(usermanualdir): New variable.
[bpt/emacs.git] / src / keymap.c
... / ...
CommitLineData
1/* Manipulation of keymaps
2 Copyright (C) 1985, 1986, 1987, 1988, 1993, 1994, 1995,
3 1998, 1999, 2000, 2001, 2002, 2003, 2004,
4 2005, 2006 Free Software Foundation, Inc.
5
6This file is part of GNU Emacs.
7
8GNU Emacs is free software; you can redistribute it and/or modify
9it under the terms of the GNU General Public License as published by
10the Free Software Foundation; either version 2, or (at your option)
11any later version.
12
13GNU Emacs is distributed in the hope that it will be useful,
14but WITHOUT ANY WARRANTY; without even the implied warranty of
15MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16GNU General Public License for more details.
17
18You should have received a copy of the GNU General Public License
19along with GNU Emacs; see the file COPYING. If not, write to
20the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
21Boston, MA 02110-1301, USA. */
22
23
24#include <config.h>
25#include <stdio.h>
26#include "lisp.h"
27#include "commands.h"
28#include "buffer.h"
29#include "charset.h"
30#include "keyboard.h"
31#include "termhooks.h"
32#include "blockinput.h"
33#include "puresize.h"
34#include "intervals.h"
35#include "keymap.h"
36
37/* The number of elements in keymap vectors. */
38#define DENSE_TABLE_SIZE (0200)
39
40/* Actually allocate storage for these variables */
41
42Lisp_Object current_global_map; /* Current global keymap */
43
44Lisp_Object global_map; /* default global key bindings */
45
46Lisp_Object meta_map; /* The keymap used for globally bound
47 ESC-prefixed default commands */
48
49Lisp_Object control_x_map; /* The keymap used for globally bound
50 C-x-prefixed default commands */
51
52/* was MinibufLocalMap */
53Lisp_Object Vminibuffer_local_map;
54 /* The keymap used by the minibuf for local
55 bindings when spaces are allowed in the
56 minibuf */
57
58/* was MinibufLocalNSMap */
59Lisp_Object Vminibuffer_local_ns_map;
60 /* The keymap used by the minibuf for local
61 bindings when spaces are not encouraged
62 in the minibuf */
63
64/* keymap used for minibuffers when doing completion */
65/* was MinibufLocalCompletionMap */
66Lisp_Object Vminibuffer_local_completion_map;
67
68/* keymap used for minibuffers when doing completion in filenames */
69Lisp_Object Vminibuffer_local_filename_completion_map;
70
71/* keymap used for minibuffers when doing completion in filenames
72 with require-match*/
73Lisp_Object Vminibuffer_local_must_match_filename_map;
74
75/* keymap used for minibuffers when doing completion and require a match */
76/* was MinibufLocalMustMatchMap */
77Lisp_Object Vminibuffer_local_must_match_map;
78
79/* Alist of minor mode variables and keymaps. */
80Lisp_Object Vminor_mode_map_alist;
81
82/* Alist of major-mode-specific overrides for
83 minor mode variables and keymaps. */
84Lisp_Object Vminor_mode_overriding_map_alist;
85
86/* List of emulation mode keymap alists. */
87Lisp_Object Vemulation_mode_map_alists;
88
89/* Keymap mapping ASCII function key sequences onto their preferred forms.
90 Initialized by the terminal-specific lisp files. See DEFVAR for more
91 documentation. */
92Lisp_Object Vfunction_key_map;
93
94/* Keymap mapping ASCII function key sequences onto their preferred forms. */
95Lisp_Object Vkey_translation_map;
96
97/* A list of all commands given new bindings since a certain time
98 when nil was stored here.
99 This is used to speed up recomputation of menu key equivalents
100 when Emacs starts up. t means don't record anything here. */
101Lisp_Object Vdefine_key_rebound_commands;
102
103Lisp_Object Qkeymapp, Qkeymap, Qnon_ascii, Qmenu_item, Qremap;
104
105/* Alist of elements like (DEL . "\d"). */
106static Lisp_Object exclude_keys;
107
108/* Pre-allocated 2-element vector for Fcommand_remapping to use. */
109static Lisp_Object command_remapping_vector;
110
111/* A char with the CHAR_META bit set in a vector or the 0200 bit set
112 in a string key sequence is equivalent to prefixing with this
113 character. */
114extern Lisp_Object meta_prefix_char;
115
116extern Lisp_Object Voverriding_local_map;
117
118/* Hash table used to cache a reverse-map to speed up calls to where-is. */
119static Lisp_Object where_is_cache;
120/* Which keymaps are reverse-stored in the cache. */
121static Lisp_Object where_is_cache_keymaps;
122
123static Lisp_Object store_in_keymap P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
124static void fix_submap_inheritance P_ ((Lisp_Object, Lisp_Object, Lisp_Object));
125
126static Lisp_Object define_as_prefix P_ ((Lisp_Object, Lisp_Object));
127static void describe_command P_ ((Lisp_Object, Lisp_Object));
128static void describe_translation P_ ((Lisp_Object, Lisp_Object));
129static void describe_map P_ ((Lisp_Object, Lisp_Object,
130 void (*) P_ ((Lisp_Object, Lisp_Object)),
131 int, Lisp_Object, Lisp_Object*, int, int));
132static void describe_vector P_ ((Lisp_Object, Lisp_Object, Lisp_Object,
133 void (*) (Lisp_Object, Lisp_Object), int,
134 Lisp_Object, Lisp_Object, int *,
135 int, int, int));
136static void silly_event_symbol_error P_ ((Lisp_Object));
137\f
138/* Keymap object support - constructors and predicates. */
139
140DEFUN ("make-keymap", Fmake_keymap, Smake_keymap, 0, 1, 0,
141 doc: /* Construct and return a new keymap, of the form (keymap CHARTABLE . ALIST).
142CHARTABLE is a char-table that holds the bindings for all characters
143without modifiers. All entries in it are initially nil, meaning
144"command undefined". ALIST is an assoc-list which holds bindings for
145function keys, mouse events, and any other things that appear in the
146input stream. Initially, ALIST is nil.
147
148The optional arg STRING supplies a menu name for the keymap
149in case you use it as a menu with `x-popup-menu'. */)
150 (string)
151 Lisp_Object string;
152{
153 Lisp_Object tail;
154 if (!NILP (string))
155 tail = Fcons (string, Qnil);
156 else
157 tail = Qnil;
158 return Fcons (Qkeymap,
159 Fcons (Fmake_char_table (Qkeymap, Qnil), tail));
160}
161
162DEFUN ("make-sparse-keymap", Fmake_sparse_keymap, Smake_sparse_keymap, 0, 1, 0,
163 doc: /* Construct and return a new sparse keymap.
164Its car is `keymap' and its cdr is an alist of (CHAR . DEFINITION),
165which binds the character CHAR to DEFINITION, or (SYMBOL . DEFINITION),
166which binds the function key or mouse event SYMBOL to DEFINITION.
167Initially the alist is nil.
168
169The optional arg STRING supplies a menu name for the keymap
170in case you use it as a menu with `x-popup-menu'. */)
171 (string)
172 Lisp_Object string;
173{
174 if (!NILP (string))
175 return Fcons (Qkeymap, Fcons (string, Qnil));
176 return Fcons (Qkeymap, Qnil);
177}
178
179/* This function is used for installing the standard key bindings
180 at initialization time.
181
182 For example:
183
184 initial_define_key (control_x_map, Ctl('X'), "exchange-point-and-mark"); */
185
186void
187initial_define_key (keymap, key, defname)
188 Lisp_Object keymap;
189 int key;
190 char *defname;
191{
192 store_in_keymap (keymap, make_number (key), intern (defname));
193}
194
195void
196initial_define_lispy_key (keymap, keyname, defname)
197 Lisp_Object keymap;
198 char *keyname;
199 char *defname;
200{
201 store_in_keymap (keymap, intern (keyname), intern (defname));
202}
203
204DEFUN ("keymapp", Fkeymapp, Skeymapp, 1, 1, 0,
205 doc: /* Return t if OBJECT is a keymap.
206
207A keymap is a list (keymap . ALIST),
208or a symbol whose function definition is itself a keymap.
209ALIST elements look like (CHAR . DEFN) or (SYMBOL . DEFN);
210a vector of densely packed bindings for small character codes
211is also allowed as an element. */)
212 (object)
213 Lisp_Object object;
214{
215 return (KEYMAPP (object) ? Qt : Qnil);
216}
217
218DEFUN ("keymap-prompt", Fkeymap_prompt, Skeymap_prompt, 1, 1, 0,
219 doc: /* Return the prompt-string of a keymap MAP.
220If non-nil, the prompt is shown in the echo-area
221when reading a key-sequence to be looked-up in this keymap. */)
222 (map)
223 Lisp_Object map;
224{
225 map = get_keymap (map, 0, 0);
226 while (CONSP (map))
227 {
228 Lisp_Object tem = XCAR (map);
229 if (STRINGP (tem))
230 return tem;
231 map = XCDR (map);
232 }
233 return Qnil;
234}
235
236/* Check that OBJECT is a keymap (after dereferencing through any
237 symbols). If it is, return it.
238
239 If AUTOLOAD is non-zero and OBJECT is a symbol whose function value
240 is an autoload form, do the autoload and try again.
241 If AUTOLOAD is nonzero, callers must assume GC is possible.
242
243 If the map needs to be autoloaded, but AUTOLOAD is zero (and ERROR
244 is zero as well), return Qt.
245
246 ERROR controls how we respond if OBJECT isn't a keymap.
247 If ERROR is non-zero, signal an error; otherwise, just return Qnil.
248
249 Note that most of the time, we don't want to pursue autoloads.
250 Functions like Faccessible_keymaps which scan entire keymap trees
251 shouldn't load every autoloaded keymap. I'm not sure about this,
252 but it seems to me that only read_key_sequence, Flookup_key, and
253 Fdefine_key should cause keymaps to be autoloaded.
254
255 This function can GC when AUTOLOAD is non-zero, because it calls
256 do_autoload which can GC. */
257
258Lisp_Object
259get_keymap (object, error, autoload)
260 Lisp_Object object;
261 int error, autoload;
262{
263 Lisp_Object tem;
264
265 autoload_retry:
266 if (NILP (object))
267 goto end;
268 if (CONSP (object) && EQ (XCAR (object), Qkeymap))
269 return object;
270
271 tem = indirect_function (object);
272 if (CONSP (tem))
273 {
274 if (EQ (XCAR (tem), Qkeymap))
275 return tem;
276
277 /* Should we do an autoload? Autoload forms for keymaps have
278 Qkeymap as their fifth element. */
279 if ((autoload || !error) && EQ (XCAR (tem), Qautoload)
280 && SYMBOLP (object))
281 {
282 Lisp_Object tail;
283
284 tail = Fnth (make_number (4), tem);
285 if (EQ (tail, Qkeymap))
286 {
287 if (autoload)
288 {
289 struct gcpro gcpro1, gcpro2;
290
291 GCPRO2 (tem, object);
292 do_autoload (tem, object);
293 UNGCPRO;
294
295 goto autoload_retry;
296 }
297 else
298 return Qt;
299 }
300 }
301 }
302
303 end:
304 if (error)
305 wrong_type_argument (Qkeymapp, object);
306 return Qnil;
307}
308\f
309/* Return the parent map of KEYMAP, or nil if it has none.
310 We assume that KEYMAP is a valid keymap. */
311
312Lisp_Object
313keymap_parent (keymap, autoload)
314 Lisp_Object keymap;
315 int autoload;
316{
317 Lisp_Object list;
318
319 keymap = get_keymap (keymap, 1, autoload);
320
321 /* Skip past the initial element `keymap'. */
322 list = XCDR (keymap);
323 for (; CONSP (list); list = XCDR (list))
324 {
325 /* See if there is another `keymap'. */
326 if (KEYMAPP (list))
327 return list;
328 }
329
330 return get_keymap (list, 0, autoload);
331}
332
333DEFUN ("keymap-parent", Fkeymap_parent, Skeymap_parent, 1, 1, 0,
334 doc: /* Return the parent keymap of KEYMAP. */)
335 (keymap)
336 Lisp_Object keymap;
337{
338 return keymap_parent (keymap, 1);
339}
340
341/* Check whether MAP is one of MAPS parents. */
342int
343keymap_memberp (map, maps)
344 Lisp_Object map, maps;
345{
346 if (NILP (map)) return 0;
347 while (KEYMAPP (maps) && !EQ (map, maps))
348 maps = keymap_parent (maps, 0);
349 return (EQ (map, maps));
350}
351
352/* Set the parent keymap of MAP to PARENT. */
353
354DEFUN ("set-keymap-parent", Fset_keymap_parent, Sset_keymap_parent, 2, 2, 0,
355 doc: /* Modify KEYMAP to set its parent map to PARENT.
356Return PARENT. PARENT should be nil or another keymap. */)
357 (keymap, parent)
358 Lisp_Object keymap, parent;
359{
360 Lisp_Object list, prev;
361 struct gcpro gcpro1, gcpro2;
362 int i;
363
364 /* Force a keymap flush for the next call to where-is.
365 Since this can be called from within where-is, we don't set where_is_cache
366 directly but only where_is_cache_keymaps, since where_is_cache shouldn't
367 be changed during where-is, while where_is_cache_keymaps is only used at
368 the very beginning of where-is and can thus be changed here without any
369 adverse effect.
370 This is a very minor correctness (rather than safety) issue. */
371 where_is_cache_keymaps = Qt;
372
373 GCPRO2 (keymap, parent);
374 keymap = get_keymap (keymap, 1, 1);
375
376 if (!NILP (parent))
377 {
378 parent = get_keymap (parent, 1, 1);
379
380 /* Check for cycles. */
381 if (keymap_memberp (keymap, parent))
382 error ("Cyclic keymap inheritance");
383 }
384
385 /* Skip past the initial element `keymap'. */
386 prev = keymap;
387 while (1)
388 {
389 list = XCDR (prev);
390 /* If there is a parent keymap here, replace it.
391 If we came to the end, add the parent in PREV. */
392 if (!CONSP (list) || KEYMAPP (list))
393 {
394 /* If we already have the right parent, return now
395 so that we avoid the loops below. */
396 if (EQ (XCDR (prev), parent))
397 RETURN_UNGCPRO (parent);
398
399 CHECK_IMPURE (prev);
400 XSETCDR (prev, parent);
401 break;
402 }
403 prev = list;
404 }
405
406 /* Scan through for submaps, and set their parents too. */
407
408 for (list = XCDR (keymap); CONSP (list); list = XCDR (list))
409 {
410 /* Stop the scan when we come to the parent. */
411 if (EQ (XCAR (list), Qkeymap))
412 break;
413
414 /* If this element holds a prefix map, deal with it. */
415 if (CONSP (XCAR (list))
416 && CONSP (XCDR (XCAR (list))))
417 fix_submap_inheritance (keymap, XCAR (XCAR (list)),
418 XCDR (XCAR (list)));
419
420 if (VECTORP (XCAR (list)))
421 for (i = 0; i < XVECTOR (XCAR (list))->size; i++)
422 if (CONSP (XVECTOR (XCAR (list))->contents[i]))
423 fix_submap_inheritance (keymap, make_number (i),
424 XVECTOR (XCAR (list))->contents[i]);
425
426 if (CHAR_TABLE_P (XCAR (list)))
427 {
428 Lisp_Object indices[3];
429
430 map_char_table (fix_submap_inheritance, Qnil,
431 XCAR (list), XCAR (list),
432 keymap, 0, indices);
433 }
434 }
435
436 RETURN_UNGCPRO (parent);
437}
438
439/* EVENT is defined in MAP as a prefix, and SUBMAP is its definition.
440 if EVENT is also a prefix in MAP's parent,
441 make sure that SUBMAP inherits that definition as its own parent. */
442
443static void
444fix_submap_inheritance (map, event, submap)
445 Lisp_Object map, event, submap;
446{
447 Lisp_Object map_parent, parent_entry;
448
449 /* SUBMAP is a cons that we found as a key binding.
450 Discard the other things found in a menu key binding. */
451
452 submap = get_keymap (get_keyelt (submap, 0), 0, 0);
453
454 /* If it isn't a keymap now, there's no work to do. */
455 if (!CONSP (submap))
456 return;
457
458 map_parent = keymap_parent (map, 0);
459 if (!NILP (map_parent))
460 parent_entry =
461 get_keymap (access_keymap (map_parent, event, 0, 0, 0), 0, 0);
462 else
463 parent_entry = Qnil;
464
465 /* If MAP's parent has something other than a keymap,
466 our own submap shadows it completely. */
467 if (!CONSP (parent_entry))
468 return;
469
470 if (! EQ (parent_entry, submap))
471 {
472 Lisp_Object submap_parent;
473 submap_parent = submap;
474 while (1)
475 {
476 Lisp_Object tem;
477
478 tem = keymap_parent (submap_parent, 0);
479
480 if (KEYMAPP (tem))
481 {
482 if (keymap_memberp (tem, parent_entry))
483 /* Fset_keymap_parent could create a cycle. */
484 return;
485 submap_parent = tem;
486 }
487 else
488 break;
489 }
490 Fset_keymap_parent (submap_parent, parent_entry);
491 }
492}
493\f
494/* Look up IDX in MAP. IDX may be any sort of event.
495 Note that this does only one level of lookup; IDX must be a single
496 event, not a sequence.
497
498 If T_OK is non-zero, bindings for Qt are treated as default
499 bindings; any key left unmentioned by other tables and bindings is
500 given the binding of Qt.
501
502 If T_OK is zero, bindings for Qt are not treated specially.
503
504 If NOINHERIT, don't accept a subkeymap found in an inherited keymap. */
505
506Lisp_Object
507access_keymap (map, idx, t_ok, noinherit, autoload)
508 Lisp_Object map;
509 Lisp_Object idx;
510 int t_ok;
511 int noinherit;
512 int autoload;
513{
514 Lisp_Object val;
515
516 /* Qunbound in VAL means we have found no binding yet. */
517 val = Qunbound;
518
519 /* If idx is a list (some sort of mouse click, perhaps?),
520 the index we want to use is the car of the list, which
521 ought to be a symbol. */
522 idx = EVENT_HEAD (idx);
523
524 /* If idx is a symbol, it might have modifiers, which need to
525 be put in the canonical order. */
526 if (SYMBOLP (idx))
527 idx = reorder_modifiers (idx);
528 else if (INTEGERP (idx))
529 /* Clobber the high bits that can be present on a machine
530 with more than 24 bits of integer. */
531 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
532
533 /* Handle the special meta -> esc mapping. */
534 if (INTEGERP (idx) && XUINT (idx) & meta_modifier)
535 {
536 /* See if there is a meta-map. If there's none, there is
537 no binding for IDX, unless a default binding exists in MAP. */
538 struct gcpro gcpro1;
539 Lisp_Object meta_map;
540 GCPRO1 (map);
541 /* A strange value in which Meta is set would cause
542 infinite recursion. Protect against that. */
543 if (XINT (meta_prefix_char) & CHAR_META)
544 meta_prefix_char = make_number (27);
545 meta_map = get_keymap (access_keymap (map, meta_prefix_char,
546 t_ok, noinherit, autoload),
547 0, autoload);
548 UNGCPRO;
549 if (CONSP (meta_map))
550 {
551 map = meta_map;
552 idx = make_number (XUINT (idx) & ~meta_modifier);
553 }
554 else if (t_ok)
555 /* Set IDX to t, so that we only find a default binding. */
556 idx = Qt;
557 else
558 /* We know there is no binding. */
559 return Qnil;
560 }
561
562 /* t_binding is where we put a default binding that applies,
563 to use in case we do not find a binding specifically
564 for this key sequence. */
565 {
566 Lisp_Object tail;
567 Lisp_Object t_binding = Qnil;
568 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
569
570 GCPRO4 (map, tail, idx, t_binding);
571
572 /* If `t_ok' is 2, both `t' and generic-char bindings are accepted.
573 If it is 1, only generic-char bindings are accepted.
574 Otherwise, neither are. */
575 t_ok = t_ok ? 2 : 0;
576
577 for (tail = XCDR (map);
578 (CONSP (tail)
579 || (tail = get_keymap (tail, 0, autoload), CONSP (tail)));
580 tail = XCDR (tail))
581 {
582 Lisp_Object binding;
583
584 binding = XCAR (tail);
585 if (SYMBOLP (binding))
586 {
587 /* If NOINHERIT, stop finding prefix definitions
588 after we pass a second occurrence of the `keymap' symbol. */
589 if (noinherit && EQ (binding, Qkeymap))
590 RETURN_UNGCPRO (Qnil);
591 }
592 else if (CONSP (binding))
593 {
594 Lisp_Object key = XCAR (binding);
595
596 if (EQ (key, idx))
597 val = XCDR (binding);
598 else if (t_ok
599 && INTEGERP (idx)
600 && (XINT (idx) & CHAR_MODIFIER_MASK) == 0
601 && INTEGERP (key)
602 && (XINT (key) & CHAR_MODIFIER_MASK) == 0
603 && !SINGLE_BYTE_CHAR_P (XINT (idx))
604 && !SINGLE_BYTE_CHAR_P (XINT (key))
605 && CHAR_VALID_P (XINT (key), 1)
606 && !CHAR_VALID_P (XINT (key), 0)
607 && (CHAR_CHARSET (XINT (key))
608 == CHAR_CHARSET (XINT (idx))))
609 {
610 /* KEY is the generic character of the charset of IDX.
611 Use KEY's binding if there isn't a binding for IDX
612 itself. */
613 t_binding = XCDR (binding);
614 t_ok = 0;
615 }
616 else if (t_ok > 1 && EQ (key, Qt))
617 {
618 t_binding = XCDR (binding);
619 t_ok = 1;
620 }
621 }
622 else if (VECTORP (binding))
623 {
624 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (binding))
625 val = AREF (binding, XFASTINT (idx));
626 }
627 else if (CHAR_TABLE_P (binding))
628 {
629 /* Character codes with modifiers
630 are not included in a char-table.
631 All character codes without modifiers are included. */
632 if (NATNUMP (idx) && (XFASTINT (idx) & CHAR_MODIFIER_MASK) == 0)
633 {
634 val = Faref (binding, idx);
635 /* `nil' has a special meaning for char-tables, so
636 we use something else to record an explicitly
637 unbound entry. */
638 if (NILP (val))
639 val = Qunbound;
640 }
641 }
642
643 /* If we found a binding, clean it up and return it. */
644 if (!EQ (val, Qunbound))
645 {
646 if (EQ (val, Qt))
647 /* A Qt binding is just like an explicit nil binding
648 (i.e. it shadows any parent binding but not bindings in
649 keymaps of lower precedence). */
650 val = Qnil;
651 val = get_keyelt (val, autoload);
652 if (KEYMAPP (val))
653 fix_submap_inheritance (map, idx, val);
654 RETURN_UNGCPRO (val);
655 }
656 QUIT;
657 }
658 UNGCPRO;
659 return get_keyelt (t_binding, autoload);
660 }
661}
662
663static void
664map_keymap_item (fun, args, key, val, data)
665 map_keymap_function_t fun;
666 Lisp_Object args, key, val;
667 void *data;
668{
669 /* We should maybe try to detect bindings shadowed by previous
670 ones and things like that. */
671 if (EQ (val, Qt))
672 val = Qnil;
673 (*fun) (key, val, args, data);
674}
675
676static void
677map_keymap_char_table_item (args, key, val)
678 Lisp_Object args, key, val;
679{
680 if (!NILP (val))
681 {
682 map_keymap_function_t fun = XSAVE_VALUE (XCAR (args))->pointer;
683 args = XCDR (args);
684 map_keymap_item (fun, XCDR (args), key, val,
685 XSAVE_VALUE (XCAR (args))->pointer);
686 }
687}
688
689/* Call FUN for every binding in MAP.
690 FUN is called with 4 arguments: FUN (KEY, BINDING, ARGS, DATA).
691 AUTOLOAD if non-zero means that we can autoload keymaps if necessary. */
692void
693map_keymap (map, fun, args, data, autoload)
694 map_keymap_function_t fun;
695 Lisp_Object map, args;
696 void *data;
697 int autoload;
698{
699 struct gcpro gcpro1, gcpro2, gcpro3;
700 Lisp_Object tail;
701
702 tail = Qnil;
703 GCPRO3 (map, args, tail);
704 map = get_keymap (map, 1, autoload);
705 for (tail = (CONSP (map) && EQ (Qkeymap, XCAR (map))) ? XCDR (map) : map;
706 CONSP (tail) || (tail = get_keymap (tail, 0, autoload), CONSP (tail));
707 tail = XCDR (tail))
708 {
709 Lisp_Object binding = XCAR (tail);
710
711 if (CONSP (binding))
712 map_keymap_item (fun, args, XCAR (binding), XCDR (binding), data);
713 else if (VECTORP (binding))
714 {
715 /* Loop over the char values represented in the vector. */
716 int len = ASIZE (binding);
717 int c;
718 for (c = 0; c < len; c++)
719 {
720 Lisp_Object character;
721 XSETFASTINT (character, c);
722 map_keymap_item (fun, args, character, AREF (binding, c), data);
723 }
724 }
725 else if (CHAR_TABLE_P (binding))
726 {
727 Lisp_Object indices[3];
728 map_char_table (map_keymap_char_table_item, Qnil, binding, binding,
729 Fcons (make_save_value (fun, 0),
730 Fcons (make_save_value (data, 0),
731 args)),
732 0, indices);
733 }
734 }
735 UNGCPRO;
736}
737
738static void
739map_keymap_call (key, val, fun, dummy)
740 Lisp_Object key, val, fun;
741 void *dummy;
742{
743 call2 (fun, key, val);
744}
745
746DEFUN ("map-keymap", Fmap_keymap, Smap_keymap, 2, 3, 0,
747 doc: /* Call FUNCTION once for each event binding in KEYMAP.
748FUNCTION is called with two arguments: the event that is bound, and
749the definition it is bound to.
750
751If KEYMAP has a parent, the parent's bindings are included as well.
752This works recursively: if the parent has itself a parent, then the
753grandparent's bindings are also included and so on.
754usage: (map-keymap FUNCTION KEYMAP) */)
755 (function, keymap, sort_first)
756 Lisp_Object function, keymap, sort_first;
757{
758 if (INTEGERP (function))
759 /* We have to stop integers early since map_keymap gives them special
760 significance. */
761 xsignal1 (Qinvalid_function, function);
762 if (! NILP (sort_first))
763 return call3 (intern ("map-keymap-internal"), function, keymap, Qt);
764
765 map_keymap (keymap, map_keymap_call, function, NULL, 1);
766 return Qnil;
767}
768
769/* Given OBJECT which was found in a slot in a keymap,
770 trace indirect definitions to get the actual definition of that slot.
771 An indirect definition is a list of the form
772 (KEYMAP . INDEX), where KEYMAP is a keymap or a symbol defined as one
773 and INDEX is the object to look up in KEYMAP to yield the definition.
774
775 Also if OBJECT has a menu string as the first element,
776 remove that. Also remove a menu help string as second element.
777
778 If AUTOLOAD is nonzero, load autoloadable keymaps
779 that are referred to with indirection.
780
781 This can GC because menu_item_eval_property calls Feval. */
782
783Lisp_Object
784get_keyelt (object, autoload)
785 Lisp_Object object;
786 int autoload;
787{
788 while (1)
789 {
790 if (!(CONSP (object)))
791 /* This is really the value. */
792 return object;
793
794 /* If the keymap contents looks like (keymap ...) or (lambda ...)
795 then use itself. */
796 else if (EQ (XCAR (object), Qkeymap) || EQ (XCAR (object), Qlambda))
797 return object;
798
799 /* If the keymap contents looks like (menu-item name . DEFN)
800 or (menu-item name DEFN ...) then use DEFN.
801 This is a new format menu item. */
802 else if (EQ (XCAR (object), Qmenu_item))
803 {
804 if (CONSP (XCDR (object)))
805 {
806 Lisp_Object tem;
807
808 object = XCDR (XCDR (object));
809 tem = object;
810 if (CONSP (object))
811 object = XCAR (object);
812
813 /* If there's a `:filter FILTER', apply FILTER to the
814 menu-item's definition to get the real definition to
815 use. */
816 for (; CONSP (tem) && CONSP (XCDR (tem)); tem = XCDR (tem))
817 if (EQ (XCAR (tem), QCfilter) && autoload)
818 {
819 Lisp_Object filter;
820 filter = XCAR (XCDR (tem));
821 filter = list2 (filter, list2 (Qquote, object));
822 object = menu_item_eval_property (filter);
823 break;
824 }
825 }
826 else
827 /* Invalid keymap. */
828 return object;
829 }
830
831 /* If the keymap contents looks like (STRING . DEFN), use DEFN.
832 Keymap alist elements like (CHAR MENUSTRING . DEFN)
833 will be used by HierarKey menus. */
834 else if (STRINGP (XCAR (object)))
835 {
836 object = XCDR (object);
837 /* Also remove a menu help string, if any,
838 following the menu item name. */
839 if (CONSP (object) && STRINGP (XCAR (object)))
840 object = XCDR (object);
841 /* Also remove the sublist that caches key equivalences, if any. */
842 if (CONSP (object) && CONSP (XCAR (object)))
843 {
844 Lisp_Object carcar;
845 carcar = XCAR (XCAR (object));
846 if (NILP (carcar) || VECTORP (carcar))
847 object = XCDR (object);
848 }
849 }
850
851 /* If the contents are (KEYMAP . ELEMENT), go indirect. */
852 else
853 {
854 struct gcpro gcpro1;
855 Lisp_Object map;
856 GCPRO1 (object);
857 map = get_keymap (Fcar_safe (object), 0, autoload);
858 UNGCPRO;
859 return (!CONSP (map) ? object /* Invalid keymap */
860 : access_keymap (map, Fcdr (object), 0, 0, autoload));
861 }
862 }
863}
864
865static Lisp_Object
866store_in_keymap (keymap, idx, def)
867 Lisp_Object keymap;
868 register Lisp_Object idx;
869 Lisp_Object def;
870{
871 /* Flush any reverse-map cache. */
872 where_is_cache = Qnil;
873 where_is_cache_keymaps = Qt;
874
875 /* If we are preparing to dump, and DEF is a menu element
876 with a menu item indicator, copy it to ensure it is not pure. */
877 if (CONSP (def) && PURE_P (def)
878 && (EQ (XCAR (def), Qmenu_item) || STRINGP (XCAR (def))))
879 def = Fcons (XCAR (def), XCDR (def));
880
881 if (!CONSP (keymap) || !EQ (XCAR (keymap), Qkeymap))
882 error ("attempt to define a key in a non-keymap");
883
884 /* If idx is a list (some sort of mouse click, perhaps?),
885 the index we want to use is the car of the list, which
886 ought to be a symbol. */
887 idx = EVENT_HEAD (idx);
888
889 /* If idx is a symbol, it might have modifiers, which need to
890 be put in the canonical order. */
891 if (SYMBOLP (idx))
892 idx = reorder_modifiers (idx);
893 else if (INTEGERP (idx))
894 /* Clobber the high bits that can be present on a machine
895 with more than 24 bits of integer. */
896 XSETFASTINT (idx, XINT (idx) & (CHAR_META | (CHAR_META - 1)));
897
898 /* Scan the keymap for a binding of idx. */
899 {
900 Lisp_Object tail;
901
902 /* The cons after which we should insert new bindings. If the
903 keymap has a table element, we record its position here, so new
904 bindings will go after it; this way, the table will stay
905 towards the front of the alist and character lookups in dense
906 keymaps will remain fast. Otherwise, this just points at the
907 front of the keymap. */
908 Lisp_Object insertion_point;
909
910 insertion_point = keymap;
911 for (tail = XCDR (keymap); CONSP (tail); tail = XCDR (tail))
912 {
913 Lisp_Object elt;
914
915 elt = XCAR (tail);
916 if (VECTORP (elt))
917 {
918 if (NATNUMP (idx) && XFASTINT (idx) < ASIZE (elt))
919 {
920 CHECK_IMPURE (elt);
921 ASET (elt, XFASTINT (idx), def);
922 return def;
923 }
924 insertion_point = tail;
925 }
926 else if (CHAR_TABLE_P (elt))
927 {
928 /* Character codes with modifiers
929 are not included in a char-table.
930 All character codes without modifiers are included. */
931 if (NATNUMP (idx) && !(XFASTINT (idx) & CHAR_MODIFIER_MASK))
932 {
933 Faset (elt, idx,
934 /* `nil' has a special meaning for char-tables, so
935 we use something else to record an explicitly
936 unbound entry. */
937 NILP (def) ? Qt : def);
938 return def;
939 }
940 insertion_point = tail;
941 }
942 else if (CONSP (elt))
943 {
944 if (EQ (idx, XCAR (elt)))
945 {
946 CHECK_IMPURE (elt);
947 XSETCDR (elt, def);
948 return def;
949 }
950 }
951 else if (EQ (elt, Qkeymap))
952 /* If we find a 'keymap' symbol in the spine of KEYMAP,
953 then we must have found the start of a second keymap
954 being used as the tail of KEYMAP, and a binding for IDX
955 should be inserted before it. */
956 goto keymap_end;
957
958 QUIT;
959 }
960
961 keymap_end:
962 /* We have scanned the entire keymap, and not found a binding for
963 IDX. Let's add one. */
964 CHECK_IMPURE (insertion_point);
965 XSETCDR (insertion_point,
966 Fcons (Fcons (idx, def), XCDR (insertion_point)));
967 }
968
969 return def;
970}
971
972EXFUN (Fcopy_keymap, 1);
973
974Lisp_Object
975copy_keymap_item (elt)
976 Lisp_Object elt;
977{
978 Lisp_Object res, tem;
979
980 if (!CONSP (elt))
981 return elt;
982
983 res = tem = elt;
984
985 /* Is this a new format menu item. */
986 if (EQ (XCAR (tem), Qmenu_item))
987 {
988 /* Copy cell with menu-item marker. */
989 res = elt = Fcons (XCAR (tem), XCDR (tem));
990 tem = XCDR (elt);
991 if (CONSP (tem))
992 {
993 /* Copy cell with menu-item name. */
994 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
995 elt = XCDR (elt);
996 tem = XCDR (elt);
997 }
998 if (CONSP (tem))
999 {
1000 /* Copy cell with binding and if the binding is a keymap,
1001 copy that. */
1002 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
1003 elt = XCDR (elt);
1004 tem = XCAR (elt);
1005 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
1006 XSETCAR (elt, Fcopy_keymap (tem));
1007 tem = XCDR (elt);
1008 if (CONSP (tem) && CONSP (XCAR (tem)))
1009 /* Delete cache for key equivalences. */
1010 XSETCDR (elt, XCDR (tem));
1011 }
1012 }
1013 else
1014 {
1015 /* It may be an old fomat menu item.
1016 Skip the optional menu string. */
1017 if (STRINGP (XCAR (tem)))
1018 {
1019 /* Copy the cell, since copy-alist didn't go this deep. */
1020 res = elt = Fcons (XCAR (tem), XCDR (tem));
1021 tem = XCDR (elt);
1022 /* Also skip the optional menu help string. */
1023 if (CONSP (tem) && STRINGP (XCAR (tem)))
1024 {
1025 XSETCDR (elt, Fcons (XCAR (tem), XCDR (tem)));
1026 elt = XCDR (elt);
1027 tem = XCDR (elt);
1028 }
1029 /* There may also be a list that caches key equivalences.
1030 Just delete it for the new keymap. */
1031 if (CONSP (tem)
1032 && CONSP (XCAR (tem))
1033 && (NILP (XCAR (XCAR (tem)))
1034 || VECTORP (XCAR (XCAR (tem)))))
1035 {
1036 XSETCDR (elt, XCDR (tem));
1037 tem = XCDR (tem);
1038 }
1039 if (CONSP (tem) && EQ (XCAR (tem), Qkeymap))
1040 XSETCDR (elt, Fcopy_keymap (tem));
1041 }
1042 else if (EQ (XCAR (tem), Qkeymap))
1043 res = Fcopy_keymap (elt);
1044 }
1045 return res;
1046}
1047
1048static void
1049copy_keymap_1 (chartable, idx, elt)
1050 Lisp_Object chartable, idx, elt;
1051{
1052 Faset (chartable, idx, copy_keymap_item (elt));
1053}
1054
1055DEFUN ("copy-keymap", Fcopy_keymap, Scopy_keymap, 1, 1, 0,
1056 doc: /* Return a copy of the keymap KEYMAP.
1057The copy starts out with the same definitions of KEYMAP,
1058but changing either the copy or KEYMAP does not affect the other.
1059Any key definitions that are subkeymaps are recursively copied.
1060However, a key definition which is a symbol whose definition is a keymap
1061is not copied. */)
1062 (keymap)
1063 Lisp_Object keymap;
1064{
1065 register Lisp_Object copy, tail;
1066 keymap = get_keymap (keymap, 1, 0);
1067 copy = tail = Fcons (Qkeymap, Qnil);
1068 keymap = XCDR (keymap); /* Skip the `keymap' symbol. */
1069
1070 while (CONSP (keymap) && !EQ (XCAR (keymap), Qkeymap))
1071 {
1072 Lisp_Object elt = XCAR (keymap);
1073 if (CHAR_TABLE_P (elt))
1074 {
1075 Lisp_Object indices[3];
1076 elt = Fcopy_sequence (elt);
1077 map_char_table (copy_keymap_1, Qnil, elt, elt, elt, 0, indices);
1078 }
1079 else if (VECTORP (elt))
1080 {
1081 int i;
1082 elt = Fcopy_sequence (elt);
1083 for (i = 0; i < ASIZE (elt); i++)
1084 ASET (elt, i, copy_keymap_item (AREF (elt, i)));
1085 }
1086 else if (CONSP (elt))
1087 elt = Fcons (XCAR (elt), copy_keymap_item (XCDR (elt)));
1088 XSETCDR (tail, Fcons (elt, Qnil));
1089 tail = XCDR (tail);
1090 keymap = XCDR (keymap);
1091 }
1092 XSETCDR (tail, keymap);
1093 return copy;
1094}
1095\f
1096/* Simple Keymap mutators and accessors. */
1097
1098/* GC is possible in this function if it autoloads a keymap. */
1099
1100DEFUN ("define-key", Fdefine_key, Sdefine_key, 3, 3, 0,
1101 doc: /* In KEYMAP, define key sequence KEY as DEF.
1102KEYMAP is a keymap.
1103
1104KEY is a string or a vector of symbols and characters meaning a
1105sequence of keystrokes and events. Non-ASCII characters with codes
1106above 127 (such as ISO Latin-1) can be included if you use a vector.
1107Using [t] for KEY creates a default definition, which applies to any
1108event type that has no other definition in this keymap.
1109
1110DEF is anything that can be a key's definition:
1111 nil (means key is undefined in this keymap),
1112 a command (a Lisp function suitable for interactive calling),
1113 a string (treated as a keyboard macro),
1114 a keymap (to define a prefix key),
1115 a symbol (when the key is looked up, the symbol will stand for its
1116 function definition, which should at that time be one of the above,
1117 or another symbol whose function definition is used, etc.),
1118 a cons (STRING . DEFN), meaning that DEFN is the definition
1119 (DEFN should be a valid definition in its own right),
1120 or a cons (MAP . CHAR), meaning use definition of CHAR in keymap MAP.
1121
1122If KEYMAP is a sparse keymap with a binding for KEY, the existing
1123binding is altered. If there is no binding for KEY, the new pair
1124binding KEY to DEF is added at the front of KEYMAP. */)
1125 (keymap, key, def)
1126 Lisp_Object keymap;
1127 Lisp_Object key;
1128 Lisp_Object def;
1129{
1130 register int idx;
1131 register Lisp_Object c;
1132 register Lisp_Object cmd;
1133 int metized = 0;
1134 int meta_bit;
1135 int length;
1136 struct gcpro gcpro1, gcpro2, gcpro3;
1137
1138 GCPRO3 (keymap, key, def);
1139 keymap = get_keymap (keymap, 1, 1);
1140
1141 CHECK_VECTOR_OR_STRING (key);
1142
1143 length = XFASTINT (Flength (key));
1144 if (length == 0)
1145 RETURN_UNGCPRO (Qnil);
1146
1147 if (SYMBOLP (def) && !EQ (Vdefine_key_rebound_commands, Qt))
1148 Vdefine_key_rebound_commands = Fcons (def, Vdefine_key_rebound_commands);
1149
1150 meta_bit = VECTORP (key) ? meta_modifier : 0x80;
1151
1152 if (VECTORP (def) && ASIZE (def) > 0 && CONSP (AREF (def, make_number (0))))
1153 { /* DEF is apparently an XEmacs-style keyboard macro. */
1154 Lisp_Object tmp = Fmake_vector (make_number (ASIZE (def)), Qnil);
1155 int i = ASIZE (def);
1156 while (--i >= 0)
1157 {
1158 Lisp_Object c = AREF (def, i);
1159 if (CONSP (c) && lucid_event_type_list_p (c))
1160 c = Fevent_convert_list (c);
1161 ASET (tmp, i, c);
1162 }
1163 def = tmp;
1164 }
1165
1166 idx = 0;
1167 while (1)
1168 {
1169 c = Faref (key, make_number (idx));
1170
1171 if (CONSP (c) && lucid_event_type_list_p (c))
1172 c = Fevent_convert_list (c);
1173
1174 if (SYMBOLP (c))
1175 silly_event_symbol_error (c);
1176
1177 if (INTEGERP (c)
1178 && (XINT (c) & meta_bit)
1179 && !metized)
1180 {
1181 c = meta_prefix_char;
1182 metized = 1;
1183 }
1184 else
1185 {
1186 if (INTEGERP (c))
1187 XSETINT (c, XINT (c) & ~meta_bit);
1188
1189 metized = 0;
1190 idx++;
1191 }
1192
1193 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c))
1194 error ("Key sequence contains invalid event");
1195
1196 if (idx == length)
1197 RETURN_UNGCPRO (store_in_keymap (keymap, c, def));
1198
1199 cmd = access_keymap (keymap, c, 0, 1, 1);
1200
1201 /* If this key is undefined, make it a prefix. */
1202 if (NILP (cmd))
1203 cmd = define_as_prefix (keymap, c);
1204
1205 keymap = get_keymap (cmd, 0, 1);
1206 if (!CONSP (keymap))
1207 /* We must use Fkey_description rather than just passing key to
1208 error; key might be a vector, not a string. */
1209 error ("Key sequence %s starts with non-prefix key %s",
1210 SDATA (Fkey_description (key, Qnil)),
1211 SDATA (Fkey_description (Fsubstring (key, make_number (0),
1212 make_number (idx)),
1213 Qnil)));
1214 }
1215}
1216
1217/* This function may GC (it calls Fkey_binding). */
1218
1219DEFUN ("command-remapping", Fcommand_remapping, Scommand_remapping, 1, 1, 0,
1220 doc: /* Return the remapping for command COMMAND in current keymaps.
1221Returns nil if COMMAND is not remapped (or not a symbol). */)
1222 (command)
1223 Lisp_Object command;
1224{
1225 if (!SYMBOLP (command))
1226 return Qnil;
1227
1228 ASET (command_remapping_vector, 1, command);
1229 return Fkey_binding (command_remapping_vector, Qnil, Qt);
1230}
1231
1232/* Value is number if KEY is too long; nil if valid but has no definition. */
1233/* GC is possible in this function if it autoloads a keymap. */
1234
1235DEFUN ("lookup-key", Flookup_key, Slookup_key, 2, 3, 0,
1236 doc: /* In keymap KEYMAP, look up key sequence KEY. Return the definition.
1237nil means undefined. See doc of `define-key' for kinds of definitions.
1238
1239A number as value means KEY is "too long";
1240that is, characters or symbols in it except for the last one
1241fail to be a valid sequence of prefix characters in KEYMAP.
1242The number is how many characters at the front of KEY
1243it takes to reach a non-prefix key.
1244
1245Normally, `lookup-key' ignores bindings for t, which act as default
1246bindings, used when nothing else in the keymap applies; this makes it
1247usable as a general function for probing keymaps. However, if the
1248third optional argument ACCEPT-DEFAULT is non-nil, `lookup-key' will
1249recognize the default bindings, just as `read-key-sequence' does. */)
1250 (keymap, key, accept_default)
1251 Lisp_Object keymap;
1252 Lisp_Object key;
1253 Lisp_Object accept_default;
1254{
1255 register int idx;
1256 register Lisp_Object cmd;
1257 register Lisp_Object c;
1258 int length;
1259 int t_ok = !NILP (accept_default);
1260 struct gcpro gcpro1, gcpro2;
1261
1262 GCPRO2 (keymap, key);
1263 keymap = get_keymap (keymap, 1, 1);
1264
1265 CHECK_VECTOR_OR_STRING (key);
1266
1267 length = XFASTINT (Flength (key));
1268 if (length == 0)
1269 RETURN_UNGCPRO (keymap);
1270
1271 idx = 0;
1272 while (1)
1273 {
1274 c = Faref (key, make_number (idx++));
1275
1276 if (CONSP (c) && lucid_event_type_list_p (c))
1277 c = Fevent_convert_list (c);
1278
1279 /* Turn the 8th bit of string chars into a meta modifier. */
1280 if (INTEGERP (c) && XINT (c) & 0x80 && STRINGP (key))
1281 XSETINT (c, (XINT (c) | meta_modifier) & ~0x80);
1282
1283 /* Allow string since binding for `menu-bar-select-buffer'
1284 includes the buffer name in the key sequence. */
1285 if (!INTEGERP (c) && !SYMBOLP (c) && !CONSP (c) && !STRINGP (c))
1286 error ("Key sequence contains invalid event");
1287
1288 cmd = access_keymap (keymap, c, t_ok, 0, 1);
1289 if (idx == length)
1290 RETURN_UNGCPRO (cmd);
1291
1292 keymap = get_keymap (cmd, 0, 1);
1293 if (!CONSP (keymap))
1294 RETURN_UNGCPRO (make_number (idx));
1295
1296 QUIT;
1297 }
1298}
1299
1300/* Make KEYMAP define event C as a keymap (i.e., as a prefix).
1301 Assume that currently it does not define C at all.
1302 Return the keymap. */
1303
1304static Lisp_Object
1305define_as_prefix (keymap, c)
1306 Lisp_Object keymap, c;
1307{
1308 Lisp_Object cmd;
1309
1310 cmd = Fmake_sparse_keymap (Qnil);
1311 /* If this key is defined as a prefix in an inherited keymap,
1312 make it a prefix in this map, and make its definition
1313 inherit the other prefix definition. */
1314 cmd = nconc2 (cmd, access_keymap (keymap, c, 0, 0, 0));
1315 store_in_keymap (keymap, c, cmd);
1316
1317 return cmd;
1318}
1319
1320/* Append a key to the end of a key sequence. We always make a vector. */
1321
1322Lisp_Object
1323append_key (key_sequence, key)
1324 Lisp_Object key_sequence, key;
1325{
1326 Lisp_Object args[2];
1327
1328 args[0] = key_sequence;
1329
1330 args[1] = Fcons (key, Qnil);
1331 return Fvconcat (2, args);
1332}
1333
1334/* Given a event type C which is a symbol,
1335 signal an error if is a mistake such as RET or M-RET or C-DEL, etc. */
1336
1337static void
1338silly_event_symbol_error (c)
1339 Lisp_Object c;
1340{
1341 Lisp_Object parsed, base, name, assoc;
1342 int modifiers;
1343
1344 parsed = parse_modifiers (c);
1345 modifiers = (int) XUINT (XCAR (XCDR (parsed)));
1346 base = XCAR (parsed);
1347 name = Fsymbol_name (base);
1348 /* This alist includes elements such as ("RET" . "\\r"). */
1349 assoc = Fassoc (name, exclude_keys);
1350
1351 if (! NILP (assoc))
1352 {
1353 char new_mods[sizeof ("\\A-\\C-\\H-\\M-\\S-\\s-")];
1354 char *p = new_mods;
1355 Lisp_Object keystring;
1356 if (modifiers & alt_modifier)
1357 { *p++ = '\\'; *p++ = 'A'; *p++ = '-'; }
1358 if (modifiers & ctrl_modifier)
1359 { *p++ = '\\'; *p++ = 'C'; *p++ = '-'; }
1360 if (modifiers & hyper_modifier)
1361 { *p++ = '\\'; *p++ = 'H'; *p++ = '-'; }
1362 if (modifiers & meta_modifier)
1363 { *p++ = '\\'; *p++ = 'M'; *p++ = '-'; }
1364 if (modifiers & shift_modifier)
1365 { *p++ = '\\'; *p++ = 'S'; *p++ = '-'; }
1366 if (modifiers & super_modifier)
1367 { *p++ = '\\'; *p++ = 's'; *p++ = '-'; }
1368 *p = 0;
1369
1370 c = reorder_modifiers (c);
1371 keystring = concat2 (build_string (new_mods), XCDR (assoc));
1372
1373 error ((modifiers & ~meta_modifier
1374 ? "To bind the key %s, use [?%s], not [%s]"
1375 : "To bind the key %s, use \"%s\", not [%s]"),
1376 SDATA (SYMBOL_NAME (c)), SDATA (keystring),
1377 SDATA (SYMBOL_NAME (c)));
1378 }
1379}
1380\f
1381/* Global, local, and minor mode keymap stuff. */
1382
1383/* We can't put these variables inside current_minor_maps, since under
1384 some systems, static gets macro-defined to be the empty string.
1385 Ickypoo. */
1386static Lisp_Object *cmm_modes = NULL, *cmm_maps = NULL;
1387static int cmm_size = 0;
1388
1389/* Store a pointer to an array of the keymaps of the currently active
1390 minor modes in *buf, and return the number of maps it contains.
1391
1392 This function always returns a pointer to the same buffer, and may
1393 free or reallocate it, so if you want to keep it for a long time or
1394 hand it out to lisp code, copy it. This procedure will be called
1395 for every key sequence read, so the nice lispy approach (return a
1396 new assoclist, list, what have you) for each invocation would
1397 result in a lot of consing over time.
1398
1399 If we used xrealloc/xmalloc and ran out of memory, they would throw
1400 back to the command loop, which would try to read a key sequence,
1401 which would call this function again, resulting in an infinite
1402 loop. Instead, we'll use realloc/malloc and silently truncate the
1403 list, let the key sequence be read, and hope some other piece of
1404 code signals the error. */
1405int
1406current_minor_maps (modeptr, mapptr)
1407 Lisp_Object **modeptr, **mapptr;
1408{
1409 int i = 0;
1410 int list_number = 0;
1411 Lisp_Object alist, assoc, var, val;
1412 Lisp_Object emulation_alists;
1413 Lisp_Object lists[2];
1414
1415 emulation_alists = Vemulation_mode_map_alists;
1416 lists[0] = Vminor_mode_overriding_map_alist;
1417 lists[1] = Vminor_mode_map_alist;
1418
1419 for (list_number = 0; list_number < 2; list_number++)
1420 {
1421 if (CONSP (emulation_alists))
1422 {
1423 alist = XCAR (emulation_alists);
1424 emulation_alists = XCDR (emulation_alists);
1425 if (SYMBOLP (alist))
1426 alist = find_symbol_value (alist);
1427 list_number = -1;
1428 }
1429 else
1430 alist = lists[list_number];
1431
1432 for ( ; CONSP (alist); alist = XCDR (alist))
1433 if ((assoc = XCAR (alist), CONSP (assoc))
1434 && (var = XCAR (assoc), SYMBOLP (var))
1435 && (val = find_symbol_value (var), !EQ (val, Qunbound))
1436 && !NILP (val))
1437 {
1438 Lisp_Object temp;
1439
1440 /* If a variable has an entry in Vminor_mode_overriding_map_alist,
1441 and also an entry in Vminor_mode_map_alist,
1442 ignore the latter. */
1443 if (list_number == 1)
1444 {
1445 val = assq_no_quit (var, lists[0]);
1446 if (!NILP (val))
1447 continue;
1448 }
1449
1450 if (i >= cmm_size)
1451 {
1452 int newsize, allocsize;
1453 Lisp_Object *newmodes, *newmaps;
1454
1455 newsize = cmm_size == 0 ? 30 : cmm_size * 2;
1456 allocsize = newsize * sizeof *newmodes;
1457
1458 /* Use malloc here. See the comment above this function.
1459 Avoid realloc here; it causes spurious traps on GNU/Linux [KFS] */
1460 BLOCK_INPUT;
1461 newmodes = (Lisp_Object *) malloc (allocsize);
1462 if (newmodes)
1463 {
1464 if (cmm_modes)
1465 {
1466 bcopy (cmm_modes, newmodes, cmm_size * sizeof cmm_modes[0]);
1467 free (cmm_modes);
1468 }
1469 cmm_modes = newmodes;
1470 }
1471
1472 newmaps = (Lisp_Object *) malloc (allocsize);
1473 if (newmaps)
1474 {
1475 if (cmm_maps)
1476 {
1477 bcopy (cmm_maps, newmaps, cmm_size * sizeof cmm_maps[0]);
1478 free (cmm_maps);
1479 }
1480 cmm_maps = newmaps;
1481 }
1482 UNBLOCK_INPUT;
1483
1484 if (newmodes == NULL || newmaps == NULL)
1485 break;
1486 cmm_size = newsize;
1487 }
1488
1489 /* Get the keymap definition--or nil if it is not defined. */
1490 temp = Findirect_function (XCDR (assoc), Qt);
1491 if (!NILP (temp))
1492 {
1493 cmm_modes[i] = var;
1494 cmm_maps [i] = temp;
1495 i++;
1496 }
1497 }
1498 }
1499
1500 if (modeptr) *modeptr = cmm_modes;
1501 if (mapptr) *mapptr = cmm_maps;
1502 return i;
1503}
1504
1505DEFUN ("current-active-maps", Fcurrent_active_maps, Scurrent_active_maps,
1506 0, 1, 0,
1507 doc: /* Return a list of the currently active keymaps.
1508OLP if non-nil indicates that we should obey `overriding-local-map' and
1509`overriding-terminal-local-map'. */)
1510 (olp)
1511 Lisp_Object olp;
1512{
1513 Lisp_Object keymaps = Fcons (current_global_map, Qnil);
1514
1515 if (!NILP (olp))
1516 {
1517 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1518 keymaps = Fcons (current_kboard->Voverriding_terminal_local_map, keymaps);
1519 /* The doc said that overriding-terminal-local-map should
1520 override overriding-local-map. The code used them both,
1521 but it seems clearer to use just one. rms, jan 2005. */
1522 else if (!NILP (Voverriding_local_map))
1523 keymaps = Fcons (Voverriding_local_map, keymaps);
1524 }
1525 if (NILP (XCDR (keymaps)))
1526 {
1527 Lisp_Object local;
1528 Lisp_Object *maps;
1529 int nmaps, i;
1530
1531 /* This usually returns the buffer's local map,
1532 but that can be overridden by a `local-map' property. */
1533 local = get_local_map (PT, current_buffer, Qlocal_map);
1534 if (!NILP (local))
1535 keymaps = Fcons (local, keymaps);
1536
1537 /* Now put all the minor mode keymaps on the list. */
1538 nmaps = current_minor_maps (0, &maps);
1539
1540 for (i = --nmaps; i >= 0; i--)
1541 if (!NILP (maps[i]))
1542 keymaps = Fcons (maps[i], keymaps);
1543
1544 /* This returns nil unless there is a `keymap' property. */
1545 local = get_local_map (PT, current_buffer, Qkeymap);
1546 if (!NILP (local))
1547 keymaps = Fcons (local, keymaps);
1548 }
1549
1550 return keymaps;
1551}
1552
1553/* GC is possible in this function if it autoloads a keymap. */
1554
1555DEFUN ("key-binding", Fkey_binding, Skey_binding, 1, 3, 0,
1556 doc: /* Return the binding for command KEY in current keymaps.
1557KEY is a string or vector, a sequence of keystrokes.
1558The binding is probably a symbol with a function definition.
1559
1560Normally, `key-binding' ignores bindings for t, which act as default
1561bindings, used when nothing else in the keymap applies; this makes it
1562usable as a general function for probing keymaps. However, if the
1563optional second argument ACCEPT-DEFAULT is non-nil, `key-binding' does
1564recognize the default bindings, just as `read-key-sequence' does.
1565
1566Like the normal command loop, `key-binding' will remap the command
1567resulting from looking up KEY by looking up the command in the
1568current keymaps. However, if the optional third argument NO-REMAP
1569is non-nil, `key-binding' returns the unmapped command. */)
1570 (key, accept_default, no_remap)
1571 Lisp_Object key, accept_default, no_remap;
1572{
1573 Lisp_Object *maps, value;
1574 int nmaps, i;
1575 struct gcpro gcpro1;
1576
1577 GCPRO1 (key);
1578
1579 if (!NILP (current_kboard->Voverriding_terminal_local_map))
1580 {
1581 value = Flookup_key (current_kboard->Voverriding_terminal_local_map,
1582 key, accept_default);
1583 if (! NILP (value) && !INTEGERP (value))
1584 goto done;
1585 }
1586 else if (!NILP (Voverriding_local_map))
1587 {
1588 value = Flookup_key (Voverriding_local_map, key, accept_default);
1589 if (! NILP (value) && !INTEGERP (value))
1590 goto done;
1591 }
1592 else
1593 {
1594 Lisp_Object local;
1595
1596 local = get_local_map (PT, current_buffer, Qkeymap);
1597 if (! NILP (local))
1598 {
1599 value = Flookup_key (local, key, accept_default);
1600 if (! NILP (value) && !INTEGERP (value))
1601 goto done;
1602 }
1603
1604 nmaps = current_minor_maps (0, &maps);
1605 /* Note that all these maps are GCPRO'd
1606 in the places where we found them. */
1607
1608 for (i = 0; i < nmaps; i++)
1609 if (! NILP (maps[i]))
1610 {
1611 value = Flookup_key (maps[i], key, accept_default);
1612 if (! NILP (value) && !INTEGERP (value))
1613 goto done;
1614 }
1615
1616 local = get_local_map (PT, current_buffer, Qlocal_map);
1617 if (! NILP (local))
1618 {
1619 value = Flookup_key (local, key, accept_default);
1620 if (! NILP (value) && !INTEGERP (value))
1621 goto done;
1622 }
1623 }
1624
1625 value = Flookup_key (current_global_map, key, accept_default);
1626
1627 done:
1628 UNGCPRO;
1629 if (NILP (value) || INTEGERP (value))
1630 return Qnil;
1631
1632 /* If the result of the ordinary keymap lookup is an interactive
1633 command, look for a key binding (ie. remapping) for that command. */
1634
1635 if (NILP (no_remap) && SYMBOLP (value))
1636 {
1637 Lisp_Object value1;
1638 if (value1 = Fcommand_remapping (value), !NILP (value1))
1639 value = value1;
1640 }
1641
1642 return value;
1643}
1644
1645/* GC is possible in this function if it autoloads a keymap. */
1646
1647DEFUN ("local-key-binding", Flocal_key_binding, Slocal_key_binding, 1, 2, 0,
1648 doc: /* Return the binding for command KEYS in current local keymap only.
1649KEYS is a string or vector, a sequence of keystrokes.
1650The binding is probably a symbol with a function definition.
1651
1652If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1653bindings; see the description of `lookup-key' for more details about this. */)
1654 (keys, accept_default)
1655 Lisp_Object keys, accept_default;
1656{
1657 register Lisp_Object map;
1658 map = current_buffer->keymap;
1659 if (NILP (map))
1660 return Qnil;
1661 return Flookup_key (map, keys, accept_default);
1662}
1663
1664/* GC is possible in this function if it autoloads a keymap. */
1665
1666DEFUN ("global-key-binding", Fglobal_key_binding, Sglobal_key_binding, 1, 2, 0,
1667 doc: /* Return the binding for command KEYS in current global keymap only.
1668KEYS is a string or vector, a sequence of keystrokes.
1669The binding is probably a symbol with a function definition.
1670This function's return values are the same as those of `lookup-key'
1671\(which see).
1672
1673If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1674bindings; see the description of `lookup-key' for more details about this. */)
1675 (keys, accept_default)
1676 Lisp_Object keys, accept_default;
1677{
1678 return Flookup_key (current_global_map, keys, accept_default);
1679}
1680
1681/* GC is possible in this function if it autoloads a keymap. */
1682
1683DEFUN ("minor-mode-key-binding", Fminor_mode_key_binding, Sminor_mode_key_binding, 1, 2, 0,
1684 doc: /* Find the visible minor mode bindings of KEY.
1685Return an alist of pairs (MODENAME . BINDING), where MODENAME is
1686the symbol which names the minor mode binding KEY, and BINDING is
1687KEY's definition in that mode. In particular, if KEY has no
1688minor-mode bindings, return nil. If the first binding is a
1689non-prefix, all subsequent bindings will be omitted, since they would
1690be ignored. Similarly, the list doesn't include non-prefix bindings
1691that come after prefix bindings.
1692
1693If optional argument ACCEPT-DEFAULT is non-nil, recognize default
1694bindings; see the description of `lookup-key' for more details about this. */)
1695 (key, accept_default)
1696 Lisp_Object key, accept_default;
1697{
1698 Lisp_Object *modes, *maps;
1699 int nmaps;
1700 Lisp_Object binding;
1701 int i, j;
1702 struct gcpro gcpro1, gcpro2;
1703
1704 nmaps = current_minor_maps (&modes, &maps);
1705 /* Note that all these maps are GCPRO'd
1706 in the places where we found them. */
1707
1708 binding = Qnil;
1709 GCPRO2 (key, binding);
1710
1711 for (i = j = 0; i < nmaps; i++)
1712 if (!NILP (maps[i])
1713 && !NILP (binding = Flookup_key (maps[i], key, accept_default))
1714 && !INTEGERP (binding))
1715 {
1716 if (KEYMAPP (binding))
1717 maps[j++] = Fcons (modes[i], binding);
1718 else if (j == 0)
1719 RETURN_UNGCPRO (Fcons (Fcons (modes[i], binding), Qnil));
1720 }
1721
1722 UNGCPRO;
1723 return Flist (j, maps);
1724}
1725
1726DEFUN ("define-prefix-command", Fdefine_prefix_command, Sdefine_prefix_command, 1, 3, 0,
1727 doc: /* Define COMMAND as a prefix command. COMMAND should be a symbol.
1728A new sparse keymap is stored as COMMAND's function definition and its value.
1729If a second optional argument MAPVAR is given, the map is stored as
1730its value instead of as COMMAND's value; but COMMAND is still defined
1731as a function.
1732The third optional argument NAME, if given, supplies a menu name
1733string for the map. This is required to use the keymap as a menu.
1734This function returns COMMAND. */)
1735 (command, mapvar, name)
1736 Lisp_Object command, mapvar, name;
1737{
1738 Lisp_Object map;
1739 map = Fmake_sparse_keymap (name);
1740 Ffset (command, map);
1741 if (!NILP (mapvar))
1742 Fset (mapvar, map);
1743 else
1744 Fset (command, map);
1745 return command;
1746}
1747
1748DEFUN ("use-global-map", Fuse_global_map, Suse_global_map, 1, 1, 0,
1749 doc: /* Select KEYMAP as the global keymap. */)
1750 (keymap)
1751 Lisp_Object keymap;
1752{
1753 keymap = get_keymap (keymap, 1, 1);
1754 current_global_map = keymap;
1755
1756 return Qnil;
1757}
1758
1759DEFUN ("use-local-map", Fuse_local_map, Suse_local_map, 1, 1, 0,
1760 doc: /* Select KEYMAP as the local keymap.
1761If KEYMAP is nil, that means no local keymap. */)
1762 (keymap)
1763 Lisp_Object keymap;
1764{
1765 if (!NILP (keymap))
1766 keymap = get_keymap (keymap, 1, 1);
1767
1768 current_buffer->keymap = keymap;
1769
1770 return Qnil;
1771}
1772
1773DEFUN ("current-local-map", Fcurrent_local_map, Scurrent_local_map, 0, 0, 0,
1774 doc: /* Return current buffer's local keymap, or nil if it has none. */)
1775 ()
1776{
1777 return current_buffer->keymap;
1778}
1779
1780DEFUN ("current-global-map", Fcurrent_global_map, Scurrent_global_map, 0, 0, 0,
1781 doc: /* Return the current global keymap. */)
1782 ()
1783{
1784 return current_global_map;
1785}
1786
1787DEFUN ("current-minor-mode-maps", Fcurrent_minor_mode_maps, Scurrent_minor_mode_maps, 0, 0, 0,
1788 doc: /* Return a list of keymaps for the minor modes of the current buffer. */)
1789 ()
1790{
1791 Lisp_Object *maps;
1792 int nmaps = current_minor_maps (0, &maps);
1793
1794 return Flist (nmaps, maps);
1795}
1796\f
1797/* Help functions for describing and documenting keymaps. */
1798
1799
1800static void
1801accessible_keymaps_1 (key, cmd, maps, tail, thisseq, is_metized)
1802 Lisp_Object maps, tail, thisseq, key, cmd;
1803 int is_metized; /* If 1, `key' is assumed to be INTEGERP. */
1804{
1805 Lisp_Object tem;
1806
1807 cmd = get_keymap (get_keyelt (cmd, 0), 0, 0);
1808 if (NILP (cmd))
1809 return;
1810
1811 /* Look for and break cycles. */
1812 while (!NILP (tem = Frassq (cmd, maps)))
1813 {
1814 Lisp_Object prefix = XCAR (tem);
1815 int lim = XINT (Flength (XCAR (tem)));
1816 if (lim <= XINT (Flength (thisseq)))
1817 { /* This keymap was already seen with a smaller prefix. */
1818 int i = 0;
1819 while (i < lim && EQ (Faref (prefix, make_number (i)),
1820 Faref (thisseq, make_number (i))))
1821 i++;
1822 if (i >= lim)
1823 /* `prefix' is a prefix of `thisseq' => there's a cycle. */
1824 return;
1825 }
1826 /* This occurrence of `cmd' in `maps' does not correspond to a cycle,
1827 but maybe `cmd' occurs again further down in `maps', so keep
1828 looking. */
1829 maps = XCDR (Fmemq (tem, maps));
1830 }
1831
1832 /* If the last key in thisseq is meta-prefix-char,
1833 turn it into a meta-ized keystroke. We know
1834 that the event we're about to append is an
1835 ascii keystroke since we're processing a
1836 keymap table. */
1837 if (is_metized)
1838 {
1839 int meta_bit = meta_modifier;
1840 Lisp_Object last = make_number (XINT (Flength (thisseq)) - 1);
1841 tem = Fcopy_sequence (thisseq);
1842
1843 Faset (tem, last, make_number (XINT (key) | meta_bit));
1844
1845 /* This new sequence is the same length as
1846 thisseq, so stick it in the list right
1847 after this one. */
1848 XSETCDR (tail,
1849 Fcons (Fcons (tem, cmd), XCDR (tail)));
1850 }
1851 else
1852 {
1853 tem = append_key (thisseq, key);
1854 nconc2 (tail, Fcons (Fcons (tem, cmd), Qnil));
1855 }
1856}
1857
1858static void
1859accessible_keymaps_char_table (args, index, cmd)
1860 Lisp_Object args, index, cmd;
1861{
1862 accessible_keymaps_1 (index, cmd,
1863 XCAR (XCAR (args)),
1864 XCAR (XCDR (args)),
1865 XCDR (XCDR (args)),
1866 XINT (XCDR (XCAR (args))));
1867}
1868
1869/* This function cannot GC. */
1870
1871DEFUN ("accessible-keymaps", Faccessible_keymaps, Saccessible_keymaps,
1872 1, 2, 0,
1873 doc: /* Find all keymaps accessible via prefix characters from KEYMAP.
1874Returns a list of elements of the form (KEYS . MAP), where the sequence
1875KEYS starting from KEYMAP gets you to MAP. These elements are ordered
1876so that the KEYS increase in length. The first element is ([] . KEYMAP).
1877An optional argument PREFIX, if non-nil, should be a key sequence;
1878then the value includes only maps for prefixes that start with PREFIX. */)
1879 (keymap, prefix)
1880 Lisp_Object keymap, prefix;
1881{
1882 Lisp_Object maps, tail;
1883 int prefixlen = 0;
1884
1885 /* no need for gcpro because we don't autoload any keymaps. */
1886
1887 if (!NILP (prefix))
1888 prefixlen = XINT (Flength (prefix));
1889
1890 if (!NILP (prefix))
1891 {
1892 /* If a prefix was specified, start with the keymap (if any) for
1893 that prefix, so we don't waste time considering other prefixes. */
1894 Lisp_Object tem;
1895 tem = Flookup_key (keymap, prefix, Qt);
1896 /* Flookup_key may give us nil, or a number,
1897 if the prefix is not defined in this particular map.
1898 It might even give us a list that isn't a keymap. */
1899 tem = get_keymap (tem, 0, 0);
1900 if (CONSP (tem))
1901 {
1902 /* Convert PREFIX to a vector now, so that later on
1903 we don't have to deal with the possibility of a string. */
1904 if (STRINGP (prefix))
1905 {
1906 int i, i_byte, c;
1907 Lisp_Object copy;
1908
1909 copy = Fmake_vector (make_number (SCHARS (prefix)), Qnil);
1910 for (i = 0, i_byte = 0; i < SCHARS (prefix);)
1911 {
1912 int i_before = i;
1913
1914 FETCH_STRING_CHAR_ADVANCE (c, prefix, i, i_byte);
1915 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
1916 c ^= 0200 | meta_modifier;
1917 ASET (copy, i_before, make_number (c));
1918 }
1919 prefix = copy;
1920 }
1921 maps = Fcons (Fcons (prefix, tem), Qnil);
1922 }
1923 else
1924 return Qnil;
1925 }
1926 else
1927 maps = Fcons (Fcons (Fmake_vector (make_number (0), Qnil),
1928 get_keymap (keymap, 1, 0)),
1929 Qnil);
1930
1931 /* For each map in the list maps,
1932 look at any other maps it points to,
1933 and stick them at the end if they are not already in the list.
1934
1935 This is a breadth-first traversal, where tail is the queue of
1936 nodes, and maps accumulates a list of all nodes visited. */
1937
1938 for (tail = maps; CONSP (tail); tail = XCDR (tail))
1939 {
1940 register Lisp_Object thisseq, thismap;
1941 Lisp_Object last;
1942 /* Does the current sequence end in the meta-prefix-char? */
1943 int is_metized;
1944
1945 thisseq = Fcar (Fcar (tail));
1946 thismap = Fcdr (Fcar (tail));
1947 last = make_number (XINT (Flength (thisseq)) - 1);
1948 is_metized = (XINT (last) >= 0
1949 /* Don't metize the last char of PREFIX. */
1950 && XINT (last) >= prefixlen
1951 && EQ (Faref (thisseq, last), meta_prefix_char));
1952
1953 for (; CONSP (thismap); thismap = XCDR (thismap))
1954 {
1955 Lisp_Object elt;
1956
1957 elt = XCAR (thismap);
1958
1959 QUIT;
1960
1961 if (CHAR_TABLE_P (elt))
1962 {
1963 Lisp_Object indices[3];
1964
1965 map_char_table (accessible_keymaps_char_table, Qnil, elt,
1966 elt, Fcons (Fcons (maps, make_number (is_metized)),
1967 Fcons (tail, thisseq)),
1968 0, indices);
1969 }
1970 else if (VECTORP (elt))
1971 {
1972 register int i;
1973
1974 /* Vector keymap. Scan all the elements. */
1975 for (i = 0; i < ASIZE (elt); i++)
1976 accessible_keymaps_1 (make_number (i), AREF (elt, i),
1977 maps, tail, thisseq, is_metized);
1978
1979 }
1980 else if (CONSP (elt))
1981 accessible_keymaps_1 (XCAR (elt), XCDR (elt),
1982 maps, tail, thisseq,
1983 is_metized && INTEGERP (XCAR (elt)));
1984
1985 }
1986 }
1987
1988 return maps;
1989}
1990\f
1991Lisp_Object Qsingle_key_description, Qkey_description;
1992
1993/* This function cannot GC. */
1994
1995DEFUN ("key-description", Fkey_description, Skey_description, 1, 2, 0,
1996 doc: /* Return a pretty description of key-sequence KEYS.
1997Optional arg PREFIX is the sequence of keys leading up to KEYS.
1998Control characters turn into "C-foo" sequences, meta into "M-foo",
1999spaces are put between sequence elements, etc. */)
2000 (keys, prefix)
2001 Lisp_Object keys, prefix;
2002{
2003 int len = 0;
2004 int i, i_byte;
2005 Lisp_Object *args;
2006 int size = XINT (Flength (keys));
2007 Lisp_Object list;
2008 Lisp_Object sep = build_string (" ");
2009 Lisp_Object key;
2010 int add_meta = 0;
2011
2012 if (!NILP (prefix))
2013 size += XINT (Flength (prefix));
2014
2015 /* This has one extra element at the end that we don't pass to Fconcat. */
2016 args = (Lisp_Object *) alloca (size * 4 * sizeof (Lisp_Object));
2017
2018 /* In effect, this computes
2019 (mapconcat 'single-key-description keys " ")
2020 but we shouldn't use mapconcat because it can do GC. */
2021
2022 next_list:
2023 if (!NILP (prefix))
2024 list = prefix, prefix = Qnil;
2025 else if (!NILP (keys))
2026 list = keys, keys = Qnil;
2027 else
2028 {
2029 if (add_meta)
2030 {
2031 args[len] = Fsingle_key_description (meta_prefix_char, Qnil);
2032 len += 2;
2033 }
2034 else if (len == 0)
2035 return empty_string;
2036 return Fconcat (len - 1, args);
2037 }
2038
2039 if (STRINGP (list))
2040 size = SCHARS (list);
2041 else if (VECTORP (list))
2042 size = XVECTOR (list)->size;
2043 else if (CONSP (list))
2044 size = XINT (Flength (list));
2045 else
2046 wrong_type_argument (Qarrayp, list);
2047
2048 i = i_byte = 0;
2049
2050 while (i < size)
2051 {
2052 if (STRINGP (list))
2053 {
2054 int c;
2055 FETCH_STRING_CHAR_ADVANCE (c, list, i, i_byte);
2056 if (SINGLE_BYTE_CHAR_P (c) && (c & 0200))
2057 c ^= 0200 | meta_modifier;
2058 XSETFASTINT (key, c);
2059 }
2060 else if (VECTORP (list))
2061 {
2062 key = AREF (list, i++);
2063 }
2064 else
2065 {
2066 key = XCAR (list);
2067 list = XCDR (list);
2068 i++;
2069 }
2070
2071 if (add_meta)
2072 {
2073 if (!INTEGERP (key)
2074 || EQ (key, meta_prefix_char)
2075 || (XINT (key) & meta_modifier))
2076 {
2077 args[len++] = Fsingle_key_description (meta_prefix_char, Qnil);
2078 args[len++] = sep;
2079 if (EQ (key, meta_prefix_char))
2080 continue;
2081 }
2082 else
2083 XSETINT (key, (XINT (key) | meta_modifier) & ~0x80);
2084 add_meta = 0;
2085 }
2086 else if (EQ (key, meta_prefix_char))
2087 {
2088 add_meta = 1;
2089 continue;
2090 }
2091 args[len++] = Fsingle_key_description (key, Qnil);
2092 args[len++] = sep;
2093 }
2094 goto next_list;
2095}
2096
2097
2098char *
2099push_key_description (c, p, force_multibyte)
2100 register unsigned int c;
2101 register char *p;
2102 int force_multibyte;
2103{
2104 unsigned c2;
2105 int valid_p;
2106
2107 /* Clear all the meaningless bits above the meta bit. */
2108 c &= meta_modifier | ~ - meta_modifier;
2109 c2 = c & ~(alt_modifier | ctrl_modifier | hyper_modifier
2110 | meta_modifier | shift_modifier | super_modifier);
2111
2112 valid_p = SINGLE_BYTE_CHAR_P (c2) || char_valid_p (c2, 0);
2113 if (! valid_p)
2114 {
2115 /* KEY_DESCRIPTION_SIZE is large enough for this. */
2116 p += sprintf (p, "[%d]", c);
2117 return p;
2118 }
2119
2120 if (c & alt_modifier)
2121 {
2122 *p++ = 'A';
2123 *p++ = '-';
2124 c -= alt_modifier;
2125 }
2126 if ((c & ctrl_modifier) != 0
2127 || (c2 < ' ' && c2 != 27 && c2 != '\t' && c2 != Ctl ('M')))
2128 {
2129 *p++ = 'C';
2130 *p++ = '-';
2131 c &= ~ctrl_modifier;
2132 }
2133 if (c & hyper_modifier)
2134 {
2135 *p++ = 'H';
2136 *p++ = '-';
2137 c -= hyper_modifier;
2138 }
2139 if (c & meta_modifier)
2140 {
2141 *p++ = 'M';
2142 *p++ = '-';
2143 c -= meta_modifier;
2144 }
2145 if (c & shift_modifier)
2146 {
2147 *p++ = 'S';
2148 *p++ = '-';
2149 c -= shift_modifier;
2150 }
2151 if (c & super_modifier)
2152 {
2153 *p++ = 's';
2154 *p++ = '-';
2155 c -= super_modifier;
2156 }
2157 if (c < 040)
2158 {
2159 if (c == 033)
2160 {
2161 *p++ = 'E';
2162 *p++ = 'S';
2163 *p++ = 'C';
2164 }
2165 else if (c == '\t')
2166 {
2167 *p++ = 'T';
2168 *p++ = 'A';
2169 *p++ = 'B';
2170 }
2171 else if (c == Ctl ('M'))
2172 {
2173 *p++ = 'R';
2174 *p++ = 'E';
2175 *p++ = 'T';
2176 }
2177 else
2178 {
2179 /* `C-' already added above. */
2180 if (c > 0 && c <= Ctl ('Z'))
2181 *p++ = c + 0140;
2182 else
2183 *p++ = c + 0100;
2184 }
2185 }
2186 else if (c == 0177)
2187 {
2188 *p++ = 'D';
2189 *p++ = 'E';
2190 *p++ = 'L';
2191 }
2192 else if (c == ' ')
2193 {
2194 *p++ = 'S';
2195 *p++ = 'P';
2196 *p++ = 'C';
2197 }
2198 else if (c < 128
2199 || (NILP (current_buffer->enable_multibyte_characters)
2200 && SINGLE_BYTE_CHAR_P (c)
2201 && !force_multibyte))
2202 {
2203 *p++ = c;
2204 }
2205 else
2206 {
2207 if (force_multibyte)
2208 {
2209 if (SINGLE_BYTE_CHAR_P (c))
2210 c = unibyte_char_to_multibyte (c);
2211 p += CHAR_STRING (c, p);
2212 }
2213 else if (NILP (current_buffer->enable_multibyte_characters))
2214 {
2215 int bit_offset;
2216 *p++ = '\\';
2217 /* The biggest character code uses 19 bits. */
2218 for (bit_offset = 18; bit_offset >= 0; bit_offset -= 3)
2219 {
2220 if (c >= (1 << bit_offset))
2221 *p++ = ((c & (7 << bit_offset)) >> bit_offset) + '0';
2222 }
2223 }
2224 else
2225 p += CHAR_STRING (c, p);
2226 }
2227
2228 return p;
2229}
2230
2231/* This function cannot GC. */
2232
2233DEFUN ("single-key-description", Fsingle_key_description,
2234 Ssingle_key_description, 1, 2, 0,
2235 doc: /* Return a pretty description of command character KEY.
2236Control characters turn into C-whatever, etc.
2237Optional argument NO-ANGLES non-nil means don't put angle brackets
2238around function keys and event symbols. */)
2239 (key, no_angles)
2240 Lisp_Object key, no_angles;
2241{
2242 if (CONSP (key) && lucid_event_type_list_p (key))
2243 key = Fevent_convert_list (key);
2244
2245 key = EVENT_HEAD (key);
2246
2247 if (INTEGERP (key)) /* Normal character */
2248 {
2249 unsigned int charset, c1, c2;
2250 int without_bits = XINT (key) & ~((-1) << CHARACTERBITS);
2251
2252 if (SINGLE_BYTE_CHAR_P (without_bits))
2253 charset = 0;
2254 else
2255 SPLIT_CHAR (without_bits, charset, c1, c2);
2256
2257 if (charset
2258 && CHARSET_DEFINED_P (charset)
2259 && ((c1 >= 0 && c1 < 32)
2260 || (c2 >= 0 && c2 < 32)))
2261 {
2262 /* Handle a generic character. */
2263 Lisp_Object name;
2264 name = CHARSET_TABLE_INFO (charset, CHARSET_LONG_NAME_IDX);
2265 CHECK_STRING (name);
2266 return concat2 (build_string ("Character set "), name);
2267 }
2268 else
2269 {
2270 char tem[KEY_DESCRIPTION_SIZE], *end;
2271 int nbytes, nchars;
2272 Lisp_Object string;
2273
2274 end = push_key_description (XUINT (key), tem, 1);
2275 nbytes = end - tem;
2276 nchars = multibyte_chars_in_text (tem, nbytes);
2277 if (nchars == nbytes)
2278 {
2279 *end = '\0';
2280 string = build_string (tem);
2281 }
2282 else
2283 string = make_multibyte_string (tem, nchars, nbytes);
2284 return string;
2285 }
2286 }
2287 else if (SYMBOLP (key)) /* Function key or event-symbol */
2288 {
2289 if (NILP (no_angles))
2290 {
2291 char *buffer
2292 = (char *) alloca (SBYTES (SYMBOL_NAME (key)) + 5);
2293 sprintf (buffer, "<%s>", SDATA (SYMBOL_NAME (key)));
2294 return build_string (buffer);
2295 }
2296 else
2297 return Fsymbol_name (key);
2298 }
2299 else if (STRINGP (key)) /* Buffer names in the menubar. */
2300 return Fcopy_sequence (key);
2301 else
2302 error ("KEY must be an integer, cons, symbol, or string");
2303 return Qnil;
2304}
2305
2306char *
2307push_text_char_description (c, p)
2308 register unsigned int c;
2309 register char *p;
2310{
2311 if (c >= 0200)
2312 {
2313 *p++ = 'M';
2314 *p++ = '-';
2315 c -= 0200;
2316 }
2317 if (c < 040)
2318 {
2319 *p++ = '^';
2320 *p++ = c + 64; /* 'A' - 1 */
2321 }
2322 else if (c == 0177)
2323 {
2324 *p++ = '^';
2325 *p++ = '?';
2326 }
2327 else
2328 *p++ = c;
2329 return p;
2330}
2331
2332/* This function cannot GC. */
2333
2334DEFUN ("text-char-description", Ftext_char_description, Stext_char_description, 1, 1, 0,
2335 doc: /* Return a pretty description of file-character CHARACTER.
2336Control characters turn into "^char", etc. This differs from
2337`single-key-description' which turns them into "C-char".
2338Also, this function recognizes the 2**7 bit as the Meta character,
2339whereas `single-key-description' uses the 2**27 bit for Meta.
2340See Info node `(elisp)Describing Characters' for examples. */)
2341 (character)
2342 Lisp_Object character;
2343{
2344 /* Currently MAX_MULTIBYTE_LENGTH is 4 (< 6). */
2345 unsigned char str[6];
2346 int c;
2347
2348 CHECK_NUMBER (character);
2349
2350 c = XINT (character);
2351 if (!SINGLE_BYTE_CHAR_P (c))
2352 {
2353 int len = CHAR_STRING (c, str);
2354
2355 return make_multibyte_string (str, 1, len);
2356 }
2357
2358 *push_text_char_description (c & 0377, str) = 0;
2359
2360 return build_string (str);
2361}
2362
2363/* Return non-zero if SEQ contains only ASCII characters, perhaps with
2364 a meta bit. */
2365static int
2366ascii_sequence_p (seq)
2367 Lisp_Object seq;
2368{
2369 int i;
2370 int len = XINT (Flength (seq));
2371
2372 for (i = 0; i < len; i++)
2373 {
2374 Lisp_Object ii, elt;
2375
2376 XSETFASTINT (ii, i);
2377 elt = Faref (seq, ii);
2378
2379 if (!INTEGERP (elt)
2380 || (XUINT (elt) & ~CHAR_META) >= 0x80)
2381 return 0;
2382 }
2383
2384 return 1;
2385}
2386
2387\f
2388/* where-is - finding a command in a set of keymaps. */
2389
2390static Lisp_Object where_is_internal ();
2391static Lisp_Object where_is_internal_1 ();
2392static void where_is_internal_2 ();
2393
2394/* Like Flookup_key, but uses a list of keymaps SHADOW instead of a single map.
2395 Returns the first non-nil binding found in any of those maps. */
2396
2397static Lisp_Object
2398shadow_lookup (shadow, key, flag)
2399 Lisp_Object shadow, key, flag;
2400{
2401 Lisp_Object tail, value;
2402
2403 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
2404 {
2405 value = Flookup_key (XCAR (tail), key, flag);
2406 if (NATNUMP (value))
2407 {
2408 value = Flookup_key (XCAR (tail),
2409 Fsubstring (key, make_number (0), value), flag);
2410 if (!NILP (value))
2411 return Qnil;
2412 }
2413 else if (!NILP (value))
2414 return value;
2415 }
2416 return Qnil;
2417}
2418
2419static Lisp_Object Vmouse_events;
2420
2421/* This function can GC if Flookup_key autoloads any keymaps. */
2422
2423static Lisp_Object
2424where_is_internal (definition, keymaps, firstonly, noindirect, no_remap)
2425 Lisp_Object definition, keymaps;
2426 Lisp_Object firstonly, noindirect, no_remap;
2427{
2428 Lisp_Object maps = Qnil;
2429 Lisp_Object found, sequences;
2430 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2431 /* 1 means ignore all menu bindings entirely. */
2432 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2433
2434 /* If this command is remapped, then it has no key bindings
2435 of its own. */
2436 if (NILP (no_remap) && SYMBOLP (definition))
2437 {
2438 Lisp_Object tem;
2439 if (tem = Fcommand_remapping (definition), !NILP (tem))
2440 return Qnil;
2441 }
2442
2443 found = keymaps;
2444 while (CONSP (found))
2445 {
2446 maps =
2447 nconc2 (maps,
2448 Faccessible_keymaps (get_keymap (XCAR (found), 1, 0), Qnil));
2449 found = XCDR (found);
2450 }
2451
2452 GCPRO5 (definition, keymaps, maps, found, sequences);
2453 found = Qnil;
2454 sequences = Qnil;
2455
2456 for (; !NILP (maps); maps = Fcdr (maps))
2457 {
2458 /* Key sequence to reach map, and the map that it reaches */
2459 register Lisp_Object this, map, tem;
2460
2461 /* In order to fold [META-PREFIX-CHAR CHAR] sequences into
2462 [M-CHAR] sequences, check if last character of the sequence
2463 is the meta-prefix char. */
2464 Lisp_Object last;
2465 int last_is_meta;
2466
2467 this = Fcar (Fcar (maps));
2468 map = Fcdr (Fcar (maps));
2469 last = make_number (XINT (Flength (this)) - 1);
2470 last_is_meta = (XINT (last) >= 0
2471 && EQ (Faref (this, last), meta_prefix_char));
2472
2473 /* if (nomenus && !ascii_sequence_p (this)) */
2474 if (nomenus && XINT (last) >= 0
2475 && SYMBOLP (tem = Faref (this, make_number (0)))
2476 && !NILP (Fmemq (XCAR (parse_modifiers (tem)), Vmouse_events)))
2477 /* If no menu entries should be returned, skip over the
2478 keymaps bound to `menu-bar' and `tool-bar' and other
2479 non-ascii prefixes like `C-down-mouse-2'. */
2480 continue;
2481
2482 QUIT;
2483
2484 while (CONSP (map))
2485 {
2486 /* Because the code we want to run on each binding is rather
2487 large, we don't want to have two separate loop bodies for
2488 sparse keymap bindings and tables; we want to iterate one
2489 loop body over both keymap and vector bindings.
2490
2491 For this reason, if Fcar (map) is a vector, we don't
2492 advance map to the next element until i indicates that we
2493 have finished off the vector. */
2494 Lisp_Object elt, key, binding;
2495 elt = XCAR (map);
2496 map = XCDR (map);
2497
2498 sequences = Qnil;
2499
2500 QUIT;
2501
2502 /* Set key and binding to the current key and binding, and
2503 advance map and i to the next binding. */
2504 if (VECTORP (elt))
2505 {
2506 Lisp_Object sequence;
2507 int i;
2508 /* In a vector, look at each element. */
2509 for (i = 0; i < XVECTOR (elt)->size; i++)
2510 {
2511 binding = AREF (elt, i);
2512 XSETFASTINT (key, i);
2513 sequence = where_is_internal_1 (binding, key, definition,
2514 noindirect, this,
2515 last, nomenus, last_is_meta);
2516 if (!NILP (sequence))
2517 sequences = Fcons (sequence, sequences);
2518 }
2519 }
2520 else if (CHAR_TABLE_P (elt))
2521 {
2522 Lisp_Object indices[3];
2523 Lisp_Object args;
2524
2525 args = Fcons (Fcons (Fcons (definition, noindirect),
2526 Qnil), /* Result accumulator. */
2527 Fcons (Fcons (this, last),
2528 Fcons (make_number (nomenus),
2529 make_number (last_is_meta))));
2530 map_char_table (where_is_internal_2, Qnil, elt, elt, args,
2531 0, indices);
2532 sequences = XCDR (XCAR (args));
2533 }
2534 else if (CONSP (elt))
2535 {
2536 Lisp_Object sequence;
2537
2538 key = XCAR (elt);
2539 binding = XCDR (elt);
2540
2541 sequence = where_is_internal_1 (binding, key, definition,
2542 noindirect, this,
2543 last, nomenus, last_is_meta);
2544 if (!NILP (sequence))
2545 sequences = Fcons (sequence, sequences);
2546 }
2547
2548
2549 while (!NILP (sequences))
2550 {
2551 Lisp_Object sequence, remapped, function;
2552
2553 sequence = XCAR (sequences);
2554 sequences = XCDR (sequences);
2555
2556 /* If the current sequence is a command remapping with
2557 format [remap COMMAND], find the key sequences
2558 which run COMMAND, and use those sequences instead. */
2559 remapped = Qnil;
2560 if (NILP (no_remap)
2561 && VECTORP (sequence) && XVECTOR (sequence)->size == 2
2562 && EQ (AREF (sequence, 0), Qremap)
2563 && (function = AREF (sequence, 1), SYMBOLP (function)))
2564 {
2565 Lisp_Object remapped1;
2566
2567 remapped1 = where_is_internal (function, keymaps, firstonly, noindirect, Qt);
2568 if (CONSP (remapped1))
2569 {
2570 /* Verify that this key binding actually maps to the
2571 remapped command (see below). */
2572 if (!EQ (shadow_lookup (keymaps, XCAR (remapped1), Qnil), function))
2573 continue;
2574 sequence = XCAR (remapped1);
2575 remapped = XCDR (remapped1);
2576 goto record_sequence;
2577 }
2578 }
2579
2580 /* Verify that this key binding is not shadowed by another
2581 binding for the same key, before we say it exists.
2582
2583 Mechanism: look for local definition of this key and if
2584 it is defined and does not match what we found then
2585 ignore this key.
2586
2587 Either nil or number as value from Flookup_key
2588 means undefined. */
2589 if (!EQ (shadow_lookup (keymaps, sequence, Qnil), definition))
2590 continue;
2591
2592 record_sequence:
2593 /* Don't annoy user with strings from a menu such as
2594 Select Paste. Change them all to "(any string)",
2595 so that there seems to be only one menu item
2596 to report. */
2597 if (! NILP (sequence))
2598 {
2599 Lisp_Object tem;
2600 tem = Faref (sequence, make_number (XVECTOR (sequence)->size - 1));
2601 if (STRINGP (tem))
2602 Faset (sequence, make_number (XVECTOR (sequence)->size - 1),
2603 build_string ("(any string)"));
2604 }
2605
2606 /* It is a true unshadowed match. Record it, unless it's already
2607 been seen (as could happen when inheriting keymaps). */
2608 if (NILP (Fmember (sequence, found)))
2609 found = Fcons (sequence, found);
2610
2611 /* If firstonly is Qnon_ascii, then we can return the first
2612 binding we find. If firstonly is not Qnon_ascii but not
2613 nil, then we should return the first ascii-only binding
2614 we find. */
2615 if (EQ (firstonly, Qnon_ascii))
2616 RETURN_UNGCPRO (sequence);
2617 else if (!NILP (firstonly) && ascii_sequence_p (sequence))
2618 RETURN_UNGCPRO (sequence);
2619
2620 if (CONSP (remapped))
2621 {
2622 sequence = XCAR (remapped);
2623 remapped = XCDR (remapped);
2624 goto record_sequence;
2625 }
2626 }
2627 }
2628 }
2629
2630 UNGCPRO;
2631
2632 found = Fnreverse (found);
2633
2634 /* firstonly may have been t, but we may have gone all the way through
2635 the keymaps without finding an all-ASCII key sequence. So just
2636 return the best we could find. */
2637 if (!NILP (firstonly))
2638 return Fcar (found);
2639
2640 return found;
2641}
2642
2643DEFUN ("where-is-internal", Fwhere_is_internal, Swhere_is_internal, 1, 5, 0,
2644 doc: /* Return list of keys that invoke DEFINITION.
2645If KEYMAP is a keymap, search only KEYMAP and the global keymap.
2646If KEYMAP is nil, search all the currently active keymaps.
2647If KEYMAP is a list of keymaps, search only those keymaps.
2648
2649If optional 3rd arg FIRSTONLY is non-nil, return the first key sequence found,
2650rather than a list of all possible key sequences.
2651If FIRSTONLY is the symbol `non-ascii', return the first binding found,
2652no matter what it is.
2653If FIRSTONLY has another non-nil value, prefer sequences of ASCII characters
2654\(or their meta variants) and entirely reject menu bindings.
2655
2656If optional 4th arg NOINDIRECT is non-nil, don't follow indirections
2657to other keymaps or slots. This makes it possible to search for an
2658indirect definition itself.
2659
2660If optional 5th arg NO-REMAP is non-nil, don't search for key sequences
2661that invoke a command which is remapped to DEFINITION, but include the
2662remapped command in the returned list. */)
2663 (definition, keymap, firstonly, noindirect, no_remap)
2664 Lisp_Object definition, keymap;
2665 Lisp_Object firstonly, noindirect, no_remap;
2666{
2667 Lisp_Object sequences, keymaps;
2668 /* 1 means ignore all menu bindings entirely. */
2669 int nomenus = !NILP (firstonly) && !EQ (firstonly, Qnon_ascii);
2670 Lisp_Object result;
2671
2672 /* Find the relevant keymaps. */
2673 if (CONSP (keymap) && KEYMAPP (XCAR (keymap)))
2674 keymaps = keymap;
2675 else if (!NILP (keymap))
2676 keymaps = Fcons (keymap, Fcons (current_global_map, Qnil));
2677 else
2678 keymaps = Fcurrent_active_maps (Qnil);
2679
2680 /* Only use caching for the menubar (i.e. called with (def nil t nil).
2681 We don't really need to check `keymap'. */
2682 if (nomenus && NILP (noindirect) && NILP (keymap))
2683 {
2684 Lisp_Object *defns;
2685 int i, j, n;
2686 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4, gcpro5;
2687
2688 /* Check heuristic-consistency of the cache. */
2689 if (NILP (Fequal (keymaps, where_is_cache_keymaps)))
2690 where_is_cache = Qnil;
2691
2692 if (NILP (where_is_cache))
2693 {
2694 /* We need to create the cache. */
2695 Lisp_Object args[2];
2696 where_is_cache = Fmake_hash_table (0, args);
2697 where_is_cache_keymaps = Qt;
2698
2699 /* Fill in the cache. */
2700 GCPRO5 (definition, keymaps, firstonly, noindirect, no_remap);
2701 where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2702 UNGCPRO;
2703
2704 where_is_cache_keymaps = keymaps;
2705 }
2706
2707 /* We want to process definitions from the last to the first.
2708 Instead of consing, copy definitions to a vector and step
2709 over that vector. */
2710 sequences = Fgethash (definition, where_is_cache, Qnil);
2711 n = XINT (Flength (sequences));
2712 defns = (Lisp_Object *) alloca (n * sizeof *defns);
2713 for (i = 0; CONSP (sequences); sequences = XCDR (sequences))
2714 defns[i++] = XCAR (sequences);
2715
2716 /* Verify that the key bindings are not shadowed. Note that
2717 the following can GC. */
2718 GCPRO2 (definition, keymaps);
2719 result = Qnil;
2720 j = -1;
2721 for (i = n - 1; i >= 0; --i)
2722 if (EQ (shadow_lookup (keymaps, defns[i], Qnil), definition))
2723 {
2724 if (ascii_sequence_p (defns[i]))
2725 break;
2726 else if (j < 0)
2727 j = i;
2728 }
2729
2730 result = i >= 0 ? defns[i] : (j >= 0 ? defns[j] : Qnil);
2731 UNGCPRO;
2732 }
2733 else
2734 {
2735 /* Kill the cache so that where_is_internal_1 doesn't think
2736 we're filling it up. */
2737 where_is_cache = Qnil;
2738 result = where_is_internal (definition, keymaps, firstonly, noindirect, no_remap);
2739 }
2740
2741 return result;
2742}
2743
2744/* This is the function that Fwhere_is_internal calls using map_char_table.
2745 ARGS has the form
2746 (((DEFINITION . NOINDIRECT) . (KEYMAP . RESULT))
2747 .
2748 ((THIS . LAST) . (NOMENUS . LAST_IS_META)))
2749 Since map_char_table doesn't really use the return value from this function,
2750 we the result append to RESULT, the slot in ARGS.
2751
2752 This function can GC because it calls where_is_internal_1 which can
2753 GC. */
2754
2755static void
2756where_is_internal_2 (args, key, binding)
2757 Lisp_Object args, key, binding;
2758{
2759 Lisp_Object definition, noindirect, this, last;
2760 Lisp_Object result, sequence;
2761 int nomenus, last_is_meta;
2762 struct gcpro gcpro1, gcpro2, gcpro3;
2763
2764 GCPRO3 (args, key, binding);
2765 result = XCDR (XCAR (args));
2766 definition = XCAR (XCAR (XCAR (args)));
2767 noindirect = XCDR (XCAR (XCAR (args)));
2768 this = XCAR (XCAR (XCDR (args)));
2769 last = XCDR (XCAR (XCDR (args)));
2770 nomenus = XFASTINT (XCAR (XCDR (XCDR (args))));
2771 last_is_meta = XFASTINT (XCDR (XCDR (XCDR (args))));
2772
2773 sequence = where_is_internal_1 (binding, key, definition, noindirect,
2774 this, last, nomenus, last_is_meta);
2775
2776 if (!NILP (sequence))
2777 XSETCDR (XCAR (args), Fcons (sequence, result));
2778
2779 UNGCPRO;
2780}
2781
2782
2783/* This function can GC because get_keyelt can. */
2784
2785static Lisp_Object
2786where_is_internal_1 (binding, key, definition, noindirect, this, last,
2787 nomenus, last_is_meta)
2788 Lisp_Object binding, key, definition, noindirect, this, last;
2789 int nomenus, last_is_meta;
2790{
2791 Lisp_Object sequence;
2792
2793 /* Search through indirections unless that's not wanted. */
2794 if (NILP (noindirect))
2795 binding = get_keyelt (binding, 0);
2796
2797 /* End this iteration if this element does not match
2798 the target. */
2799
2800 if (!(!NILP (where_is_cache) /* everything "matches" during cache-fill. */
2801 || EQ (binding, definition)
2802 || (CONSP (definition) && !NILP (Fequal (binding, definition)))))
2803 /* Doesn't match. */
2804 return Qnil;
2805
2806 /* We have found a match. Construct the key sequence where we found it. */
2807 if (INTEGERP (key) && last_is_meta)
2808 {
2809 sequence = Fcopy_sequence (this);
2810 Faset (sequence, last, make_number (XINT (key) | meta_modifier));
2811 }
2812 else
2813 sequence = append_key (this, key);
2814
2815 if (!NILP (where_is_cache))
2816 {
2817 Lisp_Object sequences = Fgethash (binding, where_is_cache, Qnil);
2818 Fputhash (binding, Fcons (sequence, sequences), where_is_cache);
2819 return Qnil;
2820 }
2821 else
2822 return sequence;
2823}
2824\f
2825/* describe-bindings - summarizing all the bindings in a set of keymaps. */
2826
2827DEFUN ("describe-buffer-bindings", Fdescribe_buffer_bindings, Sdescribe_buffer_bindings, 1, 3, 0,
2828 doc: /* Insert the list of all defined keys and their definitions.
2829The list is inserted in the current buffer, while the bindings are
2830looked up in BUFFER.
2831The optional argument PREFIX, if non-nil, should be a key sequence;
2832then we display only bindings that start with that prefix.
2833The optional argument MENUS, if non-nil, says to mention menu bindings.
2834\(Ordinarily these are omitted from the output.) */)
2835 (buffer, prefix, menus)
2836 Lisp_Object buffer, prefix, menus;
2837{
2838 Lisp_Object outbuf, shadow;
2839 int nomenu = NILP (menus);
2840 register Lisp_Object start1;
2841 struct gcpro gcpro1;
2842
2843 char *alternate_heading
2844 = "\
2845Keyboard translations:\n\n\
2846You type Translation\n\
2847-------- -----------\n";
2848
2849 shadow = Qnil;
2850 GCPRO1 (shadow);
2851
2852 outbuf = Fcurrent_buffer ();
2853
2854 /* Report on alternates for keys. */
2855 if (STRINGP (Vkeyboard_translate_table) && !NILP (prefix))
2856 {
2857 int c;
2858 const unsigned char *translate = SDATA (Vkeyboard_translate_table);
2859 int translate_len = SCHARS (Vkeyboard_translate_table);
2860
2861 for (c = 0; c < translate_len; c++)
2862 if (translate[c] != c)
2863 {
2864 char buf[KEY_DESCRIPTION_SIZE];
2865 char *bufend;
2866
2867 if (alternate_heading)
2868 {
2869 insert_string (alternate_heading);
2870 alternate_heading = 0;
2871 }
2872
2873 bufend = push_key_description (translate[c], buf, 1);
2874 insert (buf, bufend - buf);
2875 Findent_to (make_number (16), make_number (1));
2876 bufend = push_key_description (c, buf, 1);
2877 insert (buf, bufend - buf);
2878
2879 insert ("\n", 1);
2880
2881 /* Insert calls signal_after_change which may GC. */
2882 translate = SDATA (Vkeyboard_translate_table);
2883 }
2884
2885 insert ("\n", 1);
2886 }
2887
2888 if (!NILP (Vkey_translation_map))
2889 describe_map_tree (Vkey_translation_map, 0, Qnil, prefix,
2890 "Key translations", nomenu, 1, 0, 0);
2891
2892
2893 /* Print the (major mode) local map. */
2894 start1 = Qnil;
2895 if (!NILP (current_kboard->Voverriding_terminal_local_map))
2896 start1 = current_kboard->Voverriding_terminal_local_map;
2897 else if (!NILP (Voverriding_local_map))
2898 start1 = Voverriding_local_map;
2899
2900 if (!NILP (start1))
2901 {
2902 describe_map_tree (start1, 1, shadow, prefix,
2903 "\f\nOverriding Bindings", nomenu, 0, 0, 0);
2904 shadow = Fcons (start1, shadow);
2905 }
2906 else
2907 {
2908 /* Print the minor mode and major mode keymaps. */
2909 int i, nmaps;
2910 Lisp_Object *modes, *maps;
2911
2912 /* Temporarily switch to `buffer', so that we can get that buffer's
2913 minor modes correctly. */
2914 Fset_buffer (buffer);
2915
2916 nmaps = current_minor_maps (&modes, &maps);
2917 Fset_buffer (outbuf);
2918
2919 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2920 XBUFFER (buffer), Qkeymap);
2921 if (!NILP (start1))
2922 {
2923 describe_map_tree (start1, 1, shadow, prefix,
2924 "\f\n`keymap' Property Bindings", nomenu,
2925 0, 0, 0);
2926 shadow = Fcons (start1, shadow);
2927 }
2928
2929 /* Print the minor mode maps. */
2930 for (i = 0; i < nmaps; i++)
2931 {
2932 /* The title for a minor mode keymap
2933 is constructed at run time.
2934 We let describe_map_tree do the actual insertion
2935 because it takes care of other features when doing so. */
2936 char *title, *p;
2937
2938 if (!SYMBOLP (modes[i]))
2939 abort();
2940
2941 p = title = (char *) alloca (42 + SCHARS (SYMBOL_NAME (modes[i])));
2942 *p++ = '\f';
2943 *p++ = '\n';
2944 *p++ = '`';
2945 bcopy (SDATA (SYMBOL_NAME (modes[i])), p,
2946 SCHARS (SYMBOL_NAME (modes[i])));
2947 p += SCHARS (SYMBOL_NAME (modes[i]));
2948 *p++ = '\'';
2949 bcopy (" Minor Mode Bindings", p, sizeof (" Minor Mode Bindings") - 1);
2950 p += sizeof (" Minor Mode Bindings") - 1;
2951 *p = 0;
2952
2953 describe_map_tree (maps[i], 1, shadow, prefix,
2954 title, nomenu, 0, 0, 0);
2955 shadow = Fcons (maps[i], shadow);
2956 }
2957
2958 start1 = get_local_map (BUF_PT (XBUFFER (buffer)),
2959 XBUFFER (buffer), Qlocal_map);
2960 if (!NILP (start1))
2961 {
2962 if (EQ (start1, XBUFFER (buffer)->keymap))
2963 describe_map_tree (start1, 1, shadow, prefix,
2964 "\f\nMajor Mode Bindings", nomenu, 0, 0, 0);
2965 else
2966 describe_map_tree (start1, 1, shadow, prefix,
2967 "\f\n`local-map' Property Bindings",
2968 nomenu, 0, 0, 0);
2969
2970 shadow = Fcons (start1, shadow);
2971 }
2972 }
2973
2974 describe_map_tree (current_global_map, 1, shadow, prefix,
2975 "\f\nGlobal Bindings", nomenu, 0, 1, 0);
2976
2977 /* Print the function-key-map translations under this prefix. */
2978 if (!NILP (Vfunction_key_map))
2979 describe_map_tree (Vfunction_key_map, 0, Qnil, prefix,
2980 "\f\nFunction key map translations", nomenu, 1, 0, 0);
2981
2982 UNGCPRO;
2983 return Qnil;
2984}
2985
2986/* Insert a description of the key bindings in STARTMAP,
2987 followed by those of all maps reachable through STARTMAP.
2988 If PARTIAL is nonzero, omit certain "uninteresting" commands
2989 (such as `undefined').
2990 If SHADOW is non-nil, it is a list of maps;
2991 don't mention keys which would be shadowed by any of them.
2992 PREFIX, if non-nil, says mention only keys that start with PREFIX.
2993 TITLE, if not 0, is a string to insert at the beginning.
2994 TITLE should not end with a colon or a newline; we supply that.
2995 If NOMENU is not 0, then omit menu-bar commands.
2996
2997 If TRANSL is nonzero, the definitions are actually key translations
2998 so print strings and vectors differently.
2999
3000 If ALWAYS_TITLE is nonzero, print the title even if there are no maps
3001 to look through.
3002
3003 If MENTION_SHADOW is nonzero, then when something is shadowed by SHADOW,
3004 don't omit it; instead, mention it but say it is shadowed. */
3005
3006void
3007describe_map_tree (startmap, partial, shadow, prefix, title, nomenu, transl,
3008 always_title, mention_shadow)
3009 Lisp_Object startmap, shadow, prefix;
3010 int partial;
3011 char *title;
3012 int nomenu;
3013 int transl;
3014 int always_title;
3015 int mention_shadow;
3016{
3017 Lisp_Object maps, orig_maps, seen, sub_shadows;
3018 struct gcpro gcpro1, gcpro2, gcpro3;
3019 int something = 0;
3020 char *key_heading
3021 = "\
3022key binding\n\
3023--- -------\n";
3024
3025 orig_maps = maps = Faccessible_keymaps (startmap, prefix);
3026 seen = Qnil;
3027 sub_shadows = Qnil;
3028 GCPRO3 (maps, seen, sub_shadows);
3029
3030 if (nomenu)
3031 {
3032 Lisp_Object list;
3033
3034 /* Delete from MAPS each element that is for the menu bar. */
3035 for (list = maps; !NILP (list); list = XCDR (list))
3036 {
3037 Lisp_Object elt, prefix, tem;
3038
3039 elt = Fcar (list);
3040 prefix = Fcar (elt);
3041 if (XVECTOR (prefix)->size >= 1)
3042 {
3043 tem = Faref (prefix, make_number (0));
3044 if (EQ (tem, Qmenu_bar))
3045 maps = Fdelq (elt, maps);
3046 }
3047 }
3048 }
3049
3050 if (!NILP (maps) || always_title)
3051 {
3052 if (title)
3053 {
3054 insert_string (title);
3055 if (!NILP (prefix))
3056 {
3057 insert_string (" Starting With ");
3058 insert1 (Fkey_description (prefix, Qnil));
3059 }
3060 insert_string (":\n");
3061 }
3062 insert_string (key_heading);
3063 something = 1;
3064 }
3065
3066 for (; !NILP (maps); maps = Fcdr (maps))
3067 {
3068 register Lisp_Object elt, prefix, tail;
3069
3070 elt = Fcar (maps);
3071 prefix = Fcar (elt);
3072
3073 sub_shadows = Qnil;
3074
3075 for (tail = shadow; CONSP (tail); tail = XCDR (tail))
3076 {
3077 Lisp_Object shmap;
3078
3079 shmap = XCAR (tail);
3080
3081 /* If the sequence by which we reach this keymap is zero-length,
3082 then the shadow map for this keymap is just SHADOW. */
3083 if ((STRINGP (prefix) && SCHARS (prefix) == 0)
3084 || (VECTORP (prefix) && XVECTOR (prefix)->size == 0))
3085 ;
3086 /* If the sequence by which we reach this keymap actually has
3087 some elements, then the sequence's definition in SHADOW is
3088 what we should use. */
3089 else
3090 {
3091 shmap = Flookup_key (shmap, Fcar (elt), Qt);
3092 if (INTEGERP (shmap))
3093 shmap = Qnil;
3094 }
3095
3096 /* If shmap is not nil and not a keymap,
3097 it completely shadows this map, so don't
3098 describe this map at all. */
3099 if (!NILP (shmap) && !KEYMAPP (shmap))
3100 goto skip;
3101
3102 if (!NILP (shmap))
3103 sub_shadows = Fcons (shmap, sub_shadows);
3104 }
3105
3106 /* Maps we have already listed in this loop shadow this map. */
3107 for (tail = orig_maps; !EQ (tail, maps); tail = XCDR (tail))
3108 {
3109 Lisp_Object tem;
3110 tem = Fequal (Fcar (XCAR (tail)), prefix);
3111 if (!NILP (tem))
3112 sub_shadows = Fcons (XCDR (XCAR (tail)), sub_shadows);
3113 }
3114
3115 describe_map (Fcdr (elt), prefix,
3116 transl ? describe_translation : describe_command,
3117 partial, sub_shadows, &seen, nomenu, mention_shadow);
3118
3119 skip: ;
3120 }
3121
3122 if (something)
3123 insert_string ("\n");
3124
3125 UNGCPRO;
3126}
3127
3128static int previous_description_column;
3129
3130static void
3131describe_command (definition, args)
3132 Lisp_Object definition, args;
3133{
3134 register Lisp_Object tem1;
3135 int column = (int) current_column (); /* iftc */
3136 int description_column;
3137
3138 /* If column 16 is no good, go to col 32;
3139 but don't push beyond that--go to next line instead. */
3140 if (column > 30)
3141 {
3142 insert_char ('\n');
3143 description_column = 32;
3144 }
3145 else if (column > 14 || (column > 10 && previous_description_column == 32))
3146 description_column = 32;
3147 else
3148 description_column = 16;
3149
3150 Findent_to (make_number (description_column), make_number (1));
3151 previous_description_column = description_column;
3152
3153 if (SYMBOLP (definition))
3154 {
3155 tem1 = SYMBOL_NAME (definition);
3156 insert1 (tem1);
3157 insert_string ("\n");
3158 }
3159 else if (STRINGP (definition) || VECTORP (definition))
3160 insert_string ("Keyboard Macro\n");
3161 else if (KEYMAPP (definition))
3162 insert_string ("Prefix Command\n");
3163 else
3164 insert_string ("??\n");
3165}
3166
3167static void
3168describe_translation (definition, args)
3169 Lisp_Object definition, args;
3170{
3171 register Lisp_Object tem1;
3172
3173 Findent_to (make_number (16), make_number (1));
3174
3175 if (SYMBOLP (definition))
3176 {
3177 tem1 = SYMBOL_NAME (definition);
3178 insert1 (tem1);
3179 insert_string ("\n");
3180 }
3181 else if (STRINGP (definition) || VECTORP (definition))
3182 {
3183 insert1 (Fkey_description (definition, Qnil));
3184 insert_string ("\n");
3185 }
3186 else if (KEYMAPP (definition))
3187 insert_string ("Prefix Command\n");
3188 else
3189 insert_string ("??\n");
3190}
3191
3192/* describe_map puts all the usable elements of a sparse keymap
3193 into an array of `struct describe_map_elt',
3194 then sorts them by the events. */
3195
3196struct describe_map_elt { Lisp_Object event; Lisp_Object definition; int shadowed; };
3197
3198/* qsort comparison function for sorting `struct describe_map_elt' by
3199 the event field. */
3200
3201static int
3202describe_map_compare (aa, bb)
3203 const void *aa, *bb;
3204{
3205 const struct describe_map_elt *a = aa, *b = bb;
3206 if (INTEGERP (a->event) && INTEGERP (b->event))
3207 return ((XINT (a->event) > XINT (b->event))
3208 - (XINT (a->event) < XINT (b->event)));
3209 if (!INTEGERP (a->event) && INTEGERP (b->event))
3210 return 1;
3211 if (INTEGERP (a->event) && !INTEGERP (b->event))
3212 return -1;
3213 if (SYMBOLP (a->event) && SYMBOLP (b->event))
3214 return (!NILP (Fstring_lessp (a->event, b->event)) ? -1
3215 : !NILP (Fstring_lessp (b->event, a->event)) ? 1
3216 : 0);
3217 return 0;
3218}
3219
3220/* Describe the contents of map MAP, assuming that this map itself is
3221 reached by the sequence of prefix keys PREFIX (a string or vector).
3222 PARTIAL, SHADOW, NOMENU are as in `describe_map_tree' above. */
3223
3224static void
3225describe_map (map, prefix, elt_describer, partial, shadow,
3226 seen, nomenu, mention_shadow)
3227 register Lisp_Object map;
3228 Lisp_Object prefix;
3229 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3230 int partial;
3231 Lisp_Object shadow;
3232 Lisp_Object *seen;
3233 int nomenu;
3234 int mention_shadow;
3235{
3236 Lisp_Object tail, definition, event;
3237 Lisp_Object tem;
3238 Lisp_Object suppress;
3239 Lisp_Object kludge;
3240 int first = 1;
3241 struct gcpro gcpro1, gcpro2, gcpro3;
3242
3243 /* These accumulate the values from sparse keymap bindings,
3244 so we can sort them and handle them in order. */
3245 int length_needed = 0;
3246 struct describe_map_elt *vect;
3247 int slots_used = 0;
3248 int i;
3249
3250 suppress = Qnil;
3251
3252 if (partial)
3253 suppress = intern ("suppress-keymap");
3254
3255 /* This vector gets used to present single keys to Flookup_key. Since
3256 that is done once per keymap element, we don't want to cons up a
3257 fresh vector every time. */
3258 kludge = Fmake_vector (make_number (1), Qnil);
3259 definition = Qnil;
3260
3261 for (tail = map; CONSP (tail); tail = XCDR (tail))
3262 length_needed++;
3263
3264 vect = ((struct describe_map_elt *)
3265 alloca (sizeof (struct describe_map_elt) * length_needed));
3266
3267 GCPRO3 (prefix, definition, kludge);
3268
3269 for (tail = map; CONSP (tail); tail = XCDR (tail))
3270 {
3271 QUIT;
3272
3273 if (VECTORP (XCAR (tail))
3274 || CHAR_TABLE_P (XCAR (tail)))
3275 describe_vector (XCAR (tail),
3276 prefix, Qnil, elt_describer, partial, shadow, map,
3277 (int *)0, 0, 1, mention_shadow);
3278 else if (CONSP (XCAR (tail)))
3279 {
3280 int this_shadowed = 0;
3281
3282 event = XCAR (XCAR (tail));
3283
3284 /* Ignore bindings whose "prefix" are not really valid events.
3285 (We get these in the frames and buffers menu.) */
3286 if (!(SYMBOLP (event) || INTEGERP (event)))
3287 continue;
3288
3289 if (nomenu && EQ (event, Qmenu_bar))
3290 continue;
3291
3292 definition = get_keyelt (XCDR (XCAR (tail)), 0);
3293
3294 /* Don't show undefined commands or suppressed commands. */
3295 if (NILP (definition)) continue;
3296 if (SYMBOLP (definition) && partial)
3297 {
3298 tem = Fget (definition, suppress);
3299 if (!NILP (tem))
3300 continue;
3301 }
3302
3303 /* Don't show a command that isn't really visible
3304 because a local definition of the same key shadows it. */
3305
3306 ASET (kludge, 0, event);
3307 if (!NILP (shadow))
3308 {
3309 tem = shadow_lookup (shadow, kludge, Qt);
3310 if (!NILP (tem))
3311 {
3312 /* Avoid generating duplicate entries if the
3313 shadowed binding has the same definition. */
3314 if (mention_shadow && !EQ (tem, definition))
3315 this_shadowed = 1;
3316 else
3317 continue;
3318 }
3319 }
3320
3321 tem = Flookup_key (map, kludge, Qt);
3322 if (!EQ (tem, definition)) continue;
3323
3324 vect[slots_used].event = event;
3325 vect[slots_used].definition = definition;
3326 vect[slots_used].shadowed = this_shadowed;
3327 slots_used++;
3328 }
3329 else if (EQ (XCAR (tail), Qkeymap))
3330 {
3331 /* The same keymap might be in the structure twice, if we're
3332 using an inherited keymap. So skip anything we've already
3333 encountered. */
3334 tem = Fassq (tail, *seen);
3335 if (CONSP (tem) && !NILP (Fequal (XCAR (tem), prefix)))
3336 break;
3337 *seen = Fcons (Fcons (tail, prefix), *seen);
3338 }
3339 }
3340
3341 /* If we found some sparse map events, sort them. */
3342
3343 qsort (vect, slots_used, sizeof (struct describe_map_elt),
3344 describe_map_compare);
3345
3346 /* Now output them in sorted order. */
3347
3348 for (i = 0; i < slots_used; i++)
3349 {
3350 Lisp_Object start, end;
3351
3352 if (first)
3353 {
3354 previous_description_column = 0;
3355 insert ("\n", 1);
3356 first = 0;
3357 }
3358
3359 ASET (kludge, 0, vect[i].event);
3360 start = vect[i].event;
3361 end = start;
3362
3363 definition = vect[i].definition;
3364
3365 /* Find consecutive chars that are identically defined. */
3366 if (INTEGERP (vect[i].event))
3367 {
3368 while (i + 1 < slots_used
3369 && EQ (vect[i+1].event, make_number (XINT (vect[i].event) + 1))
3370 && !NILP (Fequal (vect[i + 1].definition, definition))
3371 && vect[i].shadowed == vect[i + 1].shadowed)
3372 i++;
3373 end = vect[i].event;
3374 }
3375
3376 /* Now START .. END is the range to describe next. */
3377
3378 /* Insert the string to describe the event START. */
3379 insert1 (Fkey_description (kludge, prefix));
3380
3381 if (!EQ (start, end))
3382 {
3383 insert (" .. ", 4);
3384
3385 ASET (kludge, 0, end);
3386 /* Insert the string to describe the character END. */
3387 insert1 (Fkey_description (kludge, prefix));
3388 }
3389
3390 /* Print a description of the definition of this character.
3391 elt_describer will take care of spacing out far enough
3392 for alignment purposes. */
3393 (*elt_describer) (vect[i].definition, Qnil);
3394
3395 if (vect[i].shadowed)
3396 {
3397 SET_PT (PT - 1);
3398 insert_string ("\n (that binding is currently shadowed by another mode)");
3399 SET_PT (PT + 1);
3400 }
3401 }
3402
3403 UNGCPRO;
3404}
3405
3406static void
3407describe_vector_princ (elt, fun)
3408 Lisp_Object elt, fun;
3409{
3410 Findent_to (make_number (16), make_number (1));
3411 call1 (fun, elt);
3412 Fterpri (Qnil);
3413}
3414
3415DEFUN ("describe-vector", Fdescribe_vector, Sdescribe_vector, 1, 2, 0,
3416 doc: /* Insert a description of contents of VECTOR.
3417This is text showing the elements of vector matched against indices.
3418DESCRIBER is the output function used; nil means use `princ'. */)
3419 (vector, describer)
3420 Lisp_Object vector, describer;
3421{
3422 int count = SPECPDL_INDEX ();
3423 if (NILP (describer))
3424 describer = intern ("princ");
3425 specbind (Qstandard_output, Fcurrent_buffer ());
3426 CHECK_VECTOR_OR_CHAR_TABLE (vector);
3427 describe_vector (vector, Qnil, describer, describe_vector_princ, 0,
3428 Qnil, Qnil, (int *)0, 0, 0, 0);
3429
3430 return unbind_to (count, Qnil);
3431}
3432
3433/* Insert in the current buffer a description of the contents of VECTOR.
3434 We call ELT_DESCRIBER to insert the description of one value found
3435 in VECTOR.
3436
3437 ELT_PREFIX describes what "comes before" the keys or indices defined
3438 by this vector. This is a human-readable string whose size
3439 is not necessarily related to the situation.
3440
3441 If the vector is in a keymap, ELT_PREFIX is a prefix key which
3442 leads to this keymap.
3443
3444 If the vector is a chartable, ELT_PREFIX is the vector
3445 of bytes that lead to the character set or portion of a character
3446 set described by this chartable.
3447
3448 If PARTIAL is nonzero, it means do not mention suppressed commands
3449 (that assumes the vector is in a keymap).
3450
3451 SHADOW is a list of keymaps that shadow this map.
3452 If it is non-nil, then we look up the key in those maps
3453 and we don't mention it now if it is defined by any of them.
3454
3455 ENTIRE_MAP is the keymap in which this vector appears.
3456 If the definition in effect in the whole map does not match
3457 the one in this vector, we ignore this one.
3458
3459 When describing a sub-char-table, INDICES is a list of
3460 indices at higher levels in this char-table,
3461 and CHAR_TABLE_DEPTH says how many levels down we have gone.
3462
3463 KEYMAP_P is 1 if vector is known to be a keymap, so map ESC to M-.
3464
3465 ARGS is simply passed as the second argument to ELT_DESCRIBER. */
3466
3467static void
3468describe_vector (vector, prefix, args, elt_describer,
3469 partial, shadow, entire_map,
3470 indices, char_table_depth, keymap_p,
3471 mention_shadow)
3472 register Lisp_Object vector;
3473 Lisp_Object prefix, args;
3474 void (*elt_describer) P_ ((Lisp_Object, Lisp_Object));
3475 int partial;
3476 Lisp_Object shadow;
3477 Lisp_Object entire_map;
3478 int *indices;
3479 int char_table_depth;
3480 int keymap_p;
3481 int mention_shadow;
3482{
3483 Lisp_Object definition;
3484 Lisp_Object tem2;
3485 Lisp_Object elt_prefix = Qnil;
3486 register int i;
3487 Lisp_Object suppress;
3488 Lisp_Object kludge;
3489 int first = 1;
3490 struct gcpro gcpro1, gcpro2, gcpro3, gcpro4;
3491 /* Range of elements to be handled. */
3492 int from, to;
3493 /* A flag to tell if a leaf in this level of char-table is not a
3494 generic character (i.e. a complete multibyte character). */
3495 int complete_char;
3496 int character;
3497 int starting_i;
3498
3499 suppress = Qnil;
3500
3501 if (indices == 0)
3502 indices = (int *) alloca (3 * sizeof (int));
3503
3504 definition = Qnil;
3505
3506 if (!keymap_p)
3507 {
3508 /* Call Fkey_description first, to avoid GC bug for the other string. */
3509 if (!NILP (prefix) && XFASTINT (Flength (prefix)) > 0)
3510 {
3511 Lisp_Object tem;
3512 tem = Fkey_description (prefix, Qnil);
3513 elt_prefix = concat2 (tem, build_string (" "));
3514 }
3515 prefix = Qnil;
3516 }
3517
3518 /* This vector gets used to present single keys to Flookup_key. Since
3519 that is done once per vector element, we don't want to cons up a
3520 fresh vector every time. */
3521 kludge = Fmake_vector (make_number (1), Qnil);
3522 GCPRO4 (elt_prefix, prefix, definition, kludge);
3523
3524 if (partial)
3525 suppress = intern ("suppress-keymap");
3526
3527 if (CHAR_TABLE_P (vector))
3528 {
3529 if (char_table_depth == 0)
3530 {
3531 /* VECTOR is a top level char-table. */
3532 complete_char = 1;
3533 from = 0;
3534 to = CHAR_TABLE_ORDINARY_SLOTS;
3535 }
3536 else
3537 {
3538 /* VECTOR is a sub char-table. */
3539 if (char_table_depth >= 3)
3540 /* A char-table is never that deep. */
3541 error ("Too deep char table");
3542
3543 complete_char
3544 = (CHARSET_VALID_P (indices[0])
3545 && ((CHARSET_DIMENSION (indices[0]) == 1
3546 && char_table_depth == 1)
3547 || char_table_depth == 2));
3548
3549 /* Meaningful elements are from 32th to 127th. */
3550 from = 32;
3551 to = SUB_CHAR_TABLE_ORDINARY_SLOTS;
3552 }
3553 }
3554 else
3555 {
3556 /* This does the right thing for ordinary vectors. */
3557
3558 complete_char = 1;
3559 from = 0;
3560 to = XVECTOR (vector)->size;
3561 }
3562
3563 for (i = from; i < to; i++)
3564 {
3565 int this_shadowed = 0;
3566 QUIT;
3567
3568 if (CHAR_TABLE_P (vector))
3569 {
3570 if (char_table_depth == 0 && i >= CHAR_TABLE_SINGLE_BYTE_SLOTS)
3571 complete_char = 0;
3572
3573 if (i >= CHAR_TABLE_SINGLE_BYTE_SLOTS
3574 && !CHARSET_DEFINED_P (i - 128))
3575 continue;
3576
3577 definition
3578 = get_keyelt (XCHAR_TABLE (vector)->contents[i], 0);
3579 }
3580 else
3581 definition = get_keyelt (AREF (vector, i), 0);
3582
3583 if (NILP (definition)) continue;
3584
3585 /* Don't mention suppressed commands. */
3586 if (SYMBOLP (definition) && partial)
3587 {
3588 Lisp_Object tem;
3589
3590 tem = Fget (definition, suppress);
3591
3592 if (!NILP (tem)) continue;
3593 }
3594
3595 /* Set CHARACTER to the character this entry describes, if any.
3596 Also update *INDICES. */
3597 if (CHAR_TABLE_P (vector))
3598 {
3599 indices[char_table_depth] = i;
3600
3601 if (char_table_depth == 0)
3602 {
3603 character = i;
3604 indices[0] = i - 128;
3605 }
3606 else if (complete_char)
3607 {
3608 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3609 }
3610 else
3611 character = 0;
3612 }
3613 else
3614 character = i;
3615
3616 ASET (kludge, 0, make_number (character));
3617
3618 /* If this binding is shadowed by some other map, ignore it. */
3619 if (!NILP (shadow) && complete_char)
3620 {
3621 Lisp_Object tem;
3622
3623 tem = shadow_lookup (shadow, kludge, Qt);
3624
3625 if (!NILP (tem))
3626 {
3627 if (mention_shadow)
3628 this_shadowed = 1;
3629 else
3630 continue;
3631 }
3632 }
3633
3634 /* Ignore this definition if it is shadowed by an earlier
3635 one in the same keymap. */
3636 if (!NILP (entire_map) && complete_char)
3637 {
3638 Lisp_Object tem;
3639
3640 tem = Flookup_key (entire_map, kludge, Qt);
3641
3642 if (!EQ (tem, definition))
3643 continue;
3644 }
3645
3646 if (first)
3647 {
3648 if (char_table_depth == 0)
3649 insert ("\n", 1);
3650 first = 0;
3651 }
3652
3653 /* For a sub char-table, show the depth by indentation.
3654 CHAR_TABLE_DEPTH can be greater than 0 only for a char-table. */
3655 if (char_table_depth > 0)
3656 insert (" ", char_table_depth * 2); /* depth is 1 or 2. */
3657
3658 /* Output the prefix that applies to every entry in this map. */
3659 if (!NILP (elt_prefix))
3660 insert1 (elt_prefix);
3661
3662 /* Insert or describe the character this slot is for,
3663 or a description of what it is for. */
3664 if (SUB_CHAR_TABLE_P (vector))
3665 {
3666 if (complete_char)
3667 insert_char (character);
3668 else
3669 {
3670 /* We need an octal representation for this block of
3671 characters. */
3672 char work[16];
3673 sprintf (work, "(row %d)", i);
3674 insert (work, strlen (work));
3675 }
3676 }
3677 else if (CHAR_TABLE_P (vector))
3678 {
3679 if (complete_char)
3680 insert1 (Fkey_description (kludge, prefix));
3681 else
3682 {
3683 /* Print the information for this character set. */
3684 insert_string ("<");
3685 tem2 = CHARSET_TABLE_INFO (i - 128, CHARSET_SHORT_NAME_IDX);
3686 if (STRINGP (tem2))
3687 insert_from_string (tem2, 0, 0, SCHARS (tem2),
3688 SBYTES (tem2), 0);
3689 else
3690 insert ("?", 1);
3691 insert (">", 1);
3692 }
3693 }
3694 else
3695 {
3696 insert1 (Fkey_description (kludge, prefix));
3697 }
3698
3699 /* If we find a sub char-table within a char-table,
3700 scan it recursively; it defines the details for
3701 a character set or a portion of a character set. */
3702 if (CHAR_TABLE_P (vector) && SUB_CHAR_TABLE_P (definition))
3703 {
3704 insert ("\n", 1);
3705 describe_vector (definition, prefix, args, elt_describer,
3706 partial, shadow, entire_map,
3707 indices, char_table_depth + 1, keymap_p,
3708 mention_shadow);
3709 continue;
3710 }
3711
3712 starting_i = i;
3713
3714 /* Find all consecutive characters or rows that have the same
3715 definition. But, for elements of a top level char table, if
3716 they are for charsets, we had better describe one by one even
3717 if they have the same definition. */
3718 if (CHAR_TABLE_P (vector))
3719 {
3720 int limit = to;
3721
3722 if (char_table_depth == 0)
3723 limit = CHAR_TABLE_SINGLE_BYTE_SLOTS;
3724
3725 while (i + 1 < limit
3726 && (tem2 = get_keyelt (XCHAR_TABLE (vector)->contents[i + 1], 0),
3727 !NILP (tem2))
3728 && !NILP (Fequal (tem2, definition)))
3729 i++;
3730 }
3731 else
3732 while (i + 1 < to
3733 && (tem2 = get_keyelt (AREF (vector, i + 1), 0),
3734 !NILP (tem2))
3735 && !NILP (Fequal (tem2, definition)))
3736 i++;
3737
3738
3739 /* If we have a range of more than one character,
3740 print where the range reaches to. */
3741
3742 if (i != starting_i)
3743 {
3744 insert (" .. ", 4);
3745
3746 ASET (kludge, 0, make_number (i));
3747
3748 if (!NILP (elt_prefix))
3749 insert1 (elt_prefix);
3750
3751 if (CHAR_TABLE_P (vector))
3752 {
3753 if (char_table_depth == 0)
3754 {
3755 insert1 (Fkey_description (kludge, prefix));
3756 }
3757 else if (complete_char)
3758 {
3759 indices[char_table_depth] = i;
3760 character = MAKE_CHAR (indices[0], indices[1], indices[2]);
3761 insert_char (character);
3762 }
3763 else
3764 {
3765 /* We need an octal representation for this block of
3766 characters. */
3767 char work[16];
3768 sprintf (work, "(row %d)", i);
3769 insert (work, strlen (work));
3770 }
3771 }
3772 else
3773 {
3774 insert1 (Fkey_description (kludge, prefix));
3775 }
3776 }
3777
3778 /* Print a description of the definition of this character.
3779 elt_describer will take care of spacing out far enough
3780 for alignment purposes. */
3781 (*elt_describer) (definition, args);
3782
3783 if (this_shadowed)
3784 {
3785 SET_PT (PT - 1);
3786 insert_string (" (binding currently shadowed)");
3787 SET_PT (PT + 1);
3788 }
3789 }
3790
3791 /* For (sub) char-table, print `defalt' slot at last. */
3792 if (CHAR_TABLE_P (vector) && !NILP (XCHAR_TABLE (vector)->defalt))
3793 {
3794 insert (" ", char_table_depth * 2);
3795 insert_string ("<<default>>");
3796 (*elt_describer) (XCHAR_TABLE (vector)->defalt, args);
3797 }
3798
3799 UNGCPRO;
3800}
3801\f
3802/* Apropos - finding all symbols whose names match a regexp. */
3803static Lisp_Object apropos_predicate;
3804static Lisp_Object apropos_accumulate;
3805
3806static void
3807apropos_accum (symbol, string)
3808 Lisp_Object symbol, string;
3809{
3810 register Lisp_Object tem;
3811
3812 tem = Fstring_match (string, Fsymbol_name (symbol), Qnil);
3813 if (!NILP (tem) && !NILP (apropos_predicate))
3814 tem = call1 (apropos_predicate, symbol);
3815 if (!NILP (tem))
3816 apropos_accumulate = Fcons (symbol, apropos_accumulate);
3817}
3818
3819DEFUN ("apropos-internal", Fapropos_internal, Sapropos_internal, 1, 2, 0,
3820 doc: /* Show all symbols whose names contain match for REGEXP.
3821If optional 2nd arg PREDICATE is non-nil, (funcall PREDICATE SYMBOL) is done
3822for each symbol and a symbol is mentioned only if that returns non-nil.
3823Return list of symbols found. */)
3824 (regexp, predicate)
3825 Lisp_Object regexp, predicate;
3826{
3827 Lisp_Object tem;
3828 CHECK_STRING (regexp);
3829 apropos_predicate = predicate;
3830 apropos_accumulate = Qnil;
3831 map_obarray (Vobarray, apropos_accum, regexp);
3832 tem = Fsort (apropos_accumulate, Qstring_lessp);
3833 apropos_accumulate = Qnil;
3834 apropos_predicate = Qnil;
3835 return tem;
3836}
3837\f
3838void
3839syms_of_keymap ()
3840{
3841 Qkeymap = intern ("keymap");
3842 staticpro (&Qkeymap);
3843 staticpro (&apropos_predicate);
3844 staticpro (&apropos_accumulate);
3845 apropos_predicate = Qnil;
3846 apropos_accumulate = Qnil;
3847
3848 /* Now we are ready to set up this property, so we can
3849 create char tables. */
3850 Fput (Qkeymap, Qchar_table_extra_slots, make_number (0));
3851
3852 /* Initialize the keymaps standardly used.
3853 Each one is the value of a Lisp variable, and is also
3854 pointed to by a C variable */
3855
3856 global_map = Fmake_keymap (Qnil);
3857 Fset (intern ("global-map"), global_map);
3858
3859 current_global_map = global_map;
3860 staticpro (&global_map);
3861 staticpro (&current_global_map);
3862
3863 meta_map = Fmake_keymap (Qnil);
3864 Fset (intern ("esc-map"), meta_map);
3865 Ffset (intern ("ESC-prefix"), meta_map);
3866
3867 control_x_map = Fmake_keymap (Qnil);
3868 Fset (intern ("ctl-x-map"), control_x_map);
3869 Ffset (intern ("Control-X-prefix"), control_x_map);
3870
3871 exclude_keys
3872 = Fcons (Fcons (build_string ("DEL"), build_string ("\\d")),
3873 Fcons (Fcons (build_string ("TAB"), build_string ("\\t")),
3874 Fcons (Fcons (build_string ("RET"), build_string ("\\r")),
3875 Fcons (Fcons (build_string ("ESC"), build_string ("\\e")),
3876 Fcons (Fcons (build_string ("SPC"), build_string (" ")),
3877 Qnil)))));
3878 staticpro (&exclude_keys);
3879
3880 DEFVAR_LISP ("define-key-rebound-commands", &Vdefine_key_rebound_commands,
3881 doc: /* List of commands given new key bindings recently.
3882This is used for internal purposes during Emacs startup;
3883don't alter it yourself. */);
3884 Vdefine_key_rebound_commands = Qt;
3885
3886 DEFVAR_LISP ("minibuffer-local-map", &Vminibuffer_local_map,
3887 doc: /* Default keymap to use when reading from the minibuffer. */);
3888 Vminibuffer_local_map = Fmake_sparse_keymap (Qnil);
3889
3890 DEFVAR_LISP ("minibuffer-local-ns-map", &Vminibuffer_local_ns_map,
3891 doc: /* Local keymap for the minibuffer when spaces are not allowed. */);
3892 Vminibuffer_local_ns_map = Fmake_sparse_keymap (Qnil);
3893 Fset_keymap_parent (Vminibuffer_local_ns_map, Vminibuffer_local_map);
3894
3895 DEFVAR_LISP ("minibuffer-local-completion-map", &Vminibuffer_local_completion_map,
3896 doc: /* Local keymap for minibuffer input with completion. */);
3897 Vminibuffer_local_completion_map = Fmake_sparse_keymap (Qnil);
3898 Fset_keymap_parent (Vminibuffer_local_completion_map, Vminibuffer_local_map);
3899
3900 DEFVAR_LISP ("minibuffer-local-filename-completion-map",
3901 &Vminibuffer_local_filename_completion_map,
3902 doc: /* Local keymap for minibuffer input with completion for filenames. */);
3903 Vminibuffer_local_filename_completion_map = Fmake_sparse_keymap (Qnil);
3904 Fset_keymap_parent (Vminibuffer_local_filename_completion_map,
3905 Vminibuffer_local_completion_map);
3906
3907
3908 DEFVAR_LISP ("minibuffer-local-must-match-map", &Vminibuffer_local_must_match_map,
3909 doc: /* Local keymap for minibuffer input with completion, for exact match. */);
3910 Vminibuffer_local_must_match_map = Fmake_sparse_keymap (Qnil);
3911 Fset_keymap_parent (Vminibuffer_local_must_match_map,
3912 Vminibuffer_local_completion_map);
3913
3914 DEFVAR_LISP ("minibuffer-local-must-match-filename-map",
3915 &Vminibuffer_local_must_match_filename_map,
3916 doc: /* Local keymap for minibuffer input with completion for filenames with exact match. */);
3917 Vminibuffer_local_must_match_filename_map = Fmake_sparse_keymap (Qnil);
3918 Fset_keymap_parent (Vminibuffer_local_must_match_filename_map,
3919 Vminibuffer_local_must_match_map);
3920
3921 DEFVAR_LISP ("minor-mode-map-alist", &Vminor_mode_map_alist,
3922 doc: /* Alist of keymaps to use for minor modes.
3923Each element looks like (VARIABLE . KEYMAP); KEYMAP is used to read
3924key sequences and look up bindings iff VARIABLE's value is non-nil.
3925If two active keymaps bind the same key, the keymap appearing earlier
3926in the list takes precedence. */);
3927 Vminor_mode_map_alist = Qnil;
3928
3929 DEFVAR_LISP ("minor-mode-overriding-map-alist", &Vminor_mode_overriding_map_alist,
3930 doc: /* Alist of keymaps to use for minor modes, in current major mode.
3931This variable is an alist just like `minor-mode-map-alist', and it is
3932used the same way (and before `minor-mode-map-alist'); however,
3933it is provided for major modes to bind locally. */);
3934 Vminor_mode_overriding_map_alist = Qnil;
3935
3936 DEFVAR_LISP ("emulation-mode-map-alists", &Vemulation_mode_map_alists,
3937 doc: /* List of keymap alists to use for emulations modes.
3938It is intended for modes or packages using multiple minor-mode keymaps.
3939Each element is a keymap alist just like `minor-mode-map-alist', or a
3940symbol with a variable binding which is a keymap alist, and it is used
3941the same way. The "active" keymaps in each alist are used before
3942`minor-mode-map-alist' and `minor-mode-overriding-map-alist'. */);
3943 Vemulation_mode_map_alists = Qnil;
3944
3945
3946 DEFVAR_LISP ("function-key-map", &Vfunction_key_map,
3947 doc: /* Keymap that translates key sequences to key sequences during input.
3948This is used mainly for mapping ASCII function key sequences into
3949real Emacs function key events (symbols).
3950
3951The `read-key-sequence' function replaces any subsequence bound by
3952`function-key-map' with its binding. More precisely, when the active
3953keymaps have no binding for the current key sequence but
3954`function-key-map' binds a suffix of the sequence to a vector or string,
3955`read-key-sequence' replaces the matching suffix with its binding, and
3956continues with the new sequence.
3957
3958If the binding is a function, it is called with one argument (the prompt)
3959and its return value (a key sequence) is used.
3960
3961The events that come from bindings in `function-key-map' are not
3962themselves looked up in `function-key-map'.
3963
3964For example, suppose `function-key-map' binds `ESC O P' to [f1].
3965Typing `ESC O P' to `read-key-sequence' would return [f1]. Typing
3966`C-x ESC O P' would return [?\\C-x f1]. If [f1] were a prefix
3967key, typing `ESC O P x' would return [f1 x]. */);
3968 Vfunction_key_map = Fmake_sparse_keymap (Qnil);
3969
3970 DEFVAR_LISP ("key-translation-map", &Vkey_translation_map,
3971 doc: /* Keymap of key translations that can override keymaps.
3972This keymap works like `function-key-map', but comes after that,
3973and its non-prefix bindings override ordinary bindings. */);
3974 Vkey_translation_map = Qnil;
3975
3976 staticpro (&Vmouse_events);
3977 Vmouse_events = Fcons (intern ("menu-bar"),
3978 Fcons (intern ("tool-bar"),
3979 Fcons (intern ("header-line"),
3980 Fcons (intern ("mode-line"),
3981 Fcons (intern ("mouse-1"),
3982 Fcons (intern ("mouse-2"),
3983 Fcons (intern ("mouse-3"),
3984 Fcons (intern ("mouse-4"),
3985 Fcons (intern ("mouse-5"),
3986 Qnil)))))))));
3987
3988
3989 Qsingle_key_description = intern ("single-key-description");
3990 staticpro (&Qsingle_key_description);
3991
3992 Qkey_description = intern ("key-description");
3993 staticpro (&Qkey_description);
3994
3995 Qkeymapp = intern ("keymapp");
3996 staticpro (&Qkeymapp);
3997
3998 Qnon_ascii = intern ("non-ascii");
3999 staticpro (&Qnon_ascii);
4000
4001 Qmenu_item = intern ("menu-item");
4002 staticpro (&Qmenu_item);
4003
4004 Qremap = intern ("remap");
4005 staticpro (&Qremap);
4006
4007 command_remapping_vector = Fmake_vector (make_number (2), Qremap);
4008 staticpro (&command_remapping_vector);
4009
4010 where_is_cache_keymaps = Qt;
4011 where_is_cache = Qnil;
4012 staticpro (&where_is_cache);
4013 staticpro (&where_is_cache_keymaps);
4014
4015 defsubr (&Skeymapp);
4016 defsubr (&Skeymap_parent);
4017 defsubr (&Skeymap_prompt);
4018 defsubr (&Sset_keymap_parent);
4019 defsubr (&Smake_keymap);
4020 defsubr (&Smake_sparse_keymap);
4021 defsubr (&Smap_keymap);
4022 defsubr (&Scopy_keymap);
4023 defsubr (&Scommand_remapping);
4024 defsubr (&Skey_binding);
4025 defsubr (&Slocal_key_binding);
4026 defsubr (&Sglobal_key_binding);
4027 defsubr (&Sminor_mode_key_binding);
4028 defsubr (&Sdefine_key);
4029 defsubr (&Slookup_key);
4030 defsubr (&Sdefine_prefix_command);
4031 defsubr (&Suse_global_map);
4032 defsubr (&Suse_local_map);
4033 defsubr (&Scurrent_local_map);
4034 defsubr (&Scurrent_global_map);
4035 defsubr (&Scurrent_minor_mode_maps);
4036 defsubr (&Scurrent_active_maps);
4037 defsubr (&Saccessible_keymaps);
4038 defsubr (&Skey_description);
4039 defsubr (&Sdescribe_vector);
4040 defsubr (&Ssingle_key_description);
4041 defsubr (&Stext_char_description);
4042 defsubr (&Swhere_is_internal);
4043 defsubr (&Sdescribe_buffer_bindings);
4044 defsubr (&Sapropos_internal);
4045}
4046
4047void
4048keys_of_keymap ()
4049{
4050 initial_define_key (global_map, 033, "ESC-prefix");
4051 initial_define_key (global_map, Ctl('X'), "Control-X-prefix");
4052}
4053
4054/* arch-tag: 6dd15c26-7cf1-41c4-b904-f42f7ddda463
4055 (do not change this comment) */