(calendar-mode-map, calendar-mouse-3-map): Refer to
[bpt/emacs.git] / lispref / lists.texi
CommitLineData
73804d4b
RS
1@c -*-texinfo-*-
2@c This is part of the GNU Emacs Lisp Reference Manual.
651f374c 3@c Copyright (C) 1990, 1991, 1992, 1993, 1994, 1995, 1998, 1999, 2002, 2003,
ceb4c4d3 4@c 2004, 2005, 2006 Free Software Foundation, Inc.
73804d4b
RS
5@c See the file elisp.texi for copying conditions.
6@setfilename ../info/lists
7@node Lists, Sequences Arrays Vectors, Strings and Characters, Top
8@chapter Lists
9@cindex list
10@cindex element (of list)
11
12 A @dfn{list} represents a sequence of zero or more elements (which may
13be any Lisp objects). The important difference between lists and
14vectors is that two or more lists can share part of their structure; in
15addition, you can insert or delete elements in a list without copying
16the whole list.
17
18@menu
19* Cons Cells:: How lists are made out of cons cells.
73804d4b
RS
20* List-related Predicates:: Is this object a list? Comparing two lists.
21* List Elements:: Extracting the pieces of a list.
22* Building Lists:: Creating list structure.
23* Modifying Lists:: Storing new pieces into an existing list.
24* Sets And Lists:: A list can represent a finite mathematical set.
25* Association Lists:: A list can represent a finite relation or mapping.
a99eb78d 26* Rings:: Managing a fixed-size ring of objects.
73804d4b
RS
27@end menu
28
29@node Cons Cells
30@section Lists and Cons Cells
31@cindex lists and cons cells
32@cindex @code{nil} and lists
33
34 Lists in Lisp are not a primitive data type; they are built up from
2b3fc6c3 35@dfn{cons cells}. A cons cell is a data object that represents an
3998eed0
RS
36ordered pair. That is, it has two slots, and each slot @dfn{holds}, or
37@dfn{refers to}, some Lisp object. One slot is known as the @sc{car},
38and the other is known as the @sc{cdr}. (These names are traditional;
39see @ref{Cons Cell Type}.) @sc{cdr} is pronounced ``could-er.''
73804d4b 40
3998eed0
RS
41 We say that ``the @sc{car} of this cons cell is'' whatever object
42its @sc{car} slot currently holds, and likewise for the @sc{cdr}.
43
44 A list is a series of cons cells ``chained together,'' so that each
05aea714 45cell refers to the next one. There is one cons cell for each element of
3998eed0
RS
46the list. By convention, the @sc{car}s of the cons cells hold the
47elements of the list, and the @sc{cdr}s are used to chain the list: the
48@sc{cdr} slot of each cons cell refers to the following cons cell. The
49@sc{cdr} of the last cons cell is @code{nil}. This asymmetry between
50the @sc{car} and the @sc{cdr} is entirely a matter of convention; at the
73804d4b
RS
51level of cons cells, the @sc{car} and @sc{cdr} slots have the same
52characteristics.
53
d6702947
RS
54@cindex true list
55 Since @code{nil} is the conventional value to put in the @sc{cdr} of
56the last cons cell in the list, we call that case a @dfn{true list}.
57
58 In Lisp, we consider the symbol @code{nil} a list as well as a
59symbol; it is the list with no elements. For convenience, the symbol
60@code{nil} is considered to have @code{nil} as its @sc{cdr} (and also
61as its @sc{car}). Therefore, the @sc{cdr} of a true list is always a
62true list.
63
64@cindex dotted list
65@cindex circular list
66 If the @sc{cdr} of a list's last cons cell is some other value,
67neither @code{nil} nor another cons cell, we call the structure a
68@dfn{dotted list}, since its printed representation would use
69@samp{.}. There is one other possibility: some cons cell's @sc{cdr}
70could point to one of the previous cons cells in the list. We call
71that structure a @dfn{circular list}.
72
73 For some purposes, it does not matter whether a list is true,
74circular or dotted. If the program doesn't look far enough down the
75list to see the @sc{cdr} of the final cons cell, it won't care.
76However, some functions that operate on lists demand true lists and
77signal errors if given a dotted list. Most functions that try to find
78the end of a list enter infinite loops if given a circular list.
79
2b3fc6c3
RS
80@cindex list structure
81 Because most cons cells are used as part of lists, the phrase
82@dfn{list structure} has come to mean any structure made out of cons
83cells.
84
3fd64c56 85 The @sc{cdr} of any nonempty true list @var{l} is a list containing all the
73804d4b
RS
86elements of @var{l} except the first.
87
2b3fc6c3 88 @xref{Cons Cell Type}, for the read and print syntax of cons cells and
5838fa52 89lists, and for ``box and arrow'' illustrations of lists.
73804d4b
RS
90
91@node List-related Predicates
92@section Predicates on Lists
93
23e69ab1
RS
94 The following predicates test whether a Lisp object is an atom,
95whether it is a cons cell or is a list, or whether it is the
96distinguished object @code{nil}. (Many of these predicates can be
97defined in terms of the others, but they are used so often that it is
98worth having all of them.)
73804d4b
RS
99
100@defun consp object
101This function returns @code{t} if @var{object} is a cons cell, @code{nil}
102otherwise. @code{nil} is not a cons cell, although it @emph{is} a list.
103@end defun
104
105@defun atom object
106@cindex atoms
107This function returns @code{t} if @var{object} is an atom, @code{nil}
108otherwise. All objects except cons cells are atoms. The symbol
109@code{nil} is an atom and is also a list; it is the only Lisp object
2b3fc6c3 110that is both.
73804d4b
RS
111
112@example
113(atom @var{object}) @equiv{} (not (consp @var{object}))
114@end example
115@end defun
116
117@defun listp object
118This function returns @code{t} if @var{object} is a cons cell or
119@code{nil}. Otherwise, it returns @code{nil}.
120
121@example
122@group
123(listp '(1))
124 @result{} t
125@end group
126@group
127(listp '())
128 @result{} t
129@end group
130@end example
131@end defun
132
133@defun nlistp object
134This function is the opposite of @code{listp}: it returns @code{t} if
135@var{object} is not a list. Otherwise, it returns @code{nil}.
136
137@example
138(listp @var{object}) @equiv{} (not (nlistp @var{object}))
139@end example
140@end defun
141
142@defun null object
143This function returns @code{t} if @var{object} is @code{nil}, and
144returns @code{nil} otherwise. This function is identical to @code{not},
145but as a matter of clarity we use @code{null} when @var{object} is
146considered a list and @code{not} when it is considered a truth value
147(see @code{not} in @ref{Combining Conditions}).
148
149@example
150@group
151(null '(1))
152 @result{} nil
153@end group
154@group
155(null '())
156 @result{} t
157@end group
158@end example
159@end defun
160
ec221d13 161@need 2000
73804d4b
RS
162
163@node List Elements
164@section Accessing Elements of Lists
165@cindex list elements
166
167@defun car cons-cell
b6954afd 168This function returns the value referred to by the first slot of the
73804d4b
RS
169cons cell @var{cons-cell}. Expressed another way, this function
170returns the @sc{car} of @var{cons-cell}.
171
172As a special case, if @var{cons-cell} is @code{nil}, then @code{car}
173is defined to return @code{nil}; therefore, any list is a valid argument
174for @code{car}. An error is signaled if the argument is not a cons cell
175or @code{nil}.
176
177@example
178@group
179(car '(a b c))
180 @result{} a
181@end group
182@group
183(car '())
184 @result{} nil
185@end group
186@end example
187@end defun
188
189@defun cdr cons-cell
b6954afd 190This function returns the value referred to by the second slot of
73804d4b
RS
191the cons cell @var{cons-cell}. Expressed another way, this function
192returns the @sc{cdr} of @var{cons-cell}.
193
194As a special case, if @var{cons-cell} is @code{nil}, then @code{cdr}
195is defined to return @code{nil}; therefore, any list is a valid argument
196for @code{cdr}. An error is signaled if the argument is not a cons cell
197or @code{nil}.
198
199@example
200@group
201(cdr '(a b c))
202 @result{} (b c)
203@end group
204@group
205(cdr '())
206 @result{} nil
207@end group
208@end example
209@end defun
210
211@defun car-safe object
212This function lets you take the @sc{car} of a cons cell while avoiding
213errors for other data types. It returns the @sc{car} of @var{object} if
214@var{object} is a cons cell, @code{nil} otherwise. This is in contrast
215to @code{car}, which signals an error if @var{object} is not a list.
216
217@example
218@group
219(car-safe @var{object})
220@equiv{}
221(let ((x @var{object}))
222 (if (consp x)
223 (car x)
224 nil))
225@end group
226@end example
227@end defun
228
229@defun cdr-safe object
230This function lets you take the @sc{cdr} of a cons cell while
231avoiding errors for other data types. It returns the @sc{cdr} of
232@var{object} if @var{object} is a cons cell, @code{nil} otherwise.
233This is in contrast to @code{cdr}, which signals an error if
234@var{object} is not a list.
235
236@example
237@group
238(cdr-safe @var{object})
239@equiv{}
240(let ((x @var{object}))
241 (if (consp x)
242 (cdr x)
243 nil))
244@end group
245@end example
246@end defun
247
8241495d
RS
248@tindex pop
249@defmac pop listname
250This macro is a way of examining the @sc{car} of a list,
aa9261ac 251and taking it off the list, all at once.
8241495d
RS
252
253It operates on the list which is stored in the symbol @var{listname}.
254It removes this element from the list by setting @var{listname}
255to the @sc{cdr} of its old value---but it also returns the @sc{car}
256of that list, which is the element being removed.
257
258@example
259x
260 @result{} (a b c)
261(pop x)
262 @result{} a
263x
264 @result{} (b c)
265@end example
266@end defmac
267
73804d4b 268@defun nth n list
7baeca0c 269@anchor{Definition of nth}
73804d4b
RS
270This function returns the @var{n}th element of @var{list}. Elements
271are numbered starting with zero, so the @sc{car} of @var{list} is
272element number zero. If the length of @var{list} is @var{n} or less,
273the value is @code{nil}.
274
275If @var{n} is negative, @code{nth} returns the first element of
276@var{list}.
277
278@example
279@group
280(nth 2 '(1 2 3 4))
281 @result{} 3
282@end group
283@group
284(nth 10 '(1 2 3 4))
285 @result{} nil
286@end group
287@group
288(nth -3 '(1 2 3 4))
289 @result{} 1
290
291(nth n x) @equiv{} (car (nthcdr n x))
292@end group
293@end example
969fe9b5
RS
294
295The function @code{elt} is similar, but applies to any kind of sequence.
296For historical reasons, it takes its arguments in the opposite order.
297@xref{Sequence Functions}.
73804d4b
RS
298@end defun
299
300@defun nthcdr n list
301This function returns the @var{n}th @sc{cdr} of @var{list}. In other
f9f59935 302words, it skips past the first @var{n} links of @var{list} and returns
73804d4b
RS
303what follows.
304
305If @var{n} is zero or negative, @code{nthcdr} returns all of
306@var{list}. If the length of @var{list} is @var{n} or less,
307@code{nthcdr} returns @code{nil}.
308
309@example
310@group
311(nthcdr 1 '(1 2 3 4))
312 @result{} (2 3 4)
313@end group
314@group
315(nthcdr 10 '(1 2 3 4))
316 @result{} nil
317@end group
318@group
319(nthcdr -3 '(1 2 3 4))
320 @result{} (1 2 3 4)
321@end group
322@end example
323@end defun
324
dbda27d1 325@defun last list &optional n
6fe50867
RS
326This function returns the last link of @var{list}. The @code{car} of
327this link is the list's last element. If @var{list} is null,
328@code{nil} is returned. If @var{n} is non-@code{nil}, the
329@var{n}th-to-last link is returned instead, or the whole of @var{list}
330if @var{n} is bigger than @var{list}'s length.
dbda27d1
DL
331@end defun
332
969fe9b5 333@defun safe-length list
7baeca0c 334@anchor{Definition of safe-length}
d6702947
RS
335This function returns the length of @var{list}, with no risk of either
336an error or an infinite loop. It generally returns the number of
337distinct cons cells in the list. However, for circular lists,
338the value is just an upper bound; it is often too large.
f9f59935 339
d6702947
RS
340If @var{list} is not @code{nil} or a cons cell, @code{safe-length}
341returns 0.
f9f59935
RS
342@end defun
343
969fe9b5
RS
344 The most common way to compute the length of a list, when you are not
345worried that it may be circular, is with @code{length}. @xref{Sequence
346Functions}.
347
969fe9b5
RS
348@defun caar cons-cell
349This is the same as @code{(car (car @var{cons-cell}))}.
f9f59935
RS
350@end defun
351
969fe9b5
RS
352@defun cadr cons-cell
353This is the same as @code{(car (cdr @var{cons-cell}))}
354or @code{(nth 1 @var{cons-cell})}.
f9f59935
RS
355@end defun
356
969fe9b5
RS
357@defun cdar cons-cell
358This is the same as @code{(cdr (car @var{cons-cell}))}.
f9f59935
RS
359@end defun
360
969fe9b5
RS
361@defun cddr cons-cell
362This is the same as @code{(cdr (cdr @var{cons-cell}))}
363or @code{(nthcdr 2 @var{cons-cell})}.
f9f59935
RS
364@end defun
365
023045d6
DL
366@defun butlast x &optional n
367This function returns the list @var{x} with the last element,
368or the last @var{n} elements, removed. If @var{n} is greater
369than zero it makes a copy of the list so as not to damage the
370original list. In general, @code{(append (butlast @var{x} @var{n})
371(last @var{x} @var{n}))} will return a list equal to @var{x}.
372@end defun
373
374@defun nbutlast x &optional n
375This is a version of @code{butlast} that works by destructively
376modifying the @code{cdr} of the appropriate element, rather than
377making a copy of the list.
378@end defun
379
73804d4b
RS
380@node Building Lists
381@comment node-name, next, previous, up
382@section Building Cons Cells and Lists
383@cindex cons cells
384@cindex building lists
385
386 Many functions build lists, as lists reside at the very heart of Lisp.
387@code{cons} is the fundamental list-building function; however, it is
388interesting to note that @code{list} is used more times in the source
389code for Emacs than @code{cons}.
390
391@defun cons object1 object2
a2fdaa28 392This function is the most basic function for building new list
73804d4b 393structure. It creates a new cons cell, making @var{object1} the
a2fdaa28
RS
394@sc{car}, and @var{object2} the @sc{cdr}. It then returns the new
395cons cell. The arguments @var{object1} and @var{object2} may be any
396Lisp objects, but most often @var{object2} is a list.
73804d4b
RS
397
398@example
399@group
400(cons 1 '(2))
401 @result{} (1 2)
402@end group
403@group
404(cons 1 '())
405 @result{} (1)
406@end group
407@group
408(cons 1 2)
409 @result{} (1 . 2)
410@end group
411@end example
412
413@cindex consing
414@code{cons} is often used to add a single element to the front of a
1e344ee2
SM
415list. This is called @dfn{consing the element onto the list}.
416@footnote{There is no strictly equivalent way to add an element to
417the end of a list. You can use @code{(append @var{listname} (list
418@var{newelt}))}, which creates a whole new list by copying @var{listname}
419and adding @var{newelt} to its end. Or you can use @code{(nconc
420@var{listname} (list @var{newelt}))}, which modifies @var{listname}
421by following all the @sc{cdr}s and then replacing the terminating
422@code{nil}. Compare this to adding an element to the beginning of a
423list with @code{cons}, which neither copies nor modifies the list.}
424For example:
73804d4b
RS
425
426@example
427(setq list (cons newelt list))
428@end example
429
430Note that there is no conflict between the variable named @code{list}
431used in this example and the function named @code{list} described below;
432any symbol can serve both purposes.
433@end defun
434
8241495d
RS
435@tindex push
436@defmac push newelt listname
437This macro provides an alternative way to write
438@code{(setq @var{listname} (cons @var{newelt} @var{listname}))}.
a9749dab
RS
439
440@example
177c0ea7 441(setq l '(a b))
a9749dab
RS
442 @result{} (a b)
443(push 'c l)
444 @result{} (c a b)
445l
446 @result{} (c a b)
447@end example
8241495d
RS
448@end defmac
449
73804d4b
RS
450@defun list &rest objects
451This function creates a list with @var{objects} as its elements. The
452resulting list is always @code{nil}-terminated. If no @var{objects}
453are given, the empty list is returned.
454
455@example
456@group
457(list 1 2 3 4 5)
458 @result{} (1 2 3 4 5)
459@end group
460@group
461(list 1 2 '(3 4 5) 'foo)
462 @result{} (1 2 (3 4 5) foo)
463@end group
464@group
465(list)
466 @result{} nil
467@end group
468@end example
469@end defun
470
471@defun make-list length object
a9749dab
RS
472This function creates a list of @var{length} elements, in which each
473element is @var{object}. Compare @code{make-list} with
474@code{make-string} (@pxref{Creating Strings}).
73804d4b
RS
475
476@example
477@group
478(make-list 3 'pigs)
479 @result{} (pigs pigs pigs)
480@end group
481@group
482(make-list 0 'pigs)
483 @result{} nil
484@end group
a9749dab
RS
485@group
486(setq l (make-list 3 '(a b))
487 @result{} ((a b) (a b) (a b))
488(eq (car l) (cadr l))
489 @result{} t
490@end group
73804d4b
RS
491@end example
492@end defun
493
494@defun append &rest sequences
495@cindex copying lists
496This function returns a list containing all the elements of
969fe9b5
RS
497@var{sequences}. The @var{sequences} may be lists, vectors,
498bool-vectors, or strings, but the last one should usually be a list.
499All arguments except the last one are copied, so none of the arguments
500is altered. (See @code{nconc} in @ref{Rearrangement}, for a way to join
501lists with no copying.)
2b3fc6c3
RS
502
503More generally, the final argument to @code{append} may be any Lisp
504object. The final argument is not copied or converted; it becomes the
505@sc{cdr} of the last cons cell in the new list. If the final argument
506is itself a list, then its elements become in effect elements of the
507result list. If the final element is not a list, the result is a
948caddf 508dotted list since its final @sc{cdr} is not @code{nil} as required
2b3fc6c3 509in a true list.
73804d4b 510
19017752
LT
511In Emacs 20 and before, the @code{append} function also allowed
512integers as (non last) arguments. It converted them to strings of
513digits, making up the decimal print representation of the integer, and
514then used the strings instead of the original integers. This obsolete
515usage no longer works. The proper way to convert an integer to a
516decimal number in this way is with @code{format} (@pxref{Formatting
517Strings}) or @code{number-to-string} (@pxref{String Conversion}).
7dd3d99f
RS
518@end defun
519
520 Here is an example of using @code{append}:
73804d4b
RS
521
522@example
523@group
524(setq trees '(pine oak))
525 @result{} (pine oak)
526(setq more-trees (append '(maple birch) trees))
527 @result{} (maple birch pine oak)
528@end group
529
530@group
531trees
532 @result{} (pine oak)
533more-trees
534 @result{} (maple birch pine oak)
535@end group
536@group
537(eq trees (cdr (cdr more-trees)))
538 @result{} t
539@end group
540@end example
541
7dd3d99f 542 You can see how @code{append} works by looking at a box diagram. The
2b3fc6c3
RS
543variable @code{trees} is set to the list @code{(pine oak)} and then the
544variable @code{more-trees} is set to the list @code{(maple birch pine
545oak)}. However, the variable @code{trees} continues to refer to the
546original list:
73804d4b
RS
547
548@smallexample
549@group
550more-trees trees
551| |
969fe9b5
RS
552| --- --- --- --- -> --- --- --- ---
553 --> | | |--> | | |--> | | |--> | | |--> nil
554 --- --- --- --- --- --- --- ---
73804d4b
RS
555 | | | |
556 | | | |
557 --> maple -->birch --> pine --> oak
558@end group
559@end smallexample
560
7dd3d99f 561 An empty sequence contributes nothing to the value returned by
73804d4b 562@code{append}. As a consequence of this, a final @code{nil} argument
7dd3d99f 563forces a copy of the previous argument:
73804d4b
RS
564
565@example
566@group
567trees
568 @result{} (pine oak)
569@end group
570@group
969fe9b5 571(setq wood (append trees nil))
73804d4b
RS
572 @result{} (pine oak)
573@end group
574@group
575wood
576 @result{} (pine oak)
577@end group
578@group
579(eq wood trees)
580 @result{} nil
581@end group
582@end example
583
584@noindent
585This once was the usual way to copy a list, before the function
586@code{copy-sequence} was invented. @xref{Sequences Arrays Vectors}.
587
7dd3d99f 588 Here we show the use of vectors and strings as arguments to @code{append}:
969fe9b5
RS
589
590@example
591@group
592(append [a b] "cd" nil)
593 @result{} (a b 99 100)
594@end group
595@end example
596
7dd3d99f 597 With the help of @code{apply} (@pxref{Calling Functions}), we can append
a9f0a989 598all the lists in a list of lists:
73804d4b
RS
599
600@example
601@group
602(apply 'append '((a b c) nil (x y z) nil))
603 @result{} (a b c x y z)
604@end group
605@end example
606
7dd3d99f 607 If no @var{sequences} are given, @code{nil} is returned:
73804d4b
RS
608
609@example
610@group
611(append)
612 @result{} nil
613@end group
614@end example
615
7dd3d99f 616 Here are some examples where the final argument is not a list:
2b3fc6c3
RS
617
618@example
619(append '(x y) 'z)
bfe721d1 620 @result{} (x y . z)
2b3fc6c3 621(append '(x y) [z])
bfe721d1 622 @result{} (x y . [z])
2b3fc6c3
RS
623@end example
624
625@noindent
626The second example shows that when the final argument is a sequence but
627not a list, the sequence's elements do not become elements of the
628resulting list. Instead, the sequence becomes the final @sc{cdr}, like
629any other non-list final argument.
73804d4b 630
73804d4b
RS
631@defun reverse list
632This function creates a new list whose elements are the elements of
633@var{list}, but in reverse order. The original argument @var{list} is
634@emph{not} altered.
635
636@example
637@group
638(setq x '(1 2 3 4))
639 @result{} (1 2 3 4)
640@end group
641@group
642(reverse x)
643 @result{} (4 3 2 1)
644x
645 @result{} (1 2 3 4)
646@end group
647@end example
648@end defun
649
84c3f248 650@defun copy-tree tree &optional vecp
948caddf 651This function returns a copy of the tree @code{tree}. If @var{tree} is a
84c3f248
RS
652cons cell, this makes a new cons cell with the same @sc{car} and
653@sc{cdr}, then recursively copies the @sc{car} and @sc{cdr} in the
654same way.
655
656Normally, when @var{tree} is anything other than a cons cell,
657@code{copy-tree} simply returns @var{tree}. However, if @var{vecp} is
658non-@code{nil}, it copies vectors too (and operates recursively on
659their elements).
660@end defun
661
19017752
LT
662@defun number-sequence from &optional to separation
663This returns a list of numbers starting with @var{from} and
664incrementing by @var{separation}, and ending at or just before
665@var{to}. @var{separation} can be positive or negative and defaults
666to 1. If @var{to} is @code{nil} or numerically equal to @var{from},
23e69ab1
RS
667the value is the one-element list @code{(@var{from})}. If @var{to} is
668less than @var{from} with a positive @var{separation}, or greater than
669@var{from} with a negative @var{separation}, the value is @code{nil}
670because those arguments specify an empty sequence.
671
672If @var{separation} is 0 and @var{to} is neither @code{nil} nor
673numerically equal to @var{from}, @code{number-sequence} signals an
674error, since those arguments specify an infinite sequence.
19017752
LT
675
676All arguments can be integers or floating point numbers. However,
677floating point arguments can be tricky, because floating point
678arithmetic is inexact. For instance, depending on the machine, it may
679quite well happen that @code{(number-sequence 0.4 0.6 0.2)} returns
948caddf 680the one element list @code{(0.4)}, whereas
19017752
LT
681@code{(number-sequence 0.4 0.8 0.2)} returns a list with three
682elements. The @var{n}th element of the list is computed by the exact
683formula @code{(+ @var{from} (* @var{n} @var{separation}))}. Thus, if
684one wants to make sure that @var{to} is included in the list, one can
685pass an expression of this exact type for @var{to}. Alternatively,
686one can replace @var{to} with a slightly larger value (or a slightly
687more negative value if @var{separation} is negative).
688
689Some examples:
1006f206
RS
690
691@example
692(number-sequence 4 9)
693 @result{} (4 5 6 7 8 9)
19017752
LT
694(number-sequence 9 4 -1)
695 @result{} (9 8 7 6 5 4)
696(number-sequence 9 4 -2)
697 @result{} (9 7 5)
698(number-sequence 8)
699 @result{} (8)
700(number-sequence 8 5)
701 @result{} nil
702(number-sequence 5 8 -1)
703 @result{} nil
1006f206
RS
704(number-sequence 1.5 6 2)
705 @result{} (1.5 3.5 5.5)
706@end example
707@end defun
708
73804d4b
RS
709@node Modifying Lists
710@section Modifying Existing List Structure
f1e2c45e 711@cindex destructive list operations
73804d4b
RS
712
713 You can modify the @sc{car} and @sc{cdr} contents of a cons cell with the
177c0ea7 714primitives @code{setcar} and @code{setcdr}. We call these ``destructive''
f1e2c45e 715operations because they change existing list structure.
73804d4b 716
0ff13af9 717@cindex CL note---@code{rplaca} vs @code{setcar}
73804d4b
RS
718@quotation
719@findex rplaca
720@findex rplacd
721@b{Common Lisp note:} Common Lisp uses functions @code{rplaca} and
722@code{rplacd} to alter list structure; they change structure the same
723way as @code{setcar} and @code{setcdr}, but the Common Lisp functions
724return the cons cell while @code{setcar} and @code{setcdr} return the
725new @sc{car} or @sc{cdr}.
726@end quotation
727
728@menu
729* Setcar:: Replacing an element in a list.
730* Setcdr:: Replacing part of the list backbone.
731 This can be used to remove or add elements.
732* Rearrangement:: Reordering the elements in a list; combining lists.
733@end menu
734
735@node Setcar
736@subsection Altering List Elements with @code{setcar}
737
2b3fc6c3
RS
738 Changing the @sc{car} of a cons cell is done with @code{setcar}. When
739used on a list, @code{setcar} replaces one element of a list with a
740different element.
73804d4b
RS
741
742@defun setcar cons object
743This function stores @var{object} as the new @sc{car} of @var{cons},
74490e55 744replacing its previous @sc{car}. In other words, it changes the
b6954afd 745@sc{car} slot of @var{cons} to refer to @var{object}. It returns the
74490e55 746value @var{object}. For example:
73804d4b
RS
747
748@example
749@group
750(setq x '(1 2))
751 @result{} (1 2)
752@end group
753@group
754(setcar x 4)
755 @result{} 4
756@end group
757@group
758x
759 @result{} (4 2)
760@end group
761@end example
762@end defun
763
764 When a cons cell is part of the shared structure of several lists,
765storing a new @sc{car} into the cons changes one element of each of
766these lists. Here is an example:
767
768@example
769@group
770;; @r{Create two lists that are partly shared.}
771(setq x1 '(a b c))
772 @result{} (a b c)
773(setq x2 (cons 'z (cdr x1)))
774 @result{} (z b c)
775@end group
776
777@group
778;; @r{Replace the @sc{car} of a shared link.}
779(setcar (cdr x1) 'foo)
780 @result{} foo
781x1 ; @r{Both lists are changed.}
782 @result{} (a foo c)
783x2
784 @result{} (z foo c)
785@end group
786
787@group
788;; @r{Replace the @sc{car} of a link that is not shared.}
789(setcar x1 'baz)
790 @result{} baz
791x1 ; @r{Only one list is changed.}
792 @result{} (baz foo c)
793x2
794 @result{} (z foo c)
795@end group
796@end example
797
798 Here is a graphical depiction of the shared structure of the two lists
799in the variables @code{x1} and @code{x2}, showing why replacing @code{b}
800changes them both:
801
802@example
803@group
969fe9b5
RS
804 --- --- --- --- --- ---
805x1---> | | |----> | | |--> | | |--> nil
806 --- --- --- --- --- ---
73804d4b
RS
807 | --> | |
808 | | | |
809 --> a | --> b --> c
810 |
969fe9b5
RS
811 --- --- |
812x2--> | | |--
813 --- ---
73804d4b
RS
814 |
815 |
816 --> z
817@end group
818@end example
819
820 Here is an alternative form of box diagram, showing the same relationship:
821
822@example
823@group
824x1:
825 -------------- -------------- --------------
826| car | cdr | | car | cdr | | car | cdr |
827| a | o------->| b | o------->| c | nil |
828| | | -->| | | | | |
829 -------------- | -------------- --------------
830 |
831x2: |
832 -------------- |
833| car | cdr | |
834| z | o----
835| | |
836 --------------
837@end group
838@end example
839
840@node Setcdr
841@subsection Altering the CDR of a List
842
843 The lowest-level primitive for modifying a @sc{cdr} is @code{setcdr}:
844
845@defun setcdr cons object
2b3fc6c3 846This function stores @var{object} as the new @sc{cdr} of @var{cons},
74490e55 847replacing its previous @sc{cdr}. In other words, it changes the
b6954afd 848@sc{cdr} slot of @var{cons} to refer to @var{object}. It returns the
74490e55 849value @var{object}.
73804d4b
RS
850@end defun
851
852 Here is an example of replacing the @sc{cdr} of a list with a
853different list. All but the first element of the list are removed in
854favor of a different sequence of elements. The first element is
855unchanged, because it resides in the @sc{car} of the list, and is not
856reached via the @sc{cdr}.
857
858@example
859@group
860(setq x '(1 2 3))
861 @result{} (1 2 3)
862@end group
863@group
864(setcdr x '(4))
865 @result{} (4)
866@end group
867@group
868x
869 @result{} (1 4)
870@end group
871@end example
872
873 You can delete elements from the middle of a list by altering the
874@sc{cdr}s of the cons cells in the list. For example, here we delete
875the second element, @code{b}, from the list @code{(a b c)}, by changing
74490e55 876the @sc{cdr} of the first cons cell:
73804d4b
RS
877
878@example
879@group
880(setq x1 '(a b c))
881 @result{} (a b c)
882(setcdr x1 (cdr (cdr x1)))
883 @result{} (c)
884x1
885 @result{} (a c)
886@end group
887@end example
888
bda144f4 889@need 4000
73804d4b
RS
890 Here is the result in box notation:
891
892@example
893@group
894 --------------------
895 | |
896 -------------- | -------------- | --------------
897| car | cdr | | | car | cdr | -->| car | cdr |
898| a | o----- | b | o-------->| c | nil |
899| | | | | | | | |
900 -------------- -------------- --------------
901@end group
902@end example
903
904@noindent
905The second cons cell, which previously held the element @code{b}, still
906exists and its @sc{car} is still @code{b}, but it no longer forms part
907of this list.
908
909 It is equally easy to insert a new element by changing @sc{cdr}s:
910
911@example
912@group
913(setq x1 '(a b c))
914 @result{} (a b c)
915(setcdr x1 (cons 'd (cdr x1)))
916 @result{} (d b c)
917x1
918 @result{} (a d b c)
919@end group
920@end example
921
922 Here is this result in box notation:
923
924@smallexample
925@group
926 -------------- ------------- -------------
927| car | cdr | | car | cdr | | car | cdr |
928| a | o | -->| b | o------->| c | nil |
929| | | | | | | | | | |
930 --------- | -- | ------------- -------------
931 | |
932 ----- --------
933 | |
934 | --------------- |
935 | | car | cdr | |
936 -->| d | o------
937 | | |
938 ---------------
939@end group
940@end smallexample
941
942@node Rearrangement
943@subsection Functions that Rearrange Lists
944@cindex rearrangement of lists
945@cindex modification of lists
946
947 Here are some functions that rearrange lists ``destructively'' by
948modifying the @sc{cdr}s of their component cons cells. We call these
949functions ``destructive'' because they chew up the original lists passed
f1e2c45e
RS
950to them as arguments, relinking their cons cells to form a new list that
951is the returned value.
73804d4b 952
37680279 953@ifnottex
2b3fc6c3
RS
954 See @code{delq}, in @ref{Sets And Lists}, for another function
955that modifies cons cells.
37680279 956@end ifnottex
2b3fc6c3
RS
957@iftex
958 The function @code{delq} in the following section is another example
959of destructive list manipulation.
960@end iftex
961
73804d4b
RS
962@defun nconc &rest lists
963@cindex concatenating lists
964@cindex joining lists
965This function returns a list containing all the elements of @var{lists}.
966Unlike @code{append} (@pxref{Building Lists}), the @var{lists} are
967@emph{not} copied. Instead, the last @sc{cdr} of each of the
968@var{lists} is changed to refer to the following list. The last of the
969@var{lists} is not altered. For example:
970
971@example
972@group
973(setq x '(1 2 3))
974 @result{} (1 2 3)
975@end group
976@group
977(nconc x '(4 5))
978 @result{} (1 2 3 4 5)
979@end group
980@group
981x
982 @result{} (1 2 3 4 5)
983@end group
984@end example
985
986 Since the last argument of @code{nconc} is not itself modified, it is
987reasonable to use a constant list, such as @code{'(4 5)}, as in the
988above example. For the same reason, the last argument need not be a
989list:
990
991@example
992@group
993(setq x '(1 2 3))
994 @result{} (1 2 3)
995@end group
996@group
997(nconc x 'z)
998 @result{} (1 2 3 . z)
999@end group
1000@group
1001x
1002 @result{} (1 2 3 . z)
1003@end group
1004@end example
1005
969fe9b5
RS
1006However, the other arguments (all but the last) must be lists.
1007
73804d4b
RS
1008A common pitfall is to use a quoted constant list as a non-last
1009argument to @code{nconc}. If you do this, your program will change
1010each time you run it! Here is what happens:
1011
1012@smallexample
1013@group
1014(defun add-foo (x) ; @r{We want this function to add}
1015 (nconc '(foo) x)) ; @r{@code{foo} to the front of its arg.}
1016@end group
1017
1018@group
1019(symbol-function 'add-foo)
1020 @result{} (lambda (x) (nconc (quote (foo)) x))
1021@end group
1022
1023@group
1024(setq xx (add-foo '(1 2))) ; @r{It seems to work.}
1025 @result{} (foo 1 2)
1026@end group
1027@group
1028(setq xy (add-foo '(3 4))) ; @r{What happened?}
1029 @result{} (foo 1 2 3 4)
1030@end group
1031@group
1032(eq xx xy)
1033 @result{} t
1034@end group
1035
1036@group
1037(symbol-function 'add-foo)
1038 @result{} (lambda (x) (nconc (quote (foo 1 2 3 4) x)))
1039@end group
1040@end smallexample
1041@end defun
1042
1043@defun nreverse list
1044@cindex reversing a list
1045 This function reverses the order of the elements of @var{list}.
2b3fc6c3
RS
1046Unlike @code{reverse}, @code{nreverse} alters its argument by reversing
1047the @sc{cdr}s in the cons cells forming the list. The cons cell that
74490e55 1048used to be the last one in @var{list} becomes the first cons cell of the
2b3fc6c3 1049value.
73804d4b
RS
1050
1051 For example:
1052
1053@example
1054@group
a9749dab
RS
1055(setq x '(a b c))
1056 @result{} (a b c)
73804d4b
RS
1057@end group
1058@group
1059x
a9749dab 1060 @result{} (a b c)
73804d4b 1061(nreverse x)
a9749dab 1062 @result{} (c b a)
73804d4b
RS
1063@end group
1064@group
74490e55 1065;; @r{The cons cell that was first is now last.}
73804d4b 1066x
a9749dab 1067 @result{} (a)
73804d4b
RS
1068@end group
1069@end example
1070
1071 To avoid confusion, we usually store the result of @code{nreverse}
1072back in the same variable which held the original list:
1073
1074@example
1075(setq x (nreverse x))
1076@end example
1077
1078 Here is the @code{nreverse} of our favorite example, @code{(a b c)},
1079presented graphically:
1080
1081@smallexample
1082@group
1083@r{Original list head:} @r{Reversed list:}
1084 ------------- ------------- ------------
1085| car | cdr | | car | cdr | | car | cdr |
1086| a | nil |<-- | b | o |<-- | c | o |
1087| | | | | | | | | | | | |
1088 ------------- | --------- | - | -------- | -
1089 | | | |
1090 ------------- ------------
1091@end group
1092@end smallexample
1093@end defun
1094
1095@defun sort list predicate
1096@cindex stable sort
1097@cindex sorting lists
1098This function sorts @var{list} stably, though destructively, and
1099returns the sorted list. It compares elements using @var{predicate}. A
1100stable sort is one in which elements with equal sort keys maintain their
1101relative order before and after the sort. Stability is important when
1102successive sorts are used to order elements according to different
1103criteria.
1104
1105The argument @var{predicate} must be a function that accepts two
1106arguments. It is called with two elements of @var{list}. To get an
c72c5004 1107increasing order sort, the @var{predicate} should return non-@code{nil} if the
73804d4b
RS
1108first element is ``less than'' the second, or @code{nil} if not.
1109
a9f0a989
RS
1110The comparison function @var{predicate} must give reliable results for
1111any given pair of arguments, at least within a single call to
1112@code{sort}. It must be @dfn{antisymmetric}; that is, if @var{a} is
1113less than @var{b}, @var{b} must not be less than @var{a}. It must be
1114@dfn{transitive}---that is, if @var{a} is less than @var{b}, and @var{b}
1115is less than @var{c}, then @var{a} must be less than @var{c}. If you
1116use a comparison function which does not meet these requirements, the
1117result of @code{sort} is unpredictable.
1118
73804d4b
RS
1119The destructive aspect of @code{sort} is that it rearranges the cons
1120cells forming @var{list} by changing @sc{cdr}s. A nondestructive sort
1121function would create new cons cells to store the elements in their
1122sorted order. If you wish to make a sorted copy without destroying the
1123original, copy it first with @code{copy-sequence} and then sort.
1124
1125Sorting does not change the @sc{car}s of the cons cells in @var{list};
1126the cons cell that originally contained the element @code{a} in
1127@var{list} still has @code{a} in its @sc{car} after sorting, but it now
1128appears in a different position in the list due to the change of
1129@sc{cdr}s. For example:
1130
1131@example
1132@group
1133(setq nums '(1 3 2 6 5 4 0))
1134 @result{} (1 3 2 6 5 4 0)
1135@end group
1136@group
1137(sort nums '<)
1138 @result{} (0 1 2 3 4 5 6)
1139@end group
1140@group
1141nums
1142 @result{} (1 2 3 4 5 6)
1143@end group
1144@end example
1145
1146@noindent
f9f59935
RS
1147@strong{Warning}: Note that the list in @code{nums} no longer contains
11480; this is the same cons cell that it was before, but it is no longer
1149the first one in the list. Don't assume a variable that formerly held
1150the argument now holds the entire sorted list! Instead, save the result
1151of @code{sort} and use that. Most often we store the result back into
1152the variable that held the original list:
73804d4b
RS
1153
1154@example
1155(setq nums (sort nums '<))
1156@end example
1157
1158@xref{Sorting}, for more functions that perform sorting.
1159See @code{documentation} in @ref{Accessing Documentation}, for a
1160useful example of @code{sort}.
1161@end defun
1162
73804d4b
RS
1163@node Sets And Lists
1164@section Using Lists as Sets
1165@cindex lists as sets
1166@cindex sets
1167
1168 A list can represent an unordered mathematical set---simply consider a
1169value an element of a set if it appears in the list, and ignore the
1170order of the list. To form the union of two sets, use @code{append} (as
42101e87
LT
1171long as you don't mind having duplicate elements). You can remove
1172@code{equal} duplicates using @code{delete-dups}. Other useful
73804d4b
RS
1173functions for sets include @code{memq} and @code{delq}, and their
1174@code{equal} versions, @code{member} and @code{delete}.
1175
b5ef0e92 1176@cindex CL note---lack @code{union}, @code{intersection}
73804d4b
RS
1177@quotation
1178@b{Common Lisp note:} Common Lisp has functions @code{union} (which
1179avoids duplicate elements) and @code{intersection} for set operations,
1180but GNU Emacs Lisp does not have them. You can write them in Lisp if
1181you wish.
1182@end quotation
1183
1184@defun memq object list
1185@cindex membership in a list
1186This function tests to see whether @var{object} is a member of
1187@var{list}. If it is, @code{memq} returns a list starting with the
1188first occurrence of @var{object}. Otherwise, it returns @code{nil}.
1189The letter @samp{q} in @code{memq} says that it uses @code{eq} to
1190compare @var{object} against the elements of the list. For example:
1191
1192@example
1193@group
2b3fc6c3
RS
1194(memq 'b '(a b c b a))
1195 @result{} (b c b a)
73804d4b
RS
1196@end group
1197@group
1198(memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1199 @result{} nil
1200@end group
1201@end example
1202@end defun
1203
1204@defun delq object list
1205@cindex deletion of elements
1206This function destructively removes all elements @code{eq} to
1207@var{object} from @var{list}. The letter @samp{q} in @code{delq} says
1208that it uses @code{eq} to compare @var{object} against the elements of
f68446ef 1209the list, like @code{memq} and @code{remq}.
73804d4b
RS
1210@end defun
1211
1212When @code{delq} deletes elements from the front of the list, it does so
1213simply by advancing down the list and returning a sublist that starts
1214after those elements:
1215
1216@example
1217@group
1218(delq 'a '(a b c)) @equiv{} (cdr '(a b c))
1219@end group
1220@end example
1221
1222When an element to be deleted appears in the middle of the list,
1223removing it involves changing the @sc{cdr}s (@pxref{Setcdr}).
1224
1225@example
1226@group
2b3fc6c3
RS
1227(setq sample-list '(a b c (4)))
1228 @result{} (a b c (4))
73804d4b
RS
1229@end group
1230@group
2b3fc6c3
RS
1231(delq 'a sample-list)
1232 @result{} (b c (4))
73804d4b
RS
1233@end group
1234@group
1235sample-list
2b3fc6c3 1236 @result{} (a b c (4))
73804d4b
RS
1237@end group
1238@group
2b3fc6c3 1239(delq 'c sample-list)
34e1af81 1240 @result{} (a b (4))
73804d4b
RS
1241@end group
1242@group
1243sample-list
34e1af81 1244 @result{} (a b (4))
73804d4b
RS
1245@end group
1246@end example
1247
bfe721d1
KH
1248Note that @code{(delq 'c sample-list)} modifies @code{sample-list} to
1249splice out the third element, but @code{(delq 'a sample-list)} does not
73804d4b
RS
1250splice anything---it just returns a shorter list. Don't assume that a
1251variable which formerly held the argument @var{list} now has fewer
1252elements, or that it still holds the original list! Instead, save the
1253result of @code{delq} and use that. Most often we store the result back
1254into the variable that held the original list:
1255
1256@example
1257(setq flowers (delq 'rose flowers))
1258@end example
1259
1260In the following example, the @code{(4)} that @code{delq} attempts to match
1261and the @code{(4)} in the @code{sample-list} are not @code{eq}:
1262
1263@example
1264@group
1265(delq '(4) sample-list)
2b3fc6c3 1266 @result{} (a c (4))
73804d4b
RS
1267@end group
1268@end example
1269
9f081286
RS
1270@defun remq object list
1271This function returns a copy of @var{list}, with all elements removed
1272which are @code{eq} to @var{object}. The letter @samp{q} in @code{remq}
1273says that it uses @code{eq} to compare @var{object} against the elements
1274of @code{list}.
1275
1276@example
1277@group
1278(setq sample-list '(a b c a b c))
1279 @result{} (a b c a b c)
1280@end group
1281@group
1282(remq 'a sample-list)
1283 @result{} (b c b c)
1284@end group
1285@group
1286sample-list
1287 @result{} (a b c a b c)
1288@end group
1289@end example
1290@noindent
1291The function @code{delq} offers a way to perform this operation
1292destructively. See @ref{Sets And Lists}.
1293@end defun
1294
1295The following three functions are like @code{memq}, @code{delq} and
1296@code{remq}, but use @code{equal} rather than @code{eq} to compare
1297elements. @xref{Equality Predicates}.
73804d4b
RS
1298
1299@defun member object list
1300The function @code{member} tests to see whether @var{object} is a member
1301of @var{list}, comparing members with @var{object} using @code{equal}.
1302If @var{object} is a member, @code{member} returns a list starting with
1303its first occurrence in @var{list}. Otherwise, it returns @code{nil}.
1304
1305Compare this with @code{memq}:
1306
1307@example
1308@group
1309(member '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are @code{equal}.}
1310 @result{} ((2))
1311@end group
1312@group
1313(memq '(2) '((1) (2))) ; @r{@code{(2)} and @code{(2)} are not @code{eq}.}
1314 @result{} nil
1315@end group
1316@group
1317;; @r{Two strings with the same contents are @code{equal}.}
1318(member "foo" '("foo" "bar"))
1319 @result{} ("foo" "bar")
1320@end group
1321@end example
1322@end defun
1323
f68446ef
GM
1324@defun delete object sequence
1325If @code{sequence} is a list, this function destructively removes all
1326elements @code{equal} to @var{object} from @var{sequence}. For lists,
1327@code{delete} is to @code{delq} as @code{member} is to @code{memq}: it
1328uses @code{equal} to compare elements with @var{object}, like
1329@code{member}; when it finds an element that matches, it removes the
1330element just as @code{delq} would.
1331
1332If @code{sequence} is a vector or string, @code{delete} returns a copy
1333of @code{sequence} with all elements @code{equal} to @code{object}
1334removed.
1335
1336For example:
73804d4b
RS
1337
1338@example
1339@group
1340(delete '(2) '((2) (1) (2)))
b5ef0e92 1341 @result{} ((1))
73804d4b 1342@end group
f68446ef
GM
1343@group
1344(delete '(2) [(2) (1) (2)])
1345 @result{} [(1)]
1346@end group
1347@end example
1348@end defun
1349
1350@defun remove object sequence
1351This function is the non-destructive counterpart of @code{delete}. If
1352returns a copy of @code{sequence}, a list, vector, or string, with
1353elements @code{equal} to @code{object} removed. For example:
1354
1355@example
1356@group
1357(remove '(2) '((2) (1) (2)))
1358 @result{} ((1))
1359@end group
1360@group
1361(remove '(2) [(2) (1) (2)])
1362 @result{} [(1)]
1363@end group
73804d4b
RS
1364@end example
1365@end defun
1366
1367@quotation
f68446ef
GM
1368@b{Common Lisp note:} The functions @code{member}, @code{delete} and
1369@code{remove} in GNU Emacs Lisp are derived from Maclisp, not Common
1370Lisp. The Common Lisp versions do not use @code{equal} to compare
1371elements.
73804d4b
RS
1372@end quotation
1373
19017752
LT
1374@defun member-ignore-case object list
1375This function is like @code{member}, except that @var{object} should
1376be a string and that it ignores differences in letter-case and text
1377representation: upper-case and lower-case letters are treated as
1378equal, and unibyte strings are converted to multibyte prior to
1379comparison.
42101e87
LT
1380@end defun
1381
1382@defun delete-dups list
1383This function destructively removes all @code{equal} duplicates from
efb47843
LT
1384@var{list}, stores the result in @var{list} and returns it. Of
1385several @code{equal} occurrences of an element in @var{list},
1386@code{delete-dups} keeps the first one.
19017752
LT
1387@end defun
1388
bfe721d1
KH
1389 See also the function @code{add-to-list}, in @ref{Setting Variables},
1390for another way to add an element to a list stored in a variable.
1391
73804d4b
RS
1392@node Association Lists
1393@section Association Lists
1394@cindex association list
1395@cindex alist
1396
1397 An @dfn{association list}, or @dfn{alist} for short, records a mapping
1398from keys to values. It is a list of cons cells called
74490e55 1399@dfn{associations}: the @sc{car} of each cons cell is the @dfn{key}, and the
73804d4b
RS
1400@sc{cdr} is the @dfn{associated value}.@footnote{This usage of ``key''
1401is not related to the term ``key sequence''; it means a value used to
1402look up an item in a table. In this case, the table is the alist, and
1403the alist associations are the items.}
1404
1405 Here is an example of an alist. The key @code{pine} is associated with
1406the value @code{cones}; the key @code{oak} is associated with
1407@code{acorns}; and the key @code{maple} is associated with @code{seeds}.
1408
1409@example
1410@group
a9749dab
RS
1411((pine . cones)
1412 (oak . acorns)
1413 (maple . seeds))
73804d4b
RS
1414@end group
1415@end example
1416
1417 The associated values in an alist may be any Lisp objects; so may the
1418keys. For example, in the following alist, the symbol @code{a} is
1419associated with the number @code{1}, and the string @code{"b"} is
1420associated with the @emph{list} @code{(2 3)}, which is the @sc{cdr} of
1421the alist element:
1422
1423@example
1424((a . 1) ("b" 2 3))
1425@end example
1426
1427 Sometimes it is better to design an alist to store the associated
1428value in the @sc{car} of the @sc{cdr} of the element. Here is an
a9749dab 1429example of such an alist:
73804d4b
RS
1430
1431@example
a9749dab 1432((rose red) (lily white) (buttercup yellow))
73804d4b
RS
1433@end example
1434
1435@noindent
1436Here we regard @code{red} as the value associated with @code{rose}. One
f9f59935 1437advantage of this kind of alist is that you can store other related
73804d4b
RS
1438information---even a list of other items---in the @sc{cdr} of the
1439@sc{cdr}. One disadvantage is that you cannot use @code{rassq} (see
1440below) to find the element containing a given value. When neither of
1441these considerations is important, the choice is a matter of taste, as
1442long as you are consistent about it for any given alist.
1443
1444 Note that the same alist shown above could be regarded as having the
1445associated value in the @sc{cdr} of the element; the value associated
1446with @code{rose} would be the list @code{(red)}.
1447
1448 Association lists are often used to record information that you might
1449otherwise keep on a stack, since new associations may be added easily to
1450the front of the list. When searching an association list for an
1451association with a given key, the first one found is returned, if there
1452is more than one.
1453
1454 In Emacs Lisp, it is @emph{not} an error if an element of an
1455association list is not a cons cell. The alist search functions simply
1456ignore such elements. Many other versions of Lisp signal errors in such
1457cases.
1458
1459 Note that property lists are similar to association lists in several
1460respects. A property list behaves like an association list in which
1461each key can occur only once. @xref{Property Lists}, for a comparison
1462of property lists and association lists.
1463
1464@defun assoc key alist
1465This function returns the first association for @var{key} in
1466@var{alist}. It compares @var{key} against the alist elements using
1467@code{equal} (@pxref{Equality Predicates}). It returns @code{nil} if no
1468association in @var{alist} has a @sc{car} @code{equal} to @var{key}.
1469For example:
1470
1471@smallexample
1472(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1473 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1474(assoc 'oak trees)
1475 @result{} (oak . acorns)
1476(cdr (assoc 'oak trees))
1477 @result{} acorns
1478(assoc 'birch trees)
1479 @result{} nil
1480@end smallexample
1481
2b3fc6c3 1482Here is another example, in which the keys and values are not symbols:
73804d4b
RS
1483
1484@smallexample
1485(setq needles-per-cluster
1486 '((2 "Austrian Pine" "Red Pine")
1487 (3 "Pitch Pine")
1488 (5 "White Pine")))
1489
1490(cdr (assoc 3 needles-per-cluster))
1491 @result{} ("Pitch Pine")
1492(cdr (assoc 2 needles-per-cluster))
1493 @result{} ("Austrian Pine" "Red Pine")
1494@end smallexample
1495@end defun
1496
9f081286
RS
1497 The function @code{assoc-string} is much like @code{assoc} except
1498that it ignores certain differences between strings. @xref{Text
1499Comparison}.
a9f0a989 1500
22697dac
KH
1501@defun rassoc value alist
1502This function returns the first association with value @var{value} in
1503@var{alist}. It returns @code{nil} if no association in @var{alist} has
1504a @sc{cdr} @code{equal} to @var{value}.
1505
1506@code{rassoc} is like @code{assoc} except that it compares the @sc{cdr} of
1507each @var{alist} association instead of the @sc{car}. You can think of
1508this as ``reverse @code{assoc}'', finding the key for a given value.
1509@end defun
1510
73804d4b
RS
1511@defun assq key alist
1512This function is like @code{assoc} in that it returns the first
1513association for @var{key} in @var{alist}, but it makes the comparison
1514using @code{eq} instead of @code{equal}. @code{assq} returns @code{nil}
1515if no association in @var{alist} has a @sc{car} @code{eq} to @var{key}.
1516This function is used more often than @code{assoc}, since @code{eq} is
1517faster than @code{equal} and most alists use symbols as keys.
1518@xref{Equality Predicates}.
1519
1520@smallexample
1521(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1522 @result{} ((pine . cones) (oak . acorns) (maple . seeds))
1523(assq 'pine trees)
1524 @result{} (pine . cones)
1525@end smallexample
1526
1527On the other hand, @code{assq} is not usually useful in alists where the
1528keys may not be symbols:
1529
1530@smallexample
1531(setq leaves
1532 '(("simple leaves" . oak)
1533 ("compound leaves" . horsechestnut)))
1534
1535(assq "simple leaves" leaves)
1536 @result{} nil
1537(assoc "simple leaves" leaves)
1538 @result{} ("simple leaves" . oak)
1539@end smallexample
1540@end defun
1541
1542@defun rassq value alist
1543This function returns the first association with value @var{value} in
1544@var{alist}. It returns @code{nil} if no association in @var{alist} has
1545a @sc{cdr} @code{eq} to @var{value}.
1546
1547@code{rassq} is like @code{assq} except that it compares the @sc{cdr} of
1548each @var{alist} association instead of the @sc{car}. You can think of
1549this as ``reverse @code{assq}'', finding the key for a given value.
1550
1551For example:
1552
1553@smallexample
1554(setq trees '((pine . cones) (oak . acorns) (maple . seeds)))
1555
1556(rassq 'acorns trees)
1557 @result{} (oak . acorns)
1558(rassq 'spores trees)
1559 @result{} nil
1560@end smallexample
1561
1562Note that @code{rassq} cannot search for a value stored in the @sc{car}
1563of the @sc{cdr} of an element:
1564
1565@smallexample
1566(setq colors '((rose red) (lily white) (buttercup yellow)))
1567
1568(rassq 'white colors)
1569 @result{} nil
1570@end smallexample
1571
1572In this case, the @sc{cdr} of the association @code{(lily white)} is not
1573the symbol @code{white}, but rather the list @code{(white)}. This
1574becomes clearer if the association is written in dotted pair notation:
1575
1576@smallexample
1577(lily white) @equiv{} (lily . (white))
1578@end smallexample
1579@end defun
1580
a9749dab 1581@defun assoc-default key alist &optional test default
a46dba07
RS
1582This function searches @var{alist} for a match for @var{key}. For each
1583element of @var{alist}, it compares the element (if it is an atom) or
1584the element's @sc{car} (if it is a cons) against @var{key}, by calling
1585@var{test} with two arguments: the element or its @sc{car}, and
1586@var{key}. The arguments are passed in that order so that you can get
1587useful results using @code{string-match} with an alist that contains
1588regular expressions (@pxref{Regexp Search}). If @var{test} is omitted
1589or @code{nil}, @code{equal} is used for comparison.
1590
1591If an alist element matches @var{key} by this criterion,
1592then @code{assoc-default} returns a value based on this element.
1593If the element is a cons, then the value is the element's @sc{cdr}.
1594Otherwise, the return value is @var{default}.
1595
1596If no alist element matches @var{key}, @code{assoc-default} returns
1597@code{nil}.
1598@end defun
1599
73804d4b
RS
1600@defun copy-alist alist
1601@cindex copying alists
1602This function returns a two-level deep copy of @var{alist}: it creates a
1603new copy of each association, so that you can alter the associations of
1604the new alist without changing the old one.
1605
1606@smallexample
1607@group
1608(setq needles-per-cluster
1609 '((2 . ("Austrian Pine" "Red Pine"))
2b3fc6c3 1610 (3 . ("Pitch Pine"))
ec221d13 1611@end group
2b3fc6c3 1612 (5 . ("White Pine"))))
73804d4b
RS
1613@result{}
1614((2 "Austrian Pine" "Red Pine")
2b3fc6c3
RS
1615 (3 "Pitch Pine")
1616 (5 "White Pine"))
73804d4b
RS
1617
1618(setq copy (copy-alist needles-per-cluster))
1619@result{}
1620((2 "Austrian Pine" "Red Pine")
2b3fc6c3
RS
1621 (3 "Pitch Pine")
1622 (5 "White Pine"))
73804d4b
RS
1623
1624(eq needles-per-cluster copy)
1625 @result{} nil
1626(equal needles-per-cluster copy)
1627 @result{} t
1628(eq (car needles-per-cluster) (car copy))
1629 @result{} nil
1630(cdr (car (cdr needles-per-cluster)))
2b3fc6c3 1631 @result{} ("Pitch Pine")
ec221d13 1632@group
73804d4b
RS
1633(eq (cdr (car (cdr needles-per-cluster)))
1634 (cdr (car (cdr copy))))
1635 @result{} t
1636@end group
3e099569 1637@end smallexample
2b3fc6c3
RS
1638
1639 This example shows how @code{copy-alist} makes it possible to change
1640the associations of one copy without affecting the other:
1641
3e099569 1642@smallexample
2b3fc6c3 1643@group
c74c521d 1644(setcdr (assq 3 copy) '("Martian Vacuum Pine"))
2b3fc6c3
RS
1645(cdr (assq 3 needles-per-cluster))
1646 @result{} ("Pitch Pine")
1647@end group
73804d4b
RS
1648@end smallexample
1649@end defun
1650
61b23410
DL
1651@defun assq-delete-all key alist
1652@tindex assq-delete-all
8241495d 1653This function deletes from @var{alist} all the elements whose @sc{car}
66fd2c72 1654is @code{eq} to @var{key}, much as if you used @code{delq} to delete
19017752 1655each such element one by one. It returns the shortened alist, and
66fd2c72
RS
1656often modifies the original list structure of @var{alist}. For
1657correct results, use the return value of @code{assq-delete-all} rather
1658than looking at the saved value of @var{alist}.
73804d4b 1659
8241495d 1660@example
66fd2c72
RS
1661(setq alist '((foo 1) (bar 2) (foo 3) (lose 4)))
1662 @result{} ((foo 1) (bar 2) (foo 3) (lose 4))
1663(assq-delete-all 'foo alist)
8241495d 1664 @result{} ((bar 2) (lose 4))
66fd2c72
RS
1665alist
1666 @result{} ((foo 1) (bar 2) (lose 4))
8241495d
RS
1667@end example
1668@end defun
ab5796a9 1669
0e6fb1e6
LK
1670@defun rassq-delete-all value alist
1671This function deletes from @var{alist} all the elements whose @sc{cdr}
1672is @code{eq} to @var{value}. It returns the shortened alist, and
1673often modifies the original list structure of @var{alist}.
1674@code{rassq-delete-all} is like @code{assq-delete-all} except that it
1675compares the @sc{cdr} of each @var{alist} association instead of the
1676@sc{car}.
1677@end defun
1678
a99eb78d
RS
1679@node Rings
1680@section Managing a Fixed-Size Ring of Objects
1681
1682@cindex ring data structure
1683 This section describes functions for operating on rings. A
1684@dfn{ring} is a fixed-size data structure that supports insertion,
1685deletion, rotation, and modulo-indexed reference and traversal.
1686
1687@defun make-ring size
1688This returns a new ring capable of holding @var{size} objects.
1689@var{size} should be an integer.
1690@end defun
1691
1692@defun ring-p object
0ff13af9 1693This returns @code{t} if @var{object} is a ring, @code{nil} otherwise.
a99eb78d
RS
1694@end defun
1695
1696@defun ring-size ring
1697This returns the maximum capacity of the @var{ring}.
1698@end defun
1699
1700@defun ring-length ring
1701This returns the number of objects that @var{ring} currently contains.
1702The value will never exceed that returned by @code{ring-size}.
1703@end defun
1704
1705@defun ring-elements ring
eaf664cf 1706This returns a list of the objects in @var{ring}, in order, newest first.
a99eb78d
RS
1707@end defun
1708
1709@defun ring-copy ring
1710This returns a new ring which is a copy of @var{ring}.
0ff13af9 1711The new ring contains the same (@code{eq}) objects as @var{ring}.
a99eb78d
RS
1712@end defun
1713
1714@defun ring-empty-p ring
0ff13af9 1715This returns @code{t} if @var{ring} is empty, @code{nil} otherwise.
a99eb78d
RS
1716@end defun
1717
0ff13af9
LT
1718 The newest element in the ring always has index 0. Higher indices
1719correspond to older elements. Indices are computed modulo the ring
1720length. Index @minus{}1 corresponds to the oldest element, @minus{}2
1721to the next-oldest, and so forth.
a99eb78d
RS
1722
1723@defun ring-ref ring index
1724This returns the object in @var{ring} found at index @var{index}.
1725@var{index} may be negative or greater than the ring length. If
1726@var{ring} is empty, @code{ring-ref} signals an error.
1727@end defun
1728
1729@defun ring-insert ring object
1730This inserts @var{object} into @var{ring}, making it the newest
1731element, and returns @var{object}.
1732
1733If the ring is full, insertion removes the oldest element to
1734make room for the new element.
1735@end defun
1736
1737@defun ring-remove ring &optional index
1738Remove an object from @var{ring}, and return that object. The
1739argument @var{index} specifies which item to remove; if it is
1740@code{nil}, that means to remove the oldest item. If @var{ring} is
1741empty, @code{ring-remove} signals an error.
1742@end defun
1743
1744@defun ring-insert-at-beginning ring object
1745This inserts @var{object} into @var{ring}, treating it as the oldest
0ff13af9 1746element. The return value is not significant.
a99eb78d
RS
1747
1748If the ring is full, this function removes the newest element to make
1749room for the inserted element.
1750@end defun
1751
1752@cindex fifo data structure
1753 If you are careful not to exceed the ring size, you can
1754use the ring as a first-in-first-out queue. For example:
1755
1756@lisp
1757(let ((fifo (make-ring 5)))
1758 (mapc (lambda (obj) (ring-insert fifo obj))
1759 '(0 one "two"))
1760 (list (ring-remove fifo) t
1761 (ring-remove fifo) t
1762 (ring-remove fifo)))
1763 @result{} (0 t one t "two")
1764@end lisp
1765
ab5796a9
MB
1766@ignore
1767 arch-tag: 31fb8a4e-4aa8-4a74-a206-aa00451394d4
1768@end ignore