Add 2008 to copyright years.
[bpt/emacs.git] / src / floatfns.c
CommitLineData
b70021f4 1/* Primitive operations on floating point for GNU Emacs Lisp interpreter.
429ab54e 2 Copyright (C) 1988, 1993, 1994, 1999, 2001, 2002, 2003, 2004,
8cabe764 3 2005, 2006, 2007, 2008 Free Software Foundation, Inc.
b70021f4
MR
4
5This file is part of GNU Emacs.
6
7GNU Emacs is free software; you can redistribute it and/or modify
8it under the terms of the GNU General Public License as published by
684d6f5b 9the Free Software Foundation; either version 3, or (at your option)
b70021f4
MR
10any later version.
11
12GNU Emacs is distributed in the hope that it will be useful,
13but WITHOUT ANY WARRANTY; without even the implied warranty of
14MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
15GNU General Public License for more details.
16
17You should have received a copy of the GNU General Public License
18along with GNU Emacs; see the file COPYING. If not, write to
4fc5845f
LK
19the Free Software Foundation, Inc., 51 Franklin Street, Fifth Floor,
20Boston, MA 02110-1301, USA. */
b70021f4
MR
21
22
4b6baf5f
RS
23/* ANSI C requires only these float functions:
24 acos, asin, atan, atan2, ceil, cos, cosh, exp, fabs, floor, fmod,
25 frexp, ldexp, log, log10, modf, pow, sin, sinh, sqrt, tan, tanh.
26
27 Define HAVE_INVERSE_HYPERBOLIC if you have acosh, asinh, and atanh.
28 Define HAVE_CBRT if you have cbrt.
dca6c914 29 Define HAVE_RINT if you have a working rint.
4b6baf5f
RS
30 If you don't define these, then the appropriate routines will be simulated.
31
32 Define HAVE_MATHERR if on a system supporting the SysV matherr callback.
33 (This should happen automatically.)
34
35 Define FLOAT_CHECK_ERRNO if the float library routines set errno.
36 This has no effect if HAVE_MATHERR is defined.
37
38 Define FLOAT_CATCH_SIGILL if the float library routines signal SIGILL.
39 (What systems actually do this? Please let us know.)
40
41 Define FLOAT_CHECK_DOMAIN if the float library doesn't handle errors by
8e6208c5 42 either setting errno, or signaling SIGFPE/SIGILL. Otherwise, domain and
4b6baf5f
RS
43 range checking will happen before calling the float routines. This has
44 no effect if HAVE_MATHERR is defined (since matherr will be called when
45 a domain error occurs.)
46 */
47
18160b98 48#include <config.h>
68c45bf0 49#include <signal.h>
523e9291
RS
50#include "lisp.h"
51#include "syssignal.h"
52
2f261542
PE
53#if STDC_HEADERS
54#include <float.h>
55#endif
56
d137ae2f
PE
57/* If IEEE_FLOATING_POINT isn't defined, default it from FLT_*. */
58#ifndef IEEE_FLOATING_POINT
59#if (FLT_RADIX == 2 && FLT_MANT_DIG == 24 \
60 && FLT_MIN_EXP == -125 && FLT_MAX_EXP == 128)
61#define IEEE_FLOATING_POINT 1
62#else
63#define IEEE_FLOATING_POINT 0
64#endif
65#endif
66
4cd7a373
RS
67/* Work around a problem that happens because math.h on hpux 7
68 defines two static variables--which, in Emacs, are not really static,
69 because `static' is defined as nothing. The problem is that they are
70 defined both here and in lread.c.
71 These macros prevent the name conflict. */
72#if defined (HPUX) && !defined (HPUX8)
73#define _MAXLDBL floatfns_maxldbl
74#define _NMAXLDBL floatfns_nmaxldbl
75#endif
76
b70021f4 77#include <math.h>
4b6baf5f 78
32085e8e 79/* This declaration is omitted on some systems, like Ultrix. */
7a4720e2 80#if !defined (HPUX) && defined (HAVE_LOGB) && !defined (logb)
c26406fe 81extern double logb ();
7a4720e2 82#endif /* not HPUX and HAVE_LOGB and no logb macro */
c26406fe 83
4b6baf5f
RS
84#if defined(DOMAIN) && defined(SING) && defined(OVERFLOW)
85 /* If those are defined, then this is probably a `matherr' machine. */
86# ifndef HAVE_MATHERR
87# define HAVE_MATHERR
88# endif
89#endif
90
c0f0a4a2 91#ifdef NO_MATHERR
f89182a2
RS
92#undef HAVE_MATHERR
93#endif
94
4b6baf5f
RS
95#ifdef HAVE_MATHERR
96# ifdef FLOAT_CHECK_ERRNO
97# undef FLOAT_CHECK_ERRNO
98# endif
99# ifdef FLOAT_CHECK_DOMAIN
100# undef FLOAT_CHECK_DOMAIN
101# endif
102#endif
103
104#ifndef NO_FLOAT_CHECK_ERRNO
105#define FLOAT_CHECK_ERRNO
106#endif
107
108#ifdef FLOAT_CHECK_ERRNO
109# include <errno.h>
265a9e55 110
f12ef5eb 111#ifndef USE_CRT_DLL
265a9e55 112extern int errno;
4b6baf5f 113#endif
f12ef5eb 114#endif
265a9e55
JB
115
116/* Avoid traps on VMS from sinh and cosh.
117 All the other functions set errno instead. */
118
119#ifdef VMS
120#undef cosh
121#undef sinh
122#define cosh(x) ((exp(x)+exp(-x))*0.5)
123#define sinh(x) ((exp(x)-exp(-x))*0.5)
124#endif /* VMS */
125
311346bb 126#ifdef FLOAT_CATCH_SIGILL
4746118a 127static SIGTYPE float_error ();
311346bb 128#endif
b70021f4
MR
129
130/* Nonzero while executing in floating point.
131 This tells float_error what to do. */
132
133static int in_float;
134
135/* If an argument is out of range for a mathematical function,
21876236
RS
136 here is the actual argument value to use in the error message.
137 These variables are used only across the floating point library call
138 so there is no need to staticpro them. */
b70021f4 139
4b6baf5f
RS
140static Lisp_Object float_error_arg, float_error_arg2;
141
142static char *float_error_fn_name;
b70021f4 143
265a9e55
JB
144/* Evaluate the floating point expression D, recording NUM
145 as the original argument for error messages.
146 D is normally an assignment expression.
f8d83099
JB
147 Handle errors which may result in signals or may set errno.
148
149 Note that float_error may be declared to return void, so you can't
150 just cast the zero after the colon to (SIGTYPE) to make the types
151 check properly. */
265a9e55 152
4b6baf5f
RS
153#ifdef FLOAT_CHECK_ERRNO
154#define IN_FLOAT(d, name, num) \
155 do { \
156 float_error_arg = num; \
157 float_error_fn_name = name; \
158 in_float = 1; errno = 0; (d); in_float = 0; \
159 switch (errno) { \
160 case 0: break; \
161 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
162 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
163 default: arith_error (float_error_fn_name, float_error_arg); \
164 } \
165 } while (0)
166#define IN_FLOAT2(d, name, num, num2) \
167 do { \
168 float_error_arg = num; \
169 float_error_arg2 = num2; \
170 float_error_fn_name = name; \
171 in_float = 1; errno = 0; (d); in_float = 0; \
172 switch (errno) { \
173 case 0: break; \
174 case EDOM: domain_error (float_error_fn_name, float_error_arg); \
175 case ERANGE: range_error (float_error_fn_name, float_error_arg); \
176 default: arith_error (float_error_fn_name, float_error_arg); \
177 } \
178 } while (0)
179#else
f8131ed2 180#define IN_FLOAT(d, name, num) (in_float = 1, (d), in_float = 0)
4b6baf5f
RS
181#define IN_FLOAT2(d, name, num, num2) (in_float = 1, (d), in_float = 0)
182#endif
183
81a63ccc
KH
184/* Convert float to Lisp_Int if it fits, else signal a range error
185 using the given arguments. */
186#define FLOAT_TO_INT(x, i, name, num) \
187 do \
188 { \
29d823d6 189 if (FIXNUM_OVERFLOW_P (x)) \
81a63ccc 190 range_error (name, num); \
e0cb2a68 191 XSETINT (i, (EMACS_INT)(x)); \
81a63ccc
KH
192 } \
193 while (0)
194#define FLOAT_TO_INT2(x, i, name, num1, num2) \
195 do \
196 { \
29d823d6 197 if (FIXNUM_OVERFLOW_P (x)) \
81a63ccc 198 range_error2 (name, num1, num2); \
e0cb2a68 199 XSETINT (i, (EMACS_INT)(x)); \
81a63ccc
KH
200 } \
201 while (0)
202
4b6baf5f 203#define arith_error(op,arg) \
edef1631 204 xsignal2 (Qarith_error, build_string ((op)), (arg))
4b6baf5f 205#define range_error(op,arg) \
edef1631 206 xsignal2 (Qrange_error, build_string ((op)), (arg))
81a63ccc 207#define range_error2(op,a1,a2) \
edef1631 208 xsignal3 (Qrange_error, build_string ((op)), (a1), (a2))
4b6baf5f 209#define domain_error(op,arg) \
edef1631 210 xsignal2 (Qdomain_error, build_string ((op)), (arg))
4b6baf5f 211#define domain_error2(op,a1,a2) \
edef1631 212 xsignal3 (Qdomain_error, build_string ((op)), (a1), (a2))
b70021f4
MR
213
214/* Extract a Lisp number as a `double', or signal an error. */
215
216double
217extract_float (num)
218 Lisp_Object num;
219{
b7826503 220 CHECK_NUMBER_OR_FLOAT (num);
b70021f4 221
207a45c1 222 if (FLOATP (num))
70949dac 223 return XFLOAT_DATA (num);
b70021f4
MR
224 return (double) XINT (num);
225}
c2d4ea74
RS
226\f
227/* Trig functions. */
b70021f4
MR
228
229DEFUN ("acos", Facos, Sacos, 1, 1, 0,
335c5470
PJ
230 doc: /* Return the inverse cosine of ARG. */)
231 (arg)
4b6baf5f 232 register Lisp_Object arg;
b70021f4 233{
4b6baf5f
RS
234 double d = extract_float (arg);
235#ifdef FLOAT_CHECK_DOMAIN
236 if (d > 1.0 || d < -1.0)
237 domain_error ("acos", arg);
238#endif
239 IN_FLOAT (d = acos (d), "acos", arg);
b70021f4
MR
240 return make_float (d);
241}
242
c2d4ea74 243DEFUN ("asin", Fasin, Sasin, 1, 1, 0,
335c5470
PJ
244 doc: /* Return the inverse sine of ARG. */)
245 (arg)
4b6baf5f 246 register Lisp_Object arg;
b70021f4 247{
4b6baf5f
RS
248 double d = extract_float (arg);
249#ifdef FLOAT_CHECK_DOMAIN
250 if (d > 1.0 || d < -1.0)
251 domain_error ("asin", arg);
252#endif
253 IN_FLOAT (d = asin (d), "asin", arg);
b70021f4
MR
254 return make_float (d);
255}
256
250ffca6
EZ
257DEFUN ("atan", Fatan, Satan, 1, 2, 0,
258 doc: /* Return the inverse tangent of the arguments.
259If only one argument Y is given, return the inverse tangent of Y.
260If two arguments Y and X are given, return the inverse tangent of Y
261divided by X, i.e. the angle in radians between the vector (X, Y)
262and the x-axis. */)
263 (y, x)
264 register Lisp_Object y, x;
b70021f4 265{
250ffca6
EZ
266 double d = extract_float (y);
267
268 if (NILP (x))
269 IN_FLOAT (d = atan (d), "atan", y);
270 else
271 {
272 double d2 = extract_float (x);
273
274 IN_FLOAT2 (d = atan2 (d, d2), "atan", y, x);
275 }
b70021f4
MR
276 return make_float (d);
277}
278
c2d4ea74 279DEFUN ("cos", Fcos, Scos, 1, 1, 0,
335c5470
PJ
280 doc: /* Return the cosine of ARG. */)
281 (arg)
4b6baf5f 282 register Lisp_Object arg;
b70021f4 283{
4b6baf5f
RS
284 double d = extract_float (arg);
285 IN_FLOAT (d = cos (d), "cos", arg);
b70021f4
MR
286 return make_float (d);
287}
288
c2d4ea74 289DEFUN ("sin", Fsin, Ssin, 1, 1, 0,
335c5470
PJ
290 doc: /* Return the sine of ARG. */)
291 (arg)
4b6baf5f 292 register Lisp_Object arg;
b70021f4 293{
4b6baf5f
RS
294 double d = extract_float (arg);
295 IN_FLOAT (d = sin (d), "sin", arg);
b70021f4
MR
296 return make_float (d);
297}
298
c2d4ea74 299DEFUN ("tan", Ftan, Stan, 1, 1, 0,
335c5470
PJ
300 doc: /* Return the tangent of ARG. */)
301 (arg)
4b6baf5f
RS
302 register Lisp_Object arg;
303{
304 double d = extract_float (arg);
305 double c = cos (d);
306#ifdef FLOAT_CHECK_DOMAIN
307 if (c == 0.0)
308 domain_error ("tan", arg);
309#endif
310 IN_FLOAT (d = sin (d) / c, "tan", arg);
b70021f4
MR
311 return make_float (d);
312}
313\f
c2d4ea74
RS
314#if 0 /* Leave these out unless we find there's a reason for them. */
315
b70021f4 316DEFUN ("bessel-j0", Fbessel_j0, Sbessel_j0, 1, 1, 0,
335c5470
PJ
317 doc: /* Return the bessel function j0 of ARG. */)
318 (arg)
4b6baf5f 319 register Lisp_Object arg;
b70021f4 320{
4b6baf5f
RS
321 double d = extract_float (arg);
322 IN_FLOAT (d = j0 (d), "bessel-j0", arg);
b70021f4
MR
323 return make_float (d);
324}
325
326DEFUN ("bessel-j1", Fbessel_j1, Sbessel_j1, 1, 1, 0,
335c5470
PJ
327 doc: /* Return the bessel function j1 of ARG. */)
328 (arg)
4b6baf5f 329 register Lisp_Object arg;
b70021f4 330{
4b6baf5f
RS
331 double d = extract_float (arg);
332 IN_FLOAT (d = j1 (d), "bessel-j1", arg);
b70021f4
MR
333 return make_float (d);
334}
335
336DEFUN ("bessel-jn", Fbessel_jn, Sbessel_jn, 2, 2, 0,
335c5470
PJ
337 doc: /* Return the order N bessel function output jn of ARG.
338The first arg (the order) is truncated to an integer. */)
339 (n, arg)
3e670702 340 register Lisp_Object n, arg;
b70021f4 341{
3e670702
EN
342 int i1 = extract_float (n);
343 double f2 = extract_float (arg);
b70021f4 344
3e670702 345 IN_FLOAT (f2 = jn (i1, f2), "bessel-jn", n);
b70021f4
MR
346 return make_float (f2);
347}
348
349DEFUN ("bessel-y0", Fbessel_y0, Sbessel_y0, 1, 1, 0,
335c5470
PJ
350 doc: /* Return the bessel function y0 of ARG. */)
351 (arg)
4b6baf5f 352 register Lisp_Object arg;
b70021f4 353{
4b6baf5f
RS
354 double d = extract_float (arg);
355 IN_FLOAT (d = y0 (d), "bessel-y0", arg);
b70021f4
MR
356 return make_float (d);
357}
358
359DEFUN ("bessel-y1", Fbessel_y1, Sbessel_y1, 1, 1, 0,
335c5470
PJ
360 doc: /* Return the bessel function y1 of ARG. */)
361 (arg)
4b6baf5f 362 register Lisp_Object arg;
b70021f4 363{
4b6baf5f
RS
364 double d = extract_float (arg);
365 IN_FLOAT (d = y1 (d), "bessel-y0", arg);
b70021f4
MR
366 return make_float (d);
367}
368
369DEFUN ("bessel-yn", Fbessel_yn, Sbessel_yn, 2, 2, 0,
335c5470
PJ
370 doc: /* Return the order N bessel function output yn of ARG.
371The first arg (the order) is truncated to an integer. */)
372 (n, arg)
3e670702 373 register Lisp_Object n, arg;
b70021f4 374{
3e670702
EN
375 int i1 = extract_float (n);
376 double f2 = extract_float (arg);
b70021f4 377
3e670702 378 IN_FLOAT (f2 = yn (i1, f2), "bessel-yn", n);
b70021f4
MR
379 return make_float (f2);
380}
b70021f4 381
c2d4ea74
RS
382#endif
383\f
384#if 0 /* Leave these out unless we see they are worth having. */
b70021f4
MR
385
386DEFUN ("erf", Ferf, Serf, 1, 1, 0,
335c5470
PJ
387 doc: /* Return the mathematical error function of ARG. */)
388 (arg)
4b6baf5f 389 register Lisp_Object arg;
b70021f4 390{
4b6baf5f
RS
391 double d = extract_float (arg);
392 IN_FLOAT (d = erf (d), "erf", arg);
b70021f4
MR
393 return make_float (d);
394}
395
396DEFUN ("erfc", Ferfc, Serfc, 1, 1, 0,
335c5470
PJ
397 doc: /* Return the complementary error function of ARG. */)
398 (arg)
4b6baf5f 399 register Lisp_Object arg;
b70021f4 400{
4b6baf5f
RS
401 double d = extract_float (arg);
402 IN_FLOAT (d = erfc (d), "erfc", arg);
b70021f4
MR
403 return make_float (d);
404}
405
b70021f4 406DEFUN ("log-gamma", Flog_gamma, Slog_gamma, 1, 1, 0,
335c5470
PJ
407 doc: /* Return the log gamma of ARG. */)
408 (arg)
4b6baf5f 409 register Lisp_Object arg;
b70021f4 410{
4b6baf5f
RS
411 double d = extract_float (arg);
412 IN_FLOAT (d = lgamma (d), "log-gamma", arg);
b70021f4
MR
413 return make_float (d);
414}
415
4b6baf5f 416DEFUN ("cube-root", Fcube_root, Scube_root, 1, 1, 0,
335c5470
PJ
417 doc: /* Return the cube root of ARG. */)
418 (arg)
4b6baf5f 419 register Lisp_Object arg;
b70021f4 420{
4b6baf5f
RS
421 double d = extract_float (arg);
422#ifdef HAVE_CBRT
423 IN_FLOAT (d = cbrt (d), "cube-root", arg);
424#else
425 if (d >= 0.0)
426 IN_FLOAT (d = pow (d, 1.0/3.0), "cube-root", arg);
427 else
428 IN_FLOAT (d = -pow (-d, 1.0/3.0), "cube-root", arg);
429#endif
b70021f4
MR
430 return make_float (d);
431}
432
706ac90d
RS
433#endif
434\f
c2d4ea74 435DEFUN ("exp", Fexp, Sexp, 1, 1, 0,
335c5470
PJ
436 doc: /* Return the exponential base e of ARG. */)
437 (arg)
4b6baf5f
RS
438 register Lisp_Object arg;
439{
440 double d = extract_float (arg);
441#ifdef FLOAT_CHECK_DOMAIN
442 if (d > 709.7827) /* Assume IEEE doubles here */
443 range_error ("exp", arg);
444 else if (d < -709.0)
445 return make_float (0.0);
446 else
447#endif
448 IN_FLOAT (d = exp (d), "exp", arg);
b70021f4
MR
449 return make_float (d);
450}
451
b70021f4 452DEFUN ("expt", Fexpt, Sexpt, 2, 2, 0,
335c5470
PJ
453 doc: /* Return the exponential ARG1 ** ARG2. */)
454 (arg1, arg2)
4b6baf5f 455 register Lisp_Object arg1, arg2;
b70021f4
MR
456{
457 double f1, f2;
458
b7826503
PJ
459 CHECK_NUMBER_OR_FLOAT (arg1);
460 CHECK_NUMBER_OR_FLOAT (arg2);
207a45c1 461 if (INTEGERP (arg1) /* common lisp spec */
5a9807a8
TTN
462 && INTEGERP (arg2) /* don't promote, if both are ints, and */
463 && 0 <= XINT (arg2)) /* we are sure the result is not fractional */
b70021f4 464 { /* this can be improved by pre-calculating */
9a51b24a 465 EMACS_INT acc, x, y; /* some binary powers of x then accumulating */
4be1d460
RS
466 Lisp_Object val;
467
4b6baf5f
RS
468 x = XINT (arg1);
469 y = XINT (arg2);
b70021f4 470 acc = 1;
177c0ea7 471
b70021f4
MR
472 if (y < 0)
473 {
4b6baf5f
RS
474 if (x == 1)
475 acc = 1;
476 else if (x == -1)
477 acc = (y & 1) ? -1 : 1;
478 else
479 acc = 0;
b70021f4
MR
480 }
481 else
482 {
4b6baf5f
RS
483 while (y > 0)
484 {
485 if (y & 1)
486 acc *= x;
487 x *= x;
488 y = (unsigned)y >> 1;
489 }
b70021f4 490 }
e0cb2a68 491 XSETINT (val, acc);
4be1d460 492 return val;
b70021f4 493 }
70949dac
KR
494 f1 = FLOATP (arg1) ? XFLOAT_DATA (arg1) : XINT (arg1);
495 f2 = FLOATP (arg2) ? XFLOAT_DATA (arg2) : XINT (arg2);
4b6baf5f
RS
496 /* Really should check for overflow, too */
497 if (f1 == 0.0 && f2 == 0.0)
498 f1 = 1.0;
499#ifdef FLOAT_CHECK_DOMAIN
500 else if ((f1 == 0.0 && f2 < 0.0) || (f1 < 0 && f2 != floor(f2)))
501 domain_error2 ("expt", arg1, arg2);
502#endif
28d849db 503 IN_FLOAT2 (f1 = pow (f1, f2), "expt", arg1, arg2);
b70021f4
MR
504 return make_float (f1);
505}
c2d4ea74 506
56abb480 507DEFUN ("log", Flog, Slog, 1, 2, 0,
335c5470 508 doc: /* Return the natural logarithm of ARG.
356e6d8d 509If the optional argument BASE is given, return log ARG using that base. */)
335c5470 510 (arg, base)
4b6baf5f 511 register Lisp_Object arg, base;
b70021f4 512{
4b6baf5f 513 double d = extract_float (arg);
56abb480 514
4b6baf5f
RS
515#ifdef FLOAT_CHECK_DOMAIN
516 if (d <= 0.0)
517 domain_error2 ("log", arg, base);
518#endif
56abb480 519 if (NILP (base))
4b6baf5f 520 IN_FLOAT (d = log (d), "log", arg);
56abb480
JB
521 else
522 {
523 double b = extract_float (base);
524
4b6baf5f
RS
525#ifdef FLOAT_CHECK_DOMAIN
526 if (b <= 0.0 || b == 1.0)
527 domain_error2 ("log", arg, base);
528#endif
529 if (b == 10.0)
530 IN_FLOAT2 (d = log10 (d), "log", arg, base);
531 else
f8131ed2 532 IN_FLOAT2 (d = log (d) / log (b), "log", arg, base);
56abb480 533 }
b70021f4
MR
534 return make_float (d);
535}
536
c2d4ea74 537DEFUN ("log10", Flog10, Slog10, 1, 1, 0,
335c5470
PJ
538 doc: /* Return the logarithm base 10 of ARG. */)
539 (arg)
4b6baf5f 540 register Lisp_Object arg;
b70021f4 541{
4b6baf5f
RS
542 double d = extract_float (arg);
543#ifdef FLOAT_CHECK_DOMAIN
544 if (d <= 0.0)
545 domain_error ("log10", arg);
546#endif
547 IN_FLOAT (d = log10 (d), "log10", arg);
c2d4ea74
RS
548 return make_float (d);
549}
550
b70021f4 551DEFUN ("sqrt", Fsqrt, Ssqrt, 1, 1, 0,
335c5470
PJ
552 doc: /* Return the square root of ARG. */)
553 (arg)
4b6baf5f 554 register Lisp_Object arg;
b70021f4 555{
4b6baf5f
RS
556 double d = extract_float (arg);
557#ifdef FLOAT_CHECK_DOMAIN
558 if (d < 0.0)
559 domain_error ("sqrt", arg);
560#endif
561 IN_FLOAT (d = sqrt (d), "sqrt", arg);
b70021f4
MR
562 return make_float (d);
563}
c2d4ea74 564\f
706ac90d 565#if 0 /* Not clearly worth adding. */
b70021f4 566
c2d4ea74 567DEFUN ("acosh", Facosh, Sacosh, 1, 1, 0,
335c5470
PJ
568 doc: /* Return the inverse hyperbolic cosine of ARG. */)
569 (arg)
4b6baf5f 570 register Lisp_Object arg;
b70021f4 571{
4b6baf5f
RS
572 double d = extract_float (arg);
573#ifdef FLOAT_CHECK_DOMAIN
574 if (d < 1.0)
575 domain_error ("acosh", arg);
576#endif
577#ifdef HAVE_INVERSE_HYPERBOLIC
578 IN_FLOAT (d = acosh (d), "acosh", arg);
579#else
580 IN_FLOAT (d = log (d + sqrt (d*d - 1.0)), "acosh", arg);
581#endif
c2d4ea74
RS
582 return make_float (d);
583}
584
585DEFUN ("asinh", Fasinh, Sasinh, 1, 1, 0,
335c5470
PJ
586 doc: /* Return the inverse hyperbolic sine of ARG. */)
587 (arg)
4b6baf5f 588 register Lisp_Object arg;
c2d4ea74 589{
4b6baf5f
RS
590 double d = extract_float (arg);
591#ifdef HAVE_INVERSE_HYPERBOLIC
592 IN_FLOAT (d = asinh (d), "asinh", arg);
593#else
594 IN_FLOAT (d = log (d + sqrt (d*d + 1.0)), "asinh", arg);
595#endif
c2d4ea74
RS
596 return make_float (d);
597}
598
599DEFUN ("atanh", Fatanh, Satanh, 1, 1, 0,
335c5470
PJ
600 doc: /* Return the inverse hyperbolic tangent of ARG. */)
601 (arg)
4b6baf5f 602 register Lisp_Object arg;
c2d4ea74 603{
4b6baf5f
RS
604 double d = extract_float (arg);
605#ifdef FLOAT_CHECK_DOMAIN
606 if (d >= 1.0 || d <= -1.0)
607 domain_error ("atanh", arg);
608#endif
609#ifdef HAVE_INVERSE_HYPERBOLIC
610 IN_FLOAT (d = atanh (d), "atanh", arg);
611#else
612 IN_FLOAT (d = 0.5 * log ((1.0 + d) / (1.0 - d)), "atanh", arg);
613#endif
c2d4ea74
RS
614 return make_float (d);
615}
616
617DEFUN ("cosh", Fcosh, Scosh, 1, 1, 0,
335c5470
PJ
618 doc: /* Return the hyperbolic cosine of ARG. */)
619 (arg)
4b6baf5f 620 register Lisp_Object arg;
c2d4ea74 621{
4b6baf5f
RS
622 double d = extract_float (arg);
623#ifdef FLOAT_CHECK_DOMAIN
624 if (d > 710.0 || d < -710.0)
625 range_error ("cosh", arg);
626#endif
627 IN_FLOAT (d = cosh (d), "cosh", arg);
c2d4ea74
RS
628 return make_float (d);
629}
630
631DEFUN ("sinh", Fsinh, Ssinh, 1, 1, 0,
335c5470
PJ
632 doc: /* Return the hyperbolic sine of ARG. */)
633 (arg)
4b6baf5f 634 register Lisp_Object arg;
c2d4ea74 635{
4b6baf5f
RS
636 double d = extract_float (arg);
637#ifdef FLOAT_CHECK_DOMAIN
638 if (d > 710.0 || d < -710.0)
639 range_error ("sinh", arg);
640#endif
641 IN_FLOAT (d = sinh (d), "sinh", arg);
b70021f4
MR
642 return make_float (d);
643}
644
645DEFUN ("tanh", Ftanh, Stanh, 1, 1, 0,
335c5470
PJ
646 doc: /* Return the hyperbolic tangent of ARG. */)
647 (arg)
4b6baf5f 648 register Lisp_Object arg;
b70021f4 649{
4b6baf5f
RS
650 double d = extract_float (arg);
651 IN_FLOAT (d = tanh (d), "tanh", arg);
b70021f4
MR
652 return make_float (d);
653}
c2d4ea74 654#endif
b70021f4
MR
655\f
656DEFUN ("abs", Fabs, Sabs, 1, 1, 0,
335c5470
PJ
657 doc: /* Return the absolute value of ARG. */)
658 (arg)
4b6baf5f 659 register Lisp_Object arg;
b70021f4 660{
b7826503 661 CHECK_NUMBER_OR_FLOAT (arg);
b70021f4 662
207a45c1 663 if (FLOATP (arg))
70949dac 664 IN_FLOAT (arg = make_float (fabs (XFLOAT_DATA (arg))), "abs", arg);
4b6baf5f 665 else if (XINT (arg) < 0)
db37cb37 666 XSETINT (arg, - XINT (arg));
b70021f4 667
4b6baf5f 668 return arg;
b70021f4
MR
669}
670
671DEFUN ("float", Ffloat, Sfloat, 1, 1, 0,
335c5470
PJ
672 doc: /* Return the floating point number equal to ARG. */)
673 (arg)
4b6baf5f 674 register Lisp_Object arg;
b70021f4 675{
b7826503 676 CHECK_NUMBER_OR_FLOAT (arg);
b70021f4 677
207a45c1 678 if (INTEGERP (arg))
4b6baf5f 679 return make_float ((double) XINT (arg));
b70021f4 680 else /* give 'em the same float back */
4b6baf5f 681 return arg;
b70021f4
MR
682}
683
684DEFUN ("logb", Flogb, Slogb, 1, 1, 0,
335c5470
PJ
685 doc: /* Returns largest integer <= the base 2 log of the magnitude of ARG.
686This is the same as the exponent of a float. */)
4b6baf5f
RS
687 (arg)
688 Lisp_Object arg;
b70021f4 689{
340176df 690 Lisp_Object val;
a7bf3c54 691 EMACS_INT value;
5bf54166 692 double f = extract_float (arg);
340176df 693
6694b327 694 if (f == 0.0)
b916d672 695 value = MOST_NEGATIVE_FIXNUM;
6694b327
KH
696 else
697 {
6d3c6adb 698#ifdef HAVE_LOGB
6694b327 699 IN_FLOAT (value = logb (f), "logb", arg);
6d3c6adb
JB
700#else
701#ifdef HAVE_FREXP
c8bf6cf3
KH
702 int ivalue;
703 IN_FLOAT (frexp (f, &ivalue), "logb", arg);
704 value = ivalue - 1;
c26406fe 705#else
6694b327
KH
706 int i;
707 double d;
708 if (f < 0.0)
709 f = -f;
710 value = -1;
711 while (f < 0.5)
712 {
713 for (i = 1, d = 0.5; d * d >= f; i += i)
714 d *= d;
715 f /= d;
716 value -= i;
717 }
718 while (f >= 1.0)
719 {
720 for (i = 1, d = 2.0; d * d <= f; i += i)
721 d *= d;
722 f /= d;
723 value += i;
724 }
6d3c6adb 725#endif
340176df 726#endif
6694b327 727 }
e0cb2a68 728 XSETINT (val, value);
c26406fe 729 return val;
b70021f4
MR
730}
731
fc2157cb 732
acbbacbe
PE
733/* the rounding functions */
734
735static Lisp_Object
736rounding_driver (arg, divisor, double_round, int_round2, name)
fc2157cb 737 register Lisp_Object arg, divisor;
acbbacbe
PE
738 double (*double_round) ();
739 EMACS_INT (*int_round2) ();
740 char *name;
b70021f4 741{
b7826503 742 CHECK_NUMBER_OR_FLOAT (arg);
b70021f4 743
fc2157cb
PE
744 if (! NILP (divisor))
745 {
9a51b24a 746 EMACS_INT i1, i2;
fc2157cb 747
b7826503 748 CHECK_NUMBER_OR_FLOAT (divisor);
fc2157cb 749
207a45c1 750 if (FLOATP (arg) || FLOATP (divisor))
fc2157cb
PE
751 {
752 double f1, f2;
753
70949dac
KR
754 f1 = FLOATP (arg) ? XFLOAT_DATA (arg) : XINT (arg);
755 f2 = (FLOATP (divisor) ? XFLOAT_DATA (divisor) : XINT (divisor));
d137ae2f 756 if (! IEEE_FLOATING_POINT && f2 == 0)
edef1631 757 xsignal0 (Qarith_error);
fc2157cb 758
acbbacbe
PE
759 IN_FLOAT2 (f1 = (*double_round) (f1 / f2), name, arg, divisor);
760 FLOAT_TO_INT2 (f1, arg, name, arg, divisor);
fc2157cb
PE
761 return arg;
762 }
fc2157cb
PE
763
764 i1 = XINT (arg);
765 i2 = XINT (divisor);
766
767 if (i2 == 0)
edef1631 768 xsignal0 (Qarith_error);
fc2157cb 769
acbbacbe 770 XSETINT (arg, (*int_round2) (i1, i2));
fc2157cb
PE
771 return arg;
772 }
773
207a45c1 774 if (FLOATP (arg))
81a63ccc
KH
775 {
776 double d;
acbbacbe 777
70949dac 778 IN_FLOAT (d = (*double_round) (XFLOAT_DATA (arg)), name, arg);
acbbacbe 779 FLOAT_TO_INT (d, arg, name, arg);
81a63ccc 780 }
b70021f4 781
4b6baf5f 782 return arg;
b70021f4
MR
783}
784
acbbacbe
PE
785/* With C's /, the result is implementation-defined if either operand
786 is negative, so take care with negative operands in the following
787 integer functions. */
788
789static EMACS_INT
790ceiling2 (i1, i2)
791 EMACS_INT i1, i2;
792{
793 return (i2 < 0
794 ? (i1 < 0 ? ((-1 - i1) / -i2) + 1 : - (i1 / -i2))
795 : (i1 <= 0 ? - (-i1 / i2) : ((i1 - 1) / i2) + 1));
796}
797
798static EMACS_INT
799floor2 (i1, i2)
800 EMACS_INT i1, i2;
801{
802 return (i2 < 0
803 ? (i1 <= 0 ? -i1 / -i2 : -1 - ((i1 - 1) / -i2))
804 : (i1 < 0 ? -1 - ((-1 - i1) / i2) : i1 / i2));
805}
806
807static EMACS_INT
808truncate2 (i1, i2)
809 EMACS_INT i1, i2;
810{
811 return (i2 < 0
812 ? (i1 < 0 ? -i1 / -i2 : - (i1 / -i2))
813 : (i1 < 0 ? - (-i1 / i2) : i1 / i2));
814}
815
816static EMACS_INT
817round2 (i1, i2)
818 EMACS_INT i1, i2;
819{
820 /* The C language's division operator gives us one remainder R, but
821 we want the remainder R1 on the other side of 0 if R1 is closer
822 to 0 than R is; because we want to round to even, we also want R1
823 if R and R1 are the same distance from 0 and if C's quotient is
824 odd. */
825 EMACS_INT q = i1 / i2;
826 EMACS_INT r = i1 % i2;
827 EMACS_INT abs_r = r < 0 ? -r : r;
828 EMACS_INT abs_r1 = (i2 < 0 ? -i2 : i2) - abs_r;
829 return q + (abs_r + (q & 1) <= abs_r1 ? 0 : (i2 ^ r) < 0 ? -1 : 1);
830}
831
dca6c914
RS
832/* The code uses emacs_rint, so that it works to undefine HAVE_RINT
833 if `rint' exists but does not work right. */
834#ifdef HAVE_RINT
835#define emacs_rint rint
836#else
4b5878a8 837static double
dca6c914 838emacs_rint (d)
4b5878a8
KH
839 double d;
840{
1b65c684 841 return floor (d + 0.5);
4b5878a8
KH
842}
843#endif
844
acbbacbe
PE
845static double
846double_identity (d)
847 double d;
848{
849 return d;
850}
851
852DEFUN ("ceiling", Fceiling, Sceiling, 1, 2, 0,
1d6ea92f
RS
853 doc: /* Return the smallest integer no less than ARG.
854This rounds the value towards +inf.
335c5470
PJ
855With optional DIVISOR, return the smallest integer no less than ARG/DIVISOR. */)
856 (arg, divisor)
acbbacbe
PE
857 Lisp_Object arg, divisor;
858{
859 return rounding_driver (arg, divisor, ceil, ceiling2, "ceiling");
860}
861
862DEFUN ("floor", Ffloor, Sfloor, 1, 2, 0,
1d6ea92f 863 doc: /* Return the largest integer no greater than ARG.
568b6e41 864This rounds the value towards -inf.
335c5470
PJ
865With optional DIVISOR, return the largest integer no greater than ARG/DIVISOR. */)
866 (arg, divisor)
acbbacbe
PE
867 Lisp_Object arg, divisor;
868{
869 return rounding_driver (arg, divisor, floor, floor2, "floor");
870}
871
872DEFUN ("round", Fround, Sround, 1, 2, 0,
335c5470 873 doc: /* Return the nearest integer to ARG.
6ded2c89
EZ
874With optional DIVISOR, return the nearest integer to ARG/DIVISOR.
875
a32a4857
EZ
876Rounding a value equidistant between two integers may choose the
877integer closer to zero, or it may prefer an even integer, depending on
878your machine. For example, \(round 2.5\) can return 3 on some
59fe0cee 879systems, but 2 on others. */)
335c5470 880 (arg, divisor)
acbbacbe
PE
881 Lisp_Object arg, divisor;
882{
dca6c914 883 return rounding_driver (arg, divisor, emacs_rint, round2, "round");
acbbacbe
PE
884}
885
886DEFUN ("truncate", Ftruncate, Struncate, 1, 2, 0,
335c5470
PJ
887 doc: /* Truncate a floating point number to an int.
888Rounds ARG toward zero.
889With optional DIVISOR, truncate ARG/DIVISOR. */)
890 (arg, divisor)
acbbacbe
PE
891 Lisp_Object arg, divisor;
892{
893 return rounding_driver (arg, divisor, double_identity, truncate2,
894 "truncate");
895}
896
fc2157cb 897
d137ae2f
PE
898Lisp_Object
899fmod_float (x, y)
900 register Lisp_Object x, y;
901{
902 double f1, f2;
903
70949dac
KR
904 f1 = FLOATP (x) ? XFLOAT_DATA (x) : XINT (x);
905 f2 = FLOATP (y) ? XFLOAT_DATA (y) : XINT (y);
d137ae2f
PE
906
907 if (! IEEE_FLOATING_POINT && f2 == 0)
edef1631 908 xsignal0 (Qarith_error);
d137ae2f
PE
909
910 /* If the "remainder" comes out with the wrong sign, fix it. */
911 IN_FLOAT2 ((f1 = fmod (f1, f2),
912 f1 = (f2 < 0 ? f1 > 0 : f1 < 0) ? f1 + f2 : f1),
913 "mod", x, y);
914 return make_float (f1);
915}
4b6baf5f 916\f
4b6baf5f
RS
917/* It's not clear these are worth adding. */
918
919DEFUN ("fceiling", Ffceiling, Sfceiling, 1, 1, 0,
335c5470
PJ
920 doc: /* Return the smallest integer no less than ARG, as a float.
921\(Round toward +inf.\) */)
922 (arg)
4b6baf5f
RS
923 register Lisp_Object arg;
924{
925 double d = extract_float (arg);
926 IN_FLOAT (d = ceil (d), "fceiling", arg);
927 return make_float (d);
928}
929
930DEFUN ("ffloor", Fffloor, Sffloor, 1, 1, 0,
335c5470
PJ
931 doc: /* Return the largest integer no greater than ARG, as a float.
932\(Round towards -inf.\) */)
933 (arg)
4b6baf5f
RS
934 register Lisp_Object arg;
935{
936 double d = extract_float (arg);
937 IN_FLOAT (d = floor (d), "ffloor", arg);
938 return make_float (d);
939}
b70021f4 940
4b6baf5f 941DEFUN ("fround", Ffround, Sfround, 1, 1, 0,
335c5470
PJ
942 doc: /* Return the nearest integer to ARG, as a float. */)
943 (arg)
4b6baf5f
RS
944 register Lisp_Object arg;
945{
946 double d = extract_float (arg);
dca6c914 947 IN_FLOAT (d = emacs_rint (d), "fround", arg);
4b6baf5f
RS
948 return make_float (d);
949}
950
951DEFUN ("ftruncate", Fftruncate, Sftruncate, 1, 1, 0,
335c5470
PJ
952 doc: /* Truncate a floating point number to an integral float value.
953Rounds the value toward zero. */)
954 (arg)
4b6baf5f
RS
955 register Lisp_Object arg;
956{
957 double d = extract_float (arg);
958 if (d >= 0.0)
959 IN_FLOAT (d = floor (d), "ftruncate", arg);
960 else
a3fc5236 961 IN_FLOAT (d = ceil (d), "ftruncate", arg);
4b6baf5f 962 return make_float (d);
b70021f4
MR
963}
964\f
4b6baf5f 965#ifdef FLOAT_CATCH_SIGILL
4746118a 966static SIGTYPE
b70021f4
MR
967float_error (signo)
968 int signo;
969{
970 if (! in_float)
971 fatal_error_signal (signo);
972
6df54671 973#ifdef BSD_SYSTEM
b70021f4
MR
974#ifdef BSD4_1
975 sigrelse (SIGILL);
976#else /* not BSD4_1 */
e065a56e 977 sigsetmask (SIGEMPTYMASK);
b70021f4 978#endif /* not BSD4_1 */
265a9e55
JB
979#else
980 /* Must reestablish handler each time it is called. */
981 signal (SIGILL, float_error);
6df54671 982#endif /* BSD_SYSTEM */
b70021f4 983
333f1b6f 984 SIGNAL_THREAD_CHECK (signo);
b70021f4
MR
985 in_float = 0;
986
edef1631 987 xsignal1 (Qarith_error, float_error_arg);
b70021f4
MR
988}
989
4b6baf5f
RS
990/* Another idea was to replace the library function `infnan'
991 where SIGILL is signaled. */
992
993#endif /* FLOAT_CATCH_SIGILL */
994
995#ifdef HAVE_MATHERR
177c0ea7 996int
4b6baf5f
RS
997matherr (x)
998 struct exception *x;
999{
1000 Lisp_Object args;
1001 if (! in_float)
1002 /* Not called from emacs-lisp float routines; do the default thing. */
1003 return 0;
1004 if (!strcmp (x->name, "pow"))
1005 x->name = "expt";
1006
1007 args
1008 = Fcons (build_string (x->name),
1009 Fcons (make_float (x->arg1),
1010 ((!strcmp (x->name, "log") || !strcmp (x->name, "pow"))
1011 ? Fcons (make_float (x->arg2), Qnil)
1012 : Qnil)));
1013 switch (x->type)
1014 {
edef1631
KS
1015 case DOMAIN: xsignal (Qdomain_error, args); break;
1016 case SING: xsignal (Qsingularity_error, args); break;
1017 case OVERFLOW: xsignal (Qoverflow_error, args); break;
1018 case UNDERFLOW: xsignal (Qunderflow_error, args); break;
1019 default: xsignal (Qarith_error, args); break;
4b6baf5f
RS
1020 }
1021 return (1); /* don't set errno or print a message */
1022}
1023#endif /* HAVE_MATHERR */
1024
dfcf069d 1025void
b70021f4
MR
1026init_floatfns ()
1027{
4b6baf5f 1028#ifdef FLOAT_CATCH_SIGILL
b70021f4 1029 signal (SIGILL, float_error);
177c0ea7 1030#endif
b70021f4
MR
1031 in_float = 0;
1032}
1033
dfcf069d 1034void
b70021f4
MR
1035syms_of_floatfns ()
1036{
1037 defsubr (&Sacos);
b70021f4 1038 defsubr (&Sasin);
b70021f4 1039 defsubr (&Satan);
c2d4ea74
RS
1040 defsubr (&Scos);
1041 defsubr (&Ssin);
1042 defsubr (&Stan);
1043#if 0
1044 defsubr (&Sacosh);
1045 defsubr (&Sasinh);
b70021f4 1046 defsubr (&Satanh);
c2d4ea74
RS
1047 defsubr (&Scosh);
1048 defsubr (&Ssinh);
1049 defsubr (&Stanh);
b70021f4
MR
1050 defsubr (&Sbessel_y0);
1051 defsubr (&Sbessel_y1);
1052 defsubr (&Sbessel_yn);
1053 defsubr (&Sbessel_j0);
1054 defsubr (&Sbessel_j1);
1055 defsubr (&Sbessel_jn);
b70021f4
MR
1056 defsubr (&Serf);
1057 defsubr (&Serfc);
c2d4ea74 1058 defsubr (&Slog_gamma);
4b6baf5f 1059 defsubr (&Scube_root);
892ed7e0 1060#endif
4b6baf5f
RS
1061 defsubr (&Sfceiling);
1062 defsubr (&Sffloor);
1063 defsubr (&Sfround);
1064 defsubr (&Sftruncate);
b70021f4 1065 defsubr (&Sexp);
c2d4ea74 1066 defsubr (&Sexpt);
b70021f4
MR
1067 defsubr (&Slog);
1068 defsubr (&Slog10);
b70021f4 1069 defsubr (&Ssqrt);
b70021f4
MR
1070
1071 defsubr (&Sabs);
1072 defsubr (&Sfloat);
1073 defsubr (&Slogb);
1074 defsubr (&Sceiling);
acbbacbe 1075 defsubr (&Sfloor);
b70021f4
MR
1076 defsubr (&Sround);
1077 defsubr (&Struncate);
1078}
ab5796a9
MB
1079
1080/* arch-tag: be05bf9d-049e-4e31-91b9-e6153d483ae7
1081 (do not change this comment) */