*** empty log message ***
[bpt/emacs.git] / src / coding.c
... / ...
CommitLineData
1/* Coding system handler (conversion, detection, and etc).
2 Copyright (C) 1995, 1997, 1998 Electrotechnical Laboratory, JAPAN.
3 Licensed to the Free Software Foundation.
4 Copyright (C) 2001 Free Software Foundation, Inc.
5
6This file is part of GNU Emacs.
7
8GNU Emacs is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU Emacs; see the file COPYING. If not, write to
20the Free Software Foundation, Inc., 59 Temple Place - Suite 330,
21Boston, MA 02111-1307, USA. */
22
23/*** TABLE OF CONTENTS ***
24
25 0. General comments
26 1. Preamble
27 2. Emacs' internal format (emacs-mule) handlers
28 3. ISO2022 handlers
29 4. Shift-JIS and BIG5 handlers
30 5. CCL handlers
31 6. End-of-line handlers
32 7. C library functions
33 8. Emacs Lisp library functions
34 9. Post-amble
35
36*/
37
38/*** 0. General comments ***/
39
40
41/*** GENERAL NOTE on CODING SYSTEMS ***
42
43 A coding system is an encoding mechanism for one or more character
44 sets. Here's a list of coding systems which Emacs can handle. When
45 we say "decode", it means converting some other coding system to
46 Emacs' internal format (emacs-mule), and when we say "encode",
47 it means converting the coding system emacs-mule to some other
48 coding system.
49
50 0. Emacs' internal format (emacs-mule)
51
52 Emacs itself holds a multi-lingual character in buffers and strings
53 in a special format. Details are described in section 2.
54
55 1. ISO2022
56
57 The most famous coding system for multiple character sets. X's
58 Compound Text, various EUCs (Extended Unix Code), and coding
59 systems used in Internet communication such as ISO-2022-JP are
60 all variants of ISO2022. Details are described in section 3.
61
62 2. SJIS (or Shift-JIS or MS-Kanji-Code)
63
64 A coding system to encode character sets: ASCII, JISX0201, and
65 JISX0208. Widely used for PC's in Japan. Details are described in
66 section 4.
67
68 3. BIG5
69
70 A coding system to encode the character sets ASCII and Big5. Widely
71 used for Chinese (mainly in Taiwan and Hong Kong). Details are
72 described in section 4. In this file, when we write "BIG5"
73 (all uppercase), we mean the coding system, and when we write
74 "Big5" (capitalized), we mean the character set.
75
76 4. Raw text
77
78 A coding system for text containing random 8-bit code. Emacs does
79 no code conversion on such text except for end-of-line format.
80
81 5. Other
82
83 If a user wants to read/write text encoded in a coding system not
84 listed above, he can supply a decoder and an encoder for it as CCL
85 (Code Conversion Language) programs. Emacs executes the CCL program
86 while reading/writing.
87
88 Emacs represents a coding system by a Lisp symbol that has a property
89 `coding-system'. But, before actually using the coding system, the
90 information about it is set in a structure of type `struct
91 coding_system' for rapid processing. See section 6 for more details.
92
93*/
94
95/*** GENERAL NOTES on END-OF-LINE FORMAT ***
96
97 How end-of-line of text is encoded depends on the operating system.
98 For instance, Unix's format is just one byte of `line-feed' code,
99 whereas DOS's format is two-byte sequence of `carriage-return' and
100 `line-feed' codes. MacOS's format is usually one byte of
101 `carriage-return'.
102
103 Since text character encoding and end-of-line encoding are
104 independent, any coding system described above can have any
105 end-of-line format. So Emacs has information about end-of-line
106 format in each coding-system. See section 6 for more details.
107
108*/
109
110/*** GENERAL NOTES on `detect_coding_XXX ()' functions ***
111
112 These functions check if a text between SRC and SRC_END is encoded
113 in the coding system category XXX. Each returns an integer value in
114 which appropriate flag bits for the category XXX are set. The flag
115 bits are defined in macros CODING_CATEGORY_MASK_XXX. Below is the
116 template for these functions. If MULTIBYTEP is nonzero, 8-bit codes
117 of the range 0x80..0x9F are in multibyte form. */
118#if 0
119int
120detect_coding_emacs_mule (src, src_end, multibytep)
121 unsigned char *src, *src_end;
122 int multibytep;
123{
124 ...
125}
126#endif
127
128/*** GENERAL NOTES on `decode_coding_XXX ()' functions ***
129
130 These functions decode SRC_BYTES length of unibyte text at SOURCE
131 encoded in CODING to Emacs' internal format. The resulting
132 multibyte text goes to a place pointed to by DESTINATION, the length
133 of which should not exceed DST_BYTES.
134
135 These functions set the information about original and decoded texts
136 in the members `produced', `produced_char', `consumed', and
137 `consumed_char' of the structure *CODING. They also set the member
138 `result' to one of CODING_FINISH_XXX indicating how the decoding
139 finished.
140
141 DST_BYTES zero means that the source area and destination area are
142 overlapped, which means that we can produce a decoded text until it
143 reaches the head of the not-yet-decoded source text.
144
145 Below is a template for these functions. */
146#if 0
147static void
148decode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
149 struct coding_system *coding;
150 unsigned char *source, *destination;
151 int src_bytes, dst_bytes;
152{
153 ...
154}
155#endif
156
157/*** GENERAL NOTES on `encode_coding_XXX ()' functions ***
158
159 These functions encode SRC_BYTES length text at SOURCE from Emacs'
160 internal multibyte format to CODING. The resulting unibyte text
161 goes to a place pointed to by DESTINATION, the length of which
162 should not exceed DST_BYTES.
163
164 These functions set the information about original and encoded texts
165 in the members `produced', `produced_char', `consumed', and
166 `consumed_char' of the structure *CODING. They also set the member
167 `result' to one of CODING_FINISH_XXX indicating how the encoding
168 finished.
169
170 DST_BYTES zero means that the source area and destination area are
171 overlapped, which means that we can produce encoded text until it
172 reaches at the head of the not-yet-encoded source text.
173
174 Below is a template for these functions. */
175#if 0
176static void
177encode_coding_XXX (coding, source, destination, src_bytes, dst_bytes)
178 struct coding_system *coding;
179 unsigned char *source, *destination;
180 int src_bytes, dst_bytes;
181{
182 ...
183}
184#endif
185
186/*** COMMONLY USED MACROS ***/
187
188/* The following two macros ONE_MORE_BYTE and TWO_MORE_BYTES safely
189 get one, two, and three bytes from the source text respectively.
190 If there are not enough bytes in the source, they jump to
191 `label_end_of_loop'. The caller should set variables `coding',
192 `src' and `src_end' to appropriate pointer in advance. These
193 macros are called from decoding routines `decode_coding_XXX', thus
194 it is assumed that the source text is unibyte. */
195
196#define ONE_MORE_BYTE(c1) \
197 do { \
198 if (src >= src_end) \
199 { \
200 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
201 goto label_end_of_loop; \
202 } \
203 c1 = *src++; \
204 } while (0)
205
206#define TWO_MORE_BYTES(c1, c2) \
207 do { \
208 if (src + 1 >= src_end) \
209 { \
210 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
211 goto label_end_of_loop; \
212 } \
213 c1 = *src++; \
214 c2 = *src++; \
215 } while (0)
216
217
218/* Like ONE_MORE_BYTE, but 8-bit bytes of data at SRC are in multibyte
219 form if MULTIBYTEP is nonzero. */
220
221#define ONE_MORE_BYTE_CHECK_MULTIBYTE(c1, multibytep) \
222 do { \
223 if (src >= src_end) \
224 { \
225 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
226 goto label_end_of_loop; \
227 } \
228 c1 = *src++; \
229 if (multibytep && c1 == LEADING_CODE_8_BIT_CONTROL) \
230 c1 = *src++ - 0x20; \
231 } while (0)
232
233/* Set C to the next character at the source text pointed by `src'.
234 If there are not enough characters in the source, jump to
235 `label_end_of_loop'. The caller should set variables `coding'
236 `src', `src_end', and `translation_table' to appropriate pointers
237 in advance. This macro is used in encoding routines
238 `encode_coding_XXX', thus it assumes that the source text is in
239 multibyte form except for 8-bit characters. 8-bit characters are
240 in multibyte form if coding->src_multibyte is nonzero, else they
241 are represented by a single byte. */
242
243#define ONE_MORE_CHAR(c) \
244 do { \
245 int len = src_end - src; \
246 int bytes; \
247 if (len <= 0) \
248 { \
249 coding->result = CODING_FINISH_INSUFFICIENT_SRC; \
250 goto label_end_of_loop; \
251 } \
252 if (coding->src_multibyte \
253 || UNIBYTE_STR_AS_MULTIBYTE_P (src, len, bytes)) \
254 c = STRING_CHAR_AND_LENGTH (src, len, bytes); \
255 else \
256 c = *src, bytes = 1; \
257 if (!NILP (translation_table)) \
258 c = translate_char (translation_table, c, -1, 0, 0); \
259 src += bytes; \
260 } while (0)
261
262
263/* Produce a multibyte form of character C to `dst'. Jump to
264 `label_end_of_loop' if there's not enough space at `dst'.
265
266 If we are now in the middle of a composition sequence, the decoded
267 character may be ALTCHAR (for the current composition). In that
268 case, the character goes to coding->cmp_data->data instead of
269 `dst'.
270
271 This macro is used in decoding routines. */
272
273#define EMIT_CHAR(c) \
274 do { \
275 if (! COMPOSING_P (coding) \
276 || coding->composing == COMPOSITION_RELATIVE \
277 || coding->composing == COMPOSITION_WITH_RULE) \
278 { \
279 int bytes = CHAR_BYTES (c); \
280 if ((dst + bytes) > (dst_bytes ? dst_end : src)) \
281 { \
282 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
283 goto label_end_of_loop; \
284 } \
285 dst += CHAR_STRING (c, dst); \
286 coding->produced_char++; \
287 } \
288 \
289 if (COMPOSING_P (coding) \
290 && coding->composing != COMPOSITION_RELATIVE) \
291 { \
292 CODING_ADD_COMPOSITION_COMPONENT (coding, c); \
293 coding->composition_rule_follows \
294 = coding->composing != COMPOSITION_WITH_ALTCHARS; \
295 } \
296 } while (0)
297
298
299#define EMIT_ONE_BYTE(c) \
300 do { \
301 if (dst >= (dst_bytes ? dst_end : src)) \
302 { \
303 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
304 goto label_end_of_loop; \
305 } \
306 *dst++ = c; \
307 } while (0)
308
309#define EMIT_TWO_BYTES(c1, c2) \
310 do { \
311 if (dst + 2 > (dst_bytes ? dst_end : src)) \
312 { \
313 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
314 goto label_end_of_loop; \
315 } \
316 *dst++ = c1, *dst++ = c2; \
317 } while (0)
318
319#define EMIT_BYTES(from, to) \
320 do { \
321 if (dst + (to - from) > (dst_bytes ? dst_end : src)) \
322 { \
323 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
324 goto label_end_of_loop; \
325 } \
326 while (from < to) \
327 *dst++ = *from++; \
328 } while (0)
329
330\f
331/*** 1. Preamble ***/
332
333#ifdef emacs
334#include <config.h>
335#endif
336
337#include <stdio.h>
338
339#ifdef emacs
340
341#include "lisp.h"
342#include "buffer.h"
343#include "charset.h"
344#include "composite.h"
345#include "ccl.h"
346#include "coding.h"
347#include "window.h"
348
349#else /* not emacs */
350
351#include "mulelib.h"
352
353#endif /* not emacs */
354
355Lisp_Object Qcoding_system, Qeol_type;
356Lisp_Object Qbuffer_file_coding_system;
357Lisp_Object Qpost_read_conversion, Qpre_write_conversion;
358Lisp_Object Qno_conversion, Qundecided;
359Lisp_Object Qcoding_system_history;
360Lisp_Object Qsafe_chars;
361Lisp_Object Qvalid_codes;
362
363extern Lisp_Object Qinsert_file_contents, Qwrite_region;
364Lisp_Object Qcall_process, Qcall_process_region, Qprocess_argument;
365Lisp_Object Qstart_process, Qopen_network_stream;
366Lisp_Object Qtarget_idx;
367
368Lisp_Object Vselect_safe_coding_system_function;
369
370/* Mnemonic string for each format of end-of-line. */
371Lisp_Object eol_mnemonic_unix, eol_mnemonic_dos, eol_mnemonic_mac;
372/* Mnemonic string to indicate format of end-of-line is not yet
373 decided. */
374Lisp_Object eol_mnemonic_undecided;
375
376/* Format of end-of-line decided by system. This is CODING_EOL_LF on
377 Unix, CODING_EOL_CRLF on DOS/Windows, and CODING_EOL_CR on Mac. */
378int system_eol_type;
379
380#ifdef emacs
381
382Lisp_Object Vcoding_system_list, Vcoding_system_alist;
383
384Lisp_Object Qcoding_system_p, Qcoding_system_error;
385
386/* Coding system emacs-mule and raw-text are for converting only
387 end-of-line format. */
388Lisp_Object Qemacs_mule, Qraw_text;
389
390/* Coding-systems are handed between Emacs Lisp programs and C internal
391 routines by the following three variables. */
392/* Coding-system for reading files and receiving data from process. */
393Lisp_Object Vcoding_system_for_read;
394/* Coding-system for writing files and sending data to process. */
395Lisp_Object Vcoding_system_for_write;
396/* Coding-system actually used in the latest I/O. */
397Lisp_Object Vlast_coding_system_used;
398
399/* A vector of length 256 which contains information about special
400 Latin codes (especially for dealing with Microsoft codes). */
401Lisp_Object Vlatin_extra_code_table;
402
403/* Flag to inhibit code conversion of end-of-line format. */
404int inhibit_eol_conversion;
405
406/* Flag to inhibit ISO2022 escape sequence detection. */
407int inhibit_iso_escape_detection;
408
409/* Flag to make buffer-file-coding-system inherit from process-coding. */
410int inherit_process_coding_system;
411
412/* Coding system to be used to encode text for terminal display. */
413struct coding_system terminal_coding;
414
415/* Coding system to be used to encode text for terminal display when
416 terminal coding system is nil. */
417struct coding_system safe_terminal_coding;
418
419/* Coding system of what is sent from terminal keyboard. */
420struct coding_system keyboard_coding;
421
422/* Default coding system to be used to write a file. */
423struct coding_system default_buffer_file_coding;
424
425Lisp_Object Vfile_coding_system_alist;
426Lisp_Object Vprocess_coding_system_alist;
427Lisp_Object Vnetwork_coding_system_alist;
428
429Lisp_Object Vlocale_coding_system;
430
431#endif /* emacs */
432
433Lisp_Object Qcoding_category, Qcoding_category_index;
434
435/* List of symbols `coding-category-xxx' ordered by priority. */
436Lisp_Object Vcoding_category_list;
437
438/* Table of coding categories (Lisp symbols). */
439Lisp_Object Vcoding_category_table;
440
441/* Table of names of symbol for each coding-category. */
442char *coding_category_name[CODING_CATEGORY_IDX_MAX] = {
443 "coding-category-emacs-mule",
444 "coding-category-sjis",
445 "coding-category-iso-7",
446 "coding-category-iso-7-tight",
447 "coding-category-iso-8-1",
448 "coding-category-iso-8-2",
449 "coding-category-iso-7-else",
450 "coding-category-iso-8-else",
451 "coding-category-ccl",
452 "coding-category-big5",
453 "coding-category-utf-8",
454 "coding-category-utf-16-be",
455 "coding-category-utf-16-le",
456 "coding-category-raw-text",
457 "coding-category-binary"
458};
459
460/* Table of pointers to coding systems corresponding to each coding
461 categories. */
462struct coding_system *coding_system_table[CODING_CATEGORY_IDX_MAX];
463
464/* Table of coding category masks. Nth element is a mask for a coding
465 category of which priority is Nth. */
466static
467int coding_priorities[CODING_CATEGORY_IDX_MAX];
468
469/* Flag to tell if we look up translation table on character code
470 conversion. */
471Lisp_Object Venable_character_translation;
472/* Standard translation table to look up on decoding (reading). */
473Lisp_Object Vstandard_translation_table_for_decode;
474/* Standard translation table to look up on encoding (writing). */
475Lisp_Object Vstandard_translation_table_for_encode;
476
477Lisp_Object Qtranslation_table;
478Lisp_Object Qtranslation_table_id;
479Lisp_Object Qtranslation_table_for_decode;
480Lisp_Object Qtranslation_table_for_encode;
481
482/* Alist of charsets vs revision number. */
483Lisp_Object Vcharset_revision_alist;
484
485/* Default coding systems used for process I/O. */
486Lisp_Object Vdefault_process_coding_system;
487
488/* Global flag to tell that we can't call post-read-conversion and
489 pre-write-conversion functions. Usually the value is zero, but it
490 is set to 1 temporarily while such functions are running. This is
491 to avoid infinite recursive call. */
492static int inhibit_pre_post_conversion;
493
494/* Char-table containing safe coding systems of each character. */
495Lisp_Object Vchar_coding_system_table;
496Lisp_Object Qchar_coding_system;
497
498/* Return `safe-chars' property of coding system CODING. Don't check
499 validity of CODING. */
500
501Lisp_Object
502coding_safe_chars (coding)
503 struct coding_system *coding;
504{
505 Lisp_Object coding_spec, plist, safe_chars;
506
507 coding_spec = Fget (coding->symbol, Qcoding_system);
508 plist = XVECTOR (coding_spec)->contents[3];
509 safe_chars = Fplist_get (XVECTOR (coding_spec)->contents[3], Qsafe_chars);
510 return (CHAR_TABLE_P (safe_chars) ? safe_chars : Qt);
511}
512
513#define CODING_SAFE_CHAR_P(safe_chars, c) \
514 (EQ (safe_chars, Qt) || !NILP (CHAR_TABLE_REF (safe_chars, c)))
515
516\f
517/*** 2. Emacs internal format (emacs-mule) handlers ***/
518
519/* Emacs' internal format for representation of multiple character
520 sets is a kind of multi-byte encoding, i.e. characters are
521 represented by variable-length sequences of one-byte codes.
522
523 ASCII characters and control characters (e.g. `tab', `newline') are
524 represented by one-byte sequences which are their ASCII codes, in
525 the range 0x00 through 0x7F.
526
527 8-bit characters of the range 0x80..0x9F are represented by
528 two-byte sequences of LEADING_CODE_8_BIT_CONTROL and (their 8-bit
529 code + 0x20).
530
531 8-bit characters of the range 0xA0..0xFF are represented by
532 one-byte sequences which are their 8-bit code.
533
534 The other characters are represented by a sequence of `base
535 leading-code', optional `extended leading-code', and one or two
536 `position-code's. The length of the sequence is determined by the
537 base leading-code. Leading-code takes the range 0x81 through 0x9D,
538 whereas extended leading-code and position-code take the range 0xA0
539 through 0xFF. See `charset.h' for more details about leading-code
540 and position-code.
541
542 --- CODE RANGE of Emacs' internal format ---
543 character set range
544 ------------- -----
545 ascii 0x00..0x7F
546 eight-bit-control LEADING_CODE_8_BIT_CONTROL + 0xA0..0xBF
547 eight-bit-graphic 0xA0..0xBF
548 ELSE 0x81..0x9D + [0xA0..0xFF]+
549 ---------------------------------------------
550
551 As this is the internal character representation, the format is
552 usually not used externally (i.e. in a file or in a data sent to a
553 process). But, it is possible to have a text externally in this
554 format (i.e. by encoding by the coding system `emacs-mule').
555
556 In that case, a sequence of one-byte codes has a slightly different
557 form.
558
559 Firstly, all characters in eight-bit-control are represented by
560 one-byte sequences which are their 8-bit code.
561
562 Next, character composition data are represented by the byte
563 sequence of the form: 0x80 METHOD BYTES CHARS COMPONENT ...,
564 where,
565 METHOD is 0xF0 plus one of composition method (enum
566 composition_method),
567
568 BYTES is 0xA0 plus the byte length of these composition data,
569
570 CHARS is 0xA0 plus the number of characters composed by these
571 data,
572
573 COMPONENTs are characters of multibyte form or composition
574 rules encoded by two-byte of ASCII codes.
575
576 In addition, for backward compatibility, the following formats are
577 also recognized as composition data on decoding.
578
579 0x80 MSEQ ...
580 0x80 0xFF MSEQ RULE MSEQ RULE ... MSEQ
581
582 Here,
583 MSEQ is a multibyte form but in these special format:
584 ASCII: 0xA0 ASCII_CODE+0x80,
585 other: LEADING_CODE+0x20 FOLLOWING-BYTE ...,
586 RULE is a one byte code of the range 0xA0..0xF0 that
587 represents a composition rule.
588 */
589
590enum emacs_code_class_type emacs_code_class[256];
591
592/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
593 Check if a text is encoded in Emacs' internal format. If it is,
594 return CODING_CATEGORY_MASK_EMACS_MULE, else return 0. */
595
596static int
597detect_coding_emacs_mule (src, src_end, multibytep)
598 unsigned char *src, *src_end;
599 int multibytep;
600{
601 unsigned char c;
602 int composing = 0;
603 /* Dummy for ONE_MORE_BYTE. */
604 struct coding_system dummy_coding;
605 struct coding_system *coding = &dummy_coding;
606
607 while (1)
608 {
609 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
610
611 if (composing)
612 {
613 if (c < 0xA0)
614 composing = 0;
615 else if (c == 0xA0)
616 {
617 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
618 c &= 0x7F;
619 }
620 else
621 c -= 0x20;
622 }
623
624 if (c < 0x20)
625 {
626 if (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO)
627 return 0;
628 }
629 else if (c >= 0x80 && c < 0xA0)
630 {
631 if (c == 0x80)
632 /* Old leading code for a composite character. */
633 composing = 1;
634 else
635 {
636 unsigned char *src_base = src - 1;
637 int bytes;
638
639 if (!UNIBYTE_STR_AS_MULTIBYTE_P (src_base, src_end - src_base,
640 bytes))
641 return 0;
642 src = src_base + bytes;
643 }
644 }
645 }
646 label_end_of_loop:
647 return CODING_CATEGORY_MASK_EMACS_MULE;
648}
649
650
651/* Record the starting position START and METHOD of one composition. */
652
653#define CODING_ADD_COMPOSITION_START(coding, start, method) \
654 do { \
655 struct composition_data *cmp_data = coding->cmp_data; \
656 int *data = cmp_data->data + cmp_data->used; \
657 coding->cmp_data_start = cmp_data->used; \
658 data[0] = -1; \
659 data[1] = cmp_data->char_offset + start; \
660 data[3] = (int) method; \
661 cmp_data->used += 4; \
662 } while (0)
663
664/* Record the ending position END of the current composition. */
665
666#define CODING_ADD_COMPOSITION_END(coding, end) \
667 do { \
668 struct composition_data *cmp_data = coding->cmp_data; \
669 int *data = cmp_data->data + coding->cmp_data_start; \
670 data[0] = cmp_data->used - coding->cmp_data_start; \
671 data[2] = cmp_data->char_offset + end; \
672 } while (0)
673
674/* Record one COMPONENT (alternate character or composition rule). */
675
676#define CODING_ADD_COMPOSITION_COMPONENT(coding, component) \
677 (coding->cmp_data->data[coding->cmp_data->used++] = component)
678
679
680/* Get one byte from a data pointed by SRC and increment SRC. If SRC
681 is not less than SRC_END, return -1 without incrementing Src. */
682
683#define SAFE_ONE_MORE_BYTE() (src >= src_end ? -1 : *src++)
684
685
686/* Decode a character represented as a component of composition
687 sequence of Emacs 20 style at SRC. Set C to that character, store
688 its multibyte form sequence at P, and set P to the end of that
689 sequence. If no valid character is found, set C to -1. */
690
691#define DECODE_EMACS_MULE_COMPOSITION_CHAR(c, p) \
692 do { \
693 int bytes; \
694 \
695 c = SAFE_ONE_MORE_BYTE (); \
696 if (c < 0) \
697 break; \
698 if (CHAR_HEAD_P (c)) \
699 c = -1; \
700 else if (c == 0xA0) \
701 { \
702 c = SAFE_ONE_MORE_BYTE (); \
703 if (c < 0xA0) \
704 c = -1; \
705 else \
706 { \
707 c -= 0xA0; \
708 *p++ = c; \
709 } \
710 } \
711 else if (BASE_LEADING_CODE_P (c - 0x20)) \
712 { \
713 unsigned char *p0 = p; \
714 \
715 c -= 0x20; \
716 *p++ = c; \
717 bytes = BYTES_BY_CHAR_HEAD (c); \
718 while (--bytes) \
719 { \
720 c = SAFE_ONE_MORE_BYTE (); \
721 if (c < 0) \
722 break; \
723 *p++ = c; \
724 } \
725 if (UNIBYTE_STR_AS_MULTIBYTE_P (p0, p - p0, bytes)) \
726 c = STRING_CHAR (p0, bytes); \
727 else \
728 c = -1; \
729 } \
730 else \
731 c = -1; \
732 } while (0)
733
734
735/* Decode a composition rule represented as a component of composition
736 sequence of Emacs 20 style at SRC. Set C to the rule. If not
737 valid rule is found, set C to -1. */
738
739#define DECODE_EMACS_MULE_COMPOSITION_RULE(c) \
740 do { \
741 c = SAFE_ONE_MORE_BYTE (); \
742 c -= 0xA0; \
743 if (c < 0 || c >= 81) \
744 c = -1; \
745 else \
746 { \
747 gref = c / 9, nref = c % 9; \
748 c = COMPOSITION_ENCODE_RULE (gref, nref); \
749 } \
750 } while (0)
751
752
753/* Decode composition sequence encoded by `emacs-mule' at the source
754 pointed by SRC. SRC_END is the end of source. Store information
755 of the composition in CODING->cmp_data.
756
757 For backward compatibility, decode also a composition sequence of
758 Emacs 20 style. In that case, the composition sequence contains
759 characters that should be extracted into a buffer or string. Store
760 those characters at *DESTINATION in multibyte form.
761
762 If we encounter an invalid byte sequence, return 0.
763 If we encounter an insufficient source or destination, or
764 insufficient space in CODING->cmp_data, return 1.
765 Otherwise, return consumed bytes in the source.
766
767*/
768static INLINE int
769decode_composition_emacs_mule (coding, src, src_end,
770 destination, dst_end, dst_bytes)
771 struct coding_system *coding;
772 unsigned char *src, *src_end, **destination, *dst_end;
773 int dst_bytes;
774{
775 unsigned char *dst = *destination;
776 int method, data_len, nchars;
777 unsigned char *src_base = src++;
778 /* Store components of composition. */
779 int component[COMPOSITION_DATA_MAX_BUNCH_LENGTH];
780 int ncomponent;
781 /* Store multibyte form of characters to be composed. This is for
782 Emacs 20 style composition sequence. */
783 unsigned char buf[MAX_COMPOSITION_COMPONENTS * MAX_MULTIBYTE_LENGTH];
784 unsigned char *bufp = buf;
785 int c, i, gref, nref;
786
787 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
788 >= COMPOSITION_DATA_SIZE)
789 {
790 coding->result = CODING_FINISH_INSUFFICIENT_CMP;
791 return -1;
792 }
793
794 ONE_MORE_BYTE (c);
795 if (c - 0xF0 >= COMPOSITION_RELATIVE
796 && c - 0xF0 <= COMPOSITION_WITH_RULE_ALTCHARS)
797 {
798 int with_rule;
799
800 method = c - 0xF0;
801 with_rule = (method == COMPOSITION_WITH_RULE
802 || method == COMPOSITION_WITH_RULE_ALTCHARS);
803 ONE_MORE_BYTE (c);
804 data_len = c - 0xA0;
805 if (data_len < 4
806 || src_base + data_len > src_end)
807 return 0;
808 ONE_MORE_BYTE (c);
809 nchars = c - 0xA0;
810 if (c < 1)
811 return 0;
812 for (ncomponent = 0; src < src_base + data_len; ncomponent++)
813 {
814 if (ncomponent % 2 && with_rule)
815 {
816 ONE_MORE_BYTE (gref);
817 gref -= 32;
818 ONE_MORE_BYTE (nref);
819 nref -= 32;
820 c = COMPOSITION_ENCODE_RULE (gref, nref);
821 }
822 else
823 {
824 int bytes;
825 if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
826 c = STRING_CHAR (src, bytes);
827 else
828 c = *src, bytes = 1;
829 src += bytes;
830 }
831 component[ncomponent] = c;
832 }
833 }
834 else
835 {
836 /* This may be an old Emacs 20 style format. See the comment at
837 the section 2 of this file. */
838 while (src < src_end && !CHAR_HEAD_P (*src)) src++;
839 if (src == src_end
840 && !(coding->mode & CODING_MODE_LAST_BLOCK))
841 goto label_end_of_loop;
842
843 src_end = src;
844 src = src_base + 1;
845 if (c < 0xC0)
846 {
847 method = COMPOSITION_RELATIVE;
848 for (ncomponent = 0; ncomponent < MAX_COMPOSITION_COMPONENTS;)
849 {
850 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
851 if (c < 0)
852 break;
853 component[ncomponent++] = c;
854 }
855 if (ncomponent < 2)
856 return 0;
857 nchars = ncomponent;
858 }
859 else if (c == 0xFF)
860 {
861 method = COMPOSITION_WITH_RULE;
862 src++;
863 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
864 if (c < 0)
865 return 0;
866 component[0] = c;
867 for (ncomponent = 1;
868 ncomponent < MAX_COMPOSITION_COMPONENTS * 2 - 1;)
869 {
870 DECODE_EMACS_MULE_COMPOSITION_RULE (c);
871 if (c < 0)
872 break;
873 component[ncomponent++] = c;
874 DECODE_EMACS_MULE_COMPOSITION_CHAR (c, bufp);
875 if (c < 0)
876 break;
877 component[ncomponent++] = c;
878 }
879 if (ncomponent < 3)
880 return 0;
881 nchars = (ncomponent + 1) / 2;
882 }
883 else
884 return 0;
885 }
886
887 if (buf == bufp || dst + (bufp - buf) <= (dst_bytes ? dst_end : src))
888 {
889 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, method);
890 for (i = 0; i < ncomponent; i++)
891 CODING_ADD_COMPOSITION_COMPONENT (coding, component[i]);
892 CODING_ADD_COMPOSITION_END (coding, coding->produced_char + nchars);
893 if (buf < bufp)
894 {
895 unsigned char *p = buf;
896 EMIT_BYTES (p, bufp);
897 *destination += bufp - buf;
898 coding->produced_char += nchars;
899 }
900 return (src - src_base);
901 }
902 label_end_of_loop:
903 return -1;
904}
905
906/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
907
908static void
909decode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
910 struct coding_system *coding;
911 unsigned char *source, *destination;
912 int src_bytes, dst_bytes;
913{
914 unsigned char *src = source;
915 unsigned char *src_end = source + src_bytes;
916 unsigned char *dst = destination;
917 unsigned char *dst_end = destination + dst_bytes;
918 /* SRC_BASE remembers the start position in source in each loop.
919 The loop will be exited when there's not enough source code, or
920 when there's not enough destination area to produce a
921 character. */
922 unsigned char *src_base;
923
924 coding->produced_char = 0;
925 while ((src_base = src) < src_end)
926 {
927 unsigned char tmp[MAX_MULTIBYTE_LENGTH], *p;
928 int bytes;
929
930 if (*src == '\r')
931 {
932 int c = *src++;
933
934 if (coding->eol_type == CODING_EOL_CR)
935 c = '\n';
936 else if (coding->eol_type == CODING_EOL_CRLF)
937 {
938 ONE_MORE_BYTE (c);
939 if (c != '\n')
940 {
941 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
942 {
943 coding->result = CODING_FINISH_INCONSISTENT_EOL;
944 goto label_end_of_loop;
945 }
946 src--;
947 c = '\r';
948 }
949 }
950 *dst++ = c;
951 coding->produced_char++;
952 continue;
953 }
954 else if (*src == '\n')
955 {
956 if ((coding->eol_type == CODING_EOL_CR
957 || coding->eol_type == CODING_EOL_CRLF)
958 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
959 {
960 coding->result = CODING_FINISH_INCONSISTENT_EOL;
961 goto label_end_of_loop;
962 }
963 *dst++ = *src++;
964 coding->produced_char++;
965 continue;
966 }
967 else if (*src == 0x80)
968 {
969 /* Start of composition data. */
970 int consumed = decode_composition_emacs_mule (coding, src, src_end,
971 &dst, dst_end,
972 dst_bytes);
973 if (consumed < 0)
974 goto label_end_of_loop;
975 else if (consumed > 0)
976 {
977 src += consumed;
978 continue;
979 }
980 bytes = CHAR_STRING (*src, tmp);
981 p = tmp;
982 src++;
983 }
984 else if (UNIBYTE_STR_AS_MULTIBYTE_P (src, src_end - src, bytes))
985 {
986 p = src;
987 src += bytes;
988 }
989 else
990 {
991 bytes = CHAR_STRING (*src, tmp);
992 p = tmp;
993 src++;
994 }
995 if (dst + bytes >= (dst_bytes ? dst_end : src))
996 {
997 coding->result = CODING_FINISH_INSUFFICIENT_DST;
998 break;
999 }
1000 while (bytes--) *dst++ = *p++;
1001 coding->produced_char++;
1002 }
1003 label_end_of_loop:
1004 coding->consumed = coding->consumed_char = src_base - source;
1005 coding->produced = dst - destination;
1006}
1007
1008
1009/* Encode composition data stored at DATA into a special byte sequence
1010 starting by 0x80. Update CODING->cmp_data_start and maybe
1011 CODING->cmp_data for the next call. */
1012
1013#define ENCODE_COMPOSITION_EMACS_MULE(coding, data) \
1014 do { \
1015 unsigned char buf[1024], *p0 = buf, *p; \
1016 int len = data[0]; \
1017 int i; \
1018 \
1019 buf[0] = 0x80; \
1020 buf[1] = 0xF0 + data[3]; /* METHOD */ \
1021 buf[3] = 0xA0 + (data[2] - data[1]); /* COMPOSED-CHARS */ \
1022 p = buf + 4; \
1023 if (data[3] == COMPOSITION_WITH_RULE \
1024 || data[3] == COMPOSITION_WITH_RULE_ALTCHARS) \
1025 { \
1026 p += CHAR_STRING (data[4], p); \
1027 for (i = 5; i < len; i += 2) \
1028 { \
1029 int gref, nref; \
1030 COMPOSITION_DECODE_RULE (data[i], gref, nref); \
1031 *p++ = 0x20 + gref; \
1032 *p++ = 0x20 + nref; \
1033 p += CHAR_STRING (data[i + 1], p); \
1034 } \
1035 } \
1036 else \
1037 { \
1038 for (i = 4; i < len; i++) \
1039 p += CHAR_STRING (data[i], p); \
1040 } \
1041 buf[2] = 0xA0 + (p - buf); /* COMPONENTS-BYTES */ \
1042 \
1043 if (dst + (p - buf) + 4 > (dst_bytes ? dst_end : src)) \
1044 { \
1045 coding->result = CODING_FINISH_INSUFFICIENT_DST; \
1046 goto label_end_of_loop; \
1047 } \
1048 while (p0 < p) \
1049 *dst++ = *p0++; \
1050 coding->cmp_data_start += data[0]; \
1051 if (coding->cmp_data_start == coding->cmp_data->used \
1052 && coding->cmp_data->next) \
1053 { \
1054 coding->cmp_data = coding->cmp_data->next; \
1055 coding->cmp_data_start = 0; \
1056 } \
1057 } while (0)
1058
1059
1060static void encode_eol P_ ((struct coding_system *, unsigned char *,
1061 unsigned char *, int, int));
1062
1063static void
1064encode_coding_emacs_mule (coding, source, destination, src_bytes, dst_bytes)
1065 struct coding_system *coding;
1066 unsigned char *source, *destination;
1067 int src_bytes, dst_bytes;
1068{
1069 unsigned char *src = source;
1070 unsigned char *src_end = source + src_bytes;
1071 unsigned char *dst = destination;
1072 unsigned char *dst_end = destination + dst_bytes;
1073 unsigned char *src_base;
1074 int c;
1075 int char_offset;
1076 int *data;
1077
1078 Lisp_Object translation_table;
1079
1080 translation_table = Qnil;
1081
1082 /* Optimization for the case that there's no composition. */
1083 if (!coding->cmp_data || coding->cmp_data->used == 0)
1084 {
1085 encode_eol (coding, source, destination, src_bytes, dst_bytes);
1086 return;
1087 }
1088
1089 char_offset = coding->cmp_data->char_offset;
1090 data = coding->cmp_data->data + coding->cmp_data_start;
1091 while (1)
1092 {
1093 src_base = src;
1094
1095 /* If SRC starts a composition, encode the information about the
1096 composition in advance. */
1097 if (coding->cmp_data_start < coding->cmp_data->used
1098 && char_offset + coding->consumed_char == data[1])
1099 {
1100 ENCODE_COMPOSITION_EMACS_MULE (coding, data);
1101 char_offset = coding->cmp_data->char_offset;
1102 data = coding->cmp_data->data + coding->cmp_data_start;
1103 }
1104
1105 ONE_MORE_CHAR (c);
1106 if (c == '\n' && (coding->eol_type == CODING_EOL_CRLF
1107 || coding->eol_type == CODING_EOL_CR))
1108 {
1109 if (coding->eol_type == CODING_EOL_CRLF)
1110 EMIT_TWO_BYTES ('\r', c);
1111 else
1112 EMIT_ONE_BYTE ('\r');
1113 }
1114 else if (SINGLE_BYTE_CHAR_P (c))
1115 EMIT_ONE_BYTE (c);
1116 else
1117 EMIT_BYTES (src_base, src);
1118 coding->consumed_char++;
1119 }
1120 label_end_of_loop:
1121 coding->consumed = src_base - source;
1122 coding->produced = coding->produced_char = dst - destination;
1123 return;
1124}
1125
1126\f
1127/*** 3. ISO2022 handlers ***/
1128
1129/* The following note describes the coding system ISO2022 briefly.
1130 Since the intention of this note is to help understand the
1131 functions in this file, some parts are NOT ACCURATE or are OVERLY
1132 SIMPLIFIED. For thorough understanding, please refer to the
1133 original document of ISO2022. This is equivalent to the standard
1134 ECMA-35, obtainable from <URL:http://www.ecma.ch/> (*).
1135
1136 ISO2022 provides many mechanisms to encode several character sets
1137 in 7-bit and 8-bit environments. For 7-bit environments, all text
1138 is encoded using bytes less than 128. This may make the encoded
1139 text a little bit longer, but the text passes more easily through
1140 several types of gateway, some of which strip off the MSB (Most
1141 Significant Bit).
1142
1143 There are two kinds of character sets: control character sets and
1144 graphic character sets. The former contain control characters such
1145 as `newline' and `escape' to provide control functions (control
1146 functions are also provided by escape sequences). The latter
1147 contain graphic characters such as 'A' and '-'. Emacs recognizes
1148 two control character sets and many graphic character sets.
1149
1150 Graphic character sets are classified into one of the following
1151 four classes, according to the number of bytes (DIMENSION) and
1152 number of characters in one dimension (CHARS) of the set:
1153 - DIMENSION1_CHARS94
1154 - DIMENSION1_CHARS96
1155 - DIMENSION2_CHARS94
1156 - DIMENSION2_CHARS96
1157
1158 In addition, each character set is assigned an identification tag,
1159 unique for each set, called the "final character" (denoted as <F>
1160 hereafter). The <F> of each character set is decided by ECMA(*)
1161 when it is registered in ISO. The code range of <F> is 0x30..0x7F
1162 (0x30..0x3F are for private use only).
1163
1164 Note (*): ECMA = European Computer Manufacturers Association
1165
1166 Here are examples of graphic character sets [NAME(<F>)]:
1167 o DIMENSION1_CHARS94 -- ASCII('B'), right-half-of-JISX0201('I'), ...
1168 o DIMENSION1_CHARS96 -- right-half-of-ISO8859-1('A'), ...
1169 o DIMENSION2_CHARS94 -- GB2312('A'), JISX0208('B'), ...
1170 o DIMENSION2_CHARS96 -- none for the moment
1171
1172 A code area (1 byte=8 bits) is divided into 4 areas, C0, GL, C1, and GR.
1173 C0 [0x00..0x1F] -- control character plane 0
1174 GL [0x20..0x7F] -- graphic character plane 0
1175 C1 [0x80..0x9F] -- control character plane 1
1176 GR [0xA0..0xFF] -- graphic character plane 1
1177
1178 A control character set is directly designated and invoked to C0 or
1179 C1 by an escape sequence. The most common case is that:
1180 - ISO646's control character set is designated/invoked to C0, and
1181 - ISO6429's control character set is designated/invoked to C1,
1182 and usually these designations/invocations are omitted in encoded
1183 text. In a 7-bit environment, only C0 can be used, and a control
1184 character for C1 is encoded by an appropriate escape sequence to
1185 fit into the environment. All control characters for C1 are
1186 defined to have corresponding escape sequences.
1187
1188 A graphic character set is at first designated to one of four
1189 graphic registers (G0 through G3), then these graphic registers are
1190 invoked to GL or GR. These designations and invocations can be
1191 done independently. The most common case is that G0 is invoked to
1192 GL, G1 is invoked to GR, and ASCII is designated to G0. Usually
1193 these invocations and designations are omitted in encoded text.
1194 In a 7-bit environment, only GL can be used.
1195
1196 When a graphic character set of CHARS94 is invoked to GL, codes
1197 0x20 and 0x7F of the GL area work as control characters SPACE and
1198 DEL respectively, and codes 0xA0 and 0xFF of the GR area should not
1199 be used.
1200
1201 There are two ways of invocation: locking-shift and single-shift.
1202 With locking-shift, the invocation lasts until the next different
1203 invocation, whereas with single-shift, the invocation affects the
1204 following character only and doesn't affect the locking-shift
1205 state. Invocations are done by the following control characters or
1206 escape sequences:
1207
1208 ----------------------------------------------------------------------
1209 abbrev function cntrl escape seq description
1210 ----------------------------------------------------------------------
1211 SI/LS0 (shift-in) 0x0F none invoke G0 into GL
1212 SO/LS1 (shift-out) 0x0E none invoke G1 into GL
1213 LS2 (locking-shift-2) none ESC 'n' invoke G2 into GL
1214 LS3 (locking-shift-3) none ESC 'o' invoke G3 into GL
1215 LS1R (locking-shift-1 right) none ESC '~' invoke G1 into GR (*)
1216 LS2R (locking-shift-2 right) none ESC '}' invoke G2 into GR (*)
1217 LS3R (locking-shift 3 right) none ESC '|' invoke G3 into GR (*)
1218 SS2 (single-shift-2) 0x8E ESC 'N' invoke G2 for one char
1219 SS3 (single-shift-3) 0x8F ESC 'O' invoke G3 for one char
1220 ----------------------------------------------------------------------
1221 (*) These are not used by any known coding system.
1222
1223 Control characters for these functions are defined by macros
1224 ISO_CODE_XXX in `coding.h'.
1225
1226 Designations are done by the following escape sequences:
1227 ----------------------------------------------------------------------
1228 escape sequence description
1229 ----------------------------------------------------------------------
1230 ESC '(' <F> designate DIMENSION1_CHARS94<F> to G0
1231 ESC ')' <F> designate DIMENSION1_CHARS94<F> to G1
1232 ESC '*' <F> designate DIMENSION1_CHARS94<F> to G2
1233 ESC '+' <F> designate DIMENSION1_CHARS94<F> to G3
1234 ESC ',' <F> designate DIMENSION1_CHARS96<F> to G0 (*)
1235 ESC '-' <F> designate DIMENSION1_CHARS96<F> to G1
1236 ESC '.' <F> designate DIMENSION1_CHARS96<F> to G2
1237 ESC '/' <F> designate DIMENSION1_CHARS96<F> to G3
1238 ESC '$' '(' <F> designate DIMENSION2_CHARS94<F> to G0 (**)
1239 ESC '$' ')' <F> designate DIMENSION2_CHARS94<F> to G1
1240 ESC '$' '*' <F> designate DIMENSION2_CHARS94<F> to G2
1241 ESC '$' '+' <F> designate DIMENSION2_CHARS94<F> to G3
1242 ESC '$' ',' <F> designate DIMENSION2_CHARS96<F> to G0 (*)
1243 ESC '$' '-' <F> designate DIMENSION2_CHARS96<F> to G1
1244 ESC '$' '.' <F> designate DIMENSION2_CHARS96<F> to G2
1245 ESC '$' '/' <F> designate DIMENSION2_CHARS96<F> to G3
1246 ----------------------------------------------------------------------
1247
1248 In this list, "DIMENSION1_CHARS94<F>" means a graphic character set
1249 of dimension 1, chars 94, and final character <F>, etc...
1250
1251 Note (*): Although these designations are not allowed in ISO2022,
1252 Emacs accepts them on decoding, and produces them on encoding
1253 CHARS96 character sets in a coding system which is characterized as
1254 7-bit environment, non-locking-shift, and non-single-shift.
1255
1256 Note (**): If <F> is '@', 'A', or 'B', the intermediate character
1257 '(' can be omitted. We refer to this as "short-form" hereafter.
1258
1259 Now you may notice that there are a lot of ways of encoding the
1260 same multilingual text in ISO2022. Actually, there exist many
1261 coding systems such as Compound Text (used in X11's inter client
1262 communication, ISO-2022-JP (used in Japanese Internet), ISO-2022-KR
1263 (used in Korean Internet), EUC (Extended UNIX Code, used in Asian
1264 localized platforms), and all of these are variants of ISO2022.
1265
1266 In addition to the above, Emacs handles two more kinds of escape
1267 sequences: ISO6429's direction specification and Emacs' private
1268 sequence for specifying character composition.
1269
1270 ISO6429's direction specification takes the following form:
1271 o CSI ']' -- end of the current direction
1272 o CSI '0' ']' -- end of the current direction
1273 o CSI '1' ']' -- start of left-to-right text
1274 o CSI '2' ']' -- start of right-to-left text
1275 The control character CSI (0x9B: control sequence introducer) is
1276 abbreviated to the escape sequence ESC '[' in a 7-bit environment.
1277
1278 Character composition specification takes the following form:
1279 o ESC '0' -- start relative composition
1280 o ESC '1' -- end composition
1281 o ESC '2' -- start rule-base composition (*)
1282 o ESC '3' -- start relative composition with alternate chars (**)
1283 o ESC '4' -- start rule-base composition with alternate chars (**)
1284 Since these are not standard escape sequences of any ISO standard,
1285 the use of them with these meanings is restricted to Emacs only.
1286
1287 (*) This form is used only in Emacs 20.5 and older versions,
1288 but the newer versions can safely decode it.
1289 (**) This form is used only in Emacs 21.1 and newer versions,
1290 and the older versions can't decode it.
1291
1292 Here's a list of example usages of these composition escape
1293 sequences (categorized by `enum composition_method').
1294
1295 COMPOSITION_RELATIVE:
1296 ESC 0 CHAR [ CHAR ] ESC 1
1297 COMPOSITION_WITH_RULE:
1298 ESC 2 CHAR [ RULE CHAR ] ESC 1
1299 COMPOSITION_WITH_ALTCHARS:
1300 ESC 3 ALTCHAR [ ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1
1301 COMPOSITION_WITH_RULE_ALTCHARS:
1302 ESC 4 ALTCHAR [ RULE ALTCHAR ] ESC 0 CHAR [ CHAR ] ESC 1 */
1303
1304enum iso_code_class_type iso_code_class[256];
1305
1306#define CHARSET_OK(idx, charset, c) \
1307 (coding_system_table[idx] \
1308 && (charset == CHARSET_ASCII \
1309 || (safe_chars = coding_safe_chars (coding_system_table[idx]), \
1310 CODING_SAFE_CHAR_P (safe_chars, c))) \
1311 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding_system_table[idx], \
1312 charset) \
1313 != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
1314
1315#define SHIFT_OUT_OK(idx) \
1316 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding_system_table[idx], 1) >= 0)
1317
1318/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
1319 Check if a text is encoded in ISO2022. If it is, return an
1320 integer in which appropriate flag bits any of:
1321 CODING_CATEGORY_MASK_ISO_7
1322 CODING_CATEGORY_MASK_ISO_7_TIGHT
1323 CODING_CATEGORY_MASK_ISO_8_1
1324 CODING_CATEGORY_MASK_ISO_8_2
1325 CODING_CATEGORY_MASK_ISO_7_ELSE
1326 CODING_CATEGORY_MASK_ISO_8_ELSE
1327 are set. If a code which should never appear in ISO2022 is found,
1328 returns 0. */
1329
1330static int
1331detect_coding_iso2022 (src, src_end, multibytep)
1332 unsigned char *src, *src_end;
1333 int multibytep;
1334{
1335 int mask = CODING_CATEGORY_MASK_ISO;
1336 int mask_found = 0;
1337 int reg[4], shift_out = 0, single_shifting = 0;
1338 int c, c1, charset;
1339 /* Dummy for ONE_MORE_BYTE. */
1340 struct coding_system dummy_coding;
1341 struct coding_system *coding = &dummy_coding;
1342 Lisp_Object safe_chars;
1343
1344 reg[0] = CHARSET_ASCII, reg[1] = reg[2] = reg[3] = -1;
1345 while (mask && src < src_end)
1346 {
1347 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1348 switch (c)
1349 {
1350 case ISO_CODE_ESC:
1351 if (inhibit_iso_escape_detection)
1352 break;
1353 single_shifting = 0;
1354 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1355 if (c >= '(' && c <= '/')
1356 {
1357 /* Designation sequence for a charset of dimension 1. */
1358 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1359 if (c1 < ' ' || c1 >= 0x80
1360 || (charset = iso_charset_table[0][c >= ','][c1]) < 0)
1361 /* Invalid designation sequence. Just ignore. */
1362 break;
1363 reg[(c - '(') % 4] = charset;
1364 }
1365 else if (c == '$')
1366 {
1367 /* Designation sequence for a charset of dimension 2. */
1368 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1369 if (c >= '@' && c <= 'B')
1370 /* Designation for JISX0208.1978, GB2312, or JISX0208. */
1371 reg[0] = charset = iso_charset_table[1][0][c];
1372 else if (c >= '(' && c <= '/')
1373 {
1374 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
1375 if (c1 < ' ' || c1 >= 0x80
1376 || (charset = iso_charset_table[1][c >= ','][c1]) < 0)
1377 /* Invalid designation sequence. Just ignore. */
1378 break;
1379 reg[(c - '(') % 4] = charset;
1380 }
1381 else
1382 /* Invalid designation sequence. Just ignore. */
1383 break;
1384 }
1385 else if (c == 'N' || c == 'O')
1386 {
1387 /* ESC <Fe> for SS2 or SS3. */
1388 mask &= CODING_CATEGORY_MASK_ISO_7_ELSE;
1389 break;
1390 }
1391 else if (c >= '0' && c <= '4')
1392 {
1393 /* ESC <Fp> for start/end composition. */
1394 mask_found |= CODING_CATEGORY_MASK_ISO;
1395 break;
1396 }
1397 else
1398 /* Invalid escape sequence. Just ignore. */
1399 break;
1400
1401 /* We found a valid designation sequence for CHARSET. */
1402 mask &= ~CODING_CATEGORY_MASK_ISO_8BIT;
1403 c = MAKE_CHAR (charset, 0, 0);
1404 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7, charset, c))
1405 mask_found |= CODING_CATEGORY_MASK_ISO_7;
1406 else
1407 mask &= ~CODING_CATEGORY_MASK_ISO_7;
1408 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_TIGHT, charset, c))
1409 mask_found |= CODING_CATEGORY_MASK_ISO_7_TIGHT;
1410 else
1411 mask &= ~CODING_CATEGORY_MASK_ISO_7_TIGHT;
1412 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_7_ELSE, charset, c))
1413 mask_found |= CODING_CATEGORY_MASK_ISO_7_ELSE;
1414 else
1415 mask &= ~CODING_CATEGORY_MASK_ISO_7_ELSE;
1416 if (CHARSET_OK (CODING_CATEGORY_IDX_ISO_8_ELSE, charset, c))
1417 mask_found |= CODING_CATEGORY_MASK_ISO_8_ELSE;
1418 else
1419 mask &= ~CODING_CATEGORY_MASK_ISO_8_ELSE;
1420 break;
1421
1422 case ISO_CODE_SO:
1423 if (inhibit_iso_escape_detection)
1424 break;
1425 single_shifting = 0;
1426 if (shift_out == 0
1427 && (reg[1] >= 0
1428 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_7_ELSE)
1429 || SHIFT_OUT_OK (CODING_CATEGORY_IDX_ISO_8_ELSE)))
1430 {
1431 /* Locking shift out. */
1432 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1433 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1434 }
1435 break;
1436
1437 case ISO_CODE_SI:
1438 if (inhibit_iso_escape_detection)
1439 break;
1440 single_shifting = 0;
1441 if (shift_out == 1)
1442 {
1443 /* Locking shift in. */
1444 mask &= ~CODING_CATEGORY_MASK_ISO_7BIT;
1445 mask_found |= CODING_CATEGORY_MASK_ISO_SHIFT;
1446 }
1447 break;
1448
1449 case ISO_CODE_CSI:
1450 single_shifting = 0;
1451 case ISO_CODE_SS2:
1452 case ISO_CODE_SS3:
1453 {
1454 int newmask = CODING_CATEGORY_MASK_ISO_8_ELSE;
1455
1456 if (inhibit_iso_escape_detection)
1457 break;
1458 if (c != ISO_CODE_CSI)
1459 {
1460 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1461 & CODING_FLAG_ISO_SINGLE_SHIFT)
1462 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1463 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1464 & CODING_FLAG_ISO_SINGLE_SHIFT)
1465 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1466 single_shifting = 1;
1467 }
1468 if (VECTORP (Vlatin_extra_code_table)
1469 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1470 {
1471 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1472 & CODING_FLAG_ISO_LATIN_EXTRA)
1473 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1474 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1475 & CODING_FLAG_ISO_LATIN_EXTRA)
1476 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1477 }
1478 mask &= newmask;
1479 mask_found |= newmask;
1480 }
1481 break;
1482
1483 default:
1484 if (c < 0x80)
1485 {
1486 single_shifting = 0;
1487 break;
1488 }
1489 else if (c < 0xA0)
1490 {
1491 single_shifting = 0;
1492 if (VECTORP (Vlatin_extra_code_table)
1493 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
1494 {
1495 int newmask = 0;
1496
1497 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_1]->flags
1498 & CODING_FLAG_ISO_LATIN_EXTRA)
1499 newmask |= CODING_CATEGORY_MASK_ISO_8_1;
1500 if (coding_system_table[CODING_CATEGORY_IDX_ISO_8_2]->flags
1501 & CODING_FLAG_ISO_LATIN_EXTRA)
1502 newmask |= CODING_CATEGORY_MASK_ISO_8_2;
1503 mask &= newmask;
1504 mask_found |= newmask;
1505 }
1506 else
1507 return 0;
1508 }
1509 else
1510 {
1511 mask &= ~(CODING_CATEGORY_MASK_ISO_7BIT
1512 | CODING_CATEGORY_MASK_ISO_7_ELSE);
1513 mask_found |= CODING_CATEGORY_MASK_ISO_8_1;
1514 /* Check the length of succeeding codes of the range
1515 0xA0..0FF. If the byte length is odd, we exclude
1516 CODING_CATEGORY_MASK_ISO_8_2. We can check this only
1517 when we are not single shifting. */
1518 if (!single_shifting
1519 && mask & CODING_CATEGORY_MASK_ISO_8_2)
1520 {
1521 int i = 1;
1522 while (src < src_end)
1523 {
1524 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
1525 if (c < 0xA0)
1526 break;
1527 i++;
1528 }
1529
1530 if (i & 1 && src < src_end)
1531 mask &= ~CODING_CATEGORY_MASK_ISO_8_2;
1532 else
1533 mask_found |= CODING_CATEGORY_MASK_ISO_8_2;
1534 }
1535 }
1536 break;
1537 }
1538 }
1539 label_end_of_loop:
1540 return (mask & mask_found);
1541}
1542
1543/* Decode a character of which charset is CHARSET, the 1st position
1544 code is C1, the 2nd position code is C2, and return the decoded
1545 character code. If the variable `translation_table' is non-nil,
1546 returned the translated code. */
1547
1548#define DECODE_ISO_CHARACTER(charset, c1, c2) \
1549 (NILP (translation_table) \
1550 ? MAKE_CHAR (charset, c1, c2) \
1551 : translate_char (translation_table, -1, charset, c1, c2))
1552
1553/* Set designation state into CODING. */
1554#define DECODE_DESIGNATION(reg, dimension, chars, final_char) \
1555 do { \
1556 int charset, c; \
1557 \
1558 if (final_char < '0' || final_char >= 128) \
1559 goto label_invalid_code; \
1560 charset = ISO_CHARSET_TABLE (make_number (dimension), \
1561 make_number (chars), \
1562 make_number (final_char)); \
1563 c = MAKE_CHAR (charset, 0, 0); \
1564 if (charset >= 0 \
1565 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) == reg \
1566 || CODING_SAFE_CHAR_P (safe_chars, c))) \
1567 { \
1568 if (coding->spec.iso2022.last_invalid_designation_register == 0 \
1569 && reg == 0 \
1570 && charset == CHARSET_ASCII) \
1571 { \
1572 /* We should insert this designation sequence as is so \
1573 that it is surely written back to a file. */ \
1574 coding->spec.iso2022.last_invalid_designation_register = -1; \
1575 goto label_invalid_code; \
1576 } \
1577 coding->spec.iso2022.last_invalid_designation_register = -1; \
1578 if ((coding->mode & CODING_MODE_DIRECTION) \
1579 && CHARSET_REVERSE_CHARSET (charset) >= 0) \
1580 charset = CHARSET_REVERSE_CHARSET (charset); \
1581 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
1582 } \
1583 else \
1584 { \
1585 coding->spec.iso2022.last_invalid_designation_register = reg; \
1586 goto label_invalid_code; \
1587 } \
1588 } while (0)
1589
1590/* Allocate a memory block for storing information about compositions.
1591 The block is chained to the already allocated blocks. */
1592
1593void
1594coding_allocate_composition_data (coding, char_offset)
1595 struct coding_system *coding;
1596 int char_offset;
1597{
1598 struct composition_data *cmp_data
1599 = (struct composition_data *) xmalloc (sizeof *cmp_data);
1600
1601 cmp_data->char_offset = char_offset;
1602 cmp_data->used = 0;
1603 cmp_data->prev = coding->cmp_data;
1604 cmp_data->next = NULL;
1605 if (coding->cmp_data)
1606 coding->cmp_data->next = cmp_data;
1607 coding->cmp_data = cmp_data;
1608 coding->cmp_data_start = 0;
1609}
1610
1611/* Handle composition start sequence ESC 0, ESC 2, ESC 3, or ESC 4.
1612 ESC 0 : relative composition : ESC 0 CHAR ... ESC 1
1613 ESC 2 : rulebase composition : ESC 2 CHAR RULE CHAR RULE ... CHAR ESC 1
1614 ESC 3 : altchar composition : ESC 3 ALT ... ESC 0 CHAR ... ESC 1
1615 ESC 4 : alt&rule composition : ESC 4 ALT RULE .. ALT ESC 0 CHAR ... ESC 1
1616 */
1617
1618#define DECODE_COMPOSITION_START(c1) \
1619 do { \
1620 if (coding->composing == COMPOSITION_DISABLED) \
1621 { \
1622 *dst++ = ISO_CODE_ESC; \
1623 *dst++ = c1 & 0x7f; \
1624 coding->produced_char += 2; \
1625 } \
1626 else if (!COMPOSING_P (coding)) \
1627 { \
1628 /* This is surely the start of a composition. We must be sure \
1629 that coding->cmp_data has enough space to store the \
1630 information about the composition. If not, terminate the \
1631 current decoding loop, allocate one more memory block for \
1632 coding->cmp_data in the caller, then start the decoding \
1633 loop again. We can't allocate memory here directly because \
1634 it may cause buffer/string relocation. */ \
1635 if (!coding->cmp_data \
1636 || (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH \
1637 >= COMPOSITION_DATA_SIZE)) \
1638 { \
1639 coding->result = CODING_FINISH_INSUFFICIENT_CMP; \
1640 goto label_end_of_loop; \
1641 } \
1642 coding->composing = (c1 == '0' ? COMPOSITION_RELATIVE \
1643 : c1 == '2' ? COMPOSITION_WITH_RULE \
1644 : c1 == '3' ? COMPOSITION_WITH_ALTCHARS \
1645 : COMPOSITION_WITH_RULE_ALTCHARS); \
1646 CODING_ADD_COMPOSITION_START (coding, coding->produced_char, \
1647 coding->composing); \
1648 coding->composition_rule_follows = 0; \
1649 } \
1650 else \
1651 { \
1652 /* We are already handling a composition. If the method is \
1653 the following two, the codes following the current escape \
1654 sequence are actual characters stored in a buffer. */ \
1655 if (coding->composing == COMPOSITION_WITH_ALTCHARS \
1656 || coding->composing == COMPOSITION_WITH_RULE_ALTCHARS) \
1657 { \
1658 coding->composing = COMPOSITION_RELATIVE; \
1659 coding->composition_rule_follows = 0; \
1660 } \
1661 } \
1662 } while (0)
1663
1664/* Handle composition end sequence ESC 1. */
1665
1666#define DECODE_COMPOSITION_END(c1) \
1667 do { \
1668 if (coding->composing == COMPOSITION_DISABLED) \
1669 { \
1670 *dst++ = ISO_CODE_ESC; \
1671 *dst++ = c1; \
1672 coding->produced_char += 2; \
1673 } \
1674 else \
1675 { \
1676 CODING_ADD_COMPOSITION_END (coding, coding->produced_char); \
1677 coding->composing = COMPOSITION_NO; \
1678 } \
1679 } while (0)
1680
1681/* Decode a composition rule from the byte C1 (and maybe one more byte
1682 from SRC) and store one encoded composition rule in
1683 coding->cmp_data. */
1684
1685#define DECODE_COMPOSITION_RULE(c1) \
1686 do { \
1687 int rule = 0; \
1688 (c1) -= 32; \
1689 if (c1 < 81) /* old format (before ver.21) */ \
1690 { \
1691 int gref = (c1) / 9; \
1692 int nref = (c1) % 9; \
1693 if (gref == 4) gref = 10; \
1694 if (nref == 4) nref = 10; \
1695 rule = COMPOSITION_ENCODE_RULE (gref, nref); \
1696 } \
1697 else if (c1 < 93) /* new format (after ver.21) */ \
1698 { \
1699 ONE_MORE_BYTE (c2); \
1700 rule = COMPOSITION_ENCODE_RULE (c1 - 81, c2 - 32); \
1701 } \
1702 CODING_ADD_COMPOSITION_COMPONENT (coding, rule); \
1703 coding->composition_rule_follows = 0; \
1704 } while (0)
1705
1706
1707/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
1708
1709static void
1710decode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
1711 struct coding_system *coding;
1712 unsigned char *source, *destination;
1713 int src_bytes, dst_bytes;
1714{
1715 unsigned char *src = source;
1716 unsigned char *src_end = source + src_bytes;
1717 unsigned char *dst = destination;
1718 unsigned char *dst_end = destination + dst_bytes;
1719 /* Charsets invoked to graphic plane 0 and 1 respectively. */
1720 int charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1721 int charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1722 /* SRC_BASE remembers the start position in source in each loop.
1723 The loop will be exited when there's not enough source code
1724 (within macro ONE_MORE_BYTE), or when there's not enough
1725 destination area to produce a character (within macro
1726 EMIT_CHAR). */
1727 unsigned char *src_base;
1728 int c, charset;
1729 Lisp_Object translation_table;
1730 Lisp_Object safe_chars;
1731
1732 safe_chars = coding_safe_chars (coding);
1733
1734 if (NILP (Venable_character_translation))
1735 translation_table = Qnil;
1736 else
1737 {
1738 translation_table = coding->translation_table_for_decode;
1739 if (NILP (translation_table))
1740 translation_table = Vstandard_translation_table_for_decode;
1741 }
1742
1743 coding->result = CODING_FINISH_NORMAL;
1744
1745 while (1)
1746 {
1747 int c1, c2;
1748
1749 src_base = src;
1750 ONE_MORE_BYTE (c1);
1751
1752 /* We produce no character or one character. */
1753 switch (iso_code_class [c1])
1754 {
1755 case ISO_0x20_or_0x7F:
1756 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1757 {
1758 DECODE_COMPOSITION_RULE (c1);
1759 continue;
1760 }
1761 if (charset0 < 0 || CHARSET_CHARS (charset0) == 94)
1762 {
1763 /* This is SPACE or DEL. */
1764 charset = CHARSET_ASCII;
1765 break;
1766 }
1767 /* This is a graphic character, we fall down ... */
1768
1769 case ISO_graphic_plane_0:
1770 if (COMPOSING_P (coding) && coding->composition_rule_follows)
1771 {
1772 DECODE_COMPOSITION_RULE (c1);
1773 continue;
1774 }
1775 charset = charset0;
1776 break;
1777
1778 case ISO_0xA0_or_0xFF:
1779 if (charset1 < 0 || CHARSET_CHARS (charset1) == 94
1780 || coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
1781 goto label_invalid_code;
1782 /* This is a graphic character, we fall down ... */
1783
1784 case ISO_graphic_plane_1:
1785 if (charset1 < 0)
1786 goto label_invalid_code;
1787 charset = charset1;
1788 break;
1789
1790 case ISO_control_0:
1791 if (COMPOSING_P (coding))
1792 DECODE_COMPOSITION_END ('1');
1793
1794 /* All ISO2022 control characters in this class have the
1795 same representation in Emacs internal format. */
1796 if (c1 == '\n'
1797 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1798 && (coding->eol_type == CODING_EOL_CR
1799 || coding->eol_type == CODING_EOL_CRLF))
1800 {
1801 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1802 goto label_end_of_loop;
1803 }
1804 charset = CHARSET_ASCII;
1805 break;
1806
1807 case ISO_control_1:
1808 if (COMPOSING_P (coding))
1809 DECODE_COMPOSITION_END ('1');
1810 goto label_invalid_code;
1811
1812 case ISO_carriage_return:
1813 if (COMPOSING_P (coding))
1814 DECODE_COMPOSITION_END ('1');
1815
1816 if (coding->eol_type == CODING_EOL_CR)
1817 c1 = '\n';
1818 else if (coding->eol_type == CODING_EOL_CRLF)
1819 {
1820 ONE_MORE_BYTE (c1);
1821 if (c1 != ISO_CODE_LF)
1822 {
1823 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
1824 {
1825 coding->result = CODING_FINISH_INCONSISTENT_EOL;
1826 goto label_end_of_loop;
1827 }
1828 src--;
1829 c1 = '\r';
1830 }
1831 }
1832 charset = CHARSET_ASCII;
1833 break;
1834
1835 case ISO_shift_out:
1836 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1837 || CODING_SPEC_ISO_DESIGNATION (coding, 1) < 0)
1838 goto label_invalid_code;
1839 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1;
1840 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1841 continue;
1842
1843 case ISO_shift_in:
1844 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
1845 goto label_invalid_code;
1846 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
1847 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1848 continue;
1849
1850 case ISO_single_shift_2_7:
1851 case ISO_single_shift_2:
1852 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1853 goto label_invalid_code;
1854 /* SS2 is handled as an escape sequence of ESC 'N' */
1855 c1 = 'N';
1856 goto label_escape_sequence;
1857
1858 case ISO_single_shift_3:
1859 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
1860 goto label_invalid_code;
1861 /* SS2 is handled as an escape sequence of ESC 'O' */
1862 c1 = 'O';
1863 goto label_escape_sequence;
1864
1865 case ISO_control_sequence_introducer:
1866 /* CSI is handled as an escape sequence of ESC '[' ... */
1867 c1 = '[';
1868 goto label_escape_sequence;
1869
1870 case ISO_escape:
1871 ONE_MORE_BYTE (c1);
1872 label_escape_sequence:
1873 /* Escape sequences handled by Emacs are invocation,
1874 designation, direction specification, and character
1875 composition specification. */
1876 switch (c1)
1877 {
1878 case '&': /* revision of following character set */
1879 ONE_MORE_BYTE (c1);
1880 if (!(c1 >= '@' && c1 <= '~'))
1881 goto label_invalid_code;
1882 ONE_MORE_BYTE (c1);
1883 if (c1 != ISO_CODE_ESC)
1884 goto label_invalid_code;
1885 ONE_MORE_BYTE (c1);
1886 goto label_escape_sequence;
1887
1888 case '$': /* designation of 2-byte character set */
1889 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1890 goto label_invalid_code;
1891 ONE_MORE_BYTE (c1);
1892 if (c1 >= '@' && c1 <= 'B')
1893 { /* designation of JISX0208.1978, GB2312.1980,
1894 or JISX0208.1980 */
1895 DECODE_DESIGNATION (0, 2, 94, c1);
1896 }
1897 else if (c1 >= 0x28 && c1 <= 0x2B)
1898 { /* designation of DIMENSION2_CHARS94 character set */
1899 ONE_MORE_BYTE (c2);
1900 DECODE_DESIGNATION (c1 - 0x28, 2, 94, c2);
1901 }
1902 else if (c1 >= 0x2C && c1 <= 0x2F)
1903 { /* designation of DIMENSION2_CHARS96 character set */
1904 ONE_MORE_BYTE (c2);
1905 DECODE_DESIGNATION (c1 - 0x2C, 2, 96, c2);
1906 }
1907 else
1908 goto label_invalid_code;
1909 /* We must update these variables now. */
1910 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1911 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
1912 continue;
1913
1914 case 'n': /* invocation of locking-shift-2 */
1915 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1916 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1917 goto label_invalid_code;
1918 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2;
1919 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1920 continue;
1921
1922 case 'o': /* invocation of locking-shift-3 */
1923 if (! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT)
1924 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1925 goto label_invalid_code;
1926 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3;
1927 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
1928 continue;
1929
1930 case 'N': /* invocation of single-shift-2 */
1931 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1932 || CODING_SPEC_ISO_DESIGNATION (coding, 2) < 0)
1933 goto label_invalid_code;
1934 charset = CODING_SPEC_ISO_DESIGNATION (coding, 2);
1935 ONE_MORE_BYTE (c1);
1936 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1937 goto label_invalid_code;
1938 break;
1939
1940 case 'O': /* invocation of single-shift-3 */
1941 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
1942 || CODING_SPEC_ISO_DESIGNATION (coding, 3) < 0)
1943 goto label_invalid_code;
1944 charset = CODING_SPEC_ISO_DESIGNATION (coding, 3);
1945 ONE_MORE_BYTE (c1);
1946 if (c1 < 0x20 || (c1 >= 0x80 && c1 < 0xA0))
1947 goto label_invalid_code;
1948 break;
1949
1950 case '0': case '2': case '3': case '4': /* start composition */
1951 DECODE_COMPOSITION_START (c1);
1952 continue;
1953
1954 case '1': /* end composition */
1955 DECODE_COMPOSITION_END (c1);
1956 continue;
1957
1958 case '[': /* specification of direction */
1959 if (coding->flags & CODING_FLAG_ISO_NO_DIRECTION)
1960 goto label_invalid_code;
1961 /* For the moment, nested direction is not supported.
1962 So, `coding->mode & CODING_MODE_DIRECTION' zero means
1963 left-to-right, and nonzero means right-to-left. */
1964 ONE_MORE_BYTE (c1);
1965 switch (c1)
1966 {
1967 case ']': /* end of the current direction */
1968 coding->mode &= ~CODING_MODE_DIRECTION;
1969
1970 case '0': /* end of the current direction */
1971 case '1': /* start of left-to-right direction */
1972 ONE_MORE_BYTE (c1);
1973 if (c1 == ']')
1974 coding->mode &= ~CODING_MODE_DIRECTION;
1975 else
1976 goto label_invalid_code;
1977 break;
1978
1979 case '2': /* start of right-to-left direction */
1980 ONE_MORE_BYTE (c1);
1981 if (c1 == ']')
1982 coding->mode |= CODING_MODE_DIRECTION;
1983 else
1984 goto label_invalid_code;
1985 break;
1986
1987 default:
1988 goto label_invalid_code;
1989 }
1990 continue;
1991
1992 default:
1993 if (! (coding->flags & CODING_FLAG_ISO_DESIGNATION))
1994 goto label_invalid_code;
1995 if (c1 >= 0x28 && c1 <= 0x2B)
1996 { /* designation of DIMENSION1_CHARS94 character set */
1997 ONE_MORE_BYTE (c2);
1998 DECODE_DESIGNATION (c1 - 0x28, 1, 94, c2);
1999 }
2000 else if (c1 >= 0x2C && c1 <= 0x2F)
2001 { /* designation of DIMENSION1_CHARS96 character set */
2002 ONE_MORE_BYTE (c2);
2003 DECODE_DESIGNATION (c1 - 0x2C, 1, 96, c2);
2004 }
2005 else
2006 goto label_invalid_code;
2007 /* We must update these variables now. */
2008 charset0 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 0);
2009 charset1 = CODING_SPEC_ISO_PLANE_CHARSET (coding, 1);
2010 continue;
2011 }
2012 }
2013
2014 /* Now we know CHARSET and 1st position code C1 of a character.
2015 Produce a multibyte sequence for that character while getting
2016 2nd position code C2 if necessary. */
2017 if (CHARSET_DIMENSION (charset) == 2)
2018 {
2019 ONE_MORE_BYTE (c2);
2020 if (c1 < 0x80 ? c2 < 0x20 || c2 >= 0x80 : c2 < 0xA0)
2021 /* C2 is not in a valid range. */
2022 goto label_invalid_code;
2023 }
2024 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2025 EMIT_CHAR (c);
2026 continue;
2027
2028 label_invalid_code:
2029 coding->errors++;
2030 if (COMPOSING_P (coding))
2031 DECODE_COMPOSITION_END ('1');
2032 src = src_base;
2033 c = *src++;
2034 EMIT_CHAR (c);
2035 }
2036
2037 label_end_of_loop:
2038 coding->consumed = coding->consumed_char = src_base - source;
2039 coding->produced = dst - destination;
2040 return;
2041}
2042
2043
2044/* ISO2022 encoding stuff. */
2045
2046/*
2047 It is not enough to say just "ISO2022" on encoding, we have to
2048 specify more details. In Emacs, each ISO2022 coding system
2049 variant has the following specifications:
2050 1. Initial designation to G0 through G3.
2051 2. Allows short-form designation?
2052 3. ASCII should be designated to G0 before control characters?
2053 4. ASCII should be designated to G0 at end of line?
2054 5. 7-bit environment or 8-bit environment?
2055 6. Use locking-shift?
2056 7. Use Single-shift?
2057 And the following two are only for Japanese:
2058 8. Use ASCII in place of JIS0201-1976-Roman?
2059 9. Use JISX0208-1983 in place of JISX0208-1978?
2060 These specifications are encoded in `coding->flags' as flag bits
2061 defined by macros CODING_FLAG_ISO_XXX. See `coding.h' for more
2062 details.
2063*/
2064
2065/* Produce codes (escape sequence) for designating CHARSET to graphic
2066 register REG at DST, and increment DST. If <final-char> of CHARSET is
2067 '@', 'A', or 'B' and the coding system CODING allows, produce
2068 designation sequence of short-form. */
2069
2070#define ENCODE_DESIGNATION(charset, reg, coding) \
2071 do { \
2072 unsigned char final_char = CHARSET_ISO_FINAL_CHAR (charset); \
2073 char *intermediate_char_94 = "()*+"; \
2074 char *intermediate_char_96 = ",-./"; \
2075 int revision = CODING_SPEC_ISO_REVISION_NUMBER(coding, charset); \
2076 \
2077 if (revision < 255) \
2078 { \
2079 *dst++ = ISO_CODE_ESC; \
2080 *dst++ = '&'; \
2081 *dst++ = '@' + revision; \
2082 } \
2083 *dst++ = ISO_CODE_ESC; \
2084 if (CHARSET_DIMENSION (charset) == 1) \
2085 { \
2086 if (CHARSET_CHARS (charset) == 94) \
2087 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2088 else \
2089 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2090 } \
2091 else \
2092 { \
2093 *dst++ = '$'; \
2094 if (CHARSET_CHARS (charset) == 94) \
2095 { \
2096 if (! (coding->flags & CODING_FLAG_ISO_SHORT_FORM) \
2097 || reg != 0 \
2098 || final_char < '@' || final_char > 'B') \
2099 *dst++ = (unsigned char) (intermediate_char_94[reg]); \
2100 } \
2101 else \
2102 *dst++ = (unsigned char) (intermediate_char_96[reg]); \
2103 } \
2104 *dst++ = final_char; \
2105 CODING_SPEC_ISO_DESIGNATION (coding, reg) = charset; \
2106 } while (0)
2107
2108/* The following two macros produce codes (control character or escape
2109 sequence) for ISO2022 single-shift functions (single-shift-2 and
2110 single-shift-3). */
2111
2112#define ENCODE_SINGLE_SHIFT_2 \
2113 do { \
2114 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2115 *dst++ = ISO_CODE_ESC, *dst++ = 'N'; \
2116 else \
2117 *dst++ = ISO_CODE_SS2; \
2118 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2119 } while (0)
2120
2121#define ENCODE_SINGLE_SHIFT_3 \
2122 do { \
2123 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2124 *dst++ = ISO_CODE_ESC, *dst++ = 'O'; \
2125 else \
2126 *dst++ = ISO_CODE_SS3; \
2127 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 1; \
2128 } while (0)
2129
2130/* The following four macros produce codes (control character or
2131 escape sequence) for ISO2022 locking-shift functions (shift-in,
2132 shift-out, locking-shift-2, and locking-shift-3). */
2133
2134#define ENCODE_SHIFT_IN \
2135 do { \
2136 *dst++ = ISO_CODE_SI; \
2137 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0; \
2138 } while (0)
2139
2140#define ENCODE_SHIFT_OUT \
2141 do { \
2142 *dst++ = ISO_CODE_SO; \
2143 CODING_SPEC_ISO_INVOCATION (coding, 0) = 1; \
2144 } while (0)
2145
2146#define ENCODE_LOCKING_SHIFT_2 \
2147 do { \
2148 *dst++ = ISO_CODE_ESC, *dst++ = 'n'; \
2149 CODING_SPEC_ISO_INVOCATION (coding, 0) = 2; \
2150 } while (0)
2151
2152#define ENCODE_LOCKING_SHIFT_3 \
2153 do { \
2154 *dst++ = ISO_CODE_ESC, *dst++ = 'o'; \
2155 CODING_SPEC_ISO_INVOCATION (coding, 0) = 3; \
2156 } while (0)
2157
2158/* Produce codes for a DIMENSION1 character whose character set is
2159 CHARSET and whose position-code is C1. Designation and invocation
2160 sequences are also produced in advance if necessary. */
2161
2162#define ENCODE_ISO_CHARACTER_DIMENSION1(charset, c1) \
2163 do { \
2164 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2165 { \
2166 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2167 *dst++ = c1 & 0x7F; \
2168 else \
2169 *dst++ = c1 | 0x80; \
2170 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2171 break; \
2172 } \
2173 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2174 { \
2175 *dst++ = c1 & 0x7F; \
2176 break; \
2177 } \
2178 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2179 { \
2180 *dst++ = c1 | 0x80; \
2181 break; \
2182 } \
2183 else \
2184 /* Since CHARSET is not yet invoked to any graphic planes, we \
2185 must invoke it, or, at first, designate it to some graphic \
2186 register. Then repeat the loop to actually produce the \
2187 character. */ \
2188 dst = encode_invocation_designation (charset, coding, dst); \
2189 } while (1)
2190
2191/* Produce codes for a DIMENSION2 character whose character set is
2192 CHARSET and whose position-codes are C1 and C2. Designation and
2193 invocation codes are also produced in advance if necessary. */
2194
2195#define ENCODE_ISO_CHARACTER_DIMENSION2(charset, c1, c2) \
2196 do { \
2197 if (CODING_SPEC_ISO_SINGLE_SHIFTING (coding)) \
2198 { \
2199 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS) \
2200 *dst++ = c1 & 0x7F, *dst++ = c2 & 0x7F; \
2201 else \
2202 *dst++ = c1 | 0x80, *dst++ = c2 | 0x80; \
2203 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0; \
2204 break; \
2205 } \
2206 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 0)) \
2207 { \
2208 *dst++ = c1 & 0x7F, *dst++= c2 & 0x7F; \
2209 break; \
2210 } \
2211 else if (charset == CODING_SPEC_ISO_PLANE_CHARSET (coding, 1)) \
2212 { \
2213 *dst++ = c1 | 0x80, *dst++= c2 | 0x80; \
2214 break; \
2215 } \
2216 else \
2217 /* Since CHARSET is not yet invoked to any graphic planes, we \
2218 must invoke it, or, at first, designate it to some graphic \
2219 register. Then repeat the loop to actually produce the \
2220 character. */ \
2221 dst = encode_invocation_designation (charset, coding, dst); \
2222 } while (1)
2223
2224#define ENCODE_ISO_CHARACTER(c) \
2225 do { \
2226 int charset, c1, c2; \
2227 \
2228 SPLIT_CHAR (c, charset, c1, c2); \
2229 if (CHARSET_DEFINED_P (charset)) \
2230 { \
2231 if (CHARSET_DIMENSION (charset) == 1) \
2232 { \
2233 if (charset == CHARSET_ASCII \
2234 && coding->flags & CODING_FLAG_ISO_USE_ROMAN) \
2235 charset = charset_latin_jisx0201; \
2236 ENCODE_ISO_CHARACTER_DIMENSION1 (charset, c1); \
2237 } \
2238 else \
2239 { \
2240 if (charset == charset_jisx0208 \
2241 && coding->flags & CODING_FLAG_ISO_USE_OLDJIS) \
2242 charset = charset_jisx0208_1978; \
2243 ENCODE_ISO_CHARACTER_DIMENSION2 (charset, c1, c2); \
2244 } \
2245 } \
2246 else \
2247 { \
2248 *dst++ = c1; \
2249 if (c2 >= 0) \
2250 *dst++ = c2; \
2251 } \
2252 } while (0)
2253
2254
2255/* Instead of encoding character C, produce one or two `?'s. */
2256
2257#define ENCODE_UNSAFE_CHARACTER(c) \
2258 do { \
2259 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
2260 if (CHARSET_WIDTH (CHAR_CHARSET (c)) > 1) \
2261 ENCODE_ISO_CHARACTER (CODING_INHIBIT_CHARACTER_SUBSTITUTION); \
2262 } while (0)
2263
2264
2265/* Produce designation and invocation codes at a place pointed by DST
2266 to use CHARSET. The element `spec.iso2022' of *CODING is updated.
2267 Return new DST. */
2268
2269unsigned char *
2270encode_invocation_designation (charset, coding, dst)
2271 int charset;
2272 struct coding_system *coding;
2273 unsigned char *dst;
2274{
2275 int reg; /* graphic register number */
2276
2277 /* At first, check designations. */
2278 for (reg = 0; reg < 4; reg++)
2279 if (charset == CODING_SPEC_ISO_DESIGNATION (coding, reg))
2280 break;
2281
2282 if (reg >= 4)
2283 {
2284 /* CHARSET is not yet designated to any graphic registers. */
2285 /* At first check the requested designation. */
2286 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2287 if (reg == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION)
2288 /* Since CHARSET requests no special designation, designate it
2289 to graphic register 0. */
2290 reg = 0;
2291
2292 ENCODE_DESIGNATION (charset, reg, coding);
2293 }
2294
2295 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != reg
2296 && CODING_SPEC_ISO_INVOCATION (coding, 1) != reg)
2297 {
2298 /* Since the graphic register REG is not invoked to any graphic
2299 planes, invoke it to graphic plane 0. */
2300 switch (reg)
2301 {
2302 case 0: /* graphic register 0 */
2303 ENCODE_SHIFT_IN;
2304 break;
2305
2306 case 1: /* graphic register 1 */
2307 ENCODE_SHIFT_OUT;
2308 break;
2309
2310 case 2: /* graphic register 2 */
2311 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2312 ENCODE_SINGLE_SHIFT_2;
2313 else
2314 ENCODE_LOCKING_SHIFT_2;
2315 break;
2316
2317 case 3: /* graphic register 3 */
2318 if (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT)
2319 ENCODE_SINGLE_SHIFT_3;
2320 else
2321 ENCODE_LOCKING_SHIFT_3;
2322 break;
2323 }
2324 }
2325
2326 return dst;
2327}
2328
2329/* Produce 2-byte codes for encoded composition rule RULE. */
2330
2331#define ENCODE_COMPOSITION_RULE(rule) \
2332 do { \
2333 int gref, nref; \
2334 COMPOSITION_DECODE_RULE (rule, gref, nref); \
2335 *dst++ = 32 + 81 + gref; \
2336 *dst++ = 32 + nref; \
2337 } while (0)
2338
2339/* Produce codes for indicating the start of a composition sequence
2340 (ESC 0, ESC 3, or ESC 4). DATA points to an array of integers
2341 which specify information about the composition. See the comment
2342 in coding.h for the format of DATA. */
2343
2344#define ENCODE_COMPOSITION_START(coding, data) \
2345 do { \
2346 coding->composing = data[3]; \
2347 *dst++ = ISO_CODE_ESC; \
2348 if (coding->composing == COMPOSITION_RELATIVE) \
2349 *dst++ = '0'; \
2350 else \
2351 { \
2352 *dst++ = (coding->composing == COMPOSITION_WITH_ALTCHARS \
2353 ? '3' : '4'); \
2354 coding->cmp_data_index = coding->cmp_data_start + 4; \
2355 coding->composition_rule_follows = 0; \
2356 } \
2357 } while (0)
2358
2359/* Produce codes for indicating the end of the current composition. */
2360
2361#define ENCODE_COMPOSITION_END(coding, data) \
2362 do { \
2363 *dst++ = ISO_CODE_ESC; \
2364 *dst++ = '1'; \
2365 coding->cmp_data_start += data[0]; \
2366 coding->composing = COMPOSITION_NO; \
2367 if (coding->cmp_data_start == coding->cmp_data->used \
2368 && coding->cmp_data->next) \
2369 { \
2370 coding->cmp_data = coding->cmp_data->next; \
2371 coding->cmp_data_start = 0; \
2372 } \
2373 } while (0)
2374
2375/* Produce composition start sequence ESC 0. Here, this sequence
2376 doesn't mean the start of a new composition but means that we have
2377 just produced components (alternate chars and composition rules) of
2378 the composition and the actual text follows in SRC. */
2379
2380#define ENCODE_COMPOSITION_FAKE_START(coding) \
2381 do { \
2382 *dst++ = ISO_CODE_ESC; \
2383 *dst++ = '0'; \
2384 coding->composing = COMPOSITION_RELATIVE; \
2385 } while (0)
2386
2387/* The following three macros produce codes for indicating direction
2388 of text. */
2389#define ENCODE_CONTROL_SEQUENCE_INTRODUCER \
2390 do { \
2391 if (coding->flags == CODING_FLAG_ISO_SEVEN_BITS) \
2392 *dst++ = ISO_CODE_ESC, *dst++ = '['; \
2393 else \
2394 *dst++ = ISO_CODE_CSI; \
2395 } while (0)
2396
2397#define ENCODE_DIRECTION_R2L \
2398 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '2', *dst++ = ']'
2399
2400#define ENCODE_DIRECTION_L2R \
2401 ENCODE_CONTROL_SEQUENCE_INTRODUCER (dst), *dst++ = '0', *dst++ = ']'
2402
2403/* Produce codes for designation and invocation to reset the graphic
2404 planes and registers to initial state. */
2405#define ENCODE_RESET_PLANE_AND_REGISTER \
2406 do { \
2407 int reg; \
2408 if (CODING_SPEC_ISO_INVOCATION (coding, 0) != 0) \
2409 ENCODE_SHIFT_IN; \
2410 for (reg = 0; reg < 4; reg++) \
2411 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg) >= 0 \
2412 && (CODING_SPEC_ISO_DESIGNATION (coding, reg) \
2413 != CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg))) \
2414 ENCODE_DESIGNATION \
2415 (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, reg), reg, coding); \
2416 } while (0)
2417
2418/* Produce designation sequences of charsets in the line started from
2419 SRC to a place pointed by DST, and return updated DST.
2420
2421 If the current block ends before any end-of-line, we may fail to
2422 find all the necessary designations. */
2423
2424static unsigned char *
2425encode_designation_at_bol (coding, translation_table, src, src_end, dst)
2426 struct coding_system *coding;
2427 Lisp_Object translation_table;
2428 unsigned char *src, *src_end, *dst;
2429{
2430 int charset, c, found = 0, reg;
2431 /* Table of charsets to be designated to each graphic register. */
2432 int r[4];
2433
2434 for (reg = 0; reg < 4; reg++)
2435 r[reg] = -1;
2436
2437 while (found < 4)
2438 {
2439 ONE_MORE_CHAR (c);
2440 if (c == '\n')
2441 break;
2442
2443 charset = CHAR_CHARSET (c);
2444 reg = CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset);
2445 if (reg != CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION && r[reg] < 0)
2446 {
2447 found++;
2448 r[reg] = charset;
2449 }
2450 }
2451
2452 label_end_of_loop:
2453 if (found)
2454 {
2455 for (reg = 0; reg < 4; reg++)
2456 if (r[reg] >= 0
2457 && CODING_SPEC_ISO_DESIGNATION (coding, reg) != r[reg])
2458 ENCODE_DESIGNATION (r[reg], reg, coding);
2459 }
2460
2461 return dst;
2462}
2463
2464/* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions". */
2465
2466static void
2467encode_coding_iso2022 (coding, source, destination, src_bytes, dst_bytes)
2468 struct coding_system *coding;
2469 unsigned char *source, *destination;
2470 int src_bytes, dst_bytes;
2471{
2472 unsigned char *src = source;
2473 unsigned char *src_end = source + src_bytes;
2474 unsigned char *dst = destination;
2475 unsigned char *dst_end = destination + dst_bytes;
2476 /* Since the maximum bytes produced by each loop is 20, we subtract 19
2477 from DST_END to assure overflow checking is necessary only at the
2478 head of loop. */
2479 unsigned char *adjusted_dst_end = dst_end - 19;
2480 /* SRC_BASE remembers the start position in source in each loop.
2481 The loop will be exited when there's not enough source text to
2482 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
2483 there's not enough destination area to produce encoded codes
2484 (within macro EMIT_BYTES). */
2485 unsigned char *src_base;
2486 int c;
2487 Lisp_Object translation_table;
2488 Lisp_Object safe_chars;
2489
2490 safe_chars = coding_safe_chars (coding);
2491
2492 if (NILP (Venable_character_translation))
2493 translation_table = Qnil;
2494 else
2495 {
2496 translation_table = coding->translation_table_for_encode;
2497 if (NILP (translation_table))
2498 translation_table = Vstandard_translation_table_for_encode;
2499 }
2500
2501 coding->consumed_char = 0;
2502 coding->errors = 0;
2503 while (1)
2504 {
2505 src_base = src;
2506
2507 if (dst >= (dst_bytes ? adjusted_dst_end : (src - 19)))
2508 {
2509 coding->result = CODING_FINISH_INSUFFICIENT_DST;
2510 break;
2511 }
2512
2513 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL
2514 && CODING_SPEC_ISO_BOL (coding))
2515 {
2516 /* We have to produce designation sequences if any now. */
2517 dst = encode_designation_at_bol (coding, translation_table,
2518 src, src_end, dst);
2519 CODING_SPEC_ISO_BOL (coding) = 0;
2520 }
2521
2522 /* Check composition start and end. */
2523 if (coding->composing != COMPOSITION_DISABLED
2524 && coding->cmp_data_start < coding->cmp_data->used)
2525 {
2526 struct composition_data *cmp_data = coding->cmp_data;
2527 int *data = cmp_data->data + coding->cmp_data_start;
2528 int this_pos = cmp_data->char_offset + coding->consumed_char;
2529
2530 if (coding->composing == COMPOSITION_RELATIVE)
2531 {
2532 if (this_pos == data[2])
2533 {
2534 ENCODE_COMPOSITION_END (coding, data);
2535 cmp_data = coding->cmp_data;
2536 data = cmp_data->data + coding->cmp_data_start;
2537 }
2538 }
2539 else if (COMPOSING_P (coding))
2540 {
2541 /* COMPOSITION_WITH_ALTCHARS or COMPOSITION_WITH_RULE_ALTCHAR */
2542 if (coding->cmp_data_index == coding->cmp_data_start + data[0])
2543 /* We have consumed components of the composition.
2544 What follows in SRC is the composition's base
2545 text. */
2546 ENCODE_COMPOSITION_FAKE_START (coding);
2547 else
2548 {
2549 int c = cmp_data->data[coding->cmp_data_index++];
2550 if (coding->composition_rule_follows)
2551 {
2552 ENCODE_COMPOSITION_RULE (c);
2553 coding->composition_rule_follows = 0;
2554 }
2555 else
2556 {
2557 if (coding->flags & CODING_FLAG_ISO_SAFE
2558 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2559 ENCODE_UNSAFE_CHARACTER (c);
2560 else
2561 ENCODE_ISO_CHARACTER (c);
2562 if (coding->composing == COMPOSITION_WITH_RULE_ALTCHARS)
2563 coding->composition_rule_follows = 1;
2564 }
2565 continue;
2566 }
2567 }
2568 if (!COMPOSING_P (coding))
2569 {
2570 if (this_pos == data[1])
2571 {
2572 ENCODE_COMPOSITION_START (coding, data);
2573 continue;
2574 }
2575 }
2576 }
2577
2578 ONE_MORE_CHAR (c);
2579
2580 /* Now encode the character C. */
2581 if (c < 0x20 || c == 0x7F)
2582 {
2583 if (c == '\r')
2584 {
2585 if (! (coding->mode & CODING_MODE_SELECTIVE_DISPLAY))
2586 {
2587 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2588 ENCODE_RESET_PLANE_AND_REGISTER;
2589 *dst++ = c;
2590 continue;
2591 }
2592 /* fall down to treat '\r' as '\n' ... */
2593 c = '\n';
2594 }
2595 if (c == '\n')
2596 {
2597 if (coding->flags & CODING_FLAG_ISO_RESET_AT_EOL)
2598 ENCODE_RESET_PLANE_AND_REGISTER;
2599 if (coding->flags & CODING_FLAG_ISO_INIT_AT_BOL)
2600 bcopy (coding->spec.iso2022.initial_designation,
2601 coding->spec.iso2022.current_designation,
2602 sizeof coding->spec.iso2022.initial_designation);
2603 if (coding->eol_type == CODING_EOL_LF
2604 || coding->eol_type == CODING_EOL_UNDECIDED)
2605 *dst++ = ISO_CODE_LF;
2606 else if (coding->eol_type == CODING_EOL_CRLF)
2607 *dst++ = ISO_CODE_CR, *dst++ = ISO_CODE_LF;
2608 else
2609 *dst++ = ISO_CODE_CR;
2610 CODING_SPEC_ISO_BOL (coding) = 1;
2611 }
2612 else
2613 {
2614 if (coding->flags & CODING_FLAG_ISO_RESET_AT_CNTL)
2615 ENCODE_RESET_PLANE_AND_REGISTER;
2616 *dst++ = c;
2617 }
2618 }
2619 else if (ASCII_BYTE_P (c))
2620 ENCODE_ISO_CHARACTER (c);
2621 else if (SINGLE_BYTE_CHAR_P (c))
2622 {
2623 *dst++ = c;
2624 coding->errors++;
2625 }
2626 else if (coding->flags & CODING_FLAG_ISO_SAFE
2627 && ! CODING_SAFE_CHAR_P (safe_chars, c))
2628 ENCODE_UNSAFE_CHARACTER (c);
2629 else
2630 ENCODE_ISO_CHARACTER (c);
2631
2632 coding->consumed_char++;
2633 }
2634
2635 label_end_of_loop:
2636 coding->consumed = src_base - source;
2637 coding->produced = coding->produced_char = dst - destination;
2638}
2639
2640\f
2641/*** 4. SJIS and BIG5 handlers ***/
2642
2643/* Although SJIS and BIG5 are not ISO coding systems, they are used
2644 quite widely. So, for the moment, Emacs supports them in the bare
2645 C code. But, in the future, they may be supported only by CCL. */
2646
2647/* SJIS is a coding system encoding three character sets: ASCII, right
2648 half of JISX0201-Kana, and JISX0208. An ASCII character is encoded
2649 as is. A character of charset katakana-jisx0201 is encoded by
2650 "position-code + 0x80". A character of charset japanese-jisx0208
2651 is encoded in 2-byte but two position-codes are divided and shifted
2652 so that it fits in the range below.
2653
2654 --- CODE RANGE of SJIS ---
2655 (character set) (range)
2656 ASCII 0x00 .. 0x7F
2657 KATAKANA-JISX0201 0xA1 .. 0xDF
2658 JISX0208 (1st byte) 0x81 .. 0x9F and 0xE0 .. 0xEF
2659 (2nd byte) 0x40 .. 0x7E and 0x80 .. 0xFC
2660 -------------------------------
2661
2662*/
2663
2664/* BIG5 is a coding system encoding two character sets: ASCII and
2665 Big5. An ASCII character is encoded as is. Big5 is a two-byte
2666 character set and is encoded in two bytes.
2667
2668 --- CODE RANGE of BIG5 ---
2669 (character set) (range)
2670 ASCII 0x00 .. 0x7F
2671 Big5 (1st byte) 0xA1 .. 0xFE
2672 (2nd byte) 0x40 .. 0x7E and 0xA1 .. 0xFE
2673 --------------------------
2674
2675 Since the number of characters in Big5 is larger than maximum
2676 characters in Emacs' charset (96x96), it can't be handled as one
2677 charset. So, in Emacs, Big5 is divided into two: `charset-big5-1'
2678 and `charset-big5-2'. Both are DIMENSION2 and CHARS94. The former
2679 contains frequently used characters and the latter contains less
2680 frequently used characters. */
2681
2682/* Macros to decode or encode a character of Big5 in BIG5. B1 and B2
2683 are the 1st and 2nd position-codes of Big5 in BIG5 coding system.
2684 C1 and C2 are the 1st and 2nd position-codes of of Emacs' internal
2685 format. CHARSET is `charset_big5_1' or `charset_big5_2'. */
2686
2687/* Number of Big5 characters which have the same code in 1st byte. */
2688#define BIG5_SAME_ROW (0xFF - 0xA1 + 0x7F - 0x40)
2689
2690#define DECODE_BIG5(b1, b2, charset, c1, c2) \
2691 do { \
2692 unsigned int temp \
2693 = (b1 - 0xA1) * BIG5_SAME_ROW + b2 - (b2 < 0x7F ? 0x40 : 0x62); \
2694 if (b1 < 0xC9) \
2695 charset = charset_big5_1; \
2696 else \
2697 { \
2698 charset = charset_big5_2; \
2699 temp -= (0xC9 - 0xA1) * BIG5_SAME_ROW; \
2700 } \
2701 c1 = temp / (0xFF - 0xA1) + 0x21; \
2702 c2 = temp % (0xFF - 0xA1) + 0x21; \
2703 } while (0)
2704
2705#define ENCODE_BIG5(charset, c1, c2, b1, b2) \
2706 do { \
2707 unsigned int temp = (c1 - 0x21) * (0xFF - 0xA1) + (c2 - 0x21); \
2708 if (charset == charset_big5_2) \
2709 temp += BIG5_SAME_ROW * (0xC9 - 0xA1); \
2710 b1 = temp / BIG5_SAME_ROW + 0xA1; \
2711 b2 = temp % BIG5_SAME_ROW; \
2712 b2 += b2 < 0x3F ? 0x40 : 0x62; \
2713 } while (0)
2714
2715/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2716 Check if a text is encoded in SJIS. If it is, return
2717 CODING_CATEGORY_MASK_SJIS, else return 0. */
2718
2719static int
2720detect_coding_sjis (src, src_end, multibytep)
2721 unsigned char *src, *src_end;
2722 int multibytep;
2723{
2724 int c;
2725 /* Dummy for ONE_MORE_BYTE. */
2726 struct coding_system dummy_coding;
2727 struct coding_system *coding = &dummy_coding;
2728
2729 while (1)
2730 {
2731 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2732 if (c < 0x80)
2733 continue;
2734 if (c == 0x80 || c == 0xA0 || c > 0xEF)
2735 return 0;
2736 if (c <= 0x9F || c >= 0xE0)
2737 {
2738 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2739 if (c < 0x40 || c == 0x7F || c > 0xFC)
2740 return 0;
2741 }
2742 }
2743 label_end_of_loop:
2744 return CODING_CATEGORY_MASK_SJIS;
2745}
2746
2747/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2748 Check if a text is encoded in BIG5. If it is, return
2749 CODING_CATEGORY_MASK_BIG5, else return 0. */
2750
2751static int
2752detect_coding_big5 (src, src_end, multibytep)
2753 unsigned char *src, *src_end;
2754 int multibytep;
2755{
2756 int c;
2757 /* Dummy for ONE_MORE_BYTE. */
2758 struct coding_system dummy_coding;
2759 struct coding_system *coding = &dummy_coding;
2760
2761 while (1)
2762 {
2763 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2764 if (c < 0x80)
2765 continue;
2766 if (c < 0xA1 || c > 0xFE)
2767 return 0;
2768 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2769 if (c < 0x40 || (c > 0x7F && c < 0xA1) || c > 0xFE)
2770 return 0;
2771 }
2772 label_end_of_loop:
2773 return CODING_CATEGORY_MASK_BIG5;
2774}
2775
2776/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2777 Check if a text is encoded in UTF-8. If it is, return
2778 CODING_CATEGORY_MASK_UTF_8, else return 0. */
2779
2780#define UTF_8_1_OCTET_P(c) ((c) < 0x80)
2781#define UTF_8_EXTRA_OCTET_P(c) (((c) & 0xC0) == 0x80)
2782#define UTF_8_2_OCTET_LEADING_P(c) (((c) & 0xE0) == 0xC0)
2783#define UTF_8_3_OCTET_LEADING_P(c) (((c) & 0xF0) == 0xE0)
2784#define UTF_8_4_OCTET_LEADING_P(c) (((c) & 0xF8) == 0xF0)
2785#define UTF_8_5_OCTET_LEADING_P(c) (((c) & 0xFC) == 0xF8)
2786#define UTF_8_6_OCTET_LEADING_P(c) (((c) & 0xFE) == 0xFC)
2787
2788static int
2789detect_coding_utf_8 (src, src_end, multibytep)
2790 unsigned char *src, *src_end;
2791 int multibytep;
2792{
2793 unsigned char c;
2794 int seq_maybe_bytes;
2795 /* Dummy for ONE_MORE_BYTE. */
2796 struct coding_system dummy_coding;
2797 struct coding_system *coding = &dummy_coding;
2798
2799 while (1)
2800 {
2801 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2802 if (UTF_8_1_OCTET_P (c))
2803 continue;
2804 else if (UTF_8_2_OCTET_LEADING_P (c))
2805 seq_maybe_bytes = 1;
2806 else if (UTF_8_3_OCTET_LEADING_P (c))
2807 seq_maybe_bytes = 2;
2808 else if (UTF_8_4_OCTET_LEADING_P (c))
2809 seq_maybe_bytes = 3;
2810 else if (UTF_8_5_OCTET_LEADING_P (c))
2811 seq_maybe_bytes = 4;
2812 else if (UTF_8_6_OCTET_LEADING_P (c))
2813 seq_maybe_bytes = 5;
2814 else
2815 return 0;
2816
2817 do
2818 {
2819 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
2820 if (!UTF_8_EXTRA_OCTET_P (c))
2821 return 0;
2822 seq_maybe_bytes--;
2823 }
2824 while (seq_maybe_bytes > 0);
2825 }
2826
2827 label_end_of_loop:
2828 return CODING_CATEGORY_MASK_UTF_8;
2829}
2830
2831/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
2832 Check if a text is encoded in UTF-16 Big Endian (endian == 1) or
2833 Little Endian (otherwise). If it is, return
2834 CODING_CATEGORY_MASK_UTF_16_BE or CODING_CATEGORY_MASK_UTF_16_LE,
2835 else return 0. */
2836
2837#define UTF_16_INVALID_P(val) \
2838 (((val) == 0xFFFE) \
2839 || ((val) == 0xFFFF))
2840
2841#define UTF_16_HIGH_SURROGATE_P(val) \
2842 (((val) & 0xD800) == 0xD800)
2843
2844#define UTF_16_LOW_SURROGATE_P(val) \
2845 (((val) & 0xDC00) == 0xDC00)
2846
2847static int
2848detect_coding_utf_16 (src, src_end, multibytep)
2849 unsigned char *src, *src_end;
2850 int multibytep;
2851{
2852 unsigned char c1, c2;
2853 /* Dummy for TWO_MORE_BYTES. */
2854 struct coding_system dummy_coding;
2855 struct coding_system *coding = &dummy_coding;
2856
2857 ONE_MORE_BYTE_CHECK_MULTIBYTE (c1, multibytep);
2858 ONE_MORE_BYTE_CHECK_MULTIBYTE (c2, multibytep);
2859
2860 if ((c1 == 0xFF) && (c2 == 0xFE))
2861 return CODING_CATEGORY_MASK_UTF_16_LE;
2862 else if ((c1 == 0xFE) && (c2 == 0xFF))
2863 return CODING_CATEGORY_MASK_UTF_16_BE;
2864
2865 label_end_of_loop:
2866 return 0;
2867}
2868
2869/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions".
2870 If SJIS_P is 1, decode SJIS text, else decode BIG5 test. */
2871
2872static void
2873decode_coding_sjis_big5 (coding, source, destination,
2874 src_bytes, dst_bytes, sjis_p)
2875 struct coding_system *coding;
2876 unsigned char *source, *destination;
2877 int src_bytes, dst_bytes;
2878 int sjis_p;
2879{
2880 unsigned char *src = source;
2881 unsigned char *src_end = source + src_bytes;
2882 unsigned char *dst = destination;
2883 unsigned char *dst_end = destination + dst_bytes;
2884 /* SRC_BASE remembers the start position in source in each loop.
2885 The loop will be exited when there's not enough source code
2886 (within macro ONE_MORE_BYTE), or when there's not enough
2887 destination area to produce a character (within macro
2888 EMIT_CHAR). */
2889 unsigned char *src_base;
2890 Lisp_Object translation_table;
2891
2892 if (NILP (Venable_character_translation))
2893 translation_table = Qnil;
2894 else
2895 {
2896 translation_table = coding->translation_table_for_decode;
2897 if (NILP (translation_table))
2898 translation_table = Vstandard_translation_table_for_decode;
2899 }
2900
2901 coding->produced_char = 0;
2902 while (1)
2903 {
2904 int c, charset, c1, c2;
2905
2906 src_base = src;
2907 ONE_MORE_BYTE (c1);
2908
2909 if (c1 < 0x80)
2910 {
2911 charset = CHARSET_ASCII;
2912 if (c1 < 0x20)
2913 {
2914 if (c1 == '\r')
2915 {
2916 if (coding->eol_type == CODING_EOL_CRLF)
2917 {
2918 ONE_MORE_BYTE (c2);
2919 if (c2 == '\n')
2920 c1 = c2;
2921 else if (coding->mode
2922 & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2923 {
2924 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2925 goto label_end_of_loop;
2926 }
2927 else
2928 /* To process C2 again, SRC is subtracted by 1. */
2929 src--;
2930 }
2931 else if (coding->eol_type == CODING_EOL_CR)
2932 c1 = '\n';
2933 }
2934 else if (c1 == '\n'
2935 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
2936 && (coding->eol_type == CODING_EOL_CR
2937 || coding->eol_type == CODING_EOL_CRLF))
2938 {
2939 coding->result = CODING_FINISH_INCONSISTENT_EOL;
2940 goto label_end_of_loop;
2941 }
2942 }
2943 }
2944 else
2945 {
2946 if (sjis_p)
2947 {
2948 if (c1 == 0x80 || c1 == 0xA0 || c1 > 0xEF)
2949 goto label_invalid_code;
2950 if (c1 <= 0x9F || c1 >= 0xE0)
2951 {
2952 /* SJIS -> JISX0208 */
2953 ONE_MORE_BYTE (c2);
2954 if (c2 < 0x40 || c2 == 0x7F || c2 > 0xFC)
2955 goto label_invalid_code;
2956 DECODE_SJIS (c1, c2, c1, c2);
2957 charset = charset_jisx0208;
2958 }
2959 else
2960 /* SJIS -> JISX0201-Kana */
2961 charset = charset_katakana_jisx0201;
2962 }
2963 else
2964 {
2965 /* BIG5 -> Big5 */
2966 if (c1 < 0xA0 || c1 > 0xFE)
2967 goto label_invalid_code;
2968 ONE_MORE_BYTE (c2);
2969 if (c2 < 0x40 || (c2 > 0x7E && c2 < 0xA1) || c2 > 0xFE)
2970 goto label_invalid_code;
2971 DECODE_BIG5 (c1, c2, charset, c1, c2);
2972 }
2973 }
2974
2975 c = DECODE_ISO_CHARACTER (charset, c1, c2);
2976 EMIT_CHAR (c);
2977 continue;
2978
2979 label_invalid_code:
2980 coding->errors++;
2981 src = src_base;
2982 c = *src++;
2983 EMIT_CHAR (c);
2984 }
2985
2986 label_end_of_loop:
2987 coding->consumed = coding->consumed_char = src_base - source;
2988 coding->produced = dst - destination;
2989 return;
2990}
2991
2992/* See the above "GENERAL NOTES on `encode_coding_XXX ()' functions".
2993 This function can encode charsets `ascii', `katakana-jisx0201',
2994 `japanese-jisx0208', `chinese-big5-1', and `chinese-big5-2'. We
2995 are sure that all these charsets are registered as official charset
2996 (i.e. do not have extended leading-codes). Characters of other
2997 charsets are produced without any encoding. If SJIS_P is 1, encode
2998 SJIS text, else encode BIG5 text. */
2999
3000static void
3001encode_coding_sjis_big5 (coding, source, destination,
3002 src_bytes, dst_bytes, sjis_p)
3003 struct coding_system *coding;
3004 unsigned char *source, *destination;
3005 int src_bytes, dst_bytes;
3006 int sjis_p;
3007{
3008 unsigned char *src = source;
3009 unsigned char *src_end = source + src_bytes;
3010 unsigned char *dst = destination;
3011 unsigned char *dst_end = destination + dst_bytes;
3012 /* SRC_BASE remembers the start position in source in each loop.
3013 The loop will be exited when there's not enough source text to
3014 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3015 there's not enough destination area to produce encoded codes
3016 (within macro EMIT_BYTES). */
3017 unsigned char *src_base;
3018 Lisp_Object translation_table;
3019
3020 if (NILP (Venable_character_translation))
3021 translation_table = Qnil;
3022 else
3023 {
3024 translation_table = coding->translation_table_for_encode;
3025 if (NILP (translation_table))
3026 translation_table = Vstandard_translation_table_for_encode;
3027 }
3028
3029 while (1)
3030 {
3031 int c, charset, c1, c2;
3032
3033 src_base = src;
3034 ONE_MORE_CHAR (c);
3035
3036 /* Now encode the character C. */
3037 if (SINGLE_BYTE_CHAR_P (c))
3038 {
3039 switch (c)
3040 {
3041 case '\r':
3042 if (!coding->mode & CODING_MODE_SELECTIVE_DISPLAY)
3043 {
3044 EMIT_ONE_BYTE (c);
3045 break;
3046 }
3047 c = '\n';
3048 case '\n':
3049 if (coding->eol_type == CODING_EOL_CRLF)
3050 {
3051 EMIT_TWO_BYTES ('\r', c);
3052 break;
3053 }
3054 else if (coding->eol_type == CODING_EOL_CR)
3055 c = '\r';
3056 default:
3057 EMIT_ONE_BYTE (c);
3058 }
3059 }
3060 else
3061 {
3062 SPLIT_CHAR (c, charset, c1, c2);
3063 if (sjis_p)
3064 {
3065 if (charset == charset_jisx0208
3066 || charset == charset_jisx0208_1978)
3067 {
3068 ENCODE_SJIS (c1, c2, c1, c2);
3069 EMIT_TWO_BYTES (c1, c2);
3070 }
3071 else if (charset == charset_katakana_jisx0201)
3072 EMIT_ONE_BYTE (c1 | 0x80);
3073 else if (charset == charset_latin_jisx0201)
3074 EMIT_ONE_BYTE (c1);
3075 else
3076 /* There's no way other than producing the internal
3077 codes as is. */
3078 EMIT_BYTES (src_base, src);
3079 }
3080 else
3081 {
3082 if (charset == charset_big5_1 || charset == charset_big5_2)
3083 {
3084 ENCODE_BIG5 (charset, c1, c2, c1, c2);
3085 EMIT_TWO_BYTES (c1, c2);
3086 }
3087 else
3088 /* There's no way other than producing the internal
3089 codes as is. */
3090 EMIT_BYTES (src_base, src);
3091 }
3092 }
3093 coding->consumed_char++;
3094 }
3095
3096 label_end_of_loop:
3097 coding->consumed = src_base - source;
3098 coding->produced = coding->produced_char = dst - destination;
3099}
3100
3101\f
3102/*** 5. CCL handlers ***/
3103
3104/* See the above "GENERAL NOTES on `detect_coding_XXX ()' functions".
3105 Check if a text is encoded in a coding system of which
3106 encoder/decoder are written in CCL program. If it is, return
3107 CODING_CATEGORY_MASK_CCL, else return 0. */
3108
3109static int
3110detect_coding_ccl (src, src_end, multibytep)
3111 unsigned char *src, *src_end;
3112 int multibytep;
3113{
3114 unsigned char *valid;
3115 int c;
3116 /* Dummy for ONE_MORE_BYTE. */
3117 struct coding_system dummy_coding;
3118 struct coding_system *coding = &dummy_coding;
3119
3120 /* No coding system is assigned to coding-category-ccl. */
3121 if (!coding_system_table[CODING_CATEGORY_IDX_CCL])
3122 return 0;
3123
3124 valid = coding_system_table[CODING_CATEGORY_IDX_CCL]->spec.ccl.valid_codes;
3125 while (1)
3126 {
3127 ONE_MORE_BYTE_CHECK_MULTIBYTE (c, multibytep);
3128 if (! valid[c])
3129 return 0;
3130 }
3131 label_end_of_loop:
3132 return CODING_CATEGORY_MASK_CCL;
3133}
3134
3135\f
3136/*** 6. End-of-line handlers ***/
3137
3138/* See the above "GENERAL NOTES on `decode_coding_XXX ()' functions". */
3139
3140static void
3141decode_eol (coding, source, destination, src_bytes, dst_bytes)
3142 struct coding_system *coding;
3143 unsigned char *source, *destination;
3144 int src_bytes, dst_bytes;
3145{
3146 unsigned char *src = source;
3147 unsigned char *dst = destination;
3148 unsigned char *src_end = src + src_bytes;
3149 unsigned char *dst_end = dst + dst_bytes;
3150 Lisp_Object translation_table;
3151 /* SRC_BASE remembers the start position in source in each loop.
3152 The loop will be exited when there's not enough source code
3153 (within macro ONE_MORE_BYTE), or when there's not enough
3154 destination area to produce a character (within macro
3155 EMIT_CHAR). */
3156 unsigned char *src_base;
3157 int c;
3158
3159 translation_table = Qnil;
3160 switch (coding->eol_type)
3161 {
3162 case CODING_EOL_CRLF:
3163 while (1)
3164 {
3165 src_base = src;
3166 ONE_MORE_BYTE (c);
3167 if (c == '\r')
3168 {
3169 ONE_MORE_BYTE (c);
3170 if (c != '\n')
3171 {
3172 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3173 {
3174 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3175 goto label_end_of_loop;
3176 }
3177 src--;
3178 c = '\r';
3179 }
3180 }
3181 else if (c == '\n'
3182 && (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL))
3183 {
3184 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3185 goto label_end_of_loop;
3186 }
3187 EMIT_CHAR (c);
3188 }
3189 break;
3190
3191 case CODING_EOL_CR:
3192 while (1)
3193 {
3194 src_base = src;
3195 ONE_MORE_BYTE (c);
3196 if (c == '\n')
3197 {
3198 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
3199 {
3200 coding->result = CODING_FINISH_INCONSISTENT_EOL;
3201 goto label_end_of_loop;
3202 }
3203 }
3204 else if (c == '\r')
3205 c = '\n';
3206 EMIT_CHAR (c);
3207 }
3208 break;
3209
3210 default: /* no need for EOL handling */
3211 while (1)
3212 {
3213 src_base = src;
3214 ONE_MORE_BYTE (c);
3215 EMIT_CHAR (c);
3216 }
3217 }
3218
3219 label_end_of_loop:
3220 coding->consumed = coding->consumed_char = src_base - source;
3221 coding->produced = dst - destination;
3222 return;
3223}
3224
3225/* See "GENERAL NOTES about `encode_coding_XXX ()' functions". Encode
3226 format of end-of-line according to `coding->eol_type'. It also
3227 convert multibyte form 8-bit characters to unibyte if
3228 CODING->src_multibyte is nonzero. If `coding->mode &
3229 CODING_MODE_SELECTIVE_DISPLAY' is nonzero, code '\r' in source text
3230 also means end-of-line. */
3231
3232static void
3233encode_eol (coding, source, destination, src_bytes, dst_bytes)
3234 struct coding_system *coding;
3235 unsigned char *source, *destination;
3236 int src_bytes, dst_bytes;
3237{
3238 unsigned char *src = source;
3239 unsigned char *dst = destination;
3240 unsigned char *src_end = src + src_bytes;
3241 unsigned char *dst_end = dst + dst_bytes;
3242 Lisp_Object translation_table;
3243 /* SRC_BASE remembers the start position in source in each loop.
3244 The loop will be exited when there's not enough source text to
3245 analyze multi-byte codes (within macro ONE_MORE_CHAR), or when
3246 there's not enough destination area to produce encoded codes
3247 (within macro EMIT_BYTES). */
3248 unsigned char *src_base;
3249 int c;
3250 int selective_display = coding->mode & CODING_MODE_SELECTIVE_DISPLAY;
3251
3252 translation_table = Qnil;
3253 if (coding->src_multibyte
3254 && *(src_end - 1) == LEADING_CODE_8_BIT_CONTROL)
3255 {
3256 src_end--;
3257 src_bytes--;
3258 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
3259 }
3260
3261 if (coding->eol_type == CODING_EOL_CRLF)
3262 {
3263 while (src < src_end)
3264 {
3265 src_base = src;
3266 c = *src++;
3267 if (c >= 0x20)
3268 EMIT_ONE_BYTE (c);
3269 else if (c == '\n' || (c == '\r' && selective_display))
3270 EMIT_TWO_BYTES ('\r', '\n');
3271 else
3272 EMIT_ONE_BYTE (c);
3273 }
3274 src_base = src;
3275 label_end_of_loop:
3276 ;
3277 }
3278 else
3279 {
3280 if (!dst_bytes || src_bytes <= dst_bytes)
3281 {
3282 safe_bcopy (src, dst, src_bytes);
3283 src_base = src_end;
3284 dst += src_bytes;
3285 }
3286 else
3287 {
3288 if (coding->src_multibyte
3289 && *(src + dst_bytes - 1) == LEADING_CODE_8_BIT_CONTROL)
3290 dst_bytes--;
3291 safe_bcopy (src, dst, dst_bytes);
3292 src_base = src + dst_bytes;
3293 dst = destination + dst_bytes;
3294 coding->result = CODING_FINISH_INSUFFICIENT_DST;
3295 }
3296 if (coding->eol_type == CODING_EOL_CR)
3297 {
3298 for (src = destination; src < dst; src++)
3299 if (*src == '\n') *src = '\r';
3300 }
3301 else if (selective_display)
3302 {
3303 for (src = destination; src < dst; src++)
3304 if (*src == '\r') *src = '\n';
3305 }
3306 }
3307 if (coding->src_multibyte)
3308 dst = destination + str_as_unibyte (destination, dst - destination);
3309
3310 coding->consumed = src_base - source;
3311 coding->produced = dst - destination;
3312 coding->produced_char = coding->produced;
3313}
3314
3315\f
3316/*** 7. C library functions ***/
3317
3318/* In Emacs Lisp, a coding system is represented by a Lisp symbol which
3319 has a property `coding-system'. The value of this property is a
3320 vector of length 5 (called the coding-vector). Among elements of
3321 this vector, the first (element[0]) and the fifth (element[4])
3322 carry important information for decoding/encoding. Before
3323 decoding/encoding, this information should be set in fields of a
3324 structure of type `coding_system'.
3325
3326 The value of the property `coding-system' can be a symbol of another
3327 subsidiary coding-system. In that case, Emacs gets coding-vector
3328 from that symbol.
3329
3330 `element[0]' contains information to be set in `coding->type'. The
3331 value and its meaning is as follows:
3332
3333 0 -- coding_type_emacs_mule
3334 1 -- coding_type_sjis
3335 2 -- coding_type_iso2022
3336 3 -- coding_type_big5
3337 4 -- coding_type_ccl encoder/decoder written in CCL
3338 nil -- coding_type_no_conversion
3339 t -- coding_type_undecided (automatic conversion on decoding,
3340 no-conversion on encoding)
3341
3342 `element[4]' contains information to be set in `coding->flags' and
3343 `coding->spec'. The meaning varies by `coding->type'.
3344
3345 If `coding->type' is `coding_type_iso2022', element[4] is a vector
3346 of length 32 (of which the first 13 sub-elements are used now).
3347 Meanings of these sub-elements are:
3348
3349 sub-element[N] where N is 0 through 3: to be set in `coding->spec.iso2022'
3350 If the value is an integer of valid charset, the charset is
3351 assumed to be designated to graphic register N initially.
3352
3353 If the value is minus, it is a minus value of charset which
3354 reserves graphic register N, which means that the charset is
3355 not designated initially but should be designated to graphic
3356 register N just before encoding a character in that charset.
3357
3358 If the value is nil, graphic register N is never used on
3359 encoding.
3360
3361 sub-element[N] where N is 4 through 11: to be set in `coding->flags'
3362 Each value takes t or nil. See the section ISO2022 of
3363 `coding.h' for more information.
3364
3365 If `coding->type' is `coding_type_big5', element[4] is t to denote
3366 BIG5-ETen or nil to denote BIG5-HKU.
3367
3368 If `coding->type' takes the other value, element[4] is ignored.
3369
3370 Emacs Lisp's coding systems also carry information about format of
3371 end-of-line in a value of property `eol-type'. If the value is
3372 integer, 0 means CODING_EOL_LF, 1 means CODING_EOL_CRLF, and 2
3373 means CODING_EOL_CR. If it is not integer, it should be a vector
3374 of subsidiary coding systems of which property `eol-type' has one
3375 of the above values.
3376
3377*/
3378
3379/* Extract information for decoding/encoding from CODING_SYSTEM_SYMBOL
3380 and set it in CODING. If CODING_SYSTEM_SYMBOL is invalid, CODING
3381 is setup so that no conversion is necessary and return -1, else
3382 return 0. */
3383
3384int
3385setup_coding_system (coding_system, coding)
3386 Lisp_Object coding_system;
3387 struct coding_system *coding;
3388{
3389 Lisp_Object coding_spec, coding_type, eol_type, plist;
3390 Lisp_Object val;
3391
3392 /* At first, zero clear all members. */
3393 bzero (coding, sizeof (struct coding_system));
3394
3395 /* Initialize some fields required for all kinds of coding systems. */
3396 coding->symbol = coding_system;
3397 coding->heading_ascii = -1;
3398 coding->post_read_conversion = coding->pre_write_conversion = Qnil;
3399 coding->composing = COMPOSITION_DISABLED;
3400 coding->cmp_data = NULL;
3401
3402 if (NILP (coding_system))
3403 goto label_invalid_coding_system;
3404
3405 coding_spec = Fget (coding_system, Qcoding_system);
3406
3407 if (!VECTORP (coding_spec)
3408 || XVECTOR (coding_spec)->size != 5
3409 || !CONSP (XVECTOR (coding_spec)->contents[3]))
3410 goto label_invalid_coding_system;
3411
3412 eol_type = inhibit_eol_conversion ? Qnil : Fget (coding_system, Qeol_type);
3413 if (VECTORP (eol_type))
3414 {
3415 coding->eol_type = CODING_EOL_UNDECIDED;
3416 coding->common_flags = CODING_REQUIRE_DETECTION_MASK;
3417 }
3418 else if (XFASTINT (eol_type) == 1)
3419 {
3420 coding->eol_type = CODING_EOL_CRLF;
3421 coding->common_flags
3422 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3423 }
3424 else if (XFASTINT (eol_type) == 2)
3425 {
3426 coding->eol_type = CODING_EOL_CR;
3427 coding->common_flags
3428 = CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3429 }
3430 else
3431 coding->eol_type = CODING_EOL_LF;
3432
3433 coding_type = XVECTOR (coding_spec)->contents[0];
3434 /* Try short cut. */
3435 if (SYMBOLP (coding_type))
3436 {
3437 if (EQ (coding_type, Qt))
3438 {
3439 coding->type = coding_type_undecided;
3440 coding->common_flags |= CODING_REQUIRE_DETECTION_MASK;
3441 }
3442 else
3443 coding->type = coding_type_no_conversion;
3444 /* Initialize this member. Any thing other than
3445 CODING_CATEGORY_IDX_UTF_16_BE and
3446 CODING_CATEGORY_IDX_UTF_16_LE are ok because they have
3447 special treatment in detect_eol. */
3448 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
3449
3450 return 0;
3451 }
3452
3453 /* Get values of coding system properties:
3454 `post-read-conversion', `pre-write-conversion',
3455 `translation-table-for-decode', `translation-table-for-encode'. */
3456 plist = XVECTOR (coding_spec)->contents[3];
3457 /* Pre & post conversion functions should be disabled if
3458 inhibit_eol_conversion is nonzero. This is the case that a code
3459 conversion function is called while those functions are running. */
3460 if (! inhibit_pre_post_conversion)
3461 {
3462 coding->post_read_conversion = Fplist_get (plist, Qpost_read_conversion);
3463 coding->pre_write_conversion = Fplist_get (plist, Qpre_write_conversion);
3464 }
3465 val = Fplist_get (plist, Qtranslation_table_for_decode);
3466 if (SYMBOLP (val))
3467 val = Fget (val, Qtranslation_table_for_decode);
3468 coding->translation_table_for_decode = CHAR_TABLE_P (val) ? val : Qnil;
3469 val = Fplist_get (plist, Qtranslation_table_for_encode);
3470 if (SYMBOLP (val))
3471 val = Fget (val, Qtranslation_table_for_encode);
3472 coding->translation_table_for_encode = CHAR_TABLE_P (val) ? val : Qnil;
3473 val = Fplist_get (plist, Qcoding_category);
3474 if (!NILP (val))
3475 {
3476 val = Fget (val, Qcoding_category_index);
3477 if (INTEGERP (val))
3478 coding->category_idx = XINT (val);
3479 else
3480 goto label_invalid_coding_system;
3481 }
3482 else
3483 goto label_invalid_coding_system;
3484
3485 /* If the coding system has non-nil `composition' property, enable
3486 composition handling. */
3487 val = Fplist_get (plist, Qcomposition);
3488 if (!NILP (val))
3489 coding->composing = COMPOSITION_NO;
3490
3491 switch (XFASTINT (coding_type))
3492 {
3493 case 0:
3494 coding->type = coding_type_emacs_mule;
3495 coding->common_flags
3496 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3497 coding->composing = COMPOSITION_NO;
3498 if (!NILP (coding->post_read_conversion))
3499 coding->common_flags |= CODING_REQUIRE_DECODING_MASK;
3500 if (!NILP (coding->pre_write_conversion))
3501 coding->common_flags |= CODING_REQUIRE_ENCODING_MASK;
3502 break;
3503
3504 case 1:
3505 coding->type = coding_type_sjis;
3506 coding->common_flags
3507 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3508 break;
3509
3510 case 2:
3511 coding->type = coding_type_iso2022;
3512 coding->common_flags
3513 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3514 {
3515 Lisp_Object val, temp;
3516 Lisp_Object *flags;
3517 int i, charset, reg_bits = 0;
3518
3519 val = XVECTOR (coding_spec)->contents[4];
3520
3521 if (!VECTORP (val) || XVECTOR (val)->size != 32)
3522 goto label_invalid_coding_system;
3523
3524 flags = XVECTOR (val)->contents;
3525 coding->flags
3526 = ((NILP (flags[4]) ? 0 : CODING_FLAG_ISO_SHORT_FORM)
3527 | (NILP (flags[5]) ? 0 : CODING_FLAG_ISO_RESET_AT_EOL)
3528 | (NILP (flags[6]) ? 0 : CODING_FLAG_ISO_RESET_AT_CNTL)
3529 | (NILP (flags[7]) ? 0 : CODING_FLAG_ISO_SEVEN_BITS)
3530 | (NILP (flags[8]) ? 0 : CODING_FLAG_ISO_LOCKING_SHIFT)
3531 | (NILP (flags[9]) ? 0 : CODING_FLAG_ISO_SINGLE_SHIFT)
3532 | (NILP (flags[10]) ? 0 : CODING_FLAG_ISO_USE_ROMAN)
3533 | (NILP (flags[11]) ? 0 : CODING_FLAG_ISO_USE_OLDJIS)
3534 | (NILP (flags[12]) ? 0 : CODING_FLAG_ISO_NO_DIRECTION)
3535 | (NILP (flags[13]) ? 0 : CODING_FLAG_ISO_INIT_AT_BOL)
3536 | (NILP (flags[14]) ? 0 : CODING_FLAG_ISO_DESIGNATE_AT_BOL)
3537 | (NILP (flags[15]) ? 0 : CODING_FLAG_ISO_SAFE)
3538 | (NILP (flags[16]) ? 0 : CODING_FLAG_ISO_LATIN_EXTRA)
3539 );
3540
3541 /* Invoke graphic register 0 to plane 0. */
3542 CODING_SPEC_ISO_INVOCATION (coding, 0) = 0;
3543 /* Invoke graphic register 1 to plane 1 if we can use full 8-bit. */
3544 CODING_SPEC_ISO_INVOCATION (coding, 1)
3545 = (coding->flags & CODING_FLAG_ISO_SEVEN_BITS ? -1 : 1);
3546 /* Not single shifting at first. */
3547 CODING_SPEC_ISO_SINGLE_SHIFTING (coding) = 0;
3548 /* Beginning of buffer should also be regarded as bol. */
3549 CODING_SPEC_ISO_BOL (coding) = 1;
3550
3551 for (charset = 0; charset <= MAX_CHARSET; charset++)
3552 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = 255;
3553 val = Vcharset_revision_alist;
3554 while (CONSP (val))
3555 {
3556 charset = get_charset_id (Fcar_safe (XCAR (val)));
3557 if (charset >= 0
3558 && (temp = Fcdr_safe (XCAR (val)), INTEGERP (temp))
3559 && (i = XINT (temp), (i >= 0 && (i + '@') < 128)))
3560 CODING_SPEC_ISO_REVISION_NUMBER (coding, charset) = i;
3561 val = XCDR (val);
3562 }
3563
3564 /* Checks FLAGS[REG] (REG = 0, 1, 2 3) and decide designations.
3565 FLAGS[REG] can be one of below:
3566 integer CHARSET: CHARSET occupies register I,
3567 t: designate nothing to REG initially, but can be used
3568 by any charsets,
3569 list of integer, nil, or t: designate the first
3570 element (if integer) to REG initially, the remaining
3571 elements (if integer) is designated to REG on request,
3572 if an element is t, REG can be used by any charsets,
3573 nil: REG is never used. */
3574 for (charset = 0; charset <= MAX_CHARSET; charset++)
3575 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3576 = CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION;
3577 for (i = 0; i < 4; i++)
3578 {
3579 if (INTEGERP (flags[i])
3580 && (charset = XINT (flags[i]), CHARSET_VALID_P (charset))
3581 || (charset = get_charset_id (flags[i])) >= 0)
3582 {
3583 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3584 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) = i;
3585 }
3586 else if (EQ (flags[i], Qt))
3587 {
3588 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3589 reg_bits |= 1 << i;
3590 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3591 }
3592 else if (CONSP (flags[i]))
3593 {
3594 Lisp_Object tail;
3595 tail = flags[i];
3596
3597 coding->flags |= CODING_FLAG_ISO_DESIGNATION;
3598 if (INTEGERP (XCAR (tail))
3599 && (charset = XINT (XCAR (tail)),
3600 CHARSET_VALID_P (charset))
3601 || (charset = get_charset_id (XCAR (tail))) >= 0)
3602 {
3603 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = charset;
3604 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset) =i;
3605 }
3606 else
3607 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3608 tail = XCDR (tail);
3609 while (CONSP (tail))
3610 {
3611 if (INTEGERP (XCAR (tail))
3612 && (charset = XINT (XCAR (tail)),
3613 CHARSET_VALID_P (charset))
3614 || (charset = get_charset_id (XCAR (tail))) >= 0)
3615 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3616 = i;
3617 else if (EQ (XCAR (tail), Qt))
3618 reg_bits |= 1 << i;
3619 tail = XCDR (tail);
3620 }
3621 }
3622 else
3623 CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i) = -1;
3624
3625 CODING_SPEC_ISO_DESIGNATION (coding, i)
3626 = CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, i);
3627 }
3628
3629 if (reg_bits && ! (coding->flags & CODING_FLAG_ISO_LOCKING_SHIFT))
3630 {
3631 /* REG 1 can be used only by locking shift in 7-bit env. */
3632 if (coding->flags & CODING_FLAG_ISO_SEVEN_BITS)
3633 reg_bits &= ~2;
3634 if (! (coding->flags & CODING_FLAG_ISO_SINGLE_SHIFT))
3635 /* Without any shifting, only REG 0 and 1 can be used. */
3636 reg_bits &= 3;
3637 }
3638
3639 if (reg_bits)
3640 for (charset = 0; charset <= MAX_CHARSET; charset++)
3641 {
3642 if (CHARSET_DEFINED_P (charset)
3643 && (CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3644 == CODING_SPEC_ISO_NO_REQUESTED_DESIGNATION))
3645 {
3646 /* There exist some default graphic registers to be
3647 used by CHARSET. */
3648
3649 /* We had better avoid designating a charset of
3650 CHARS96 to REG 0 as far as possible. */
3651 if (CHARSET_CHARS (charset) == 96)
3652 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3653 = (reg_bits & 2
3654 ? 1 : (reg_bits & 4 ? 2 : (reg_bits & 8 ? 3 : 0)));
3655 else
3656 CODING_SPEC_ISO_REQUESTED_DESIGNATION (coding, charset)
3657 = (reg_bits & 1
3658 ? 0 : (reg_bits & 2 ? 1 : (reg_bits & 4 ? 2 : 3)));
3659 }
3660 }
3661 }
3662 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3663 coding->spec.iso2022.last_invalid_designation_register = -1;
3664 break;
3665
3666 case 3:
3667 coding->type = coding_type_big5;
3668 coding->common_flags
3669 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3670 coding->flags
3671 = (NILP (XVECTOR (coding_spec)->contents[4])
3672 ? CODING_FLAG_BIG5_HKU
3673 : CODING_FLAG_BIG5_ETEN);
3674 break;
3675
3676 case 4:
3677 coding->type = coding_type_ccl;
3678 coding->common_flags
3679 |= CODING_REQUIRE_DECODING_MASK | CODING_REQUIRE_ENCODING_MASK;
3680 {
3681 val = XVECTOR (coding_spec)->contents[4];
3682 if (! CONSP (val)
3683 || setup_ccl_program (&(coding->spec.ccl.decoder),
3684 XCAR (val)) < 0
3685 || setup_ccl_program (&(coding->spec.ccl.encoder),
3686 XCDR (val)) < 0)
3687 goto label_invalid_coding_system;
3688
3689 bzero (coding->spec.ccl.valid_codes, 256);
3690 val = Fplist_get (plist, Qvalid_codes);
3691 if (CONSP (val))
3692 {
3693 Lisp_Object this;
3694
3695 for (; CONSP (val); val = XCDR (val))
3696 {
3697 this = XCAR (val);
3698 if (INTEGERP (this)
3699 && XINT (this) >= 0 && XINT (this) < 256)
3700 coding->spec.ccl.valid_codes[XINT (this)] = 1;
3701 else if (CONSP (this)
3702 && INTEGERP (XCAR (this))
3703 && INTEGERP (XCDR (this)))
3704 {
3705 int start = XINT (XCAR (this));
3706 int end = XINT (XCDR (this));
3707
3708 if (start >= 0 && start <= end && end < 256)
3709 while (start <= end)
3710 coding->spec.ccl.valid_codes[start++] = 1;
3711 }
3712 }
3713 }
3714 }
3715 coding->common_flags |= CODING_REQUIRE_FLUSHING_MASK;
3716 coding->spec.ccl.cr_carryover = 0;
3717 coding->spec.ccl.eight_bit_carryover[0] = 0;
3718 break;
3719
3720 case 5:
3721 coding->type = coding_type_raw_text;
3722 break;
3723
3724 default:
3725 goto label_invalid_coding_system;
3726 }
3727 return 0;
3728
3729 label_invalid_coding_system:
3730 coding->type = coding_type_no_conversion;
3731 coding->category_idx = CODING_CATEGORY_IDX_BINARY;
3732 coding->common_flags = 0;
3733 coding->eol_type = CODING_EOL_LF;
3734 coding->pre_write_conversion = coding->post_read_conversion = Qnil;
3735 return -1;
3736}
3737
3738/* Free memory blocks allocated for storing composition information. */
3739
3740void
3741coding_free_composition_data (coding)
3742 struct coding_system *coding;
3743{
3744 struct composition_data *cmp_data = coding->cmp_data, *next;
3745
3746 if (!cmp_data)
3747 return;
3748 /* Memory blocks are chained. At first, rewind to the first, then,
3749 free blocks one by one. */
3750 while (cmp_data->prev)
3751 cmp_data = cmp_data->prev;
3752 while (cmp_data)
3753 {
3754 next = cmp_data->next;
3755 xfree (cmp_data);
3756 cmp_data = next;
3757 }
3758 coding->cmp_data = NULL;
3759}
3760
3761/* Set `char_offset' member of all memory blocks pointed by
3762 coding->cmp_data to POS. */
3763
3764void
3765coding_adjust_composition_offset (coding, pos)
3766 struct coding_system *coding;
3767 int pos;
3768{
3769 struct composition_data *cmp_data;
3770
3771 for (cmp_data = coding->cmp_data; cmp_data; cmp_data = cmp_data->next)
3772 cmp_data->char_offset = pos;
3773}
3774
3775/* Setup raw-text or one of its subsidiaries in the structure
3776 coding_system CODING according to the already setup value eol_type
3777 in CODING. CODING should be setup for some coding system in
3778 advance. */
3779
3780void
3781setup_raw_text_coding_system (coding)
3782 struct coding_system *coding;
3783{
3784 if (coding->type != coding_type_raw_text)
3785 {
3786 coding->symbol = Qraw_text;
3787 coding->type = coding_type_raw_text;
3788 if (coding->eol_type != CODING_EOL_UNDECIDED)
3789 {
3790 Lisp_Object subsidiaries;
3791 subsidiaries = Fget (Qraw_text, Qeol_type);
3792
3793 if (VECTORP (subsidiaries)
3794 && XVECTOR (subsidiaries)->size == 3)
3795 coding->symbol
3796 = XVECTOR (subsidiaries)->contents[coding->eol_type];
3797 }
3798 setup_coding_system (coding->symbol, coding);
3799 }
3800 return;
3801}
3802
3803/* Emacs has a mechanism to automatically detect a coding system if it
3804 is one of Emacs' internal format, ISO2022, SJIS, and BIG5. But,
3805 it's impossible to distinguish some coding systems accurately
3806 because they use the same range of codes. So, at first, coding
3807 systems are categorized into 7, those are:
3808
3809 o coding-category-emacs-mule
3810
3811 The category for a coding system which has the same code range
3812 as Emacs' internal format. Assigned the coding-system (Lisp
3813 symbol) `emacs-mule' by default.
3814
3815 o coding-category-sjis
3816
3817 The category for a coding system which has the same code range
3818 as SJIS. Assigned the coding-system (Lisp
3819 symbol) `japanese-shift-jis' by default.
3820
3821 o coding-category-iso-7
3822
3823 The category for a coding system which has the same code range
3824 as ISO2022 of 7-bit environment. This doesn't use any locking
3825 shift and single shift functions. This can encode/decode all
3826 charsets. Assigned the coding-system (Lisp symbol)
3827 `iso-2022-7bit' by default.
3828
3829 o coding-category-iso-7-tight
3830
3831 Same as coding-category-iso-7 except that this can
3832 encode/decode only the specified charsets.
3833
3834 o coding-category-iso-8-1
3835
3836 The category for a coding system which has the same code range
3837 as ISO2022 of 8-bit environment and graphic plane 1 used only
3838 for DIMENSION1 charset. This doesn't use any locking shift
3839 and single shift functions. Assigned the coding-system (Lisp
3840 symbol) `iso-latin-1' by default.
3841
3842 o coding-category-iso-8-2
3843
3844 The category for a coding system which has the same code range
3845 as ISO2022 of 8-bit environment and graphic plane 1 used only
3846 for DIMENSION2 charset. This doesn't use any locking shift
3847 and single shift functions. Assigned the coding-system (Lisp
3848 symbol) `japanese-iso-8bit' by default.
3849
3850 o coding-category-iso-7-else
3851
3852 The category for a coding system which has the same code range
3853 as ISO2022 of 7-bit environment but uses locking shift or
3854 single shift functions. Assigned the coding-system (Lisp
3855 symbol) `iso-2022-7bit-lock' by default.
3856
3857 o coding-category-iso-8-else
3858
3859 The category for a coding system which has the same code range
3860 as ISO2022 of 8-bit environment but uses locking shift or
3861 single shift functions. Assigned the coding-system (Lisp
3862 symbol) `iso-2022-8bit-ss2' by default.
3863
3864 o coding-category-big5
3865
3866 The category for a coding system which has the same code range
3867 as BIG5. Assigned the coding-system (Lisp symbol)
3868 `cn-big5' by default.
3869
3870 o coding-category-utf-8
3871
3872 The category for a coding system which has the same code range
3873 as UTF-8 (cf. RFC2279). Assigned the coding-system (Lisp
3874 symbol) `utf-8' by default.
3875
3876 o coding-category-utf-16-be
3877
3878 The category for a coding system in which a text has an
3879 Unicode signature (cf. Unicode Standard) in the order of BIG
3880 endian at the head. Assigned the coding-system (Lisp symbol)
3881 `utf-16-be' by default.
3882
3883 o coding-category-utf-16-le
3884
3885 The category for a coding system in which a text has an
3886 Unicode signature (cf. Unicode Standard) in the order of
3887 LITTLE endian at the head. Assigned the coding-system (Lisp
3888 symbol) `utf-16-le' by default.
3889
3890 o coding-category-ccl
3891
3892 The category for a coding system of which encoder/decoder is
3893 written in CCL programs. The default value is nil, i.e., no
3894 coding system is assigned.
3895
3896 o coding-category-binary
3897
3898 The category for a coding system not categorized in any of the
3899 above. Assigned the coding-system (Lisp symbol)
3900 `no-conversion' by default.
3901
3902 Each of them is a Lisp symbol and the value is an actual
3903 `coding-system' (this is also a Lisp symbol) assigned by a user.
3904 What Emacs does actually is to detect a category of coding system.
3905 Then, it uses a `coding-system' assigned to it. If Emacs can't
3906 decide a single possible category, it selects a category of the
3907 highest priority. Priorities of categories are also specified by a
3908 user in a Lisp variable `coding-category-list'.
3909
3910*/
3911
3912static
3913int ascii_skip_code[256];
3914
3915/* Detect how a text of length SRC_BYTES pointed by SOURCE is encoded.
3916 If it detects possible coding systems, return an integer in which
3917 appropriate flag bits are set. Flag bits are defined by macros
3918 CODING_CATEGORY_MASK_XXX in `coding.h'. If PRIORITIES is non-NULL,
3919 it should point the table `coding_priorities'. In that case, only
3920 the flag bit for a coding system of the highest priority is set in
3921 the returned value. If MULTIBYTEP is nonzero, 8-bit codes of the
3922 range 0x80..0x9F are in multibyte form.
3923
3924 How many ASCII characters are at the head is returned as *SKIP. */
3925
3926static int
3927detect_coding_mask (source, src_bytes, priorities, skip, multibytep)
3928 unsigned char *source;
3929 int src_bytes, *priorities, *skip;
3930 int multibytep;
3931{
3932 register unsigned char c;
3933 unsigned char *src = source, *src_end = source + src_bytes;
3934 unsigned int mask, utf16_examined_p, iso2022_examined_p;
3935 int i;
3936
3937 /* At first, skip all ASCII characters and control characters except
3938 for three ISO2022 specific control characters. */
3939 ascii_skip_code[ISO_CODE_SO] = 0;
3940 ascii_skip_code[ISO_CODE_SI] = 0;
3941 ascii_skip_code[ISO_CODE_ESC] = 0;
3942
3943 label_loop_detect_coding:
3944 while (src < src_end && ascii_skip_code[*src]) src++;
3945 *skip = src - source;
3946
3947 if (src >= src_end)
3948 /* We found nothing other than ASCII. There's nothing to do. */
3949 return 0;
3950
3951 c = *src;
3952 /* The text seems to be encoded in some multilingual coding system.
3953 Now, try to find in which coding system the text is encoded. */
3954 if (c < 0x80)
3955 {
3956 /* i.e. (c == ISO_CODE_ESC || c == ISO_CODE_SI || c == ISO_CODE_SO) */
3957 /* C is an ISO2022 specific control code of C0. */
3958 mask = detect_coding_iso2022 (src, src_end, multibytep);
3959 if (mask == 0)
3960 {
3961 /* No valid ISO2022 code follows C. Try again. */
3962 src++;
3963 if (c == ISO_CODE_ESC)
3964 ascii_skip_code[ISO_CODE_ESC] = 1;
3965 else
3966 ascii_skip_code[ISO_CODE_SO] = ascii_skip_code[ISO_CODE_SI] = 1;
3967 goto label_loop_detect_coding;
3968 }
3969 if (priorities)
3970 {
3971 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
3972 {
3973 if (mask & priorities[i])
3974 return priorities[i];
3975 }
3976 return CODING_CATEGORY_MASK_RAW_TEXT;
3977 }
3978 }
3979 else
3980 {
3981 int try;
3982
3983 if (multibytep && c == LEADING_CODE_8_BIT_CONTROL)
3984 c = src[1] - 0x20;
3985
3986 if (c < 0xA0)
3987 {
3988 /* C is the first byte of SJIS character code,
3989 or a leading-code of Emacs' internal format (emacs-mule),
3990 or the first byte of UTF-16. */
3991 try = (CODING_CATEGORY_MASK_SJIS
3992 | CODING_CATEGORY_MASK_EMACS_MULE
3993 | CODING_CATEGORY_MASK_UTF_16_BE
3994 | CODING_CATEGORY_MASK_UTF_16_LE);
3995
3996 /* Or, if C is a special latin extra code,
3997 or is an ISO2022 specific control code of C1 (SS2 or SS3),
3998 or is an ISO2022 control-sequence-introducer (CSI),
3999 we should also consider the possibility of ISO2022 codings. */
4000 if ((VECTORP (Vlatin_extra_code_table)
4001 && !NILP (XVECTOR (Vlatin_extra_code_table)->contents[c]))
4002 || (c == ISO_CODE_SS2 || c == ISO_CODE_SS3)
4003 || (c == ISO_CODE_CSI
4004 && (src < src_end
4005 && (*src == ']'
4006 || ((*src == '0' || *src == '1' || *src == '2')
4007 && src + 1 < src_end
4008 && src[1] == ']')))))
4009 try |= (CODING_CATEGORY_MASK_ISO_8_ELSE
4010 | CODING_CATEGORY_MASK_ISO_8BIT);
4011 }
4012 else
4013 /* C is a character of ISO2022 in graphic plane right,
4014 or a SJIS's 1-byte character code (i.e. JISX0201),
4015 or the first byte of BIG5's 2-byte code,
4016 or the first byte of UTF-8/16. */
4017 try = (CODING_CATEGORY_MASK_ISO_8_ELSE
4018 | CODING_CATEGORY_MASK_ISO_8BIT
4019 | CODING_CATEGORY_MASK_SJIS
4020 | CODING_CATEGORY_MASK_BIG5
4021 | CODING_CATEGORY_MASK_UTF_8
4022 | CODING_CATEGORY_MASK_UTF_16_BE
4023 | CODING_CATEGORY_MASK_UTF_16_LE);
4024
4025 /* Or, we may have to consider the possibility of CCL. */
4026 if (coding_system_table[CODING_CATEGORY_IDX_CCL]
4027 && (coding_system_table[CODING_CATEGORY_IDX_CCL]
4028 ->spec.ccl.valid_codes)[c])
4029 try |= CODING_CATEGORY_MASK_CCL;
4030
4031 mask = 0;
4032 utf16_examined_p = iso2022_examined_p = 0;
4033 if (priorities)
4034 {
4035 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
4036 {
4037 if (!iso2022_examined_p
4038 && (priorities[i] & try & CODING_CATEGORY_MASK_ISO))
4039 {
4040 mask |= detect_coding_iso2022 (src, src_end);
4041 iso2022_examined_p = 1;
4042 }
4043 else if (priorities[i] & try & CODING_CATEGORY_MASK_SJIS)
4044 mask |= detect_coding_sjis (src, src_end, multibytep);
4045 else if (priorities[i] & try & CODING_CATEGORY_MASK_UTF_8)
4046 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4047 else if (!utf16_examined_p
4048 && (priorities[i] & try &
4049 CODING_CATEGORY_MASK_UTF_16_BE_LE))
4050 {
4051 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4052 utf16_examined_p = 1;
4053 }
4054 else if (priorities[i] & try & CODING_CATEGORY_MASK_BIG5)
4055 mask |= detect_coding_big5 (src, src_end, multibytep);
4056 else if (priorities[i] & try & CODING_CATEGORY_MASK_EMACS_MULE)
4057 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4058 else if (priorities[i] & try & CODING_CATEGORY_MASK_CCL)
4059 mask |= detect_coding_ccl (src, src_end, multibytep);
4060 else if (priorities[i] & CODING_CATEGORY_MASK_RAW_TEXT)
4061 mask |= CODING_CATEGORY_MASK_RAW_TEXT;
4062 else if (priorities[i] & CODING_CATEGORY_MASK_BINARY)
4063 mask |= CODING_CATEGORY_MASK_BINARY;
4064 if (mask & priorities[i])
4065 return priorities[i];
4066 }
4067 return CODING_CATEGORY_MASK_RAW_TEXT;
4068 }
4069 if (try & CODING_CATEGORY_MASK_ISO)
4070 mask |= detect_coding_iso2022 (src, src_end, multibytep);
4071 if (try & CODING_CATEGORY_MASK_SJIS)
4072 mask |= detect_coding_sjis (src, src_end, multibytep);
4073 if (try & CODING_CATEGORY_MASK_BIG5)
4074 mask |= detect_coding_big5 (src, src_end, multibytep);
4075 if (try & CODING_CATEGORY_MASK_UTF_8)
4076 mask |= detect_coding_utf_8 (src, src_end, multibytep);
4077 if (try & CODING_CATEGORY_MASK_UTF_16_BE_LE)
4078 mask |= detect_coding_utf_16 (src, src_end, multibytep);
4079 if (try & CODING_CATEGORY_MASK_EMACS_MULE)
4080 mask |= detect_coding_emacs_mule (src, src_end, multibytep);
4081 if (try & CODING_CATEGORY_MASK_CCL)
4082 mask |= detect_coding_ccl (src, src_end, multibytep);
4083 }
4084 return (mask | CODING_CATEGORY_MASK_RAW_TEXT | CODING_CATEGORY_MASK_BINARY);
4085}
4086
4087/* Detect how a text of length SRC_BYTES pointed by SRC is encoded.
4088 The information of the detected coding system is set in CODING. */
4089
4090void
4091detect_coding (coding, src, src_bytes)
4092 struct coding_system *coding;
4093 unsigned char *src;
4094 int src_bytes;
4095{
4096 unsigned int idx;
4097 int skip, mask;
4098 Lisp_Object val;
4099
4100 val = Vcoding_category_list;
4101 mask = detect_coding_mask (src, src_bytes, coding_priorities, &skip,
4102 coding->src_multibyte);
4103 coding->heading_ascii = skip;
4104
4105 if (!mask) return;
4106
4107 /* We found a single coding system of the highest priority in MASK. */
4108 idx = 0;
4109 while (mask && ! (mask & 1)) mask >>= 1, idx++;
4110 if (! mask)
4111 idx = CODING_CATEGORY_IDX_RAW_TEXT;
4112
4113 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[idx]);
4114
4115 if (coding->eol_type != CODING_EOL_UNDECIDED)
4116 {
4117 Lisp_Object tmp;
4118
4119 tmp = Fget (val, Qeol_type);
4120 if (VECTORP (tmp))
4121 val = XVECTOR (tmp)->contents[coding->eol_type];
4122 }
4123
4124 /* Setup this new coding system while preserving some slots. */
4125 {
4126 int src_multibyte = coding->src_multibyte;
4127 int dst_multibyte = coding->dst_multibyte;
4128
4129 setup_coding_system (val, coding);
4130 coding->src_multibyte = src_multibyte;
4131 coding->dst_multibyte = dst_multibyte;
4132 coding->heading_ascii = skip;
4133 }
4134}
4135
4136/* Detect how end-of-line of a text of length SRC_BYTES pointed by
4137 SOURCE is encoded. Return one of CODING_EOL_LF, CODING_EOL_CRLF,
4138 CODING_EOL_CR, and CODING_EOL_UNDECIDED.
4139
4140 How many non-eol characters are at the head is returned as *SKIP. */
4141
4142#define MAX_EOL_CHECK_COUNT 3
4143
4144static int
4145detect_eol_type (source, src_bytes, skip)
4146 unsigned char *source;
4147 int src_bytes, *skip;
4148{
4149 unsigned char *src = source, *src_end = src + src_bytes;
4150 unsigned char c;
4151 int total = 0; /* How many end-of-lines are found so far. */
4152 int eol_type = CODING_EOL_UNDECIDED;
4153 int this_eol_type;
4154
4155 *skip = 0;
4156
4157 while (src < src_end && total < MAX_EOL_CHECK_COUNT)
4158 {
4159 c = *src++;
4160 if (c == '\n' || c == '\r')
4161 {
4162 if (*skip == 0)
4163 *skip = src - 1 - source;
4164 total++;
4165 if (c == '\n')
4166 this_eol_type = CODING_EOL_LF;
4167 else if (src >= src_end || *src != '\n')
4168 this_eol_type = CODING_EOL_CR;
4169 else
4170 this_eol_type = CODING_EOL_CRLF, src++;
4171
4172 if (eol_type == CODING_EOL_UNDECIDED)
4173 /* This is the first end-of-line. */
4174 eol_type = this_eol_type;
4175 else if (eol_type != this_eol_type)
4176 {
4177 /* The found type is different from what found before. */
4178 eol_type = CODING_EOL_INCONSISTENT;
4179 break;
4180 }
4181 }
4182 }
4183
4184 if (*skip == 0)
4185 *skip = src_end - source;
4186 return eol_type;
4187}
4188
4189/* Like detect_eol_type, but detect EOL type in 2-octet
4190 big-endian/little-endian format for coding systems utf-16-be and
4191 utf-16-le. */
4192
4193static int
4194detect_eol_type_in_2_octet_form (source, src_bytes, skip, big_endian_p)
4195 unsigned char *source;
4196 int src_bytes, *skip, big_endian_p;
4197{
4198 unsigned char *src = source, *src_end = src + src_bytes;
4199 unsigned int c1, c2;
4200 int total = 0; /* How many end-of-lines are found so far. */
4201 int eol_type = CODING_EOL_UNDECIDED;
4202 int this_eol_type;
4203 int msb, lsb;
4204
4205 if (big_endian_p)
4206 msb = 0, lsb = 1;
4207 else
4208 msb = 1, lsb = 0;
4209
4210 *skip = 0;
4211
4212 while ((src + 1) < src_end && total < MAX_EOL_CHECK_COUNT)
4213 {
4214 c1 = (src[msb] << 8) | (src[lsb]);
4215 src += 2;
4216
4217 if (c1 == '\n' || c1 == '\r')
4218 {
4219 if (*skip == 0)
4220 *skip = src - 2 - source;
4221 total++;
4222 if (c1 == '\n')
4223 {
4224 this_eol_type = CODING_EOL_LF;
4225 }
4226 else
4227 {
4228 if ((src + 1) >= src_end)
4229 {
4230 this_eol_type = CODING_EOL_CR;
4231 }
4232 else
4233 {
4234 c2 = (src[msb] << 8) | (src[lsb]);
4235 if (c2 == '\n')
4236 this_eol_type = CODING_EOL_CRLF, src += 2;
4237 else
4238 this_eol_type = CODING_EOL_CR;
4239 }
4240 }
4241
4242 if (eol_type == CODING_EOL_UNDECIDED)
4243 /* This is the first end-of-line. */
4244 eol_type = this_eol_type;
4245 else if (eol_type != this_eol_type)
4246 {
4247 /* The found type is different from what found before. */
4248 eol_type = CODING_EOL_INCONSISTENT;
4249 break;
4250 }
4251 }
4252 }
4253
4254 if (*skip == 0)
4255 *skip = src_end - source;
4256 return eol_type;
4257}
4258
4259/* Detect how end-of-line of a text of length SRC_BYTES pointed by SRC
4260 is encoded. If it detects an appropriate format of end-of-line, it
4261 sets the information in *CODING. */
4262
4263void
4264detect_eol (coding, src, src_bytes)
4265 struct coding_system *coding;
4266 unsigned char *src;
4267 int src_bytes;
4268{
4269 Lisp_Object val;
4270 int skip;
4271 int eol_type;
4272
4273 switch (coding->category_idx)
4274 {
4275 case CODING_CATEGORY_IDX_UTF_16_BE:
4276 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 1);
4277 break;
4278 case CODING_CATEGORY_IDX_UTF_16_LE:
4279 eol_type = detect_eol_type_in_2_octet_form (src, src_bytes, &skip, 0);
4280 break;
4281 default:
4282 eol_type = detect_eol_type (src, src_bytes, &skip);
4283 break;
4284 }
4285
4286 if (coding->heading_ascii > skip)
4287 coding->heading_ascii = skip;
4288 else
4289 skip = coding->heading_ascii;
4290
4291 if (eol_type == CODING_EOL_UNDECIDED)
4292 return;
4293 if (eol_type == CODING_EOL_INCONSISTENT)
4294 {
4295#if 0
4296 /* This code is suppressed until we find a better way to
4297 distinguish raw text file and binary file. */
4298
4299 /* If we have already detected that the coding is raw-text, the
4300 coding should actually be no-conversion. */
4301 if (coding->type == coding_type_raw_text)
4302 {
4303 setup_coding_system (Qno_conversion, coding);
4304 return;
4305 }
4306 /* Else, let's decode only text code anyway. */
4307#endif /* 0 */
4308 eol_type = CODING_EOL_LF;
4309 }
4310
4311 val = Fget (coding->symbol, Qeol_type);
4312 if (VECTORP (val) && XVECTOR (val)->size == 3)
4313 {
4314 int src_multibyte = coding->src_multibyte;
4315 int dst_multibyte = coding->dst_multibyte;
4316
4317 setup_coding_system (XVECTOR (val)->contents[eol_type], coding);
4318 coding->src_multibyte = src_multibyte;
4319 coding->dst_multibyte = dst_multibyte;
4320 coding->heading_ascii = skip;
4321 }
4322}
4323
4324#define CONVERSION_BUFFER_EXTRA_ROOM 256
4325
4326#define DECODING_BUFFER_MAG(coding) \
4327 (coding->type == coding_type_iso2022 \
4328 ? 3 \
4329 : (coding->type == coding_type_ccl \
4330 ? coding->spec.ccl.decoder.buf_magnification \
4331 : 2))
4332
4333/* Return maximum size (bytes) of a buffer enough for decoding
4334 SRC_BYTES of text encoded in CODING. */
4335
4336int
4337decoding_buffer_size (coding, src_bytes)
4338 struct coding_system *coding;
4339 int src_bytes;
4340{
4341 return (src_bytes * DECODING_BUFFER_MAG (coding)
4342 + CONVERSION_BUFFER_EXTRA_ROOM);
4343}
4344
4345/* Return maximum size (bytes) of a buffer enough for encoding
4346 SRC_BYTES of text to CODING. */
4347
4348int
4349encoding_buffer_size (coding, src_bytes)
4350 struct coding_system *coding;
4351 int src_bytes;
4352{
4353 int magnification;
4354
4355 if (coding->type == coding_type_ccl)
4356 magnification = coding->spec.ccl.encoder.buf_magnification;
4357 else if (CODING_REQUIRE_ENCODING (coding))
4358 magnification = 3;
4359 else
4360 magnification = 1;
4361
4362 return (src_bytes * magnification + CONVERSION_BUFFER_EXTRA_ROOM);
4363}
4364
4365/* Working buffer for code conversion. */
4366struct conversion_buffer
4367{
4368 int size; /* size of data. */
4369 int on_stack; /* 1 if allocated by alloca. */
4370 unsigned char *data;
4371};
4372
4373/* Don't use alloca for allocating memory space larger than this, lest
4374 we overflow their stack. */
4375#define MAX_ALLOCA 16*1024
4376
4377/* Allocate LEN bytes of memory for BUF (struct conversion_buffer). */
4378#define allocate_conversion_buffer(buf, len) \
4379 do { \
4380 if (len < MAX_ALLOCA) \
4381 { \
4382 buf.data = (unsigned char *) alloca (len); \
4383 buf.on_stack = 1; \
4384 } \
4385 else \
4386 { \
4387 buf.data = (unsigned char *) xmalloc (len); \
4388 buf.on_stack = 0; \
4389 } \
4390 buf.size = len; \
4391 } while (0)
4392
4393/* Double the allocated memory for *BUF. */
4394static void
4395extend_conversion_buffer (buf)
4396 struct conversion_buffer *buf;
4397{
4398 if (buf->on_stack)
4399 {
4400 unsigned char *save = buf->data;
4401 buf->data = (unsigned char *) xmalloc (buf->size * 2);
4402 bcopy (save, buf->data, buf->size);
4403 buf->on_stack = 0;
4404 }
4405 else
4406 {
4407 buf->data = (unsigned char *) xrealloc (buf->data, buf->size * 2);
4408 }
4409 buf->size *= 2;
4410}
4411
4412/* Free the allocated memory for BUF if it is not on stack. */
4413static void
4414free_conversion_buffer (buf)
4415 struct conversion_buffer *buf;
4416{
4417 if (!buf->on_stack)
4418 xfree (buf->data);
4419}
4420
4421int
4422ccl_coding_driver (coding, source, destination, src_bytes, dst_bytes, encodep)
4423 struct coding_system *coding;
4424 unsigned char *source, *destination;
4425 int src_bytes, dst_bytes, encodep;
4426{
4427 struct ccl_program *ccl
4428 = encodep ? &coding->spec.ccl.encoder : &coding->spec.ccl.decoder;
4429 unsigned char *dst = destination;
4430
4431 ccl->suppress_error = coding->suppress_error;
4432 ccl->last_block = coding->mode & CODING_MODE_LAST_BLOCK;
4433 if (encodep)
4434 {
4435 /* On encoding, EOL format is converted within ccl_driver. For
4436 that, setup proper information in the structure CCL. */
4437 ccl->eol_type = coding->eol_type;
4438 if (ccl->eol_type ==CODING_EOL_UNDECIDED)
4439 ccl->eol_type = CODING_EOL_LF;
4440 ccl->cr_consumed = coding->spec.ccl.cr_carryover;
4441 }
4442 ccl->multibyte = coding->src_multibyte;
4443 if (coding->spec.ccl.eight_bit_carryover[0] != 0)
4444 {
4445 /* Move carryover bytes to DESTINATION. */
4446 unsigned char *p = coding->spec.ccl.eight_bit_carryover;
4447 while (*p)
4448 *dst++ = *p++;
4449 coding->spec.ccl.eight_bit_carryover[0] = 0;
4450 if (dst_bytes)
4451 dst_bytes -= dst - destination;
4452 }
4453
4454 coding->produced = (ccl_driver (ccl, source, dst, src_bytes, dst_bytes,
4455 &(coding->consumed))
4456 + dst - destination);
4457
4458 if (encodep)
4459 {
4460 coding->produced_char = coding->produced;
4461 coding->spec.ccl.cr_carryover = ccl->cr_consumed;
4462 }
4463 else if (!ccl->eight_bit_control)
4464 {
4465 /* The produced bytes forms a valid multibyte sequence. */
4466 coding->produced_char
4467 = multibyte_chars_in_text (destination, coding->produced);
4468 coding->spec.ccl.eight_bit_carryover[0] = 0;
4469 }
4470 else
4471 {
4472 /* On decoding, the destination should always multibyte. But,
4473 CCL program might have been generated an invalid multibyte
4474 sequence. Here we make such a sequence valid as
4475 multibyte. */
4476 int bytes
4477 = dst_bytes ? dst_bytes : source + coding->consumed - destination;
4478
4479 if ((coding->consumed < src_bytes
4480 || !ccl->last_block)
4481 && coding->produced >= 1
4482 && destination[coding->produced - 1] >= 0x80)
4483 {
4484 /* We should not convert the tailing 8-bit codes to
4485 multibyte form even if they doesn't form a valid
4486 multibyte sequence. They may form a valid sequence in
4487 the next call. */
4488 int carryover = 0;
4489
4490 if (destination[coding->produced - 1] < 0xA0)
4491 carryover = 1;
4492 else if (coding->produced >= 2)
4493 {
4494 if (destination[coding->produced - 2] >= 0x80)
4495 {
4496 if (destination[coding->produced - 2] < 0xA0)
4497 carryover = 2;
4498 else if (coding->produced >= 3
4499 && destination[coding->produced - 3] >= 0x80
4500 && destination[coding->produced - 3] < 0xA0)
4501 carryover = 3;
4502 }
4503 }
4504 if (carryover > 0)
4505 {
4506 BCOPY_SHORT (destination + coding->produced - carryover,
4507 coding->spec.ccl.eight_bit_carryover,
4508 carryover);
4509 coding->spec.ccl.eight_bit_carryover[carryover] = 0;
4510 coding->produced -= carryover;
4511 }
4512 }
4513 coding->produced = str_as_multibyte (destination, bytes,
4514 coding->produced,
4515 &(coding->produced_char));
4516 }
4517
4518 switch (ccl->status)
4519 {
4520 case CCL_STAT_SUSPEND_BY_SRC:
4521 coding->result = CODING_FINISH_INSUFFICIENT_SRC;
4522 break;
4523 case CCL_STAT_SUSPEND_BY_DST:
4524 coding->result = CODING_FINISH_INSUFFICIENT_DST;
4525 break;
4526 case CCL_STAT_QUIT:
4527 case CCL_STAT_INVALID_CMD:
4528 coding->result = CODING_FINISH_INTERRUPT;
4529 break;
4530 default:
4531 coding->result = CODING_FINISH_NORMAL;
4532 break;
4533 }
4534 return coding->result;
4535}
4536
4537/* Decode EOL format of the text at PTR of BYTES length destructively
4538 according to CODING->eol_type. This is called after the CCL
4539 program produced a decoded text at PTR. If we do CRLF->LF
4540 conversion, update CODING->produced and CODING->produced_char. */
4541
4542static void
4543decode_eol_post_ccl (coding, ptr, bytes)
4544 struct coding_system *coding;
4545 unsigned char *ptr;
4546 int bytes;
4547{
4548 Lisp_Object val, saved_coding_symbol;
4549 unsigned char *pend = ptr + bytes;
4550 int dummy;
4551
4552 /* Remember the current coding system symbol. We set it back when
4553 an inconsistent EOL is found so that `last-coding-system-used' is
4554 set to the coding system that doesn't specify EOL conversion. */
4555 saved_coding_symbol = coding->symbol;
4556
4557 coding->spec.ccl.cr_carryover = 0;
4558 if (coding->eol_type == CODING_EOL_UNDECIDED)
4559 {
4560 /* Here, to avoid the call of setup_coding_system, we directly
4561 call detect_eol_type. */
4562 coding->eol_type = detect_eol_type (ptr, bytes, &dummy);
4563 if (coding->eol_type == CODING_EOL_INCONSISTENT)
4564 coding->eol_type = CODING_EOL_LF;
4565 if (coding->eol_type != CODING_EOL_UNDECIDED)
4566 {
4567 val = Fget (coding->symbol, Qeol_type);
4568 if (VECTORP (val) && XVECTOR (val)->size == 3)
4569 coding->symbol = XVECTOR (val)->contents[coding->eol_type];
4570 }
4571 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4572 }
4573
4574 if (coding->eol_type == CODING_EOL_LF
4575 || coding->eol_type == CODING_EOL_UNDECIDED)
4576 {
4577 /* We have nothing to do. */
4578 ptr = pend;
4579 }
4580 else if (coding->eol_type == CODING_EOL_CRLF)
4581 {
4582 unsigned char *pstart = ptr, *p = ptr;
4583
4584 if (! (coding->mode & CODING_MODE_LAST_BLOCK)
4585 && *(pend - 1) == '\r')
4586 {
4587 /* If the last character is CR, we can't handle it here
4588 because LF will be in the not-yet-decoded source text.
4589 Recorded that the CR is not yet processed. */
4590 coding->spec.ccl.cr_carryover = 1;
4591 coding->produced--;
4592 coding->produced_char--;
4593 pend--;
4594 }
4595 while (ptr < pend)
4596 {
4597 if (*ptr == '\r')
4598 {
4599 if (ptr + 1 < pend && *(ptr + 1) == '\n')
4600 {
4601 *p++ = '\n';
4602 ptr += 2;
4603 }
4604 else
4605 {
4606 if (coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4607 goto undo_eol_conversion;
4608 *p++ = *ptr++;
4609 }
4610 }
4611 else if (*ptr == '\n'
4612 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4613 goto undo_eol_conversion;
4614 else
4615 *p++ = *ptr++;
4616 continue;
4617
4618 undo_eol_conversion:
4619 /* We have faced with inconsistent EOL format at PTR.
4620 Convert all LFs before PTR back to CRLFs. */
4621 for (p--, ptr--; p >= pstart; p--)
4622 {
4623 if (*p == '\n')
4624 *ptr-- = '\n', *ptr-- = '\r';
4625 else
4626 *ptr-- = *p;
4627 }
4628 /* If carryover is recorded, cancel it because we don't
4629 convert CRLF anymore. */
4630 if (coding->spec.ccl.cr_carryover)
4631 {
4632 coding->spec.ccl.cr_carryover = 0;
4633 coding->produced++;
4634 coding->produced_char++;
4635 pend++;
4636 }
4637 p = ptr = pend;
4638 coding->eol_type = CODING_EOL_LF;
4639 coding->symbol = saved_coding_symbol;
4640 }
4641 if (p < pend)
4642 {
4643 /* As each two-byte sequence CRLF was converted to LF, (PEND
4644 - P) is the number of deleted characters. */
4645 coding->produced -= pend - p;
4646 coding->produced_char -= pend - p;
4647 }
4648 }
4649 else /* i.e. coding->eol_type == CODING_EOL_CR */
4650 {
4651 unsigned char *p = ptr;
4652
4653 for (; ptr < pend; ptr++)
4654 {
4655 if (*ptr == '\r')
4656 *ptr = '\n';
4657 else if (*ptr == '\n'
4658 && coding->mode & CODING_MODE_INHIBIT_INCONSISTENT_EOL)
4659 {
4660 for (; p < ptr; p++)
4661 {
4662 if (*p == '\n')
4663 *p = '\r';
4664 }
4665 ptr = pend;
4666 coding->eol_type = CODING_EOL_LF;
4667 coding->symbol = saved_coding_symbol;
4668 }
4669 }
4670 }
4671}
4672
4673/* See "GENERAL NOTES about `decode_coding_XXX ()' functions". Before
4674 decoding, it may detect coding system and format of end-of-line if
4675 those are not yet decided. The source should be unibyte, the
4676 result is multibyte if CODING->dst_multibyte is nonzero, else
4677 unibyte. */
4678
4679int
4680decode_coding (coding, source, destination, src_bytes, dst_bytes)
4681 struct coding_system *coding;
4682 unsigned char *source, *destination;
4683 int src_bytes, dst_bytes;
4684{
4685 if (coding->type == coding_type_undecided)
4686 detect_coding (coding, source, src_bytes);
4687
4688 if (coding->eol_type == CODING_EOL_UNDECIDED
4689 && coding->type != coding_type_ccl)
4690 {
4691 detect_eol (coding, source, src_bytes);
4692 /* We had better recover the original eol format if we
4693 encounter an inconsistent eol format while decoding. */
4694 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
4695 }
4696
4697 coding->produced = coding->produced_char = 0;
4698 coding->consumed = coding->consumed_char = 0;
4699 coding->errors = 0;
4700 coding->result = CODING_FINISH_NORMAL;
4701
4702 switch (coding->type)
4703 {
4704 case coding_type_sjis:
4705 decode_coding_sjis_big5 (coding, source, destination,
4706 src_bytes, dst_bytes, 1);
4707 break;
4708
4709 case coding_type_iso2022:
4710 decode_coding_iso2022 (coding, source, destination,
4711 src_bytes, dst_bytes);
4712 break;
4713
4714 case coding_type_big5:
4715 decode_coding_sjis_big5 (coding, source, destination,
4716 src_bytes, dst_bytes, 0);
4717 break;
4718
4719 case coding_type_emacs_mule:
4720 decode_coding_emacs_mule (coding, source, destination,
4721 src_bytes, dst_bytes);
4722 break;
4723
4724 case coding_type_ccl:
4725 if (coding->spec.ccl.cr_carryover)
4726 {
4727 /* Set the CR which is not processed by the previous call of
4728 decode_eol_post_ccl in DESTINATION. */
4729 *destination = '\r';
4730 coding->produced++;
4731 coding->produced_char++;
4732 dst_bytes--;
4733 }
4734 ccl_coding_driver (coding, source,
4735 destination + coding->spec.ccl.cr_carryover,
4736 src_bytes, dst_bytes, 0);
4737 if (coding->eol_type != CODING_EOL_LF)
4738 decode_eol_post_ccl (coding, destination, coding->produced);
4739 break;
4740
4741 default:
4742 decode_eol (coding, source, destination, src_bytes, dst_bytes);
4743 }
4744
4745 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4746 && coding->mode & CODING_MODE_LAST_BLOCK
4747 && coding->consumed == src_bytes)
4748 coding->result = CODING_FINISH_NORMAL;
4749
4750 if (coding->mode & CODING_MODE_LAST_BLOCK
4751 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4752 {
4753 unsigned char *src = source + coding->consumed;
4754 unsigned char *dst = destination + coding->produced;
4755
4756 src_bytes -= coding->consumed;
4757 coding->errors++;
4758 if (COMPOSING_P (coding))
4759 DECODE_COMPOSITION_END ('1');
4760 while (src_bytes--)
4761 {
4762 int c = *src++;
4763 dst += CHAR_STRING (c, dst);
4764 coding->produced_char++;
4765 }
4766 coding->consumed = coding->consumed_char = src - source;
4767 coding->produced = dst - destination;
4768 coding->result = CODING_FINISH_NORMAL;
4769 }
4770
4771 if (!coding->dst_multibyte)
4772 {
4773 coding->produced = str_as_unibyte (destination, coding->produced);
4774 coding->produced_char = coding->produced;
4775 }
4776
4777 return coding->result;
4778}
4779
4780/* See "GENERAL NOTES about `encode_coding_XXX ()' functions". The
4781 multibyteness of the source is CODING->src_multibyte, the
4782 multibyteness of the result is always unibyte. */
4783
4784int
4785encode_coding (coding, source, destination, src_bytes, dst_bytes)
4786 struct coding_system *coding;
4787 unsigned char *source, *destination;
4788 int src_bytes, dst_bytes;
4789{
4790 coding->produced = coding->produced_char = 0;
4791 coding->consumed = coding->consumed_char = 0;
4792 coding->errors = 0;
4793 coding->result = CODING_FINISH_NORMAL;
4794
4795 switch (coding->type)
4796 {
4797 case coding_type_sjis:
4798 encode_coding_sjis_big5 (coding, source, destination,
4799 src_bytes, dst_bytes, 1);
4800 break;
4801
4802 case coding_type_iso2022:
4803 encode_coding_iso2022 (coding, source, destination,
4804 src_bytes, dst_bytes);
4805 break;
4806
4807 case coding_type_big5:
4808 encode_coding_sjis_big5 (coding, source, destination,
4809 src_bytes, dst_bytes, 0);
4810 break;
4811
4812 case coding_type_emacs_mule:
4813 encode_coding_emacs_mule (coding, source, destination,
4814 src_bytes, dst_bytes);
4815 break;
4816
4817 case coding_type_ccl:
4818 ccl_coding_driver (coding, source, destination,
4819 src_bytes, dst_bytes, 1);
4820 break;
4821
4822 default:
4823 encode_eol (coding, source, destination, src_bytes, dst_bytes);
4824 }
4825
4826 if (coding->mode & CODING_MODE_LAST_BLOCK
4827 && coding->result == CODING_FINISH_INSUFFICIENT_SRC)
4828 {
4829 unsigned char *src = source + coding->consumed;
4830 unsigned char *dst = destination + coding->produced;
4831
4832 if (coding->type == coding_type_iso2022)
4833 ENCODE_RESET_PLANE_AND_REGISTER;
4834 if (COMPOSING_P (coding))
4835 *dst++ = ISO_CODE_ESC, *dst++ = '1';
4836 if (coding->consumed < src_bytes)
4837 {
4838 int len = src_bytes - coding->consumed;
4839
4840 BCOPY_SHORT (src, dst, len);
4841 if (coding->src_multibyte)
4842 len = str_as_unibyte (dst, len);
4843 dst += len;
4844 coding->consumed = src_bytes;
4845 }
4846 coding->produced = coding->produced_char = dst - destination;
4847 coding->result = CODING_FINISH_NORMAL;
4848 }
4849
4850 if (coding->result == CODING_FINISH_INSUFFICIENT_SRC
4851 && coding->consumed == src_bytes)
4852 coding->result = CODING_FINISH_NORMAL;
4853
4854 return coding->result;
4855}
4856
4857/* Scan text in the region between *BEG and *END (byte positions),
4858 skip characters which we don't have to decode by coding system
4859 CODING at the head and tail, then set *BEG and *END to the region
4860 of the text we actually have to convert. The caller should move
4861 the gap out of the region in advance if the region is from a
4862 buffer.
4863
4864 If STR is not NULL, *BEG and *END are indices into STR. */
4865
4866static void
4867shrink_decoding_region (beg, end, coding, str)
4868 int *beg, *end;
4869 struct coding_system *coding;
4870 unsigned char *str;
4871{
4872 unsigned char *begp_orig, *begp, *endp_orig, *endp, c;
4873 int eol_conversion;
4874 Lisp_Object translation_table;
4875
4876 if (coding->type == coding_type_ccl
4877 || coding->type == coding_type_undecided
4878 || coding->eol_type != CODING_EOL_LF
4879 || !NILP (coding->post_read_conversion)
4880 || coding->composing != COMPOSITION_DISABLED)
4881 {
4882 /* We can't skip any data. */
4883 return;
4884 }
4885 if (coding->type == coding_type_no_conversion
4886 || coding->type == coding_type_raw_text
4887 || coding->type == coding_type_emacs_mule)
4888 {
4889 /* We need no conversion, but don't have to skip any data here.
4890 Decoding routine handles them effectively anyway. */
4891 return;
4892 }
4893
4894 translation_table = coding->translation_table_for_decode;
4895 if (NILP (translation_table) && !NILP (Venable_character_translation))
4896 translation_table = Vstandard_translation_table_for_decode;
4897 if (CHAR_TABLE_P (translation_table))
4898 {
4899 int i;
4900 for (i = 0; i < 128; i++)
4901 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
4902 break;
4903 if (i < 128)
4904 /* Some ASCII character should be translated. We give up
4905 shrinking. */
4906 return;
4907 }
4908
4909 if (coding->heading_ascii >= 0)
4910 /* Detection routine has already found how much we can skip at the
4911 head. */
4912 *beg += coding->heading_ascii;
4913
4914 if (str)
4915 {
4916 begp_orig = begp = str + *beg;
4917 endp_orig = endp = str + *end;
4918 }
4919 else
4920 {
4921 begp_orig = begp = BYTE_POS_ADDR (*beg);
4922 endp_orig = endp = begp + *end - *beg;
4923 }
4924
4925 eol_conversion = (coding->eol_type == CODING_EOL_CR
4926 || coding->eol_type == CODING_EOL_CRLF);
4927
4928 switch (coding->type)
4929 {
4930 case coding_type_sjis:
4931 case coding_type_big5:
4932 /* We can skip all ASCII characters at the head. */
4933 if (coding->heading_ascii < 0)
4934 {
4935 if (eol_conversion)
4936 while (begp < endp && *begp < 0x80 && *begp != '\r') begp++;
4937 else
4938 while (begp < endp && *begp < 0x80) begp++;
4939 }
4940 /* We can skip all ASCII characters at the tail except for the
4941 second byte of SJIS or BIG5 code. */
4942 if (eol_conversion)
4943 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\r') endp--;
4944 else
4945 while (begp < endp && endp[-1] < 0x80) endp--;
4946 /* Do not consider LF as ascii if preceded by CR, since that
4947 confuses eol decoding. */
4948 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4949 endp++;
4950 if (begp < endp && endp < endp_orig && endp[-1] >= 0x80)
4951 endp++;
4952 break;
4953
4954 case coding_type_iso2022:
4955 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
4956 /* We can't skip any data. */
4957 break;
4958 if (coding->heading_ascii < 0)
4959 {
4960 /* We can skip all ASCII characters at the head except for a
4961 few control codes. */
4962 while (begp < endp && (c = *begp) < 0x80
4963 && c != ISO_CODE_CR && c != ISO_CODE_SO
4964 && c != ISO_CODE_SI && c != ISO_CODE_ESC
4965 && (!eol_conversion || c != ISO_CODE_LF))
4966 begp++;
4967 }
4968 switch (coding->category_idx)
4969 {
4970 case CODING_CATEGORY_IDX_ISO_8_1:
4971 case CODING_CATEGORY_IDX_ISO_8_2:
4972 /* We can skip all ASCII characters at the tail. */
4973 if (eol_conversion)
4974 while (begp < endp && (c = endp[-1]) < 0x80 && c != '\r') endp--;
4975 else
4976 while (begp < endp && endp[-1] < 0x80) endp--;
4977 /* Do not consider LF as ascii if preceded by CR, since that
4978 confuses eol decoding. */
4979 if (begp < endp && endp < endp_orig && endp[-1] == '\r' && endp[0] == '\n')
4980 endp++;
4981 break;
4982
4983 case CODING_CATEGORY_IDX_ISO_7:
4984 case CODING_CATEGORY_IDX_ISO_7_TIGHT:
4985 {
4986 /* We can skip all characters at the tail except for 8-bit
4987 codes and ESC and the following 2-byte at the tail. */
4988 unsigned char *eight_bit = NULL;
4989
4990 if (eol_conversion)
4991 while (begp < endp
4992 && (c = endp[-1]) != ISO_CODE_ESC && c != '\r')
4993 {
4994 if (!eight_bit && c & 0x80) eight_bit = endp;
4995 endp--;
4996 }
4997 else
4998 while (begp < endp
4999 && (c = endp[-1]) != ISO_CODE_ESC)
5000 {
5001 if (!eight_bit && c & 0x80) eight_bit = endp;
5002 endp--;
5003 }
5004 /* Do not consider LF as ascii if preceded by CR, since that
5005 confuses eol decoding. */
5006 if (begp < endp && endp < endp_orig
5007 && endp[-1] == '\r' && endp[0] == '\n')
5008 endp++;
5009 if (begp < endp && endp[-1] == ISO_CODE_ESC)
5010 {
5011 if (endp + 1 < endp_orig && end[0] == '(' && end[1] == 'B')
5012 /* This is an ASCII designation sequence. We can
5013 surely skip the tail. But, if we have
5014 encountered an 8-bit code, skip only the codes
5015 after that. */
5016 endp = eight_bit ? eight_bit : endp + 2;
5017 else
5018 /* Hmmm, we can't skip the tail. */
5019 endp = endp_orig;
5020 }
5021 else if (eight_bit)
5022 endp = eight_bit;
5023 }
5024 }
5025 break;
5026
5027 default:
5028 abort ();
5029 }
5030 *beg += begp - begp_orig;
5031 *end += endp - endp_orig;
5032 return;
5033}
5034
5035/* Like shrink_decoding_region but for encoding. */
5036
5037static void
5038shrink_encoding_region (beg, end, coding, str)
5039 int *beg, *end;
5040 struct coding_system *coding;
5041 unsigned char *str;
5042{
5043 unsigned char *begp_orig, *begp, *endp_orig, *endp;
5044 int eol_conversion;
5045 Lisp_Object translation_table;
5046
5047 if (coding->type == coding_type_ccl
5048 || coding->eol_type == CODING_EOL_CRLF
5049 || coding->eol_type == CODING_EOL_CR
5050 || coding->cmp_data && coding->cmp_data->used > 0)
5051 {
5052 /* We can't skip any data. */
5053 return;
5054 }
5055 if (coding->type == coding_type_no_conversion
5056 || coding->type == coding_type_raw_text
5057 || coding->type == coding_type_emacs_mule
5058 || coding->type == coding_type_undecided)
5059 {
5060 /* We need no conversion, but don't have to skip any data here.
5061 Encoding routine handles them effectively anyway. */
5062 return;
5063 }
5064
5065 translation_table = coding->translation_table_for_encode;
5066 if (NILP (translation_table) && !NILP (Venable_character_translation))
5067 translation_table = Vstandard_translation_table_for_encode;
5068 if (CHAR_TABLE_P (translation_table))
5069 {
5070 int i;
5071 for (i = 0; i < 128; i++)
5072 if (!NILP (CHAR_TABLE_REF (translation_table, i)))
5073 break;
5074 if (i < 128)
5075 /* Some ASCII character should be translated. We give up
5076 shrinking. */
5077 return;
5078 }
5079
5080 if (str)
5081 {
5082 begp_orig = begp = str + *beg;
5083 endp_orig = endp = str + *end;
5084 }
5085 else
5086 {
5087 begp_orig = begp = BYTE_POS_ADDR (*beg);
5088 endp_orig = endp = begp + *end - *beg;
5089 }
5090
5091 eol_conversion = (coding->eol_type == CODING_EOL_CR
5092 || coding->eol_type == CODING_EOL_CRLF);
5093
5094 /* Here, we don't have to check coding->pre_write_conversion because
5095 the caller is expected to have handled it already. */
5096 switch (coding->type)
5097 {
5098 case coding_type_iso2022:
5099 if (CODING_SPEC_ISO_INITIAL_DESIGNATION (coding, 0) != CHARSET_ASCII)
5100 /* We can't skip any data. */
5101 break;
5102 if (coding->flags & CODING_FLAG_ISO_DESIGNATE_AT_BOL)
5103 {
5104 unsigned char *bol = begp;
5105 while (begp < endp && *begp < 0x80)
5106 {
5107 begp++;
5108 if (begp[-1] == '\n')
5109 bol = begp;
5110 }
5111 begp = bol;
5112 goto label_skip_tail;
5113 }
5114 /* fall down ... */
5115
5116 case coding_type_sjis:
5117 case coding_type_big5:
5118 /* We can skip all ASCII characters at the head and tail. */
5119 if (eol_conversion)
5120 while (begp < endp && *begp < 0x80 && *begp != '\n') begp++;
5121 else
5122 while (begp < endp && *begp < 0x80) begp++;
5123 label_skip_tail:
5124 if (eol_conversion)
5125 while (begp < endp && endp[-1] < 0x80 && endp[-1] != '\n') endp--;
5126 else
5127 while (begp < endp && *(endp - 1) < 0x80) endp--;
5128 break;
5129
5130 default:
5131 abort ();
5132 }
5133
5134 *beg += begp - begp_orig;
5135 *end += endp - endp_orig;
5136 return;
5137}
5138
5139/* As shrinking conversion region requires some overhead, we don't try
5140 shrinking if the length of conversion region is less than this
5141 value. */
5142static int shrink_conversion_region_threshhold = 1024;
5143
5144#define SHRINK_CONVERSION_REGION(beg, end, coding, str, encodep) \
5145 do { \
5146 if (*(end) - *(beg) > shrink_conversion_region_threshhold) \
5147 { \
5148 if (encodep) shrink_encoding_region (beg, end, coding, str); \
5149 else shrink_decoding_region (beg, end, coding, str); \
5150 } \
5151 } while (0)
5152
5153static Lisp_Object
5154code_convert_region_unwind (dummy)
5155 Lisp_Object dummy;
5156{
5157 inhibit_pre_post_conversion = 0;
5158 return Qnil;
5159}
5160
5161/* Store information about all compositions in the range FROM and TO
5162 of OBJ in memory blocks pointed by CODING->cmp_data. OBJ is a
5163 buffer or a string, defaults to the current buffer. */
5164
5165void
5166coding_save_composition (coding, from, to, obj)
5167 struct coding_system *coding;
5168 int from, to;
5169 Lisp_Object obj;
5170{
5171 Lisp_Object prop;
5172 int start, end;
5173
5174 if (coding->composing == COMPOSITION_DISABLED)
5175 return;
5176 if (!coding->cmp_data)
5177 coding_allocate_composition_data (coding, from);
5178 if (!find_composition (from, to, &start, &end, &prop, obj)
5179 || end > to)
5180 return;
5181 if (start < from
5182 && (!find_composition (end, to, &start, &end, &prop, obj)
5183 || end > to))
5184 return;
5185 coding->composing = COMPOSITION_NO;
5186 do
5187 {
5188 if (COMPOSITION_VALID_P (start, end, prop))
5189 {
5190 enum composition_method method = COMPOSITION_METHOD (prop);
5191 if (coding->cmp_data->used + COMPOSITION_DATA_MAX_BUNCH_LENGTH
5192 >= COMPOSITION_DATA_SIZE)
5193 coding_allocate_composition_data (coding, from);
5194 /* For relative composition, we remember start and end
5195 positions, for the other compositions, we also remember
5196 components. */
5197 CODING_ADD_COMPOSITION_START (coding, start - from, method);
5198 if (method != COMPOSITION_RELATIVE)
5199 {
5200 /* We must store a*/
5201 Lisp_Object val, ch;
5202
5203 val = COMPOSITION_COMPONENTS (prop);
5204 if (CONSP (val))
5205 while (CONSP (val))
5206 {
5207 ch = XCAR (val), val = XCDR (val);
5208 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5209 }
5210 else if (VECTORP (val) || STRINGP (val))
5211 {
5212 int len = (VECTORP (val)
5213 ? XVECTOR (val)->size : XSTRING (val)->size);
5214 int i;
5215 for (i = 0; i < len; i++)
5216 {
5217 ch = (STRINGP (val)
5218 ? Faref (val, make_number (i))
5219 : XVECTOR (val)->contents[i]);
5220 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (ch));
5221 }
5222 }
5223 else /* INTEGERP (val) */
5224 CODING_ADD_COMPOSITION_COMPONENT (coding, XINT (val));
5225 }
5226 CODING_ADD_COMPOSITION_END (coding, end - from);
5227 }
5228 start = end;
5229 }
5230 while (start < to
5231 && find_composition (start, to, &start, &end, &prop, obj)
5232 && end <= to);
5233
5234 /* Make coding->cmp_data point to the first memory block. */
5235 while (coding->cmp_data->prev)
5236 coding->cmp_data = coding->cmp_data->prev;
5237 coding->cmp_data_start = 0;
5238}
5239
5240/* Reflect the saved information about compositions to OBJ.
5241 CODING->cmp_data points to a memory block for the information. OBJ
5242 is a buffer or a string, defaults to the current buffer. */
5243
5244void
5245coding_restore_composition (coding, obj)
5246 struct coding_system *coding;
5247 Lisp_Object obj;
5248{
5249 struct composition_data *cmp_data = coding->cmp_data;
5250
5251 if (!cmp_data)
5252 return;
5253
5254 while (cmp_data->prev)
5255 cmp_data = cmp_data->prev;
5256
5257 while (cmp_data)
5258 {
5259 int i;
5260
5261 for (i = 0; i < cmp_data->used && cmp_data->data[i] > 0;
5262 i += cmp_data->data[i])
5263 {
5264 int *data = cmp_data->data + i;
5265 enum composition_method method = (enum composition_method) data[3];
5266 Lisp_Object components;
5267
5268 if (method == COMPOSITION_RELATIVE)
5269 components = Qnil;
5270 else
5271 {
5272 int len = data[0] - 4, j;
5273 Lisp_Object args[MAX_COMPOSITION_COMPONENTS * 2 - 1];
5274
5275 for (j = 0; j < len; j++)
5276 args[j] = make_number (data[4 + j]);
5277 components = (method == COMPOSITION_WITH_ALTCHARS
5278 ? Fstring (len, args) : Fvector (len, args));
5279 }
5280 compose_text (data[1], data[2], components, Qnil, obj);
5281 }
5282 cmp_data = cmp_data->next;
5283 }
5284}
5285
5286/* Decode (if ENCODEP is zero) or encode (if ENCODEP is nonzero) the
5287 text from FROM to TO (byte positions are FROM_BYTE and TO_BYTE) by
5288 coding system CODING, and return the status code of code conversion
5289 (currently, this value has no meaning).
5290
5291 How many characters (and bytes) are converted to how many
5292 characters (and bytes) are recorded in members of the structure
5293 CODING.
5294
5295 If REPLACE is nonzero, we do various things as if the original text
5296 is deleted and a new text is inserted. See the comments in
5297 replace_range (insdel.c) to know what we are doing.
5298
5299 If REPLACE is zero, it is assumed that the source text is unibyte.
5300 Otherwise, it is assumed that the source text is multibyte. */
5301
5302int
5303code_convert_region (from, from_byte, to, to_byte, coding, encodep, replace)
5304 int from, from_byte, to, to_byte, encodep, replace;
5305 struct coding_system *coding;
5306{
5307 int len = to - from, len_byte = to_byte - from_byte;
5308 int require, inserted, inserted_byte;
5309 int head_skip, tail_skip, total_skip = 0;
5310 Lisp_Object saved_coding_symbol;
5311 int first = 1;
5312 unsigned char *src, *dst;
5313 Lisp_Object deletion;
5314 int orig_point = PT, orig_len = len;
5315 int prev_Z;
5316 int multibyte_p = !NILP (current_buffer->enable_multibyte_characters);
5317
5318 deletion = Qnil;
5319 saved_coding_symbol = coding->symbol;
5320
5321 if (from < PT && PT < to)
5322 {
5323 TEMP_SET_PT_BOTH (from, from_byte);
5324 orig_point = from;
5325 }
5326
5327 if (replace)
5328 {
5329 int saved_from = from;
5330 int saved_inhibit_modification_hooks;
5331
5332 prepare_to_modify_buffer (from, to, &from);
5333 if (saved_from != from)
5334 {
5335 to = from + len;
5336 from_byte = CHAR_TO_BYTE (from), to_byte = CHAR_TO_BYTE (to);
5337 len_byte = to_byte - from_byte;
5338 }
5339
5340 /* The code conversion routine can not preserve text properties
5341 for now. So, we must remove all text properties in the
5342 region. Here, we must suppress all modification hooks. */
5343 saved_inhibit_modification_hooks = inhibit_modification_hooks;
5344 inhibit_modification_hooks = 1;
5345 Fset_text_properties (make_number (from), make_number (to), Qnil, Qnil);
5346 inhibit_modification_hooks = saved_inhibit_modification_hooks;
5347 }
5348
5349 if (! encodep && CODING_REQUIRE_DETECTION (coding))
5350 {
5351 /* We must detect encoding of text and eol format. */
5352
5353 if (from < GPT && to > GPT)
5354 move_gap_both (from, from_byte);
5355 if (coding->type == coding_type_undecided)
5356 {
5357 detect_coding (coding, BYTE_POS_ADDR (from_byte), len_byte);
5358 if (coding->type == coding_type_undecided)
5359 {
5360 /* It seems that the text contains only ASCII, but we
5361 should not leave it undecided because the deeper
5362 decoding routine (decode_coding) tries to detect the
5363 encodings again in vain. */
5364 coding->type = coding_type_emacs_mule;
5365 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5366 /* As emacs-mule decoder will handle composition, we
5367 need this setting to allocate coding->cmp_data
5368 later. */
5369 coding->composing = COMPOSITION_NO;
5370 }
5371 }
5372 if (coding->eol_type == CODING_EOL_UNDECIDED
5373 && coding->type != coding_type_ccl)
5374 {
5375 detect_eol (coding, BYTE_POS_ADDR (from_byte), len_byte);
5376 if (coding->eol_type == CODING_EOL_UNDECIDED)
5377 coding->eol_type = CODING_EOL_LF;
5378 /* We had better recover the original eol format if we
5379 encounter an inconsistent eol format while decoding. */
5380 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5381 }
5382 }
5383
5384 /* Now we convert the text. */
5385
5386 /* For encoding, we must process pre-write-conversion in advance. */
5387 if (! inhibit_pre_post_conversion
5388 && encodep
5389 && SYMBOLP (coding->pre_write_conversion)
5390 && ! NILP (Ffboundp (coding->pre_write_conversion)))
5391 {
5392 /* The function in pre-write-conversion may put a new text in a
5393 new buffer. */
5394 struct buffer *prev = current_buffer;
5395 Lisp_Object new;
5396
5397 record_unwind_protect (code_convert_region_unwind, Qnil);
5398 /* We should not call any more pre-write/post-read-conversion
5399 functions while this pre-write-conversion is running. */
5400 inhibit_pre_post_conversion = 1;
5401 call2 (coding->pre_write_conversion,
5402 make_number (from), make_number (to));
5403 inhibit_pre_post_conversion = 0;
5404 /* Discard the unwind protect. */
5405 specpdl_ptr--;
5406
5407 if (current_buffer != prev)
5408 {
5409 len = ZV - BEGV;
5410 new = Fcurrent_buffer ();
5411 set_buffer_internal_1 (prev);
5412 del_range_2 (from, from_byte, to, to_byte, 0);
5413 TEMP_SET_PT_BOTH (from, from_byte);
5414 insert_from_buffer (XBUFFER (new), 1, len, 0);
5415 Fkill_buffer (new);
5416 if (orig_point >= to)
5417 orig_point += len - orig_len;
5418 else if (orig_point > from)
5419 orig_point = from;
5420 orig_len = len;
5421 to = from + len;
5422 from_byte = CHAR_TO_BYTE (from);
5423 to_byte = CHAR_TO_BYTE (to);
5424 len_byte = to_byte - from_byte;
5425 TEMP_SET_PT_BOTH (from, from_byte);
5426 }
5427 }
5428
5429 if (replace)
5430 deletion = make_buffer_string_both (from, from_byte, to, to_byte, 1);
5431
5432 if (coding->composing != COMPOSITION_DISABLED)
5433 {
5434 if (encodep)
5435 coding_save_composition (coding, from, to, Fcurrent_buffer ());
5436 else
5437 coding_allocate_composition_data (coding, from);
5438 }
5439
5440 /* Try to skip the heading and tailing ASCIIs. */
5441 if (coding->type != coding_type_ccl)
5442 {
5443 int from_byte_orig = from_byte, to_byte_orig = to_byte;
5444
5445 if (from < GPT && GPT < to)
5446 move_gap_both (from, from_byte);
5447 SHRINK_CONVERSION_REGION (&from_byte, &to_byte, coding, NULL, encodep);
5448 if (from_byte == to_byte
5449 && (encodep || NILP (coding->post_read_conversion))
5450 && ! CODING_REQUIRE_FLUSHING (coding))
5451 {
5452 coding->produced = len_byte;
5453 coding->produced_char = len;
5454 if (!replace)
5455 /* We must record and adjust for this new text now. */
5456 adjust_after_insert (from, from_byte_orig, to, to_byte_orig, len);
5457 return 0;
5458 }
5459
5460 head_skip = from_byte - from_byte_orig;
5461 tail_skip = to_byte_orig - to_byte;
5462 total_skip = head_skip + tail_skip;
5463 from += head_skip;
5464 to -= tail_skip;
5465 len -= total_skip; len_byte -= total_skip;
5466 }
5467
5468 /* For conversion, we must put the gap before the text in addition to
5469 making the gap larger for efficient decoding. The required gap
5470 size starts from 2000 which is the magic number used in make_gap.
5471 But, after one batch of conversion, it will be incremented if we
5472 find that it is not enough . */
5473 require = 2000;
5474
5475 if (GAP_SIZE < require)
5476 make_gap (require - GAP_SIZE);
5477 move_gap_both (from, from_byte);
5478
5479 inserted = inserted_byte = 0;
5480
5481 GAP_SIZE += len_byte;
5482 ZV -= len;
5483 Z -= len;
5484 ZV_BYTE -= len_byte;
5485 Z_BYTE -= len_byte;
5486
5487 if (GPT - BEG < BEG_UNCHANGED)
5488 BEG_UNCHANGED = GPT - BEG;
5489 if (Z - GPT < END_UNCHANGED)
5490 END_UNCHANGED = Z - GPT;
5491
5492 if (!encodep && coding->src_multibyte)
5493 {
5494 /* Decoding routines expects that the source text is unibyte.
5495 We must convert 8-bit characters of multibyte form to
5496 unibyte. */
5497 int len_byte_orig = len_byte;
5498 len_byte = str_as_unibyte (GAP_END_ADDR - len_byte, len_byte);
5499 if (len_byte < len_byte_orig)
5500 safe_bcopy (GAP_END_ADDR - len_byte_orig, GAP_END_ADDR - len_byte,
5501 len_byte);
5502 coding->src_multibyte = 0;
5503 }
5504
5505 for (;;)
5506 {
5507 int result;
5508
5509 /* The buffer memory is now:
5510 +--------+converted-text+---------+-------original-text-------+---+
5511 |<-from->|<--inserted-->|---------|<--------len_byte--------->|---|
5512 |<---------------------- GAP ----------------------->| */
5513 src = GAP_END_ADDR - len_byte;
5514 dst = GPT_ADDR + inserted_byte;
5515
5516 if (encodep)
5517 result = encode_coding (coding, src, dst, len_byte, 0);
5518 else
5519 result = decode_coding (coding, src, dst, len_byte, 0);
5520
5521 /* The buffer memory is now:
5522 +--------+-------converted-text----+--+------original-text----+---+
5523 |<-from->|<-inserted->|<-produced->|--|<-(len_byte-consumed)->|---|
5524 |<---------------------- GAP ----------------------->| */
5525
5526 inserted += coding->produced_char;
5527 inserted_byte += coding->produced;
5528 len_byte -= coding->consumed;
5529
5530 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5531 {
5532 coding_allocate_composition_data (coding, from + inserted);
5533 continue;
5534 }
5535
5536 src += coding->consumed;
5537 dst += coding->produced;
5538
5539 if (result == CODING_FINISH_NORMAL)
5540 {
5541 src += len_byte;
5542 break;
5543 }
5544 if (! encodep && result == CODING_FINISH_INCONSISTENT_EOL)
5545 {
5546 unsigned char *pend = dst, *p = pend - inserted_byte;
5547 Lisp_Object eol_type;
5548
5549 /* Encode LFs back to the original eol format (CR or CRLF). */
5550 if (coding->eol_type == CODING_EOL_CR)
5551 {
5552 while (p < pend) if (*p++ == '\n') p[-1] = '\r';
5553 }
5554 else
5555 {
5556 int count = 0;
5557
5558 while (p < pend) if (*p++ == '\n') count++;
5559 if (src - dst < count)
5560 {
5561 /* We don't have sufficient room for encoding LFs
5562 back to CRLF. We must record converted and
5563 not-yet-converted text back to the buffer
5564 content, enlarge the gap, then record them out of
5565 the buffer contents again. */
5566 int add = len_byte + inserted_byte;
5567
5568 GAP_SIZE -= add;
5569 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5570 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5571 make_gap (count - GAP_SIZE);
5572 GAP_SIZE += add;
5573 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5574 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5575 /* Don't forget to update SRC, DST, and PEND. */
5576 src = GAP_END_ADDR - len_byte;
5577 dst = GPT_ADDR + inserted_byte;
5578 pend = dst;
5579 }
5580 inserted += count;
5581 inserted_byte += count;
5582 coding->produced += count;
5583 p = dst = pend + count;
5584 while (count)
5585 {
5586 *--p = *--pend;
5587 if (*p == '\n') count--, *--p = '\r';
5588 }
5589 }
5590
5591 /* Suppress eol-format conversion in the further conversion. */
5592 coding->eol_type = CODING_EOL_LF;
5593
5594 /* Set the coding system symbol to that for Unix-like EOL. */
5595 eol_type = Fget (saved_coding_symbol, Qeol_type);
5596 if (VECTORP (eol_type)
5597 && XVECTOR (eol_type)->size == 3
5598 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5599 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5600 else
5601 coding->symbol = saved_coding_symbol;
5602
5603 continue;
5604 }
5605 if (len_byte <= 0)
5606 {
5607 if (coding->type != coding_type_ccl
5608 || coding->mode & CODING_MODE_LAST_BLOCK)
5609 break;
5610 coding->mode |= CODING_MODE_LAST_BLOCK;
5611 continue;
5612 }
5613 if (result == CODING_FINISH_INSUFFICIENT_SRC)
5614 {
5615 /* The source text ends in invalid codes. Let's just
5616 make them valid buffer contents, and finish conversion. */
5617 if (multibyte_p)
5618 {
5619 unsigned char *start = dst;
5620
5621 inserted += len_byte;
5622 while (len_byte--)
5623 {
5624 int c = *src++;
5625 dst += CHAR_STRING (c, dst);
5626 }
5627
5628 inserted_byte += dst - start;
5629 }
5630 else
5631 {
5632 inserted += len_byte;
5633 inserted_byte += len_byte;
5634 while (len_byte--)
5635 *dst++ = *src++;
5636 }
5637 break;
5638 }
5639 if (result == CODING_FINISH_INTERRUPT)
5640 {
5641 /* The conversion procedure was interrupted by a user. */
5642 break;
5643 }
5644 /* Now RESULT == CODING_FINISH_INSUFFICIENT_DST */
5645 if (coding->consumed < 1)
5646 {
5647 /* It's quite strange to require more memory without
5648 consuming any bytes. Perhaps CCL program bug. */
5649 break;
5650 }
5651 if (first)
5652 {
5653 /* We have just done the first batch of conversion which was
5654 stopped because of insufficient gap. Let's reconsider the
5655 required gap size (i.e. SRT - DST) now.
5656
5657 We have converted ORIG bytes (== coding->consumed) into
5658 NEW bytes (coding->produced). To convert the remaining
5659 LEN bytes, we may need REQUIRE bytes of gap, where:
5660 REQUIRE + LEN_BYTE = LEN_BYTE * (NEW / ORIG)
5661 REQUIRE = LEN_BYTE * (NEW - ORIG) / ORIG
5662 Here, we are sure that NEW >= ORIG. */
5663 float ratio = coding->produced - coding->consumed;
5664 ratio /= coding->consumed;
5665 require = len_byte * ratio;
5666 first = 0;
5667 }
5668 if ((src - dst) < (require + 2000))
5669 {
5670 /* See the comment above the previous call of make_gap. */
5671 int add = len_byte + inserted_byte;
5672
5673 GAP_SIZE -= add;
5674 ZV += add; Z += add; ZV_BYTE += add; Z_BYTE += add;
5675 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5676 make_gap (require + 2000);
5677 GAP_SIZE += add;
5678 ZV -= add; Z -= add; ZV_BYTE -= add; Z_BYTE -= add;
5679 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5680 }
5681 }
5682 if (src - dst > 0) *dst = 0; /* Put an anchor. */
5683
5684 if (encodep && coding->dst_multibyte)
5685 {
5686 /* The output is unibyte. We must convert 8-bit characters to
5687 multibyte form. */
5688 if (inserted_byte * 2 > GAP_SIZE)
5689 {
5690 GAP_SIZE -= inserted_byte;
5691 ZV += inserted_byte; Z += inserted_byte;
5692 ZV_BYTE += inserted_byte; Z_BYTE += inserted_byte;
5693 GPT += inserted_byte; GPT_BYTE += inserted_byte;
5694 make_gap (inserted_byte - GAP_SIZE);
5695 GAP_SIZE += inserted_byte;
5696 ZV -= inserted_byte; Z -= inserted_byte;
5697 ZV_BYTE -= inserted_byte; Z_BYTE -= inserted_byte;
5698 GPT -= inserted_byte; GPT_BYTE -= inserted_byte;
5699 }
5700 inserted_byte = str_to_multibyte (GPT_ADDR, GAP_SIZE, inserted_byte);
5701 }
5702
5703 /* If we shrank the conversion area, adjust it now. */
5704 if (total_skip > 0)
5705 {
5706 if (tail_skip > 0)
5707 safe_bcopy (GAP_END_ADDR, GPT_ADDR + inserted_byte, tail_skip);
5708 inserted += total_skip; inserted_byte += total_skip;
5709 GAP_SIZE += total_skip;
5710 GPT -= head_skip; GPT_BYTE -= head_skip;
5711 ZV -= total_skip; ZV_BYTE -= total_skip;
5712 Z -= total_skip; Z_BYTE -= total_skip;
5713 from -= head_skip; from_byte -= head_skip;
5714 to += tail_skip; to_byte += tail_skip;
5715 }
5716
5717 prev_Z = Z;
5718 adjust_after_replace (from, from_byte, deletion, inserted, inserted_byte);
5719 inserted = Z - prev_Z;
5720
5721 if (!encodep && coding->cmp_data && coding->cmp_data->used)
5722 coding_restore_composition (coding, Fcurrent_buffer ());
5723 coding_free_composition_data (coding);
5724
5725 if (! inhibit_pre_post_conversion
5726 && ! encodep && ! NILP (coding->post_read_conversion))
5727 {
5728 Lisp_Object val;
5729
5730 if (from != PT)
5731 TEMP_SET_PT_BOTH (from, from_byte);
5732 prev_Z = Z;
5733 record_unwind_protect (code_convert_region_unwind, Qnil);
5734 /* We should not call any more pre-write/post-read-conversion
5735 functions while this post-read-conversion is running. */
5736 inhibit_pre_post_conversion = 1;
5737 val = call1 (coding->post_read_conversion, make_number (inserted));
5738 inhibit_pre_post_conversion = 0;
5739 /* Discard the unwind protect. */
5740 specpdl_ptr--;
5741 CHECK_NUMBER (val);
5742 inserted += Z - prev_Z;
5743 }
5744
5745 if (orig_point >= from)
5746 {
5747 if (orig_point >= from + orig_len)
5748 orig_point += inserted - orig_len;
5749 else
5750 orig_point = from;
5751 TEMP_SET_PT (orig_point);
5752 }
5753
5754 if (replace)
5755 {
5756 signal_after_change (from, to - from, inserted);
5757 update_compositions (from, from + inserted, CHECK_BORDER);
5758 }
5759
5760 {
5761 coding->consumed = to_byte - from_byte;
5762 coding->consumed_char = to - from;
5763 coding->produced = inserted_byte;
5764 coding->produced_char = inserted;
5765 }
5766
5767 return 0;
5768}
5769
5770Lisp_Object
5771run_pre_post_conversion_on_str (str, coding, encodep)
5772 Lisp_Object str;
5773 struct coding_system *coding;
5774 int encodep;
5775{
5776 int count = specpdl_ptr - specpdl;
5777 struct gcpro gcpro1;
5778 int multibyte = STRING_MULTIBYTE (str);
5779
5780 record_unwind_protect (Fset_buffer, Fcurrent_buffer ());
5781 record_unwind_protect (code_convert_region_unwind, Qnil);
5782 GCPRO1 (str);
5783 temp_output_buffer_setup (" *code-converting-work*");
5784 set_buffer_internal (XBUFFER (Vstandard_output));
5785 /* We must insert the contents of STR as is without
5786 unibyte<->multibyte conversion. For that, we adjust the
5787 multibyteness of the working buffer to that of STR. */
5788 Ferase_buffer ();
5789 current_buffer->enable_multibyte_characters = multibyte ? Qt : Qnil;
5790 insert_from_string (str, 0, 0,
5791 XSTRING (str)->size, STRING_BYTES (XSTRING (str)), 0);
5792 UNGCPRO;
5793 inhibit_pre_post_conversion = 1;
5794 if (encodep)
5795 call2 (coding->pre_write_conversion, make_number (BEG), make_number (Z));
5796 else
5797 {
5798 TEMP_SET_PT_BOTH (BEG, BEG_BYTE);
5799 call1 (coding->post_read_conversion, make_number (Z - BEG));
5800 }
5801 inhibit_pre_post_conversion = 0;
5802 str = make_buffer_string (BEG, Z, 1);
5803 return unbind_to (count, str);
5804}
5805
5806Lisp_Object
5807decode_coding_string (str, coding, nocopy)
5808 Lisp_Object str;
5809 struct coding_system *coding;
5810 int nocopy;
5811{
5812 int len;
5813 struct conversion_buffer buf;
5814 int from, to_byte;
5815 struct gcpro gcpro1;
5816 Lisp_Object saved_coding_symbol;
5817 int result;
5818 int require_decoding;
5819 int shrinked_bytes = 0;
5820 Lisp_Object newstr;
5821 int consumed, consumed_char, produced, produced_char;
5822
5823 from = 0;
5824 to_byte = STRING_BYTES (XSTRING (str));
5825
5826 saved_coding_symbol = coding->symbol;
5827 coding->src_multibyte = STRING_MULTIBYTE (str);
5828 coding->dst_multibyte = 1;
5829 if (CODING_REQUIRE_DETECTION (coding))
5830 {
5831 /* See the comments in code_convert_region. */
5832 if (coding->type == coding_type_undecided)
5833 {
5834 detect_coding (coding, XSTRING (str)->data, to_byte);
5835 if (coding->type == coding_type_undecided)
5836 {
5837 coding->type = coding_type_emacs_mule;
5838 coding->category_idx = CODING_CATEGORY_IDX_EMACS_MULE;
5839 /* As emacs-mule decoder will handle composition, we
5840 need this setting to allocate coding->cmp_data
5841 later. */
5842 coding->composing = COMPOSITION_NO;
5843 }
5844 }
5845 if (coding->eol_type == CODING_EOL_UNDECIDED
5846 && coding->type != coding_type_ccl)
5847 {
5848 saved_coding_symbol = coding->symbol;
5849 detect_eol (coding, XSTRING (str)->data, to_byte);
5850 if (coding->eol_type == CODING_EOL_UNDECIDED)
5851 coding->eol_type = CODING_EOL_LF;
5852 /* We had better recover the original eol format if we
5853 encounter an inconsistent eol format while decoding. */
5854 coding->mode |= CODING_MODE_INHIBIT_INCONSISTENT_EOL;
5855 }
5856 }
5857
5858 if (coding->type == coding_type_no_conversion
5859 || coding->type == coding_type_raw_text)
5860 coding->dst_multibyte = 0;
5861
5862 require_decoding = CODING_REQUIRE_DECODING (coding);
5863
5864 if (STRING_MULTIBYTE (str))
5865 {
5866 /* Decoding routines expect the source text to be unibyte. */
5867 str = Fstring_as_unibyte (str);
5868 to_byte = STRING_BYTES (XSTRING (str));
5869 nocopy = 1;
5870 coding->src_multibyte = 0;
5871 }
5872
5873 /* Try to skip the heading and tailing ASCIIs. */
5874 if (require_decoding && coding->type != coding_type_ccl)
5875 {
5876 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
5877 0);
5878 if (from == to_byte)
5879 require_decoding = 0;
5880 shrinked_bytes = from + (STRING_BYTES (XSTRING (str)) - to_byte);
5881 }
5882
5883 if (!require_decoding)
5884 {
5885 coding->consumed = STRING_BYTES (XSTRING (str));
5886 coding->consumed_char = XSTRING (str)->size;
5887 if (coding->dst_multibyte)
5888 {
5889 str = Fstring_as_multibyte (str);
5890 nocopy = 1;
5891 }
5892 coding->produced = STRING_BYTES (XSTRING (str));
5893 coding->produced_char = XSTRING (str)->size;
5894 return (nocopy ? str : Fcopy_sequence (str));
5895 }
5896
5897 if (coding->composing != COMPOSITION_DISABLED)
5898 coding_allocate_composition_data (coding, from);
5899 len = decoding_buffer_size (coding, to_byte - from);
5900 allocate_conversion_buffer (buf, len);
5901
5902 consumed = consumed_char = produced = produced_char = 0;
5903 while (1)
5904 {
5905 result = decode_coding (coding, XSTRING (str)->data + from + consumed,
5906 buf.data + produced, to_byte - from - consumed,
5907 buf.size - produced);
5908 consumed += coding->consumed;
5909 consumed_char += coding->consumed_char;
5910 produced += coding->produced;
5911 produced_char += coding->produced_char;
5912 if (result == CODING_FINISH_NORMAL
5913 || (result == CODING_FINISH_INSUFFICIENT_SRC
5914 && coding->consumed == 0))
5915 break;
5916 if (result == CODING_FINISH_INSUFFICIENT_CMP)
5917 coding_allocate_composition_data (coding, from + produced_char);
5918 else if (result == CODING_FINISH_INSUFFICIENT_DST)
5919 extend_conversion_buffer (&buf);
5920 else if (result == CODING_FINISH_INCONSISTENT_EOL)
5921 {
5922 Lisp_Object eol_type;
5923
5924 /* Recover the original EOL format. */
5925 if (coding->eol_type == CODING_EOL_CR)
5926 {
5927 unsigned char *p;
5928 for (p = buf.data; p < buf.data + produced; p++)
5929 if (*p == '\n') *p = '\r';
5930 }
5931 else if (coding->eol_type == CODING_EOL_CRLF)
5932 {
5933 int num_eol = 0;
5934 unsigned char *p0, *p1;
5935 for (p0 = buf.data, p1 = p0 + produced; p0 < p1; p0++)
5936 if (*p0 == '\n') num_eol++;
5937 if (produced + num_eol >= buf.size)
5938 extend_conversion_buffer (&buf);
5939 for (p0 = buf.data + produced, p1 = p0 + num_eol; p0 > buf.data;)
5940 {
5941 *--p1 = *--p0;
5942 if (*p0 == '\n') *--p1 = '\r';
5943 }
5944 produced += num_eol;
5945 produced_char += num_eol;
5946 }
5947 /* Suppress eol-format conversion in the further conversion. */
5948 coding->eol_type = CODING_EOL_LF;
5949
5950 /* Set the coding system symbol to that for Unix-like EOL. */
5951 eol_type = Fget (saved_coding_symbol, Qeol_type);
5952 if (VECTORP (eol_type)
5953 && XVECTOR (eol_type)->size == 3
5954 && SYMBOLP (XVECTOR (eol_type)->contents[CODING_EOL_LF]))
5955 coding->symbol = XVECTOR (eol_type)->contents[CODING_EOL_LF];
5956 else
5957 coding->symbol = saved_coding_symbol;
5958
5959
5960 }
5961 }
5962
5963 coding->consumed = consumed;
5964 coding->consumed_char = consumed_char;
5965 coding->produced = produced;
5966 coding->produced_char = produced_char;
5967
5968 if (coding->dst_multibyte)
5969 newstr = make_uninit_multibyte_string (produced_char + shrinked_bytes,
5970 produced + shrinked_bytes);
5971 else
5972 newstr = make_uninit_string (produced + shrinked_bytes);
5973 if (from > 0)
5974 bcopy (XSTRING (str)->data, XSTRING (newstr)->data, from);
5975 bcopy (buf.data, XSTRING (newstr)->data + from, produced);
5976 if (shrinked_bytes > from)
5977 bcopy (XSTRING (str)->data + to_byte,
5978 XSTRING (newstr)->data + from + produced,
5979 shrinked_bytes - from);
5980 free_conversion_buffer (&buf);
5981
5982 if (coding->cmp_data && coding->cmp_data->used)
5983 coding_restore_composition (coding, newstr);
5984 coding_free_composition_data (coding);
5985
5986 if (SYMBOLP (coding->post_read_conversion)
5987 && !NILP (Ffboundp (coding->post_read_conversion)))
5988 newstr = run_pre_post_conversion_on_str (newstr, coding, 0);
5989
5990 return newstr;
5991}
5992
5993Lisp_Object
5994encode_coding_string (str, coding, nocopy)
5995 Lisp_Object str;
5996 struct coding_system *coding;
5997 int nocopy;
5998{
5999 int len;
6000 struct conversion_buffer buf;
6001 int from, to, to_byte;
6002 int result;
6003 int shrinked_bytes = 0;
6004 Lisp_Object newstr;
6005 int consumed, consumed_char, produced, produced_char;
6006
6007 if (SYMBOLP (coding->pre_write_conversion)
6008 && !NILP (Ffboundp (coding->pre_write_conversion)))
6009 str = run_pre_post_conversion_on_str (str, coding, 1);
6010
6011 from = 0;
6012 to = XSTRING (str)->size;
6013 to_byte = STRING_BYTES (XSTRING (str));
6014
6015 /* Encoding routines determine the multibyteness of the source text
6016 by coding->src_multibyte. */
6017 coding->src_multibyte = STRING_MULTIBYTE (str);
6018 coding->dst_multibyte = 0;
6019 if (! CODING_REQUIRE_ENCODING (coding))
6020 {
6021 coding->consumed = STRING_BYTES (XSTRING (str));
6022 coding->consumed_char = XSTRING (str)->size;
6023 if (STRING_MULTIBYTE (str))
6024 {
6025 str = Fstring_as_unibyte (str);
6026 nocopy = 1;
6027 }
6028 coding->produced = STRING_BYTES (XSTRING (str));
6029 coding->produced_char = XSTRING (str)->size;
6030 return (nocopy ? str : Fcopy_sequence (str));
6031 }
6032
6033 if (coding->composing != COMPOSITION_DISABLED)
6034 coding_save_composition (coding, from, to, str);
6035
6036 /* Try to skip the heading and tailing ASCIIs. */
6037 if (coding->type != coding_type_ccl)
6038 {
6039 SHRINK_CONVERSION_REGION (&from, &to_byte, coding, XSTRING (str)->data,
6040 1);
6041 if (from == to_byte)
6042 return (nocopy ? str : Fcopy_sequence (str));
6043 shrinked_bytes = from + (STRING_BYTES (XSTRING (str)) - to_byte);
6044 }
6045
6046 len = encoding_buffer_size (coding, to_byte - from);
6047 allocate_conversion_buffer (buf, len);
6048
6049 consumed = consumed_char = produced = produced_char = 0;
6050 while (1)
6051 {
6052 result = encode_coding (coding, XSTRING (str)->data + from + consumed,
6053 buf.data + produced, to_byte - from - consumed,
6054 buf.size - produced);
6055 consumed += coding->consumed;
6056 consumed_char += coding->consumed_char;
6057 produced += coding->produced;
6058 produced_char += coding->produced_char;
6059 if (result == CODING_FINISH_NORMAL
6060 || (result == CODING_FINISH_INSUFFICIENT_SRC
6061 && coding->consumed == 0))
6062 break;
6063 /* Now result should be CODING_FINISH_INSUFFICIENT_DST. */
6064 extend_conversion_buffer (&buf);
6065 }
6066
6067 coding->consumed = consumed;
6068 coding->consumed_char = consumed_char;
6069 coding->produced = produced;
6070 coding->produced_char = produced_char;
6071
6072 newstr = make_uninit_string (produced + shrinked_bytes);
6073 if (from > 0)
6074 bcopy (XSTRING (str)->data, XSTRING (newstr)->data, from);
6075 bcopy (buf.data, XSTRING (newstr)->data + from, produced);
6076 if (shrinked_bytes > from)
6077 bcopy (XSTRING (str)->data + to_byte,
6078 XSTRING (newstr)->data + from + produced,
6079 shrinked_bytes - from);
6080
6081 free_conversion_buffer (&buf);
6082 coding_free_composition_data (coding);
6083
6084 return newstr;
6085}
6086
6087\f
6088#ifdef emacs
6089/*** 8. Emacs Lisp library functions ***/
6090
6091DEFUN ("coding-system-p", Fcoding_system_p, Scoding_system_p, 1, 1, 0,
6092 doc: /* Return t if OBJECT is nil or a coding-system.
6093See the documentation of `make-coding-system' for information
6094about coding-system objects. */)
6095 (obj)
6096 Lisp_Object obj;
6097{
6098 if (NILP (obj))
6099 return Qt;
6100 if (!SYMBOLP (obj))
6101 return Qnil;
6102 /* Get coding-spec vector for OBJ. */
6103 obj = Fget (obj, Qcoding_system);
6104 return ((VECTORP (obj) && XVECTOR (obj)->size == 5)
6105 ? Qt : Qnil);
6106}
6107
6108DEFUN ("read-non-nil-coding-system", Fread_non_nil_coding_system,
6109 Sread_non_nil_coding_system, 1, 1, 0,
6110 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT. */)
6111 (prompt)
6112 Lisp_Object prompt;
6113{
6114 Lisp_Object val;
6115 do
6116 {
6117 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6118 Qt, Qnil, Qcoding_system_history, Qnil, Qnil);
6119 }
6120 while (XSTRING (val)->size == 0);
6121 return (Fintern (val, Qnil));
6122}
6123
6124DEFUN ("read-coding-system", Fread_coding_system, Sread_coding_system, 1, 2, 0,
6125 doc: /* Read a coding system from the minibuffer, prompting with string PROMPT.
6126If the user enters null input, return second argument DEFAULT-CODING-SYSTEM. */)
6127 (prompt, default_coding_system)
6128 Lisp_Object prompt, default_coding_system;
6129{
6130 Lisp_Object val;
6131 if (SYMBOLP (default_coding_system))
6132 XSETSTRING (default_coding_system, XSYMBOL (default_coding_system)->name);
6133 val = Fcompleting_read (prompt, Vcoding_system_alist, Qnil,
6134 Qt, Qnil, Qcoding_system_history,
6135 default_coding_system, Qnil);
6136 return (XSTRING (val)->size == 0 ? Qnil : Fintern (val, Qnil));
6137}
6138
6139DEFUN ("check-coding-system", Fcheck_coding_system, Scheck_coding_system,
6140 1, 1, 0,
6141 doc: /* Check validity of CODING-SYSTEM.
6142If valid, return CODING-SYSTEM, else signal a `coding-system-error' error.
6143It is valid if it is a symbol with a non-nil `coding-system' property.
6144The value of property should be a vector of length 5. */)
6145 (coding_system)
6146 Lisp_Object coding_system;
6147{
6148 CHECK_SYMBOL (coding_system);
6149 if (!NILP (Fcoding_system_p (coding_system)))
6150 return coding_system;
6151 while (1)
6152 Fsignal (Qcoding_system_error, Fcons (coding_system, Qnil));
6153}
6154\f
6155Lisp_Object
6156detect_coding_system (src, src_bytes, highest, multibytep)
6157 unsigned char *src;
6158 int src_bytes, highest;
6159 int multibytep;
6160{
6161 int coding_mask, eol_type;
6162 Lisp_Object val, tmp;
6163 int dummy;
6164
6165 coding_mask = detect_coding_mask (src, src_bytes, NULL, &dummy, multibytep);
6166 eol_type = detect_eol_type (src, src_bytes, &dummy);
6167 if (eol_type == CODING_EOL_INCONSISTENT)
6168 eol_type = CODING_EOL_UNDECIDED;
6169
6170 if (!coding_mask)
6171 {
6172 val = Qundecided;
6173 if (eol_type != CODING_EOL_UNDECIDED)
6174 {
6175 Lisp_Object val2;
6176 val2 = Fget (Qundecided, Qeol_type);
6177 if (VECTORP (val2))
6178 val = XVECTOR (val2)->contents[eol_type];
6179 }
6180 return (highest ? val : Fcons (val, Qnil));
6181 }
6182
6183 /* At first, gather possible coding systems in VAL. */
6184 val = Qnil;
6185 for (tmp = Vcoding_category_list; CONSP (tmp); tmp = XCDR (tmp))
6186 {
6187 Lisp_Object category_val, category_index;
6188
6189 category_index = Fget (XCAR (tmp), Qcoding_category_index);
6190 category_val = Fsymbol_value (XCAR (tmp));
6191 if (!NILP (category_val)
6192 && NATNUMP (category_index)
6193 && (coding_mask & (1 << XFASTINT (category_index))))
6194 {
6195 val = Fcons (category_val, val);
6196 if (highest)
6197 break;
6198 }
6199 }
6200 if (!highest)
6201 val = Fnreverse (val);
6202
6203 /* Then, replace the elements with subsidiary coding systems. */
6204 for (tmp = val; CONSP (tmp); tmp = XCDR (tmp))
6205 {
6206 if (eol_type != CODING_EOL_UNDECIDED
6207 && eol_type != CODING_EOL_INCONSISTENT)
6208 {
6209 Lisp_Object eol;
6210 eol = Fget (XCAR (tmp), Qeol_type);
6211 if (VECTORP (eol))
6212 XSETCAR (tmp, XVECTOR (eol)->contents[eol_type]);
6213 }
6214 }
6215 return (highest ? XCAR (val) : val);
6216}
6217
6218DEFUN ("detect-coding-region", Fdetect_coding_region, Sdetect_coding_region,
6219 2, 3, 0,
6220 doc: /* Detect coding system of the text in the region between START and END.
6221Return a list of possible coding systems ordered by priority.
6222
6223If only ASCII characters are found, it returns a list of single element
6224`undecided' or its subsidiary coding system according to a detected
6225end-of-line format.
6226
6227If optional argument HIGHEST is non-nil, return the coding system of
6228highest priority. */)
6229 (start, end, highest)
6230 Lisp_Object start, end, highest;
6231{
6232 int from, to;
6233 int from_byte, to_byte;
6234 int include_anchor_byte = 0;
6235
6236 CHECK_NUMBER_COERCE_MARKER (start);
6237 CHECK_NUMBER_COERCE_MARKER (end);
6238
6239 validate_region (&start, &end);
6240 from = XINT (start), to = XINT (end);
6241 from_byte = CHAR_TO_BYTE (from);
6242 to_byte = CHAR_TO_BYTE (to);
6243
6244 if (from < GPT && to >= GPT)
6245 move_gap_both (to, to_byte);
6246 /* If we an anchor byte `\0' follows the region, we include it in
6247 the detecting source. Then code detectors can handle the tailing
6248 byte sequence more accurately.
6249
6250 Fix me: This is not an perfect solution. It is better that we
6251 add one more argument, say LAST_BLOCK, to all detect_coding_XXX.
6252 */
6253 if (to == Z || (to == GPT && GAP_SIZE > 0))
6254 include_anchor_byte = 1;
6255 return detect_coding_system (BYTE_POS_ADDR (from_byte),
6256 to_byte - from_byte + include_anchor_byte,
6257 !NILP (highest),
6258 !NILP (current_buffer
6259 ->enable_multibyte_characters));
6260}
6261
6262DEFUN ("detect-coding-string", Fdetect_coding_string, Sdetect_coding_string,
6263 1, 2, 0,
6264 doc: /* Detect coding system of the text in STRING.
6265Return a list of possible coding systems ordered by priority.
6266
6267If only ASCII characters are found, it returns a list of single element
6268`undecided' or its subsidiary coding system according to a detected
6269end-of-line format.
6270
6271If optional argument HIGHEST is non-nil, return the coding system of
6272highest priority. */)
6273 (string, highest)
6274 Lisp_Object string, highest;
6275{
6276 CHECK_STRING (string);
6277
6278 return detect_coding_system (XSTRING (string)->data,
6279 /* "+ 1" is to include the anchor byte
6280 `\0'. With this, code detectors can
6281 handle the tailing bytes more
6282 accurately. */
6283 STRING_BYTES (XSTRING (string)) + 1,
6284 !NILP (highest),
6285 STRING_MULTIBYTE (string));
6286}
6287
6288/* Return an intersection of lists L1 and L2. */
6289
6290static Lisp_Object
6291intersection (l1, l2)
6292 Lisp_Object l1, l2;
6293{
6294 Lisp_Object val;
6295
6296 for (val = Qnil; CONSP (l1); l1 = XCDR (l1))
6297 {
6298 if (!NILP (Fmemq (XCAR (l1), l2)))
6299 val = Fcons (XCAR (l1), val);
6300 }
6301 return val;
6302}
6303
6304
6305/* Subroutine for Fsafe_coding_systems_region_internal.
6306
6307 Return a list of coding systems that safely encode the multibyte
6308 text between P and PEND. SAFE_CODINGS, if non-nil, is a list of
6309 possible coding systems. If it is nil, it means that we have not
6310 yet found any coding systems.
6311
6312 WORK_TABLE is a copy of the char-table Vchar_coding_system_table. An
6313 element of WORK_TABLE is set to t once the element is looked up.
6314
6315 If a non-ASCII single byte char is found, set
6316 *single_byte_char_found to 1. */
6317
6318static Lisp_Object
6319find_safe_codings (p, pend, safe_codings, work_table, single_byte_char_found)
6320 unsigned char *p, *pend;
6321 Lisp_Object safe_codings, work_table;
6322 int *single_byte_char_found;
6323{
6324 int c, len, idx;
6325 Lisp_Object val;
6326
6327 while (p < pend)
6328 {
6329 c = STRING_CHAR_AND_LENGTH (p, pend - p, len);
6330 p += len;
6331 if (ASCII_BYTE_P (c))
6332 /* We can ignore ASCII characters here. */
6333 continue;
6334 if (SINGLE_BYTE_CHAR_P (c))
6335 *single_byte_char_found = 1;
6336 if (NILP (safe_codings))
6337 continue;
6338 /* Check the safe coding systems for C. */
6339 val = char_table_ref_and_index (work_table, c, &idx);
6340 if (EQ (val, Qt))
6341 /* This element was already checked. Ignore it. */
6342 continue;
6343 /* Remember that we checked this element. */
6344 CHAR_TABLE_SET (work_table, make_number (idx), Qt);
6345
6346 /* If there are some safe coding systems for C and we have
6347 already found the other set of coding systems for the
6348 different characters, get the intersection of them. */
6349 if (!EQ (safe_codings, Qt) && !NILP (val))
6350 val = intersection (safe_codings, val);
6351 safe_codings = val;
6352 }
6353 return safe_codings;
6354}
6355
6356
6357/* Return a list of coding systems that safely encode the text between
6358 START and END. If the text contains only ASCII or is unibyte,
6359 return t. */
6360
6361DEFUN ("find-coding-systems-region-internal",
6362 Ffind_coding_systems_region_internal,
6363 Sfind_coding_systems_region_internal, 2, 2, 0,
6364 doc: /* Internal use only. */)
6365 (start, end)
6366 Lisp_Object start, end;
6367{
6368 Lisp_Object work_table, safe_codings;
6369 int non_ascii_p = 0;
6370 int single_byte_char_found = 0;
6371 unsigned char *p1, *p1end, *p2, *p2end, *p;
6372
6373 if (STRINGP (start))
6374 {
6375 if (!STRING_MULTIBYTE (start))
6376 return Qt;
6377 p1 = XSTRING (start)->data, p1end = p1 + STRING_BYTES (XSTRING (start));
6378 p2 = p2end = p1end;
6379 if (XSTRING (start)->size != STRING_BYTES (XSTRING (start)))
6380 non_ascii_p = 1;
6381 }
6382 else
6383 {
6384 int from, to, stop;
6385
6386 CHECK_NUMBER_COERCE_MARKER (start);
6387 CHECK_NUMBER_COERCE_MARKER (end);
6388 if (XINT (start) < BEG || XINT (end) > Z || XINT (start) > XINT (end))
6389 args_out_of_range (start, end);
6390 if (NILP (current_buffer->enable_multibyte_characters))
6391 return Qt;
6392 from = CHAR_TO_BYTE (XINT (start));
6393 to = CHAR_TO_BYTE (XINT (end));
6394 stop = from < GPT_BYTE && GPT_BYTE < to ? GPT_BYTE : to;
6395 p1 = BYTE_POS_ADDR (from), p1end = p1 + (stop - from);
6396 if (stop == to)
6397 p2 = p2end = p1end;
6398 else
6399 p2 = BYTE_POS_ADDR (stop), p2end = p2 + (to - stop);
6400 if (XINT (end) - XINT (start) != to - from)
6401 non_ascii_p = 1;
6402 }
6403
6404 if (!non_ascii_p)
6405 {
6406 /* We are sure that the text contains no multibyte character.
6407 Check if it contains eight-bit-graphic. */
6408 p = p1;
6409 for (p = p1; p < p1end && ASCII_BYTE_P (*p); p++);
6410 if (p == p1end)
6411 {
6412 for (p = p2; p < p2end && ASCII_BYTE_P (*p); p++);
6413 if (p == p2end)
6414 return Qt;
6415 }
6416 }
6417
6418 /* The text contains non-ASCII characters. */
6419 work_table = Fcopy_sequence (Vchar_coding_system_table);
6420 safe_codings = find_safe_codings (p1, p1end, Qt, work_table,
6421 &single_byte_char_found);
6422 if (p2 < p2end)
6423 safe_codings = find_safe_codings (p2, p2end, safe_codings, work_table,
6424 &single_byte_char_found);
6425
6426 if (EQ (safe_codings, Qt))
6427 ; /* Nothing to be done. */
6428 else if (!single_byte_char_found)
6429 {
6430 /* Append generic coding systems. */
6431 Lisp_Object args[2];
6432 args[0] = safe_codings;
6433 args[1] = Fchar_table_extra_slot (Vchar_coding_system_table,
6434 make_number (0));
6435 safe_codings = Fappend (2, args);
6436 }
6437 else
6438 safe_codings = Fcons (Qraw_text,
6439 Fcons (Qemacs_mule,
6440 Fcons (Qno_conversion, safe_codings)));
6441 return safe_codings;
6442}
6443
6444
6445Lisp_Object
6446code_convert_region1 (start, end, coding_system, encodep)
6447 Lisp_Object start, end, coding_system;
6448 int encodep;
6449{
6450 struct coding_system coding;
6451 int from, to;
6452
6453 CHECK_NUMBER_COERCE_MARKER (start);
6454 CHECK_NUMBER_COERCE_MARKER (end);
6455 CHECK_SYMBOL (coding_system);
6456
6457 validate_region (&start, &end);
6458 from = XFASTINT (start);
6459 to = XFASTINT (end);
6460
6461 if (NILP (coding_system))
6462 return make_number (to - from);
6463
6464 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6465 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6466
6467 coding.mode |= CODING_MODE_LAST_BLOCK;
6468 coding.src_multibyte = coding.dst_multibyte
6469 = !NILP (current_buffer->enable_multibyte_characters);
6470 code_convert_region (from, CHAR_TO_BYTE (from), to, CHAR_TO_BYTE (to),
6471 &coding, encodep, 1);
6472 Vlast_coding_system_used = coding.symbol;
6473 return make_number (coding.produced_char);
6474}
6475
6476DEFUN ("decode-coding-region", Fdecode_coding_region, Sdecode_coding_region,
6477 3, 3, "r\nzCoding system: ",
6478 doc: /* Decode the current region from the specified coding system.
6479When called from a program, takes three arguments:
6480START, END, and CODING-SYSTEM. START and END are buffer positions.
6481This function sets `last-coding-system-used' to the precise coding system
6482used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6483not fully specified.)
6484It returns the length of the decoded text. */)
6485 (start, end, coding_system)
6486 Lisp_Object start, end, coding_system;
6487{
6488 return code_convert_region1 (start, end, coding_system, 0);
6489}
6490
6491DEFUN ("encode-coding-region", Fencode_coding_region, Sencode_coding_region,
6492 3, 3, "r\nzCoding system: ",
6493 doc: /* Encode the current region into the specified coding system.
6494When called from a program, takes three arguments:
6495START, END, and CODING-SYSTEM. START and END are buffer positions.
6496This function sets `last-coding-system-used' to the precise coding system
6497used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6498not fully specified.)
6499It returns the length of the encoded text. */)
6500 (start, end, coding_system)
6501 Lisp_Object start, end, coding_system;
6502{
6503 return code_convert_region1 (start, end, coding_system, 1);
6504}
6505
6506Lisp_Object
6507code_convert_string1 (string, coding_system, nocopy, encodep)
6508 Lisp_Object string, coding_system, nocopy;
6509 int encodep;
6510{
6511 struct coding_system coding;
6512
6513 CHECK_STRING (string);
6514 CHECK_SYMBOL (coding_system);
6515
6516 if (NILP (coding_system))
6517 return (NILP (nocopy) ? Fcopy_sequence (string) : string);
6518
6519 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6520 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6521
6522 coding.mode |= CODING_MODE_LAST_BLOCK;
6523 string = (encodep
6524 ? encode_coding_string (string, &coding, !NILP (nocopy))
6525 : decode_coding_string (string, &coding, !NILP (nocopy)));
6526 Vlast_coding_system_used = coding.symbol;
6527
6528 return string;
6529}
6530
6531DEFUN ("decode-coding-string", Fdecode_coding_string, Sdecode_coding_string,
6532 2, 3, 0,
6533 doc: /* Decode STRING which is encoded in CODING-SYSTEM, and return the result.
6534Optional arg NOCOPY non-nil means it is OK to return STRING itself
6535if the decoding operation is trivial.
6536This function sets `last-coding-system-used' to the precise coding system
6537used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6538not fully specified.) */)
6539 (string, coding_system, nocopy)
6540 Lisp_Object string, coding_system, nocopy;
6541{
6542 return code_convert_string1 (string, coding_system, nocopy, 0);
6543}
6544
6545DEFUN ("encode-coding-string", Fencode_coding_string, Sencode_coding_string,
6546 2, 3, 0,
6547 doc: /* Encode STRING to CODING-SYSTEM, and return the result.
6548Optional arg NOCOPY non-nil means it is OK to return STRING itself
6549if the encoding operation is trivial.
6550This function sets `last-coding-system-used' to the precise coding system
6551used (which may be different from CODING-SYSTEM if CODING-SYSTEM is
6552not fully specified.) */)
6553 (string, coding_system, nocopy)
6554 Lisp_Object string, coding_system, nocopy;
6555{
6556 return code_convert_string1 (string, coding_system, nocopy, 1);
6557}
6558
6559/* Encode or decode STRING according to CODING_SYSTEM.
6560 Do not set Vlast_coding_system_used.
6561
6562 This function is called only from macros DECODE_FILE and
6563 ENCODE_FILE, thus we ignore character composition. */
6564
6565Lisp_Object
6566code_convert_string_norecord (string, coding_system, encodep)
6567 Lisp_Object string, coding_system;
6568 int encodep;
6569{
6570 struct coding_system coding;
6571
6572 CHECK_STRING (string);
6573 CHECK_SYMBOL (coding_system);
6574
6575 if (NILP (coding_system))
6576 return string;
6577
6578 if (setup_coding_system (Fcheck_coding_system (coding_system), &coding) < 0)
6579 error ("Invalid coding system: %s", XSYMBOL (coding_system)->name->data);
6580
6581 coding.composing = COMPOSITION_DISABLED;
6582 coding.mode |= CODING_MODE_LAST_BLOCK;
6583 return (encodep
6584 ? encode_coding_string (string, &coding, 1)
6585 : decode_coding_string (string, &coding, 1));
6586}
6587\f
6588DEFUN ("decode-sjis-char", Fdecode_sjis_char, Sdecode_sjis_char, 1, 1, 0,
6589 doc: /* Decode a Japanese character which has CODE in shift_jis encoding.
6590Return the corresponding character. */)
6591 (code)
6592 Lisp_Object code;
6593{
6594 unsigned char c1, c2, s1, s2;
6595 Lisp_Object val;
6596
6597 CHECK_NUMBER (code);
6598 s1 = (XFASTINT (code)) >> 8, s2 = (XFASTINT (code)) & 0xFF;
6599 if (s1 == 0)
6600 {
6601 if (s2 < 0x80)
6602 XSETFASTINT (val, s2);
6603 else if (s2 >= 0xA0 || s2 <= 0xDF)
6604 XSETFASTINT (val, MAKE_CHAR (charset_katakana_jisx0201, s2, 0));
6605 else
6606 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6607 }
6608 else
6609 {
6610 if ((s1 < 0x80 || s1 > 0x9F && s1 < 0xE0 || s1 > 0xEF)
6611 || (s2 < 0x40 || s2 == 0x7F || s2 > 0xFC))
6612 error ("Invalid Shift JIS code: %x", XFASTINT (code));
6613 DECODE_SJIS (s1, s2, c1, c2);
6614 XSETFASTINT (val, MAKE_CHAR (charset_jisx0208, c1, c2));
6615 }
6616 return val;
6617}
6618
6619DEFUN ("encode-sjis-char", Fencode_sjis_char, Sencode_sjis_char, 1, 1, 0,
6620 doc: /* Encode a Japanese character CHAR to shift_jis encoding.
6621Return the corresponding code in SJIS. */)
6622 (ch)
6623 Lisp_Object ch;
6624{
6625 int charset, c1, c2, s1, s2;
6626 Lisp_Object val;
6627
6628 CHECK_NUMBER (ch);
6629 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6630 if (charset == CHARSET_ASCII)
6631 {
6632 val = ch;
6633 }
6634 else if (charset == charset_jisx0208
6635 && c1 > 0x20 && c1 < 0x7F && c2 > 0x20 && c2 < 0x7F)
6636 {
6637 ENCODE_SJIS (c1, c2, s1, s2);
6638 XSETFASTINT (val, (s1 << 8) | s2);
6639 }
6640 else if (charset == charset_katakana_jisx0201
6641 && c1 > 0x20 && c2 < 0xE0)
6642 {
6643 XSETFASTINT (val, c1 | 0x80);
6644 }
6645 else
6646 error ("Can't encode to shift_jis: %d", XFASTINT (ch));
6647 return val;
6648}
6649
6650DEFUN ("decode-big5-char", Fdecode_big5_char, Sdecode_big5_char, 1, 1, 0,
6651 doc: /* Decode a Big5 character which has CODE in BIG5 coding system.
6652Return the corresponding character. */)
6653 (code)
6654 Lisp_Object code;
6655{
6656 int charset;
6657 unsigned char b1, b2, c1, c2;
6658 Lisp_Object val;
6659
6660 CHECK_NUMBER (code);
6661 b1 = (XFASTINT (code)) >> 8, b2 = (XFASTINT (code)) & 0xFF;
6662 if (b1 == 0)
6663 {
6664 if (b2 >= 0x80)
6665 error ("Invalid BIG5 code: %x", XFASTINT (code));
6666 val = code;
6667 }
6668 else
6669 {
6670 if ((b1 < 0xA1 || b1 > 0xFE)
6671 || (b2 < 0x40 || (b2 > 0x7E && b2 < 0xA1) || b2 > 0xFE))
6672 error ("Invalid BIG5 code: %x", XFASTINT (code));
6673 DECODE_BIG5 (b1, b2, charset, c1, c2);
6674 XSETFASTINT (val, MAKE_CHAR (charset, c1, c2));
6675 }
6676 return val;
6677}
6678
6679DEFUN ("encode-big5-char", Fencode_big5_char, Sencode_big5_char, 1, 1, 0,
6680 doc: /* Encode the Big5 character CHAR to BIG5 coding system.
6681Return the corresponding character code in Big5. */)
6682 (ch)
6683 Lisp_Object ch;
6684{
6685 int charset, c1, c2, b1, b2;
6686 Lisp_Object val;
6687
6688 CHECK_NUMBER (ch);
6689 SPLIT_CHAR (XFASTINT (ch), charset, c1, c2);
6690 if (charset == CHARSET_ASCII)
6691 {
6692 val = ch;
6693 }
6694 else if ((charset == charset_big5_1
6695 && (XFASTINT (ch) >= 0x250a1 && XFASTINT (ch) <= 0x271ec))
6696 || (charset == charset_big5_2
6697 && XFASTINT (ch) >= 0x290a1 && XFASTINT (ch) <= 0x2bdb2))
6698 {
6699 ENCODE_BIG5 (charset, c1, c2, b1, b2);
6700 XSETFASTINT (val, (b1 << 8) | b2);
6701 }
6702 else
6703 error ("Can't encode to Big5: %d", XFASTINT (ch));
6704 return val;
6705}
6706\f
6707DEFUN ("set-terminal-coding-system-internal",
6708 Fset_terminal_coding_system_internal,
6709 Sset_terminal_coding_system_internal, 1, 1, 0,
6710 doc: /* Internal use only. */)
6711 (coding_system)
6712 Lisp_Object coding_system;
6713{
6714 CHECK_SYMBOL (coding_system);
6715 setup_coding_system (Fcheck_coding_system (coding_system), &terminal_coding);
6716 /* We had better not send unsafe characters to terminal. */
6717 terminal_coding.flags |= CODING_FLAG_ISO_SAFE;
6718 /* Character composition should be disabled. */
6719 terminal_coding.composing = COMPOSITION_DISABLED;
6720 /* Error notification should be suppressed. */
6721 terminal_coding.suppress_error = 1;
6722 terminal_coding.src_multibyte = 1;
6723 terminal_coding.dst_multibyte = 0;
6724 return Qnil;
6725}
6726
6727DEFUN ("set-safe-terminal-coding-system-internal",
6728 Fset_safe_terminal_coding_system_internal,
6729 Sset_safe_terminal_coding_system_internal, 1, 1, 0,
6730 doc: /* Internal use only. */)
6731 (coding_system)
6732 Lisp_Object coding_system;
6733{
6734 CHECK_SYMBOL (coding_system);
6735 setup_coding_system (Fcheck_coding_system (coding_system),
6736 &safe_terminal_coding);
6737 /* Character composition should be disabled. */
6738 safe_terminal_coding.composing = COMPOSITION_DISABLED;
6739 /* Error notification should be suppressed. */
6740 terminal_coding.suppress_error = 1;
6741 safe_terminal_coding.src_multibyte = 1;
6742 safe_terminal_coding.dst_multibyte = 0;
6743 return Qnil;
6744}
6745
6746DEFUN ("terminal-coding-system",
6747 Fterminal_coding_system, Sterminal_coding_system, 0, 0, 0,
6748 doc: /* Return coding system specified for terminal output. */)
6749 ()
6750{
6751 return terminal_coding.symbol;
6752}
6753
6754DEFUN ("set-keyboard-coding-system-internal",
6755 Fset_keyboard_coding_system_internal,
6756 Sset_keyboard_coding_system_internal, 1, 1, 0,
6757 doc: /* Internal use only. */)
6758 (coding_system)
6759 Lisp_Object coding_system;
6760{
6761 CHECK_SYMBOL (coding_system);
6762 setup_coding_system (Fcheck_coding_system (coding_system), &keyboard_coding);
6763 /* Character composition should be disabled. */
6764 keyboard_coding.composing = COMPOSITION_DISABLED;
6765 return Qnil;
6766}
6767
6768DEFUN ("keyboard-coding-system",
6769 Fkeyboard_coding_system, Skeyboard_coding_system, 0, 0, 0,
6770 doc: /* Return coding system specified for decoding keyboard input. */)
6771 ()
6772{
6773 return keyboard_coding.symbol;
6774}
6775
6776\f
6777DEFUN ("find-operation-coding-system", Ffind_operation_coding_system,
6778 Sfind_operation_coding_system, 1, MANY, 0,
6779 doc: /* Choose a coding system for an operation based on the target name.
6780The value names a pair of coding systems: (DECODING-SYSTEM . ENCODING-SYSTEM).
6781DECODING-SYSTEM is the coding system to use for decoding
6782\(in case OPERATION does decoding), and ENCODING-SYSTEM is the coding system
6783for encoding (in case OPERATION does encoding).
6784
6785The first argument OPERATION specifies an I/O primitive:
6786 For file I/O, `insert-file-contents' or `write-region'.
6787 For process I/O, `call-process', `call-process-region', or `start-process'.
6788 For network I/O, `open-network-stream'.
6789
6790The remaining arguments should be the same arguments that were passed
6791to the primitive. Depending on which primitive, one of those arguments
6792is selected as the TARGET. For example, if OPERATION does file I/O,
6793whichever argument specifies the file name is TARGET.
6794
6795TARGET has a meaning which depends on OPERATION:
6796 For file I/O, TARGET is a file name.
6797 For process I/O, TARGET is a process name.
6798 For network I/O, TARGET is a service name or a port number
6799
6800This function looks up what specified for TARGET in,
6801`file-coding-system-alist', `process-coding-system-alist',
6802or `network-coding-system-alist' depending on OPERATION.
6803They may specify a coding system, a cons of coding systems,
6804or a function symbol to call.
6805In the last case, we call the function with one argument,
6806which is a list of all the arguments given to this function.
6807
6808usage: (find-operation-coding-system OPERATION ARGUMENTS ...) */)
6809 (nargs, args)
6810 int nargs;
6811 Lisp_Object *args;
6812{
6813 Lisp_Object operation, target_idx, target, val;
6814 register Lisp_Object chain;
6815
6816 if (nargs < 2)
6817 error ("Too few arguments");
6818 operation = args[0];
6819 if (!SYMBOLP (operation)
6820 || !INTEGERP (target_idx = Fget (operation, Qtarget_idx)))
6821 error ("Invalid first argument");
6822 if (nargs < 1 + XINT (target_idx))
6823 error ("Too few arguments for operation: %s",
6824 XSYMBOL (operation)->name->data);
6825 target = args[XINT (target_idx) + 1];
6826 if (!(STRINGP (target)
6827 || (EQ (operation, Qopen_network_stream) && INTEGERP (target))))
6828 error ("Invalid argument %d", XINT (target_idx) + 1);
6829
6830 chain = ((EQ (operation, Qinsert_file_contents)
6831 || EQ (operation, Qwrite_region))
6832 ? Vfile_coding_system_alist
6833 : (EQ (operation, Qopen_network_stream)
6834 ? Vnetwork_coding_system_alist
6835 : Vprocess_coding_system_alist));
6836 if (NILP (chain))
6837 return Qnil;
6838
6839 for (; CONSP (chain); chain = XCDR (chain))
6840 {
6841 Lisp_Object elt;
6842 elt = XCAR (chain);
6843
6844 if (CONSP (elt)
6845 && ((STRINGP (target)
6846 && STRINGP (XCAR (elt))
6847 && fast_string_match (XCAR (elt), target) >= 0)
6848 || (INTEGERP (target) && EQ (target, XCAR (elt)))))
6849 {
6850 val = XCDR (elt);
6851 /* Here, if VAL is both a valid coding system and a valid
6852 function symbol, we return VAL as a coding system. */
6853 if (CONSP (val))
6854 return val;
6855 if (! SYMBOLP (val))
6856 return Qnil;
6857 if (! NILP (Fcoding_system_p (val)))
6858 return Fcons (val, val);
6859 if (! NILP (Ffboundp (val)))
6860 {
6861 val = call1 (val, Flist (nargs, args));
6862 if (CONSP (val))
6863 return val;
6864 if (SYMBOLP (val) && ! NILP (Fcoding_system_p (val)))
6865 return Fcons (val, val);
6866 }
6867 return Qnil;
6868 }
6869 }
6870 return Qnil;
6871}
6872
6873DEFUN ("update-coding-systems-internal", Fupdate_coding_systems_internal,
6874 Supdate_coding_systems_internal, 0, 0, 0,
6875 doc: /* Update internal database for ISO2022 and CCL based coding systems.
6876When values of any coding categories are changed, you must
6877call this function. */)
6878 ()
6879{
6880 int i;
6881
6882 for (i = CODING_CATEGORY_IDX_EMACS_MULE; i < CODING_CATEGORY_IDX_MAX; i++)
6883 {
6884 Lisp_Object val;
6885
6886 val = SYMBOL_VALUE (XVECTOR (Vcoding_category_table)->contents[i]);
6887 if (!NILP (val))
6888 {
6889 if (! coding_system_table[i])
6890 coding_system_table[i] = ((struct coding_system *)
6891 xmalloc (sizeof (struct coding_system)));
6892 setup_coding_system (val, coding_system_table[i]);
6893 }
6894 else if (coding_system_table[i])
6895 {
6896 xfree (coding_system_table[i]);
6897 coding_system_table[i] = NULL;
6898 }
6899 }
6900
6901 return Qnil;
6902}
6903
6904DEFUN ("set-coding-priority-internal", Fset_coding_priority_internal,
6905 Sset_coding_priority_internal, 0, 0, 0,
6906 doc: /* Update internal database for the current value of `coding-category-list'.
6907This function is internal use only. */)
6908 ()
6909{
6910 int i = 0, idx;
6911 Lisp_Object val;
6912
6913 val = Vcoding_category_list;
6914
6915 while (CONSP (val) && i < CODING_CATEGORY_IDX_MAX)
6916 {
6917 if (! SYMBOLP (XCAR (val)))
6918 break;
6919 idx = XFASTINT (Fget (XCAR (val), Qcoding_category_index));
6920 if (idx >= CODING_CATEGORY_IDX_MAX)
6921 break;
6922 coding_priorities[i++] = (1 << idx);
6923 val = XCDR (val);
6924 }
6925 /* If coding-category-list is valid and contains all coding
6926 categories, `i' should be CODING_CATEGORY_IDX_MAX now. If not,
6927 the following code saves Emacs from crashing. */
6928 while (i < CODING_CATEGORY_IDX_MAX)
6929 coding_priorities[i++] = CODING_CATEGORY_MASK_RAW_TEXT;
6930
6931 return Qnil;
6932}
6933
6934#endif /* emacs */
6935
6936\f
6937/*** 9. Post-amble ***/
6938
6939void
6940init_coding_once ()
6941{
6942 int i;
6943
6944 /* Emacs' internal format specific initialize routine. */
6945 for (i = 0; i <= 0x20; i++)
6946 emacs_code_class[i] = EMACS_control_code;
6947 emacs_code_class[0x0A] = EMACS_linefeed_code;
6948 emacs_code_class[0x0D] = EMACS_carriage_return_code;
6949 for (i = 0x21 ; i < 0x7F; i++)
6950 emacs_code_class[i] = EMACS_ascii_code;
6951 emacs_code_class[0x7F] = EMACS_control_code;
6952 for (i = 0x80; i < 0xFF; i++)
6953 emacs_code_class[i] = EMACS_invalid_code;
6954 emacs_code_class[LEADING_CODE_PRIVATE_11] = EMACS_leading_code_3;
6955 emacs_code_class[LEADING_CODE_PRIVATE_12] = EMACS_leading_code_3;
6956 emacs_code_class[LEADING_CODE_PRIVATE_21] = EMACS_leading_code_4;
6957 emacs_code_class[LEADING_CODE_PRIVATE_22] = EMACS_leading_code_4;
6958
6959 /* ISO2022 specific initialize routine. */
6960 for (i = 0; i < 0x20; i++)
6961 iso_code_class[i] = ISO_control_0;
6962 for (i = 0x21; i < 0x7F; i++)
6963 iso_code_class[i] = ISO_graphic_plane_0;
6964 for (i = 0x80; i < 0xA0; i++)
6965 iso_code_class[i] = ISO_control_1;
6966 for (i = 0xA1; i < 0xFF; i++)
6967 iso_code_class[i] = ISO_graphic_plane_1;
6968 iso_code_class[0x20] = iso_code_class[0x7F] = ISO_0x20_or_0x7F;
6969 iso_code_class[0xA0] = iso_code_class[0xFF] = ISO_0xA0_or_0xFF;
6970 iso_code_class[ISO_CODE_CR] = ISO_carriage_return;
6971 iso_code_class[ISO_CODE_SO] = ISO_shift_out;
6972 iso_code_class[ISO_CODE_SI] = ISO_shift_in;
6973 iso_code_class[ISO_CODE_SS2_7] = ISO_single_shift_2_7;
6974 iso_code_class[ISO_CODE_ESC] = ISO_escape;
6975 iso_code_class[ISO_CODE_SS2] = ISO_single_shift_2;
6976 iso_code_class[ISO_CODE_SS3] = ISO_single_shift_3;
6977 iso_code_class[ISO_CODE_CSI] = ISO_control_sequence_introducer;
6978
6979 setup_coding_system (Qnil, &keyboard_coding);
6980 setup_coding_system (Qnil, &terminal_coding);
6981 setup_coding_system (Qnil, &safe_terminal_coding);
6982 setup_coding_system (Qnil, &default_buffer_file_coding);
6983
6984 bzero (coding_system_table, sizeof coding_system_table);
6985
6986 bzero (ascii_skip_code, sizeof ascii_skip_code);
6987 for (i = 0; i < 128; i++)
6988 ascii_skip_code[i] = 1;
6989
6990#if defined (MSDOS) || defined (WINDOWSNT)
6991 system_eol_type = CODING_EOL_CRLF;
6992#else
6993 system_eol_type = CODING_EOL_LF;
6994#endif
6995
6996 inhibit_pre_post_conversion = 0;
6997}
6998
6999#ifdef emacs
7000
7001void
7002syms_of_coding ()
7003{
7004 Qtarget_idx = intern ("target-idx");
7005 staticpro (&Qtarget_idx);
7006
7007 Qcoding_system_history = intern ("coding-system-history");
7008 staticpro (&Qcoding_system_history);
7009 Fset (Qcoding_system_history, Qnil);
7010
7011 /* Target FILENAME is the first argument. */
7012 Fput (Qinsert_file_contents, Qtarget_idx, make_number (0));
7013 /* Target FILENAME is the third argument. */
7014 Fput (Qwrite_region, Qtarget_idx, make_number (2));
7015
7016 Qcall_process = intern ("call-process");
7017 staticpro (&Qcall_process);
7018 /* Target PROGRAM is the first argument. */
7019 Fput (Qcall_process, Qtarget_idx, make_number (0));
7020
7021 Qcall_process_region = intern ("call-process-region");
7022 staticpro (&Qcall_process_region);
7023 /* Target PROGRAM is the third argument. */
7024 Fput (Qcall_process_region, Qtarget_idx, make_number (2));
7025
7026 Qstart_process = intern ("start-process");
7027 staticpro (&Qstart_process);
7028 /* Target PROGRAM is the third argument. */
7029 Fput (Qstart_process, Qtarget_idx, make_number (2));
7030
7031 Qopen_network_stream = intern ("open-network-stream");
7032 staticpro (&Qopen_network_stream);
7033 /* Target SERVICE is the fourth argument. */
7034 Fput (Qopen_network_stream, Qtarget_idx, make_number (3));
7035
7036 Qcoding_system = intern ("coding-system");
7037 staticpro (&Qcoding_system);
7038
7039 Qeol_type = intern ("eol-type");
7040 staticpro (&Qeol_type);
7041
7042 Qbuffer_file_coding_system = intern ("buffer-file-coding-system");
7043 staticpro (&Qbuffer_file_coding_system);
7044
7045 Qpost_read_conversion = intern ("post-read-conversion");
7046 staticpro (&Qpost_read_conversion);
7047
7048 Qpre_write_conversion = intern ("pre-write-conversion");
7049 staticpro (&Qpre_write_conversion);
7050
7051 Qno_conversion = intern ("no-conversion");
7052 staticpro (&Qno_conversion);
7053
7054 Qundecided = intern ("undecided");
7055 staticpro (&Qundecided);
7056
7057 Qcoding_system_p = intern ("coding-system-p");
7058 staticpro (&Qcoding_system_p);
7059
7060 Qcoding_system_error = intern ("coding-system-error");
7061 staticpro (&Qcoding_system_error);
7062
7063 Fput (Qcoding_system_error, Qerror_conditions,
7064 Fcons (Qcoding_system_error, Fcons (Qerror, Qnil)));
7065 Fput (Qcoding_system_error, Qerror_message,
7066 build_string ("Invalid coding system"));
7067
7068 Qcoding_category = intern ("coding-category");
7069 staticpro (&Qcoding_category);
7070 Qcoding_category_index = intern ("coding-category-index");
7071 staticpro (&Qcoding_category_index);
7072
7073 Vcoding_category_table
7074 = Fmake_vector (make_number (CODING_CATEGORY_IDX_MAX), Qnil);
7075 staticpro (&Vcoding_category_table);
7076 {
7077 int i;
7078 for (i = 0; i < CODING_CATEGORY_IDX_MAX; i++)
7079 {
7080 XVECTOR (Vcoding_category_table)->contents[i]
7081 = intern (coding_category_name[i]);
7082 Fput (XVECTOR (Vcoding_category_table)->contents[i],
7083 Qcoding_category_index, make_number (i));
7084 }
7085 }
7086
7087 Qtranslation_table = intern ("translation-table");
7088 staticpro (&Qtranslation_table);
7089 Fput (Qtranslation_table, Qchar_table_extra_slots, make_number (1));
7090
7091 Qtranslation_table_id = intern ("translation-table-id");
7092 staticpro (&Qtranslation_table_id);
7093
7094 Qtranslation_table_for_decode = intern ("translation-table-for-decode");
7095 staticpro (&Qtranslation_table_for_decode);
7096
7097 Qtranslation_table_for_encode = intern ("translation-table-for-encode");
7098 staticpro (&Qtranslation_table_for_encode);
7099
7100 Qsafe_chars = intern ("safe-chars");
7101 staticpro (&Qsafe_chars);
7102
7103 Qchar_coding_system = intern ("char-coding-system");
7104 staticpro (&Qchar_coding_system);
7105
7106 /* Intern this now in case it isn't already done.
7107 Setting this variable twice is harmless.
7108 But don't staticpro it here--that is done in alloc.c. */
7109 Qchar_table_extra_slots = intern ("char-table-extra-slots");
7110 Fput (Qsafe_chars, Qchar_table_extra_slots, make_number (0));
7111 Fput (Qchar_coding_system, Qchar_table_extra_slots, make_number (1));
7112
7113 Qvalid_codes = intern ("valid-codes");
7114 staticpro (&Qvalid_codes);
7115
7116 Qemacs_mule = intern ("emacs-mule");
7117 staticpro (&Qemacs_mule);
7118
7119 Qraw_text = intern ("raw-text");
7120 staticpro (&Qraw_text);
7121
7122 defsubr (&Scoding_system_p);
7123 defsubr (&Sread_coding_system);
7124 defsubr (&Sread_non_nil_coding_system);
7125 defsubr (&Scheck_coding_system);
7126 defsubr (&Sdetect_coding_region);
7127 defsubr (&Sdetect_coding_string);
7128 defsubr (&Sfind_coding_systems_region_internal);
7129 defsubr (&Sdecode_coding_region);
7130 defsubr (&Sencode_coding_region);
7131 defsubr (&Sdecode_coding_string);
7132 defsubr (&Sencode_coding_string);
7133 defsubr (&Sdecode_sjis_char);
7134 defsubr (&Sencode_sjis_char);
7135 defsubr (&Sdecode_big5_char);
7136 defsubr (&Sencode_big5_char);
7137 defsubr (&Sset_terminal_coding_system_internal);
7138 defsubr (&Sset_safe_terminal_coding_system_internal);
7139 defsubr (&Sterminal_coding_system);
7140 defsubr (&Sset_keyboard_coding_system_internal);
7141 defsubr (&Skeyboard_coding_system);
7142 defsubr (&Sfind_operation_coding_system);
7143 defsubr (&Supdate_coding_systems_internal);
7144 defsubr (&Sset_coding_priority_internal);
7145
7146 DEFVAR_LISP ("coding-system-list", &Vcoding_system_list,
7147 doc: /* List of coding systems.
7148
7149Do not alter the value of this variable manually. This variable should be
7150updated by the functions `make-coding-system' and
7151`define-coding-system-alias'. */);
7152 Vcoding_system_list = Qnil;
7153
7154 DEFVAR_LISP ("coding-system-alist", &Vcoding_system_alist,
7155 doc: /* Alist of coding system names.
7156Each element is one element list of coding system name.
7157This variable is given to `completing-read' as TABLE argument.
7158
7159Do not alter the value of this variable manually. This variable should be
7160updated by the functions `make-coding-system' and
7161`define-coding-system-alias'. */);
7162 Vcoding_system_alist = Qnil;
7163
7164 DEFVAR_LISP ("coding-category-list", &Vcoding_category_list,
7165 doc: /* List of coding-categories (symbols) ordered by priority.
7166
7167On detecting a coding system, Emacs tries code detection algorithms
7168associated with each coding-category one by one in this order. When
7169one algorithm agrees with a byte sequence of source text, the coding
7170system bound to the corresponding coding-category is selected. */);
7171 {
7172 int i;
7173
7174 Vcoding_category_list = Qnil;
7175 for (i = CODING_CATEGORY_IDX_MAX - 1; i >= 0; i--)
7176 Vcoding_category_list
7177 = Fcons (XVECTOR (Vcoding_category_table)->contents[i],
7178 Vcoding_category_list);
7179 }
7180
7181 DEFVAR_LISP ("coding-system-for-read", &Vcoding_system_for_read,
7182 doc: /* Specify the coding system for read operations.
7183It is useful to bind this variable with `let', but do not set it globally.
7184If the value is a coding system, it is used for decoding on read operation.
7185If not, an appropriate element is used from one of the coding system alists:
7186There are three such tables, `file-coding-system-alist',
7187`process-coding-system-alist', and `network-coding-system-alist'. */);
7188 Vcoding_system_for_read = Qnil;
7189
7190 DEFVAR_LISP ("coding-system-for-write", &Vcoding_system_for_write,
7191 doc: /* Specify the coding system for write operations.
7192Programs bind this variable with `let', but you should not set it globally.
7193If the value is a coding system, it is used for encoding of output,
7194when writing it to a file and when sending it to a file or subprocess.
7195
7196If this does not specify a coding system, an appropriate element
7197is used from one of the coding system alists:
7198There are three such tables, `file-coding-system-alist',
7199`process-coding-system-alist', and `network-coding-system-alist'.
7200For output to files, if the above procedure does not specify a coding system,
7201the value of `buffer-file-coding-system' is used. */);
7202 Vcoding_system_for_write = Qnil;
7203
7204 DEFVAR_LISP ("last-coding-system-used", &Vlast_coding_system_used,
7205 doc: /* Coding system used in the latest file or process I/O. */);
7206 Vlast_coding_system_used = Qnil;
7207
7208 DEFVAR_BOOL ("inhibit-eol-conversion", &inhibit_eol_conversion,
7209 doc: /* *Non-nil means always inhibit code conversion of end-of-line format.
7210See info node `Coding Systems' and info node `Text and Binary' concerning
7211such conversion. */);
7212 inhibit_eol_conversion = 0;
7213
7214 DEFVAR_BOOL ("inherit-process-coding-system", &inherit_process_coding_system,
7215 doc: /* Non-nil means process buffer inherits coding system of process output.
7216Bind it to t if the process output is to be treated as if it were a file
7217read from some filesystem. */);
7218 inherit_process_coding_system = 0;
7219
7220 DEFVAR_LISP ("file-coding-system-alist", &Vfile_coding_system_alist,
7221 doc: /* Alist to decide a coding system to use for a file I/O operation.
7222The format is ((PATTERN . VAL) ...),
7223where PATTERN is a regular expression matching a file name,
7224VAL is a coding system, a cons of coding systems, or a function symbol.
7225If VAL is a coding system, it is used for both decoding and encoding
7226the file contents.
7227If VAL is a cons of coding systems, the car part is used for decoding,
7228and the cdr part is used for encoding.
7229If VAL is a function symbol, the function must return a coding system
7230or a cons of coding systems which are used as above.
7231
7232See also the function `find-operation-coding-system'
7233and the variable `auto-coding-alist'. */);
7234 Vfile_coding_system_alist = Qnil;
7235
7236 DEFVAR_LISP ("process-coding-system-alist", &Vprocess_coding_system_alist,
7237 doc: /* Alist to decide a coding system to use for a process I/O operation.
7238The format is ((PATTERN . VAL) ...),
7239where PATTERN is a regular expression matching a program name,
7240VAL is a coding system, a cons of coding systems, or a function symbol.
7241If VAL is a coding system, it is used for both decoding what received
7242from the program and encoding what sent to the program.
7243If VAL is a cons of coding systems, the car part is used for decoding,
7244and the cdr part is used for encoding.
7245If VAL is a function symbol, the function must return a coding system
7246or a cons of coding systems which are used as above.
7247
7248See also the function `find-operation-coding-system'. */);
7249 Vprocess_coding_system_alist = Qnil;
7250
7251 DEFVAR_LISP ("network-coding-system-alist", &Vnetwork_coding_system_alist,
7252 doc: /* Alist to decide a coding system to use for a network I/O operation.
7253The format is ((PATTERN . VAL) ...),
7254where PATTERN is a regular expression matching a network service name
7255or is a port number to connect to,
7256VAL is a coding system, a cons of coding systems, or a function symbol.
7257If VAL is a coding system, it is used for both decoding what received
7258from the network stream and encoding what sent to the network stream.
7259If VAL is a cons of coding systems, the car part is used for decoding,
7260and the cdr part is used for encoding.
7261If VAL is a function symbol, the function must return a coding system
7262or a cons of coding systems which are used as above.
7263
7264See also the function `find-operation-coding-system'. */);
7265 Vnetwork_coding_system_alist = Qnil;
7266
7267 DEFVAR_LISP ("locale-coding-system", &Vlocale_coding_system,
7268 doc: /* Coding system to use with system messages. Also used for decoding
7269keyboard input on X Window system. */);
7270 Vlocale_coding_system = Qnil;
7271
7272 /* The eol mnemonics are reset in startup.el system-dependently. */
7273 DEFVAR_LISP ("eol-mnemonic-unix", &eol_mnemonic_unix,
7274 doc: /* *String displayed in mode line for UNIX-like (LF) end-of-line format. */);
7275 eol_mnemonic_unix = build_string (":");
7276
7277 DEFVAR_LISP ("eol-mnemonic-dos", &eol_mnemonic_dos,
7278 doc: /* *String displayed in mode line for DOS-like (CRLF) end-of-line format. */);
7279 eol_mnemonic_dos = build_string ("\\");
7280
7281 DEFVAR_LISP ("eol-mnemonic-mac", &eol_mnemonic_mac,
7282 doc: /* *String displayed in mode line for MAC-like (CR) end-of-line format. */);
7283 eol_mnemonic_mac = build_string ("/");
7284
7285 DEFVAR_LISP ("eol-mnemonic-undecided", &eol_mnemonic_undecided,
7286 doc: /* *String displayed in mode line when end-of-line format is not yet determined. */);
7287 eol_mnemonic_undecided = build_string (":");
7288
7289 DEFVAR_LISP ("enable-character-translation", &Venable_character_translation,
7290 doc: /* *Non-nil enables character translation while encoding and decoding. */);
7291 Venable_character_translation = Qt;
7292
7293 DEFVAR_LISP ("standard-translation-table-for-decode",
7294 &Vstandard_translation_table_for_decode,
7295 doc: /* Table for translating characters while decoding. */);
7296 Vstandard_translation_table_for_decode = Qnil;
7297
7298 DEFVAR_LISP ("standard-translation-table-for-encode",
7299 &Vstandard_translation_table_for_encode,
7300 doc: /* Table for translating characters while encoding. */);
7301 Vstandard_translation_table_for_encode = Qnil;
7302
7303 DEFVAR_LISP ("charset-revision-table", &Vcharset_revision_alist,
7304 doc: /* Alist of charsets vs revision numbers.
7305While encoding, if a charset (car part of an element) is found,
7306designate it with the escape sequence identifying revision (cdr part of the element). */);
7307 Vcharset_revision_alist = Qnil;
7308
7309 DEFVAR_LISP ("default-process-coding-system",
7310 &Vdefault_process_coding_system,
7311 doc: /* Cons of coding systems used for process I/O by default.
7312The car part is used for decoding a process output,
7313the cdr part is used for encoding a text to be sent to a process. */);
7314 Vdefault_process_coding_system = Qnil;
7315
7316 DEFVAR_LISP ("latin-extra-code-table", &Vlatin_extra_code_table,
7317 doc: /* Table of extra Latin codes in the range 128..159 (inclusive).
7318This is a vector of length 256.
7319If Nth element is non-nil, the existence of code N in a file
7320\(or output of subprocess) doesn't prevent it to be detected as
7321a coding system of ISO 2022 variant which has a flag
7322`accept-latin-extra-code' t (e.g. iso-latin-1) on reading a file
7323or reading output of a subprocess.
7324Only 128th through 159th elements has a meaning. */);
7325 Vlatin_extra_code_table = Fmake_vector (make_number (256), Qnil);
7326
7327 DEFVAR_LISP ("select-safe-coding-system-function",
7328 &Vselect_safe_coding_system_function,
7329 doc: /* Function to call to select safe coding system for encoding a text.
7330
7331If set, this function is called to force a user to select a proper
7332coding system which can encode the text in the case that a default
7333coding system used in each operation can't encode the text.
7334
7335The default value is `select-safe-coding-system' (which see). */);
7336 Vselect_safe_coding_system_function = Qnil;
7337
7338 DEFVAR_LISP ("char-coding-system-table", &Vchar_coding_system_table,
7339 doc: /* Char-table containing safe coding systems of each characters.
7340Each element doesn't include such generic coding systems that can
7341encode any characters. They are in the first extra slot. */);
7342 Vchar_coding_system_table = Fmake_char_table (Qchar_coding_system, Qnil);
7343
7344 DEFVAR_BOOL ("inhibit-iso-escape-detection",
7345 &inhibit_iso_escape_detection,
7346 doc: /* If non-nil, Emacs ignores ISO2022's escape sequence on code detection.
7347
7348By default, on reading a file, Emacs tries to detect how the text is
7349encoded. This code detection is sensitive to escape sequences. If
7350the sequence is valid as ISO2022, the code is determined as one of
7351the ISO2022 encodings, and the file is decoded by the corresponding
7352coding system (e.g. `iso-2022-7bit').
7353
7354However, there may be a case that you want to read escape sequences in
7355a file as is. In such a case, you can set this variable to non-nil.
7356Then, as the code detection ignores any escape sequences, no file is
7357detected as encoded in some ISO2022 encoding. The result is that all
7358escape sequences become visible in a buffer.
7359
7360The default value is nil, and it is strongly recommended not to change
7361it. That is because many Emacs Lisp source files that contain
7362non-ASCII characters are encoded by the coding system `iso-2022-7bit'
7363in Emacs's distribution, and they won't be decoded correctly on
7364reading if you suppress escape sequence detection.
7365
7366The other way to read escape sequences in a file without decoding is
7367to explicitly specify some coding system that doesn't use ISO2022's
7368escape sequence (e.g `latin-1') on reading by \\[universal-coding-system-argument]. */);
7369 inhibit_iso_escape_detection = 0;
7370}
7371
7372char *
7373emacs_strerror (error_number)
7374 int error_number;
7375{
7376 char *str;
7377
7378 synchronize_system_messages_locale ();
7379 str = strerror (error_number);
7380
7381 if (! NILP (Vlocale_coding_system))
7382 {
7383 Lisp_Object dec = code_convert_string_norecord (build_string (str),
7384 Vlocale_coding_system,
7385 0);
7386 str = (char *) XSTRING (dec)->data;
7387 }
7388
7389 return str;
7390}
7391
7392#endif /* emacs */
7393