Add .info extension to @setfilename commands in doc/
[bpt/emacs.git] / doc / misc / wisent.texi
CommitLineData
9e7abd17
EL
1\input texinfo @c -*-texinfo-*-
2@c %**start of header
29993416 3@setfilename ../../info/wisent.info
9e7abd17
EL
4@set TITLE Wisent Parser Development
5@set AUTHOR Eric M. Ludlam, David Ponce, and Richard Y. Kim
6@settitle @value{TITLE}
7
8@c *************************************************************************
9@c @ Header
10@c *************************************************************************
11
12@c Merge all indexes into a single index for now.
13@c We can always separate them later into two or more as needed.
14@syncodeindex vr cp
15@syncodeindex fn cp
16@syncodeindex ky cp
17@syncodeindex pg cp
18@syncodeindex tp cp
19
20@c @footnotestyle separate
21@c @paragraphindent 2
22@c @@smallbook
c6ab4664 23@documentencoding UTF-8
9e7abd17
EL
24@c %**end of header
25
26@copying
6bc383b1 27Copyright @copyright{} 1988--1993, 1995, 1998--2004, 2007, 2012--2014
bfe6ffb6 28Free Software Foundation, Inc.
9e7abd17 29
bfe6ffb6
GM
30@c Since we are both GNU manuals, we do not need to ack each other here.
31@ignore
9e7abd17
EL
32Some texts are borrowed or adapted from the manual of Bison version
331.35. The text in section entitled ``Understanding the automaton'' is
34adapted from the section ``Understanding Your Parser'' in the manual
35of Bison version 1.49.
bfe6ffb6 36@end ignore
9e7abd17
EL
37
38@quotation
39Permission is granted to copy, distribute and/or modify this document
bfe6ffb6
GM
40under the terms of the GNU Free Documentation License, Version 1.3 or
41any later version published by the Free Software Foundation; with no
551a89e1 42Invariant Sections, with the Front-Cover Texts being ``A GNU Manual,''
bfe6ffb6
GM
43and with the Back-Cover Texts as in (a) below. A copy of the license
44is included in the section entitled ``GNU Free Documentation License''.
45
46(a) The FSF's Back-Cover Text is: ``You have the freedom to copy and
6bf430d1 47modify this GNU manual.''
9e7abd17
EL
48@end quotation
49@end copying
50
bfe6ffb6 51@dircategory Emacs misc features
9e7abd17 52@direntry
bfe6ffb6 53* Wisent: (wisent). Semantic Wisent parser development.
9e7abd17 54@end direntry
9e7abd17
EL
55
56@iftex
57@finalout
58@end iftex
59
60@c @setchapternewpage odd
61@c @setchapternewpage off
62
9e7abd17
EL
63@titlepage
64@sp 10
65@title @value{TITLE}
66@author by @value{AUTHOR}
9e7abd17
EL
67@page
68@vskip 0pt plus 1 fill
69@insertcopying
70@end titlepage
71@page
72
bfe6ffb6
GM
73@macro semantic{}
74@i{Semantic}
75@end macro
9e7abd17
EL
76
77@c *************************************************************************
78@c @ Document
79@c *************************************************************************
80@contents
81
82@node top
83@top @value{TITLE}
84
85Wisent (the European Bison ;-) is an Emacs Lisp implementation of the
86GNU Compiler Compiler Bison.
87
88This manual describes how to use Wisent to develop grammars for
89programming languages, and how to use grammars to parse language
90source in Emacs buffers.
91
92It also describes how Wisent is used with the @semantic{} tool set
93described in the @ref{Top, Semantic Manual, Semantic Manual, semantic}.
94
bfe6ffb6
GM
95@ifnottex
96@insertcopying
97@end ifnottex
98
9e7abd17 99@menu
bfe6ffb6
GM
100* Wisent Overview::
101* Wisent Grammar::
102* Wisent Parsing::
103* Wisent Semantic::
104* GNU Free Documentation License::
105* Index::
9e7abd17
EL
106@end menu
107
108@node Wisent Overview
109@chapter Wisent Overview
110
111@dfn{Wisent} (the European Bison) is an implementation in Emacs Lisp
112of the GNU Compiler Compiler Bison. Its code is a port of the C code
113of GNU Bison 1.28 & 1.31.
114
115For more details on the basic concepts for understanding Wisent, it is
2ecfdaa6 116worthwhile to read the @ref{Top, Bison Manual, , bison}.
9e7abd17
EL
117
118Wisent can generate compilers compatible with the @semantic{} tool set.
119See the @ref{Top, Semantic Manual, , semantic}.
120
121It benefits from these Bison features:
122
123@itemize @bullet
bfe6ffb6 124@item
9e7abd17
EL
125It uses a fast but not so space-efficient encoding for the parse
126tables, described in Corbett's PhD thesis from Berkeley:
127@quotation
128@cite{Static Semantics in Compiler Error Recovery}@*
129June 1985, Report No. UCB/CSD 85/251.
130@end quotation
131
bfe6ffb6 132@item
9e7abd17 133For generating the lookahead sets, Wisent uses the well-known
c91c771d 134technique of F. DeRemer and T. Pennello described in:
9e7abd17 135@quotation
cccaebd2
PE
136@cite{Efficient Computation of LALR(1) Look-Ahead Sets}@*
137October 1982, ACM TOPLAS Vol 4 No 4, 615--49,
138@uref{http://dx.doi.org/10.1145/69622.357187}.
9e7abd17
EL
139@end quotation
140
bfe6ffb6 141@item
9e7abd17
EL
142Wisent resolves shift/reduce conflicts using operator precedence and
143associativity.
144
bfe6ffb6 145@item
9e7abd17
EL
146Parser error recovery is accomplished using rules which match the
147special token @code{error}.
148@end itemize
149
150Nevertheless there are some fundamental differences between Bison and
151Wisent.
152
153@itemize
154@item
155Wisent is intended to be used in Emacs. It reads and produces Emacs
156Lisp data structures. All the additional code used in grammars is
157Emacs Lisp code.
158
159@item
160Contrary to Bison, Wisent does not generate a parser which combines
161Emacs Lisp code and grammar constructs. They exist separately.
162Wisent reads the grammar from a Lisp data structure and then generates
163grammar constructs as tables. Afterward, the derived tables can be
164included and byte-compiled in separate Emacs Lisp files, and be used
165at a later time by the Wisent's parser engine.
166
167@item
168Wisent allows multiple start nonterminals and allows a call to the
169parsing function to be made for a particular start nonterminal. For
170example, this is particularly useful to parse a region of an Emacs
171buffer. @semantic{} heavily depends on the availability of this feature.
172@end itemize
173
174@node Wisent Grammar
175@chapter Wisent Grammar
176
177@cindex context-free grammar
178@cindex rule
179In order for Wisent to parse a language, it must be described by a
180@dfn{context-free grammar}. That is a grammar specified as rules that
181can be applied regardless of context. For more information, see
182@ref{Language and Grammar, , , bison}, in the Bison manual.
183
184@cindex terminal
185@cindex nonterminal
186The formal grammar is formulated using @dfn{terminal} and
187@dfn{nonterminal} items. Terminals can be Emacs Lisp symbols or
188characters, and nonterminals are symbols only.
189
190@cindex token
191Terminals (also known as @dfn{tokens}) represent the lexical
192elements of the language like numbers, strings, etc..
193
194For example @samp{PLUS} can represent the operator @samp{+}.
195
196Nonterminal symbols are described by rules:
197
198@example
199@group
200RESULT @equiv{} COMPONENTS@dots{}
201@end group
202@end example
203
204@samp{RESULT} is a nonterminal that this rule describes and
205@samp{COMPONENTS} are various terminals and nonterminals that are put
206together by this rule.
207
208For example, this rule:
209
210@example
211@group
212exp @equiv{} exp PLUS exp
213@end group
214@end example
215
216Says that two groupings of type @samp{exp}, with a @samp{PLUS} token
217in between, can be combined into a larger grouping of type @samp{exp}.
bfe6ffb6 218
9e7abd17 219@menu
bfe6ffb6
GM
220* Grammar format::
221* Example::
222* Compiling a grammar::
223* Conflicts::
9e7abd17
EL
224@end menu
225
faeea569 226@node Grammar format
9e7abd17
EL
227@section Grammar format
228
229@cindex grammar format
230To be acceptable by Wisent a context-free grammar must respect a
231particular format. That is, must be represented as an Emacs Lisp list
232of the form:
233
234@code{(@var{terminals} @var{assocs} . @var{non-terminals})}
235
236@table @var
237@item terminals
238Is the list of terminal symbols used in the grammar.
239
240@cindex associativity
241@item assocs
242Specify the associativity of @var{terminals}. It is @code{nil} when
243there is no associativity defined, or an alist of
244@w{@code{(@var{assoc-type} . @var{assoc-value})}} elements.
245
246@var{assoc-type} must be one of the @code{default-prec},
247@code{nonassoc}, @code{left} or @code{right} symbols. When
248@var{assoc-type} is @code{default-prec}, @var{assoc-value} must be
249@code{nil} or @code{t} (the default). Otherwise it is a list of
250tokens which must have been previously declared in @var{terminals}.
251
252For details, see @ref{Contextual Precedence, , , bison}, in the
253Bison manual.
254
255@item non-terminals
256Is the list of nonterminal definitions. Each definition has the form:
257
258@code{(@var{nonterm} . @var{rules})}
259
260Where @var{nonterm} is the nonterminal symbol defined and
261@var{rules} the list of rules that describe this nonterminal. Each
262rule is a list:
263
264@code{(@var{components} [@var{precedence}] [@var{action}])}
265
266Where:
267
268@table @var
269@item components
270Is a list of various terminals and nonterminals that are put together
271by this rule.
272
273For example,
274
275@example
276@group
277(exp ((exp ?+ exp)) ;; exp: exp '+' exp
278 ) ;; ;
279@end group
280@end example
281
282Says that two groupings of type @samp{exp}, with a @samp{+} token in
283between, can be combined into a larger grouping of type @samp{exp}.
cccaebd2 284
9e7abd17
EL
285@cindex grammar coding conventions
286By convention, a nonterminal symbol should be in lower case, such as
287@samp{exp}, @samp{stmt} or @samp{declaration}. Terminal symbols
288should be upper case to distinguish them from nonterminals: for
289example, @samp{INTEGER}, @samp{IDENTIFIER}, @samp{IF} or
290@samp{RETURN}. A terminal symbol that represents a particular keyword
291in the language is conventionally the same as that keyword converted
292to upper case. The terminal symbol @code{error} is reserved for error
293recovery.
294
295@cindex middle-rule actions
296Scattered among the components can be @dfn{middle-rule} actions.
297Usually only @var{action} is provided (@pxref{action}).
298
299If @var{components} in a rule is @code{nil}, it means that the rule
300can match the empty string. For example, here is how to define a
301comma-separated sequence of zero or more @samp{exp} groupings:
302
2ecfdaa6 303@smallexample
9e7abd17
EL
304@group
305(expseq (nil) ;; expseq: ;; empty
306 ((expseq1)) ;; | expseq1
307 ) ;; ;
308
309(expseq1 ((exp)) ;; expseq1: exp
310 ((expseq1 ?, exp)) ;; | expseq1 ',' exp
311 ) ;; ;
312@end group
2ecfdaa6 313@end smallexample
9e7abd17
EL
314
315@cindex precedence level
316@item precedence
317Assign the rule the precedence of the given terminal item, overriding
318the precedence that would be deduced for it, that is the one of the
319last terminal in it. Notice that only terminals declared in
320@var{assocs} have a precedence level. The altered rule precedence
321then affects how conflicts involving that rule are resolved.
322
323@var{precedence} is an optional vector of one terminal item.
324
325Here is how @var{precedence} solves the problem of unary minus.
326First, declare a precedence for a fictitious terminal symbol named
327@code{UMINUS}. There are no tokens of this type, but the symbol
328serves to stand for its precedence:
329
330@example
331@dots{}
332((default-prec t) ;; This is the default
333 (left '+' '-')
334 (left '*')
335 (left UMINUS))
336@end example
337
338Now the precedence of @code{UMINUS} can be used in specific rules:
339
2ecfdaa6 340@smallexample
9e7abd17
EL
341@group
342(exp @dots{} ;; exp: @dots{}
343 ((exp ?- exp)) ;; | exp '-' exp
344 @dots{} ;; @dots{}
345 ((?- exp) [UMINUS]) ;; | '-' exp %prec UMINUS
346 @dots{} ;; @dots{}
347 ) ;; ;
348@end group
2ecfdaa6 349@end smallexample
9e7abd17
EL
350
351If you forget to append @code{[UMINUS]} to the rule for unary minus,
352Wisent silently assumes that minus has its usual precedence. This
353kind of problem can be tricky to debug, since one typically discovers
354the mistake only by testing the code.
355
356Using @code{(default-prec nil)} declaration makes it easier to
357discover this kind of problem systematically. It causes rules that
358lack a @var{precedence} modifier to have no precedence, even if the
359last terminal symbol mentioned in their components has a declared
360precedence.
361
362If @code{(default-prec nil)} is in effect, you must specify
363@var{precedence} for all rules that participate in precedence conflict
364resolution. Then you will see any shift/reduce conflict until you
365tell Wisent how to resolve it, either by changing your grammar or by
366adding an explicit precedence. This will probably add declarations to
367the grammar, but it helps to protect against incorrect rule
368precedences.
369
370The effect of @code{(default-prec nil)} can be reversed by giving
371@code{(default-prec t)}, which is the default.
372
373For more details, see @ref{Contextual Precedence, , , bison}, in the
374Bison manual.
375
376It is important to understand that @var{assocs} declarations defines
377associativity but also assign a precedence level to terminals. All
378terminals declared in the same @code{left}, @code{right} or
379@code{nonassoc} association get the same precedence level. The
380precedence level is increased at each new association.
381
382On the other hand, @var{precedence} explicitly assign the precedence
383level of the given terminal to a rule.
384
385@cindex semantic actions
386@item @anchor{action}action
387An action is an optional Emacs Lisp function call, like this:
388
389@code{(identity $1)}
390
391The result of an action determines the semantic value of a rule.
392
393From an implementation standpoint, the function call will be embedded
394in a lambda expression, and several useful local variables will be
395defined:
396
397@table @code
398@vindex $N
399@item $@var{n}
400Where @var{n} is a positive integer. Like in Bison, the value of
401@code{$@var{n}} is the semantic value of the @var{n}th element of
402@var{components}, starting from 1. It can be of any Lisp data
403type.
404
405@vindex $region@var{n}
406@item $regionN
407Where @var{n} is a positive integer. For each @code{$@var{n}}
408variable defined there is a corresponding @code{$region@var{n}}
409variable. Its value is a pair @code{(@var{start-pos} .
410@var{end-pos})} that represent the start and end positions (in the
411lexical input stream) of the @code{$@var{n}} value. It can be
412@code{nil} when the component positions are not available, like for an
413empty string component for example.
414
415@vindex $region
416@item $region
417Its value is the leftmost and rightmost positions of input data
418matched by all @var{components} in the rule. This is a pair
419@code{(@var{leftmost-pos} . @var{rightmost-pos})}. It can be
420@code{nil} when components positions are not available.
421
422@vindex $nterm
423@item $nterm
424This variable is initialized with the nonterminal symbol
425(@var{nonterm}) the rule belongs to. It could be useful to improve
426error reporting or debugging. It is also used to automatically
427provide incremental re-parse entry points for @semantic{} tags
428(@pxref{Wisent Semantic}).
429
430@vindex $action
431@item $action
432The value of @code{$action} is the symbolic name of the current
433semantic action (@pxref{Debugging actions}).
434@end table
435
436When an action is not specified a default value is supplied, it is
437@code{(identity $1)}. This means that the default semantic value of a
438rule is the value of its first component. Excepted for a rule
439matching the empty string, for which the default action is to return
440@code{nil}.
441@end table
442@end table
443
faeea569 444@node Example
9e7abd17
EL
445@section Example
446
447@cindex grammar example
448Here is an example to parse simple infix arithmetic expressions. See
449@ref{Infix Calc, , , bison}, in the Bison manual for details.
450
451@lisp
452@group
453'(
454 ;; Terminals
455 (NUM)
bfe6ffb6 456
9e7abd17
EL
457 ;; Terminal associativity & precedence
458 ((nonassoc ?=)
459 (left ?- ?+)
460 (left ?* ?/)
461 (left NEG)
462 (right ?^))
bfe6ffb6 463
9e7abd17
EL
464 ;; Rules
465 (input
466 ((line))
467 ((input line)
468 (format "%s %s" $1 $2))
469 )
470
471 (line
472 ((?;)
473 (progn ";"))
474 ((exp ?;)
475 (format "%s;" $1))
476 ((error ?;)
477 (progn "Error;")))
478 )
479
480 (exp
481 ((NUM)
482 (string-to-number $1))
483 ((exp ?= exp)
484 (= $1 $3))
485 ((exp ?+ exp)
486 (+ $1 $3))
487 ((exp ?- exp)
488 (- $1 $3))
489 ((exp ?* exp)
490 (* $1 $3))
491 ((exp ?/ exp)
492 (/ $1 $3))
493 ((?- exp) [NEG]
494 (- $2))
495 ((exp ?^ exp)
496 (expt $1 $3))
497 ((?\( exp ?\))
498 (progn $2))
499 )
500 )
501@end group
502@end lisp
503
504In the bison-like @dfn{WY} format (@pxref{Wisent Semantic}) the
505grammar looks like this:
506
507@example
508@group
509%token <number> NUM
510
511%nonassoc '=' ;; comparison
512%left '-' '+'
513%left '*' '/'
514%left NEG ;; negation--unary minus
515%right '^' ;; exponentiation
516
517%%
518
519input:
520 line
521 | input line
522 (format "%s %s" $1 $2)
523 ;
524
525line:
526 ';'
527 @{";"@}
528 | exp ';'
529 (format "%s;" $1)
530 | error ';'
531 @{"Error;"@}
532 ;
533
534exp:
535 NUM
536 (string-to-number $1)
537 | exp '=' exp
538 (= $1 $3)
539 | exp '+' exp
540 (+ $1 $3)
541 | exp '-' exp
542 (- $1 $3)
543 | exp '*' exp
544 (* $1 $3)
545 | exp '/' exp
546 (/ $1 $3)
547 | '-' exp %prec NEG
548 (- $2)
549 | exp '^' exp
550 (expt $1 $3)
551 | '(' exp ')'
552 @{$2@}
553 ;
554
555%%
556@end group
557@end example
558
faeea569 559@node Compiling a grammar
9e7abd17
EL
560@section Compiling a grammar
561
562@cindex automaton
563After providing a context-free grammar in a suitable format, it must
564be translated into a set of tables (an @dfn{automaton}) that will be
565used to derive the parser. Like Bison, Wisent translates grammars that
566must be @dfn{LALR(1)}.
567
568@cindex LALR(1) grammar
569@cindex look-ahead token
570A grammar is @acronym{LALR(1)} if it is possible to tell how to parse
571any portion of an input string with just a single token of look-ahead:
572the @dfn{look-ahead token}. See @ref{Language and Grammar, , ,
573bison}, in the Bison manual for more information.
574
575@cindex grammar compilation
576Grammar translation (compilation) is achieved by the function:
577
578@cindex compiling a grammar
579@vindex wisent-single-start-flag
580@findex wisent-compile-grammar
581@defun wisent-compile-grammar grammar &optional start-list
582Compile @var{grammar} and return an @acronym{LALR(1)} automaton.
583
584Optional argument @var{start-list} is a list of start symbols
585(nonterminals). If @code{nil} the first nonterminal defined in the
586grammar is the default start symbol. If @var{start-list} contains
587only one element, it defines the start symbol. If @var{start-list}
588contains more than one element, all are defined as potential start
589symbols, unless @code{wisent-single-start-flag} is non-@code{nil}. In
590that case the first element of @var{start-list} defines the start
591symbol and others are ignored.
592
593The @acronym{LALR(1)} automaton is a vector of the form:
594
595@code{[@var{actions gotos starts functions}]}
596
597@table @var
598@item actions
599A state/token matrix telling the parser what to do at every state
600based on the current look-ahead token. That is shift, reduce, accept
601or error. See also @ref{Wisent Parsing}.
602
603@item gotos
604A state/nonterminal matrix telling the parser the next state to go to
605after reducing with each rule.
606
607@item starts
608An alist which maps the allowed start symbols (nonterminals) to
609lexical tokens that will be first shifted into the parser stack.
610
611@item functions
612An obarray of semantic action symbols. A semantic action is actually
613an Emacs Lisp function (lambda expression).
614@end table
615@end defun
616
faeea569 617@node Conflicts
9e7abd17
EL
618@section Conflicts
619
620Normally, a grammar should produce an automaton where at each state
621the parser has only one action to do (@pxref{Wisent Parsing}).
622
623@cindex ambiguous grammar
624In certain cases, a grammar can produce an automaton where, at some
625states, there are more than one action possible. Such a grammar is
626@dfn{ambiguous}, and generates @dfn{conflicts}.
627
628@cindex deterministic automaton
629The parser can't be driven by an automaton which isn't completely
630@dfn{deterministic}, that is which contains conflicts. It is
631necessary to resolve the conflicts to eliminate them. Wisent resolves
632conflicts like Bison does.
633
634@cindex grammar conflicts
635@cindex conflicts resolution
636There are two sorts of conflicts:
637
638@table @dfn
639@cindex shift/reduce conflicts
640@item shift/reduce conflicts
641When either a shift or a reduction would be valid at the same state.
642
643Such conflicts are resolved by choosing to shift, unless otherwise
644directed by operator precedence declarations.
645See @ref{Shift/Reduce , , , bison}, in the Bison manual for more
646information.
647
648@cindex reduce/reduce conflicts
649@item reduce/reduce conflicts
650That occurs if there are two or more rules that apply to the same
651sequence of input. This usually indicates a serious error in the
652grammar.
653
654Such conflicts are resolved by choosing to use the rule that appears
655first in the grammar, but it is very risky to rely on this. Every
656reduce/reduce conflict must be studied and usually eliminated. See
657@ref{Reduce/Reduce , , , bison}, in the Bison manual for more
658information.
659@end table
660
661@menu
bfe6ffb6
GM
662* Grammar Debugging::
663* Understanding the automaton::
9e7abd17
EL
664@end menu
665
666@node Grammar Debugging
667@subsection Grammar debugging
668
669@cindex grammar debugging
670@cindex grammar verbose description
671To help writing a new grammar, @code{wisent-compile-grammar} can
672produce a verbose report containing a detailed description of the
673grammar and parser (equivalent to what Bison reports with the
674@option{--verbose} option).
675
676To enable the verbose report you can set to non-@code{nil} the
677variable:
678
679@vindex wisent-verbose-flag
680@deffn Option wisent-verbose-flag
681non-@code{nil} means to report verbose information on generated parser.
682@end deffn
683
684Or interactively use the command:
685
686@findex wisent-toggle-verbose-flag
687@deffn Command wisent-toggle-verbose-flag
688Toggle whether to report verbose information on generated parser.
689@end deffn
690
691The verbose report is printed in the temporary buffer
d29fbf47 692@file{*wisent-log*} when running interactively, or in file
9e7abd17
EL
693@file{wisent.output} when running in batch mode. Different
694reports are separated from each other by a line like this:
695
696@example
697@group
698*** Wisent @var{source-file} - 2002-06-27 17:33
699@end group
700@end example
701
702where @var{source-file} is the name of the Emacs Lisp file from which
703the grammar was read. See @ref{Understanding the automaton}, for
704details on the verbose report.
705
706@table @strong
707@item Please Note
708To help debugging the grammar compiler itself, you can set this
709variable to print the content of some internal data structures:
710
711@vindex wisent-debug-flag
712@defvar wisent-debug-flag
713non-@code{nil} means enable some debug stuff.
714@end defvar
715@end table
716
717@node Understanding the automaton
718@subsection Understanding the automaton
719
720@cindex understanding the automaton
721This section (took from the manual of Bison 1.49) describes how to use
722the verbose report printed by @code{wisent-compile-grammar} to
723understand the generated automaton, to tune or fix a grammar.
724
725We will use the following example:
726
727@example
728@group
729(let ((wisent-verbose-flag t)) ;; Print a verbose report!
730 (wisent-compile-grammar
731 '((NUM STR) ; %token NUM STR
732
bfe6ffb6 733 ((left ?+ ?-) ; %left '+' '-';
9e7abd17
EL
734 (left ?*)) ; %left '*'
735
736 (exp ; exp:
737 ((exp ?+ exp)) ; exp '+' exp
738 ((exp ?- exp)) ; | exp '-' exp
739 ((exp ?* exp)) ; | exp '*' exp
740 ((exp ?/ exp)) ; | exp '/' exp
741 ((NUM)) ; | NUM
742 ) ; ;
743
744 (useless ; useless:
745 ((STR)) ; STR
746 ) ; ;
747 )
748 'nil) ; no %start declarations
749 )
750@end group
751@end example
752
753When evaluating the above expression, grammar compilation first issues
754the following two clear messages:
755
756@example
757@group
758Grammar contains 1 useless nonterminals and 1 useless rules
759Grammar contains 7 shift/reduce conflicts
760@end group
761@end example
762
d29fbf47 763The @file{*wisent-log*} buffer details things!
9e7abd17
EL
764
765The first section reports conflicts that were solved using precedence
766and/or associativity:
767
768@example
769@group
770Conflict in state 7 between rule 1 and token '+' resolved as reduce.
771Conflict in state 7 between rule 1 and token '-' resolved as reduce.
772Conflict in state 7 between rule 1 and token '*' resolved as shift.
773Conflict in state 8 between rule 2 and token '+' resolved as reduce.
774Conflict in state 8 between rule 2 and token '-' resolved as reduce.
775Conflict in state 8 between rule 2 and token '*' resolved as shift.
776Conflict in state 9 between rule 3 and token '+' resolved as reduce.
777Conflict in state 9 between rule 3 and token '-' resolved as reduce.
778Conflict in state 9 between rule 3 and token '*' resolved as reduce.
779@end group
780@end example
781
782The next section reports useless tokens, nonterminal and rules (note
783that useless tokens might be used by the scanner):
784
785@example
786@group
787Useless nonterminals:
788
789 useless
790
791
792Terminals which are not used:
793
794 STR
795
796
797Useless rules:
798
799#6 useless: STR;
800@end group
801@end example
802
803The next section lists states that still have conflicts:
804
805@example
806@group
807State 7 contains 1 shift/reduce conflict.
808State 8 contains 1 shift/reduce conflict.
809State 9 contains 1 shift/reduce conflict.
810State 10 contains 4 shift/reduce conflicts.
811@end group
812@end example
813
814The next section reproduces the grammar used:
815
816@example
817@group
818Grammar
819
820 Number, Rule
821 1 exp -> exp '+' exp
822 2 exp -> exp '-' exp
823 3 exp -> exp '*' exp
824 4 exp -> exp '/' exp
825 5 exp -> NUM
826@end group
827@end example
828
829And reports the uses of the symbols:
830
831@example
832@group
833Terminals, with rules where they appear
834
835$EOI (-1)
836error (1)
837NUM (2) 5
838STR (3) 6
839'+' (4) 1
840'-' (5) 2
841'*' (6) 3
842'/' (7) 4
843
844
845Nonterminals, with rules where they appear
846
847exp (8)
848 on left: 1 2 3 4 5, on right: 1 2 3 4
849@end group
850@end example
851
852The report then details the automaton itself, describing each state
853with it set of @dfn{items}, also known as @dfn{pointed rules}. Each
854item is a production rule together with a point (marked by @samp{.})
855that the input cursor.
856
857@example
858@group
859state 0
860
861 NUM shift, and go to state 1
862
863 exp go to state 2
864@end group
865@end example
866
867State 0 corresponds to being at the very beginning of the parsing, in
868the initial rule, right before the start symbol (@samp{exp}). When
869the parser returns to this state right after having reduced a rule
870that produced an @samp{exp}, it jumps to state 2. If there is no such
871transition on a nonterminal symbol, and the lookahead is a @samp{NUM},
872then this token is shifted on the parse stack, and the control flow
873jumps to state 1. Any other lookahead triggers a parse error.
874
875In the state 1...
876
877@example
878@group
879state 1
880
881 exp -> NUM . (rule 5)
882
883 $default reduce using rule 5 (exp)
884@end group
885@end example
886
887the rule 5, @samp{exp: NUM;}, is completed. Whatever the lookahead
888(@samp{$default}), the parser will reduce it. If it was coming from
889state 0, then, after this reduction it will return to state 0, and
890will jump to state 2 (@samp{exp: go to state 2}).
891
892@example
893@group
894state 2
895
896 exp -> exp . '+' exp (rule 1)
897 exp -> exp . '-' exp (rule 2)
898 exp -> exp . '*' exp (rule 3)
899 exp -> exp . '/' exp (rule 4)
900
901 $EOI shift, and go to state 11
902 '+' shift, and go to state 3
903 '-' shift, and go to state 4
904 '*' shift, and go to state 5
905 '/' shift, and go to state 6
906@end group
907@end example
908
909In state 2, the automaton can only shift a symbol. For instance,
910because of the item @samp{exp -> exp . '+' exp}, if the lookahead if
911@samp{+}, it will be shifted on the parse stack, and the automaton
912control will jump to state 3, corresponding to the item
913@samp{exp -> exp . '+' exp}:
914
915@example
916@group
917state 3
918
919 exp -> exp '+' . exp (rule 1)
920
921 NUM shift, and go to state 1
922
923 exp go to state 7
924@end group
925@end example
926
927Since there is no default action, any other token than those listed
928above will trigger a parse error.
929
930The interpretation of states 4 to 6 is straightforward:
931
932@example
933@group
934state 4
935
936 exp -> exp '-' . exp (rule 2)
937
938 NUM shift, and go to state 1
939
940 exp go to state 8
941
942
943
944state 5
945
946 exp -> exp '*' . exp (rule 3)
947
948 NUM shift, and go to state 1
949
950 exp go to state 9
951
952
953
954state 6
955
956 exp -> exp '/' . exp (rule 4)
957
958 NUM shift, and go to state 1
959
960 exp go to state 10
961@end group
962@end example
963
964As was announced in beginning of the report, @samp{State 7 contains 1
965shift/reduce conflict.}:
966
967@example
968@group
969state 7
970
971 exp -> exp . '+' exp (rule 1)
972 exp -> exp '+' exp . (rule 1)
973 exp -> exp . '-' exp (rule 2)
974 exp -> exp . '*' exp (rule 3)
975 exp -> exp . '/' exp (rule 4)
976
977 '*' shift, and go to state 5
978 '/' shift, and go to state 6
979
980 '/' [reduce using rule 1 (exp)]
981 $default reduce using rule 1 (exp)
982@end group
983@end example
984
985Indeed, there are two actions associated to the lookahead @samp{/}:
986either shifting (and going to state 6), or reducing rule 1. The
987conflict means that either the grammar is ambiguous, or the parser
988lacks information to make the right decision. Indeed the grammar is
989ambiguous, as, since we did not specify the precedence of @samp{/},
990the sentence @samp{NUM + NUM / NUM} can be parsed as @samp{NUM + (NUM
991/ NUM)}, which corresponds to shifting @samp{/}, or as @samp{(NUM +
992NUM) / NUM}, which corresponds to reducing rule 1.
993
994Because in @acronym{LALR(1)} parsing a single decision can be made,
995Wisent arbitrarily chose to disable the reduction, see
996@ref{Conflicts}. Discarded actions are reported in between square
997brackets.
998
999Note that all the previous states had a single possible action: either
1000shifting the next token and going to the corresponding state, or
1001reducing a single rule. In the other cases, i.e., when shifting
1002@emph{and} reducing is possible or when @emph{several} reductions are
1003possible, the lookahead is required to select the action. State 7 is
1004one such state: if the lookahead is @samp{*} or @samp{/} then the
1005action is shifting, otherwise the action is reducing rule 1. In other
1006words, the first two items, corresponding to rule 1, are not eligible
1007when the lookahead is @samp{*}, since we specified that @samp{*} has
1008higher precedence that @samp{+}. More generally, some items are
1009eligible only with some set of possible lookaheads.
1010
1011States 8 to 10 are similar:
1012
1013@example
1014@group
1015state 8
1016
1017 exp -> exp . '+' exp (rule 1)
1018 exp -> exp . '-' exp (rule 2)
1019 exp -> exp '-' exp . (rule 2)
1020 exp -> exp . '*' exp (rule 3)
1021 exp -> exp . '/' exp (rule 4)
1022
1023 '*' shift, and go to state 5
1024 '/' shift, and go to state 6
1025
1026 '/' [reduce using rule 2 (exp)]
1027 $default reduce using rule 2 (exp)
1028
1029
9e7abd17
EL
1030state 9
1031
1032 exp -> exp . '+' exp (rule 1)
1033 exp -> exp . '-' exp (rule 2)
1034 exp -> exp . '*' exp (rule 3)
1035 exp -> exp '*' exp . (rule 3)
1036 exp -> exp . '/' exp (rule 4)
1037
1038 '/' shift, and go to state 6
1039
1040 '/' [reduce using rule 3 (exp)]
1041 $default reduce using rule 3 (exp)
1042
1043
9e7abd17
EL
1044state 10
1045
1046 exp -> exp . '+' exp (rule 1)
1047 exp -> exp . '-' exp (rule 2)
1048 exp -> exp . '*' exp (rule 3)
1049 exp -> exp . '/' exp (rule 4)
1050 exp -> exp '/' exp . (rule 4)
1051
1052 '+' shift, and go to state 3
1053 '-' shift, and go to state 4
1054 '*' shift, and go to state 5
1055 '/' shift, and go to state 6
1056
1057 '+' [reduce using rule 4 (exp)]
1058 '-' [reduce using rule 4 (exp)]
1059 '*' [reduce using rule 4 (exp)]
1060 '/' [reduce using rule 4 (exp)]
1061 $default reduce using rule 4 (exp)
1062@end group
1063@end example
1064
1065Observe that state 10 contains conflicts due to the lack of precedence
1066of @samp{/} wrt @samp{+}, @samp{-}, and @samp{*}, but also because the
1067associativity of @samp{/} is not specified.
1068
1069Finally, the state 11 (plus 12) is named the @dfn{final state}, or the
1070@dfn{accepting state}:
1071
1072@example
1073@group
1074state 11
1075
1076 $EOI shift, and go to state 12
1077
1078
1079
1080state 12
1081
1082 $default accept
1083@end group
1084@end example
1085
1086The end of input is shifted @samp{$EOI shift,} and the parser exits
1087successfully (@samp{go to state 12}, that terminates).
1088
1089@node Wisent Parsing
1090@chapter Wisent Parsing
1091
1092@cindex bottom-up parser
1093@cindex shift-reduce parser
1094The Wisent's parser is what is called a @dfn{bottom-up} or
1095@dfn{shift-reduce} parser which repeatedly:
1096
1097@table @dfn
1098@cindex shift
1099@item shift
1100That is pushes the value of the last lexical token read (the
1101look-ahead token) into a value stack, and reads a new one.
1102
1103@cindex reduce
1104@item reduce
1105That is replaces a nonterminal by its semantic value. The values of
1106the components which form the right hand side of a rule are popped
1107from the value stack and reduced by the semantic action of this rule.
1108The result is pushed back on top of value stack.
1109@end table
1110
1111The parser will stop on:
1112
1113@table @dfn
1114@cindex accept
1115@item accept
1116When all input has been successfully parsed. The semantic value of
1117the start nonterminal is on top of the value stack.
1118
1119@cindex syntax error
1120@item error
1121When a syntax error (an unexpected token in input) has been detected.
1122At this point the parser issues an error message and either stops or
1123calls a recovery routine to try to resume parsing.
1124@end table
1125
1126@cindex table-driven parser
1127The above elementary actions are driven by the @acronym{LALR(1)}
1128automaton built by @code{wisent-compile-grammar} from a context-free
1129grammar.
1130
1131The Wisent's parser is entered by calling the function:
1132
1133@findex wisent-parse
1134@defun wisent-parse automaton lexer &optional error start
1135Parse input using the automaton specified in @var{automaton}.
1136
1137@table @var
1138@item automaton
1139Is an @acronym{LALR(1)} automaton generated by
1140@code{wisent-compile-grammar} (@pxref{Wisent Grammar}).
1141
1142@item lexer
1143Is a function with no argument called by the parser to obtain the next
1144terminal (token) in input (@pxref{Writing a lexer}).
1145
1146@item error
1147Is an optional reporting function called when a parse error occurs.
1148It receives a message string to report. It defaults to the function
1149@code{wisent-message} (@pxref{Report errors}).
1150
1151@item start
1152Specify the start symbol (nonterminal) used by the parser as its goal.
1153It defaults to the start symbol defined in the grammar
1154(@pxref{Wisent Grammar}).
1155@end table
1156@end defun
1157
1158The following two normal hooks permit to do some useful processing
1159respectively before to start parsing, and after the parser terminated.
1160
1161@vindex wisent-pre-parse-hook
1162@defvar wisent-pre-parse-hook
1163Normal hook run just before entering the @var{LR} parser engine.
1164@end defvar
1165
1166@vindex wisent-post-parse-hook
1167@defvar wisent-post-parse-hook
1168Normal hook run just after the @var{LR} parser engine terminated.
1169@end defvar
1170
1171@menu
bfe6ffb6
GM
1172* Writing a lexer::
1173* Actions goodies::
1174* Report errors::
1175* Error recovery::
1176* Debugging actions::
9e7abd17
EL
1177@end menu
1178
1179@node Writing a lexer
1180@section What the parser must receive
1181
1182It is important to understand that the parser does not parse
1183characters, but lexical tokens, and does not know anything about
1184characters in text streams!
1185
1186@cindex lexical analysis
1187@cindex lexer
1188@cindex scanner
1189Reading input data to produce lexical tokens is performed by a lexer
1190(also called a scanner) in a lexical analysis step, before the syntax
1191analysis step performed by the parser. The parser automatically calls
1192the lexer when it needs the next token to parse.
1193
1194@cindex lexical tokens
1195A Wisent's lexer is an Emacs Lisp function with no argument. It must
1196return a valid lexical token of the form:
1197
1198@code{(@var{token-class value} [@var{start} . @var{end}])}
1199
1200@table @var
1201@item token-class
1202Is a category of lexical token identifying a terminal as specified in
1203the grammar (@pxref{Wisent Grammar}). It can be a symbol or a character
1204literal.
1205
1206@item value
1207Is the value of the lexical token. It can be of any valid Emacs Lisp
1208data type.
1209
1210@item start
1211@itemx end
cccaebd2 1212Are the optional beginning and ending positions of @var{value} in the
9e7abd17
EL
1213input stream.
1214@end table
1215
1216When there are no more tokens to read the lexer must return the token
1217@code{(list wisent-eoi-term)} to each request.
1218
1219@vindex wisent-eoi-term
1220@defvar wisent-eoi-term
1221Predefined constant, End-Of-Input terminal symbol.
1222@end defvar
1223
1224@code{wisent-lex} is an example of a lexer that reads lexical tokens
1225produced by a @semantic{} lexer, and translates them into lexical tokens
1226suitable to the Wisent parser. See also @ref{Wisent Lex}.
1227
1228To call the lexer in a semantic action use the function
1229@code{wisent-lexer}. See also @ref{Actions goodies}.
1230
1231@node Actions goodies
1232@section Variables and macros useful in grammar actions.
1233
1234@vindex wisent-input
1235@defvar wisent-input
1236The last token read.
1237This variable only has meaning in the scope of @code{wisent-parse}.
1238@end defvar
1239
1240@findex wisent-lexer
1241@defun wisent-lexer
1242Obtain the next terminal in input.
1243@end defun
1244
1245@findex wisent-region
1246@defun wisent-region &rest positions
1247Return the start/end positions of the region including
1248@var{positions}. Each element of @var{positions} is a pair
1249@w{@code{(@var{start-pos} . @var{end-pos})}} or @code{nil}. The
1250returned value is the pair @w{@code{(@var{min-start-pos} .
1251@var{max-end-pos})}} or @code{nil} if no @var{positions} are
1252available.
1253@end defun
1254
1255@node Report errors
1256@section The error reporting function
1257
1258@cindex error reporting
1259When the parser encounters a syntax error it calls a user-defined
1260function. It must be an Emacs Lisp function with one argument: a
1261string containing the message to report.
1262
1263By default the parser uses this function to report error messages:
1264
1265@findex wisent-message
1266@defun wisent-message string &rest args
1267Print a one-line message if @code{wisent-parse-verbose-flag} is set.
1268Pass @var{string} and @var{args} arguments to @dfn{message}.
1269@end defun
1270
1271@table @strong
1272@item Please Note:
1273@code{wisent-message} uses the following function to print lexical
1274tokens:
1275
1276@defun wisent-token-to-string token
1277Return a printed representation of lexical token @var{token}.
1278@end defun
1279
1280The general printed form of a lexical token is:
1281
1282@w{@code{@var{token}(@var{value})@@@var{location}}}
1283@end table
1284
1285To control the verbosity of the parser you can set to non-@code{nil}
1286this variable:
1287
1288@vindex wisent-parse-verbose-flag
1289@deffn Option wisent-parse-verbose-flag
1290non-@code{nil} means to issue more messages while parsing.
1291@end deffn
1292
1293Or interactively use the command:
1294
1295@findex wisent-parse-toggle-verbose-flag
1296@deffn Command wisent-parse-toggle-verbose-flag
1297Toggle whether to issue more messages while parsing.
1298@end deffn
1299
1300When the error reporting function is entered the variable
1301@code{wisent-input} contains the unexpected token as returned by the
1302lexer.
1303
1304The error reporting function can be called from a semantic action too
1305using the special macro @code{wisent-error}. When called from a
1306semantic action entered by error recovery (@pxref{Error recovery}) the
1307value of the variable @code{wisent-recovering} is non-@code{nil}.
1308
1309@node Error recovery
1310@section Error recovery
1311
1312@cindex error recovery
1313The error recovery mechanism of the Wisent's parser conforms to the
1314one Bison uses. See @ref{Error Recovery, , , bison}, in the Bison
1315manual for details.
1316
1317@cindex error token
1318To recover from a syntax error you must write rules to recognize the
1319special token @code{error}. This is a terminal symbol that is
1320automatically defined and reserved for error handling.
1321
1322When the parser encounters a syntax error, it pops the state stack
1323until it finds a state that allows shifting the @code{error} token.
1324After it has been shifted, if the old look-ahead token is not
1325acceptable to be shifted next, the parser reads tokens and discards
1326them until it finds a token which is acceptable.
1327
1328@cindex error recovery strategy
1329Strategies for error recovery depend on the choice of error rules in
1330the grammar. A simple and useful strategy is simply to skip the rest
1331of the current statement if an error is detected:
1332
1333@example
1334@group
cccaebd2
PE
1335(statement (( error ?; )) ;; on error, skip until ';' is read
1336 )
9e7abd17
EL
1337@end group
1338@end example
1339
1340It is also useful to recover to the matching close-delimiter of an
1341opening-delimiter that has already been parsed:
1342
1343@example
1344@group
1345(primary (( ?@{ expr ?@} ))
1346 (( ?@{ error ?@} ))
1347 @dots{}
1348 )
1349@end group
1350@end example
1351
1352@cindex error recovery actions
1353Note that error recovery rules may have actions, just as any other
1354rules can. Here are some predefined hooks, variables, functions or
1355macros, useful in such actions:
1356
1357@vindex wisent-nerrs
1358@defvar wisent-nerrs
1359The number of parse errors encountered so far.
1360@end defvar
1361
1362@vindex wisent-recovering
1363@defvar wisent-recovering
1364non-@code{nil} means that the parser is recovering.
1365This variable only has meaning in the scope of @code{wisent-parse}.
1366@end defvar
1367
1368@findex wisent-error
1369@defun wisent-error msg
1370Call the user supplied error reporting function with message
1371@var{msg} (@pxref{Report errors}).
1372
1373For an example of use, @xref{wisent-skip-token}.
1374@end defun
1375
1376@findex wisent-errok
1377@defun wisent-errok
1378Resume generating error messages immediately for subsequent syntax
1379errors.
1380
1381The parser suppress error message for syntax errors that happens
1382shortly after the first, until three consecutive input tokens have
1383been successfully shifted.
1384
1385Calling @code{wisent-errok} in an action, make error messages resume
1386immediately. No error messages will be suppressed if you call it in
1387an error rule's action.
1388
1389For an example of use, @xref{wisent-skip-token}.
1390@end defun
1391
1392@findex wisent-clearin
1393@defun wisent-clearin
1394Discard the current lookahead token.
1395This will cause a new lexical token to be read.
1396
1397In an error rule's action the previous lookahead token is reanalyzed
1398immediately. @code{wisent-clearin} may be called to clear this token.
1399
1400For example, suppose that on a parse error, an error handling routine
1401is called that advances the input stream to some point where parsing
1402should once again commence. The next symbol returned by the lexical
1403scanner is probably correct. The previous lookahead token ought to
1404be discarded with @code{wisent-clearin}.
1405
1406For an example of use, @xref{wisent-skip-token}.
1407@end defun
1408
1409@findex wisent-abort
1410@defun wisent-abort
1411Abort parsing and save the lookahead token.
1412@end defun
1413
1414@findex wisent-set-region
1415@defun wisent-set-region start end
1416Change the region of text matched by the current nonterminal.
1417@var{start} and @var{end} are respectively the beginning and end
1418positions of the region occupied by the group of components associated
1419to this nonterminal. If @var{start} or @var{end} values are not a
1420valid positions the region is set to @code{nil}.
1421
1422For an example of use, @xref{wisent-skip-token}.
1423@end defun
1424
1425@vindex wisent-discarding-token-functions
1426@defvar wisent-discarding-token-functions
1427List of functions to be called when discarding a lexical token.
1428These functions receive the lexical token discarded.
1429When the parser encounters unexpected tokens, it can discards them,
1430based on what directed by error recovery rules. Either when the
1431parser reads tokens until one is found that can be shifted, or when an
1432semantic action calls the function @code{wisent-skip-token} or
1433@code{wisent-skip-block}.
1434For language specific hooks, make sure you define this as a local
1435hook.
1436
1437For example, in @semantic{}, this hook is set to the function
1438@code{wisent-collect-unmatched-syntax} to collect unmatched lexical
1439tokens (@pxref{Useful functions}).
1440@end defvar
1441
1442@findex wisent-skip-token
1443@defun wisent-skip-token
1444@anchor{wisent-skip-token}
1445Skip the lookahead token in order to resume parsing.
4181427f 1446Return @code{nil}.
9e7abd17
EL
1447Must be used in error recovery semantic actions.
1448
1449It typically looks like this:
1450
1451@lisp
1452@group
1453(wisent-message "%s: skip %s" $action
1454 (wisent-token-to-string wisent-input))
1455(run-hook-with-args
1456 'wisent-discarding-token-functions wisent-input)
1457(wisent-clearin)
1458(wisent-errok)))
1459@end group
1460@end lisp
1461@end defun
1462
1463@findex wisent-skip-block
1464@defun wisent-skip-block
1465Safely skip a block in order to resume parsing.
4181427f 1466Return @code{nil}.
9e7abd17
EL
1467Must be used in error recovery semantic actions.
1468
1469A block is data between an open-delimiter (syntax class @code{(}) and
1470a matching close-delimiter (syntax class @code{)}):
1471
1472@example
1473@group
1474(a parenthesized block)
1475[a block between brackets]
1476@{a block between braces@}
1477@end group
1478@end example
1479
1480The following example uses @code{wisent-skip-block} to safely skip a
1481block delimited by @samp{LBRACE} (@code{@{}) and @samp{RBRACE}
1482(@code{@}}) tokens, when a syntax error occurs in
1483@samp{other-components}:
1484
1485@example
1486@group
1487(block ((LBRACE other-components RBRACE))
1488 ((LBRACE RBRACE))
1489 ((LBRACE error)
1490 (wisent-skip-block))
1491 )
1492@end group
1493@end example
1494@end defun
1495
1496@node Debugging actions
1497@section Debugging semantic actions
1498
1499@cindex semantic action symbols
1500Each semantic action is represented by a symbol interned in an
1501@dfn{obarray} that is part of the @acronym{LALR(1)} automaton
1502(@pxref{Compiling a grammar}). @code{symbol-function} on a semantic
1503action symbol return the semantic action lambda expression.
1504
1505A semantic action symbol name has the form
1506@code{@var{nonterminal}:@var{index}}, where @var{nonterminal} is the
1507name of the nonterminal symbol the action belongs to, and @var{index}
1508is an action sequence number within the scope of @var{nonterminal}.
1509For example, this nonterminal definition:
1510
1511@example
1512@group
1513input:
1514 line [@code{input:0}]
1515 | input line
1516 (format "%s %s" $1 $2) [@code{input:1}]
1517 ;
1518@end group
1519@end example
1520
1521Will produce two semantic actions, and associated symbols:
1522
1523@table @code
1524@item input:0
1525A default action that returns @code{$1}.
1526
1527@item input:1
1528That returns @code{(format "%s %s" $1 $2)}.
1529@end table
1530
1531@cindex debugging semantic actions
1532Debugging uses the Lisp debugger to investigate what is happening
1533during execution of semantic actions.
1534Three commands are available to debug semantic actions. They receive
1535two arguments:
1536
1537@itemize @bullet
1538@item The automaton that contains the semantic action.
1539
1540@item The semantic action symbol.
1541@end itemize
1542
1543@findex wisent-debug-on-entry
1544@deffn Command wisent-debug-on-entry automaton function
1545Request @var{automaton}'s @var{function} to invoke debugger each time it is called.
1546@var{function} must be a semantic action symbol that exists in @var{automaton}.
1547@end deffn
1548
1549@findex wisent-cancel-debug-on-entry
1550@deffn Command wisent-cancel-debug-on-entry automaton function
1551Undo effect of @code{wisent-debug-on-entry} on @var{automaton}'s @var{function}.
1552@var{function} must be a semantic action symbol that exists in @var{automaton}.
1553@end deffn
1554
1555@findex wisent-debug-show-entry
1556@deffn Command wisent-debug-show-entry automaton function
1557Show the source of @var{automaton}'s semantic action @var{function}.
1558@var{function} must be a semantic action symbol that exists in @var{automaton}.
1559@end deffn
1560
1561@node Wisent Semantic
1562@chapter How to use Wisent with Semantic
1563
1564@cindex tags
1565This section presents how the Wisent's parser can be used to produce
1566@dfn{tags} for the @semantic{} tool set.
1567
1568@semantic{} tags form a hierarchy of Emacs Lisp data structures that
1569describes a program in a way independent of programming languages.
1570Tags map program declarations, like functions, methods, variables,
1571data types, classes, includes, grammar rules, etc..
1572
1573@cindex WY grammar format
1574To use the Wisent parser with @semantic{} you have to define
1575your grammar in @dfn{WY} form, a grammar format very close
1576to the one used by Bison.
1577
1578Please @inforef{top, Semantic Grammar Framework Manual, grammar-fw}
1579for more information on @semantic{} grammars.
1580
1581@menu
bfe6ffb6
GM
1582* Grammar styles::
1583* Wisent Lex::
9e7abd17
EL
1584@end menu
1585
1586@node Grammar styles
1587@section Grammar styles
1588
1589@cindex grammar styles
1590@semantic{} parsing heavily depends on how you wrote the grammar.
1591There are mainly two styles to write a Wisent's grammar intended to be
1592used with the @semantic{} tool set: the @dfn{Iterative style} and the
1593@dfn{Bison style}. Each one has pros and cons, and in certain cases
1594it can be worth a mix of the two styles!
1595
1596@menu
bfe6ffb6
GM
1597* Iterative style::
1598* Bison style::
1599* Mixed style::
1600* Start nonterminals::
1601* Useful functions::
9e7abd17
EL
1602@end menu
1603
faeea569 1604@node Iterative style
9e7abd17
EL
1605@subsection Iterative style
1606
1607@cindex grammar iterative style
1608The @dfn{iterative style} is the preferred style to use with @semantic{}.
1609It relies on an iterative parser back-end mechanism which parses start
1610nonterminals one at a time and automagically skips unexpected lexical
1611tokens in input.
1612
1613Compared to rule-based iterative functions (@pxref{Bison style}),
1614iterative parsers are better in that they can handle obscure errors
1615more cleanly.
1616
1617@cindex raw tag
1618Each start nonterminal must produces a @dfn{raw tag} by calling a
1619@code{TAG}-like grammar macro with appropriate parameters. See also
1620@ref{Start nonterminals}.
1621
1622@cindex expanded tag
1623Then, each parsing iteration automatically translates a raw tag into
1624@dfn{expanded tags}, updating the raw tag structure with internal
1625properties and buffer related data.
1626
1627After parsing completes, it results in a tree of expanded tags.
1628
1629The following example is a snippet of the iterative style Java grammar
1630provided in the @semantic{} distribution in the file
1631@file{semantic/wisent/java-tags.wy}.
1632
1633@example
1634@group
1635@dots{}
1636;; Alternate entry points
1637;; - Needed by partial re-parse
1638%start formal_parameter
1639@dots{}
1640;; - Needed by EXPANDFULL clauses
1641%start formal_parameters
1642@dots{}
1643
1644formal_parameter_list
1645 : PAREN_BLOCK
1646 (EXPANDFULL $1 formal_parameters)
1647 ;
1648
1649formal_parameters
1650 : LPAREN
1651 ()
1652 | RPAREN
1653 ()
1654 | formal_parameter COMMA
1655 | formal_parameter RPAREN
1656 ;
1657
1658formal_parameter
1659 : formal_parameter_modifier_opt type variable_declarator_id
1660 (VARIABLE-TAG $3 $2 nil :typemodifiers $1)
1661 ;
1662@end group
1663@end example
1664
1665@findex EXPANDFULL
1666It shows the use of the @code{EXPANDFULL} grammar macro to parse a
1667@samp{PAREN_BLOCK} which contains a @samp{formal_parameter_list}.
1668@code{EXPANDFULL} tells to recursively parse @samp{formal_parameters}
1669inside @samp{PAREN_BLOCK}. The parser iterates until it digested all
1670available input data inside the @samp{PAREN_BLOCK}, trying to match
1671any of the @samp{formal_parameters} rules:
1672
1673@itemize
1674@item @samp{LPAREN}
1675
1676@item @samp{RPAREN}
1677
1678@item @samp{formal_parameter COMMA}
1679
1680@item @samp{formal_parameter RPAREN}
1681@end itemize
1682
1683At each iteration it will return a @samp{formal_parameter} raw tag,
1684or @code{nil} to skip unwanted (single @samp{LPAREN} or @samp{RPAREN}
1685for example) or unexpected input data. Those raw tags will be
1686automatically expanded by the iterative back-end parser.
1687
1688@node Bison style
1689@subsection Bison style
1690
1691@cindex grammar bison style
1692What we call the @dfn{Bison style} is the traditional style of Bison's
1693grammars. Compared to iterative style, it is not straightforward to
1694use grammars written in Bison style in @semantic{}. Mainly because such
1695grammars are designed to parse the whole input data in one pass, and
1696don't use the iterative parser back-end mechanism (@pxref{Iterative
1697style}). With Bison style the parser is called once to parse the
1698grammar start nonterminal.
1699
1700The following example is a snippet of the Bison style Java grammar
1701provided in the @semantic{} distribution in the file
1702@file{semantic/wisent/java.wy}.
1703
1704@example
1705@group
1706%start formal_parameter
1707@dots{}
1708
1709formal_parameter_list
1710 : formal_parameter_list COMMA formal_parameter
1711 (cons $3 $1)
1712 | formal_parameter
1713 (list $1)
1714 ;
1715
1716formal_parameter
1717 : formal_parameter_modifier_opt type variable_declarator_id
1718 (EXPANDTAG
1719 (VARIABLE-TAG $3 $2 :typemodifiers $1)
1720 )
1721 ;
1722@end group
1723@end example
1724
1725The first consequence is that syntax errors are not automatically
1726handled by @semantic{}. Thus, it is necessary to explicitly handle
1727them at the grammar level, providing error recovery rules to skip
1728unexpected input data.
1729
1730The second consequence is that the iterative parser can't do automatic
1731tag expansion, except for the start nonterminal value. It is
1732necessary to explicitly expand tags from concerned semantic actions by
1733calling the grammar macro @code{EXPANDTAG} with a raw tag as
1734parameter. See also @ref{Start nonterminals}, for incremental
1735re-parse considerations.
1736
1737@node Mixed style
1738@subsection Mixed style
1739
1740@cindex grammar mixed style
1741@example
1742@group
1743%start grammar
1744;; Reparse
1745%start prologue epilogue declaration nonterminal rule
1746@dots{}
1747
1748%%
1749
1750grammar:
1751 prologue
1752 | epilogue
1753 | declaration
1754 | nonterminal
1755 | PERCENT_PERCENT
1756 ;
1757@dots{}
1758
1759nonterminal:
1760 SYMBOL COLON rules SEMI
1761 (TAG $1 'nonterminal :children $3)
1762 ;
1763
1764rules:
1765 lifo_rules
1766 (apply 'nconc (nreverse $1))
1767 ;
1768
1769lifo_rules:
1770 lifo_rules OR rule
1771 (cons $3 $1)
1772 | rule
1773 (list $1)
1774 ;
1775
1776rule:
1777 rhs
1778 (let* ((rhs $1)
1779 name type comps prec action elt)
1780 @dots{}
1781 (EXPANDTAG
1782 (TAG name 'rule :type type :value comps :prec prec :expr action)
1783 ))
1784 ;
1785@end group
1786@end example
1787
1788This example shows how iterative and Bison styles can be combined in
1789the same grammar to obtain a good compromise between grammar
1790complexity and an efficient parsing strategy in an interactive
1791environment.
1792
1793@samp{nonterminal} is parsed using iterative style via the main
1794@samp{grammar} rule. The semantic action uses the @code{TAG} macro to
1795produce a raw tag, automagically expanded by @semantic{}.
1796
1797But @samp{rules} part is parsed in Bison style! Why?
1798
1799Rule delimiters are the colon (@code{:}), that follows the nonterminal
1800name, and a final semicolon (@code{;}). Unfortunately these
1801delimiters are not @code{open-paren}/@code{close-paren} type, and the
1802Emacs' syntactic analyzer can't easily isolate data between them to
1803produce a @samp{RULES_PART} parenthesis-block-like lexical token.
1804Consequently it is not possible to use @code{EXPANDFULL} to iterate in
1805@samp{RULES_PART}, like this:
1806
1807@example
1808@group
1809nonterminal:
1810 SYMBOL COLON rules SEMI
1811 (TAG $1 'nonterminal :children $3)
1812 ;
1813
1814rules:
1815 RULES_PART ;; @strong{Map a parenthesis-block-like lexical token}
1816 (EXPANDFULL $1 'rules)
1817 ;
1818
1819rules:
1820 COLON
1821 ()
1822 OR
1823 ()
1824 SEMI
1825 ()
1826 rhs
1827 rhs
1828 (let* ((rhs $1)
1829 name type comps prec action elt)
1830 @dots{}
1831 (TAG name 'rule :type type :value comps :prec prec :expr action)
1832 )
1833 ;
1834@end group
1835@end example
1836
1837In such cases, when it is difficult for Emacs to obtain
1838parenthesis-block-like lexical tokens, the best solution is to use the
1839traditional Bison style with error recovery!
1840
1841In some extreme cases, it can also be convenient to extend the lexer,
1842to deliver new lexical tokens, to simplify the grammar.
1843
1844@node Start nonterminals
1845@subsection Start nonterminals
1846
1847@cindex start nonterminals
1848@cindex @code{reparse-symbol} property
1849When you write a grammar for @semantic{}, it is important to carefully
1850indicate the start nonterminals. Each one defines an entry point in
1851the grammar, and after parsing its semantic value is returned to the
1852back-end iterative engine. Consequently:
1853
1854@strong{The semantic value of a start nonterminal must be a produced
1855by a TAG like grammar macro}.
1856
1857Start nonterminals are declared by @code{%start} statements. When
1858nothing is specified the first nonterminal that appears in the grammar
1859is the start nonterminal.
1860
1861Generally, the following nonterminals must be declared as start
1862symbols:
1863
1864@itemize @bullet
1865@item The main grammar entry point
1866@quotation
1867Of course!
1868@end quotation
1869
1870@item nonterminals passed to @code{EXPAND}/@code{EXPANDFULL}
1871@quotation
1872These grammar macros recursively parse a part of input data, based on
1873rules of the given nonterminal.
1874
1875For example, the following will parse @samp{PAREN_BLOCK} data using
1876the @samp{formal_parameters} rules:
1877
1878@example
1879@group
1880formal_parameter_list
1881 : PAREN_BLOCK
1882 (EXPANDFULL $1 formal_parameters)
1883 ;
1884@end group
1885@end example
1886
1887The semantic value of @samp{formal_parameters} becomes the value of
1888the @code{EXPANDFULL} expression. It is a list of @semantic{} tags
1889spliced in the tags tree.
1890
1891Because the automaton must know that @samp{formal_parameters} is a
1892start symbol, you must declare it like this:
1893
1894@example
1895@group
1896%start formal_parameters
1897@end group
1898@end example
1899@end quotation
1900@end itemize
1901
1902@cindex incremental re-parse
1903@cindex reparse-symbol
1904The @code{EXPANDFULL} macro has a side effect it is important to know,
1905related to the incremental re-parse mechanism of @semantic{}: the
1906nonterminal symbol parameter passed to @code{EXPANDFULL} also becomes
1907the @code{reparse-symbol} property of the tag returned by the
1908@code{EXPANDFULL} expression.
1909
1910When buffer's data mapped by a tag is modified, @semantic{}
1911schedules an incremental re-parse of that data, using the tag's
1912@code{reparse-symbol} property as start nonterminal.
1913
1914@strong{The rules associated to such start symbols must be carefully
1915reviewed to ensure that the incremental parser will work!}
1916
1917Things are a little bit different when the grammar is written in Bison
bfe6ffb6 1918style.
9e7abd17
EL
1919
1920@strong{The @code{reparse-symbol} property is set to the nonterminal
1921symbol the rule that explicitly uses @code{EXPANDTAG} belongs to.}
1922
1923For example:
1924
1925@example
1926@group
1927rule:
1928 rhs
1929 (let* ((rhs $1)
1930 name type comps prec action elt)
1931 @dots{}
1932 (EXPANDTAG
1933 (TAG name 'rule :type type :value comps :prec prec :expr action)
1934 ))
1935 ;
1936@end group
1937@end example
1938
1939Set the @code{reparse-symbol} property of the expanded tag to
1940@samp{rule}. A important consequence is that:
1941
1942@strong{Every nonterminal having any rule that calls @code{EXPANDTAG}
1943in a semantic action, should be declared as a start symbol!}
1944
1945@node Useful functions
1946@subsection Useful functions
1947
1948Here is a description of some predefined functions it might be useful
1949to know when writing new code to use Wisent in @semantic{}:
1950
1951@findex wisent-collect-unmatched-syntax
1952@defun wisent-collect-unmatched-syntax input
1953Add @var{input} lexical token to the cache of unmatched tokens, in
1954variable @code{semantic-unmatched-syntax-cache}.
1955
1956See implementation of the function @code{wisent-skip-token} in
1957@ref{Error recovery}, for an example of use.
1958@end defun
1959
1960@node Wisent Lex
1961@section The Wisent Lex lexer
1962
1963@findex semantic-lex
1964The lexical analysis step of @semantic{} is performed by the general
1965function @code{semantic-lex}. For more information, @inforef{Writing
1966Lexers, ,semantic-langdev}.
1967
1968@code{semantic-lex} produces lexical tokens of the form:
1969
1970@example
1971@group
1972@code{(@var{token-class start} . @var{end})}
1973@end group
1974@end example
1975
1976@table @var
1977@item token-class
1978Is a symbol that identifies a lexical token class, like @code{symbol},
1979@code{string}, @code{number}, or @code{PAREN_BLOCK}.
1980
1981@item start
1982@itemx end
1983Are the start and end positions of mapped data in the input buffer.
1984@end table
bfe6ffb6 1985
9e7abd17
EL
1986The Wisent's parser doesn't depend on the nature of analyzed input
1987stream (buffer, string, etc.), and requires that lexical tokens have a
1988different form (@pxref{Writing a lexer}):
1989
1990@example
1991@group
1992@code{(@var{token-class value} [@var{start} . @var{end}])}
1993@end group
1994@end example
1995
1996@cindex lexical token mapping
1997@code{wisent-lex} is the default Wisent's lexer used in @semantic{}.
1998
1999@vindex wisent-lex-istream
2000@findex wisent-lex
2001@defun wisent-lex
2002Return the next available lexical token in Wisent's form.
2003
2004The variable @code{wisent-lex-istream} contains the list of lexical
2005tokens produced by @code{semantic-lex}. Pop the next token available
2006and convert it to a form suitable for the Wisent's parser.
2007@end defun
2008
2009Mapping of lexical tokens as produced by @code{semantic-lex} into
2010equivalent Wisent lexical tokens is straightforward:
2011
2012@example
2013@group
2014(@var{token-class start} . @var{end})
2015 @result{} (@var{token-class value start} . @var{end})
2016@end group
2017@end example
2018
2019@var{value} is the input @code{buffer-substring} from @var{start} to
2020@var{end}.
2021
2022@node GNU Free Documentation License
2023@appendix GNU Free Documentation License
2024
bfe6ffb6 2025@include doclicense.texi
9e7abd17
EL
2026
2027@node Index
2028@unnumbered Index
2029@printindex cp
2030
2031@iftex
2032@contents
2033@summarycontents
2034@end iftex
2035
2036@bye
2037
2038@c Following comments are for the benefit of ispell.
2039
2040@c LocalWords: Wisent automagically wisent Wisent's LALR obarray