding_system *coding;
1701 int char_offset;
1702{
1703 struct composition_data *cmp_data
1704 = (struct composition_data *) xmalloc (sizeof *cmp_data);
1705
1706 cmp_data->char_offset = char_offset;
1707 cmp_data->used = 0;
1708 cmp_data->prev = coding->cmp_data;
1709 cmp_data->next = NULL;
1710 if (coding->cmp_data)
1711 coding->cmp_data->next = cmp_data;
1712 coding->cmp_data = cmp_data;
1713 coding->cmp_data_start = 0;
1714 coding->composing = COMPOSITION_NO;
1715}
1716
1717/* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
1718 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
1719 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
1720 ESC 3 : altchar composition : ESC 3 ALT ... ESC 0 CHAR ... ESC 1
1721 ESC 4 : alt&rule composition : ESC 4 ALT RULE .. ALT ESC 0 CHAR ... ESC 1
1722 */
1723
1724#define DECODE_COMPOSITION_START(c1) \
1725 do { \
1726 if (coding->composing == COMPOSITION_DISABLED) \
1727 { \
1728 *dst++ = ISO_CODE_ESC; \
1729 *dst++ = c1 & 0x7f; \
1730 coding->produced_char += 2; \
1731 } \
1732 else if (!COMPOSING_P (coding)) \
1733 { \
1734 /* This is surely the start of a composition. We must be sure \
1735 that coding->cmp_data has enough space to store the \
1736 information about the composition. If not, terminate the \
1737 current decoding loop, allocate one more memory block for \
1738 coding->cmp_data in the caller, then start the decoding \
1739 loop again. We can't allocate memory here directly because \
1740 it may cause buffer/string relocation. */ \
1741 if (!coding->cmp_data \
1742 || (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH \
1743 >= COMPOSITION_DATA_SIZE)) \
1744 { \
1745 coding->result = CODING_FINISH_INSUFFICIENT_CMP; \
1746 goto label_end_of_loop; \
1747 } \
1748 coding->composing = (c1 == '0' ? COMPOSITION_RELATIVE \
1749 : c1 == '2' ? COMPOSITION_WITH_RULE \
1750 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
1751 : COMPOSITION_WITH_RULE_ALTCHARS); \
1752 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, \
1753 coding->composing); \
1754 coding->composition_rule_follows = 0; \
1755 } \
1756 else \
1757 { \
1758 /* We are already handling a composition. If the method is \
1759 the following two, the codes following the current escape \
1760 sequence are actual characters stored in a buffer. */ \
1761 if (coding->composing == COMPOSITION_WITH_ALTCHARS \
1762 || coding->composing == COMPOSITION_WITH_RULE_ALTCHARS) \
1763 { \
1764 coding->composing = COMPOSITION_RELATIVE; \
1765 coding->composition_rule_follows = 0; \
1766 } \
1767 } \
1768 } while (0)
1769
1770/* Handle composition end sequence ESC 1. */
1771
1772#define DECODE_COMPOSITION_END(c1) \
1773 do { \
1774 if (! COMPOSING_P (coding)) \
1775 { \
1776 *dst++ = ISO_CODE_ESC; \
1777 *dst++ = c1; \
1778 coding->produced_char += 2; \
1779 } \
1780 else \
1781 { \
1782 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
1783 coding->composing = COMPOSITION_NO; \
1784 } \
1785 } while (0)
1786
1787/* Decode a composition rule from the byte C1 (and maybe one more byte
1788 from SRC) and store one encoded composition rule in
1789 coding->cmp_data. */
1790
1791#define DECODE_COMPOSITION_RULE(c1) \
1792 do { \
1793 int rule = 0; \
1794 (c1) -= 32; \
1795 if (c1 < 81) /* old format (before ver.21) */ \
1796 { \
1797 int gref = (c1) / 9; \
1798 int nref = (c1) % 9; \
1799 if (gref == 4) gref = 10; \
1800 if (nref == 4) nref = 10; \
1801 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
1802 } \
1803 else if (c1 < 93) /* new format (after ver.21) */ \
1804 { \
1805 ONE_MORE_BYTE (c2); \
1806 rule = COMPOSITION_ENCODE_RULE (c1 - 81, c2 - 32); \
1807 } \
1808 CODING_ADD_COMPOSITION_COMPONENT (coding, rule); \
1809 coding->composition_rule_follows = 0; \
1810 } while (0)
1811
1812
1813/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
1814
1815static void
1816decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1817 struct coding_system *coding;
1818 const unsigned char *source;
1819 unsigned char *destination;
1820 int src_bytes, dst_bytes;
1821{
1822 const unsigned char *src = source;
1823 const unsigned char *src_end = source + src_bytes;
1824 unsigned char *dst = destination;
1825 unsigned char *dst_end = destination + dst_bytes;
1826 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1827 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1828 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1829 /* SRC_BASE remembers the start position in source in each loop.
1830 The loop will be exited when there's not enough source code
1831 (within macro ONE_MORE_BYTE), or when there's not enough
1832 destination area to produce a character (within macro
1833 EMIT_CHAR). */
1834 const unsigned char *src_base;
1835 int c, charset;
1836 Lisp_Object translation_table;
1837 Lisp_Object safe_chars;
1838
1839 safe_chars = coding_safe_chars (coding->symbol);
1840
1841 if (NILP (Venable_character_translation))
1842 translation_table = Qnil;
1843 else
1844 {
1845 translation_table = coding->translation_table_for_decode;
1846 if (NILP (translation_table))
1847 translation_table = Vstandard_translation_table_for_decode;
1848 }
1849
1850 coding->result = CODING_FINISH_NORMAL;
1851
1852 while (1)
1853 {
1854 int c1, c2 = 0;
1855
1856 src_base = src;
1857 ONE_MORE_BYTE (c1);
1858
1859 /* We produce no character or one character. */
1860 switch (iso_code_class [c1])
1861 {
1862 case ISO_0x20_or_0x7F:
1863 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1864 {
1865 DECODE_COMPOSITION_RULE (c1);
1866 continue;
1867 }
1868 if (charset0 < 0 || CHARSET_CHARS (charset0) == 94)
1869 {
1870 /* This is SPACE or DEL. */
1871 charset = CHARSET_ASCII;
1872 break;
1873 }
1874 /* This is a graphic character, we fall down ... */
1875
1876 case ISO_graphic_plane_0:
1877 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1878 {
1879 DECODE_COMPOSITION_RULE (c1);
1880 continue;
1881 }
1882 charset = charset0;
1883 break;
1884
1885 case ISO_0xA0_or_0xFF:
1886 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1887 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1888 goto label_invalid_code;
1889 /* This is a graphic character, we fall down ... */
1890
1891 case ISO_graphic_plane_1:
1892 if (charset1 < 0)
1893 goto label_invalid_code;
1894 charset = charset1;
1895 break;
1896
1897 case ISO_control_0:
1898 if (COMPOSING_P (coding))
1899 DECODE_COMPOSITION_END ('1');
1900
1901 /* All ISO2022 control characters in this class have the
1902 same representation in Emacs internal format. */
1903 if (c1 == '\n'
1904 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1905 && (coding->eol_type == CODING_EOL_CR
1906 || coding->eol_type == CODING_EOL_CRLF))
1907 {
1908 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1909 goto label_end_of_loop;
1910 }
1911 charset = CHARSET_ASCII;
1912 break;
1913
1914 case ISO_control_1:
1915 if (COMPOSING_P (coding))
1916 DECODE_COMPOSITION_END ('1');
1917 goto label_invalid_code;
1918
1919 case ISO_carriage_return:
1920 if (COMPOSING_P (coding))
1921 DECODE_COMPOSITION_END ('1');
1922
1923 if (coding->eol_type == CODING_EOL_CR)
1924 c1 = '\n';
1925 else if (coding->eol_type == CODING_EOL_CRLF)
1926 {
1927 ONE_MORE_BYTE (c1);
1928 if (c1 != ISO_CODE_LF)
1929 {
1930 src--;
1931 c1 = '\r';
1932 }
1933 }
1934 charset = CHARSET_ASCII;
1935 break;
1936
1937 case ISO_shift_out:
1938 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1939 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1940 goto label_invalid_code;
1941 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1942 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1943 continue;
1944
1945 case ISO_shift_in:
1946 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1947 goto label_invalid_code;
1948 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1949 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1950 continue;
1951
1952 case ISO_single_shift_2_7:
1953 case ISO_single_shift_2:
1954 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1955 goto label_invalid_code;
1956 /* SS2 is handled as an escape sequence of ESC 'N' */
1957 c1 = 'N';
1958 goto label_escape_sequence;
1959
1960 case ISO_single_shift_3:
1961 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1962 goto label_invalid_code;
1963 /* SS2 is handled as an escape sequence of ESC 'O' */
1964 c1 = 'O';
1965 goto label_escape_sequence;
1966
1967 case ISO_control_sequence_introducer:
1968 /* CSI is handled as an escape sequence of ESC '[' ... */
1969 c1 = '[';
1970 goto label_escape_sequence;
1971
1972 case ISO_escape:
1973 ONE_MORE_BYTE (c1);
1974 label_escape_sequence:
1975 /* Escape sequences handled by Emacs are invocation,
1976 designation, direction specification, and character
1977 composition specification. */
1978 switch (c1)
1979 {
1980 case '&': /* revision of following character set */
1981 ONE_MORE_BYTE (c1);
1982 if (!(c1 >= '@' && c1 <= '~'))
1983 goto label_invalid_code;
1984 ONE_MORE_BYTE (c1);
1985 if (c1 != ISO_CODE_ESC)
1986 goto label_invalid_code;
1987 ONE_MORE_BYTE (c1);
1988 goto label_escape_sequence;
1989
1990 case '$': /* designation of 2-byte character set */
1991 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1992 goto label_invalid_code;
1993 ONE_MORE_BYTE (c1);
1994 if (c1 >= '@' && c1 <= 'B')
1995 { /* designation of JISX0208.1978, GB2312.1980,
1996 or JISX0208.1980 */
1997 DECODE_DESIGNATION (0, 2, 94, c1);
1998 }
1999 else if (c1 >= 0x28 && c1 <= 0x2B)
2000 { /* designation of DIMENSION2_CHARS94 character set */
2001 ONE_MORE_BYTE (c2);
2002 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
2003 }
2004 else if (c1 >= 0x2C && c1 <= 0x2F)
2005 { /* designation of DIMENSION2_CHARS96 character set */
2006 ONE_MORE_BYTE (c2);
2007 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
2008 }
2009 else
2010 goto label_invalid_code;
2011 /* We must update these variables now. */
2012 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2013 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
2014 continue;
2015
2016 case 'n': /* invocation of locking-shift-2 */
2017 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
2018 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
2019 goto label_invalid_code;
2020 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
2021 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2022 continue;
2023
2024 case 'o': /* invocation of locking-shift-3 */
2025 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
2026 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
2027 goto label_invalid_code;
2028 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
2029 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2030 continue;
2031
2032 case 'N': /* invocation of single-shift-2 */
2033 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2034 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
2035 goto label_invalid_code;
2036 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
2037 ONE_MORE_BYTE (c1);
2038 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
2039 goto label_invalid_code;
2040 break;
2041
2042 case 'O': /* invocation of single-shift-3 */
2043 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2044 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
2045 goto label_invalid_code;
2046 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
2047 ONE_MORE_BYTE (c1);
2048 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
2049 goto label_invalid_code;
2050 break;
2051
2052 case '0': case '2': case '3': case '4': /* start composition */
2053 DECODE_COMPOSITION_START (c1);
2054 continue;
2055
2056 case '1': /* end composition */
2057 DECODE_COMPOSITION_END (c1);
2058 continue;
2059
2060 case '[': /* specification of direction */
2061 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
2062 goto label_invalid_code;
2063 /* For the moment, nested direction is not supported.
2064 So, `coding->mode & CODING_MODE_DIRECTION' zero means
2065 left-to-right, and nonzero means right-to-left. */
2066 ONE_MORE_BYTE (c1);
2067 switch (c1)
2068 {
2069 case ']': /* end of the current direction */
2070 coding->mode &= ~CODING_MODE_DIRECTION;
2071
2072 case '0': /* end of the current direction */
2073 case '1': /* start of left-to-right direction */
2074 ONE_MORE_BYTE (c1);
2075 if (c1 == ']')
2076 coding->mode &= ~CODING_MODE_DIRECTION;
2077 else
2078 goto label_invalid_code;
2079 break;
2080
2081 case '2': /* start of right-to-left direction */
2082 ONE_MORE_BYTE (c1);
2083 if (c1 == ']')
2084 coding->mode |= CODING_MODE_DIRECTION;
2085 else
2086 goto label_invalid_code;
2087 break;
2088
2089 default:
2090 goto label_invalid_code;
2091 }
2092 continue;
2093
2094 case '%':
2095 if (COMPOSING_P (coding))
2096 DECODE_COMPOSITION_END ('1');
2097 ONE_MORE_BYTE (c1);
2098 if (c1 == '/')
2099 {
2100 /* CTEXT extended segment:
2101 ESC % / [0-4] M L --ENCODING-NAME-- \002 --BYTES--
2102 We keep these bytes as is for the moment.
2103 They may be decoded by post-read-conversion. */
2104 int dim, M, L;
2105 int size, required;
2106 int produced_chars;
2107
2108 ONE_MORE_BYTE (dim);
2109 ONE_MORE_BYTE (M);
2110 ONE_MORE_BYTE (L);
2111 size = ((M - 128) * 128) + (L - 128);
2112 required = 8 + size * 2;
2113 if (dst + required > (dst_bytes ? dst_end : src))
2114 goto label_end_of_loop;
2115 *dst++ = ISO_CODE_ESC;
2116 *dst++ = '%';
2117 *dst++ = '/';
2118 *dst++ = dim;
2119 produced_chars = 4;
2120 dst += CHAR_STRING (M, dst), produced_chars++;
2121 dst += CHAR_STRING (L, dst), produced_chars++;
2122 while (size-- > 0)
2123 {
2124 ONE_MORE_BYTE (c1);
2125 dst += CHAR_STRING (c1, dst), produced_chars++;
2126 }
2127 coding->produced_char += produced_chars;
2128 }
2129 else if (c1 == 'G')
2130 {
2131 unsigned char *d = dst;
2132 int produced_chars;
2133
2134 /* XFree86 extension for embedding UTF-8 in CTEXT:
2135 ESC % G --UTF-8-BYTES-- ESC % @
2136 We keep these bytes as is for the moment.
2137 They may be decoded by post-read-conversion. */
2138 if (d + 6 > (dst_bytes ? dst_end : src))
2139 goto label_end_of_loop;
2140 *d++ = ISO_CODE_ESC;
2141 *d++ = '%';
2142 *d++ = 'G';
2143 produced_chars = 3;
2144 while (d + 1 < (dst_bytes ? dst_end : src))
2145 {
2146 ONE_MORE_BYTE (c1);
2147 if (c1 == ISO_CODE_ESC
2148 && src + 1 < src_end
2149 && src[0] == '%'
2150 && src[1] == '@')
2151 {
2152 src += 2;
2153 break;
2154 }
2155 d += CHAR_STRING (c1, d), produced_chars++;
2156 }
2157 if (d + 3 > (dst_bytes ? dst_end : src))
2158 goto label_end_of_loop;
2159 *d++ = ISO_CODE_ESC;
2160 *d++ = '%';
2161 *d++ = '@';
2162 dst = d;
2163 coding->produced_char += produced_chars + 3;
2164 }
2165 else
2166 goto label_invalid_code;
2167 continue;
2168
2169 default:
2170 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
2171 goto label_invalid_code;
2172 if (c1 >= 0x28 && c1 <= 0x2B)
2173 { /* designation of DIMENSION1_CHARS94 character set */
2174 ONE_MORE_BYTE (c2);
2175 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
2176 }
2177 else if (c1 >= 0x2C && c1 <= 0x2F)
2178 { /* designation of DIMENSION1_CHARS96 character set */
2179 ONE_MORE_BYTE (c2);
2180 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
2181 }
2182 else
2183 goto label_invalid_code;
2184 /* We must update these variables now. */
2185 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2186 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
2187 continue;
2188 }
2189 }
2190
2191 /* Now we know CHARSET and 1st position code C1 of a character.
2192 Produce a multibyte sequence for that character while getting
2193 2nd position code C2 if necessary. */
2194 if (CHARSET_DIMENSION (charset) == 2)
2195 {
2196 ONE_MORE_BYTE (c2);
2197 if (c1 < 0x80 ? c2 < 0x20 || c2 >= 0x80 : c2 < 0xA0)
2198 /* C2 is not in a valid range. */
2199 goto label_invalid_code;
2200 }
2201 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2202 EMIT_CHAR (c);
2203 continue;
2204
2205 label_invalid_code:
2206 coding->errors++;
2207 if (COMPOSING_P (coding))
2208 DECODE_COMPOSITION_END ('1');
2209 src = src_base;
2210 c = *src++;
2211 if (! NILP (translation_table))
2212 c = translate_char (translation_table, c, 0, 0, 0);
2213 EMIT_CHAR (c);
2214 }
2215
2216 label_end_of_loop:
2217 coding->consumed = coding->consumed_char = src_base - source;
2218 coding->produced = dst - destination;
2219 return;
2220}
2221
2222
2223/* ISO2022 encoding stuff. */
2224
2225/*
2226 It is not enough to say just "ISO2022" on encoding, we have to
2227 specify more details. In Emacs, each ISO2022 coding system
2228 variant has the following specifications:
2229 1. Initial designation to G0 through G3.
2230 2. Allows short-form designation?
2231 3. ASCII should be designated to G0 before control characters?
2232 4. ASCII should be designated to G0 at end of line?
2233 5. 7-bit environment or 8-bit environment?
2234 6. Use locking-shift?
2235 7. Use Single-shift?
2236 And the following two are only for Japanese:
2237 8. Use ASCII in place of JIS0201-1976-Roman?
2238 9. Use JISX0208-1983 in place of JISX0208-1978?
2239 These specifications are encoded in `coding->flags' as flag bits
2240 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
2241 details.
2242*/
2243
2244/* Produce codes (escape sequence) for designating CHARSET to graphic
2245 register REG at DST, and increment DST. If <final-char> of CHARSET is
2246 '@', 'A', or 'B' and the coding system CODING allows, produce
2247 designation sequence of short-form. */
2248
2249#define ENCODE_DESIGNATION(charset, reg, coding) \
2250 do { \
2251 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
2252 char *intermediate_char_94 = "()*+"; \
2253 char *intermediate_char_96 = ",-./"; \
2254 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
2255 \
2256 if (revision < 255) \
2257 { \
2258 *dst++ = ISO_CODE_ESC; \
2259 *dst++ = '&'; \
2260 *dst++ = '@' + revision; \
2261 } \
2262 *dst++ = ISO_CODE_ESC; \
2263 if (CHARSET_DIMENSION (charset) == 1) \
2264 { \
2265 if (CHARSET_CHARS (charset) == 94) \
2266 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2267 else \
2268 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2269 } \
2270 else \
2271 { \
2272 *dst++ = '$'; \
2273 if (CHARSET_CHARS (charset) == 94) \
2274 { \
2275 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
2276 || reg != 0 \
2277 || final_char < '@' || final_char > 'B') \
2278 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2279 } \
2280 else \
2281 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2282 } \
2283 *dst++ = final_char; \
2284 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
2285 } while (0)
2286
2287/* The following two macros produce codes (control character or escape
2288 sequence) for ISO2022 single-shift functions (single-shift-2 and
2289 single-shift-3). */
2290
2291#define ENCODE_SINGLE_SHIFT_2 \
2292 do { \
2293 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2294 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
2295 else \
2296 *dst++ = ISO_CODE_SS2; \
2297 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2298 } while (0)
2299
2300#define ENCODE_SINGLE_SHIFT_3 \
2301 do { \
2302 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2303 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
2304 else \
2305 *dst++ = ISO_CODE_SS3; \
2306 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2307 } while (0)
2308
2309/* The following four macros produce codes (control character or
2310 escape sequence) for ISO2022 locking-shift functions (shift-in,
2311 shift-out, locking-shift-2, and locking-shift-3). */
2312
2313#define ENCODE_SHIFT_IN \
2314 do { \
2315 *dst++ = ISO_CODE_SI; \
2316 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
2317 } while (0)
2318
2319#define ENCODE_SHIFT_OUT \
2320 do { \
2321 *dst++ = ISO_CODE_SO; \
2322 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
2323 } while (0)
2324
2325#define ENCODE_LOCKING_SHIFT_2 \
2326 do { \
2327 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
2328 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
2329 } while (0)
2330
2331#define ENCODE_LOCKING_SHIFT_3 \
2332 do { \
2333 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
2334 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
2335 } while (0)
2336
2337/* Produce codes for a DIMENSION1 character whose character set is
2338 CHARSET and whose position-code is C1. Designation and invocation
2339 sequences are also produced in advance if necessary. */
2340
2341#define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
2342 do { \
2343 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2344 { \
2345 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2346 *dst++ = c1 & 0x7F; \
2347 else \
2348 *dst++ = c1 | 0x80; \
2349 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2350 break; \
2351 } \
2352 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2353 { \
2354 *dst++ = c1 & 0x7F; \
2355 break; \
2356 } \
2357 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2358 { \
2359 *dst++ = c1 | 0x80; \
2360 break; \
2361 } \
2362 else \
2363 /* Since CHARSET is not yet invoked to any graphic planes, we \
2364 must invoke it, or, at first, designate it to some graphic \
2365 register. Then repeat the loop to actually produce the \
2366 character. */ \
2367 dst = encode_invocation_designation (charset, coding, dst); \
2368 } while (1)
2369
2370/* Produce codes for a DIMENSION2 character whose character set is
2371 CHARSET and whose position-codes are C1 and C2. Designation and
2372 invocation codes are also produced in advance if necessary. */
2373
2374#define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
2375 do { \
2376 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2377 { \
2378 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2379 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
2380 else \
2381 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
2382 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2383 break; \
2384 } \
2385 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2386 { \
2387 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
2388 break; \
2389 } \
2390 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2391 { \
2392 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
2393 break; \
2394 } \
2395 else \
2396 /* Since CHARSET is not yet invoked to any graphic planes, we \
2397 must invoke it, or, at first, designate it to some graphic \
2398 register. Then repeat the loop to actually produce the \
2399 character. */ \
2400 dst = encode_invocation_designation (charset, coding, dst); \
2401 } while (1)
2402
2403#define ENCODE_ISO_CHARACTER(c) \
2404 do { \
2405 int charset, c1, c2; \
2406 \
2407 SPLIT_CHAR (c, charset, c1, c2); \
2408 if (CHARSET_DEFINED_P (charset)) \
2409 { \
2410 if (CHARSET_DIMENSION (charset) == 1) \
2411 { \
2412 if (charset == CHARSET_ASCII \
2413 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
2414 charset = charset_latin_jisx0201; \
2415 ENCODE_ISO_CHARACTER_DIMENSION1 (charset, c1); \
2416 } \
2417 else \
2418 { \
2419 if (charset == charset_jisx0208 \
2420 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
2421 charset = charset_jisx0208_1978; \
2422 ENCODE_ISO_CHARACTER_DIMENSION2 (charset, c1, c2); \
2423 } \
2424 } \
2425 else \
2426 { \
2427 *dst++ = c1; \
2428 if (c2 >= 0) \
2429 *dst++ = c2; \
2430 } \
2431 } while (0)
2432
2433
2434/* Instead of encoding character C, produce one or two `?'s. */
2435
2436#define ENCODE_UNSAFE_CHARACTER(c) \
2437 do { \
2438 ENCODE_ISO_CHARACTER (CODING_REPLACEMENT_CHARACTER); \
2439 if (CHARSET_WIDTH (CHAR_CHARSET (c)) > 1) \
2440 ENCODE_ISO_CHARACTER (CODING_REPLACEMENT_CHARACTER); \
2441 } while (0)
2442
2443
2444/* Produce designation and invocation codes at a place pointed by DST
2445 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
2446 Return new DST. */
2447
2448unsigned char *
2449encode_invocation_designation (charset, coding, dst)
2450 int charset;
2451 struct coding_system *coding;
2452 unsigned char *dst;
2453{
2454 int reg; /* graphic register number */
2455
2456 /* At first, check designations. */
2457 for (reg = 0; reg < 4; reg++)
2458 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
2459 break;
2460
2461 if (reg >= 4)
2462 {
2463 /* CHARSET is not yet designated to any graphic registers. */
2464 /* At first check the requested designation. */
2465 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2466 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
2467 /* Since CHARSET requests no special designation, designate it
2468 to graphic register 0. */
2469 reg = 0;
2470
2471 ENCODE_DESIGNATION (charset, reg, coding);
2472 }
2473
2474 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
2475 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
2476 {
2477 /* Since the graphic register REG is not invoked to any graphic
2478 planes, invoke it to graphic plane 0. */
2479 switch (reg)
2480 {
2481 case 0: /* graphic register 0 */
2482 ENCODE_SHIFT_IN;
2483 break;
2484
2485 case 1: /* graphic register 1 */
2486 ENCODE_SHIFT_OUT;
2487 break;
2488
2489 case 2: /* graphic register 2 */
2490 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2491 ENCODE_SINGLE_SHIFT_2;
2492 else
2493 ENCODE_LOCKING_SHIFT_2;
2494 break;
2495
2496 case 3: /* graphic register 3 */
2497 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2498 ENCODE_SINGLE_SHIFT_3;
2499 else
2500 ENCODE_LOCKING_SHIFT_3;
2501 break;
2502 }
2503 }
2504
2505 return dst;
2506}
2507
2508/* Produce 2-byte codes for encoded composition rule RULE. */
2509
2510#define ENCODE_COMPOSITION_RULE(rule) \
2511 do { \
2512 int gref, nref; \
2513 COMPOSITION_DECODE_RULE (rule, gref, nref); \
2514 *dst++ = 32 + 81 + gref; \
2515 *dst++ = 32 + nref; \
2516 } while (0)
2517
2518/* Produce codes for indicating the start of a composition sequence
2519 (ESC 0, ESC 3, or ESC 4). DATA points to an array of integers
2520 which specify information about the composition. See the comment
2521 in coding.h for the format of DATA. */
2522
2523#define ENCODE_COMPOSITION_START(coding, data) \
2524 do { \
2525 coding->composing = data[3]; \
2526 *dst++ = ISO_CODE_ESC; \
2527 if (coding->composing == COMPOSITION_RELATIVE) \
2528 *dst++ = '0'; \
2529 else \
2530 { \
2531 *dst++ = (coding->composing == COMPOSITION_WITH_ALTCHARS \
2532 ? '3' : '4'); \
2533 coding->cmp_data_index = coding->cmp_data_start + 4; \
2534 coding->composition_rule_follows = 0; \
2535 } \
2536 } while (0)
2537
2538/* Produce codes for indicating the end of the current composition. */
2539
2540#define ENCODE_COMPOSITION_END(coding, data) \
2541 do { \
2542 *dst++ = ISO_CODE_ESC; \
2543 *dst++ = '1'; \
2544 coding->cmp_data_start += data[0]; \
2545 coding->composing = COMPOSITION_NO; \
2546 if (coding->cmp_data_start == coding->cmp_data->used \
2547 && coding->cmp_data->next) \
2548 { \
2549 coding->cmp_data = coding->cmp_data->next; \
2550 coding->cmp_data_start = 0; \
2551 } \
2552 } while (0)
2553
2554/* Produce composition start sequence ESC 0. Here, this sequence
2555 doesn't mean the start of a new composition but means that we have
2556 just produced components (alternate chars and composition rules) of
2557 the composition and the actual text follows in SRC. */
2558
2559#define ENCODE_COMPOSITION_FAKE_START(coding) \
2560 do { \
2561 *dst++ = ISO_CODE_ESC; \
2562 *dst++ = '0'; \
2563 coding->composing = COMPOSITION_RELATIVE; \
2564 } while (0)
2565
2566/* The following three macros produce codes for indicating direction
2567 of text. */
2568#define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
2569 do { \
2570 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
2571 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
2572 else \
2573 *dst++ = ISO_CODE_CSI; \
2574 } while (0)
2575
2576#define ENCODE_DIRECTION_R2L \
2577 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '2', *dst++ = ']'
2578
2579#define ENCODE_DIRECTION_L2R \
2580 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '0', *dst++ = ']'
2581
2582/* Produce codes for designation and invocation to reset the graphic
2583 planes and registers to initial state. */
2584#define ENCODE_RESET_PLANE_AND_REGISTER \
2585 do { \
2586 int reg; \
2587 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
2588 ENCODE_SHIFT_IN; \
2589 for (reg = 0; reg < 4; reg++) \
2590 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
2591 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
2592 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
2593 ENCODE_DESIGNATION \
2594 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
2595 } while (0)
2596
2597/* Produce designation sequences of charsets in the line started from
2598 SRC to a place pointed by DST, and return updated DST.
2599
2600 If the current block ends before any end-of-line, we may fail to
2601 find all the necessary designations. */
2602
2603static unsigned char *
2604encode_designation_at_bol (coding, translation_table, src, src_end, dst)
2605 struct coding_system *coding;
2606 Lisp_Object translation_table;
2607 const unsigned char *src, *src_end;
2608 unsigned char *dst;
2609{
2610 int charset, c, found = 0, reg;
2611 /* Table of charsets to be designated to each graphic register. */
2612 int r[4];
2613
2614 for (reg = 0; reg < 4; reg++)
2615 r[reg] = -1;
2616
2617 while (found < 4)
2618 {
2619 ONE_MORE_CHAR (c);
2620 if (c == '\n')
2621 break;
2622
2623 charset = CHAR_CHARSET (c);
2624 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2625 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
2626 {
2627 found++;
2628 r[reg] = charset;
2629 }
2630 }
2631
2632 label_end_of_loop:
2633 if (found)
2634 {
2635 for (reg = 0; reg < 4; reg++)
2636 if (r[reg] >= 0
2637 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
2638 ENCODE_DESIGNATION (r[reg], reg, coding);
2639 }
2640
2641 return dst;
2642}
2643
2644/* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
2645
2646static void
2647encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
2648 struct coding_system *coding;
2649 const unsigned char *source;
2650 unsigned char *destination;
2651 int src_bytes, dst_bytes;
2652{
2653 const unsigned char *src = source;
2654 const unsigned char *src_end = source + src_bytes;
2655 unsigned char *dst = destination;
2656 unsigned char *dst_end = destination + dst_bytes;
2657 /* Since the maximum bytes produced by each loop is 20, we subtract 19
2658 from DST_END to assure overflow checking is necessary only at the
2659 head of loop. */
2660 unsigned char *adjusted_dst_end = dst_end - 19;
2661 /* SRC_BASE remembers the start position in source in each loop.
2662 The loop will be exited when there's not enough source text to
2663 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2664 there's not enough destination area to produce encoded codes
2665 (within macro EMIT_BYTES). */
2666 const unsigned char *src_base;
2667 int c;
2668 Lisp_Object translation_table;
2669 Lisp_Object safe_chars;
2670
2671 if (coding->flags & CODING_FLAG_ISO_SAFE)
2672 coding->mode |= CODING_MODE_INHIBIT_UNENCODABLE_CHAR;
2673
2674 safe_chars = coding_safe_chars (coding->symbol);
2675
2676 if (NILP (Venable_character_translation))
2677 translation_table = Qnil;
2678 else
2679 {
2680 translation_table = coding->translation_table_for_encode;
2681 if (NILP (translation_table))
2682 translation_table = Vstandard_translation_table_for_encode;
2683 }
2684
2685 coding->consumed_char = 0;
2686 coding->errors = 0;
2687 while (1)
2688 {
2689 src_base = src;
2690
2691 if (dst >= (dst_bytes ? adjusted_dst_end : (src - 19)))
2692 {
2693 coding->result = CODING_FINISH_INSUFFICIENT_DST;
2694 break;
2695 }
2696
2697 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
2698 && CODING_SPEC_ISO_BOL (coding))
2699 {
2700 /* We have to produce designation sequences if any now. */
2701 dst = encode_designation_at_bol (coding, translation_table,
2702 src, src_end, dst);
2703 CODING_SPEC_ISO_BOL (coding) = 0;
2704 }
2705
2706 /* Check composition start and end. */
2707 if (coding->composing != COMPOSITION_DISABLED
2708 && coding->cmp_data_start < coding->cmp_data->used)
2709 {
2710 struct composition_data *cmp_data = coding->cmp_data;
2711 int *data = cmp_data->data + coding->cmp_data_start;
2712 int this_pos = cmp_data->char_offset + coding->consumed_char;
2713
2714 if (coding->composing == COMPOSITION_RELATIVE)
2715 {
2716 if (this_pos == data[2])
2717 {
2718 ENCODE_COMPOSITION_END (coding, data);
2719 cmp_data = coding->cmp_data;
2720 data = cmp_data->data + coding->cmp_data_start;
2721 }
2722 }
2723 else if (COMPOSING_P (coding))
2724 {
2725 /* COMPOSITION_WITH_ALTCHARS or COMPOSITION_WITH_RULE_ALTCHAR */
2726 if (coding->cmp_data_index == coding->cmp_data_start + data[0])
2727 /* We have consumed components of the composition.
2728 What follows in SRC is the composition's base
2729 text. */
2730 ENCODE_COMPOSITION_FAKE_START (coding);
2731 else
2732 {
2733 int c = cmp_data->data[coding->cmp_data_index++];
2734 if (coding->composition_rule_follows)
2735 {
2736 ENCODE_COMPOSITION_RULE (c);
2737 coding->composition_rule_follows = 0;
2738 }
2739 else
2740 {
2741 if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR
2742 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2743 ENCODE_UNSAFE_CHARACTER (c);
2744 else
2745 ENCODE_ISO_CHARACTER (c);
2746 if (coding->composing == COMPOSITION_WITH_RULE_ALTCHARS)
2747 coding->composition_rule_follows = 1;
2748 }
2749 continue;
2750 }
2751 }
2752 if (!COMPOSING_P (coding))
2753 {
2754 if (this_pos == data[1])
2755 {
2756 ENCODE_COMPOSITION_START (coding, data);
2757 continue;
2758 }
2759 }
2760 }
2761
2762 ONE_MORE_CHAR (c);
2763
2764 /* Now encode the character C. */
2765 if (c < 0x20 || c == 0x7F)
2766 {
2767 if (c == '\r')
2768 {
2769 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2770 {
2771 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2772 ENCODE_RESET_PLANE_AND_REGISTER;
2773 *dst++ = c;
2774 continue;
2775 }
2776 /* fall down to treat '\r' as '\n' ... */
2777 c = '\n';
2778 }
2779 if (c == '\n')
2780 {
2781 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
2782 ENCODE_RESET_PLANE_AND_REGISTER;
2783 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
2784 bcopy (coding->spec.iso2022.initial_designation,
2785 coding->spec.iso2022.current_designation,
2786 sizeof coding->spec.iso2022.initial_designation);
2787 if (coding->eol_type == CODING_EOL_LF
2788 || coding->eol_type == CODING_EOL_UNDECIDED)
2789 *dst++ = ISO_CODE_LF;
2790 else if (coding->eol_type == CODING_EOL_CRLF)
2791 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
2792 else
2793 *dst++ = ISO_CODE_CR;
2794 CODING_SPEC_ISO_BOL (coding) = 1;
2795 }
2796 else
2797 {
2798 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2799 ENCODE_RESET_PLANE_AND_REGISTER;
2800 *dst++ = c;
2801 }
2802 }
2803 else if (ASCII_BYTE_P (c))
2804 ENCODE_ISO_CHARACTER (c);
2805 else if (SINGLE_BYTE_CHAR_P (c))
2806 {
2807 *dst++ = c;
2808 coding->errors++;
2809 }
2810 else if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR
2811 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2812 ENCODE_UNSAFE_CHARACTER (c);
2813 else
2814 ENCODE_ISO_CHARACTER (c);
2815
2816 coding->consumed_char++;
2817 }
2818
2819 label_end_of_loop:
2820 coding->consumed = src_base - source;
2821 coding->produced = coding->produced_char = dst - destination;
2822}
2823
2824\f
2825/*** 4. SJIS and BIG5 handlers ***/
2826
2827/* Although SJIS and BIG5 are not ISO coding systems, they are used
2828 quite widely. So, for the moment, Emacs supports them in the bare
2829 C code. But, in the future, they may be supported only by CCL. */
2830
2831/* SJIS is a coding system encoding three character sets: ASCII, right
2832 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
2833 as is. A character of charset katakana-jisx0201 is encoded by
2834 "position-code + 0x80". A character of charset japanese-jisx0208
2835 is encoded in 2-byte but two position-codes are divided and shifted
2836 so that it fits in the range below.
2837
2838 --- CODE RANGE of SJIS ---
2839 (character set) (range)
2840 ASCII 0x00 .. 0x7F
2841 KATAKANA-JISX0201 0xA1 .. 0xDF
2842 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
2843 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
2844 -------------------------------
2845
2846*/
2847
2848/* BIG5 is a coding system encoding two character sets: ASCII and
2849 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2850 character set and is encoded in two bytes.
2851
2852 --- CODE RANGE of BIG5 ---
2853 (character set) (range)
2854 ASCII 0x00 .. 0x7F
2855 Big5 (1st byte) 0xA1 .. 0xFE
2856 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2857 --------------------------
2858
2859 Since the number of characters in Big5 is larger than maximum
2860 characters in Emacs' charset (96x96), it can't be handled as one
2861 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2862 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2863 contains frequently used characters and the latter contains less
2864 frequently used characters. */
2865
2866/* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2867 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2868 C1 and C2 are the 1st and 2nd position-codes of Emacs' internal
2869 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2870
2871/* Number of Big5 characters which have the same code in 1st byte. */
2872#define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2873
2874#define DECODE_BIG5(b1, b2, charset, c1, c2) \
2875 do { \
2876 unsigned int temp \
2877 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2878 if (b1 < 0xC9) \
2879 charset = charset_big5_1; \
2880 else \
2881 { \
2882 charset = charset_big5_2; \
2883 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2884 } \
2885 c1 = temp / (0xFF - 0xA1) + 0x21; \
2886 c2 = temp % (0xFF - 0xA1) + 0x21; \
2887 } while (0)
2888
2889#define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2890 do { \
2891 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2892 if (charset == charset_big5_2) \
2893 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2894 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2895 b2 = temp % BIG5_SAME_ROW; \
2896 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2897 } while (0)
2898
2899/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2900 Check if a text is encoded in SJIS. If it is, return
2901 CODING_CATEGORY_MASK_SJIS, else return 0. */
2902
2903static int
2904detect_coding_sjis (src, src_end, multibytep)
2905 unsigned char *src, *src_end;
2906 int multibytep;
2907{
2908 int c;
2909 /* Dummy for ONE_MORE_BYTE. */
2910 struct coding_system dummy_coding;
2911 struct coding_system *coding = &dummy_coding;
2912
2913 while (1)
2914 {
2915 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2916 if (c < 0x80)
2917 continue;
2918 if (c == 0x80 || c == 0xA0 || c > 0xEF)
2919 return 0;
2920 if (c <= 0x9F || c >= 0xE0)
2921 {
2922 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2923 if (c < 0x40 || c == 0x7F || c > 0xFC)
2924 return 0;
2925 }
2926 }
2927 label_end_of_loop:
2928 return CODING_CATEGORY_MASK_SJIS;
2929}
2930
2931/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2932 Check if a text is encoded in BIG5. If it is, return
2933 CODING_CATEGORY_MASK_BIG5, else return 0. */
2934
2935static int
2936detect_coding_big5 (src, src_end, multibytep)
2937 unsigned char *src, *src_end;
2938 int multibytep;
2939{
2940 int c;
2941 /* Dummy for ONE_MORE_BYTE. */
2942 struct coding_system dummy_coding;
2943 struct coding_system *coding = &dummy_coding;
2944
2945 while (1)
2946 {
2947 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2948 if (c < 0x80)
2949 continue;
2950 if (c < 0xA1 || c > 0xFE)
2951 return 0;
2952 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2953 if (c < 0x40 || (c > 0x7F && c < 0xA1) || c > 0xFE)
2954 return 0;
2955 }
2956 label_end_of_loop:
2957 return CODING_CATEGORY_MASK_BIG5;
2958}
2959
2960/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2961 Check if a text is encoded in UTF-8. If it is, return
2962 CODING_CATEGORY_MASK_UTF_8, else return 0. */
2963
2964#define UTF_8_1_OCTET_P(c) ((c) < 0x80)
2965#define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
2966#define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
2967#define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
2968#define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
2969#define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
2970#define UTF_8_6_OCTET_LEADING_P(c) (((c) & 0xFE) == 0xFC)
2971
2972static int
2973detect_coding_utf_8 (src, src_end, multibytep)
2974 unsigned char *src, *src_end;
2975 int multibytep;
2976{
2977 unsigned char c;
2978 int seq_maybe_bytes;
2979 /* Dummy for ONE_MORE_BYTE. */
2980 struct coding_system dummy_coding;
2981 struct coding_system *coding = &dummy_coding;
2982
2983 while (1)
2984 {
2985 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2986 if (UTF_8_1_OCTET_P (c))
2987 continue;
2988 else if (UTF_8_2_OCTET_LEADING_P (c))
2989 seq_maybe_bytes = 1;
2990 else if (UTF_8_3_OCTET_LEADING_P (c))
2991 seq_maybe_bytes = 2;
2992 else if (UTF_8_4_OCTET_LEADING_P (c))
2993 seq_maybe_bytes = 3;
2994 else if (UTF_8_5_OCTET_LEADING_P (c))
2995 seq_maybe_bytes = 4;
2996 else if (UTF_8_6_OCTET_LEADING_P (c))
2997 seq_maybe_bytes = 5;
2998 else
2999 return 0;
3000
3001 do
3002 {
3003 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
3004 if (!UTF_8_EXTRA_OCTET_P (c))
3005 return 0;
3006 seq_maybe_bytes--;
3007 }
3008 while (seq_maybe_bytes > 0);
3009 }
3010
3011 label_end_of_loop:
3012 return CODING_CATEGORY_MASK_UTF_8;
3013}
3014
3015/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3016 Check if a text is encoded in UTF-16 Big Endian (endian == 1) or
3017 Little Endian (otherwise). If it is, return
3018 CODING_CATEGORY_MASK_UTF_16_BE or CODING_CATEGORY_MASK_UTF_16_LE,
3019 else return 0. */
3020
3021#define UTF_16_INVALID_P(val) \
3022 (((val) == 0xFFFE) \
3023 || ((val) == 0xFFFF))
3024
3025#define UTF_16_HIGH_SURROGATE_P(val) \
3026 (((val) & 0xD800) == 0xD800)
3027
3028#define UTF_16_LOW_SURROGATE_P(val) \
3029 (((val) & 0xDC00) == 0xDC00)
3030
3031static int
3032detect_coding_utf_16 (src, src_end, multibytep)
3033 unsigned char *src, *src_end;
3034 int multibytep;
3035{
3036 unsigned char c1, c2;
3037 /* Dummy for ONE_MORE_BYTE_CHECK_MULTIBYTE. */
3038 struct coding_system dummy_coding;
3039 struct coding_system *coding = &dummy_coding;
3040
3041 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
3042 ONE_MORE_BYTE_CHECK_MULTIBYTE (c2, multibytep);
3043
3044 if ((c1 == 0xFF) && (c2 == 0xFE))
3045 return CODING_CATEGORY_MASK_UTF_16_LE;
3046 else if ((c1 == 0xFE) && (c2 == 0xFF))
3047 return CODING_CATEGORY_MASK_UTF_16_BE;
3048
3049 label_end_of_loop:
3050 return 0;
3051}
3052
3053/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
3054 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
3055
3056static void
3057decode_coding_sjis_big5 (coding, source, destination,
3058 src_bytes, dst_bytes, sjis_p)
3059 struct coding_system *coding;
3060 const unsigned char *source;
3061 unsigned char *destination;
3062 int src_bytes, dst_bytes;
3063 int sjis_p;
3064{
3065 const unsigned char *src = source;
3066 const unsigned char *src_end = source + src_bytes;
3067 unsigned char *dst = destination;
3068 unsigned char *dst_end = destination + dst_bytes;
3069 /* SRC_BASE remembers the start position in source in each loop.
3070 The loop will be exited when there's not enough source code
3071 (within macro ONE_MORE_BYTE), or when there's not enough
3072 destination area to produce a character (within macro
3073 EMIT_CHAR). */
3074 const unsigned char *src_base;
3075 Lisp_Object translation_table;
3076
3077 if (NILP (Venable_character_translation))
3078 translation_table = Qnil;
3079 else
3080 {
3081 translation_table = coding->translation_table_for_decode;
3082 if (NILP (translation_table))
3083 translation_table = Vstandard_translation_table_for_decode;
3084 }
3085
3086 coding->produced_char = 0;
3087 while (1)
3088 {
3089 int c, charset, c1, c2 = 0;
3090
3091 src_base = src;
3092 ONE_MORE_BYTE (c1);
3093
3094 if (c1 < 0x80)
3095 {
3096 charset = CHARSET_ASCII;
3097 if (c1 < 0x20)
3098 {
3099 if (c1 == '\r')
3100 {
3101 if (coding->eol_type == CODING_EOL_CRLF)
3102 {
3103 ONE_MORE_BYTE (c2);
3104 if (c2 == '\n')
3105 c1 = c2;
3106 else
3107 /* To process C2 again, SRC is subtracted by 1. */
3108 src--;
3109 }
3110 else if (coding->eol_type == CODING_EOL_CR)
3111 c1 = '\n';
3112 }
3113 else if (c1 == '\n'
3114 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3115 && (coding->eol_type == CODING_EOL_CR
3116 || coding->eol_type == CODING_EOL_CRLF))
3117 {
3118 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3119 goto label_end_of_loop;
3120 }
3121 }
3122 }
3123 else
3124 {
3125 if (sjis_p)
3126 {
3127 if (c1 == 0x80 || c1 == 0xA0 || c1 > 0xEF)
3128 goto label_invalid_code;
3129 if (c1 <= 0x9F || c1 >= 0xE0)
3130 {
3131 /* SJIS -> JISX0208 */
3132 ONE_MORE_BYTE (c2);
3133 if (c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
3134 goto label_invalid_code;
3135 DECODE_SJIS (c1, c2, c1, c2);
3136 charset = charset_jisx0208;
3137 }
3138 else
3139 /* SJIS -> JISX0201-Kana */
3140 charset = charset_katakana_jisx0201;
3141 }
3142 else
3143 {
3144 /* BIG5 -> Big5 */
3145 if (c1 < 0xA0 || c1 > 0xFE)
3146 goto label_invalid_code;
3147 ONE_MORE_BYTE (c2);
3148 if (c2 < 0x40 || (c2 > 0x7E && c2 < 0xA1) || c2 > 0xFE)
3149 goto label_invalid_code;
3150 DECODE_BIG5 (c1, c2, charset, c1, c2);
3151 }
3152 }
3153
3154 c = DECODE_ISO_CHARACTER (charset, c1, c2);
3155 EMIT_CHAR (c);
3156 continue;
3157
3158 label_invalid_code:
3159 coding->errors++;
3160 src = src_base;
3161 c = *src++;
3162 EMIT_CHAR (c);
3163 }
3164
3165 label_end_of_loop:
3166 coding->consumed = coding->consumed_char = src_base - source;
3167 coding->produced = dst - destination;
3168 return;
3169}
3170
3171/* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
3172 This function can encode charsets `ascii', `katakana-jisx0201',
3173 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
3174 are sure that all these charsets are registered as official charset
3175 (i.e. do not have extended leading-codes). Characters of other
3176 charsets are produced without any encoding. If SJIS_P is 1, encode
3177 SJIS text, else encode BIG5 text. */
3178
3179static void
3180encode_coding_sjis_big5 (coding, source, destination,
3181 src_bytes, dst_bytes, sjis_p)
3182 struct coding_system *coding;
3183 unsigned char *source, *destination;
3184 int src_bytes, dst_bytes;
3185 int sjis_p;
3186{
3187 unsigned char *src = source;
3188 unsigned char *src_end = source + src_bytes;
3189 unsigned char *dst = destination;
3190 unsigned char *dst_end = destination + dst_bytes;
3191 /* SRC_BASE remembers the start position in source in each loop.
3192 The loop will be exited when there's not enough source text to
3193 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3194 there's not enough destination area to produce encoded codes
3195 (within macro EMIT_BYTES). */
3196 unsigned char *src_base;
3197 Lisp_Object translation_table;
3198
3199 if (NILP (Venable_character_translation))
3200 translation_table = Qnil;
3201 else
3202 {
3203 translation_table = coding->translation_table_for_encode;
3204 if (NILP (translation_table))
3205 translation_table = Vstandard_translation_table_for_encode;
3206 }
3207
3208 while (1)
3209 {
3210 int c, charset, c1, c2;
3211
3212 src_base = src;
3213 ONE_MORE_CHAR (c);
3214
3215 /* Now encode the character C. */
3216 if (SINGLE_BYTE_CHAR_P (c))
3217 {
3218 switch (c)
3219 {
3220 case '\r':
3221 if (!(coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
3222 {
3223 EMIT_ONE_BYTE (c);
3224 break;
3225 }
3226 c = '\n';
3227 case '\n':
3228 if (coding->eol_type == CODING_EOL_CRLF)
3229 {
3230 EMIT_TWO_BYTES ('\r', c);
3231 break;
3232 }
3233 else if (coding->eol_type == CODING_EOL_CR)
3234 c = '\r';
3235 default:
3236 EMIT_ONE_BYTE (c);
3237 }
3238 }
3239 else
3240 {
3241 SPLIT_CHAR (c, charset, c1, c2);
3242 if (sjis_p)
3243 {
3244 if (charset == charset_jisx0208
3245 || charset == charset_jisx0208_1978)
3246 {
3247 ENCODE_SJIS (c1, c2, c1, c2);
3248 EMIT_TWO_BYTES (c1, c2);
3249 }
3250 else if (charset == charset_katakana_jisx0201)
3251 EMIT_ONE_BYTE (c1 | 0x80);
3252 else if (charset == charset_latin_jisx0201)
3253 EMIT_ONE_BYTE (c1);
3254 else if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR)
3255 {
3256 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3257 if (CHARSET_WIDTH (charset) > 1)
3258 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3259 }
3260 else
3261 /* There's no way other than producing the internal
3262 codes as is. */
3263 EMIT_BYTES (src_base, src);
3264 }
3265 else
3266 {
3267 if (charset == charset_big5_1 || charset == charset_big5_2)
3268 {
3269 ENCODE_BIG5 (charset, c1, c2, c1, c2);
3270 EMIT_TWO_BYTES (c1, c2);
3271 }
3272 else if (coding->mode & CODING_MODE_INHIBIT_UNENCODABLE_CHAR)
3273 {
3274 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3275 if (CHARSET_WIDTH (charset) > 1)
3276 EMIT_ONE_BYTE (CODING_REPLACEMENT_CHARACTER);
3277 }
3278 else
3279 /* There's no way other than producing the internal
3280 codes as is. */
3281 EMIT_BYTES (src_base, src);
3282 }
3283 }
3284 coding->consumed_char++;
3285 }
3286
3287 label_end_of_loop:
3288 coding->consumed = src_base - source;
3289 coding->produced = coding->produced_char = dst - destination;
3290}
3291
3292\f
3293/*** 5. CCL handlers ***/
3294
3295/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3296 Check if a text is encoded in a coding system of which
3297 encoder/decoder are written in CCL program. If it is, return
3298 CODING_CATEGORY_MASK_CCL, else return 0. */
3299
3300static int
3301detect_coding_ccl (src, src_end, multibytep)
3302 unsigned char *src, *src_end;
3303 int multibytep;
3304{
3305 unsigned char *valid;
3306 int c;
3307 /* Dummy for ONE_MORE_BYTE. */
3308 struct coding_system dummy_coding;
3309 struct coding_system *coding = &dummy_coding;
3310
3311 /* No coding system is assigned to coding-category-ccl. */
3312 if (!coding_system_table[CODING_CATEGORY_IDX_CCL])
3313 return 0;
3314
3315 valid = coding_system_table[CODING_CATEGORY_IDX_CCL]->spec.ccl.valid_codes;
3316 while (1)
3317 {
3318 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
3319 if (! valid[c])
3320 return 0;
3321 }
3322 label_end_of_loop:
3323 return CODING_CATEGORY_MASK_CCL;
3324}
3325
3326\f
3327/*** 6. End-of-line handlers ***/
3328
3329/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3330
3331static void
3332decode_eol (coding, source, destination, src_bytes, dst_bytes)
3333 struct coding_system *coding;
3334 const unsigned char *source;
3335 unsigned char *destination;
3336 int src_bytes, dst_bytes;
3337{
3338 const unsigned char *src = source;
3339 unsigned char *dst = destination;
3340 const unsigned char *src_end = src + src_bytes;
3341 unsigned char *dst_end = dst + dst_bytes;
3342 Lisp_Object translation_table;
3343 /* SRC_BASE remembers the start position in source in each loop.
3344 The loop will be exited when there's not enough source code
3345 (within macro ONE_MORE_BYTE), or when there's not enough
3346 destination area to produce a character (within macro
3347 EMIT_CHAR). */
3348 const unsigned char *src_base;
3349 int c;
3350
3351 translation_table = Qnil;
3352 switch (coding->eol_type)
3353 {
3354 case CODING_EOL_CRLF:
3355 while (1)
3356 {
3357 src_base = src;
3358 ONE_MORE_BYTE (c);
3359 if (c == '\r')
3360 {
3361 ONE_MORE_BYTE (c);
3362 if (c != '\n')
3363 {
3364 src--;
3365 c = '\r';
3366 }
3367 }
3368 else if (c == '\n'
3369 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
3370 {
3371 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3372 goto label_end_of_loop;
3373 }
3374 EMIT_CHAR (c);
3375 }
3376 break;
3377
3378 case CODING_EOL_CR:
3379 while (1)
3380 {
3381 src_base = src;
3382 ONE_MORE_BYTE (c);
3383 if (c == '\n')
3384 {
3385 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3386 {
3387 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3388 goto label_end_of_loop;
3389 }
3390 }
3391 else if (c == '\r')
3392 c = '\n';
3393 EMIT_CHAR (c);
3394 }
3395 break;
3396
3397 default: /* no need for EOL handling */
3398 while (1)
3399 {
3400 src_base = src;
3401 ONE_MORE_BYTE (c);
3402 EMIT_CHAR (c);
3403 }
3404 }
3405
3406 label_end_of_loop:
3407 coding->consumed = coding->consumed_char = src_base - source;
3408 coding->produced = dst - destination;
3409 return;
3410}
3411
3412/* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
3413 format of end-of-line according to `coding->eol_type'. It also
3414 convert multibyte form 8-bit characters to unibyte if
3415 CODING->src_multibyte is nonzero. If `coding->mode &
3416 CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code '\r' in source text
3417 also means end-of-line. */
3418
3419static void
3420encode_eol (coding, source, destination, src_bytes, dst_bytes)
3421 struct coding_system *coding;
3422 const unsigned char *source;
3423 unsigned char *destination;
3424 int src_bytes, dst_bytes;
3425{
3426 const unsigned char *src = source;
3427 unsigned char *dst = destination;
3428 const unsigned char *src_end = src + src_bytes;
3429 unsigned char *dst_end = dst + dst_bytes;
3430 Lisp_Object translation_table;
3431 /* SRC_BASE remembers the start position in source in each loop.
3432 The loop will be exited when there's not enough source text to
3433 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3434 there's not enough destination area to produce encoded codes
3435 (within macro EMIT_BYTES). */
3436 const unsigned char *src_base;
3437 unsigned char *tmp;
3438 int c;
3439 int selective_display = coding->mode & CODING_MODE_SELECTIVE_DISPLAY;
3440
3441 translation_table = Qnil;
3442 if (coding->src_multibyte
3443 && *(src_end - 1) == LEADING_CODE_8_BIT_CONTROL)
3444 {
3445 src_end--;
3446 src_bytes--;
3447 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
3448 }
3449
3450 if (coding->eol_type == CODING_EOL_CRLF)
3451 {
3452 while (src < src_end)
3453 {
3454 src_base = src;
3455 c = *src++;
3456 if (c >= 0x20)
3457 EMIT_ONE_BYTE (c);
3458 else if (c == '\n' || (c == '\r' && selective_display))
3459 EMIT_TWO_BYTES ('\r', '\n');
3460 else
3461 EMIT_ONE_BYTE (c);
3462 }
3463 src_base = src;
3464 label_end_of_loop:
3465 ;
3466 }
3467 else
3468 {
3469 if (!dst_bytes || src_bytes <= dst_bytes)
3470 {
3471 safe_bcopy (src, dst, src_bytes);
3472 src_base = src_end;
3473 dst += src_bytes;
3474 }
3475 else
3476 {
3477 if (coding->src_multibyte
3478 && *(src + dst_bytes - 1) == LEADING_CODE_8_BIT_CONTROL)
3479 dst_bytes--;
3480 safe_bcopy (src, dst, dst_bytes);
3481 src_base = src + dst_bytes;
3482 dst = destination + dst_bytes;
3483 coding->result = CODING_FINISH_INSUFFICIENT_DST;
3484 }
3485 if (coding->eol_type == CODING_EOL_CR)
3486 {
3487 for (tmp = destination; tmp < dst; tmp++)
3488 if (*tmp == '\n') *tmp = '\r';
3489 }
3490 else if (selective_display)
3491 {
3492 for (tmp = destination; tmp < dst; tmp++)
3493 if (*tmp == '\r') *tmp = '\n';
3494 }
3495 }
3496 if (coding->src_multibyte)
3497 dst = destination + str_as_unibyte (destination, dst - destination);
3498
3499 coding->consumed = src_base - source;
3500 coding->produced = dst - destination;
3501 coding->produced_char = coding->produced;
3502}
3503
3504\f
3505/*** 7. C library functions ***/
3506
3507/* In Emacs Lisp, a coding system is represented by a Lisp symbol which
3508 has a property `coding-system'. The value of this property is a
3509 vector of length 5 (called the coding-vector). Among elements of
3510 this vector, the first (element[0]) and the fifth (element[4])
3511 carry important information for decoding/encoding. Before
3512 decoding/encoding, this information should be set in fields of a
3513 structure of type `coding_system'.
3514
3515 The value of the property `coding-system' can be a symbol of another
3516 subsidiary coding-system. In that case, Emacs gets coding-vector
3517 from that symbol.
3518
3519 `element[0]' contains information to be set in `coding->type'. The
3520 value and its meaning is as follows:
3521
3522 0 -- coding_type_emacs_mule
3523 1 -- coding_type_sjis
3524 2 -- coding_type_iso2022
3525 3 -- coding_type_big5
3526 4 -- coding_type_ccl encoder/decoder written in CCL
3527 nil -- coding_type_no_conversion
3528 t -- coding_type_undecided (automatic conversion on decoding,
3529 no-conversion on encoding)
3530
3531 `element[4]' contains information to be set in `coding->flags' and
3532 `coding->spec'. The meaning varies by `coding->type'.
3533
3534 If `coding->type' is `coding_type_iso2022', element[4] is a vector
3535 of length 32 (of which the first 13 sub-elements are used now).
3536 Meanings of these sub-elements are:
3537
3538 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
3539 If the value is an integer of valid charset, the charset is
3540 assumed to be designated to graphic register N initially.
3541
3542 If the value is minus, it is a minus value of charset which
3543 reserves graphic register N, which means that the charset is
3544 not designated initially but should be designated to graphic
3545 register N just before encoding a character in that charset.
3546
3547 If the value is nil, graphic register N is never used on
3548 encoding.
3549
3550 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
3551 Each value takes t or nil. See the section ISO2022 of
3552 `coding.h' for more information.
3553
3554 If `coding->type' is `coding_type_big5', element[4] is t to denote
3555 BIG5-ETen or nil to denote BIG5-HKU.
3556
3557 If `coding->type' takes the other value, element[4] is ignored.
3558
3559 Emacs Lisp's coding systems also carry information about format of
3560 end-of-line in a value of property `eol-type'. If the value is
3561 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
3562 means CODING_EOL_CR. If it is not integer, it should be a vector
3563 of subsidiary coding systems of which property `eol-type' has one
3564 of the above values.
3565
3566*/
3567
3568/* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
3569 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
3570 is setup so that no conversion is necessary and return -1, else
3571 return 0. */
3572
3573int
3574setup_coding_system (coding_system, coding)
3575 Lisp_Object coding_system;
3576 struct coding_system *coding;
3577{
3578 Lisp_Object coding_spec, coding_type, eol_type, plist;
3579 Lisp_Object val;
3580
3581 /* At first, zero clear all members. */
3582 bzero (coding, sizeof (struct coding_system));
3583
3584 /* Initialize some fields required for all kinds of coding systems. */
3585 coding->symbol = coding_system;
3586 coding->heading_ascii = -1;
3587 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
3588 coding->composing = COMPOSITION_DISABLED;
3589 coding->cmp_data = NULL;
3590
3591 if (NILP (coding_system))
3592 goto label_invalid_coding_system;
3593
3594 coding_spec = Fget (coding_system, Qcoding_system);
3595
3596 if (!VECTORP (coding_spec)
3597 || XVECTOR (coding_spec)->size != 5
3598 || !CONSP (XVECTOR (coding_spec)->contents[3]))
3599 goto label_invalid_coding_system;
3600
3601 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
3602 if (VECTORP (eol_type))
3603 {
3604 coding->eol_type = CODING_EOL_UNDECIDED;
3605 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
3606 }
3607 else if (XFASTINT (eol_type) == 1)
3608 {
3609 coding->eol_type = CODING_EOL_CRLF;
3610 coding->common_flags
3611 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3612 }
3613 else if (XFASTINT (eol_type) == 2)
3614 {
3615 coding->eol_type = CODING_EOL_CR;
3616 coding->common_flags
3617 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3618 }
3619 else
3620 coding->eol_type = CODING_EOL_LF;
3621
3622 coding_type = XVECTOR (coding_spec)->contents[0];
3623 /* Try short cut. */
3624 if (SYMBOLP (coding_type))
3625 {
3626 if (EQ (coding_type, Qt))
3627 {
3628 coding->type = coding_type_undecided;
3629 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
3630 }
3631 else
3632 coding->type = coding_type_no_conversion;
3633 /* Initialize this member. Any thing other than
3634 CODING_CATEGORY_IDX_UTF_16_BE and
3635 CODING_CATEGORY_IDX_UTF_16_LE are ok because they have
3636 special treatment in detect_eol. */
3637 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
3638
3639 return 0;
3640 }
3641
3642 /* Get values of coding system properties:
3643 `post-read-conversion', `pre-write-conversion',
3644 `translation-table-for-decode', `translation-table-for-encode'. */
3645 plist = XVECTOR (coding_spec)->contents[3];
3646 /* Pre & post conversion functions should be disabled if
3647 inhibit_eol_conversion is nonzero. This is the case that a code
3648 conversion function is called while those functions are running. */
3649 if (! inhibit_pre_post_conversion)
3650 {
3651 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
3652 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
3653 }
3654 val = Fplist_get (plist, Qtranslation_table_for_decode);
3655 if (SYMBOLP (val))
3656 val = Fget (val, Qtranslation_table_for_decode);
3657 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
3658 val = Fplist_get (plist, Qtranslation_table_for_encode);
3659 if (SYMBOLP (val))
3660 val = Fget (val, Qtranslation_table_for_encode);
3661 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
3662 val = Fplist_get (plist, Qcoding_category);
3663 if (!NILP (val))
3664 {
3665 val = Fget (val, Qcoding_category_index);
3666 if (INTEGERP (val))
3667 coding->category_idx = XINT (val);
3668 else
3669 goto label_invalid_coding_system;
3670 }
3671 else
3672 goto label_invalid_coding_system;
3673
3674 /* If the coding system has non-nil `composition' property, enable
3675 composition handling. */
3676 val = Fplist_get (plist, Qcomposition);
3677 if (!NILP (val))
3678 coding->composing = COMPOSITION_NO;
3679
3680 switch (XFASTINT (coding_type))
3681 {
3682 case 0:
3683 coding->type = coding_type_emacs_mule;
3684 coding->common_flags
3685 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3686 if (!NILP (coding->post_read_conversion))
3687 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
3688 if (!NILP (coding->pre_write_conversion))
3689 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
3690 break;
3691
3692 case 1:
3693 coding->type = coding_type_sjis;
3694 coding->common_flags
3695 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3696 break;
3697
3698 case 2:
3699 coding->type = coding_type_iso2022;
3700 coding->common_flags
3701 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3702 {
3703 Lisp_Object val, temp;
3704 Lisp_Object *flags;
3705 int i, charset, reg_bits = 0;
3706
3707 val = XVECTOR (coding_spec)->contents[4];
3708
3709 if (!VECTORP (val) || XVECTOR (val)->size != 32)
3710 goto label_invalid_coding_system;
3711
3712 flags = XVECTOR (val)->contents;
3713 coding->flags
3714 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
3715 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
3716 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
3717 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
3718 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
3719 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
3720 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
3721 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
3722 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
3723 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
3724 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3725 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
3726 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
3727 );
3728
3729 /* Invoke graphic register 0 to plane 0. */
3730 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
3731 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
3732 CODING_SPEC_ISO_INVOCATION (coding, 1)
3733 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
3734 /* Not single shifting at first. */
3735 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
3736 /* Beginning of buffer should also be regarded as bol. */
3737 CODING_SPEC_ISO_BOL (coding) = 1;
3738
3739 for (charset = 0; charset <= MAX_CHARSET; charset++)
3740 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
3741 val = Vcharset_revision_alist;
3742 while (CONSP (val))
3743 {
3744 charset = get_charset_id (Fcar_safe (XCAR (val)));
3745 if (charset >= 0
3746 && (temp = Fcdr_safe (XCAR (val)), INTEGERP (temp))
3747 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
3748 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
3749 val = XCDR (val);
3750 }
3751
3752 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
3753 FLAGS[REG] can be one of below:
3754 integer CHARSET: CHARSET occupies register I,
3755 t: designate nothing to REG initially, but can be used
3756 by any charsets,
3757 list of integer, nil, or t: designate the first
3758 element (if integer) to REG initially, the remaining
3759 elements (if integer) is designated to REG on request,
3760 if an element is t, REG can be used by any charsets,
3761 nil: REG is never used. */
3762 for (charset = 0; charset <= MAX_CHARSET; charset++)
3763 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3764 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
3765 for (i = 0; i < 4; i++)
3766 {
3767 if ((INTEGERP (flags[i])
3768 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset)))
3769 || (charset = get_charset_id (flags[i])) >= 0)
3770 {
3771 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3772 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
3773 }
3774 else if (EQ (flags[i], Qt))
3775 {
3776 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3777 reg_bits |= 1 << i;
3778 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3779 }
3780 else if (CONSP (flags[i]))
3781 {
3782 Lisp_Object tail;
3783 tail = flags[i];
3784
3785 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3786 if ((INTEGERP (XCAR (tail))
3787 && (charset = XINT (XCAR (tail)),
3788 CHARSET_VALID_P (charset)))
3789 || (charset = get_charset_id (XCAR (tail))) >= 0)
3790 {
3791 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3792 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
3793 }
3794 else
3795 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3796 tail = XCDR (tail);
3797 while (CONSP (tail))
3798 {
3799 if ((INTEGERP (XCAR (tail))
3800 && (charset = XINT (XCAR (tail)),
3801 CHARSET_VALID_P (charset)))
3802 || (charset = get_charset_id (XCAR (tail))) >= 0)
3803 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3804 = i;
3805 else if (EQ (XCAR (tail), Qt))
3806 reg_bits |= 1 << i;
3807 tail = XCDR (tail);
3808 }
3809 }
3810 else
3811 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3812
3813 CODING_SPEC_ISO_DESIGNATION (coding, i)
3814 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3815 }
3816
3817 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3818 {
3819 /* REG 1 can be used only by locking shift in 7-bit env. */
3820 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3821 reg_bits &= ~2;
3822 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3823 /* Without any shifting, only REG 0 and 1 can be used. */
3824 reg_bits &= 3;
3825 }
3826
3827 if (reg_bits)
3828 for (charset = 0; charset <= MAX_CHARSET; charset++)
3829 {
3830 if (CHARSET_DEFINED_P (charset)
3831 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3832 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
3833 {
3834 /* There exist some default graphic registers to be
3835 used by CHARSET. */
3836
3837 /* We had better avoid designating a charset of
3838 CHARS96 to REG 0 as far as possible. */
3839 if (CHARSET_CHARS (charset) == 96)
3840 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3841 = (reg_bits & 2
3842 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3843 else
3844 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3845 = (reg_bits & 1
3846 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3847 }
3848 }
3849 }
3850 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3851 coding->spec.iso2022.last_invalid_designation_register = -1;
3852 break;
3853
3854 case 3:
3855 coding->type = coding_type_big5;
3856 coding->common_flags
3857 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3858 coding->flags
3859 = (NILP (XVECTOR (coding_spec)->contents[4])
3860 ? CODING_FLAG_BIG5_HKU
3861 : CODING_FLAG_BIG5_ETEN);
3862 break;
3863
3864 case 4:
3865 coding->type = coding_type_ccl;
3866 coding->common_flags
3867 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3868 {
3869 val = XVECTOR (coding_spec)->contents[4];
3870 if (! CONSP (val)
3871 || setup_ccl_program (&(coding->spec.ccl.decoder),
3872 XCAR (val)) < 0
3873 || setup_ccl_program (&(coding->spec.ccl.encoder),
3874 XCDR (val)) < 0)
3875 goto label_invalid_coding_system;
3876
3877 bzero (coding->spec.ccl.valid_codes, 256);
3878 val = Fplist_get (plist, Qvalid_codes);
3879 if (CONSP (val))
3880 {
3881 Lisp_Object this;
3882
3883 for (; CONSP (val); val = XCDR (val))
3884 {
3885 this = XCAR (val);
3886 if (INTEGERP (this)
3887 && XINT (this) >= 0 && XINT (this) < 256)
3888 coding->spec.ccl.valid_codes[XINT (this)] = 1;
3889 else if (CONSP (this)
3890 && INTEGERP (XCAR (this))
3891 && INTEGERP (XCDR (this)))
3892 {
3893 int start = XINT (XCAR (this));
3894 int end = XINT (XCDR (this));
3895
3896 if (start >= 0 && start <= end && end < 256)
3897 while (start <= end)
3898 coding->spec.ccl.valid_codes[start++] = 1;
3899 }
3900 }
3901 }
3902 }
3903 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3904 coding->spec.ccl.cr_carryover = 0;
3905 coding->spec.ccl.eight_bit_carryover[0] = 0;
3906 break;
3907
3908 case 5:
3909 coding->type = coding_type_raw_text;
3910 break;
3911
3912 default:
3913 goto label_invalid_coding_system;
3914 }
3915 return 0;
3916
3917 label_invalid_coding_system:
3918 coding->type = coding_type_no_conversion;
3919 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3920 coding->common_flags = 0;
3921 coding->eol_type = CODING_EOL_LF;
3922 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3923 return -1;
3924}
3925
3926/* Free memory blocks allocated for storing composition information. */
3927
3928void
3929coding_free_composition_data (coding)
3930 struct coding_system *coding;
3931{
3932 struct composition_data *cmp_data = coding->cmp_data, *next;
3933
3934 if (!cmp_data)
3935 return;
3936 /* Memory blocks are chained. At first, rewind to the first, then,
3937 free blocks one by one. */
3938 while (cmp_data->prev)
3939 cmp_data = cmp_data->prev;
3940 while (cmp_data)
3941 {
3942 next = cmp_data->next;
3943 xfree (cmp_data);
3944 cmp_data = next;
3945 }
3946 coding->cmp_data = NULL;
3947}
3948
3949/* Set `char_offset' member of all memory blocks pointed by
3950 coding->cmp_data to POS. */
3951
3952void
3953coding_adjust_composition_offset (coding, pos)
3954 struct coding_system *coding;
3955 int pos;
3956{
3957 struct composition_data *cmp_data;
3958
3959 for (cmp_data = coding->cmp_data; cmp_data; cmp_data = cmp_data->next)
3960 cmp_data->char_offset = pos;
3961}
3962
3963/* Setup raw-text or one of its subsidiaries in the structure
3964 coding_system CODING according to the already setup value eol_type
3965 in CODING. CODING should be setup for some coding system in
3966 advance. */
3967
3968void
3969setup_raw_text_coding_system (coding)
3970 struct coding_system *coding;
3971{
3972 if (coding->type != coding_type_raw_text)
3973 {
3974 coding->symbol = Qraw_text;
3975 coding->type = coding_type_raw_text;
3976 if (coding->eol_type != CODING_EOL_UNDECIDED)
3977 {
3978 Lisp_Object subsidiaries;
3979 subsidiaries = Fget (Qraw_text, Qeol_type);
3980
3981 if (VECTORP (subsidiaries)
3982 && XVECTOR (subsidiaries)->size == 3)
3983 coding->symbol
3984 = XVECTOR (subsidiaries)->contents[coding->eol_type];
3985 }
3986 setup_coding_system (coding->symbol, coding);
3987 }
3988 return;
3989}
3990
3991/* Emacs has a mechanism to automatically detect a coding system if it
3992 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3993 it's impossible to distinguish some coding systems accurately
3994 because they use the same range of codes. So, at first, coding
3995 systems are categorized into 7, those are:
3996
3997 o coding-category-emacs-mule
3998
3999 The category for a coding system which has the same code range
4000 as Emacs' internal format. Assigned the coding-system (Lisp
4001 symbol) `emacs-mule' by default.
4002
4003 o coding-category-sjis
4004
4005 The category for a coding system which has the same code range
4006 as SJIS. Assigned the coding-system (Lisp
4007 symbol) `japanese-shift-jis' by default.
4008
4009 o coding-category-iso-7
4010
4011 The category for a coding system which has the same code range
4012 as ISO2022 of 7-bit environment. This doesn't use any locking
4013 shift and single shift functions. This can encode/decode all
4014 charsets. Assigned the coding-system (Lisp symbol)
4015 `iso-2022-7bit' by default.
4016
4017 o coding-category-iso-7-tight
4018
4019 Same as coding-category-iso-7 except that this can
4020 encode/decode only the specified charsets.
4021
4022 o coding-category-iso-8-1
4023
4024 The category for a coding system which has the same code range
4025 as ISO2022 of 8-bit environment and graphic plane 1 used only
4026 for DIMENSION1 charset. This doesn't use any locking shift
4027 and single shift functions. Assigned the coding-system (Lisp
4028 symbol) `iso-latin-1' by default.
4029
4030 o coding-category-iso-8-2
4031
4032 The category for a coding system which has the same code range
4033 as ISO2022 of 8-bit environment and graphic plane 1 used only
4034 for DIMENSION2 charset. This doesn't use any locking shift
4035 and single shift functions. Assigned the coding-system (Lisp
4036 symbol) `japanese-iso-8bit' by default.
4037
4038 o coding-category-iso-7-else
4039
4040 The category for a coding system which has the same code range
4041 as ISO2022 of 7-bit environment but uses locking shift or
4042 single shift functions. Assigned the coding-system (Lisp
4043 symbol) `iso-2022-7bit-lock' by default.
4044
4045 o coding-category-iso-8-else
4046
4047 The category for a coding system which has the same code range
4048 as ISO2022 of 8-bit environment but uses locking shift or
4049 single shift functions. Assigned the coding-system (Lisp
4050 symbol) `iso-2022-8bit-ss2' by default.
4051
4052 o coding-category-big5
4053
4054 The category for a coding system which has the same code range
4055 as BIG5. Assigned the coding-system (Lisp symbol)
4056 `cn-big5' by default.
4057
4058 o coding-category-utf-8
4059
4060 The category for a coding system which has the same code range
4061 as UTF-8 (cf. RFC3629). Assigned the coding-system (Lisp
4062 symbol) `utf-8' by default.
4063
4064 o coding-category-utf-16-be
4065
4066 The category for a coding system in which a text has an
4067 Unicode signature (cf. Unicode Standard) in the order of BIG
4068 endian at the head. Assigned the coding-system (Lisp symbol)
4069 `utf-16-be' by default.
4070
4071 o coding-category-utf-16-le
4072
4073 The category for a coding system in which a text has an
4074 Unicode signature (cf. Unicode Standard) in the order of
4075 LITTLE endian at the head. Assigned the coding-system (Lisp
4076 symbol) `utf-16-le' by default.
4077
4078 o coding-category-ccl
4079
4080 The category for a coding system of which encoder/decoder is
4081 written in CCL programs. The default value is nil, i.e., no
4082 coding system is assigned.
4083
4084 o coding-category-binary
4085
4086 The category for a coding system not categorized in any of the
4087 above. Assigned the coding-system (Lisp symbol)
4088 `no-conversion' by default.
4089
4090 Each of them is a Lisp symbol and the value is an actual
4091 `coding-system' (this is also a Lisp symbol) assigned by a user.
4092 What Emacs does actually is to detect a category of coding system.
4093 Then, it uses a `coding-system' assigned to it. If Emacs can't
4094 decide a single possible category, it selects a category of the
4095 highest priority. Priorities of categories are also specified by a
4096 user in a Lisp variable `coding-category-list'.
4097
4098*/
4099
4100static
4101int ascii_skip_code[256];
4102
4103/* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
4104 If it detects possible coding systems, return an integer in which
4105 appropriate flag bits are set. Flag bits are defined by macros
4106 CODING_CATEGORY_MASK_XXX in `coding.h'. If PRIORITIES is non-NULL,
4107 it should point the table `coding_priorities'. In that case, only
4108 the flag bit for a coding system of the highest priority is set in
4109 the returned value. If MULTIBYTEP is nonzero, 8-bit codes of the
4110 range 0x80..0x9F are in multibyte form.
4111
4112 How many ASCII characters are at the head is returned as *SKIP. */
4113
4114static int
4115detect_coding_mask (source, src_bytes, priorities, skip, multibytep)
4116 unsigned char *source;
4117 int src_bytes, *priorities, *skip;
4118 int multibytep;
4119{
4120 register unsigned char c;
4121 unsigned char *src = source, *src_end = source + src_bytes;
4122 unsigned int mask, utf16_examined_p, iso2022_examined_p;
4123 int i;
4124
4125 /* At first, skip all ASCII characters and control characters except
4126 for three ISO2022 specific control characters. */
4127 ascii_skip_code[ISO_CODE_SO] = 0;
4128 ascii_skip_code[ISO_CODE_SI] = 0;
4129 ascii_skip_code[ISO_CODE_ESC] = 0;
4130
4131 label_loop_detect_coding:
4132 while (src < src_end && ascii_skip_code[*src]) src++;
4133 *skip = src - source;
4134
4135 if (src >= src_end)
4136 /* We found nothing other than ASCII. There's nothing to do. */
4137 return 0;
4138
4139 c = *src;
4140 /* The text seems to be encoded in some multilingual coding system.
4141 Now, try to find in which coding system the text is encoded. */
4142 if (c < 0x80)
4143 {
4144 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
4145 /* C is an ISO2022 specific control code of C0. */
4146 mask = detect_coding_iso2022 (src, src_end, multibytep);
4147 if (mask == 0)
4148 {
4149 /* No valid ISO2022 code follows C. Try again. */
4150 src++;
4151 if (c == ISO_CODE_ESC)
4152 ascii_skip_code[ISO_CODE_ESC] = 1;
4153 else
4154 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
4155 goto label_loop_detect_coding;
4156 }
4157 if (priorities)
4158 {
4159 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4160 {
4161 if (mask & priorities[i])
4162 return priorities[i];
4163 }
4164 return CODING_CATEGORY_MASK_RAW_TEXT;
4165 }
4166 }
4167 else
4168 {
4169 int try;
4170
4171 if (multibytep && c == LEADING_CODE_8_BIT_CONTROL)
4172 c = src[1] - 0x20;
4173
4174 if (c < 0xA0)
4175 {
4176 /* C is the first byte of SJIS character code,
4177 or a leading-code of Emacs' internal format (emacs-mule),
4178 or the first byte of UTF-16. */
4179 try = (CODING_CATEGORY_MASK_SJIS
4180 | CODING_CATEGORY_MASK_EMACS_MULE
4181 | CODING_CATEGORY_MASK_UTF_16_BE
4182 | CODING_CATEGORY_MASK_UTF_16_LE);
4183
4184 /* Or, if C is a special latin extra code,
4185 or is an ISO2022 specific control code of C1 (SS2 or SS3),
4186 or is an ISO2022 control-sequence-introducer (CSI),
4187 we should also consider the possibility of ISO2022 codings. */
4188 if ((VECTORP (Vlatin_extra_code_table)
4189 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
4190 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
4191 || (c == ISO_CODE_CSI
4192 && (src < src_end
4193 && (*src == ']'
4194 || ((*src == '0' || *src == '1' || *src == '2')
4195 && src + 1 < src_end
4196 && src[1] == ']')))))
4197 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
4198 | CODING_CATEGORY_MASK_ISO_8BIT);
4199 }
4200 else
4201 /* C is a character of ISO2022 in graphic plane right,
4202 or a SJIS's 1-byte character code (i.e. JISX0201),
4203 or the first byte of BIG5's 2-byte code,
4204 or the first byte of UTF-8/16. */
4205 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
4206 | CODING_CATEGORY_MASK_ISO_8BIT
4207 | CODING_CATEGORY_MASK_SJIS
4208 | CODING_CATEGORY_MASK_BIG5
4209 | CODING_CATEGORY_MASK_UTF_8
4210 | CODING_CATEGORY_MASK_UTF_16_BE
4211 | CODING_CATEGORY_MASK_UTF_16_LE);
4212
4213 /* Or, we may have to consider the possibility of CCL. */
4214 if (coding_system_table[CODING_CATEGORY_IDX_CCL]
4215 && (coding_system_table[CODING_CATEGORY_IDX_CCL]
4216 ->spec.ccl.valid_codes)[c])
4217 try |= CODING_CATEGORY_MASK_CCL;
4218
4219 mask = 0;
4220 utf16_examined_p = iso2022_examined_p = 0;
4221 if (priorities)
4222 {
4223 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4224 {
4225 if (!iso2022_examined_p
4226 && (priorities[i] & try & CODING_CATEGORY_MASK_ISO))
4227 {
4228 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4229 iso2022_examined_p = 1;
4230 }
4231 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
4232 mask |= detect_coding_sjis (src, src_end, multibytep);
4233 else if (priorities[i] & try & CODING_CATEGORY_MASK_UTF_8)
4234 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4235 else if (!utf16_examined_p
4236 && (priorities[i] & try &
4237 CODING_CATEGORY_MASK_UTF_16_BE_LE))
4238 {
4239 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4240 utf16_examined_p = 1;
4241 }
4242 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
4243 mask |= detect_coding_big5 (src, src_end, multibytep);
4244 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
4245 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4246 else if (priorities[i] & try & CODING_CATEGORY_MASK_CCL)
4247 mask |= detect_coding_ccl (src, src_end, multibytep);
4248 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
4249 mask |= CODING_CATEGORY_MASK_RAW_TEXT;
4250 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
4251 mask |= CODING_CATEGORY_MASK_BINARY;
4252 if (mask & priorities[i])
4253 return priorities[i];
4254 }
4255 return CODING_CATEGORY_MASK_RAW_TEXT;
4256 }
4257 if (try & CODING_CATEGORY_MASK_ISO)
4258 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4259 if (try & CODING_CATEGORY_MASK_SJIS)
4260 mask |= detect_coding_sjis (src, src_end, multibytep);
4261 if (try & CODING_CATEGORY_MASK_BIG5)
4262 mask |= detect_coding_big5 (src, src_end, multibytep);
4263 if (try & CODING_CATEGORY_MASK_UTF_8)
4264 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4265 if (try & CODING_CATEGORY_MASK_UTF_16_BE_LE)
4266 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4267 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
4268 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4269 if (try & CODING_CATEGORY_MASK_CCL)
4270 mask |= detect_coding_ccl (src, src_end, multibytep);
4271 }
4272 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
4273}
4274
4275/* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
4276 The information of the detected coding system is set in CODING. */
4277
4278void
4279detect_coding (coding, src, src_bytes)
4280 struct coding_system *coding;
4281 const unsigned char *src;
4282 int src_bytes;
4283{
4284 unsigned int idx;
4285 int skip, mask;
4286 Lisp_Object val;
4287
4288 val = Vcoding_category_list;
4289 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip,
4290 coding->src_multibyte);
4291 coding->heading_ascii = skip;
4292
4293 if (!mask) return;
4294
4295 /* We found a single coding system of the highest priority in MASK. */
4296 idx = 0;
4297 while (mask && ! (mask & 1)) mask >>= 1, idx++;
4298 if (! mask)
4299 idx = CODING_CATEGORY_IDX_RAW_TEXT;
4300
4301 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[idx]);
4302
4303 if (coding->eol_type != CODING_EOL_UNDECIDED)
4304 {
4305 Lisp_Object tmp;
4306
4307 tmp = Fget (val, Qeol_type);
4308 if (VECTORP (tmp))
4309 val = XVECTOR (tmp)->contents[coding->eol_type];
4310 }
4311
4312 /* Setup this new coding system while preserving some slots. */
4313 {
4314 int src_multibyte = coding->src_multibyte;
4315 int dst_multibyte = coding->dst_multibyte;
4316
4317 setup_coding_system (val, coding);
4318 coding->src_multibyte = src_multibyte;
4319 coding->dst_multibyte = dst_multibyte;
4320 coding->heading_ascii = skip;
4321 }
4322}
4323
4324/* Detect how end-of-line of a text of length SRC_BYTES pointed by
4325 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
4326 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
4327
4328 How many non-eol characters are at the head is returned as *SKIP. */
4329
4330#define MAX_EOL_CHECK_COUNT 3
4331
4332static int
4333detect_eol_type (source, src_bytes, skip)
4334 unsigned char *source;
4335 int src_bytes, *skip;
4336{
4337 unsigned char *src = source, *src_end = src + src_bytes;
4338 unsigned char c;
4339 int total = 0; /* How many end-of-lines are found so far. */
4340 int eol_type = CODING_EOL_UNDECIDED;
4341 int this_eol_type;
4342
4343 *skip = 0;
4344
4345 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
4346 {
4347 c = *src++;
4348 if (c == '\n' || c == '\r')
4349 {
4350 if (*skip == 0)
4351 *skip = src - 1 - source;
4352 total++;
4353 if (c == '\n')
4354 this_eol_type = CODING_EOL_LF;
4355 else if (src >= src_end || *src != '\n')
4356 this_eol_type = CODING_EOL_CR;
4357 else
4358 this_eol_type = CODING_EOL_CRLF, src++;
4359
4360 if (eol_type == CODING_EOL_UNDECIDED)
4361 /* This is the first end-of-line. */
4362 eol_type = this_eol_type;
4363 else if (eol_type != this_eol_type)
4364 {
4365 /* The found type is different from what found before. */
4366 eol_type = CODING_EOL_INCONSISTENT;
4367 break;
4368 }
4369 }
4370 }
4371
4372 if (*skip == 0)
4373 *skip = src_end - source;
4374 return eol_type;
4375}
4376
4377/* Like detect_eol_type, but detect EOL type in 2-octet
4378 big-endian/little-endian format for coding systems utf-16-be and
4379 utf-16-le. */
4380
4381static int
4382detect_eol_type_in_2_octet_form (source, src_bytes, skip, big_endian_p)
4383 unsigned char *source;
4384 int src_bytes, *skip, big_endian_p;
4385{
4386 unsigned char *src = source, *src_end = src + src_bytes;
4387 unsigned int c1, c2;
4388 int total = 0; /* How many end-of-lines are found so far. */
4389 int eol_type = CODING_EOL_UNDECIDED;
4390 int this_eol_type;
4391 int msb, lsb;
4392
4393 if (big_endian_p)
4394 msb = 0, lsb = 1;
4395 else
4396 msb = 1, lsb = 0;
4397
4398 *skip = 0;
4399
4400 while ((src + 1) < src_end && total < MAX_EOL_CHECK_COUNT)
4401 {
4402 c1 = (src[msb] << 8) | (src[lsb]);
4403 src += 2;
4404
4405 if (c1 == '\n' || c1 == '\r')
4406 {
4407 if (*skip == 0)
4408 *skip = src - 2 - source;
4409 total++;
4410 if (c1 == '\n')
4411 {
4412 this_eol_type = CODING_EOL_LF;
4413 }
4414 else
4415 {
4416 if ((src + 1) >= src_end)
4417 {
4418 this_eol_type = CODING_EOL_CR;
4419 }
4420 else
4421 {
4422 c2 = (src[msb] << 8) | (src[lsb]);
4423 if (c2 == '\n')
4424 this_eol_type = CODING_EOL_CRLF, src += 2;
4425 else
4426 this_eol_type = CODING_EOL_CR;
4427 }
4428 }
4429
4430 if (eol_type == CODING_EOL_UNDECIDED)
4431 /* This is the first end-of-line. */
4432 eol_type = this_eol_type;
4433 else if (eol_type != this_eol_type)
4434 {
4435 /* The found type is different from what found before. */
4436 eol_type = CODING_EOL_INCONSISTENT;
4437 break;
4438 }
4439 }
4440 }
4441
4442 if (*skip == 0)
4443 *skip = src_end - source;
4444 return eol_type;
4445}
4446
4447/* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
4448 is encoded. If it detects an appropriate format of end-of-line, it
4449 sets the information in *CODING. */
4450
4451void
4452detect_eol (coding, src, src_bytes)
4453 struct coding_system *coding;
4454 const unsigned char *src;
4455 int src_bytes;
4456{
4457 Lisp_Object val;
4458 int skip;
4459 int eol_type;
4460
4461 switch (coding->category_idx)
4462 {
4463 case CODING_CATEGORY_IDX_UTF_16_BE:
4464 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 1);
4465 break;
4466 case CODING_CATEGORY_IDX_UTF_16_LE:
4467 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 0);
4468 break;
4469 default:
4470 eol_type = detect_eol_type (src, src_bytes, &skip);
4471 break;
4472 }
4473
4474 if (coding->heading_ascii > skip)
4475 coding->heading_ascii = skip;
4476 else
4477 skip = coding->heading_ascii;
4478
4479 if (eol_type == CODING_EOL_UNDECIDED)
4480 return;
4481 if (eol_type == CODING_EOL_INCONSISTENT)
4482 {
4483#if 0
4484 /* This code is suppressed until we find a better way to
4485 distinguish raw text file and binary file. */
4486
4487 /* If we have already detected that the coding is raw-text, the
4488 coding should actually be no-conversion. */
4489 if (coding->type == coding_type_raw_text)
4490 {
4491 setup_coding_system (Qno_conversion, coding);
4492 return;
4493 }
4494 /* Else, let's decode only text code anyway. */
4495#endif /* 0 */
4496 eol_type = CODING_EOL_LF;
4497 }
4498
4499 val = Fget (coding->symbol, Qeol_type);
4500 if (VECTORP (val) && XVECTOR (val)->size == 3)
4501 {
4502 int src_multibyte = coding->src_multibyte;
4503 int dst_multibyte = coding->dst_multibyte;
4504 struct composition_data *cmp_data = coding->cmp_data;
4505
4506 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
4507 coding->src_multibyte = src_multibyte;
4508 coding->dst_multibyte = dst_multibyte;
4509 coding->heading_ascii = skip;
4510 coding->cmp_data = cmp_data;
4511 }
4512}
4513
4514#define CONVERSION_BUFFER_EXTRA_ROOM 256
4515
4516#define DECODING_BUFFER_MAG(coding) \
4517 (coding->type == coding_type_iso2022 \
4518 ? 3 \
4519 : (coding->type == coding_type_ccl \
4520 ? coding->spec.ccl.decoder.buf_magnification \
4521 : 2))
4522
4523/* Return maximum size (bytes) of a buffer enough for decoding
4524 SRC_BYTES of text encoded in CODING. */
4525
4526int
4527decoding_buffer_size (coding, src_bytes)
4528 struct coding_system *coding;
4529 int src_bytes;
4530{
4531 return (src_bytes * DECODING_BUFFER_MAG (coding)
4532 + CONVERSION_BUFFER_EXTRA_ROOM);
4533}
4534
4535/* Return maximum size (bytes) of a buffer enough for encoding
4536 SRC_BYTES of text to CODING. */
4537
4538int
4539encoding_buffer_size (coding, src_bytes)
4540 struct coding_system *coding;
4541 int src_bytes;
4542{
4543 int magnification;
4544
4545 if (coding->type == coding_type_ccl)
4546 {
4547 magnification = coding->spec.ccl.encoder.buf_magnification;
4548 if (coding->eol_type == CODING_EOL_CRLF)
4549 magnification *= 2;
4550 }
4551 else if (CODING_REQUIRE_ENCODING (coding))
4552 magnification = 3;
4553 else
4554 magnification = 1;
4555
4556 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
4557}
4558
4559/* Working buffer for code conversion. */
4560struct conversion_buffer
4561{
4562 int size; /* size of data. */
4563 int on_stack; /* 1 if allocated by alloca. */
4564 unsigned char *data;
4565};
4566
4567/* Allocate LEN bytes of memory for BUF (struct conversion_buffer). */
4568#define allocate_conversion_buffer(buf, len) \
4569 do { \
4570 if (len < MAX_ALLOCA) \
4571 { \
4572 buf.data = (unsigned char *) alloca (len); \
4573 buf.on_stack = 1; \
4574 } \
4575 else \
4576 { \
4577 buf.data = (unsigned char *) xmalloc (len); \
4578 buf.on_stack = 0; \
4579 } \
4580 buf.size = len; \
4581 } while (0)
4582
4583/* Double the allocated memory for *BUF. */
4584static void
4585extend_conversion_buffer (buf)
4586 struct conversion_buffer *buf;
4587{
4588 if (buf->on_stack)
4589 {
4590 unsigned char *save = buf->data;
4591 buf->data = (unsigned char *) xmalloc (buf->size * 2);
4592 bcopy (save, buf->data, buf->size);
4593 buf->on_stack = 0;
4594 }
4595 else
4596 {
4597 buf->data = (unsigned char *) xrealloc (buf->data, buf->size * 2);
4598 }
4599 buf->size *= 2;
4600}
4601
4602/* Free the allocated memory for BUF if it is not on stack. */
4603static void
4604free_conversion_buffer (buf)
4605 struct conversion_buffer *buf;
4606{
4607 if (!buf->on_stack)
4608 xfree (buf->data);
4609}
4610
4611int
4612ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
4613 struct coding_system *coding;
4614 unsigned char *source, *destination;
4615 int src_bytes, dst_bytes, encodep;
4616{
4617 struct ccl_program *ccl
4618 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
4619 unsigned char *dst = destination;
4620
4621 ccl->suppress_error = coding->suppress_error;
4622 ccl->last_block = coding->mode & CODING_MODE_LAST_BLOCK;
4623 if (encodep)
4624 {
4625 /* On encoding, EOL format is converted within ccl_driver. For
4626 that, setup proper information in the structure CCL. */
4627 ccl->eol_type = coding->eol_type;
4628 if (ccl->eol_type ==CODING_EOL_UNDECIDED)
4629 ccl->eol_type = CODING_EOL_LF;
4630 ccl->cr_consumed = coding->spec.ccl.cr_carryover;
4631 ccl->eight_bit_control = coding->dst_multibyte;
4632 }
4633 else
4634 ccl->eight_bit_control = 1;
4635 ccl->multibyte = coding->src_multibyte;
4636 if (coding->spec.ccl.eight_bit_carryover[0] != 0)
4637 {
4638 /* Move carryover bytes to DESTINATION. */
4639 unsigned char *p = coding->spec.ccl.eight_bit_carryover;
4640 while (*p)
4641 *dst++ = *p++;
4642 coding->spec.ccl.eight_bit_carryover[0] = 0;
4643 if (dst_bytes)
4644 dst_bytes -= dst - destination;
4645 }
4646
4647 coding->produced = (ccl_driver (ccl, source, dst, src_bytes, dst_bytes,
4648 &(coding->consumed))
4649 + dst - destination);
4650
4651 if (encodep)
4652 {
4653 coding->produced_char = coding->produced;
4654 coding->spec.ccl.cr_carryover = ccl->cr_consumed;
4655 }
4656 else if (!ccl->eight_bit_control)
4657 {
4658 /* The produced bytes forms a valid multibyte sequence. */
4659 coding->produced_char
4660 = multibyte_chars_in_text (destination, coding->produced);
4661 coding->spec.ccl.eight_bit_carryover[0] = 0;
4662 }
4663 else
4664 {
4665 /* On decoding, the destination should always multibyte. But,
4666 CCL program might have been generated an invalid multibyte
4667 sequence. Here we make such a sequence valid as
4668 multibyte. */
4669 int bytes
4670 = dst_bytes ? dst_bytes : source + coding->consumed - destination;
4671
4672 if ((coding->consumed < src_bytes
4673 || !ccl->last_block)
4674 && coding->produced >= 1
4675 && destination[coding->produced - 1] >= 0x80)
4676 {
4677 /* We should not convert the tailing 8-bit codes to
4678 multibyte form even if they doesn't form a valid
4679 multibyte sequence. They may form a valid sequence in
4680 the next call. */
4681 int carryover = 0;
4682
4683 if (destination[coding->produced - 1] < 0xA0)
4684 carryover = 1;
4685 else if (coding->produced >= 2)
4686 {
4687 if (destination[coding->produced - 2] >= 0x80)
4688 {
4689 if (destination[coding->produced - 2] < 0xA0)
4690 carryover = 2;
4691 else if (coding->produced >= 3
4692 && destination[coding->produced - 3] >= 0x80
4693 && destination[coding->produced - 3] < 0xA0)
4694 carryover = 3;
4695 }
4696 }
4697 if (carryover > 0)
4698 {
4699 BCOPY_SHORT (destination + coding->produced - carryover,
4700 coding->spec.ccl.eight_bit_carryover,
4701 carryover);
4702 coding->spec.ccl.eight_bit_carryover[carryover] = 0;
4703 coding->produced -= carryover;
4704 }
4705 }
4706 coding->produced = str_as_multibyte (destination, bytes,
4707 coding->produced,
4708 &(coding->produced_char));
4709 }
4710
4711 switch (ccl->status)
4712 {
4713 case CCL_STAT_SUSPEND_BY_SRC:
4714 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
4715 break;
4716 case CCL_STAT_SUSPEND_BY_DST:
4717 coding->result = CODING_FINISH_INSUFFICIENT_DST;
4718 break;
4719 case CCL_STAT_QUIT:
4720 case CCL_STAT_INVALID_CMD:
4721 coding->result = CODING_FINISH_INTERRUPT;
4722 break;
4723 default:
4724 coding->result = CODING_FINISH_NORMAL;
4725 break;
4726 }
4727 return coding->result;
4728}
4729
4730/* Decode EOL format of the text at PTR of BYTES length destructively
4731 according to CODING->eol_type. This is called after the CCL
4732 program produced a decoded text at PTR. If we do CRLF->LF
4733 conversion, update CODING->produced and CODING->produced_char. */
4734
4735static void
4736decode_eol_post_ccl (coding, ptr, bytes)
4737 struct coding_system *coding;
4738 unsigned char *ptr;
4739 int bytes;
4740{
4741 Lisp_Object val, saved_coding_symbol;
4742 unsigned char *pend = ptr + bytes;
4743 int dummy;
4744
4745 /* Remember the current coding system symbol. We set it back when
4746 an inconsistent EOL is found so that `last-coding-system-used' is
4747 set to the coding system that doesn't specify EOL conversion. */
4748 saved_coding_symbol = coding->symbol;
4749
4750 coding->spec.ccl.cr_carryover = 0;
4751 if (coding->eol_type == CODING_EOL_UNDECIDED)
4752 {
4753 /* Here, to avoid the call of setup_coding_system, we directly
4754 call detect_eol_type. */
4755 coding->eol_type = detect_eol_type (ptr, bytes, &dummy);
4756 if (coding->eol_type == CODING_EOL_INCONSISTENT)
4757 coding->eol_type = CODING_EOL_LF;
4758 if (coding->eol_type != CODING_EOL_UNDECIDED)
4759 {
4760 val = Fget (coding->symbol, Qeol_type);
4761 if (VECTORP (val) && XVECTOR (val)->size == 3)
4762 coding->symbol = XVECTOR (val)->contents[coding->eol_type];
4763 }
4764 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4765 }
4766
4767 if (coding->eol_type == CODING_EOL_LF
4768 || coding->eol_type == CODING_EOL_UNDECIDED)
4769 {
4770 /* We have nothing to do. */
4771 ptr = pend;
4772 }
4773 else if (coding->eol_type == CODING_EOL_CRLF)
4774 {
4775 unsigned char *pstart = ptr, *p = ptr;
4776
4777 if (! (coding->mode & CODING_MODE_LAST_BLOCK)
4778 && *(pend - 1) == '\r')
4779 {
4780 /* If the last character is CR, we can't handle it here
4781 because LF will be in the not-yet-decoded source text.
4782 Record that the CR is not yet processed. */
4783 coding->spec.ccl.cr_carryover = 1;
4784 coding->produced--;
4785 coding->produced_char--;
4786 pend--;
4787 }
4788 while (ptr < pend)
4789 {
4790 if (*ptr == '\r')
4791 {
4792 if (ptr + 1 < pend && *(ptr + 1) == '\n')
4793 {
4794 *p++ = '\n';
4795 ptr += 2;
4796 }
4797 else
4798 {
4799 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4800 goto undo_eol_conversion;
4801 *p++ = *ptr++;
4802 }
4803 }
4804 else if (*ptr == '\n'
4805 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4806 goto undo_eol_conversion;
4807 else
4808 *p++ = *ptr++;
4809 continue;
4810
4811 undo_eol_conversion:
4812 /* We have faced with inconsistent EOL format at PTR.
4813 Convert all LFs before PTR back to CRLFs. */
4814 for (p--, ptr--; p >= pstart; p--)
4815 {
4816 if (*p == '\n')
4817 *ptr-- = '\n', *ptr-- = '\r';
4818 else
4819 *ptr-- = *p;
4820 }
4821 /* If carryover is recorded, cancel it because we don't
4822 convert CRLF anymore. */
4823 if (coding->spec.ccl.cr_carryover)
4824 {
4825 coding->spec.ccl.cr_carryover = 0;
4826 coding->produced++;
4827 coding->produced_char++;
4828 pend++;
4829 }
4830 p = ptr = pend;
4831 coding->eol_type = CODING_EOL_LF;
4832 coding->symbol = saved_coding_symbol;
4833 }
4834 if (p < pend)
4835 {
4836 /* As each two-byte sequence CRLF was converted to LF, (PEND
4837 - P) is the number of deleted characters. */
4838 coding->produced -= pend - p;
4839 coding->produced_char -= pend - p;
4840 }
4841 }
4842 else /* i.e. coding->eol_type == CODING_EOL_CR */
4843 {
4844 unsigned char *p = ptr;
4845
4846 for (; ptr < pend; ptr++)
4847 {
4848 if (*ptr == '\r')
4849 *ptr = '\n';
4850 else if (*ptr == '\n'
4851 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4852 {
4853 for (; p < ptr; p++)
4854 {
4855 if (*p == '\n')
4856 *p = '\r';
4857 }
4858 ptr = pend;
4859 coding->eol_type = CODING_EOL_LF;
4860 coding->symbol = saved_coding_symbol;
4861 }
4862 }
4863 }
4864}
4865
4866/* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
4867 decoding, it may detect coding system and format of end-of-line if
4868 those are not yet decided. The source should be unibyte, the
4869 result is multibyte if CODING->dst_multibyte is nonzero, else
4870 unibyte. */
4871
4872int
4873decode_coding (coding, source, destination, src_bytes, dst_bytes)
4874 struct coding_system *coding;
4875 const unsigned char *source;
4876 unsigned char *destination;
4877 int src_bytes, dst_bytes;
4878{
4879 int extra = 0;
4880
4881 if (coding->type == coding_type_undecided)
4882 detect_coding (coding, source, src_bytes);
4883
4884 if (coding->eol_type == CODING_EOL_UNDECIDED
4885 && coding->type != coding_type_ccl)
4886 {
4887 detect_eol (coding, source, src_bytes);
4888 /* We had better recover the original eol format if we
4889 encounter an inconsistent eol format while decoding. */
4890 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4891 }
4892
4893 coding->produced = coding->produced_char = 0;
4894 coding->consumed = coding->consumed_char = 0;
4895 coding->errors = 0;
4896 coding->result = CODING_FINISH_NORMAL;
4897
4898 switch (coding->type)
4899 {
4900 case coding_type_sjis:
4901 decode_coding_sjis_big5 (coding, source, destination,
4902 src_bytes, dst_bytes, 1);
4903 break;
4904
4905 case coding_type_iso2022:
4906 decode_coding_iso2022 (coding, source, destination,
4907 src_bytes, dst_bytes);
4908 break;
4909
4910 case coding_type_big5:
4911 decode_coding_sjis_big5 (coding, source, destination,
4912 src_bytes, dst_bytes, 0);
4913 break;
4914
4915 case coding_type_emacs_mule:
4916 decode_coding_emacs_mule (coding, source, destination,
4917 src_bytes, dst_bytes);
4918 break;
4919
4920 case coding_type_ccl:
4921 if (coding->spec.ccl.cr_carryover)
4922 {
4923 /* Put the CR which was not processed by the previous call
4924 of decode_eol_post_ccl in DESTINATION. It will be
4925 decoded together with the following LF by the call to
4926 decode_eol_post_ccl below. */
4927 *destination = '\r';
4928 coding->produced++;
4929 coding->produced_char++;
4930 dst_bytes--;
4931 extra = coding->spec.ccl.cr_carryover;
4932 }
4933 ccl_coding_driver (coding, source, destination + extra,
4934 src_bytes, dst_bytes, 0);
4935 if (coding->eol_type != CODING_EOL_LF)
4936 {
4937 coding->produced += extra;
4938 coding->produced_char += extra;
4939 decode_eol_post_ccl (coding, destination, coding->produced);
4940 }
4941 break;
4942
4943 default:
4944 decode_eol (coding, source, destination, src_bytes, dst_bytes);
4945 }
4946
4947 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4948 && coding->mode & CODING_MODE_LAST_BLOCK
4949 && coding->consumed == src_bytes)
4950 coding->result = CODING_FINISH_NORMAL;
4951
4952 if (coding->mode & CODING_MODE_LAST_BLOCK
4953 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4954 {
4955 const unsigned char *src = source + coding->consumed;
4956 unsigned char *dst = destination + coding->produced;
4957
4958 src_bytes -= coding->consumed;
4959 coding->errors++;
4960 if (COMPOSING_P (coding))
4961 DECODE_COMPOSITION_END ('1');
4962 while (src_bytes--)
4963 {
4964 int c = *src++;
4965 dst += CHAR_STRING (c, dst);
4966 coding->produced_char++;
4967 }
4968 coding->consumed = coding->consumed_char = src - source;
4969 coding->produced = dst - destination;
4970 coding->result = CODING_FINISH_NORMAL;
4971 }
4972
4973 if (!coding->dst_multibyte)
4974 {
4975 coding->produced = str_as_unibyte (destination, coding->produced);
4976 coding->produced_char = coding->produced;
4977 }
4978
4979 return coding->result;
4980}
4981
4982/* See "GENERAL NOTES about `encode_coding_XXX ()' functions". The
4983 multibyteness of the source is CODING->src_multibyte, the
4984 multibyteness of the result is always unibyte. */
4985
4986int
4987encode_coding (coding, source, destination, src_bytes, dst_bytes)
4988 struct coding_system *coding;
4989 const unsigned char *source;
4990 unsigned char *destination;
4991 int src_bytes, dst_bytes;
4992{
4993 coding->produced = coding->produced_char = 0;
4994 coding->consumed = coding->consumed_char = 0;
4995 coding->errors = 0;
4996 coding->result = CODING_FINISH_NORMAL;
4997
4998 switch (coding->type)
4999 {
5000 case coding_type_sjis:
5001 encode_coding_sjis_big5 (coding, source, destination,
5002 src_bytes, dst_bytes, 1);
5003 break;
5004
5005 case coding_type_iso2022:
5006 encode_coding_iso2022 (coding, source, destination,
5007 src_bytes, dst_bytes);
5008 break;
5009
5010 case coding_type_big5:
5011 encode_coding_sjis_big5 (coding, source, destination,
5012 src_bytes, dst_bytes, 0);
5013 break;
5014
5015 case coding_type_emacs_mule:
5016 encode_coding_emacs_mule (coding, source, destination,
5017 src_bytes, dst_bytes);
5018 break;
5019
5020 case coding_type_ccl:
5021 ccl_coding_driver (coding, source, destination,
5022 src_bytes, dst_bytes, 1);
5023 break;
5024
5025 default:
5026 encode_eol (coding, source, destination, src_bytes, dst_bytes);
5027 }
5028
5029 if (coding->mode & CODING_MODE_LAST_BLOCK
5030 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
5031 {
5032 const unsigned char *src = source + coding->consumed;
5033 unsigned char *dst = destination + coding->produced;
5034
5035 if (coding->type == coding_type_iso2022)
5036 ENCODE_RESET_PLANE_AND_REGISTER;
5037 if (COMPOSING_P (coding))
5038 *dst++ = ISO_CODE_ESC, *dst++ = '1';
5039 if (coding->consumed < src_bytes)
5040 {
5041 int len = src_bytes - coding->consumed;
5042
5043 BCOPY_SHORT (src, dst, len);
5044 if (coding->src_multibyte)
5045 len = str_as_unibyte (dst, len);
5046 dst += len;
5047 coding->consumed = src_bytes;
5048 }
5049 coding->produced = coding->produced_char = dst - destination;
5050 coding->result = CODING_FINISH_NORMAL;
5051 }
5052
5053 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
5054 && coding->consumed == src_bytes)
5055 coding->result = CODING_FINISH_NORMAL;
5056
5057 return coding->result;
5058}
5059
5060/* Scan text in the region between *BEG and *END (byte positions),
5061 skip characters which we don't have to decode by coding system
5062 CODING at the head and tail, then set *BEG and *END to the region
5063 of the text we actually have to convert. The caller should move
5064 the gap out of the region in advance if the region is from a
5065 buffer.
5066
5067 If STR is not NULL, *BEG and *END are indices into STR. */
5068
5069static void
5070shrink_decoding_region (beg, end, coding, str)
5071 int *beg, *end;
5072 struct coding_system *coding;
5073 unsigned char *str;
5074{
5075 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
5076 int eol_conversion;
5077 Lisp_Object translation_table;
5078
5079 if (coding->type == coding_type_ccl
5080 || coding->type == coding_type_undecided
5081 || coding->eol_type != CODING_EOL_LF
5082 || !NILP (coding->post_read_conversion)
5083 || coding->composing != COMPOSITION_DISABLED)
5084 {
5085 /* We can't skip any data. */
5086 return;
5087 }
5088 if (coding->type == coding_type_no_conversion
5089 || coding->type == coding_type_raw_text
5090 || coding->type == coding_type_emacs_mule)
5091 {
5092 /* We need no conversion, but don't have to skip any data here.
5093 Decoding routine handles them effectively anyway. */
5094 return;
5095 }
5096
5097 translation_table = coding->translation_table_for_decode;
5098 if (NILP (translation_table) && !NILP (Venable_character_translation))
5099 translation_table = Vstandard_translation_table_for_decode;
5100 if (CHAR_TABLE_P (translation_table))
5101 {
5102 int i;
5103 for (i = 0; i < 128; i++)
5104 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
5105 break;
5106 if (i < 128)
5107 /* Some ASCII character should be translated. We give up
5108 shrinking. */
5109 return;
5110 }
5111
5112 if (coding->heading_ascii >= 0)
5113 /* Detection routine has already found how much we can skip at the
5114 head. */
5115 *beg += coding->heading_ascii;
5116
5117 if (str)
5118 {
5119 begp_orig = begp = str + *beg;
5120 endp_orig = endp = str + *end;
5121 }
5122 else
5123 {
5124 begp_orig = begp = BYTE_POS_ADDR (*beg);
5125 endp_orig = endp = begp + *end - *beg;
5126 }
5127
5128 eol_conversion = (coding->eol_type == CODING_EOL_CR
5129 || coding->eol_type == CODING_EOL_CRLF);
5130
5131 switch (coding->type)
5132 {
5133 case coding_type_sjis:
5134 case coding_type_big5:
5135 /* We can skip all ASCII characters at the head. */
5136 if (coding->heading_ascii < 0)
5137 {
5138 if (eol_conversion)
5139 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
5140 else
5141 while (begp < endp && *begp < 0x80) begp++;
5142 }
5143 /* We can skip all ASCII characters at the tail except for the
5144 second byte of SJIS or BIG5 code. */
5145 if (eol_conversion)
5146 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
5147 else
5148 while (begp < endp && endp[-1] < 0x80) endp--;
5149 /* Do not consider LF as ascii if preceded by CR, since that
5150 confuses eol decoding. */
5151 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
5152 endp++;
5153 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
5154 endp++;
5155 break;
5156
5157 case coding_type_iso2022:
5158 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5159 /* We can't skip any data. */
5160 break;
5161 if (coding->heading_ascii < 0)
5162 {
5163 /* We can skip all ASCII characters at the head except for a
5164 few control codes. */
5165 while (begp < endp && (c = *begp) < 0x80
5166 && c != ISO_CODE_CR && c != ISO_CODE_SO
5167 && c != ISO_CODE_SI && c != ISO_CODE_ESC
5168 && (!eol_conversion || c != ISO_CODE_LF))
5169 begp++;
5170 }
5171 switch (coding->category_idx)
5172 {
5173 case CODING_CATEGORY_IDX_ISO_8_1:
5174 case CODING_CATEGORY_IDX_ISO_8_2:
5175 /* We can skip all ASCII characters at the tail. */
5176 if (eol_conversion)
5177 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
5178 else
5179 while (begp < endp && endp[-1] < 0x80) endp--;
5180 /* Do not consider LF as ascii if preceded by CR, since that
5181 confuses eol decoding. */
5182 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
5183 endp++;
5184 break;
5185
5186 case CODING_CATEGORY_IDX_ISO_7:
5187 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
5188 {
5189 /* We can skip all characters at the tail except for 8-bit
5190 codes and ESC and the following 2-byte at the tail. */
5191 unsigned char *eight_bit = NULL;
5192
5193 if (eol_conversion)
5194 while (begp < endp
5195 && (c = endp[-1]) != ISO_CODE_ESC && c != '\r')
5196 {
5197 if (!eight_bit && c & 0x80) eight_bit = endp;
5198 endp--;
5199 }
5200 else
5201 while (begp < endp
5202 && (c = endp[-1]) != ISO_CODE_ESC)
5203 {
5204 if (!eight_bit && c & 0x80) eight_bit = endp;
5205 endp--;
5206 }
5207 /* Do not consider LF as ascii if preceded by CR, since that
5208 confuses eol decoding. */
5209 if (begp < endp && endp < endp_orig
5210 && endp[-1] == '\r' && endp[0] == '\n')
5211 endp++;
5212 if (begp < endp && endp[-1] == ISO_CODE_ESC)
5213 {
5214 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
5215 /* This is an ASCII designation sequence. We can
5216 surely skip the tail. But, if we have
5217 encountered an 8-bit code, skip only the codes
5218 after that. */
5219 endp = eight_bit ? eight_bit : endp + 2;
5220 else
5221 /* Hmmm, we can't skip the tail. */
5222 endp = endp_orig;
5223 }
5224 else if (eight_bit)
5225 endp = eight_bit;
5226 }
5227 }
5228 break;
5229
5230 default:
5231 abort ();
5232 }
5233 *beg += begp - begp_orig;
5234 *end += endp - endp_orig;
5235 return;
5236}
5237
5238/* Like shrink_decoding_region but for encoding. */
5239
5240static void
5241shrink_encoding_region (beg, end, coding, str)
5242 int *beg, *end;
5243 struct coding_system *coding;
5244 unsigned char *str;
5245{
5246 unsigned char *begp_orig, *begp, *endp_orig, *endp;
5247 int eol_conversion;
5248 Lisp_Object translation_table;
5249
5250 if (coding->type == coding_type_ccl
5251 || coding->eol_type == CODING_EOL_CRLF
5252 || coding->eol_type == CODING_EOL_CR
5253 || (coding->cmp_data && coding->cmp_data->used > 0))
5254 {
5255 /* We can't skip any data. */
5256 return;
5257 }
5258 if (coding->type == coding_type_no_conversion
5259 || coding->type == coding_type_raw_text
5260 || coding->type == coding_type_emacs_mule
5261 || coding->type == coding_type_undecided)
5262 {
5263 /* We need no conversion, but don't have to skip any data here.
5264 Encoding routine handles them effectively anyway. */
5265 return;
5266 }
5267
5268 translation_table = coding->translation_table_for_encode;
5269 if (NILP (translation_table) && !NILP (Venable_character_translation))
5270 translation_table = Vstandard_translation_table_for_encode;
5271 if (CHAR_TABLE_P (translation_table))
5272 {
5273 int i;
5274 for (i = 0; i < 128; i++)
5275 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
5276 break;
5277 if (i < 128)
5278 /* Some ASCII character should be translated. We give up
5279 shrinking. */
5280 return;
5281 }
5282
5283 if (str)
5284 {
5285 begp_orig = begp = str + *beg;
5286 endp_orig = endp = str + *end;
5287 }
5288 else
5289 {
5290 begp_orig = begp = BYTE_POS_ADDR (*beg);
5291 endp_orig = endp = begp + *end - *beg;
5292 }
5293
5294 eol_conversion = (coding->eol_type == CODING_EOL_CR
5295 || coding->eol_type == CODING_EOL_CRLF);
5296
5297 /* Here, we don't have to check coding->pre_write_conversion because
5298 the caller is expected to have handled it already. */
5299 switch (coding->type)
5300 {
5301 case coding_type_iso2022:
5302 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5303 /* We can't skip any data. */
5304 break;
5305 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
5306 {
5307 unsigned char *bol = begp;
5308 while (begp < endp && *begp < 0x80)
5309 {
5310 begp++;
5311 if (begp[-1] == '\n')
5312 bol = begp;
5313 }
5314 begp = bol;
5315 goto label_skip_tail;
5316 }
5317 /* fall down ... */
5318
5319 case coding_type_sjis:
5320 case coding_type_big5:
5321 /* We can skip all ASCII characters at the head and tail. */
5322 if (eol_conversion)
5323 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
5324 else
5325 while (begp < endp && *begp < 0x80) begp++;
5326 label_skip_tail:
5327 if (eol_conversion)
5328 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
5329 else
5330 while (begp < endp && *(endp - 1) < 0x80) endp--;
5331 break;
5332
5333 default:
5334 abort ();
5335 }
5336
5337 *beg += begp - begp_orig;
5338 *end += endp - endp_orig;
5339 return;
5340}
5341
5342/* As shrinking conversion region requires some overhead, we don't try
5343 shrinking if the length of conversion region is less than this
5344 value. */
5345static int shrink_conversion_region_threshhold = 1024;
5346
5347#define SHRINK_CONVERSION_REGION(beg, end, coding, str, encodep) \
5348 do { \
5349 if (*(end) - *(beg) > shrink_conversion_region_threshhold) \
5350 { \
5351 if (encodep) shrink_encoding_region (beg, end, coding, str); \
5352 else shrink_decoding_region (beg, end, coding, str); \
5353 } \
5354 } while (0)
5355
5356static Lisp_Object
5357code_convert_region_unwind (arg)
5358 Lisp_Object arg;
5359{
5360 inhibit_pre_post_conversion = 0;
5361 Vlast_coding_system_used = arg;
5362 return Qnil;
5363}
5364
5365/* Store information about all compositions in the range FROM and TO
5366 of OBJ in memory blocks pointed by CODING->cmp_data. OBJ is a
5367 buffer or a string, defaults to the current buffer. */
5368
5369void
5370coding_save_composition (coding, from, to, obj)
5371 struct coding_system *coding;
5372 int from, to;
5373 Lisp_Object obj;
5374{
5375 Lisp_Object prop;
5376 int start, end;
5377
5378 if (coding->composing == COMPOSITION_DISABLED)
5379 return;
5380 if (!coding->cmp_data)
5381 coding_allocate_composition_data (coding, from);
5382 if (!find_composition (from, to, &start, &end, &prop, obj)
5383 || end > to)
5384 return;
5385 if (start < from
5386 && (!find_composition (end, to, &start, &end, &prop, obj)
5387 || end > to))
5388 return;
5389 coding->composing = COMPOSITION_NO;
5390 do
5391 {
5392 if (COMPOSITION_VALID_P (start, end, prop))
5393 {
5394 enum composition_method method = COMPOSITION_METHOD (prop);
5395 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
5396 >= COMPOSITION_DATA_SIZE)
5397 coding_allocate_composition_data (coding, from);
5398 /* For relative composition, we remember start and end
5399 positions, for the other compositions, we also remember
5400 components. */
5401 CODING_ADD_COMPOSITION_START (coding, start - from, method);
5402 if (method != COMPOSITION_RELATIVE)
5403 {
5404 /* We must store a*/
5405 Lisp_Object val, ch;
5406
5407 val = COMPOSITION_COMPONENTS (prop);
5408 if (CONSP (val))
5409 while (CONSP (val))
5410 {
5411 ch = XCAR (val), val = XCDR (val);
5412 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5413 }
5414 else if (VECTORP (val) || STRINGP (val))
5415 {
5416 int len = (VECTORP (val)
5417 ? XVECTOR (val)->size : SCHARS (val));
5418 int i;
5419 for (i = 0; i < len; i++)
5420 {
5421 ch = (STRINGP (val)
5422 ? Faref (val, make_number (i))
5423 : XVECTOR (val)->contents[i]);
5424 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5425 }
5426 }
5427 else /* INTEGERP (val) */
5428 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (val));
5429 }
5430 CODING_ADD_COMPOSITION_END (coding, end - from);
5431 }
5432 start = end;
5433 }
5434 while (start < to
5435 && find_composition (start, to, &start, &end, &prop, obj)
5436 && end <= to);
5437
5438 /* Make coding->cmp_data point to the first memory block. */
5439 while (coding->cmp_data->prev)
5440 coding->cmp_data = coding->cmp_data->prev;
5441 coding->cmp_data_start = 0;
5442}
5443
5444/* Reflect the saved information about compositions to OBJ.
5445 CODING->cmp_data points to a memory block for the information. OBJ
5446 is a buffer or a string, defaults to the current buffer. */
5447
5448void
5449coding_restore_composition (coding, obj)
5450 struct coding_system *coding;
5451 Lisp_Object obj;
5452{
5453 struct composition_data *cmp_data = coding->cmp_data;
5454
5455 if (!cmp_data)
5456 return;
5457
5458 while (cmp_data->prev)
5459 cmp_data = cmp_data->prev;
5460
5461 while (cmp_data)
5462 {
5463 int i;
5464
5465 for (i = 0; i < cmp_data->used && cmp_data->data[i] > 0;
5466 i += cmp_data->data[i])
5467 {
5468 int *data = cmp_data->data + i;
5469 enum composition_method method = (enum composition_method) data[3];
5470 Lisp_Object components;
5471
5472 if (data[0] < 0 || i + data[0] > cmp_data->used)
5473 /* Invalid composition data. */
5474 break;
5475
5476 if (method == COMPOSITION_RELATIVE)
5477 components = Qnil;
5478 else
5479 {
5480 int len = data[0] - 4, j;
5481 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
5482
5483 if (method == COMPOSITION_WITH_RULE_ALTCHARS
5484 && len % 2 == 0)
5485 len --;
5486 if (len < 1)
5487 /* Invalid composition data. */
5488 break;
5489 for (j = 0; j < len; j++)
5490 args[j] = make_number (data[4 + j]);
5491 components = (method == COMPOSITION_WITH_ALTCHARS
5492 ? Fstring (len, args)
5493 : Fvector (len, args));
5494 }
5495 compose_text (data[1], data[2], components, Qnil, obj);
5496 }
5497 cmp_data = cmp_data->next;
5498 }
5499}
5500
5501/* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
5502 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
5503 coding system CODING, and return the status code of code conversion
5504 (currently, this value has no meaning).
5505
5506 How many characters (and bytes) are converted to how many
5507 characters (and bytes) are recorded in members of the structure
5508 CODING.
5509
5510 If REPLACE is nonzero, we do various things as if the original text
5511 is deleted and a new text is inserted. See the comments in
5512 replace_range (insdel.c) to know what we are doing.
5513
5514 If REPLACE is zero, it is assumed that the source text is unibyte.
5515 Otherwise, it is assumed that the source text is multibyte. */
5516
5517int
5518code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
5519 int from, from_byte, to, to_byte, encodep, replace;
5520 struct coding_system *coding;
5521{
5522 int len = to - from, len_byte = to_byte - from_byte;
5523 int nchars_del = 0, nbytes_del = 0;
5524 int require, inserted, inserted_byte;
5525 int head_skip, tail_skip, total_skip = 0;
5526 Lisp_Object saved_coding_symbol;
5527 int first = 1;
5528 unsigned char *src, *dst;
5529 Lisp_Object deletion;
5530 int orig_point = PT, orig_len = len;
5531 int prev_Z;
5532 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
5533
5534 deletion = Qnil;
5535 saved_coding_symbol = coding->symbol;
5536
5537 if (from < PT && PT < to)
5538 {
5539 TEMP_SET_PT_BOTH (from, from_byte);
5540 orig_point = from;
5541 }
5542
5543 if (replace)
5544 {
5545 int saved_from = from;
5546 int saved_inhibit_modification_hooks;
5547
5548 prepare_to_modify_buffer (from, to, &from);
5549 if (saved_from != from)
5550 {
5551 to = from + len;
5552 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
5553 len_byte = to_byte - from_byte;
5554 }
5555
5556 /* The code conversion routine can not preserve text properties
5557 for now. So, we must remove all text properties in the
5558 region. Here, we must suppress all modification hooks. */
5559 saved_inhibit_modification_hooks = inhibit_modification_hooks;
5560 inhibit_modification_hooks = 1;
5561 Fset_text_properties (make_number (from), make_number (to), Qnil, Qnil);
5562 inhibit_modification_hooks = saved_inhibit_modification_hooks;
5563 }
5564
5565 if (! encodep && CODING_REQUIRE_DETECTION (coding))
5566 {
5567 /* We must detect encoding of text and eol format. */
5568
5569 if (from < GPT && to > GPT)
5570 move_gap_both (from, from_byte);
5571 if (coding->type == coding_type_undecided)
5572 {
5573 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
5574 if (coding->type == coding_type_undecided)
5575 {
5576 /* It seems that the text contains only ASCII, but we
5577 should not leave it undecided because the deeper
5578 decoding routine (decode_coding) tries to detect the
5579 encodings again in vain. */
5580 coding->type = coding_type_emacs_mule;
5581 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5582 /* As emacs-mule decoder will handle composition, we
5583 need this setting to allocate coding->cmp_data
5584 later. */
5585 coding->composing = COMPOSITION_NO;
5586 }
5587 }
5588 if (coding->eol_type == CODING_EOL_UNDECIDED
5589 && coding->type != coding_type_ccl)
5590 {
5591 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
5592 if (coding->eol_type == CODING_EOL_UNDECIDED)
5593 coding->eol_type = CODING_EOL_LF;
5594 /* We had better recover the original eol format if we
5595 encounter an inconsistent eol format while decoding. */
5596 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5597 }
5598 }
5599
5600 /* Now we convert the text. */
5601
5602 /* For encoding, we must process pre-write-conversion in advance. */
5603 if (! inhibit_pre_post_conversion
5604 && encodep
5605 && SYMBOLP (coding->pre_write_conversion)
5606 && ! NILP (Ffboundp (coding->pre_write_conversion)))
5607 {
5608 /* The function in pre-write-conversion may put a new text in a
5609 new buffer. */
5610 struct buffer *prev = current_buffer;
5611 Lisp_Object new;
5612
5613 record_unwind_protect (code_convert_region_unwind,
5614 Vlast_coding_system_used);
5615 /* We should not call any more pre-write/post-read-conversion
5616 functions while this pre-write-conversion is running. */
5617 inhibit_pre_post_conversion = 1;
5618 call2 (coding->pre_write_conversion,
5619 make_number (from), make_number (to));
5620 inhibit_pre_post_conversion = 0;
5621 /* Discard the unwind protect. */
5622 specpdl_ptr--;
5623
5624 if (current_buffer != prev)
5625 {
5626 len = ZV - BEGV;
5627 new = Fcurrent_buffer ();
5628 set_buffer_internal_1 (prev);
5629 del_range_2 (from, from_byte, to, to_byte, 0);
5630 TEMP_SET_PT_BOTH (from, from_byte);
5631 insert_from_buffer (XBUFFER (new), 1, len, 0);
5632 Fkill_buffer (new);
5633 if (orig_point >= to)
5634 orig_point += len - orig_len;
5635 else if (orig_point > from)
5636 orig_point = from;
5637 orig_len = len;
5638 to = from + len;
5639 from_byte = CHAR_TO_BYTE (from);
5640 to_byte = CHAR_TO_BYTE (to);
5641 len_byte = to_byte - from_byte;
5642 TEMP_SET_PT_BOTH (from, from_byte);
5643 }
5644 }
5645
5646 if (replace)
5647 {
5648 if (! EQ (current_buffer->undo_list, Qt))
5649 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
5650 else
5651 {
5652 nchars_del = to - from;
5653 nbytes_del = to_byte - from_byte;
5654 }
5655 }
5656
5657 if (coding->composing != COMPOSITION_DISABLED)
5658 {
5659 if (encodep)
5660 coding_save_composition (coding, from, to, Fcurrent_buffer ());
5661 else
5662 coding_allocate_composition_data (coding, from);
5663 }
5664
5665 /* Try to skip the heading and tailing ASCIIs. We can't skip them
5666 if we must run CCL program or there are compositions to
5667 encode. */
5668 if (coding->type != coding_type_ccl
5669 && (! coding->cmp_data || coding->cmp_data->used == 0))
5670 {
5671 int from_byte_orig = from_byte, to_byte_orig = to_byte;
5672
5673 if (from < GPT && GPT < to)
5674 move_gap_both (from, from_byte);
5675 SHRINK_CONVERSION_REGION (&from_byte, &to_byte, coding, NULL, encodep);
5676 if (from_byte == to_byte
5677 && (encodep || NILP (coding->post_read_conversion))
5678 && ! CODING_REQUIRE_FLUSHING (coding))
5679 {
5680 coding->produced = len_byte;
5681 coding->produced_char = len;
5682 if (!replace)
5683 /* We must record and adjust for this new text now. */
5684 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
5685 coding_free_composition_data (coding);
5686 return 0;
5687 }
5688
5689 head_skip = from_byte - from_byte_orig;
5690 tail_skip = to_byte_orig - to_byte;
5691 total_skip = head_skip + tail_skip;
5692 from += head_skip;
5693 to -= tail_skip;
5694 len -= total_skip; len_byte -= total_skip;
5695 }
5696
5697 /* For conversion, we must put the gap before the text in addition to
5698 making the gap larger for efficient decoding. The required gap
5699 size starts from 2000 which is the magic number used in make_gap.
5700 But, after one batch of conversion, it will be incremented if we
5701 find that it is not enough . */
5702 require = 2000;
5703
5704 if (GAP_SIZE < require)
5705 make_gap (require - GAP_SIZE);
5706 move_gap_both (from, from_byte);
5707
5708 inserted = inserted_byte = 0;
5709
5710 GAP_SIZE += len_byte;
5711 ZV -= len;
5712 Z -= len;
5713 ZV_BYTE -= len_byte;
5714 Z_BYTE -= len_byte;
5715
5716 if (GPT - BEG < BEG_UNCHANGED)
5717 BEG_UNCHANGED = GPT - BEG;
5718 if (Z - GPT < END_UNCHANGED)
5719 END_UNCHANGED = Z - GPT;
5720
5721 if (!encodep && coding->src_multibyte)
5722 {
5723 /* Decoding routines expects that the source text is unibyte.
5724 We must convert 8-bit characters of multibyte form to
5725 unibyte. */
5726 int len_byte_orig = len_byte;
5727 len_byte = str_as_unibyte (GAP_END_ADDR - len_byte, len_byte);
5728 if (len_byte < len_byte_orig)
5729 safe_bcopy (GAP_END_ADDR - len_byte_orig, GAP_END_ADDR - len_byte,
5730 len_byte);
5731 coding->src_multibyte = 0;
5732 }
5733
5734 for (;;)
5735 {
5736 int result;
5737
5738 /* The buffer memory is now:
5739 +--------+converted-text+---------+-------original-text-------+---+
5740 |<-from->|<--inserted-->|---------|<--------len_byte--------->|---|
5741 |<---------------------- GAP ----------------------->| */
5742 src = GAP_END_ADDR - len_byte;
5743 dst = GPT_ADDR + inserted_byte;
5744
5745 if (encodep)
5746 result = encode_coding (coding, src, dst, len_byte, 0);
5747 else
5748 {
5749 if (coding->composing != COMPOSITION_DISABLED)
5750 coding->cmp_data->char_offset = from + inserted;
5751 result = decode_coding (coding, src, dst, len_byte, 0);
5752 }
5753
5754 /* The buffer memory is now:
5755 +--------+-------converted-text----+--+------original-text----+---+
5756 |<-from->|<-inserted->|<-produced->|--|<-(len_byte-consumed)->|---|
5757 |<---------------------- GAP ----------------------->| */
5758
5759 inserted += coding->produced_char;
5760 inserted_byte += coding->produced;
5761 len_byte -= coding->consumed;
5762
5763 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5764 {
5765 coding_allocate_composition_data (coding, from + inserted);
5766 continue;
5767 }
5768
5769 src += coding->consumed;
5770 dst += coding->produced;
5771
5772 if (result == CODING_FINISH_NORMAL)
5773 {
5774 src += len_byte;
5775 break;
5776 }
5777 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
5778 {
5779 unsigned char *pend = dst, *p = pend - inserted_byte;
5780 Lisp_Object eol_type;
5781
5782 /* Encode LFs back to the original eol format (CR or CRLF). */
5783 if (coding->eol_type == CODING_EOL_CR)
5784 {
5785 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
5786 }
5787 else
5788 {
5789 int count = 0;
5790
5791 while (p < pend) if (*p++ == '\n') count++;
5792 if (src - dst < count)
5793 {
5794 /* We don't have sufficient room for encoding LFs
5795 back to CRLF. We must record converted and
5796 not-yet-converted text back to the buffer
5797 content, enlarge the gap, then record them out of
5798 the buffer contents again. */
5799 int add = len_byte + inserted_byte;
5800
5801 GAP_SIZE -= add;
5802 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5803 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5804 make_gap (count - GAP_SIZE);
5805 GAP_SIZE += add;
5806 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5807 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5808 /* Don't forget to update SRC, DST, and PEND. */
5809 src = GAP_END_ADDR - len_byte;
5810 dst = GPT_ADDR + inserted_byte;
5811 pend = dst;
5812 }
5813 inserted += count;
5814 inserted_byte += count;
5815 coding->produced += count;
5816 p = dst = pend + count;
5817 while (count)
5818 {
5819 *--p = *--pend;
5820 if (*p == '\n') count--, *--p = '\r';
5821 }
5822 }
5823
5824 /* Suppress eol-format conversion in the further conversion. */
5825 coding->eol_type = CODING_EOL_LF;
5826
5827 /* Set the coding system symbol to that for Unix-like EOL. */
5828 eol_type = Fget (saved_coding_symbol, Qeol_type);
5829 if (VECTORP (eol_type)
5830 && XVECTOR (eol_type)->size == 3
5831 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5832 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5833 else
5834 coding->symbol = saved_coding_symbol;
5835
5836 continue;
5837 }
5838 if (len_byte <= 0)
5839 {
5840 if (coding->type != coding_type_ccl
5841 || coding->mode & CODING_MODE_LAST_BLOCK)
5842 break;
5843 coding->mode |= CODING_MODE_LAST_BLOCK;
5844 continue;
5845 }
5846 if (result == CODING_FINISH_INSUFFICIENT_SRC)
5847 {
5848 /* The source text ends in invalid codes. Let's just
5849 make them valid buffer contents, and finish conversion. */
5850 if (multibyte_p)
5851 {
5852 unsigned char *start = dst;
5853
5854 inserted += len_byte;
5855 while (len_byte--)
5856 {
5857 int c = *src++;
5858 dst += CHAR_STRING (c, dst);
5859 }
5860
5861 inserted_byte += dst - start;
5862 }
5863 else
5864 {
5865 inserted += len_byte;
5866 inserted_byte += len_byte;
5867 while (len_byte--)
5868 *dst++ = *src++;
5869 }
5870 break;
5871 }
5872 if (result == CODING_FINISH_INTERRUPT)
5873 {
5874 /* The conversion procedure was interrupted by a user. */
5875 break;
5876 }
5877 /* Now RESULT == CODING_FINISH_INSUFFICIENT_DST */
5878 if (coding->consumed < 1)
5879 {
5880 /* It's quite strange to require more memory without
5881 consuming any bytes. Perhaps CCL program bug. */
5882 break;
5883 }
5884 if (first)
5885 {
5886 /* We have just done the first batch of conversion which was
5887 stopped because of insufficient gap. Let's reconsider the
5888 required gap size (i.e. SRT - DST) now.
5889
5890 We have converted ORIG bytes (== coding->consumed) into
5891 NEW bytes (coding->produced). To convert the remaining
5892 LEN bytes, we may need REQUIRE bytes of gap, where:
5893 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
5894 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
5895 Here, we are sure that NEW >= ORIG. */
5896
5897 if (coding->produced <= coding->consumed)
5898 {
5899 /* This happens because of CCL-based coding system with
5900 eol-type CRLF. */
5901 require = 0;
5902 }
5903 else
5904 {
5905 float ratio = coding->produced - coding->consumed;
5906 ratio /= coding->consumed;
5907 require = len_byte * ratio;
5908 }
5909 first = 0;
5910 }
5911 if ((src - dst) < (require + 2000))
5912 {
5913 /* See the comment above the previous call of make_gap. */
5914 int add = len_byte + inserted_byte;
5915
5916 GAP_SIZE -= add;
5917 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5918 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5919 make_gap (require + 2000);
5920 GAP_SIZE += add;
5921 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5922 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5923 }
5924 }
5925 if (src - dst > 0) *dst = 0; /* Put an anchor. */
5926
5927 if (encodep && coding->dst_multibyte)
5928 {
5929 /* The output is unibyte. We must convert 8-bit characters to
5930 multibyte form. */
5931 if (inserted_byte * 2 > GAP_SIZE)
5932 {
5933 GAP_SIZE -= inserted_byte;
5934 ZV += inserted_byte; Z += inserted_byte;
5935 ZV_BYTE += inserted_byte; Z_BYTE += inserted_byte;
5936 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5937 make_gap (inserted_byte - GAP_SIZE);
5938 GAP_SIZE += inserted_byte;
5939 ZV -= inserted_byte; Z -= inserted_byte;
5940 ZV_BYTE -= inserted_byte; Z_BYTE -= inserted_byte;
5941 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5942 }
5943 inserted_byte = str_to_multibyte (GPT_ADDR, GAP_SIZE, inserted_byte);
5944 }
5945
5946 /* If we shrank the conversion area, adjust it now. */
5947 if (total_skip > 0)
5948 {
5949 if (tail_skip > 0)
5950 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
5951 inserted += total_skip; inserted_byte += total_skip;
5952 GAP_SIZE += total_skip;
5953 GPT -= head_skip; GPT_BYTE -= head_skip;
5954 ZV -= total_skip; ZV_BYTE -= total_skip;
5955 Z -= total_skip; Z_BYTE -= total_skip;
5956 from -= head_skip; from_byte -= head_skip;
5957 to += tail_skip; to_byte += tail_skip;
5958 }
5959
5960 prev_Z = Z;
5961 if (! EQ (current_buffer->undo_list, Qt))
5962 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
5963 else
5964 adjust_after_replace_noundo (from, from_byte, nchars_del, nbytes_del,
5965 inserted, inserted_byte);
5966 inserted = Z - prev_Z;
5967
5968 if (!encodep && coding->cmp_data && coding->cmp_data->used)
5969 coding_restore_composition (coding, Fcurrent_buffer ());
5970 coding_free_composition_data (coding);
5971
5972 if (! inhibit_pre_post_conversion
5973 && ! encodep && ! NILP (coding->post_read_conversion))
5974 {
5975 Lisp_Object val;
5976 Lisp_Object saved_coding_system;
5977
5978 if (from != PT)
5979 TEMP_SET_PT_BOTH (from, from_byte);
5980 prev_Z = Z;
5981 record_unwind_protect (code_convert_region_unwind,
5982 Vlast_coding_system_used);
5983 saved_coding_system = Vlast_coding_system_used;
5984 Vlast_coding_system_used = coding->symbol;
5985 /* We should not call any more pre-write/post-read-conversion
5986 functions while this post-read-conversion is running. */
5987 inhibit_pre_post_conversion = 1;
5988 val = call1 (coding->post_read_conversion, make_number (inserted));
5989 inhibit_pre_post_conversion = 0;
5990 coding->symbol = Vlast_coding_system_used;
5991 Vlast_coding_system_used = saved_coding_system;
5992 /* Discard the unwind protect. */
5993 specpdl_ptr--;
5994 CHECK_NUMBER (val);
5995 inserted += Z - prev_Z;
5996 }
5997
5998 if (orig_point >= from)
5999 {
6000 if (orig_point >= from + orig_len)
6001 orig_point += inserted - orig_len;
6002 else
6003 orig_point = from;
6004 TEMP_SET_PT (orig_point);
6005 }
6006
6007 if (replace)
6008 {
6009 signal_after_change (from, to - from, inserted);
6010 update_compositions (from, from + inserted, CHECK_BORDER);
6011 }
6012
6013 {
6014 coding->consumed = to_byte - from_byte;
6015 coding->consumed_char = to - from;
6016 coding->produced = inserted_byte;
6017 coding->produced_char = inserted;
6018 }
6019
6020 return 0;
6021}
6022
6023/* Name (or base name) of work buffer for code conversion. */
6024static Lisp_Object Vcode_conversion_workbuf_name;
6025
6026/* Set the current buffer to the working buffer prepared for
6027 code-conversion. MULTIBYTE specifies the multibyteness of the
6028 buffer. */
6029
6030static struct buffer *
6031set_conversion_work_buffer (multibyte)
6032 int multibyte;
6033{
6034 Lisp_Object buffer;
6035 struct buffer *buf;
6036
6037 buffer = Fget_buffer_create (Vcode_conversion_workbuf_name);
6038 buf = XBUFFER (buffer);
6039 delete_all_overlays (buf);
6040 buf->directory = current_buffer->directory;
6041 buf->read_only = Qnil;
6042 buf->filename = Qnil;
6043 buf->undo_list = Qt;
6044 eassert (buf->overlays_before == NULL);
6045 eassert (buf->overlays_after == NULL);
6046 set_buffer_internal (buf);
6047 if (BEG != BEGV || Z != ZV)
6048 Fwiden ();
6049 del_range_2 (BEG, BEG_BYTE, Z, Z_BYTE, 0);
6050 buf->enable_multibyte_characters = multibyte ? Qt : Qnil;
6051 return buf;
6052}
6053
6054Lisp_Object
6055run_pre_post_conversion_on_str (str, coding, encodep)
6056 Lisp_Object str;
6057 struct coding_system *coding;
6058 int encodep;
6059{
6060 int count = SPECPDL_INDEX ();
6061 struct gcpro gcpro1, gcpro2;
6062 int multibyte = STRING_MULTIBYTE (str);
6063 struct buffer *buf;
6064 Lisp_Object old_deactivate_mark;
6065
6066 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
6067 record_unwind_protect (code_convert_region_unwind,
6068 Vlast_coding_system_used);
6069 /* It is not crucial to specbind this. */
6070 old_deactivate_mark = Vdeactivate_mark;
6071 GCPRO2 (str, old_deactivate_mark);
6072
6073 /* We must insert the contents of STR as is without
6074 unibyte<->multibyte conversion. For that, we adjust the
6075 multibyteness of the working buffer to that of STR. */
6076 set_conversion_work_buffer (multibyte);
6077
6078 insert_from_string (str, 0, 0,
6079 SCHARS (str), SBYTES (str), 0);
6080 UNGCPRO;
6081 inhibit_pre_post_conversion = 1;
6082 if (encodep)
6083 call2 (coding->pre_write_conversion, make_number (BEG), make_number (Z));
6084 else
6085 {
6086 Vlast_coding_system_used = coding->symbol;
6087 TEMP_SET_PT_BOTH (BEG, BEG_BYTE);
6088 call1 (coding->post_read_conversion, make_number (Z - BEG));
6089 coding->symbol = Vlast_coding_system_used;
6090 }
6091 inhibit_pre_post_conversion = 0;
6092 Vdeactivate_mark = old_deactivate_mark;
6093 str = make_buffer_string (BEG, Z, 1);
6094 return unbind_to (count, str);
6095}
6096
6097
6098/* Run pre-write-conversion function of CODING on NCHARS/NBYTES
6099 text in *STR. *SIZE is the allocated bytes for STR. As it
6100 is intended that this function is called from encode_terminal_code,
6101 the pre-write-conversion function is run by safe_call and thus
6102 "Error during redisplay: ..." is logged when an error occurs.
6103
6104 Store the resulting text in *STR and set CODING->produced_char and
6105 CODING->produced to the number of characters and bytes
6106 respectively. If the size of *STR is too small, enlarge it by
6107 xrealloc and update *STR and *SIZE. */
6108
6109void
6110run_pre_write_conversin_on_c_str (str, size, nchars, nbytes, coding)
6111 unsigned char **str;
6112 int *size, nchars, nbytes;
6113 struct coding_system *coding;
6114{
6115 struct gcpro gcpro1, gcpro2;
6116 struct buffer *cur = current_buffer;
6117 Lisp_Object old_deactivate_mark, old_last_coding_system_used;
6118 Lisp_Object args[3];
6119
6120 /* It is not crucial to specbind this. */
6121 old_deactivate_mark = Vdeactivate_mark;
6122 old_last_coding_system_used = Vlast_coding_system_used;
6123 GCPRO2 (old_deactivate_mark, old_last_coding_system_used);
6124
6125 /* We must insert the contents of STR as is without
6126 unibyte<->multibyte conversion. For that, we adjust the
6127 multibyteness of the working buffer to that of STR. */
6128 set_conversion_work_buffer (coding->src_multibyte);
6129 insert_1_both (*str, nchars, nbytes, 0, 0, 0);
6130 UNGCPRO;
6131 inhibit_pre_post_conversion = 1;
6132 args[0] = coding->pre_write_conversion;
6133 args[1] = make_number (BEG);
6134 args[2] = make_number (Z);
6135 safe_call (3, args);
6136 inhibit_pre_post_conversion = 0;
6137 Vdeactivate_mark = old_deactivate_mark;
6138 Vlast_coding_system_used = old_last_coding_system_used;
6139 coding->produced_char = Z - BEG;
6140 coding->produced = Z_BYTE - BEG_BYTE;
6141 if (coding->produced > *size)
6142 {
6143 *size = coding->produced;
6144 *str = xrealloc (*str, *size);
6145 }
6146 if (BEG < GPT && GPT < Z)
6147 move_gap (BEG);
6148 bcopy (BEG_ADDR, *str, coding->produced);
6149 coding->src_multibyte
6150 = ! NILP (current_buffer->enable_multibyte_characters);
6151 set_buffer_internal (cur);
6152}
6153
6154
6155Lisp_Object
6156decode_coding_string (str, coding, nocopy)
6157 Lisp_Object str;
6158 struct coding_system *coding;
6159 int nocopy;
6160{
6161 int len;
6162 struct conversion_buffer buf;
6163 int from, to_byte;
6164 Lisp_Object saved_coding_symbol;
6165 int result;
6166 int require_decoding;
6167 int shrinked_bytes = 0;
6168 Lisp_Object newstr;
6169 int consumed, consumed_char, produced, produced_char;
6170
6171 from = 0;
6172 to_byte = SBYTES (str);
6173
6174 saved_coding_symbol = coding->symbol;
6175 coding->src_multibyte = STRING_MULTIBYTE (str);
6176 coding->dst_multibyte = 1;
6177 if (CODING_REQUIRE_DETECTION (coding))
6178 {
6179 /* See the comments in code_convert_region. */
6180 if (coding->type == coding_type_undecided)
6181 {
6182 detect_coding (coding, SDATA (str), to_byte);
6183 if (coding->type == coding_type_undecided)
6184 {
6185 coding->type = coding_type_emacs_mule;
6186 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
6187 /* As emacs-mule decoder will handle composition, we
6188 need this setting to allocate coding->cmp_data
6189 later. */
6190 coding->composing = COMPOSITION_NO;
6191 }
6192 }
6193 if (coding->eol_type == CODING_EOL_UNDECIDED
6194 && coding->type != coding_type_ccl)
6195 {
6196 saved_coding_symbol = coding->symbol;
6197 detect_eol (coding, SDATA (str), to_byte);
6198 if (coding->eol_type == CODING_EOL_UNDECIDED)
6199 coding->eol_type = CODING_EOL_LF;
6200 /* We had better recover the original eol format if we
6201 encounter an inconsistent eol format while decoding. */
6202 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
6203 }
6204 }
6205
6206 if (coding->type == coding_type_no_conversion
6207 || coding->type == coding_type_raw_text)
6208 coding->dst_multibyte = 0;
6209
6210 require_decoding = CODING_REQUIRE_DECODING (coding);
6211
6212 if (STRING_MULTIBYTE (str))
6213 {
6214 /* Decoding routines expect the source text to be unibyte. */
6215 str = Fstring_as_unibyte (str);
6216 to_byte = SBYTES (str);
6217 nocopy = 1;
6218 coding->src_multibyte = 0;
6219 }
6220
6221 /* Try to skip the heading and tailing ASCIIs. */
6222 if (require_decoding && coding->type != coding_type_ccl)
6223 {
6224 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, SDATA (str),
6225 0);
6226 if (from == to_byte)
6227 require_decoding = 0;
6228 shrinked_bytes = from + (SBYTES (str) - to_byte);
6229 }
6230
6231 if (!require_decoding
6232 && !(SYMBOLP (coding->post_read_conversion)
6233 && !NILP (Ffboundp (coding->post_read_conversion))))
6234 {
6235 coding->consumed = SBYTES (str);
6236 coding->consumed_char = SCHARS (str);
6237 if (coding->dst_multibyte)
6238 {
6239 str = Fstring_as_multibyte (str);
6240 nocopy = 1;
6241 }
6242 coding->produced = SBYTES (str);
6243 coding->produced_char = SCHARS (str);
6244 return (nocopy ? str : Fcopy_sequence (str));
6245 }
6246
6247 if (coding->composing != COMPOSITION_DISABLED)
6248 coding_allocate_composition_data (coding, from);
6249 len = decoding_buffer_size (coding, to_byte - from);
6250 allocate_conversion_buffer (buf, len);
6251
6252 consumed = consumed_char = produced = produced_char = 0;
6253 while (1)
6254 {
6255 result = decode_coding (coding, SDATA (str) + from + consumed,
6256 buf.data + produced, to_byte - from - consumed,
6257 buf.size - produced);
6258 consumed += coding->consumed;
6259 consumed_char += coding->consumed_char;
6260 produced += coding->produced;
6261 produced_char += coding->produced_char;
6262 if (result == CODING_FINISH_NORMAL
6263 || (result == CODING_FINISH_INSUFFICIENT_SRC
6264 && coding->consumed == 0))
6265 break;
6266 if (result == CODING_FINISH_INSUFFICIENT_CMP)
6267 coding_allocate_composition_data (coding, from + produced_char);
6268 else if (result == CODING_FINISH_INSUFFICIENT_DST)
6269 extend_conversion_buffer (&buf);
6270 else if (result == CODING_FINISH_INCONSISTENT_EOL)
6271 {
6272 Lisp_Object eol_type;
6273
6274 /* Recover the original EOL format. */
6275 if (coding->eol_type == CODING_EOL_CR)
6276 {
6277 unsigned char *p;
6278 for (p = buf.data; p < buf.data + produced; p++)
6279 if (*p == '\n') *p = '\r';
6280 }
6281 else if (coding->eol_type == CODING_EOL_CRLF)
6282 {
6283 int num_eol = 0;
6284 unsigned char *p0, *p1;
6285 for (p0 = buf.data, p1 = p0 + produced; p0 < p1; p0++)
6286 if (*p0 == '\n') num_eol++;
6287 if (produced + num_eol >= buf.size)
6288 extend_conversion_buffer (&buf);
6289 for (p0 = buf.data + produced, p1 = p0 + num_eol; p0 > buf.data;)
6290 {
6291 *--p1 = *--p0;
6292 if (*p0 == '\n') *--p1 = '\r';
6293 }
6294 produced += num_eol;
6295 produced_char += num_eol;
6296 }
6297 /* Suppress eol-format conversion in the further conversion. */
6298 coding->eol_type = CODING_EOL_LF;
6299
6300 /* Set the coding system symbol to that for Unix-like EOL. */
6301 eol_type = Fget (saved_coding_symbol, Qeol_type);
6302 if (VECTORP (eol_type)
6303 && XVECTOR (eol_type)->size == 3
6304 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
6305 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
6306 else
6307 coding->symbol = saved_coding_symbol;
6308
6309
6310 }
6311 }
6312
6313 coding->consumed = consumed;
6314 coding->consumed_char = consumed_char;
6315 coding->produced = produced;
6316 coding->produced_char = produced_char;
6317
6318 if (coding->dst_multibyte)
6319 newstr = make_uninit_multibyte_string (produced_char + shrinked_bytes,
6320 produced + shrinked_bytes);
6321 else
6322 newstr = make_uninit_string (produced + shrinked_bytes);
6323 if (from > 0)
6324 STRING_COPYIN (newstr, 0, SDATA (str), from);
6325 STRING_COPYIN (newstr, from, buf.data, produced);
6326 if (shrinked_bytes > from)
6327 STRING_COPYIN (newstr, from + produced,
6328 SDATA (str) + to_byte,
6329 shrinked_bytes - from);
6330 free_conversion_buffer (&buf);
6331
6332 coding->consumed += shrinked_bytes;
6333 coding->consumed_char += shrinked_bytes;
6334 coding->produced += shrinked_bytes;
6335 coding->produced_char += shrinked_bytes;
6336
6337 if (coding->cmp_data && coding->cmp_data->used)
6338 coding_restore_composition (coding, newstr);
6339 coding_free_composition_data (coding);
6340
6341 if (SYMBOLP (coding->post_read_conversion)
6342 && !NILP (Ffboundp (coding->post_read_conversion)))
6343 newstr = run_pre_post_conversion_on_str (newstr, coding, 0);
6344
6345 return newstr;
6346}
6347
6348Lisp_Object
6349encode_coding_string (str, coding, nocopy)
6350 Lisp_Object str;
6351 struct coding_system *coding;
6352 int nocopy;
6353{
6354 int len;
6355 struct conversion_buffer buf;
6356 int from, to, to_byte;
6357 int result;
6358 int shrinked_bytes = 0;
6359 Lisp_Object newstr;
6360 int consumed, consumed_char, produced, produced_char;
6361
6362 if (SYMBOLP (coding->pre_write_conversion)
6363 && !NILP (Ffboundp (coding->pre_write_conversion)))
6364 {
6365 str = run_pre_post_conversion_on_str (str, coding, 1);
6366 /* As STR is just newly generated, we don't have to copy it
6367 anymore. */
6368 nocopy = 1;
6369 }
6370
6371 from = 0;
6372 to = SCHARS (str);
6373 to_byte = SBYTES (str);
6374
6375 /* Encoding routines determine the multibyteness of the source text
6376 by coding->src_multibyte. */
6377 coding->src_multibyte = SCHARS (str) < SBYTES (str);
6378 coding->dst_multibyte = 0;
6379 if (! CODING_REQUIRE_ENCODING (coding))
6380 goto no_need_of_encoding;
6381
6382 if (coding->composing != COMPOSITION_DISABLED)
6383 coding_save_composition (coding, from, to, str);
6384
6385 /* Try to skip the heading and tailing ASCIIs. We can't skip them
6386 if we must run CCL program or there are compositions to
6387 encode. */
6388 if (coding->type != coding_type_ccl
6389 && (! coding->cmp_data || coding->cmp_data->used == 0))
6390 {
6391 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, SDATA (str),
6392 1);
6393 if (from == to_byte)
6394 {
6395 coding_free_composition_data (coding);
6396 goto no_need_of_encoding;
6397 }
6398 shrinked_bytes = from + (SBYTES (str) - to_byte);
6399 }
6400
6401 len = encoding_buffer_size (coding, to_byte - from);
6402 allocate_conversion_buffer (buf, len);
6403
6404 consumed = consumed_char = produced = produced_char = 0;
6405 while (1)
6406 {
6407 result = encode_coding (coding, SDATA (str) + from + consumed,
6408 buf.data + produced, to_byte - from - consumed,
6409 buf.size - produced);
6410 consumed += coding->consumed;
6411 consumed_char += coding->consumed_char;
6412 produced += coding->produced;
6413 produced_char += coding->produced_char;
6414 if (result == CODING_FINISH_NORMAL
6415 || result == CODING_FINISH_INTERRUPT
6416 || (result == CODING_FINISH_INSUFFICIENT_SRC
6417 && coding->consumed == 0))
6418 break;
6419 /* Now result should be CODING_FINISH_INSUFFICIENT_DST. */
6420 extend_conversion_buffer (&buf);
6421 }
6422
6423 coding->consumed = consumed;
6424 coding->consumed_char = consumed_char;
6425 coding->produced = produced;
6426 coding->produced_char = produced_char;
6427
6428 newstr = make_uninit_string (produced + shrinked_bytes);
6429 if (from > 0)
6430 STRING_COPYIN (newstr, 0, SDATA (str), from);
6431 STRING_COPYIN (newstr, from, buf.data, produced);
6432 if (shrinked_bytes > from)
6433 STRING_COPYIN (newstr, from + produced,
6434 SDATA (str) + to_byte,
6435 shrinked_bytes - from);
6436
6437 free_conversion_buffer (&buf);
6438 coding_free_composition_data (coding);
6439
6440 return newstr;
6441
6442 no_need_of_encoding:
6443 coding->consumed = SBYTES (str);
6444 coding->consumed_char = SCHARS (str);
6445 if (STRING_MULTIBYTE (str))
6446 {
6447 if (nocopy)
6448 /* We are sure that STR doesn't contain a multibyte
6449 character. */
6450 STRING_SET_UNIBYTE (str);
6451 else
6452 {
6453 str = Fstring_as_unibyte (str);
6454 nocopy = 1;
6455 }
6456 }
6457 coding->produced = SBYTES (str);
6458 coding->produced_char = SCHARS (str);
6459 return (nocopy ? str : Fcopy_sequence (str));
6460}
6461
6462\f
6463#ifdef emacs
6464/*** 8. Emacs Lisp library functions ***/
6465
6466DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
6467 doc: /* Return t if OBJECT is nil or a coding-system.
6468See the documentation of `make-coding-system' for information
6469about coding-system objects. */)
6470 (obj)
6471 Lisp_Object obj;
6472{
6473 if (NILP (obj))
6474 return Qt;
6475 if (!SYMBOLP (obj))
6476 return Qnil;
6477 if (! NILP (Fget (obj, Qcoding_system_define_form)))
6478 return Qt;
6479 /* Get coding-spec vector for OBJ. */
6480 obj = Fget (obj, Qcoding_system);
6481 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
6482 ? Qt : Qnil);
6483}
6484
6485DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
6486 Sread_non_nil_coding_system, 1, 1, 0,
6487 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
6488 (prompt)
6489 Lisp_Object prompt;
6490{
6491 Lisp_Object val;
6492 do
6493 {
6494 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6495 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
6496 }
6497 while (SCHARS (val) == 0);
6498 return (Fintern (val, Qnil));
6499}
6500
6501DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
6502 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
6503If the user enters null input, return second argument DEFAULT-CODING-SYSTEM. */)
6504 (prompt, default_coding_system)
6505 Lisp_Object prompt, default_coding_system;
6506{
6507 Lisp_Object val;
6508 if (SYMBOLP (default_coding_system))
6509 default_coding_system = SYMBOL_NAME (default_coding_system);
6510 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6511 Qt, Qnil, Qcoding_system_history,
6512 default_coding_system, Qnil);
6513 return (SCHARS (val) == 0 ? Qnil : Fintern (val, Qnil));
6514}
6515
6516DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
6517 1, 1, 0,
6518 doc: /* Check validity of CODING-SYSTEM.
6519If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
6520It is valid if it is nil or a symbol with a non-nil `coding-system' property.
6521The value of this property should be a vector of length 5. */)
6522 (coding_system)
6523 Lisp_Object coding_system;
6524{
6525 Lisp_Object define_form;
6526
6527 define_form = Fget (coding_system, Qcoding_system_define_form);
6528 if (! NILP (define_form))
6529 {
6530 Fput (coding_system, Qcoding_system_define_form, Qnil);
6531 safe_eval (define_form);
6532 }
6533 if (!NILP (Fcoding_system_p (coding_system)))
6534 return coding_system;
6535 while (1)
6536 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
6537}
6538\f
6539Lisp_Object
6540detect_coding_system (src, src_bytes, highest, multibytep)
6541 const unsigned char *src;
6542 int src_bytes, highest;
6543 int multibytep;
6544{
6545 int coding_mask, eol_type;
6546 Lisp_Object val, tmp;
6547 int dummy;
6548
6549 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy, multibytep);
6550 eol_type = detect_eol_type (src, src_bytes, &dummy);
6551 if (eol_type == CODING_EOL_INCONSISTENT)
6552 eol_type = CODING_EOL_UNDECIDED;
6553
6554 if (!coding_mask)
6555 {
6556 val = Qundecided;
6557 if (eol_type != CODING_EOL_UNDECIDED)
6558 {
6559 Lisp_Object val2;
6560 val2 = Fget (Qundecided, Qeol_type);
6561 if (VECTORP (val2))
6562 val = XVECTOR (val2)->contents[eol_type];
6563 }
6564 return (highest ? val : Fcons (val, Qnil));
6565 }
6566
6567 /* At first, gather possible coding systems in VAL. */
6568 val = Qnil;
6569 for (tmp = Vcoding_category_list; CONSP (tmp); tmp = XCDR (tmp))
6570 {
6571 Lisp_Object category_val, category_index;
6572
6573 category_index = Fget (XCAR (tmp), Qcoding_category_index);
6574 category_val = Fsymbol_value (XCAR (tmp));
6575 if (!NILP (category_val)
6576 && NATNUMP (category_index)
6577 && (coding_mask & (1 << XFASTINT (category_index))))
6578 {
6579 val = Fcons (category_val, val);
6580 if (highest)
6581 break;
6582 }
6583 }
6584 if (!highest)
6585 val = Fnreverse (val);
6586
6587 /* Then, replace the elements with subsidiary coding systems. */
6588 for (tmp = val; CONSP (tmp); tmp = XCDR (tmp))
6589 {
6590 if (eol_type != CODING_EOL_UNDECIDED
6591 && eol_type != CODING_EOL_INCONSISTENT)
6592 {
6593 Lisp_Object eol;
6594 eol = Fget (XCAR (tmp), Qeol_type);
6595 if (VECTORP (eol))
6596 XSETCAR (tmp, XVECTOR (eol)->contents[eol_type]);
6597 }
6598 }
6599 return (highest ? XCAR (val) : val);
6600}
6601
6602DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
6603 2, 3, 0,
6604 doc: /* Detect how the byte sequence in the region is encoded.
6605Return a list of possible coding systems used on decoding a byte
6606sequence containing the bytes in the region between START and END when
6607the coding system `undecided' is specified. The list is ordered by
6608priority decided in the current language environment.
6609
6610If only ASCII characters are found, it returns a list of single element
6611`undecided' or its subsidiary coding system according to a detected
6612end-of-line format.
6613
6614If optional argument HIGHEST is non-nil, return the coding system of
6615highest priority. */)
6616 (start, end, highest)
6617 Lisp_Object start, end, highest;
6618{
6619 int from, to;
6620 int from_byte, to_byte;
6621 int include_anchor_byte = 0;
6622
6623 CHECK_NUMBER_COERCE_MARKER (start);
6624 CHECK_NUMBER_COERCE_MARKER (end);
6625
6626 validate_region (&start, &end);
6627 from = XINT (start), to = XINT (end);
6628 from_byte = CHAR_TO_BYTE (from);
6629 to_byte = CHAR_TO_BYTE (to);
6630
6631 if (from < GPT && to >= GPT)
6632 move_gap_both (to, to_byte);
6633 /* If we an anchor byte `\0' follows the region, we include it in
6634 the detecting source. Then code detectors can handle the tailing
6635 byte sequence more accurately.
6636
6637 Fix me: This is not a perfect solution. It is better that we
6638 add one more argument, say LAST_BLOCK, to all detect_coding_XXX.
6639 */
6640 if (to == Z || (to == GPT && GAP_SIZE > 0))
6641 include_anchor_byte = 1;
6642 return detect_coding_system (BYTE_POS_ADDR (from_byte),
6643 to_byte - from_byte + include_anchor_byte,
6644 !NILP (highest),
6645 !NILP (current_buffer
6646 ->enable_multibyte_characters));
6647}
6648
6649DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
6650 1, 2, 0,
6651 doc: /* Detect how the byte sequence in STRING is encoded.
6652Return a list of possible coding systems used on decoding a byte
6653sequence containing the bytes in STRING when the coding system
6654`undecided' is specified. The list is ordered by priority decided in
6655the current language environment.
6656
6657If only ASCII characters are found, it returns a list of single element
6658`undecided' or its subsidiary coding system according to a detected
6659end-of-line format.
6660
6661If optional argument HIGHEST is non-nil, return the coding system of
6662highest priority. */)
6663 (string, highest)
6664 Lisp_Object string, highest;
6665{
6666 CHECK_STRING (string);
6667
6668 return detect_coding_system (SDATA (string),
6669 /* "+ 1" is to include the anchor byte
6670 `\0'. With this, code detectors can
6671 handle the tailing bytes more
6672 accurately. */
6673 SBYTES (string) + 1,
6674 !NILP (highest),
6675 STRING_MULTIBYTE (string));
6676}
6677
6678/* Subroutine for Fsafe_coding_systems_region_internal.
6679
6680 Return a list of coding systems that safely encode the multibyte
6681 text between P and PEND. SAFE_CODINGS, if non-nil, is an alist of
6682 possible coding systems. If it is nil, it means that we have not
6683 yet found any coding systems.
6684
6685 WORK_TABLE a char-table of which element is set to t once the
6686 element is looked up.
6687
6688 If a non-ASCII single byte char is found, set
6689 *single_byte_char_found to 1. */
6690
6691static Lisp_Object
6692find_safe_codings (p, pend, safe_codings, work_table, single_byte_char_found)
6693 unsigned char *p, *pend;
6694 Lisp_Object safe_codings, work_table;
6695 int *single_byte_char_found;
6696{
6697 int c, len;
6698 Lisp_Object val, ch;
6699 Lisp_Object prev, tail;
6700
6701 if (NILP (safe_codings))
6702 goto done_safe_codings;
6703 while (p < pend)
6704 {
6705 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
6706 p += len;
6707 if (ASCII_BYTE_P (c))
6708 /* We can ignore ASCII characters here. */
6709 continue;
6710 if (SINGLE_BYTE_CHAR_P (c))
6711 *single_byte_char_found = 1;
6712 /* Check the safe coding systems for C. */
6713 ch = make_number (c);
6714 val = Faref (work_table, ch);
6715 if (EQ (val, Qt))
6716 /* This element was already checked. Ignore it. */
6717 continue;
6718 /* Remember that we checked this element. */
6719 Faset (work_table, ch, Qt);
6720
6721 for (prev = tail = safe_codings; CONSP (tail); tail = XCDR (tail))
6722 {
6723 Lisp_Object elt, translation_table, hash_table, accept_latin_extra;
6724 int encodable;
6725
6726 elt = XCAR (tail);
6727 if (CONSP (XCDR (elt)))
6728 {
6729 /* This entry has this format now:
6730 ( CODING SAFE-CHARS TRANSLATION-TABLE HASH-TABLE
6731 ACCEPT-LATIN-EXTRA ) */
6732 val = XCDR (elt);
6733 encodable = ! NILP (Faref (XCAR (val), ch));
6734 if (! encodable)
6735 {
6736 val = XCDR (val);
6737 translation_table = XCAR (val);
6738 hash_table = XCAR (XCDR (val));
6739 accept_latin_extra = XCAR (XCDR (XCDR (val)));
6740 }
6741 }
6742 else
6743 {
6744 /* This entry has this format now: ( CODING . SAFE-CHARS) */
6745 encodable = ! NILP (Faref (XCDR (elt), ch));
6746 if (! encodable)
6747 {
6748 /* Transform the format to:
6749 ( CODING SAFE-CHARS TRANSLATION-TABLE HASH-TABLE
6750 ACCEPT-LATIN-EXTRA ) */
6751 val = Fget (XCAR (elt), Qcoding_system);
6752 translation_table
6753 = Fplist_get (AREF (val, 3),
6754 Qtranslation_table_for_encode);
6755 if (SYMBOLP (translation_table))
6756 translation_table = Fget (translation_table,
6757 Qtranslation_table);
6758 hash_table
6759 = (CHAR_TABLE_P (translation_table)
6760 ? XCHAR_TABLE (translation_table)->extras[1]
6761 : Qnil);
6762 accept_latin_extra
6763 = ((EQ (AREF (val, 0), make_number (2))
6764 && VECTORP (AREF (val, 4)))
6765 ? AREF (AREF (val, 4), 16)
6766 : Qnil);
6767 XSETCAR (tail, list5 (XCAR (elt), XCDR (elt),
6768 translation_table, hash_table,
6769 accept_latin_extra));
6770 }
6771 }
6772
6773 if (! encodable
6774 && ((CHAR_TABLE_P (translation_table)
6775 && ! NILP (Faref (translation_table, ch)))
6776 || (HASH_TABLE_P (hash_table)
6777 && ! NILP (Fgethash (ch, hash_table, Qnil)))
6778 || (SINGLE_BYTE_CHAR_P (c)
6779 && ! NILP (accept_latin_extra)
6780 && VECTORP (Vlatin_extra_code_table)
6781 && ! NILP (AREF (Vlatin_extra_code_table, c)))))
6782 encodable = 1;
6783 if (encodable)
6784 prev = tail;
6785 else
6786 {
6787 /* Exclude this coding system from SAFE_CODINGS. */
6788 if (EQ (tail, safe_codings))
6789 {
6790 safe_codings = XCDR (safe_codings);
6791 if (NILP (safe_codings))
6792 goto done_safe_codings;
6793 }
6794 else
6795 XSETCDR (prev, XCDR (tail));
6796 }
6797 }
6798 }
6799
6800 done_safe_codings:
6801 /* If the above loop was terminated before P reaches PEND, it means
6802 SAFE_CODINGS was set to nil. If we have not yet found an
6803 non-ASCII single-byte char, check it now. */
6804 if (! *single_byte_char_found)
6805 while (p < pend)
6806 {
6807 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
6808 p += len;
6809 if (! ASCII_BYTE_P (c)
6810 && SINGLE_BYTE_CHAR_P (c))
6811 {
6812 *single_byte_char_found = 1;
6813 break;
6814 }
6815 }
6816 return safe_codings;
6817}
6818
6819DEFUN ("find-coding-systems-region-internal",
6820 Ffind_coding_systems_region_internal,
6821 Sfind_coding_systems_region_internal, 2, 2, 0,
6822 doc: /* Internal use only. */)
6823 (start, end)
6824 Lisp_Object start, end;
6825{
6826 Lisp_Object work_table, safe_codings;
6827 int non_ascii_p = 0;
6828 int single_byte_char_found = 0;
6829 const unsigned char *p1, *p1end, *p2, *p2end, *p;
6830
6831 if (STRINGP (start))
6832 {
6833 if (!STRING_MULTIBYTE (start))
6834 return Qt;
6835 p1 = SDATA (start), p1end = p1 + SBYTES (start);
6836 p2 = p2end = p1end;
6837 if (SCHARS (start) != SBYTES (start))
6838 non_ascii_p = 1;
6839 }
6840 else
6841 {
6842 int from, to, stop;
6843
6844 CHECK_NUMBER_COERCE_MARKER (start);
6845 CHECK_NUMBER_COERCE_MARKER (end);
6846 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
6847 args_out_of_range (start, end);
6848 if (NILP (current_buffer->enable_multibyte_characters))
6849 return Qt;
6850 from = CHAR_TO_BYTE (XINT (start));
6851 to = CHAR_TO_BYTE (XINT (end));
6852 stop = from < GPT_BYTE && GPT_BYTE < to ? GPT_BYTE : to;
6853 p1 = BYTE_POS_ADDR (from), p1end = p1 + (stop - from);
6854 if (stop == to)
6855 p2 = p2end = p1end;
6856 else
6857 p2 = BYTE_POS_ADDR (stop), p2end = p2 + (to - stop);
6858 if (XINT (end) - XINT (start) != to - from)
6859 non_ascii_p = 1;
6860 }
6861
6862 if (!non_ascii_p)
6863 {
6864 /* We are sure that the text contains no multibyte character.
6865 Check if it contains eight-bit-graphic. */
6866 p = p1;
6867 for (p = p1; p < p1end && ASCII_BYTE_P (*p); p++);
6868 if (p == p1end)
6869 {
6870 for (p = p2; p < p2end && ASCII_BYTE_P (*p); p++);
6871 if (p == p2end)
6872 return Qt;
6873 }
6874 }
6875
6876 /* The text contains non-ASCII characters. */
6877
6878 work_table = Fmake_char_table (Qchar_coding_system, Qnil);
6879 safe_codings = Fcopy_sequence (XCDR (Vcoding_system_safe_chars));
6880
6881 safe_codings = find_safe_codings (p1, p1end, safe_codings, work_table,
6882 &single_byte_char_found);
6883 if (p2 < p2end)
6884 safe_codings = find_safe_codings (p2, p2end, safe_codings, work_table,
6885 &single_byte_char_found);
6886 if (EQ (safe_codings, XCDR (Vcoding_system_safe_chars)))
6887 safe_codings = Qt;
6888 else
6889 {
6890 /* Turn safe_codings to a list of coding systems... */
6891 Lisp_Object val;
6892
6893 if (single_byte_char_found)
6894 /* ... and append these for eight-bit chars. */
6895 val = Fcons (Qraw_text,
6896 Fcons (Qemacs_mule, Fcons (Qno_conversion, Qnil)));
6897 else
6898 /* ... and append generic coding systems. */
6899 val = Fcopy_sequence (XCAR (Vcoding_system_safe_chars));
6900
6901 for (; CONSP (safe_codings); safe_codings = XCDR (safe_codings))
6902 val = Fcons (XCAR (XCAR (safe_codings)), val);
6903 safe_codings = val;
6904 }
6905
6906 return safe_codings;
6907}
6908
6909
6910/* Search from position POS for such characters that are unencodable
6911 accoding to SAFE_CHARS, and return a list of their positions. P
6912 points where in the memory the character at POS exists. Limit the
6913 search at PEND or when Nth unencodable characters are found.
6914
6915 If SAFE_CHARS is a char table, an element for an unencodable
6916 character is nil.
6917
6918 If SAFE_CHARS is nil, all non-ASCII characters are unencodable.
6919
6920 Otherwise, SAFE_CHARS is t, and only eight-bit-contrl and
6921 eight-bit-graphic characters are unencodable. */
6922
6923static Lisp_Object
6924unencodable_char_position (safe_chars, pos, p, pend, n)
6925 Lisp_Object safe_chars;
6926 int pos;
6927 unsigned char *p, *pend;
6928 int n;
6929{
6930 Lisp_Object pos_list;
6931
6932 pos_list = Qnil;
6933 while (p < pend)
6934 {
6935 int len;
6936 int c = STRING_CHAR_AND_LENGTH (p, MAX_MULTIBYTE_LENGTH, len);
6937
6938 if (c >= 128
6939 && (CHAR_TABLE_P (safe_chars)
6940 ? NILP (CHAR_TABLE_REF (safe_chars, c))
6941 : (NILP (safe_chars) || c < 256)))
6942 {
6943 pos_list = Fcons (make_number (pos), pos_list);
6944 if (--n <= 0)
6945 break;
6946 }
6947 pos++;
6948 p += len;
6949 }
6950 return Fnreverse (pos_list);
6951}
6952
6953
6954DEFUN ("unencodable-char-position", Funencodable_char_position,
6955 Sunencodable_char_position, 3, 5, 0,
6956 doc: /*
6957Return position of first un-encodable character in a region.
6958START and END specfiy the region and CODING-SYSTEM specifies the
6959encoding to check. Return nil if CODING-SYSTEM does encode the region.
6960
6961If optional 4th argument COUNT is non-nil, it specifies at most how
6962many un-encodable characters to search. In this case, the value is a
6963list of positions.
6964
6965If optional 5th argument STRING is non-nil, it is a string to search
6966for un-encodable characters. In that case, START and END are indexes
6967to the string. */)
6968 (start, end, coding_system, count, string)
6969 Lisp_Object start, end, coding_system, count, string;
6970{
6971 int n;
6972 Lisp_Object safe_chars;
6973 struct coding_system coding;
6974 Lisp_Object positions;
6975 int from, to;
6976 unsigned char *p, *pend;
6977
6978 if (NILP (string))
6979 {
6980 validate_region (&start, &end);
6981 from = XINT (start);
6982 to = XINT (end);
6983 if (NILP (current_buffer->enable_multibyte_characters))
6984 return Qnil;
6985 p = CHAR_POS_ADDR (from);
6986 if (to == GPT)
6987 pend = GPT_ADDR;
6988 else
6989 pend = CHAR_POS_ADDR (to);
6990 }
6991 else
6992 {
6993 CHECK_STRING (string);
6994 CHECK_NATNUM (start);
6995 CHECK_NATNUM (end);
6996 from = XINT (start);
6997 to = XINT (end);
6998 if (from > to
6999 || to > SCHARS (string))
7000 args_out_of_range_3 (string, start, end);
7001 if (! STRING_MULTIBYTE (string))
7002 return Qnil;
7003 p = SDATA (string) + string_char_to_byte (string, from);
7004 pend = SDATA (string) + string_char_to_byte (string, to);
7005 }
7006
7007 setup_coding_system (Fcheck_coding_system (coding_system), &coding);
7008
7009 if (NILP (count))
7010 n = 1;
7011 else
7012 {
7013 CHECK_NATNUM (count);
7014 n = XINT (count);
7015 }
7016
7017 if (coding.type == coding_type_no_conversion
7018 || coding.type == coding_type_raw_text)
7019 return Qnil;
7020
7021 if (coding.type == coding_type_undecided)
7022 safe_chars = Qnil;
7023 else
7024 safe_chars = coding_safe_chars (coding_system);
7025
7026 if (STRINGP (string)
7027 || from >= GPT || to <= GPT)
7028 positions = unencodable_char_position (safe_chars, from, p, pend, n);
7029 else
7030 {
7031 Lisp_Object args[2];
7032
7033 args[0] = unencodable_char_position (safe_chars, from, p, GPT_ADDR, n);
7034 n -= XINT (Flength (args[0]));
7035 if (n <= 0)
7036 positions = args[0];
7037 else
7038 {
7039 args[1] = unencodable_char_position (safe_chars, GPT, GAP_END_ADDR,
7040 pend, n);
7041 positions = Fappend (2, args);
7042 }
7043 }
7044
7045 return (NILP (count) ? Fcar (positions) : positions);
7046}
7047
7048
7049Lisp_Object
7050code_convert_region1 (start, end, coding_system, encodep)
7051 Lisp_Object start, end, coding_system;
7052 int encodep;
7053{
7054 struct coding_system coding;
7055 int from, to;
7056
7057 CHECK_NUMBER_COERCE_MARKER (start);
7058 CHECK_NUMBER_COERCE_MARKER (end);
7059 CHECK_SYMBOL (coding_system);
7060
7061 validate_region (&start, &end);
7062 from = XFASTINT (start);
7063 to = XFASTINT (end);
7064
7065 if (NILP (coding_system))
7066 return make_number (to - from);
7067
7068 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
7069 error ("Invalid coding system: %s", SDATA (SYMBOL_NAME (coding_system)));
7070
7071 coding.mode |= CODING_MODE_LAST_BLOCK;
7072 coding.src_multibyte = coding.dst_multibyte
7073 = !NILP (current_buffer->enable_multibyte_characters);
7074 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
7075 &coding, encodep, 1);
7076 Vlast_coding_system_used = coding.symbol;
7077 return make_number (coding.produced_char);
7078}
7079
7080DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
7081 3, 3, "r\nzCoding system: ",
7082 doc: /* Decode the current region from the specified coding system.
7083When called from a program, takes three arguments:
7084START, END, and CODING-SYSTEM. START and END are buffer positions.
7085This function sets `last-coding-system-used' to the precise coding system
7086used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
7087not fully specified.)
7088It returns the length of the decoded text. */)
7089 (start, end, coding_system)
7090 Lisp_Object start, end, coding_system;
7091{
7092 return code_convert_region1 (start, end, coding_system, 0);
7093}
7094
7095DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
7096 3, 3, "r\nzCoding system: ",
7097 doc: /* Encode the current region into the specified coding system.
7098When called from a program, takes three arguments:
7099START, END, and CODING-SYSTEM. START and END are buffer positions.
7100This function sets `last-coding-system-used' to the precise coding system
7101used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
7102not fully specified.)
7103It returns the length of the encoded text. */)
7104 (start, end, coding_system)
7105 Lisp_Object start, end, coding_system;
7106{
7107 return code_convert_region1 (start, end, coding_system, 1);
7108}
7109
7110Lisp_Object
7111code_convert_string1 (string, coding_system, nocopy, encodep)
7112 Lisp_Object string, coding_system, nocopy;
7113 int encodep;
7114{
7115 struct coding_system coding;
7116
7117 CHECK_STRING (string);
7118 CHECK_SYMBOL (coding_system);
7119
7120 if (NILP (coding_system))
7121 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
7122
7123 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
7124 error ("Invalid coding system: %s", SDATA (SYMBOL_NAME (coding_system)));
7125
7126 coding.mode |= CODING_MODE_LAST_BLOCK;
7127 string = (encodep
7128 ? encode_coding_string (string, &coding, !NILP (nocopy))
7129 : decode_coding_string (string, &coding, !NILP (nocopy)));
7130 Vlast_coding_system_used = coding.symbol;
7131
7132 return string;
7133}
7134
7135DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
7136 2, 3, 0,
7137 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
7138Optional arg NOCOPY non-nil means it is OK to return STRING itself
7139if the decoding operation is trivial.
7140This function sets `last-coding-system-used' to the precise coding system
7141used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
7142not fully specified.) */)
7143 (string, coding_system, nocopy)
7144 Lisp_Object string, coding_system, nocopy;
7145{
7146 return code_convert_string1 (string, coding_system, nocopy, 0);
7147}
7148
7149DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
7150 2, 3, 0,
7151 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
7152Optional arg NOCOPY non-nil means it is OK to return STRING itself
7153if the encoding operation is trivial.
7154This function sets `last-coding-system-used' to the precise coding system
7155used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
7156not fully specified.) */)
7157 (string, coding_system, nocopy)
7158 Lisp_Object string, coding_system, nocopy;
7159{
7160 return code_convert_string1 (string, coding_system, nocopy, 1);
7161}
7162
7163/* Encode or decode STRING according to CODING_SYSTEM.
7164 Do not set Vlast_coding_system_used.
7165
7166 This function is called only from macros DECODE_FILE and
7167 ENCODE_FILE, thus we ignore character composition. */
7168
7169Lisp_Object
7170code_convert_string_norecord (string, coding_system, encodep)
7171 Lisp_Object string, coding_system;
7172 int encodep;
7173{
7174 struct coding_system coding;
7175
7176 CHECK_STRING (string);
7177 CHECK_SYMBOL (coding_system);
7178
7179 if (NILP (coding_system))
7180 return string;
7181
7182 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
7183 error ("Invalid coding system: %s", SDATA (SYMBOL_NAME (coding_system)));
7184
7185 coding.composing = COMPOSITION_DISABLED;
7186 coding.mode |= CODING_MODE_LAST_BLOCK;
7187 return (encodep
7188 ? encode_coding_string (string, &coding, 1)
7189 : decode_coding_string (string, &coding, 1));
7190}
7191\f
7192DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
7193 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
7194Return the corresponding character. */)
7195 (code)
7196 Lisp_Object code;
7197{
7198 unsigned char c1, c2, s1, s2;
7199 Lisp_Object val;
7200
7201 CHECK_NUMBER (code);
7202 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
7203 if (s1 == 0)
7204 {
7205 if (s2 < 0x80)
7206 XSETFASTINT (val, s2);
7207 else if (s2 >= 0xA0 || s2 <= 0xDF)
7208 XSETFASTINT (val, MAKE_CHAR (charset_katakana_jisx0201, s2, 0));
7209 else
7210 error ("Invalid Shift JIS code: %x", XFASTINT (code));
7211 }
7212 else
7213 {
7214 if ((s1 < 0x80 || (s1 > 0x9F && s1 < 0xE0) || s1 > 0xEF)
7215 || (s2 < 0x40 || s2 == 0x7F || s2 > 0xFC))
7216 error ("Invalid Shift JIS code: %x", XFASTINT (code));
7217 DECODE_SJIS (s1, s2, c1, c2);
7218 XSETFASTINT (val, MAKE_CHAR (charset_jisx0208, c1, c2));
7219 }
7220 return val;
7221}
7222
7223DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
7224 doc: /* Encode a Japanese character CHAR to shift_jis encoding.
7225Return the corresponding code in SJIS. */)
7226 (ch)
7227 Lisp_Object ch;
7228{
7229 int charset, c1, c2, s1, s2;
7230 Lisp_Object val;
7231
7232 CHECK_NUMBER (ch);
7233 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
7234 if (charset == CHARSET_ASCII)
7235 {
7236 val = ch;
7237 }
7238 else if (charset == charset_jisx0208
7239 && c1 > 0x20 && c1 < 0x7F && c2 > 0x20 && c2 < 0x7F)
7240 {
7241 ENCODE_SJIS (c1, c2, s1, s2);
7242 XSETFASTINT (val, (s1 << 8) | s2);
7243 }
7244 else if (charset == charset_katakana_jisx0201
7245 && c1 > 0x20 && c2 < 0xE0)
7246 {
7247 XSETFASTINT (val, c1 | 0x80);
7248 }
7249 else
7250 error ("Can't encode to shift_jis: %d", XFASTINT (ch));
7251 return val;
7252}
7253
7254DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
7255 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
7256Return the corresponding character. */)
7257 (code)
7258 Lisp_Object code;
7259{
7260 int charset;
7261 unsigned char b1, b2, c1, c2;
7262 Lisp_Object val;
7263
7264 CHECK_NUMBER (code);
7265 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
7266 if (b1 == 0)
7267 {
7268 if (b2 >= 0x80)
7269 error ("Invalid BIG5 code: %x", XFASTINT (code));
7270 val = code;
7271 }
7272 else
7273 {
7274 if ((b1 < 0xA1 || b1 > 0xFE)
7275 || (b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE))
7276 error ("Invalid BIG5 code: %x", XFASTINT (code));
7277 DECODE_BIG5 (b1, b2, charset, c1, c2);
7278 XSETFASTINT (val, MAKE_CHAR (charset, c1, c2));
7279 }
7280 return val;
7281}
7282
7283DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
7284 doc: /* Encode the Big5 character CHAR to BIG5 coding system.
7285Return the corresponding character code in Big5. */)
7286 (ch)
7287 Lisp_Object ch;
7288{
7289 int charset, c1, c2, b1, b2;
7290 Lisp_Object val;
7291
7292 CHECK_NUMBER (ch);
7293 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
7294 if (charset == CHARSET_ASCII)
7295 {
7296 val = ch;
7297 }
7298 else if ((charset == charset_big5_1
7299 && (XFASTINT (ch) >= 0x250a1 && XFASTINT (ch) <= 0x271ec))
7300 || (charset == charset_big5_2
7301 && XFASTINT (ch) >= 0x290a1 && XFASTINT (ch) <= 0x2bdb2))
7302 {
7303 ENCODE_BIG5 (charset, c1, c2, b1, b2);
7304 XSETFASTINT (val, (b1 << 8) | b2);
7305 }
7306 else
7307 error ("Can't encode to Big5: %d", XFASTINT (ch));
7308 return val;
7309}
7310\f
7311DEFUN ("set-terminal-coding-system-internal", Fset_terminal_coding_system_internal,
7312 Sset_terminal_coding_system_internal, 1, 1, 0,
7313 doc: /* Internal use only. */)
7314 (coding_system)
7315 Lisp_Object coding_system;
7316{
7317 CHECK_SYMBOL (coding_system);
7318 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
7319 /* We had better not send unsafe characters to terminal. */
7320 terminal_coding.mode |= CODING_MODE_INHIBIT_UNENCODABLE_CHAR;
7321 /* Character composition should be disabled. */
7322 terminal_coding.composing = COMPOSITION_DISABLED;
7323 /* Error notification should be suppressed. */
7324 terminal_coding.suppress_error = 1;
7325 terminal_coding.src_multibyte = 1;
7326 terminal_coding.dst_multibyte = 0;
7327 return Qnil;
7328}
7329
7330DEFUN ("set-safe-terminal-coding-system-internal", Fset_safe_terminal_coding_system_internal,
7331 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
7332 doc: /* Internal use only. */)
7333 (coding_system)
7334 Lisp_Object coding_system;
7335{
7336 CHECK_SYMBOL (coding_system);
7337 setup_coding_system (Fcheck_coding_system (coding_system),
7338 &safe_terminal_coding);
7339 /* Character composition should be disabled. */
7340 safe_terminal_coding.composing = COMPOSITION_DISABLED;
7341 /* Error notification should be suppressed. */
7342 safe_terminal_coding.suppress_error = 1;
7343 safe_terminal_coding.src_multibyte = 1;
7344 safe_terminal_coding.dst_multibyte = 0;
7345 return Qnil;
7346}
7347
7348DEFUN ("terminal-coding-system", Fterminal_coding_system,
7349 Sterminal_coding_system, 0, 0, 0,
7350 doc: /* Return coding system specified for terminal output. */)
7351 ()
7352{
7353 return terminal_coding.symbol;
7354}
7355
7356DEFUN ("set-keyboard-coding-system-internal", Fset_keyboard_coding_system_internal,
7357 Sset_keyboard_coding_system_internal, 1, 1, 0,
7358 doc: /* Internal use only. */)
7359 (coding_system)
7360 Lisp_Object coding_system;
7361{
7362 CHECK_SYMBOL (coding_system);
7363 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
7364 /* Character composition should be disabled. */
7365 keyboard_coding.composing = COMPOSITION_DISABLED;
7366 return Qnil;
7367}
7368
7369DEFUN ("keyboard-coding-system", Fkeyboard_coding_system,
7370 Skeyboard_coding_system, 0, 0, 0,
7371 doc: /* Return coding system specified for decoding keyboard input. */)
7372 ()
7373{
7374 return keyboard_coding.symbol;
7375}
7376
7377\f
7378DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
7379 Sfind_operation_coding_system, 1, MANY, 0,
7380 doc: /* Choose a coding system for an operation based on the target name.
7381The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
7382DECODING-SYSTEM is the coding system to use for decoding
7383\(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
7384for encoding (in case OPERATION does encoding).
7385
7386The first argument OPERATION specifies an I/O primitive:
7387 For file I/O, `insert-file-contents' or `write-region'.
7388 For process I/O, `call-process', `call-process-region', or `start-process'.
7389 For network I/O, `open-network-stream'.
7390
7391The remaining arguments should be the same arguments that were passed
7392to the primitive. Depending on which primitive, one of those arguments
7393is selected as the TARGET. For example, if OPERATION does file I/O,
7394whichever argument specifies the file name is TARGET.
7395
7396TARGET has a meaning which depends on OPERATION:
7397 For file I/O, TARGET is a file name.
7398 For process I/O, TARGET is a process name.
7399 For network I/O, TARGET is a service name or a port number
7400
7401This function looks up what specified for TARGET in,
7402`file-coding-system-alist', `process-coding-system-alist',
7403or `network-coding-system-alist' depending on OPERATION.
7404They may specify a coding system, a cons of coding systems,
7405or a function symbol to call.
7406In the last case, we call the function with one argument,
7407which is a list of all the arguments given to this function.
7408
7409usage: (find-operation-coding-system OPERATION ARGUMENTS ...) */)
7410 (nargs, args)
7411 int nargs;
7412 Lisp_Object *args;
7413{
7414 Lisp_Object operation, target_idx, target, val;
7415 register Lisp_Object chain;
7416
7417 if (nargs < 2)
7418 error ("Too few arguments");
7419 operation = args[0];
7420 if (!SYMBOLP (operation)
7421 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
7422 error ("Invalid first argument");
7423 if (nargs < 1 + XINT (target_idx))
7424 error ("Too few arguments for operation: %s",
7425 SDATA (SYMBOL_NAME (operation)));
7426 /* For write-region, if the 6th argument (i.e. VISIT, the 5th
7427 argument to write-region) is string, it must be treated as a
7428 target file name. */
7429 if (EQ (operation, Qwrite_region)
7430 && nargs > 5
7431 && STRINGP (args[5]))
7432 target_idx = make_number (4);
7433 target = args[XINT (target_idx) + 1];
7434 if (!(STRINGP (target)
7435 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
7436 error ("Invalid argument %d", XINT (target_idx) + 1);
7437
7438 chain = ((EQ (operation, Qinsert_file_contents)
7439 || EQ (operation, Qwrite_region))
7440 ? Vfile_coding_system_alist
7441 : (EQ (operation, Qopen_network_stream)
7442 ? Vnetwork_coding_system_alist
7443 : Vprocess_coding_system_alist));
7444 if (NILP (chain))
7445 return Qnil;
7446
7447 for (; CONSP (chain); chain = XCDR (chain))
7448 {
7449 Lisp_Object elt;
7450 elt = XCAR (chain);
7451
7452 if (CONSP (elt)
7453 && ((STRINGP (target)
7454 && STRINGP (XCAR (elt))
7455 && fast_string_match (XCAR (elt), target) >= 0)
7456 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
7457 {
7458 val = XCDR (elt);
7459 /* Here, if VAL is both a valid coding system and a valid
7460 function symbol, we return VAL as a coding system. */
7461 if (CONSP (val))
7462 return val;
7463 if (! SYMBOLP (val))
7464 return Qnil;
7465 if (! NILP (Fcoding_system_p (val)))
7466 return Fcons (val, val);
7467 if (! NILP (Ffboundp (val)))
7468 {
7469 val = call1 (val, Flist (nargs, args));
7470 if (CONSP (val))
7471 return val;
7472 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
7473 return Fcons (val, val);
7474 }
7475 return Qnil;
7476 }
7477 }
7478 return Qnil;
7479}
7480
7481DEFUN ("update-coding-systems-internal", Fupdate_coding_systems_internal,
7482 Supdate_coding_systems_internal, 0, 0, 0,
7483 doc: /* Update internal database for ISO2022 and CCL based coding systems.
7484When values of any coding categories are changed, you must
7485call this function. */)
7486 ()
7487{
7488 int i;
7489
7490 for (i = CODING_CATEGORY_IDX_EMACS_MULE; i < CODING_CATEGORY_IDX_MAX; i++)
7491 {
7492 Lisp_Object val;
7493
7494 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[i]);
7495 if (!NILP (val))
7496 {
7497 if (! coding_system_table[i])
7498 coding_system_table[i] = ((struct coding_system *)
7499 xmalloc (sizeof (struct coding_system)));
7500 setup_coding_system (val, coding_system_table[i]);
7501 }
7502 else if (coding_system_table[i])
7503 {
7504 xfree (coding_system_table[i]);
7505 coding_system_table[i] = NULL;
7506 }
7507 }
7508
7509 return Qnil;
7510}
7511
7512DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
7513 Sset_coding_priority_internal, 0, 0, 0,
7514 doc: /* Update internal database for the current value of `coding-category-list'.
7515This function is internal use only. */)
7516 ()
7517{
7518 int i = 0, idx;
7519 Lisp_Object val;
7520
7521 val = Vcoding_category_list;
7522
7523 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
7524 {
7525 if (! SYMBOLP (XCAR (val)))
7526 break;
7527 idx = XFASTINT (Fget (XCAR (val), Qcoding_category_index));
7528 if (idx >= CODING_CATEGORY_IDX_MAX)
7529 break;
7530 coding_priorities[i++] = (1 << idx);
7531 val = XCDR (val);
7532 }
7533 /* If coding-category-list is valid and contains all coding
7534 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
7535 the following code saves Emacs from crashing. */
7536 while (i < CODING_CATEGORY_IDX_MAX)
7537 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
7538
7539 return Qnil;
7540}
7541
7542DEFUN ("define-coding-system-internal", Fdefine_coding_system_internal,
7543 Sdefine_coding_system_internal, 1, 1, 0,
7544 doc: /* Register CODING-SYSTEM as a base coding system.
7545This function is internal use only. */)
7546 (coding_system)
7547 Lisp_Object coding_system;
7548{
7549 Lisp_Object safe_chars, slot;
7550
7551 if (NILP (Fcheck_coding_system (coding_system)))
7552 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
7553 safe_chars = coding_safe_chars (coding_system);
7554 if (! EQ (safe_chars, Qt) && ! CHAR_TABLE_P (safe_chars))
7555 error ("No valid safe-chars property for %s",
7556 SDATA (SYMBOL_NAME (coding_system)));
7557 if (EQ (safe_chars, Qt))
7558 {
7559 if (NILP (Fmemq (coding_system, XCAR (Vcoding_system_safe_chars))))
7560 XSETCAR (Vcoding_system_safe_chars,
7561 Fcons (coding_system, XCAR (Vcoding_system_safe_chars)));
7562 }
7563 else
7564 {
7565 slot = Fassq (coding_system, XCDR (Vcoding_system_safe_chars));
7566 if (NILP (slot))
7567 XSETCDR (Vcoding_system_safe_chars,
7568 nconc2 (XCDR (Vcoding_system_safe_chars),
7569 Fcons (Fcons (coding_system, safe_chars), Qnil)));
7570 else
7571 XSETCDR (slot, safe_chars);
7572 }
7573 return Qnil;
7574}
7575
7576#endif /* emacs */
7577
7578\f
7579/*** 9. Post-amble ***/
7580
7581void
7582init_coding_once ()
7583{
7584 int i;
7585
7586 /* Emacs' internal format specific initialize routine. */
7587 for (i = 0; i <= 0x20; i++)
7588 emacs_code_class[i] = EMACS_control_code;
7589 emacs_code_class[0x0A] = EMACS_linefeed_code;
7590 emacs_code_class[0x0D] = EMACS_carriage_return_code;
7591 for (i = 0x21 ; i < 0x7F; i++)
7592 emacs_code_class[i] = EMACS_ascii_code;
7593 emacs_code_class[0x7F] = EMACS_control_code;
7594 for (i = 0x80; i < 0xFF; i++)
7595 emacs_code_class[i] = EMACS_invalid_code;
7596 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
7597 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
7598 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
7599 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
7600
7601 /* ISO2022 specific initialize routine. */
7602 for (i = 0; i < 0x20; i++)
7603 iso_code_class[i] = ISO_control_0;
7604 for (i = 0x21; i < 0x7F; i++)
7605 iso_code_class[i] = ISO_graphic_plane_0;
7606 for (i = 0x80; i < 0xA0; i++)
7607 iso_code_class[i] = ISO_control_1;
7608 for (i = 0xA1; i < 0xFF; i++)
7609 iso_code_class[i] = ISO_graphic_plane_1;
7610 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
7611 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
7612 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
7613 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
7614 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
7615 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
7616 iso_code_class[ISO_CODE_ESC] = ISO_escape;
7617 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
7618 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
7619 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
7620
7621 setup_coding_system (Qnil, &keyboard_coding);
7622 setup_coding_system (Qnil, &terminal_coding);
7623 setup_coding_system (Qnil, &safe_terminal_coding);
7624 setup_coding_system (Qnil, &default_buffer_file_coding);
7625
7626 bzero (coding_system_table, sizeof coding_system_table);
7627
7628 bzero (ascii_skip_code, sizeof ascii_skip_code);
7629 for (i = 0; i < 128; i++)
7630 ascii_skip_code[i] = 1;
7631
7632#if defined (MSDOS) || defined (WINDOWSNT)
7633 system_eol_type = CODING_EOL_CRLF;
7634#else
7635 system_eol_type = CODING_EOL_LF;
7636#endif
7637
7638 inhibit_pre_post_conversion = 0;
7639}
7640
7641#ifdef emacs
7642
7643void
7644syms_of_coding ()
7645{
7646 staticpro (&Vcode_conversion_workbuf_name);
7647 Vcode_conversion_workbuf_name = build_string (" *code-conversion-work*");
7648
7649 Qtarget_idx = intern ("target-idx");
7650 staticpro (&Qtarget_idx);
7651
7652 Qcoding_system_history = intern ("coding-system-history");
7653 staticpro (&Qcoding_system_history);
7654 Fset (Qcoding_system_history, Qnil);
7655
7656 /* Target FILENAME is the first argument. */
7657 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
7658 /* Target FILENAME is the third argument. */
7659 Fput (Qwrite_region, Qtarget_idx, make_number (2));
7660
7661 Qcall_process = intern ("call-process");
7662 staticpro (&Qcall_process);
7663 /* Target PROGRAM is the first argument. */
7664 Fput (Qcall_process, Qtarget_idx, make_number (0));
7665
7666 Qcall_process_region = intern ("call-process-region");
7667 staticpro (&Qcall_process_region);
7668 /* Target PROGRAM is the third argument. */
7669 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
7670
7671 Qstart_process = intern ("start-process");
7672 staticpro (&Qstart_process);
7673 /* Target PROGRAM is the third argument. */
7674 Fput (Qstart_process, Qtarget_idx, make_number (2));
7675
7676 Qopen_network_stream = intern ("open-network-stream");
7677 staticpro (&Qopen_network_stream);
7678 /* Target SERVICE is the fourth argument. */
7679 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
7680
7681 Qcoding_system = intern ("coding-system");
7682 staticpro (&Qcoding_system);
7683
7684 Qeol_type = intern ("eol-type");
7685 staticpro (&Qeol_type);
7686
7687 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
7688 staticpro (&Qbuffer_file_coding_system);
7689
7690 Qpost_read_conversion = intern ("post-read-conversion");
7691 staticpro (&Qpost_read_conversion);
7692
7693 Qpre_write_conversion = intern ("pre-write-conversion");
7694 staticpro (&Qpre_write_conversion);
7695
7696 Qno_conversion = intern ("no-conversion");
7697 staticpro (&Qno_conversion);
7698
7699 Qundecided = intern ("undecided");
7700 staticpro (&Qundecided);
7701
7702 Qcoding_system_p = intern ("coding-system-p");
7703 staticpro (&Qcoding_system_p);
7704
7705 Qcoding_system_error = intern ("coding-system-error");
7706 staticpro (&Qcoding_system_error);
7707
7708 Fput (Qcoding_system_error, Qerror_conditions,
7709 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
7710 Fput (Qcoding_system_error, Qerror_message,
7711 build_string ("Invalid coding system"));
7712
7713 Qcoding_category = intern ("coding-category");
7714 staticpro (&Qcoding_category);
7715 Qcoding_category_index = intern ("coding-category-index");
7716 staticpro (&Qcoding_category_index);
7717
7718 Vcoding_category_table
7719 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
7720 staticpro (&Vcoding_category_table);
7721 {
7722 int i;
7723 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
7724 {
7725 XVECTOR (Vcoding_category_table)->contents[i]
7726 = intern (coding_category_name[i]);
7727 Fput (XVECTOR (Vcoding_category_table)->contents[i],
7728 Qcoding_category_index, make_number (i));
7729 }
7730 }
7731
7732 Vcoding_system_safe_chars = Fcons (Qnil, Qnil);
7733 staticpro (&Vcoding_system_safe_chars);
7734
7735 Qtranslation_table = intern ("translation-table");
7736 staticpro (&Qtranslation_table);
7737 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (2));
7738
7739 Qtranslation_table_id = intern ("translation-table-id");
7740 staticpro (&Qtranslation_table_id);
7741
7742 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
7743 staticpro (&Qtranslation_table_for_decode);
7744
7745 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
7746 staticpro (&Qtranslation_table_for_encode);
7747
7748 Qsafe_chars = intern ("safe-chars");
7749 staticpro (&Qsafe_chars);
7750
7751 Qchar_coding_system = intern ("char-coding-system");
7752 staticpro (&Qchar_coding_system);
7753
7754 /* Intern this now in case it isn't already done.
7755 Setting this variable twice is harmless.
7756 But don't staticpro it here--that is done in alloc.c. */
7757 Qchar_table_extra_slots = intern ("char-table-extra-slots");
7758 Fput (Qsafe_chars, Qchar_table_extra_slots, make_number (0));
7759 Fput (Qchar_coding_system, Qchar_table_extra_slots, make_number (0));
7760
7761 Qvalid_codes = intern ("valid-codes");
7762 staticpro (&Qvalid_codes);
7763
7764 Qemacs_mule = intern ("emacs-mule");
7765 staticpro (&Qemacs_mule);
7766
7767 Qraw_text = intern ("raw-text");
7768 staticpro (&Qraw_text);
7769
7770 Qutf_8 = intern ("utf-8");
7771 staticpro (&Qutf_8);
7772
7773 Qcoding_system_define_form = intern ("coding-system-define-form");
7774 staticpro (&Qcoding_system_define_form);
7775
7776 defsubr (&Scoding_system_p);
7777 defsubr (&Sread_coding_system);
7778 defsubr (&Sread_non_nil_coding_system);
7779 defsubr (&Scheck_coding_system);
7780 defsubr (&Sdetect_coding_region);
7781 defsubr (&Sdetect_coding_string);
7782 defsubr (&Sfind_coding_systems_region_internal);
7783 defsubr (&Sunencodable_char_position);
7784 defsubr (&Sdecode_coding_region);
7785 defsubr (&Sencode_coding_region);
7786 defsubr (&Sdecode_coding_string);
7787 defsubr (&Sencode_coding_string);
7788 defsubr (&Sdecode_sjis_char);
7789 defsubr (&Sencode_sjis_char);
7790 defsubr (&Sdecode_big5_char);
7791 defsubr (&Sencode_big5_char);
7792 defsubr (&Sset_terminal_coding_system_internal);
7793 defsubr (&Sset_safe_terminal_coding_system_internal);
7794 defsubr (&Sterminal_coding_system);
7795 defsubr (&Sset_keyboard_coding_system_internal);
7796 defsubr (&Skeyboard_coding_system);
7797 defsubr (&Sfind_operation_coding_system);
7798 defsubr (&Supdate_coding_systems_internal);
7799 defsubr (&Sset_coding_priority_internal);
7800 defsubr (&Sdefine_coding_system_internal);
7801
7802 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
7803 doc: /* List of coding systems.
7804
7805Do not alter the value of this variable manually. This variable should be
7806updated by the functions `make-coding-system' and
7807`define-coding-system-alias'. */);
7808 Vcoding_system_list = Qnil;
7809
7810 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
7811 doc: /* Alist of coding system names.
7812Each element is one element list of coding system name.
7813This variable is given to `completing-read' as TABLE argument.
7814
7815Do not alter the value of this variable manually. This variable should be
7816updated by the functions `make-coding-system' and
7817`define-coding-system-alias'. */);
7818 Vcoding_system_alist = Qnil;
7819
7820 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
7821 doc: /* List of coding-categories (symbols) ordered by priority.
7822
7823On detecting a coding system, Emacs tries code detection algorithms
7824associated with each coding-category one by one in this order. When
7825one algorithm agrees with a byte sequence of source text, the coding
7826system bound to the corresponding coding-category is selected.
7827
7828Don't modify this variable directly, but use `set-coding-category'. */);
7829 {
7830 int i;
7831
7832 Vcoding_category_list = Qnil;
7833 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
7834 Vcoding_category_list
7835 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
7836 Vcoding_category_list);
7837 }
7838
7839 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
7840 doc: /* Specify the coding system for read operations.
7841It is useful to bind this variable with `let', but do not set it globally.
7842If the value is a coding system, it is used for decoding on read operation.
7843If not, an appropriate element is used from one of the coding system alists:
7844There are three such tables, `file-coding-system-alist',
7845`process-coding-system-alist', and `network-coding-system-alist'. */);
7846 Vcoding_system_for_read = Qnil;
7847
7848 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
7849 doc: /* Specify the coding system for write operations.
7850Programs bind this variable with `let', but you should not set it globally.
7851If the value is a coding system, it is used for encoding of output,
7852when writing it to a file and when sending it to a file or subprocess.
7853
7854If this does not specify a coding system, an appropriate element
7855is used from one of the coding system alists:
7856There are three such tables, `file-coding-system-alist',
7857`process-coding-system-alist', and `network-coding-system-alist'.
7858For output to files, if the above procedure does not specify a coding system,
7859the value of `buffer-file-coding-system' is used. */);
7860 Vcoding_system_for_write = Qnil;
7861
7862 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
7863 doc: /* Coding system used in the latest file or process I/O.
7864Also set by `encode-coding-region', `decode-coding-region',
7865`encode-coding-string' and `decode-coding-string'. */);
7866 Vlast_coding_system_used = Qnil;
7867
7868 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
7869 doc: /* *Non-nil means always inhibit code conversion of end-of-line format.
7870See info node `Coding Systems' and info node `Text and Binary' concerning
7871such conversion. */);
7872 inhibit_eol_conversion = 0;
7873
7874 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
7875 doc: /* Non-nil means process buffer inherits coding system of process output.
7876Bind it to t if the process output is to be treated as if it were a file
7877read from some filesystem. */);
7878 inherit_process_coding_system = 0;
7879
7880 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
7881 doc: /* Alist to decide a coding system to use for a file I/O operation.
7882The format is ((PATTERN . VAL) ...),
7883where PATTERN is a regular expression matching a file name,
7884VAL is a coding system, a cons of coding systems, or a function symbol.
7885If VAL is a coding system, it is used for both decoding and encoding
7886the file contents.
7887If VAL is a cons of coding systems, the car part is used for decoding,
7888and the cdr part is used for encoding.
7889If VAL is a function symbol, the function must return a coding system
7890or a cons of coding systems which are used as above. The function gets
7891the arguments with which `find-operation-coding-system' was called.
7892
7893See also the function `find-operation-coding-system'
7894and the variable `auto-coding-alist'. */);
7895 Vfile_coding_system_alist = Qnil;
7896
7897 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
7898 doc: /* Alist to decide a coding system to use for a process I/O operation.
7899The format is ((PATTERN . VAL) ...),
7900where PATTERN is a regular expression matching a program name,
7901VAL is a coding system, a cons of coding systems, or a function symbol.
7902If VAL is a coding system, it is used for both decoding what received
7903from the program and encoding what sent to the program.
7904If VAL is a cons of coding systems, the car part is used for decoding,
7905and the cdr part is used for encoding.
7906If VAL is a function symbol, the function must return a coding system
7907or a cons of coding systems which are used as above.
7908
7909See also the function `find-operation-coding-system'. */);
7910 Vprocess_coding_system_alist = Qnil;
7911
7912 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
7913 doc: /* Alist to decide a coding system to use for a network I/O operation.
7914The format is ((PATTERN . VAL) ...),
7915where PATTERN is a regular expression matching a network service name
7916or is a port number to connect to,
7917VAL is a coding system, a cons of coding systems, or a function symbol.
7918If VAL is a coding system, it is used for both decoding what received
7919from the network stream and encoding what sent to the network stream.
7920If VAL is a cons of coding systems, the car part is used for decoding,
7921and the cdr part is used for encoding.
7922If VAL is a function symbol, the function must return a coding system
7923or a cons of coding systems which are used as above.
7924
7925See also the function `find-operation-coding-system'. */);
7926 Vnetwork_coding_system_alist = Qnil;
7927
7928 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
7929 doc: /* Coding system to use with system messages.
7930Also used for decoding keyboard input on X Window system. */);
7931 Vlocale_coding_system = Qnil;
7932
7933 /* The eol mnemonics are reset in startup.el system-dependently. */
7934 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
7935 doc: /* *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
7936 eol_mnemonic_unix = build_string (":");
7937
7938 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
7939 doc: /* *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
7940 eol_mnemonic_dos = build_string ("\\");
7941
7942 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
7943 doc: /* *String displayed in mode line for MAC-like (CR) end-of-line format. */);
7944 eol_mnemonic_mac = build_string ("/");
7945
7946 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
7947 doc: /* *String displayed in mode line when end-of-line format is not yet determined. */);
7948 eol_mnemonic_undecided = build_string (":");
7949
7950 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
7951 doc: /* *Non-nil enables character translation while encoding and decoding. */);
7952 Venable_character_translation = Qt;
7953
7954 DEFVAR_LISP ("standard-translation-table-for-decode",
7955 &Vstandard_translation_table_for_decode,
7956 doc: /* Table for translating characters while decoding. */);
7957 Vstandard_translation_table_for_decode = Qnil;
7958
7959 DEFVAR_LISP ("standard-translation-table-for-encode",
7960 &Vstandard_translation_table_for_encode,
7961 doc: /* Table for translating characters while encoding. */);
7962 Vstandard_translation_table_for_encode = Qnil;
7963
7964 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
7965 doc: /* Alist of charsets vs revision numbers.
7966While encoding, if a charset (car part of an element) is found,
7967designate it with the escape sequence identifying revision (cdr part of the element). */);
7968 Vcharset_revision_alist = Qnil;
7969
7970 DEFVAR_LISP ("default-process-coding-system",
7971 &Vdefault_process_coding_system,
7972 doc: /* Cons of coding systems used for process I/O by default.
7973The car part is used for decoding a process output,
7974the cdr part is used for encoding a text to be sent to a process. */);
7975 Vdefault_process_coding_system = Qnil;
7976
7977 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
7978 doc: /* Table of extra Latin codes in the range 128..159 (inclusive).
7979This is a vector of length 256.
7980If Nth element is non-nil, the existence of code N in a file
7981\(or output of subprocess) doesn't prevent it to be detected as
7982a coding system of ISO 2022 variant which has a flag
7983`accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
7984or reading output of a subprocess.
7985Only 128th through 159th elements has a meaning. */);
7986 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
7987
7988 DEFVAR_LISP ("select-safe-coding-system-function",
7989 &Vselect_safe_coding_system_function,
7990 doc: /* Function to call to select safe coding system for encoding a text.
7991
7992If set, this function is called to force a user to select a proper
7993coding system which can encode the text in the case that a default
7994coding system used in each operation can't encode the text.
7995
7996The default value is `select-safe-coding-system' (which see). */);
7997 Vselect_safe_coding_system_function = Qnil;
7998
7999 DEFVAR_BOOL ("coding-system-require-warning",
8000 &coding_system_require_warning,
8001 doc: /* Internal use only.
8002If non-nil, on writing a file, `select-safe-coding-system-function' is
8003called even if `coding-system-for-write' is non-nil. The command
8004`universal-coding-system-argument' binds this variable to t temporarily. */);
8005 coding_system_require_warning = 0;
8006
8007
8008 DEFVAR_BOOL ("inhibit-iso-escape-detection",
8009 &inhibit_iso_escape_detection,
8010 doc: /* If non-nil, Emacs ignores ISO2022's escape sequence on code detection.
8011
8012By default, on reading a file, Emacs tries to detect how the text is
8013encoded. This code detection is sensitive to escape sequences. If
8014the sequence is valid as ISO2022, the code is determined as one of
8015the ISO2022 encodings, and the file is decoded by the corresponding
8016coding system (e.g. `iso-2022-7bit').
8017
8018However, there may be a case that you want to read escape sequences in
8019a file as is. In such a case, you can set this variable to non-nil.
8020Then, as the code detection ignores any escape sequences, no file is
8021detected as encoded in some ISO2022 encoding. The result is that all
8022escape sequences become visible in a buffer.
8023
8024The default value is nil, and it is strongly recommended not to change
8025it. That is because many Emacs Lisp source files that contain
8026non-ASCII characters are encoded by the coding system `iso-2022-7bit'
8027in Emacs's distribution, and they won't be decoded correctly on
8028reading if you suppress escape sequence detection.
8029
8030The other way to read escape sequences in a file without decoding is
8031to explicitly specify some coding system that doesn't use ISO2022's
8032escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
8033 inhibit_iso_escape_detection = 0;
8034
8035 DEFVAR_LISP ("translation-table-for-input", &Vtranslation_table_for_input,
8036 doc: /* Char table for translating self-inserting characters.
8037This is applied to the result of input methods, not their input. See also
8038`keyboard-translate-table'. */);
8039 Vtranslation_table_for_input = Qnil;
8040}
8041
8042char *
8043emacs_strerror (error_number)
8044 int error_number;
8045{
8046 char *str;
8047
8048 synchronize_system_messages_locale ();
8049 str = strerror (error_number);
8050
8051 if (! NILP (Vlocale_coding_system))
8052 {
8053 Lisp_Object dec = code_convert_string_norecord (build_string (str),
8054 Vlocale_coding_system,
8055 0);
8056 str = (char *) SDATA (dec);
8057 }
8058
8059 return str;
8060}
8061
8062#endif /* emacs */
8063
8064/* arch-tag: 3a3a2b01-5ff6-4071-9afe-f5b808d9229d
8065 (do not change this comment) */