Add 2010 to copyright years.
[bpt/emacs.git] / doc / lispref / numbers.texi
CommitLineData
b8d4c8d0
GM
1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
3@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2001,
114f9c96 4@c 2002, 2003, 2004, 2005, 2006, 2007, 2008, 2009, 2010 Free Software Foundation, Inc.
b8d4c8d0 5@c See the file elisp.texi for copying conditions.
6336d8c3 6@setfilename ../../info/numbers
b8d4c8d0
GM
7@node Numbers, Strings and Characters, Lisp Data Types, Top
8@chapter Numbers
9@cindex integers
10@cindex numbers
11
12 GNU Emacs supports two numeric data types: @dfn{integers} and
13@dfn{floating point numbers}. Integers are whole numbers such as
14@minus{}3, 0, 7, 13, and 511. Their values are exact. Floating point
15numbers are numbers with fractional parts, such as @minus{}4.5, 0.0, or
162.71828. They can also be expressed in exponential notation: 1.5e2
17equals 150; in this example, @samp{e2} stands for ten to the second
18power, and that is multiplied by 1.5. Floating point values are not
19exact; they have a fixed, limited amount of precision.
20
21@menu
22* Integer Basics:: Representation and range of integers.
23* Float Basics:: Representation and range of floating point.
24* Predicates on Numbers:: Testing for numbers.
25* Comparison of Numbers:: Equality and inequality predicates.
26* Numeric Conversions:: Converting float to integer and vice versa.
27* Arithmetic Operations:: How to add, subtract, multiply and divide.
28* Rounding Operations:: Explicitly rounding floating point numbers.
29* Bitwise Operations:: Logical and, or, not, shifting.
30* Math Functions:: Trig, exponential and logarithmic functions.
31* Random Numbers:: Obtaining random integers, predictable or not.
32@end menu
33
34@node Integer Basics
35@comment node-name, next, previous, up
36@section Integer Basics
37
38 The range of values for an integer depends on the machine. The
39minimum range is @minus{}268435456 to 268435455 (29 bits; i.e.,
40@ifnottex
41-2**28
42@end ifnottex
43@tex
44@math{-2^{28}}
45@end tex
46to
47@ifnottex
482**28 - 1),
49@end ifnottex
50@tex
51@math{2^{28}-1}),
52@end tex
53but some machines may provide a wider range. Many examples in this
54chapter assume an integer has 29 bits.
55@cindex overflow
56
57 The Lisp reader reads an integer as a sequence of digits with optional
58initial sign and optional final period.
59
60@example
61 1 ; @r{The integer 1.}
62 1. ; @r{The integer 1.}
63+1 ; @r{Also the integer 1.}
64-1 ; @r{The integer @minus{}1.}
65 536870913 ; @r{Also the integer 1, due to overflow.}
66 0 ; @r{The integer 0.}
67-0 ; @r{The integer 0.}
68@end example
69
70@cindex integers in specific radix
71@cindex radix for reading an integer
72@cindex base for reading an integer
73@cindex hex numbers
74@cindex octal numbers
75@cindex reading numbers in hex, octal, and binary
76 The syntax for integers in bases other than 10 uses @samp{#}
77followed by a letter that specifies the radix: @samp{b} for binary,
78@samp{o} for octal, @samp{x} for hex, or @samp{@var{radix}r} to
79specify radix @var{radix}. Case is not significant for the letter
80that specifies the radix. Thus, @samp{#b@var{integer}} reads
81@var{integer} in binary, and @samp{#@var{radix}r@var{integer}} reads
82@var{integer} in radix @var{radix}. Allowed values of @var{radix} run
83from 2 to 36. For example:
84
85@example
86#b101100 @result{} 44
87#o54 @result{} 44
88#x2c @result{} 44
89#24r1k @result{} 44
90@end example
91
92 To understand how various functions work on integers, especially the
93bitwise operators (@pxref{Bitwise Operations}), it is often helpful to
94view the numbers in their binary form.
95
96 In 29-bit binary, the decimal integer 5 looks like this:
97
98@example
990 0000 0000 0000 0000 0000 0000 0101
100@end example
101
102@noindent
103(We have inserted spaces between groups of 4 bits, and two spaces
104between groups of 8 bits, to make the binary integer easier to read.)
105
106 The integer @minus{}1 looks like this:
107
108@example
1091 1111 1111 1111 1111 1111 1111 1111
110@end example
111
112@noindent
113@cindex two's complement
114@minus{}1 is represented as 29 ones. (This is called @dfn{two's
115complement} notation.)
116
117 The negative integer, @minus{}5, is creating by subtracting 4 from
118@minus{}1. In binary, the decimal integer 4 is 100. Consequently,
119@minus{}5 looks like this:
120
121@example
1221 1111 1111 1111 1111 1111 1111 1011
123@end example
124
125 In this implementation, the largest 29-bit binary integer value is
126268,435,455 in decimal. In binary, it looks like this:
127
128@example
1290 1111 1111 1111 1111 1111 1111 1111
130@end example
131
132 Since the arithmetic functions do not check whether integers go
133outside their range, when you add 1 to 268,435,455, the value is the
134negative integer @minus{}268,435,456:
135
136@example
137(+ 1 268435455)
138 @result{} -268435456
139 @result{} 1 0000 0000 0000 0000 0000 0000 0000
140@end example
141
142 Many of the functions described in this chapter accept markers for
143arguments in place of numbers. (@xref{Markers}.) Since the actual
144arguments to such functions may be either numbers or markers, we often
145give these arguments the name @var{number-or-marker}. When the argument
146value is a marker, its position value is used and its buffer is ignored.
147
148@defvar most-positive-fixnum
149The value of this variable is the largest integer that Emacs Lisp
150can handle.
151@end defvar
152
153@defvar most-negative-fixnum
154The value of this variable is the smallest integer that Emacs Lisp can
155handle. It is negative.
156@end defvar
157
57e2db6d
EZ
158 @xref{Character Codes, max-char}, for the maximum value of a valid
159character codepoint.
160
b8d4c8d0
GM
161@node Float Basics
162@section Floating Point Basics
163
164 Floating point numbers are useful for representing numbers that are
165not integral. The precise range of floating point numbers is
166machine-specific; it is the same as the range of the C data type
167@code{double} on the machine you are using.
168
169 The read-syntax for floating point numbers requires either a decimal
170point (with at least one digit following), an exponent, or both. For
171example, @samp{1500.0}, @samp{15e2}, @samp{15.0e2}, @samp{1.5e3}, and
172@samp{.15e4} are five ways of writing a floating point number whose
173value is 1500. They are all equivalent. You can also use a minus sign
174to write negative floating point numbers, as in @samp{-1.0}.
175
176@cindex @acronym{IEEE} floating point
177@cindex positive infinity
178@cindex negative infinity
179@cindex infinity
180@cindex NaN
181 Most modern computers support the @acronym{IEEE} floating point standard,
182which provides for positive infinity and negative infinity as floating point
183values. It also provides for a class of values called NaN or
184``not-a-number''; numerical functions return such values in cases where
185there is no correct answer. For example, @code{(/ 0.0 0.0)} returns a
186NaN. For practical purposes, there's no significant difference between
187different NaN values in Emacs Lisp, and there's no rule for precisely
188which NaN value should be used in a particular case, so Emacs Lisp
189doesn't try to distinguish them (but it does report the sign, if you
190print it). Here are the read syntaxes for these special floating
191point values:
192
193@table @asis
194@item positive infinity
195@samp{1.0e+INF}
196@item negative infinity
197@samp{-1.0e+INF}
198@item Not-a-number
199@samp{0.0e+NaN} or @samp{-0.0e+NaN}.
200@end table
201
202 To test whether a floating point value is a NaN, compare it with
203itself using @code{=}. That returns @code{nil} for a NaN, and
204@code{t} for any other floating point value.
205
206 The value @code{-0.0} is distinguishable from ordinary zero in
207@acronym{IEEE} floating point, but Emacs Lisp @code{equal} and
208@code{=} consider them equal values.
209
210 You can use @code{logb} to extract the binary exponent of a floating
211point number (or estimate the logarithm of an integer):
212
213@defun logb number
214This function returns the binary exponent of @var{number}. More
215precisely, the value is the logarithm of @var{number} base 2, rounded
216down to an integer.
217
218@example
219(logb 10)
220 @result{} 3
221(logb 10.0e20)
222 @result{} 69
223@end example
224@end defun
225
226@node Predicates on Numbers
227@section Type Predicates for Numbers
228@cindex predicates for numbers
229
230 The functions in this section test for numbers, or for a specific
231type of number. The functions @code{integerp} and @code{floatp} can
232take any type of Lisp object as argument (they would not be of much
233use otherwise), but the @code{zerop} predicate requires a number as
234its argument. See also @code{integer-or-marker-p} and
235@code{number-or-marker-p}, in @ref{Predicates on Markers}.
236
237@defun floatp object
238This predicate tests whether its argument is a floating point
239number and returns @code{t} if so, @code{nil} otherwise.
240
241@code{floatp} does not exist in Emacs versions 18 and earlier.
242@end defun
243
244@defun integerp object
245This predicate tests whether its argument is an integer, and returns
246@code{t} if so, @code{nil} otherwise.
247@end defun
248
249@defun numberp object
250This predicate tests whether its argument is a number (either integer or
251floating point), and returns @code{t} if so, @code{nil} otherwise.
252@end defun
253
254@defun wholenump object
255@cindex natural numbers
256The @code{wholenump} predicate (whose name comes from the phrase
257``whole-number-p'') tests to see whether its argument is a nonnegative
258integer, and returns @code{t} if so, @code{nil} otherwise. 0 is
259considered non-negative.
260
261@findex natnump
262@code{natnump} is an obsolete synonym for @code{wholenump}.
263@end defun
264
265@defun zerop number
266This predicate tests whether its argument is zero, and returns @code{t}
267if so, @code{nil} otherwise. The argument must be a number.
268
269@code{(zerop x)} is equivalent to @code{(= x 0)}.
270@end defun
271
272@node Comparison of Numbers
273@section Comparison of Numbers
274@cindex number comparison
275@cindex comparing numbers
276
277 To test numbers for numerical equality, you should normally use
278@code{=}, not @code{eq}. There can be many distinct floating point
279number objects with the same numeric value. If you use @code{eq} to
280compare them, then you test whether two values are the same
281@emph{object}. By contrast, @code{=} compares only the numeric values
282of the objects.
283
284 At present, each integer value has a unique Lisp object in Emacs Lisp.
285Therefore, @code{eq} is equivalent to @code{=} where integers are
286concerned. It is sometimes convenient to use @code{eq} for comparing an
287unknown value with an integer, because @code{eq} does not report an
288error if the unknown value is not a number---it accepts arguments of any
289type. By contrast, @code{=} signals an error if the arguments are not
290numbers or markers. However, it is a good idea to use @code{=} if you
291can, even for comparing integers, just in case we change the
292representation of integers in a future Emacs version.
293
294 Sometimes it is useful to compare numbers with @code{equal}; it
295treats two numbers as equal if they have the same data type (both
296integers, or both floating point) and the same value. By contrast,
297@code{=} can treat an integer and a floating point number as equal.
298@xref{Equality Predicates}.
299
300 There is another wrinkle: because floating point arithmetic is not
301exact, it is often a bad idea to check for equality of two floating
302point values. Usually it is better to test for approximate equality.
303Here's a function to do this:
304
305@example
306(defvar fuzz-factor 1.0e-6)
307(defun approx-equal (x y)
308 (or (and (= x 0) (= y 0))
309 (< (/ (abs (- x y))
310 (max (abs x) (abs y)))
311 fuzz-factor)))
312@end example
313
314@cindex CL note---integers vrs @code{eq}
315@quotation
316@b{Common Lisp note:} Comparing numbers in Common Lisp always requires
317@code{=} because Common Lisp implements multi-word integers, and two
318distinct integer objects can have the same numeric value. Emacs Lisp
319can have just one integer object for any given value because it has a
320limited range of integer values.
321@end quotation
322
323@defun = number-or-marker1 number-or-marker2
324This function tests whether its arguments are numerically equal, and
325returns @code{t} if so, @code{nil} otherwise.
326@end defun
327
328@defun eql value1 value2
329This function acts like @code{eq} except when both arguments are
330numbers. It compares numbers by type and numeric value, so that
331@code{(eql 1.0 1)} returns @code{nil}, but @code{(eql 1.0 1.0)} and
332@code{(eql 1 1)} both return @code{t}.
333@end defun
334
335@defun /= number-or-marker1 number-or-marker2
336This function tests whether its arguments are numerically equal, and
337returns @code{t} if they are not, and @code{nil} if they are.
338@end defun
339
340@defun < number-or-marker1 number-or-marker2
341This function tests whether its first argument is strictly less than
342its second argument. It returns @code{t} if so, @code{nil} otherwise.
343@end defun
344
345@defun <= number-or-marker1 number-or-marker2
346This function tests whether its first argument is less than or equal
347to its second argument. It returns @code{t} if so, @code{nil}
348otherwise.
349@end defun
350
351@defun > number-or-marker1 number-or-marker2
352This function tests whether its first argument is strictly greater
353than its second argument. It returns @code{t} if so, @code{nil}
354otherwise.
355@end defun
356
357@defun >= number-or-marker1 number-or-marker2
358This function tests whether its first argument is greater than or
359equal to its second argument. It returns @code{t} if so, @code{nil}
360otherwise.
361@end defun
362
363@defun max number-or-marker &rest numbers-or-markers
364This function returns the largest of its arguments.
365If any of the arguments is floating-point, the value is returned
366as floating point, even if it was given as an integer.
367
368@example
369(max 20)
370 @result{} 20
371(max 1 2.5)
372 @result{} 2.5
373(max 1 3 2.5)
374 @result{} 3.0
375@end example
376@end defun
377
378@defun min number-or-marker &rest numbers-or-markers
379This function returns the smallest of its arguments.
380If any of the arguments is floating-point, the value is returned
381as floating point, even if it was given as an integer.
382
383@example
384(min -4 1)
385 @result{} -4
386@end example
387@end defun
388
389@defun abs number
390This function returns the absolute value of @var{number}.
391@end defun
392
393@node Numeric Conversions
394@section Numeric Conversions
395@cindex rounding in conversions
396@cindex number conversions
397@cindex converting numbers
398
399To convert an integer to floating point, use the function @code{float}.
400
401@defun float number
402This returns @var{number} converted to floating point.
403If @var{number} is already a floating point number, @code{float} returns
404it unchanged.
405@end defun
406
407There are four functions to convert floating point numbers to integers;
408they differ in how they round. All accept an argument @var{number}
409and an optional argument @var{divisor}. Both arguments may be
410integers or floating point numbers. @var{divisor} may also be
411@code{nil}. If @var{divisor} is @code{nil} or omitted, these
412functions convert @var{number} to an integer, or return it unchanged
413if it already is an integer. If @var{divisor} is non-@code{nil}, they
414divide @var{number} by @var{divisor} and convert the result to an
415integer. An @code{arith-error} results if @var{divisor} is 0.
416
417@defun truncate number &optional divisor
418This returns @var{number}, converted to an integer by rounding towards
419zero.
420
421@example
422(truncate 1.2)
423 @result{} 1
424(truncate 1.7)
425 @result{} 1
426(truncate -1.2)
427 @result{} -1
428(truncate -1.7)
429 @result{} -1
430@end example
431@end defun
432
433@defun floor number &optional divisor
434This returns @var{number}, converted to an integer by rounding downward
435(towards negative infinity).
436
437If @var{divisor} is specified, this uses the kind of division
438operation that corresponds to @code{mod}, rounding downward.
439
440@example
441(floor 1.2)
442 @result{} 1
443(floor 1.7)
444 @result{} 1
445(floor -1.2)
446 @result{} -2
447(floor -1.7)
448 @result{} -2
449(floor 5.99 3)
450 @result{} 1
451@end example
452@end defun
453
454@defun ceiling number &optional divisor
455This returns @var{number}, converted to an integer by rounding upward
456(towards positive infinity).
457
458@example
459(ceiling 1.2)
460 @result{} 2
461(ceiling 1.7)
462 @result{} 2
463(ceiling -1.2)
464 @result{} -1
465(ceiling -1.7)
466 @result{} -1
467@end example
468@end defun
469
470@defun round number &optional divisor
471This returns @var{number}, converted to an integer by rounding towards the
472nearest integer. Rounding a value equidistant between two integers
473may choose the integer closer to zero, or it may prefer an even integer,
474depending on your machine.
475
476@example
477(round 1.2)
478 @result{} 1
479(round 1.7)
480 @result{} 2
481(round -1.2)
482 @result{} -1
483(round -1.7)
484 @result{} -2
485@end example
486@end defun
487
488@node Arithmetic Operations
489@section Arithmetic Operations
490@cindex arithmetic operations
491
492 Emacs Lisp provides the traditional four arithmetic operations:
493addition, subtraction, multiplication, and division. Remainder and modulus
494functions supplement the division functions. The functions to
495add or subtract 1 are provided because they are traditional in Lisp and
496commonly used.
497
498 All of these functions except @code{%} return a floating point value
499if any argument is floating.
500
501 It is important to note that in Emacs Lisp, arithmetic functions
502do not check for overflow. Thus @code{(1+ 268435455)} may evaluate to
503@minus{}268435456, depending on your hardware.
504
505@defun 1+ number-or-marker
506This function returns @var{number-or-marker} plus 1.
507For example,
508
509@example
510(setq foo 4)
511 @result{} 4
512(1+ foo)
513 @result{} 5
514@end example
515
516This function is not analogous to the C operator @code{++}---it does not
517increment a variable. It just computes a sum. Thus, if we continue,
518
519@example
520foo
521 @result{} 4
522@end example
523
524If you want to increment the variable, you must use @code{setq},
525like this:
526
527@example
528(setq foo (1+ foo))
529 @result{} 5
530@end example
531@end defun
532
533@defun 1- number-or-marker
534This function returns @var{number-or-marker} minus 1.
535@end defun
536
537@defun + &rest numbers-or-markers
538This function adds its arguments together. When given no arguments,
539@code{+} returns 0.
540
541@example
542(+)
543 @result{} 0
544(+ 1)
545 @result{} 1
546(+ 1 2 3 4)
547 @result{} 10
548@end example
549@end defun
550
551@defun - &optional number-or-marker &rest more-numbers-or-markers
552The @code{-} function serves two purposes: negation and subtraction.
553When @code{-} has a single argument, the value is the negative of the
554argument. When there are multiple arguments, @code{-} subtracts each of
555the @var{more-numbers-or-markers} from @var{number-or-marker},
556cumulatively. If there are no arguments, the result is 0.
557
558@example
559(- 10 1 2 3 4)
560 @result{} 0
561(- 10)
562 @result{} -10
563(-)
564 @result{} 0
565@end example
566@end defun
567
568@defun * &rest numbers-or-markers
569This function multiplies its arguments together, and returns the
570product. When given no arguments, @code{*} returns 1.
571
572@example
573(*)
574 @result{} 1
575(* 1)
576 @result{} 1
577(* 1 2 3 4)
578 @result{} 24
579@end example
580@end defun
581
582@defun / dividend divisor &rest divisors
583This function divides @var{dividend} by @var{divisor} and returns the
584quotient. If there are additional arguments @var{divisors}, then it
585divides @var{dividend} by each divisor in turn. Each argument may be a
586number or a marker.
587
588If all the arguments are integers, then the result is an integer too.
589This means the result has to be rounded. On most machines, the result
590is rounded towards zero after each division, but some machines may round
591differently with negative arguments. This is because the Lisp function
592@code{/} is implemented using the C division operator, which also
593permits machine-dependent rounding. As a practical matter, all known
594machines round in the standard fashion.
595
596@cindex @code{arith-error} in division
597If you divide an integer by 0, an @code{arith-error} error is signaled.
598(@xref{Errors}.) Floating point division by zero returns either
599infinity or a NaN if your machine supports @acronym{IEEE} floating point;
600otherwise, it signals an @code{arith-error} error.
601
602@example
603@group
604(/ 6 2)
605 @result{} 3
606@end group
607(/ 5 2)
608 @result{} 2
609(/ 5.0 2)
610 @result{} 2.5
611(/ 5 2.0)
612 @result{} 2.5
613(/ 5.0 2.0)
614 @result{} 2.5
615(/ 25 3 2)
616 @result{} 4
617@group
618(/ -17 6)
619 @result{} -2 @r{(could in theory be @minus{}3 on some machines)}
620@end group
621@end example
622@end defun
623
624@defun % dividend divisor
625@cindex remainder
626This function returns the integer remainder after division of @var{dividend}
627by @var{divisor}. The arguments must be integers or markers.
628
629For negative arguments, the remainder is in principle machine-dependent
630since the quotient is; but in practice, all known machines behave alike.
631
632An @code{arith-error} results if @var{divisor} is 0.
633
634@example
635(% 9 4)
636 @result{} 1
637(% -9 4)
638 @result{} -1
639(% 9 -4)
640 @result{} 1
641(% -9 -4)
642 @result{} -1
643@end example
644
645For any two integers @var{dividend} and @var{divisor},
646
647@example
648@group
649(+ (% @var{dividend} @var{divisor})
650 (* (/ @var{dividend} @var{divisor}) @var{divisor}))
651@end group
652@end example
653
654@noindent
655always equals @var{dividend}.
656@end defun
657
658@defun mod dividend divisor
659@cindex modulus
660This function returns the value of @var{dividend} modulo @var{divisor};
661in other words, the remainder after division of @var{dividend}
662by @var{divisor}, but with the same sign as @var{divisor}.
663The arguments must be numbers or markers.
664
665Unlike @code{%}, @code{mod} returns a well-defined result for negative
666arguments. It also permits floating point arguments; it rounds the
667quotient downward (towards minus infinity) to an integer, and uses that
668quotient to compute the remainder.
669
670An @code{arith-error} results if @var{divisor} is 0.
671
672@example
673@group
674(mod 9 4)
675 @result{} 1
676@end group
677@group
678(mod -9 4)
679 @result{} 3
680@end group
681@group
682(mod 9 -4)
683 @result{} -3
684@end group
685@group
686(mod -9 -4)
687 @result{} -1
688@end group
689@group
690(mod 5.5 2.5)
691 @result{} .5
692@end group
693@end example
694
695For any two numbers @var{dividend} and @var{divisor},
696
697@example
698@group
699(+ (mod @var{dividend} @var{divisor})
700 (* (floor @var{dividend} @var{divisor}) @var{divisor}))
701@end group
702@end example
703
704@noindent
705always equals @var{dividend}, subject to rounding error if either
706argument is floating point. For @code{floor}, see @ref{Numeric
707Conversions}.
708@end defun
709
710@node Rounding Operations
711@section Rounding Operations
712@cindex rounding without conversion
713
714The functions @code{ffloor}, @code{fceiling}, @code{fround}, and
715@code{ftruncate} take a floating point argument and return a floating
716point result whose value is a nearby integer. @code{ffloor} returns the
717nearest integer below; @code{fceiling}, the nearest integer above;
718@code{ftruncate}, the nearest integer in the direction towards zero;
719@code{fround}, the nearest integer.
720
721@defun ffloor float
722This function rounds @var{float} to the next lower integral value, and
723returns that value as a floating point number.
724@end defun
725
726@defun fceiling float
727This function rounds @var{float} to the next higher integral value, and
728returns that value as a floating point number.
729@end defun
730
731@defun ftruncate float
732This function rounds @var{float} towards zero to an integral value, and
733returns that value as a floating point number.
734@end defun
735
736@defun fround float
737This function rounds @var{float} to the nearest integral value,
738and returns that value as a floating point number.
739@end defun
740
741@node Bitwise Operations
742@section Bitwise Operations on Integers
743@cindex bitwise arithmetic
744@cindex logical arithmetic
745
746 In a computer, an integer is represented as a binary number, a
747sequence of @dfn{bits} (digits which are either zero or one). A bitwise
748operation acts on the individual bits of such a sequence. For example,
749@dfn{shifting} moves the whole sequence left or right one or more places,
750reproducing the same pattern ``moved over.''
751
752 The bitwise operations in Emacs Lisp apply only to integers.
753
754@defun lsh integer1 count
755@cindex logical shift
756@code{lsh}, which is an abbreviation for @dfn{logical shift}, shifts the
757bits in @var{integer1} to the left @var{count} places, or to the right
758if @var{count} is negative, bringing zeros into the vacated bits. If
759@var{count} is negative, @code{lsh} shifts zeros into the leftmost
760(most-significant) bit, producing a positive result even if
761@var{integer1} is negative. Contrast this with @code{ash}, below.
762
763Here are two examples of @code{lsh}, shifting a pattern of bits one
764place to the left. We show only the low-order eight bits of the binary
765pattern; the rest are all zero.
766
767@example
768@group
769(lsh 5 1)
770 @result{} 10
771;; @r{Decimal 5 becomes decimal 10.}
77200000101 @result{} 00001010
773
774(lsh 7 1)
775 @result{} 14
776;; @r{Decimal 7 becomes decimal 14.}
77700000111 @result{} 00001110
778@end group
779@end example
780
781@noindent
782As the examples illustrate, shifting the pattern of bits one place to
783the left produces a number that is twice the value of the previous
784number.
785
786Shifting a pattern of bits two places to the left produces results
787like this (with 8-bit binary numbers):
788
789@example
790@group
791(lsh 3 2)
792 @result{} 12
793;; @r{Decimal 3 becomes decimal 12.}
79400000011 @result{} 00001100
795@end group
796@end example
797
798On the other hand, shifting one place to the right looks like this:
799
800@example
801@group
802(lsh 6 -1)
803 @result{} 3
804;; @r{Decimal 6 becomes decimal 3.}
80500000110 @result{} 00000011
806@end group
807
808@group
809(lsh 5 -1)
810 @result{} 2
811;; @r{Decimal 5 becomes decimal 2.}
81200000101 @result{} 00000010
813@end group
814@end example
815
816@noindent
817As the example illustrates, shifting one place to the right divides the
818value of a positive integer by two, rounding downward.
819
820The function @code{lsh}, like all Emacs Lisp arithmetic functions, does
821not check for overflow, so shifting left can discard significant bits
822and change the sign of the number. For example, left shifting
823268,435,455 produces @minus{}2 on a 29-bit machine:
824
825@example
826(lsh 268435455 1) ; @r{left shift}
827 @result{} -2
828@end example
829
830In binary, in the 29-bit implementation, the argument looks like this:
831
832@example
833@group
834;; @r{Decimal 268,435,455}
8350 1111 1111 1111 1111 1111 1111 1111
836@end group
837@end example
838
839@noindent
840which becomes the following when left shifted:
841
842@example
843@group
844;; @r{Decimal @minus{}2}
8451 1111 1111 1111 1111 1111 1111 1110
846@end group
847@end example
848@end defun
849
850@defun ash integer1 count
851@cindex arithmetic shift
852@code{ash} (@dfn{arithmetic shift}) shifts the bits in @var{integer1}
853to the left @var{count} places, or to the right if @var{count}
854is negative.
855
856@code{ash} gives the same results as @code{lsh} except when
857@var{integer1} and @var{count} are both negative. In that case,
858@code{ash} puts ones in the empty bit positions on the left, while
859@code{lsh} puts zeros in those bit positions.
860
861Thus, with @code{ash}, shifting the pattern of bits one place to the right
862looks like this:
863
864@example
865@group
866(ash -6 -1) @result{} -3
867;; @r{Decimal @minus{}6 becomes decimal @minus{}3.}
8681 1111 1111 1111 1111 1111 1111 1010
869 @result{}
8701 1111 1111 1111 1111 1111 1111 1101
871@end group
872@end example
873
874In contrast, shifting the pattern of bits one place to the right with
875@code{lsh} looks like this:
876
877@example
878@group
879(lsh -6 -1) @result{} 268435453
880;; @r{Decimal @minus{}6 becomes decimal 268,435,453.}
8811 1111 1111 1111 1111 1111 1111 1010
882 @result{}
8830 1111 1111 1111 1111 1111 1111 1101
884@end group
885@end example
886
887Here are other examples:
888
889@c !!! Check if lined up in smallbook format! XDVI shows problem
890@c with smallbook but not with regular book! --rjc 16mar92
891@smallexample
892@group
893 ; @r{ 29-bit binary values}
894
895(lsh 5 2) ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
896 @result{} 20 ; = @r{0 0000 0000 0000 0000 0000 0001 0100}
897@end group
898@group
899(ash 5 2)
900 @result{} 20
901(lsh -5 2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011}
902 @result{} -20 ; = @r{1 1111 1111 1111 1111 1111 1110 1100}
903(ash -5 2)
904 @result{} -20
905@end group
906@group
907(lsh 5 -2) ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
908 @result{} 1 ; = @r{0 0000 0000 0000 0000 0000 0000 0001}
909@end group
910@group
911(ash 5 -2)
912 @result{} 1
913@end group
914@group
915(lsh -5 -2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011}
916 @result{} 134217726 ; = @r{0 0111 1111 1111 1111 1111 1111 1110}
917@end group
918@group
919(ash -5 -2) ; -5 = @r{1 1111 1111 1111 1111 1111 1111 1011}
920 @result{} -2 ; = @r{1 1111 1111 1111 1111 1111 1111 1110}
921@end group
922@end smallexample
923@end defun
924
925@defun logand &rest ints-or-markers
926This function returns the ``logical and'' of the arguments: the
927@var{n}th bit is set in the result if, and only if, the @var{n}th bit is
928set in all the arguments. (``Set'' means that the value of the bit is 1
929rather than 0.)
930
931For example, using 4-bit binary numbers, the ``logical and'' of 13 and
93212 is 12: 1101 combined with 1100 produces 1100.
933In both the binary numbers, the leftmost two bits are set (i.e., they
934are 1's), so the leftmost two bits of the returned value are set.
935However, for the rightmost two bits, each is zero in at least one of
936the arguments, so the rightmost two bits of the returned value are 0's.
937
938@noindent
939Therefore,
940
941@example
942@group
943(logand 13 12)
944 @result{} 12
945@end group
946@end example
947
948If @code{logand} is not passed any argument, it returns a value of
949@minus{}1. This number is an identity element for @code{logand}
950because its binary representation consists entirely of ones. If
951@code{logand} is passed just one argument, it returns that argument.
952
953@smallexample
954@group
955 ; @r{ 29-bit binary values}
956
957(logand 14 13) ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110}
958 ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101}
959 @result{} 12 ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
960@end group
961
962@group
963(logand 14 13 4) ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110}
964 ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101}
965 ; 4 = @r{0 0000 0000 0000 0000 0000 0000 0100}
966 @result{} 4 ; 4 = @r{0 0000 0000 0000 0000 0000 0000 0100}
967@end group
968
969@group
970(logand)
971 @result{} -1 ; -1 = @r{1 1111 1111 1111 1111 1111 1111 1111}
972@end group
973@end smallexample
974@end defun
975
976@defun logior &rest ints-or-markers
977This function returns the ``inclusive or'' of its arguments: the @var{n}th bit
978is set in the result if, and only if, the @var{n}th bit is set in at least
979one of the arguments. If there are no arguments, the result is zero,
980which is an identity element for this operation. If @code{logior} is
981passed just one argument, it returns that argument.
982
983@smallexample
984@group
985 ; @r{ 29-bit binary values}
986
987(logior 12 5) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
988 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
989 @result{} 13 ; 13 = @r{0 0000 0000 0000 0000 0000 0000 1101}
990@end group
991
992@group
993(logior 12 5 7) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
994 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
995 ; 7 = @r{0 0000 0000 0000 0000 0000 0000 0111}
996 @result{} 15 ; 15 = @r{0 0000 0000 0000 0000 0000 0000 1111}
997@end group
998@end smallexample
999@end defun
1000
1001@defun logxor &rest ints-or-markers
1002This function returns the ``exclusive or'' of its arguments: the
1003@var{n}th bit is set in the result if, and only if, the @var{n}th bit is
1004set in an odd number of the arguments. If there are no arguments, the
1005result is 0, which is an identity element for this operation. If
1006@code{logxor} is passed just one argument, it returns that argument.
1007
1008@smallexample
1009@group
1010 ; @r{ 29-bit binary values}
1011
1012(logxor 12 5) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
1013 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
1014 @result{} 9 ; 9 = @r{0 0000 0000 0000 0000 0000 0000 1001}
1015@end group
1016
1017@group
1018(logxor 12 5 7) ; 12 = @r{0 0000 0000 0000 0000 0000 0000 1100}
1019 ; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
1020 ; 7 = @r{0 0000 0000 0000 0000 0000 0000 0111}
1021 @result{} 14 ; 14 = @r{0 0000 0000 0000 0000 0000 0000 1110}
1022@end group
1023@end smallexample
1024@end defun
1025
1026@defun lognot integer
1027This function returns the logical complement of its argument: the @var{n}th
1028bit is one in the result if, and only if, the @var{n}th bit is zero in
1029@var{integer}, and vice-versa.
1030
1031@example
1032(lognot 5)
1033 @result{} -6
1034;; 5 = @r{0 0000 0000 0000 0000 0000 0000 0101}
1035;; @r{becomes}
1036;; -6 = @r{1 1111 1111 1111 1111 1111 1111 1010}
1037@end example
1038@end defun
1039
1040@node Math Functions
1041@section Standard Mathematical Functions
1042@cindex transcendental functions
1043@cindex mathematical functions
1044@cindex floating-point functions
1045
1046 These mathematical functions allow integers as well as floating point
1047numbers as arguments.
1048
1049@defun sin arg
1050@defunx cos arg
1051@defunx tan arg
1052These are the ordinary trigonometric functions, with argument measured
1053in radians.
1054@end defun
1055
1056@defun asin arg
1057The value of @code{(asin @var{arg})} is a number between
1058@ifnottex
1059@minus{}pi/2
1060@end ifnottex
1061@tex
1062@math{-\pi/2}
1063@end tex
1064and
1065@ifnottex
1066pi/2
1067@end ifnottex
1068@tex
1069@math{\pi/2}
1070@end tex
1071(inclusive) whose sine is @var{arg}; if, however, @var{arg} is out of
1072range (outside [@minus{}1, 1]), it signals a @code{domain-error} error.
1073@end defun
1074
1075@defun acos arg
1076The value of @code{(acos @var{arg})} is a number between 0 and
1077@ifnottex
1078pi
1079@end ifnottex
1080@tex
1081@math{\pi}
1082@end tex
1083(inclusive) whose cosine is @var{arg}; if, however, @var{arg} is out
1084of range (outside [@minus{}1, 1]), it signals a @code{domain-error} error.
1085@end defun
1086
1087@defun atan y &optional x
1088The value of @code{(atan @var{y})} is a number between
1089@ifnottex
1090@minus{}pi/2
1091@end ifnottex
1092@tex
1093@math{-\pi/2}
1094@end tex
1095and
1096@ifnottex
1097pi/2
1098@end ifnottex
1099@tex
1100@math{\pi/2}
1101@end tex
1102(exclusive) whose tangent is @var{y}. If the optional second
1103argument @var{x} is given, the value of @code{(atan y x)} is the
1104angle in radians between the vector @code{[@var{x}, @var{y}]} and the
1105@code{X} axis.
1106@end defun
1107
1108@defun exp arg
1109This is the exponential function; it returns
1110@tex
1111@math{e}
1112@end tex
1113@ifnottex
1114@i{e}
1115@end ifnottex
1116to the power @var{arg}.
1117@tex
1118@math{e}
1119@end tex
1120@ifnottex
1121@i{e}
1122@end ifnottex
1123is a fundamental mathematical constant also called the base of natural
1124logarithms.
1125@end defun
1126
1127@defun log arg &optional base
1128This function returns the logarithm of @var{arg}, with base @var{base}.
1129If you don't specify @var{base}, the base
1130@tex
1131@math{e}
1132@end tex
1133@ifnottex
1134@i{e}
1135@end ifnottex
1136is used. If @var{arg} is negative, it signals a @code{domain-error}
1137error.
1138@end defun
1139
1140@ignore
1141@defun expm1 arg
1142This function returns @code{(1- (exp @var{arg}))}, but it is more
1143accurate than that when @var{arg} is negative and @code{(exp @var{arg})}
1144is close to 1.
1145@end defun
1146
1147@defun log1p arg
1148This function returns @code{(log (1+ @var{arg}))}, but it is more
1149accurate than that when @var{arg} is so small that adding 1 to it would
1150lose accuracy.
1151@end defun
1152@end ignore
1153
1154@defun log10 arg
1155This function returns the logarithm of @var{arg}, with base 10. If
1156@var{arg} is negative, it signals a @code{domain-error} error.
1157@code{(log10 @var{x})} @equiv{} @code{(log @var{x} 10)}, at least
1158approximately.
1159@end defun
1160
1161@defun expt x y
1162This function returns @var{x} raised to power @var{y}. If both
1163arguments are integers and @var{y} is positive, the result is an
1164integer; in this case, overflow causes truncation, so watch out.
1165@end defun
1166
1167@defun sqrt arg
1168This returns the square root of @var{arg}. If @var{arg} is negative,
1169it signals a @code{domain-error} error.
1170@end defun
1171
1172@node Random Numbers
1173@section Random Numbers
1174@cindex random numbers
1175
1176A deterministic computer program cannot generate true random numbers.
1177For most purposes, @dfn{pseudo-random numbers} suffice. A series of
1178pseudo-random numbers is generated in a deterministic fashion. The
1179numbers are not truly random, but they have certain properties that
1180mimic a random series. For example, all possible values occur equally
1181often in a pseudo-random series.
1182
1183In Emacs, pseudo-random numbers are generated from a ``seed'' number.
1184Starting from any given seed, the @code{random} function always
1185generates the same sequence of numbers. Emacs always starts with the
1186same seed value, so the sequence of values of @code{random} is actually
1187the same in each Emacs run! For example, in one operating system, the
1188first call to @code{(random)} after you start Emacs always returns
1189@minus{}1457731, and the second one always returns @minus{}7692030. This
1190repeatability is helpful for debugging.
1191
1192If you want random numbers that don't always come out the same, execute
1193@code{(random t)}. This chooses a new seed based on the current time of
1194day and on Emacs's process @acronym{ID} number.
1195
1196@defun random &optional limit
1197This function returns a pseudo-random integer. Repeated calls return a
1198series of pseudo-random integers.
1199
1200If @var{limit} is a positive integer, the value is chosen to be
1201nonnegative and less than @var{limit}.
1202
1203If @var{limit} is @code{t}, it means to choose a new seed based on the
1204current time of day and on Emacs's process @acronym{ID} number.
1205@c "Emacs'" is incorrect usage!
1206
1207On some machines, any integer representable in Lisp may be the result
1208of @code{random}. On other machines, the result can never be larger
1209than a certain maximum or less than a certain (negative) minimum.
1210@end defun
1211
1212@ignore
1213 arch-tag: 574e8dd2-d513-4616-9844-c9a27869782e
1214@end ignore