(construct_menu_click, construct_mouse_click):
[bpt/emacs.git] / src / regex.c
CommitLineData
bc78d348 1/* Extended regular expression matching and search library,
8b20806d 2 version 0.12.
bc78d348
KB
3 (Implements POSIX draft P10003.2/D11.2, except for
4 internationalization features.)
5
85586484 6 Copyright (C) 1993 Free Software Foundation, Inc.
bc78d348
KB
7
8 This program is free software; you can redistribute it and/or modify
9 it under the terms of the GNU General Public License as published by
10 the Free Software Foundation; either version 2, or (at your option)
11 any later version.
12
13 This program is distributed in the hope that it will be useful,
14 but WITHOUT ANY WARRANTY; without even the implied warranty of
15 MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
16 GNU General Public License for more details.
17
18 You should have received a copy of the GNU General Public License
19 along with this program; if not, write to the Free Software
20 Foundation, Inc., 675 Mass Ave, Cambridge, MA 02139, USA. */
21
22/* AIX requires this to be the first thing in the file. */
23#if defined (_AIX) && !defined (REGEX_MALLOC)
24 #pragma alloca
25#endif
26
27#define _GNU_SOURCE
28
2f4e547f 29#ifdef HAVE_CONFIG_H
972a693a 30#if defined (emacs) || defined (CONFIG_BROKETS)
2f4e547f
JM
31/* We use <config.h> instead of "config.h" so that a compilation
32 using -I. -I$srcdir will use ./config.h rather than $srcdir/config.h
33 (which it would do because it found this file in $srcdir). */
34#include <config.h>
35#else
36#include "config.h"
37#endif
38#endif
39
bc78d348
KB
40/* We need this for `regex.h', and perhaps for the Emacs include files. */
41#include <sys/types.h>
42
71715da9 43#ifdef HAVE_CONFIG_H
a8cfc9f7
DM
44#include "config.h"
45#endif
46
bc78d348
KB
47/* The `emacs' switch turns on certain matching commands
48 that make sense only in Emacs. */
49#ifdef emacs
50
bc78d348
KB
51#include "lisp.h"
52#include "buffer.h"
53#include "syntax.h"
54
55/* Emacs uses `NULL' as a predicate. */
56#undef NULL
57
58#else /* not emacs */
59
74da5007
JB
60#ifdef STDC_HEADERS
61#include <stdlib.h>
62#else
63char *malloc ();
64char *realloc ();
65#endif
66
67
bc78d348
KB
68/* We used to test for `BSTRING' here, but only GCC and Emacs define
69 `BSTRING', as far as I know, and neither of them use this code. */
18ec5b05 70#if HAVE_STRING_H || STDC_HEADERS
bc78d348 71#include <string.h>
9114e279 72#ifndef bcmp
bc78d348 73#define bcmp(s1, s2, n) memcmp ((s1), (s2), (n))
9114e279
KB
74#endif
75#ifndef bcopy
bc78d348 76#define bcopy(s, d, n) memcpy ((d), (s), (n))
9114e279
KB
77#endif
78#ifndef bzero
bc78d348 79#define bzero(s, n) memset ((s), 0, (n))
9114e279 80#endif
bc78d348
KB
81#else
82#include <strings.h>
83#endif
84
bc78d348
KB
85/* Define the syntax stuff for \<, \>, etc. */
86
87/* This must be nonzero for the wordchar and notwordchar pattern
88 commands in re_match_2. */
89#ifndef Sword
90#define Sword 1
91#endif
92
93#ifdef SYNTAX_TABLE
94
95extern char *re_syntax_table;
96
97#else /* not SYNTAX_TABLE */
98
99/* How many characters in the character set. */
100#define CHAR_SET_SIZE 256
101
102static char re_syntax_table[CHAR_SET_SIZE];
103
104static void
105init_syntax_once ()
106{
107 register int c;
108 static int done = 0;
109
110 if (done)
111 return;
112
113 bzero (re_syntax_table, sizeof re_syntax_table);
114
115 for (c = 'a'; c <= 'z'; c++)
116 re_syntax_table[c] = Sword;
117
118 for (c = 'A'; c <= 'Z'; c++)
119 re_syntax_table[c] = Sword;
120
121 for (c = '0'; c <= '9'; c++)
122 re_syntax_table[c] = Sword;
123
124 re_syntax_table['_'] = Sword;
125
126 done = 1;
127}
128
129#endif /* not SYNTAX_TABLE */
130
131#define SYNTAX(c) re_syntax_table[c]
132
133#endif /* not emacs */
134\f
135/* Get the interface, including the syntax bits. */
136#include "regex.h"
137
bc78d348
KB
138/* isalpha etc. are used for the character classes. */
139#include <ctype.h>
c6b40788 140
a1dd004b
JB
141/* Jim Meyering writes:
142
143 "... Some ctype macros are valid only for character codes that
144 isascii says are ASCII (SGI's IRIX-4.0.5 is one such system --when
145 using /bin/cc or gcc but without giving an ansi option). So, all
146 ctype uses should be through macros like ISPRINT... If
147 STDC_HEADERS is defined, then autoconf has verified that the ctype
148 macros don't need to be guarded with references to isascii. ...
149 Defining isascii to 1 should let any compiler worth its salt
150 eliminate the && through constant folding." */
6b528f2f
KH
151
152#if defined (STDC_HEADERS) || (!defined (isascii) && !defined (HAVE_ISASCII))
153#define ISASCII(c) 1
154#else
155#define ISASCII(c) isascii(c)
bc78d348 156#endif
c6b40788
JM
157
158#ifdef isblank
6b528f2f 159#define ISBLANK(c) (ISASCII (c) && isblank (c))
c6b40788
JM
160#else
161#define ISBLANK(c) ((c) == ' ' || (c) == '\t')
bc78d348 162#endif
c6b40788 163#ifdef isgraph
6b528f2f 164#define ISGRAPH(c) (ISASCII (c) && isgraph (c))
c6b40788 165#else
6b528f2f 166#define ISGRAPH(c) (ISASCII (c) && isprint (c) && !isspace (c))
c6b40788
JM
167#endif
168
6b528f2f
KH
169#define ISPRINT(c) (ISASCII (c) && isprint (c))
170#define ISDIGIT(c) (ISASCII (c) && isdigit (c))
171#define ISALNUM(c) (ISASCII (c) && isalnum (c))
172#define ISALPHA(c) (ISASCII (c) && isalpha (c))
173#define ISCNTRL(c) (ISASCII (c) && iscntrl (c))
174#define ISLOWER(c) (ISASCII (c) && islower (c))
175#define ISPUNCT(c) (ISASCII (c) && ispunct (c))
176#define ISSPACE(c) (ISASCII (c) && isspace (c))
177#define ISUPPER(c) (ISASCII (c) && isupper (c))
178#define ISXDIGIT(c) (ISASCII (c) && isxdigit (c))
bc78d348
KB
179
180#ifndef NULL
181#define NULL 0
182#endif
183
184/* We remove any previous definition of `SIGN_EXTEND_CHAR',
185 since ours (we hope) works properly with all combinations of
186 machines, compilers, `char' and `unsigned char' argument types.
187 (Per Bothner suggested the basic approach.) */
188#undef SIGN_EXTEND_CHAR
189#if __STDC__
190#define SIGN_EXTEND_CHAR(c) ((signed char) (c))
9114e279 191#else /* not __STDC__ */
bc78d348
KB
192/* As in Harbison and Steele. */
193#define SIGN_EXTEND_CHAR(c) ((((unsigned char) (c)) ^ 128) - 128)
194#endif
195\f
196/* Should we use malloc or alloca? If REGEX_MALLOC is not defined, we
197 use `alloca' instead of `malloc'. This is because using malloc in
198 re_search* or re_match* could cause memory leaks when C-g is used in
199 Emacs; also, malloc is slower and causes storage fragmentation. On
200 the other hand, malloc is more portable, and easier to debug.
201
202 Because we sometimes use alloca, some routines have to be macros,
203 not functions -- `alloca'-allocated space disappears at the end of the
204 function it is called in. */
205
206#ifdef REGEX_MALLOC
207
208#define REGEX_ALLOCATE malloc
209#define REGEX_REALLOCATE(source, osize, nsize) realloc (source, nsize)
210
211#else /* not REGEX_MALLOC */
212
213/* Emacs already defines alloca, sometimes. */
214#ifndef alloca
215
216/* Make alloca work the best possible way. */
217#ifdef __GNUC__
218#define alloca __builtin_alloca
219#else /* not __GNUC__ */
220#if HAVE_ALLOCA_H
221#include <alloca.h>
222#else /* not __GNUC__ or HAVE_ALLOCA_H */
223#ifndef _AIX /* Already did AIX, up at the top. */
224char *alloca ();
225#endif /* not _AIX */
226#endif /* not HAVE_ALLOCA_H */
227#endif /* not __GNUC__ */
228
229#endif /* not alloca */
230
231#define REGEX_ALLOCATE alloca
232
233/* Assumes a `char *destination' variable. */
234#define REGEX_REALLOCATE(source, osize, nsize) \
235 (destination = (char *) alloca (nsize), \
236 bcopy (source, destination, osize), \
237 destination)
238
239#endif /* not REGEX_MALLOC */
240
241
242/* True if `size1' is non-NULL and PTR is pointing anywhere inside
243 `string1' or just past its end. This works if PTR is NULL, which is
244 a good thing. */
245#define FIRST_STRING_P(ptr) \
246 (size1 && string1 <= (ptr) && (ptr) <= string1 + size1)
247
248/* (Re)Allocate N items of type T using malloc, or fail. */
249#define TALLOC(n, t) ((t *) malloc ((n) * sizeof (t)))
250#define RETALLOC(addr, n, t) ((addr) = (t *) realloc (addr, (n) * sizeof (t)))
e959bada
JB
251#define RETALLOC_IF(addr, n, t) \
252 if (addr) RETALLOC((addr), (n), t); else (addr) = TALLOC ((n), t)
bc78d348
KB
253#define REGEX_TALLOC(n, t) ((t *) REGEX_ALLOCATE ((n) * sizeof (t)))
254
255#define BYTEWIDTH 8 /* In bits. */
256
257#define STREQ(s1, s2) ((strcmp (s1, s2) == 0))
258
63268f76
KH
259#undef MAX
260#undef MIN
bc78d348
KB
261#define MAX(a, b) ((a) > (b) ? (a) : (b))
262#define MIN(a, b) ((a) < (b) ? (a) : (b))
263
264typedef char boolean;
265#define false 0
266#define true 1
f765858e
KH
267
268static int re_match_2_internal ();
bc78d348
KB
269\f
270/* These are the command codes that appear in compiled regular
271 expressions. Some opcodes are followed by argument bytes. A
272 command code can specify any interpretation whatsoever for its
273 arguments. Zero bytes may appear in the compiled regular expression.
274
275 The value of `exactn' is needed in search.c (search_buffer) in Emacs.
276 So regex.h defines a symbol `RE_EXACTN_VALUE' to be 1; the value of
277 `exactn' we use here must also be 1. */
278
279typedef enum
280{
281 no_op = 0,
282
283 /* Followed by one byte giving n, then by n literal bytes. */
284 exactn = 1,
285
286 /* Matches any (more or less) character. */
287 anychar,
288
289 /* Matches any one char belonging to specified set. First
290 following byte is number of bitmap bytes. Then come bytes
291 for a bitmap saying which chars are in. Bits in each byte
292 are ordered low-bit-first. A character is in the set if its
293 bit is 1. A character too large to have a bit in the map is
294 automatically not in the set. */
295 charset,
296
297 /* Same parameters as charset, but match any character that is
298 not one of those specified. */
299 charset_not,
300
301 /* Start remembering the text that is matched, for storing in a
302 register. Followed by one byte with the register number, in
303 the range 0 to one less than the pattern buffer's re_nsub
304 field. Then followed by one byte with the number of groups
305 inner to this one. (This last has to be part of the
306 start_memory only because we need it in the on_failure_jump
307 of re_match_2.) */
308 start_memory,
309
310 /* Stop remembering the text that is matched and store it in a
311 memory register. Followed by one byte with the register
312 number, in the range 0 to one less than `re_nsub' in the
313 pattern buffer, and one byte with the number of inner groups,
314 just like `start_memory'. (We need the number of inner
315 groups here because we don't have any easy way of finding the
316 corresponding start_memory when we're at a stop_memory.) */
317 stop_memory,
318
319 /* Match a duplicate of something remembered. Followed by one
320 byte containing the register number. */
321 duplicate,
322
323 /* Fail unless at beginning of line. */
324 begline,
325
326 /* Fail unless at end of line. */
327 endline,
328
329 /* Succeeds if at beginning of buffer (if emacs) or at beginning
330 of string to be matched (if not). */
331 begbuf,
332
333 /* Analogously, for end of buffer/string. */
334 endbuf,
335
336 /* Followed by two byte relative address to which to jump. */
337 jump,
338
339 /* Same as jump, but marks the end of an alternative. */
340 jump_past_alt,
341
342 /* Followed by two-byte relative address of place to resume at
343 in case of failure. */
344 on_failure_jump,
345
346 /* Like on_failure_jump, but pushes a placeholder instead of the
347 current string position when executed. */
348 on_failure_keep_string_jump,
349
350 /* Throw away latest failure point and then jump to following
351 two-byte relative address. */
352 pop_failure_jump,
353
354 /* Change to pop_failure_jump if know won't have to backtrack to
355 match; otherwise change to jump. This is used to jump
356 back to the beginning of a repeat. If what follows this jump
357 clearly won't match what the repeat does, such that we can be
358 sure that there is no use backtracking out of repetitions
359 already matched, then we change it to a pop_failure_jump.
360 Followed by two-byte address. */
361 maybe_pop_jump,
362
363 /* Jump to following two-byte address, and push a dummy failure
364 point. This failure point will be thrown away if an attempt
365 is made to use it for a failure. A `+' construct makes this
366 before the first repeat. Also used as an intermediary kind
367 of jump when compiling an alternative. */
368 dummy_failure_jump,
369
370 /* Push a dummy failure point and continue. Used at the end of
371 alternatives. */
372 push_dummy_failure,
373
374 /* Followed by two-byte relative address and two-byte number n.
375 After matching N times, jump to the address upon failure. */
376 succeed_n,
377
378 /* Followed by two-byte relative address, and two-byte number n.
379 Jump to the address N times, then fail. */
380 jump_n,
381
382 /* Set the following two-byte relative address to the
383 subsequent two-byte number. The address *includes* the two
384 bytes of number. */
385 set_number_at,
386
387 wordchar, /* Matches any word-constituent character. */
388 notwordchar, /* Matches any char that is not a word-constituent. */
389
390 wordbeg, /* Succeeds if at word beginning. */
391 wordend, /* Succeeds if at word end. */
392
393 wordbound, /* Succeeds if at a word boundary. */
394 notwordbound /* Succeeds if not at a word boundary. */
395
396#ifdef emacs
397 ,before_dot, /* Succeeds if before point. */
398 at_dot, /* Succeeds if at point. */
399 after_dot, /* Succeeds if after point. */
400
401 /* Matches any character whose syntax is specified. Followed by
402 a byte which contains a syntax code, e.g., Sword. */
403 syntaxspec,
404
405 /* Matches any character whose syntax is not that specified. */
406 notsyntaxspec
407#endif /* emacs */
408} re_opcode_t;
409\f
410/* Common operations on the compiled pattern. */
411
412/* Store NUMBER in two contiguous bytes starting at DESTINATION. */
413
414#define STORE_NUMBER(destination, number) \
415 do { \
416 (destination)[0] = (number) & 0377; \
417 (destination)[1] = (number) >> 8; \
418 } while (0)
419
420/* Same as STORE_NUMBER, except increment DESTINATION to
421 the byte after where the number is stored. Therefore, DESTINATION
422 must be an lvalue. */
423
424#define STORE_NUMBER_AND_INCR(destination, number) \
425 do { \
426 STORE_NUMBER (destination, number); \
427 (destination) += 2; \
428 } while (0)
429
430/* Put into DESTINATION a number stored in two contiguous bytes starting
431 at SOURCE. */
432
433#define EXTRACT_NUMBER(destination, source) \
434 do { \
435 (destination) = *(source) & 0377; \
436 (destination) += SIGN_EXTEND_CHAR (*((source) + 1)) << 8; \
437 } while (0)
438
439#ifdef DEBUG
440static void
441extract_number (dest, source)
442 int *dest;
443 unsigned char *source;
444{
445 int temp = SIGN_EXTEND_CHAR (*(source + 1));
446 *dest = *source & 0377;
447 *dest += temp << 8;
448}
449
450#ifndef EXTRACT_MACROS /* To debug the macros. */
451#undef EXTRACT_NUMBER
452#define EXTRACT_NUMBER(dest, src) extract_number (&dest, src)
453#endif /* not EXTRACT_MACROS */
454
455#endif /* DEBUG */
456
457/* Same as EXTRACT_NUMBER, except increment SOURCE to after the number.
458 SOURCE must be an lvalue. */
459
460#define EXTRACT_NUMBER_AND_INCR(destination, source) \
461 do { \
462 EXTRACT_NUMBER (destination, source); \
463 (source) += 2; \
464 } while (0)
465
466#ifdef DEBUG
467static void
468extract_number_and_incr (destination, source)
469 int *destination;
470 unsigned char **source;
471{
472 extract_number (destination, *source);
473 *source += 2;
474}
475
476#ifndef EXTRACT_MACROS
477#undef EXTRACT_NUMBER_AND_INCR
478#define EXTRACT_NUMBER_AND_INCR(dest, src) \
479 extract_number_and_incr (&dest, &src)
480#endif /* not EXTRACT_MACROS */
481
482#endif /* DEBUG */
483\f
484/* If DEBUG is defined, Regex prints many voluminous messages about what
485 it is doing (if the variable `debug' is nonzero). If linked with the
486 main program in `iregex.c', you can enter patterns and strings
487 interactively. And if linked with the main program in `main.c' and
488 the other test files, you can run the already-written tests. */
489
490#ifdef DEBUG
491
492/* We use standard I/O for debugging. */
493#include <stdio.h>
494
495/* It is useful to test things that ``must'' be true when debugging. */
496#include <assert.h>
497
498static int debug = 0;
499
500#define DEBUG_STATEMENT(e) e
501#define DEBUG_PRINT1(x) if (debug) printf (x)
502#define DEBUG_PRINT2(x1, x2) if (debug) printf (x1, x2)
503#define DEBUG_PRINT3(x1, x2, x3) if (debug) printf (x1, x2, x3)
9114e279 504#define DEBUG_PRINT4(x1, x2, x3, x4) if (debug) printf (x1, x2, x3, x4)
bc78d348
KB
505#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e) \
506 if (debug) print_partial_compiled_pattern (s, e)
507#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2) \
508 if (debug) print_double_string (w, s1, sz1, s2, sz2)
509
510
511extern void printchar ();
512
513/* Print the fastmap in human-readable form. */
514
515void
516print_fastmap (fastmap)
517 char *fastmap;
518{
519 unsigned was_a_range = 0;
520 unsigned i = 0;
521
522 while (i < (1 << BYTEWIDTH))
523 {
524 if (fastmap[i++])
525 {
526 was_a_range = 0;
527 printchar (i - 1);
528 while (i < (1 << BYTEWIDTH) && fastmap[i])
529 {
530 was_a_range = 1;
531 i++;
532 }
533 if (was_a_range)
534 {
535 printf ("-");
536 printchar (i - 1);
537 }
538 }
539 }
540 putchar ('\n');
541}
542
543
544/* Print a compiled pattern string in human-readable form, starting at
545 the START pointer into it and ending just before the pointer END. */
546
547void
548print_partial_compiled_pattern (start, end)
549 unsigned char *start;
550 unsigned char *end;
551{
552 int mcnt, mcnt2;
553 unsigned char *p = start;
554 unsigned char *pend = end;
555
556 if (start == NULL)
557 {
558 printf ("(null)\n");
559 return;
560 }
561
562 /* Loop over pattern commands. */
563 while (p < pend)
564 {
b0bef8c5
JB
565 printf ("%d:\t", p - start);
566
bc78d348
KB
567 switch ((re_opcode_t) *p++)
568 {
569 case no_op:
570 printf ("/no_op");
571 break;
572
573 case exactn:
574 mcnt = *p++;
575 printf ("/exactn/%d", mcnt);
576 do
577 {
578 putchar ('/');
579 printchar (*p++);
580 }
581 while (--mcnt);
582 break;
583
584 case start_memory:
585 mcnt = *p++;
586 printf ("/start_memory/%d/%d", mcnt, *p++);
587 break;
588
589 case stop_memory:
590 mcnt = *p++;
591 printf ("/stop_memory/%d/%d", mcnt, *p++);
592 break;
593
594 case duplicate:
595 printf ("/duplicate/%d", *p++);
596 break;
597
598 case anychar:
599 printf ("/anychar");
600 break;
601
602 case charset:
603 case charset_not:
604 {
b0bef8c5
JB
605 register int c, last = -100;
606 register int in_range = 0;
bc78d348 607
b0bef8c5
JB
608 printf ("/charset [%s",
609 (re_opcode_t) *(p - 1) == charset_not ? "^" : "");
bc78d348
KB
610
611 assert (p + *p < pend);
612
b0bef8c5
JB
613 for (c = 0; c < 256; c++)
614 if (c / 8 < *p
615 && (p[1 + (c/8)] & (1 << (c % 8))))
616 {
617 /* Are we starting a range? */
618 if (last + 1 == c && ! in_range)
619 {
620 putchar ('-');
621 in_range = 1;
622 }
623 /* Have we broken a range? */
624 else if (last + 1 != c && in_range)
bc78d348 625 {
b0bef8c5
JB
626 printchar (last);
627 in_range = 0;
628 }
bc78d348 629
b0bef8c5
JB
630 if (! in_range)
631 printchar (c);
bc78d348 632
b0bef8c5 633 last = c;
bc78d348 634 }
b0bef8c5
JB
635
636 if (in_range)
637 printchar (last);
638
639 putchar (']');
640
bc78d348 641 p += 1 + *p;
bc78d348 642 }
b0bef8c5 643 break;
bc78d348
KB
644
645 case begline:
646 printf ("/begline");
647 break;
648
649 case endline:
650 printf ("/endline");
651 break;
652
653 case on_failure_jump:
654 extract_number_and_incr (&mcnt, &p);
b0bef8c5 655 printf ("/on_failure_jump to %d", p + mcnt - start);
bc78d348
KB
656 break;
657
658 case on_failure_keep_string_jump:
659 extract_number_and_incr (&mcnt, &p);
b0bef8c5 660 printf ("/on_failure_keep_string_jump to %d", p + mcnt - start);
bc78d348
KB
661 break;
662
663 case dummy_failure_jump:
664 extract_number_and_incr (&mcnt, &p);
b0bef8c5 665 printf ("/dummy_failure_jump to %d", p + mcnt - start);
bc78d348
KB
666 break;
667
668 case push_dummy_failure:
669 printf ("/push_dummy_failure");
670 break;
671
672 case maybe_pop_jump:
673 extract_number_and_incr (&mcnt, &p);
b0bef8c5 674 printf ("/maybe_pop_jump to %d", p + mcnt - start);
bc78d348
KB
675 break;
676
677 case pop_failure_jump:
678 extract_number_and_incr (&mcnt, &p);
b0bef8c5 679 printf ("/pop_failure_jump to %d", p + mcnt - start);
bc78d348
KB
680 break;
681
682 case jump_past_alt:
683 extract_number_and_incr (&mcnt, &p);
b0bef8c5 684 printf ("/jump_past_alt to %d", p + mcnt - start);
bc78d348
KB
685 break;
686
687 case jump:
688 extract_number_and_incr (&mcnt, &p);
b0bef8c5 689 printf ("/jump to %d", p + mcnt - start);
bc78d348
KB
690 break;
691
692 case succeed_n:
693 extract_number_and_incr (&mcnt, &p);
694 extract_number_and_incr (&mcnt2, &p);
b0bef8c5 695 printf ("/succeed_n to %d, %d times", p + mcnt - start, mcnt2);
bc78d348
KB
696 break;
697
698 case jump_n:
699 extract_number_and_incr (&mcnt, &p);
700 extract_number_and_incr (&mcnt2, &p);
b0bef8c5 701 printf ("/jump_n to %d, %d times", p + mcnt - start, mcnt2);
bc78d348
KB
702 break;
703
704 case set_number_at:
705 extract_number_and_incr (&mcnt, &p);
706 extract_number_and_incr (&mcnt2, &p);
b0bef8c5 707 printf ("/set_number_at location %d to %d", p + mcnt - start, mcnt2);
bc78d348
KB
708 break;
709
710 case wordbound:
711 printf ("/wordbound");
712 break;
713
714 case notwordbound:
715 printf ("/notwordbound");
716 break;
717
718 case wordbeg:
719 printf ("/wordbeg");
720 break;
721
722 case wordend:
723 printf ("/wordend");
724
725#ifdef emacs
726 case before_dot:
727 printf ("/before_dot");
728 break;
729
730 case at_dot:
731 printf ("/at_dot");
732 break;
733
734 case after_dot:
735 printf ("/after_dot");
736 break;
737
738 case syntaxspec:
739 printf ("/syntaxspec");
740 mcnt = *p++;
741 printf ("/%d", mcnt);
742 break;
743
744 case notsyntaxspec:
745 printf ("/notsyntaxspec");
746 mcnt = *p++;
747 printf ("/%d", mcnt);
748 break;
749#endif /* emacs */
750
751 case wordchar:
752 printf ("/wordchar");
753 break;
754
755 case notwordchar:
756 printf ("/notwordchar");
757 break;
758
759 case begbuf:
760 printf ("/begbuf");
761 break;
762
763 case endbuf:
764 printf ("/endbuf");
765 break;
766
767 default:
768 printf ("?%d", *(p-1));
769 }
b0bef8c5
JB
770
771 putchar ('\n');
bc78d348 772 }
b0bef8c5
JB
773
774 printf ("%d:\tend of pattern.\n", p - start);
bc78d348
KB
775}
776
777
778void
779print_compiled_pattern (bufp)
780 struct re_pattern_buffer *bufp;
781{
782 unsigned char *buffer = bufp->buffer;
783
784 print_partial_compiled_pattern (buffer, buffer + bufp->used);
785 printf ("%d bytes used/%d bytes allocated.\n", bufp->used, bufp->allocated);
786
787 if (bufp->fastmap_accurate && bufp->fastmap)
788 {
789 printf ("fastmap: ");
790 print_fastmap (bufp->fastmap);
791 }
792
793 printf ("re_nsub: %d\t", bufp->re_nsub);
794 printf ("regs_alloc: %d\t", bufp->regs_allocated);
795 printf ("can_be_null: %d\t", bufp->can_be_null);
796 printf ("newline_anchor: %d\n", bufp->newline_anchor);
797 printf ("no_sub: %d\t", bufp->no_sub);
798 printf ("not_bol: %d\t", bufp->not_bol);
799 printf ("not_eol: %d\t", bufp->not_eol);
800 printf ("syntax: %d\n", bufp->syntax);
801 /* Perhaps we should print the translate table? */
802}
803
804
805void
806print_double_string (where, string1, size1, string2, size2)
807 const char *where;
808 const char *string1;
809 const char *string2;
810 int size1;
811 int size2;
812{
813 unsigned this_char;
814
815 if (where == NULL)
816 printf ("(null)");
817 else
818 {
819 if (FIRST_STRING_P (where))
820 {
821 for (this_char = where - string1; this_char < size1; this_char++)
822 printchar (string1[this_char]);
823
824 where = string2;
825 }
826
827 for (this_char = where - string2; this_char < size2; this_char++)
828 printchar (string2[this_char]);
829 }
830}
831
832#else /* not DEBUG */
833
834#undef assert
835#define assert(e)
836
837#define DEBUG_STATEMENT(e)
838#define DEBUG_PRINT1(x)
839#define DEBUG_PRINT2(x1, x2)
840#define DEBUG_PRINT3(x1, x2, x3)
9114e279 841#define DEBUG_PRINT4(x1, x2, x3, x4)
bc78d348
KB
842#define DEBUG_PRINT_COMPILED_PATTERN(p, s, e)
843#define DEBUG_PRINT_DOUBLE_STRING(w, s1, sz1, s2, sz2)
844
845#endif /* not DEBUG */
846\f
847/* Set by `re_set_syntax' to the current regexp syntax to recognize. Can
848 also be assigned to arbitrarily: each pattern buffer stores its own
849 syntax, so it can be changed between regex compilations. */
850reg_syntax_t re_syntax_options = RE_SYNTAX_EMACS;
851
852
853/* Specify the precise syntax of regexps for compilation. This provides
854 for compatibility for various utilities which historically have
855 different, incompatible syntaxes.
856
857 The argument SYNTAX is a bit mask comprised of the various bits
858 defined in regex.h. We return the old syntax. */
859
860reg_syntax_t
861re_set_syntax (syntax)
862 reg_syntax_t syntax;
863{
864 reg_syntax_t ret = re_syntax_options;
865
866 re_syntax_options = syntax;
867 return ret;
868}
869\f
870/* This table gives an error message for each of the error codes listed
871 in regex.h. Obviously the order here has to be same as there. */
872
873static const char *re_error_msg[] =
874 { NULL, /* REG_NOERROR */
875 "No match", /* REG_NOMATCH */
876 "Invalid regular expression", /* REG_BADPAT */
877 "Invalid collation character", /* REG_ECOLLATE */
878 "Invalid character class name", /* REG_ECTYPE */
879 "Trailing backslash", /* REG_EESCAPE */
880 "Invalid back reference", /* REG_ESUBREG */
881 "Unmatched [ or [^", /* REG_EBRACK */
882 "Unmatched ( or \\(", /* REG_EPAREN */
883 "Unmatched \\{", /* REG_EBRACE */
884 "Invalid content of \\{\\}", /* REG_BADBR */
885 "Invalid range end", /* REG_ERANGE */
886 "Memory exhausted", /* REG_ESPACE */
887 "Invalid preceding regular expression", /* REG_BADRPT */
888 "Premature end of regular expression", /* REG_EEND */
889 "Regular expression too big", /* REG_ESIZE */
890 "Unmatched ) or \\)", /* REG_ERPAREN */
891 };
892\f
e959bada
JB
893/* Avoiding alloca during matching, to placate r_alloc. */
894
a822d92f 895/* Define MATCH_MAY_ALLOCATE if we need to make sure that the
e959bada
JB
896 searching and matching functions should not call alloca. On some
897 systems, alloca is implemented in terms of malloc, and if we're
898 using the relocating allocator routines, then malloc could cause a
899 relocation, which might (if the strings being searched are in the
900 ralloc heap) shift the data out from underneath the regexp
85be3101
JB
901 routines.
902
903 Here's another reason to avoid allocation: Emacs insists on
904 processing input from X in a signal handler; processing X input may
905 call malloc; if input arrives while a matching routine is calling
906 malloc, then we're scrod. But Emacs can't just block input while
907 calling matching routines; then we don't notice interrupts when
908 they come in. So, Emacs blocks input around all regexp calls
909 except the matching calls, which it leaves unprotected, in the
910 faith that they will not malloc. */
a822d92f
JB
911
912/* Normally, this is fine. */
913#define MATCH_MAY_ALLOCATE
914
915/* But under some circumstances, it's not. */
85be3101 916#if defined (emacs) || (defined (REL_ALLOC) && defined (C_ALLOCA))
a822d92f 917#undef MATCH_MAY_ALLOCATE
e959bada 918#endif
bc78d348 919
e959bada
JB
920\f
921/* Failure stack declarations and macros; both re_compile_fastmap and
922 re_match_2 use a failure stack. These have to be macros because of
923 REGEX_ALLOCATE. */
924
bc78d348 925
e959bada
JB
926/* Number of failure points for which to initially allocate space
927 when matching. If this number is exceeded, we allocate more
928 space, so it is not a hard limit. */
929#ifndef INIT_FAILURE_ALLOC
930#define INIT_FAILURE_ALLOC 5
931#endif
bc78d348 932
e959bada
JB
933/* Roughly the maximum number of failure points on the stack. Would be
934 exactly that if always used MAX_FAILURE_SPACE each time we failed.
935 This is a variable only so users of regex can assign to it; we never
936 change it ourselves. */
937int re_max_failures = 2000;
bc78d348 938
794ce2c1 939typedef unsigned char *fail_stack_elt_t;
bc78d348 940
e959bada
JB
941typedef struct
942{
943 fail_stack_elt_t *stack;
944 unsigned size;
945 unsigned avail; /* Offset of next open position. */
946} fail_stack_type;
bc78d348 947
e959bada
JB
948#define FAIL_STACK_EMPTY() (fail_stack.avail == 0)
949#define FAIL_STACK_PTR_EMPTY() (fail_stack_ptr->avail == 0)
950#define FAIL_STACK_FULL() (fail_stack.avail == fail_stack.size)
951#define FAIL_STACK_TOP() (fail_stack.stack[fail_stack.avail])
bc78d348 952
bc78d348 953
e959bada 954/* Initialize `fail_stack'. Do `return -2' if the alloc fails. */
bc78d348 955
a822d92f 956#ifdef MATCH_MAY_ALLOCATE
e959bada 957#define INIT_FAIL_STACK() \
bc78d348 958 do { \
e959bada
JB
959 fail_stack.stack = (fail_stack_elt_t *) \
960 REGEX_ALLOCATE (INIT_FAILURE_ALLOC * sizeof (fail_stack_elt_t)); \
961 \
962 if (fail_stack.stack == NULL) \
963 return -2; \
964 \
965 fail_stack.size = INIT_FAILURE_ALLOC; \
966 fail_stack.avail = 0; \
bc78d348 967 } while (0)
e959bada
JB
968#else
969#define INIT_FAIL_STACK() \
bc78d348 970 do { \
e959bada 971 fail_stack.avail = 0; \
bc78d348 972 } while (0)
e959bada 973#endif
bc78d348
KB
974
975
e959bada 976/* Double the size of FAIL_STACK, up to approximately `re_max_failures' items.
bc78d348 977
e959bada
JB
978 Return 1 if succeeds, and 0 if either ran out of memory
979 allocating space for it or it was already too large.
980
981 REGEX_REALLOCATE requires `destination' be declared. */
bc78d348 982
e959bada
JB
983#define DOUBLE_FAIL_STACK(fail_stack) \
984 ((fail_stack).size > re_max_failures * MAX_FAILURE_ITEMS \
985 ? 0 \
986 : ((fail_stack).stack = (fail_stack_elt_t *) \
987 REGEX_REALLOCATE ((fail_stack).stack, \
988 (fail_stack).size * sizeof (fail_stack_elt_t), \
989 ((fail_stack).size << 1) * sizeof (fail_stack_elt_t)), \
990 \
991 (fail_stack).stack == NULL \
992 ? 0 \
993 : ((fail_stack).size <<= 1, \
994 1)))
bc78d348 995
bc78d348 996
e959bada 997/* Push PATTERN_OP on FAIL_STACK.
bc78d348 998
e959bada
JB
999 Return 1 if was able to do so and 0 if ran out of memory allocating
1000 space to do so. */
1001#define PUSH_PATTERN_OP(pattern_op, fail_stack) \
1002 ((FAIL_STACK_FULL () \
1003 && !DOUBLE_FAIL_STACK (fail_stack)) \
1004 ? 0 \
1005 : ((fail_stack).stack[(fail_stack).avail++] = pattern_op, \
1006 1))
bc78d348 1007
e959bada
JB
1008/* This pushes an item onto the failure stack. Must be a four-byte
1009 value. Assumes the variable `fail_stack'. Probably should only
1010 be called from within `PUSH_FAILURE_POINT'. */
1011#define PUSH_FAILURE_ITEM(item) \
1012 fail_stack.stack[fail_stack.avail++] = (fail_stack_elt_t) item
bc78d348 1013
e959bada
JB
1014/* The complement operation. Assumes `fail_stack' is nonempty. */
1015#define POP_FAILURE_ITEM() fail_stack.stack[--fail_stack.avail]
bc78d348 1016
e959bada
JB
1017/* Used to omit pushing failure point id's when we're not debugging. */
1018#ifdef DEBUG
1019#define DEBUG_PUSH PUSH_FAILURE_ITEM
1020#define DEBUG_POP(item_addr) *(item_addr) = POP_FAILURE_ITEM ()
1021#else
1022#define DEBUG_PUSH(item)
1023#define DEBUG_POP(item_addr)
1024#endif
bc78d348 1025
bc78d348 1026
e959bada
JB
1027/* Push the information about the state we will need
1028 if we ever fail back to it.
1029
1030 Requires variables fail_stack, regstart, regend, reg_info, and
1031 num_regs be declared. DOUBLE_FAIL_STACK requires `destination' be
1032 declared.
1033
1034 Does `return FAILURE_CODE' if runs out of memory. */
bc78d348 1035
e959bada
JB
1036#define PUSH_FAILURE_POINT(pattern_place, string_place, failure_code) \
1037 do { \
1038 char *destination; \
1039 /* Must be int, so when we don't save any registers, the arithmetic \
1040 of 0 + -1 isn't done as unsigned. */ \
1041 int this_reg; \
1042 \
1043 DEBUG_STATEMENT (failure_id++); \
1044 DEBUG_STATEMENT (nfailure_points_pushed++); \
1045 DEBUG_PRINT2 ("\nPUSH_FAILURE_POINT #%u:\n", failure_id); \
1046 DEBUG_PRINT2 (" Before push, next avail: %d\n", (fail_stack).avail);\
1047 DEBUG_PRINT2 (" size: %d\n", (fail_stack).size);\
1048 \
1049 DEBUG_PRINT2 (" slots needed: %d\n", NUM_FAILURE_ITEMS); \
1050 DEBUG_PRINT2 (" available: %d\n", REMAINING_AVAIL_SLOTS); \
1051 \
1052 /* Ensure we have enough space allocated for what we will push. */ \
1053 while (REMAINING_AVAIL_SLOTS < NUM_FAILURE_ITEMS) \
1054 { \
1055 if (!DOUBLE_FAIL_STACK (fail_stack)) \
1056 return failure_code; \
1057 \
1058 DEBUG_PRINT2 ("\n Doubled stack; size now: %d\n", \
1059 (fail_stack).size); \
1060 DEBUG_PRINT2 (" slots available: %d\n", REMAINING_AVAIL_SLOTS);\
1061 } \
1062 \
1063 /* Push the info, starting with the registers. */ \
1064 DEBUG_PRINT1 ("\n"); \
1065 \
1066 for (this_reg = lowest_active_reg; this_reg <= highest_active_reg; \
1067 this_reg++) \
1068 { \
1069 DEBUG_PRINT2 (" Pushing reg: %d\n", this_reg); \
1070 DEBUG_STATEMENT (num_regs_pushed++); \
1071 \
1072 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1073 PUSH_FAILURE_ITEM (regstart[this_reg]); \
1074 \
1075 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1076 PUSH_FAILURE_ITEM (regend[this_reg]); \
1077 \
1078 DEBUG_PRINT2 (" info: 0x%x\n ", reg_info[this_reg]); \
1079 DEBUG_PRINT2 (" match_null=%d", \
1080 REG_MATCH_NULL_STRING_P (reg_info[this_reg])); \
1081 DEBUG_PRINT2 (" active=%d", IS_ACTIVE (reg_info[this_reg])); \
1082 DEBUG_PRINT2 (" matched_something=%d", \
1083 MATCHED_SOMETHING (reg_info[this_reg])); \
1084 DEBUG_PRINT2 (" ever_matched=%d", \
1085 EVER_MATCHED_SOMETHING (reg_info[this_reg])); \
1086 DEBUG_PRINT1 ("\n"); \
1087 PUSH_FAILURE_ITEM (reg_info[this_reg].word); \
1088 } \
1089 \
1090 DEBUG_PRINT2 (" Pushing low active reg: %d\n", lowest_active_reg);\
1091 PUSH_FAILURE_ITEM (lowest_active_reg); \
1092 \
1093 DEBUG_PRINT2 (" Pushing high active reg: %d\n", highest_active_reg);\
1094 PUSH_FAILURE_ITEM (highest_active_reg); \
1095 \
1096 DEBUG_PRINT2 (" Pushing pattern 0x%x: ", pattern_place); \
1097 DEBUG_PRINT_COMPILED_PATTERN (bufp, pattern_place, pend); \
1098 PUSH_FAILURE_ITEM (pattern_place); \
1099 \
1100 DEBUG_PRINT2 (" Pushing string 0x%x: `", string_place); \
1101 DEBUG_PRINT_DOUBLE_STRING (string_place, string1, size1, string2, \
1102 size2); \
1103 DEBUG_PRINT1 ("'\n"); \
1104 PUSH_FAILURE_ITEM (string_place); \
1105 \
1106 DEBUG_PRINT2 (" Pushing failure id: %u\n", failure_id); \
1107 DEBUG_PUSH (failure_id); \
1108 } while (0)
1109
1110/* This is the number of items that are pushed and popped on the stack
1111 for each register. */
1112#define NUM_REG_ITEMS 3
1113
1114/* Individual items aside from the registers. */
1115#ifdef DEBUG
1116#define NUM_NONREG_ITEMS 5 /* Includes failure point id. */
1117#else
1118#define NUM_NONREG_ITEMS 4
1119#endif
1120
1121/* We push at most this many items on the stack. */
1122#define MAX_FAILURE_ITEMS ((num_regs - 1) * NUM_REG_ITEMS + NUM_NONREG_ITEMS)
1123
1124/* We actually push this many items. */
1125#define NUM_FAILURE_ITEMS \
1126 ((highest_active_reg - lowest_active_reg + 1) * NUM_REG_ITEMS \
1127 + NUM_NONREG_ITEMS)
1128
1129/* How many items can still be added to the stack without overflowing it. */
1130#define REMAINING_AVAIL_SLOTS ((fail_stack).size - (fail_stack).avail)
1131
1132
1133/* Pops what PUSH_FAIL_STACK pushes.
1134
1135 We restore into the parameters, all of which should be lvalues:
1136 STR -- the saved data position.
1137 PAT -- the saved pattern position.
1138 LOW_REG, HIGH_REG -- the highest and lowest active registers.
1139 REGSTART, REGEND -- arrays of string positions.
1140 REG_INFO -- array of information about each subexpression.
1141
1142 Also assumes the variables `fail_stack' and (if debugging), `bufp',
1143 `pend', `string1', `size1', `string2', and `size2'. */
1144
1145#define POP_FAILURE_POINT(str, pat, low_reg, high_reg, regstart, regend, reg_info)\
1146{ \
1147 DEBUG_STATEMENT (fail_stack_elt_t failure_id;) \
1148 int this_reg; \
1149 const unsigned char *string_temp; \
1150 \
1151 assert (!FAIL_STACK_EMPTY ()); \
1152 \
1153 /* Remove failure points and point to how many regs pushed. */ \
1154 DEBUG_PRINT1 ("POP_FAILURE_POINT:\n"); \
1155 DEBUG_PRINT2 (" Before pop, next avail: %d\n", fail_stack.avail); \
1156 DEBUG_PRINT2 (" size: %d\n", fail_stack.size); \
1157 \
1158 assert (fail_stack.avail >= NUM_NONREG_ITEMS); \
1159 \
1160 DEBUG_POP (&failure_id); \
1161 DEBUG_PRINT2 (" Popping failure id: %u\n", failure_id); \
1162 \
1163 /* If the saved string location is NULL, it came from an \
1164 on_failure_keep_string_jump opcode, and we want to throw away the \
1165 saved NULL, thus retaining our current position in the string. */ \
1166 string_temp = POP_FAILURE_ITEM (); \
1167 if (string_temp != NULL) \
1168 str = (const char *) string_temp; \
1169 \
1170 DEBUG_PRINT2 (" Popping string 0x%x: `", str); \
1171 DEBUG_PRINT_DOUBLE_STRING (str, string1, size1, string2, size2); \
1172 DEBUG_PRINT1 ("'\n"); \
1173 \
1174 pat = (unsigned char *) POP_FAILURE_ITEM (); \
1175 DEBUG_PRINT2 (" Popping pattern 0x%x: ", pat); \
1176 DEBUG_PRINT_COMPILED_PATTERN (bufp, pat, pend); \
1177 \
1178 /* Restore register info. */ \
1179 high_reg = (unsigned) POP_FAILURE_ITEM (); \
1180 DEBUG_PRINT2 (" Popping high active reg: %d\n", high_reg); \
1181 \
1182 low_reg = (unsigned) POP_FAILURE_ITEM (); \
1183 DEBUG_PRINT2 (" Popping low active reg: %d\n", low_reg); \
1184 \
1185 for (this_reg = high_reg; this_reg >= low_reg; this_reg--) \
1186 { \
1187 DEBUG_PRINT2 (" Popping reg: %d\n", this_reg); \
1188 \
1189 reg_info[this_reg].word = POP_FAILURE_ITEM (); \
1190 DEBUG_PRINT2 (" info: 0x%x\n", reg_info[this_reg]); \
1191 \
1192 regend[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1193 DEBUG_PRINT2 (" end: 0x%x\n", regend[this_reg]); \
1194 \
1195 regstart[this_reg] = (const char *) POP_FAILURE_ITEM (); \
1196 DEBUG_PRINT2 (" start: 0x%x\n", regstart[this_reg]); \
1197 } \
1198 \
1199 DEBUG_STATEMENT (nfailure_points_popped++); \
1200} /* POP_FAILURE_POINT */
1201
1202
1203\f
1204/* Structure for per-register (a.k.a. per-group) information.
1205 This must not be longer than one word, because we push this value
1206 onto the failure stack. Other register information, such as the
1207 starting and ending positions (which are addresses), and the list of
1208 inner groups (which is a bits list) are maintained in separate
1209 variables.
1210
1211 We are making a (strictly speaking) nonportable assumption here: that
1212 the compiler will pack our bit fields into something that fits into
1213 the type of `word', i.e., is something that fits into one item on the
1214 failure stack. */
1215typedef union
1216{
1217 fail_stack_elt_t word;
1218 struct
1219 {
1220 /* This field is one if this group can match the empty string,
1221 zero if not. If not yet determined, `MATCH_NULL_UNSET_VALUE'. */
1222#define MATCH_NULL_UNSET_VALUE 3
1223 unsigned match_null_string_p : 2;
1224 unsigned is_active : 1;
1225 unsigned matched_something : 1;
1226 unsigned ever_matched_something : 1;
1227 } bits;
1228} register_info_type;
1229
1230#define REG_MATCH_NULL_STRING_P(R) ((R).bits.match_null_string_p)
1231#define IS_ACTIVE(R) ((R).bits.is_active)
1232#define MATCHED_SOMETHING(R) ((R).bits.matched_something)
1233#define EVER_MATCHED_SOMETHING(R) ((R).bits.ever_matched_something)
1234
1235
1236/* Call this when have matched a real character; it sets `matched' flags
1237 for the subexpressions which we are currently inside. Also records
1238 that those subexprs have matched. */
1239#define SET_REGS_MATCHED() \
1240 do \
1241 { \
1242 unsigned r; \
1243 for (r = lowest_active_reg; r <= highest_active_reg; r++) \
1244 { \
1245 MATCHED_SOMETHING (reg_info[r]) \
1246 = EVER_MATCHED_SOMETHING (reg_info[r]) \
1247 = 1; \
1248 } \
1249 } \
1250 while (0)
1251
1252
1253/* Registers are set to a sentinel when they haven't yet matched. */
1254#define REG_UNSET_VALUE ((char *) -1)
1255#define REG_UNSET(e) ((e) == REG_UNSET_VALUE)
1256
1257
1258\f
a822d92f 1259/* How do we implement a missing MATCH_MAY_ALLOCATE?
e959bada
JB
1260 We make the fail stack a global thing, and then grow it to
1261 re_max_failures when we compile. */
a822d92f 1262#ifndef MATCH_MAY_ALLOCATE
e959bada
JB
1263static fail_stack_type fail_stack;
1264
1265static const char ** regstart, ** regend;
1266static const char ** old_regstart, ** old_regend;
1267static const char **best_regstart, **best_regend;
1268static register_info_type *reg_info;
1269static const char **reg_dummy;
1270static register_info_type *reg_info_dummy;
1271#endif
1272
1273\f
1274/* Subroutine declarations and macros for regex_compile. */
1275
1276static void store_op1 (), store_op2 ();
1277static void insert_op1 (), insert_op2 ();
1278static boolean at_begline_loc_p (), at_endline_loc_p ();
1279static boolean group_in_compile_stack ();
1280static reg_errcode_t compile_range ();
1281
1282/* Fetch the next character in the uncompiled pattern---translating it
1283 if necessary. Also cast from a signed character in the constant
1284 string passed to us by the user to an unsigned char that we can use
1285 as an array index (in, e.g., `translate'). */
1286#define PATFETCH(c) \
1287 do {if (p == pend) return REG_EEND; \
1288 c = (unsigned char) *p++; \
1289 if (translate) c = translate[c]; \
1290 } while (0)
1291
1292/* Fetch the next character in the uncompiled pattern, with no
1293 translation. */
1294#define PATFETCH_RAW(c) \
1295 do {if (p == pend) return REG_EEND; \
1296 c = (unsigned char) *p++; \
1297 } while (0)
1298
1299/* Go backwards one character in the pattern. */
1300#define PATUNFETCH p--
1301
1302
1303/* If `translate' is non-null, return translate[D], else just D. We
1304 cast the subscript to translate because some data is declared as
1305 `char *', to avoid warnings when a string constant is passed. But
1306 when we use a character as a subscript we must make it unsigned. */
1307#define TRANSLATE(d) (translate ? translate[(unsigned char) (d)] : (d))
1308
1309
1310/* Macros for outputting the compiled pattern into `buffer'. */
1311
1312/* If the buffer isn't allocated when it comes in, use this. */
1313#define INIT_BUF_SIZE 32
1314
1315/* Make sure we have at least N more bytes of space in buffer. */
1316#define GET_BUFFER_SPACE(n) \
1317 while (b - bufp->buffer + (n) > bufp->allocated) \
1318 EXTEND_BUFFER ()
1319
1320/* Make sure we have one more byte of buffer space and then add C to it. */
1321#define BUF_PUSH(c) \
1322 do { \
1323 GET_BUFFER_SPACE (1); \
1324 *b++ = (unsigned char) (c); \
1325 } while (0)
1326
1327
1328/* Ensure we have two more bytes of buffer space and then append C1 and C2. */
1329#define BUF_PUSH_2(c1, c2) \
1330 do { \
1331 GET_BUFFER_SPACE (2); \
1332 *b++ = (unsigned char) (c1); \
1333 *b++ = (unsigned char) (c2); \
1334 } while (0)
1335
1336
1337/* As with BUF_PUSH_2, except for three bytes. */
1338#define BUF_PUSH_3(c1, c2, c3) \
1339 do { \
1340 GET_BUFFER_SPACE (3); \
1341 *b++ = (unsigned char) (c1); \
1342 *b++ = (unsigned char) (c2); \
1343 *b++ = (unsigned char) (c3); \
1344 } while (0)
1345
1346
1347/* Store a jump with opcode OP at LOC to location TO. We store a
1348 relative address offset by the three bytes the jump itself occupies. */
1349#define STORE_JUMP(op, loc, to) \
1350 store_op1 (op, loc, (to) - (loc) - 3)
1351
1352/* Likewise, for a two-argument jump. */
1353#define STORE_JUMP2(op, loc, to, arg) \
1354 store_op2 (op, loc, (to) - (loc) - 3, arg)
1355
1356/* Like `STORE_JUMP', but for inserting. Assume `b' is the buffer end. */
1357#define INSERT_JUMP(op, loc, to) \
1358 insert_op1 (op, loc, (to) - (loc) - 3, b)
1359
1360/* Like `STORE_JUMP2', but for inserting. Assume `b' is the buffer end. */
1361#define INSERT_JUMP2(op, loc, to, arg) \
1362 insert_op2 (op, loc, (to) - (loc) - 3, arg, b)
1363
1364
1365/* This is not an arbitrary limit: the arguments which represent offsets
1366 into the pattern are two bytes long. So if 2^16 bytes turns out to
1367 be too small, many things would have to change. */
1368#define MAX_BUF_SIZE (1L << 16)
1369
1370
1371/* Extend the buffer by twice its current size via realloc and
1372 reset the pointers that pointed into the old block to point to the
1373 correct places in the new one. If extending the buffer results in it
1374 being larger than MAX_BUF_SIZE, then flag memory exhausted. */
1375#define EXTEND_BUFFER() \
1376 do { \
1377 unsigned char *old_buffer = bufp->buffer; \
1378 if (bufp->allocated == MAX_BUF_SIZE) \
1379 return REG_ESIZE; \
1380 bufp->allocated <<= 1; \
1381 if (bufp->allocated > MAX_BUF_SIZE) \
1382 bufp->allocated = MAX_BUF_SIZE; \
1383 bufp->buffer = (unsigned char *) realloc (bufp->buffer, bufp->allocated);\
1384 if (bufp->buffer == NULL) \
1385 return REG_ESPACE; \
1386 /* If the buffer moved, move all the pointers into it. */ \
1387 if (old_buffer != bufp->buffer) \
1388 { \
1389 b = (b - old_buffer) + bufp->buffer; \
1390 begalt = (begalt - old_buffer) + bufp->buffer; \
1391 if (fixup_alt_jump) \
1392 fixup_alt_jump = (fixup_alt_jump - old_buffer) + bufp->buffer;\
1393 if (laststart) \
1394 laststart = (laststart - old_buffer) + bufp->buffer; \
1395 if (pending_exact) \
1396 pending_exact = (pending_exact - old_buffer) + bufp->buffer; \
1397 } \
1398 } while (0)
1399
1400
1401/* Since we have one byte reserved for the register number argument to
1402 {start,stop}_memory, the maximum number of groups we can report
1403 things about is what fits in that byte. */
1404#define MAX_REGNUM 255
1405
1406/* But patterns can have more than `MAX_REGNUM' registers. We just
1407 ignore the excess. */
1408typedef unsigned regnum_t;
1409
1410
1411/* Macros for the compile stack. */
1412
1413/* Since offsets can go either forwards or backwards, this type needs to
1414 be able to hold values from -(MAX_BUF_SIZE - 1) to MAX_BUF_SIZE - 1. */
1415typedef int pattern_offset_t;
1416
1417typedef struct
1418{
1419 pattern_offset_t begalt_offset;
1420 pattern_offset_t fixup_alt_jump;
1421 pattern_offset_t inner_group_offset;
1422 pattern_offset_t laststart_offset;
1423 regnum_t regnum;
1424} compile_stack_elt_t;
1425
1426
1427typedef struct
1428{
1429 compile_stack_elt_t *stack;
1430 unsigned size;
1431 unsigned avail; /* Offset of next open position. */
1432} compile_stack_type;
1433
1434
1435#define INIT_COMPILE_STACK_SIZE 32
1436
1437#define COMPILE_STACK_EMPTY (compile_stack.avail == 0)
1438#define COMPILE_STACK_FULL (compile_stack.avail == compile_stack.size)
1439
1440/* The next available element. */
1441#define COMPILE_STACK_TOP (compile_stack.stack[compile_stack.avail])
1442
1443
1444/* Set the bit for character C in a list. */
1445#define SET_LIST_BIT(c) \
1446 (b[((unsigned char) (c)) / BYTEWIDTH] \
1447 |= 1 << (((unsigned char) c) % BYTEWIDTH))
1448
1449
1450/* Get the next unsigned number in the uncompiled pattern. */
1451#define GET_UNSIGNED_NUMBER(num) \
1452 { if (p != pend) \
1453 { \
1454 PATFETCH (c); \
1455 while (ISDIGIT (c)) \
1456 { \
1457 if (num < 0) \
1458 num = 0; \
1459 num = num * 10 + c - '0'; \
1460 if (p == pend) \
1461 break; \
1462 PATFETCH (c); \
1463 } \
bc78d348
KB
1464 } \
1465 }
1466
1467#define CHAR_CLASS_MAX_LENGTH 6 /* Namely, `xdigit'. */
1468
1469#define IS_CHAR_CLASS(string) \
1470 (STREQ (string, "alpha") || STREQ (string, "upper") \
1471 || STREQ (string, "lower") || STREQ (string, "digit") \
1472 || STREQ (string, "alnum") || STREQ (string, "xdigit") \
1473 || STREQ (string, "space") || STREQ (string, "print") \
1474 || STREQ (string, "punct") || STREQ (string, "graph") \
1475 || STREQ (string, "cntrl") || STREQ (string, "blank"))
1476\f
1477/* `regex_compile' compiles PATTERN (of length SIZE) according to SYNTAX.
1478 Returns one of error codes defined in `regex.h', or zero for success.
1479
1480 Assumes the `allocated' (and perhaps `buffer') and `translate'
1481 fields are set in BUFP on entry.
1482
1483 If it succeeds, results are put in BUFP (if it returns an error, the
1484 contents of BUFP are undefined):
1485 `buffer' is the compiled pattern;
1486 `syntax' is set to SYNTAX;
1487 `used' is set to the length of the compiled pattern;
9114e279
KB
1488 `fastmap_accurate' is zero;
1489 `re_nsub' is the number of subexpressions in PATTERN;
1490 `not_bol' and `not_eol' are zero;
bc78d348
KB
1491
1492 The `fastmap' and `newline_anchor' fields are neither
1493 examined nor set. */
1494
1495static reg_errcode_t
1496regex_compile (pattern, size, syntax, bufp)
1497 const char *pattern;
1498 int size;
1499 reg_syntax_t syntax;
1500 struct re_pattern_buffer *bufp;
1501{
1502 /* We fetch characters from PATTERN here. Even though PATTERN is
1503 `char *' (i.e., signed), we declare these variables as unsigned, so
1504 they can be reliably used as array indices. */
1505 register unsigned char c, c1;
1506
63268f76 1507 /* A random temporary spot in PATTERN. */
bc78d348
KB
1508 const char *p1;
1509
1510 /* Points to the end of the buffer, where we should append. */
1511 register unsigned char *b;
1512
1513 /* Keeps track of unclosed groups. */
1514 compile_stack_type compile_stack;
1515
1516 /* Points to the current (ending) position in the pattern. */
1517 const char *p = pattern;
1518 const char *pend = pattern + size;
1519
1520 /* How to translate the characters in the pattern. */
1521 char *translate = bufp->translate;
1522
1523 /* Address of the count-byte of the most recently inserted `exactn'
1524 command. This makes it possible to tell if a new exact-match
1525 character can be added to that command or if the character requires
1526 a new `exactn' command. */
1527 unsigned char *pending_exact = 0;
1528
1529 /* Address of start of the most recently finished expression.
1530 This tells, e.g., postfix * where to find the start of its
1531 operand. Reset at the beginning of groups and alternatives. */
1532 unsigned char *laststart = 0;
1533
1534 /* Address of beginning of regexp, or inside of last group. */
1535 unsigned char *begalt;
1536
1537 /* Place in the uncompiled pattern (i.e., the {) to
1538 which to go back if the interval is invalid. */
1539 const char *beg_interval;
1540
1541 /* Address of the place where a forward jump should go to the end of
1542 the containing expression. Each alternative of an `or' -- except the
1543 last -- ends with a forward jump of this sort. */
1544 unsigned char *fixup_alt_jump = 0;
1545
1546 /* Counts open-groups as they are encountered. Remembered for the
1547 matching close-group on the compile stack, so the same register
1548 number is put in the stop_memory as the start_memory. */
1549 regnum_t regnum = 0;
1550
1551#ifdef DEBUG
1552 DEBUG_PRINT1 ("\nCompiling pattern: ");
1553 if (debug)
1554 {
1555 unsigned debug_count;
1556
1557 for (debug_count = 0; debug_count < size; debug_count++)
1558 printchar (pattern[debug_count]);
1559 putchar ('\n');
1560 }
1561#endif /* DEBUG */
1562
1563 /* Initialize the compile stack. */
1564 compile_stack.stack = TALLOC (INIT_COMPILE_STACK_SIZE, compile_stack_elt_t);
1565 if (compile_stack.stack == NULL)
1566 return REG_ESPACE;
1567
1568 compile_stack.size = INIT_COMPILE_STACK_SIZE;
1569 compile_stack.avail = 0;
1570
1571 /* Initialize the pattern buffer. */
1572 bufp->syntax = syntax;
1573 bufp->fastmap_accurate = 0;
1574 bufp->not_bol = bufp->not_eol = 0;
1575
1576 /* Set `used' to zero, so that if we return an error, the pattern
1577 printer (for debugging) will think there's no pattern. We reset it
1578 at the end. */
1579 bufp->used = 0;
1580
1581 /* Always count groups, whether or not bufp->no_sub is set. */
1582 bufp->re_nsub = 0;
1583
1584#if !defined (emacs) && !defined (SYNTAX_TABLE)
1585 /* Initialize the syntax table. */
1586 init_syntax_once ();
1587#endif
1588
1589 if (bufp->allocated == 0)
1590 {
1591 if (bufp->buffer)
1592 { /* If zero allocated, but buffer is non-null, try to realloc
1593 enough space. This loses if buffer's address is bogus, but
1594 that is the user's responsibility. */
1595 RETALLOC (bufp->buffer, INIT_BUF_SIZE, unsigned char);
1596 }
1597 else
1598 { /* Caller did not allocate a buffer. Do it for them. */
1599 bufp->buffer = TALLOC (INIT_BUF_SIZE, unsigned char);
1600 }
1601 if (!bufp->buffer) return REG_ESPACE;
1602
1603 bufp->allocated = INIT_BUF_SIZE;
1604 }
1605
1606 begalt = b = bufp->buffer;
1607
1608 /* Loop through the uncompiled pattern until we're at the end. */
1609 while (p != pend)
1610 {
1611 PATFETCH (c);
1612
1613 switch (c)
1614 {
1615 case '^':
1616 {
1617 if ( /* If at start of pattern, it's an operator. */
1618 p == pattern + 1
1619 /* If context independent, it's an operator. */
1620 || syntax & RE_CONTEXT_INDEP_ANCHORS
1621 /* Otherwise, depends on what's come before. */
1622 || at_begline_loc_p (pattern, p, syntax))
1623 BUF_PUSH (begline);
1624 else
1625 goto normal_char;
1626 }
1627 break;
1628
1629
1630 case '$':
1631 {
1632 if ( /* If at end of pattern, it's an operator. */
1633 p == pend
1634 /* If context independent, it's an operator. */
1635 || syntax & RE_CONTEXT_INDEP_ANCHORS
1636 /* Otherwise, depends on what's next. */
1637 || at_endline_loc_p (p, pend, syntax))
1638 BUF_PUSH (endline);
1639 else
1640 goto normal_char;
1641 }
1642 break;
1643
1644
1645 case '+':
1646 case '?':
1647 if ((syntax & RE_BK_PLUS_QM)
1648 || (syntax & RE_LIMITED_OPS))
1649 goto normal_char;
1650 handle_plus:
1651 case '*':
1652 /* If there is no previous pattern... */
1653 if (!laststart)
1654 {
1655 if (syntax & RE_CONTEXT_INVALID_OPS)
1656 return REG_BADRPT;
1657 else if (!(syntax & RE_CONTEXT_INDEP_OPS))
1658 goto normal_char;
1659 }
1660
1661 {
1662 /* Are we optimizing this jump? */
1663 boolean keep_string_p = false;
1664
1665 /* 1 means zero (many) matches is allowed. */
1666 char zero_times_ok = 0, many_times_ok = 0;
1667
1668 /* If there is a sequence of repetition chars, collapse it
1669 down to just one (the right one). We can't combine
1670 interval operators with these because of, e.g., `a{2}*',
1671 which should only match an even number of `a's. */
1672
1673 for (;;)
1674 {
1675 zero_times_ok |= c != '+';
1676 many_times_ok |= c != '?';
1677
1678 if (p == pend)
1679 break;
1680
1681 PATFETCH (c);
1682
1683 if (c == '*'
1684 || (!(syntax & RE_BK_PLUS_QM) && (c == '+' || c == '?')))
1685 ;
1686
1687 else if (syntax & RE_BK_PLUS_QM && c == '\\')
1688 {
1689 if (p == pend) return REG_EESCAPE;
1690
1691 PATFETCH (c1);
1692 if (!(c1 == '+' || c1 == '?'))
1693 {
1694 PATUNFETCH;
1695 PATUNFETCH;
1696 break;
1697 }
1698
1699 c = c1;
1700 }
1701 else
1702 {
1703 PATUNFETCH;
1704 break;
1705 }
1706
1707 /* If we get here, we found another repeat character. */
1708 }
1709
1710 /* Star, etc. applied to an empty pattern is equivalent
1711 to an empty pattern. */
1712 if (!laststart)
1713 break;
1714
1715 /* Now we know whether or not zero matches is allowed
1716 and also whether or not two or more matches is allowed. */
1717 if (many_times_ok)
1718 { /* More than one repetition is allowed, so put in at the
1719 end a backward relative jump from `b' to before the next
1720 jump we're going to put in below (which jumps from
1721 laststart to after this jump).
1722
1723 But if we are at the `*' in the exact sequence `.*\n',
1724 insert an unconditional jump backwards to the .,
1725 instead of the beginning of the loop. This way we only
1726 push a failure point once, instead of every time
1727 through the loop. */
1728 assert (p - 1 > pattern);
1729
1730 /* Allocate the space for the jump. */
1731 GET_BUFFER_SPACE (3);
1732
1733 /* We know we are not at the first character of the pattern,
1734 because laststart was nonzero. And we've already
1735 incremented `p', by the way, to be the character after
1736 the `*'. Do we have to do something analogous here
1737 for null bytes, because of RE_DOT_NOT_NULL? */
1738 if (TRANSLATE (*(p - 2)) == TRANSLATE ('.')
5745b086 1739 && zero_times_ok
bc78d348
KB
1740 && p < pend && TRANSLATE (*p) == TRANSLATE ('\n')
1741 && !(syntax & RE_DOT_NEWLINE))
1742 { /* We have .*\n. */
1743 STORE_JUMP (jump, b, laststart);
1744 keep_string_p = true;
1745 }
1746 else
1747 /* Anything else. */
1748 STORE_JUMP (maybe_pop_jump, b, laststart - 3);
1749
1750 /* We've added more stuff to the buffer. */
1751 b += 3;
1752 }
1753
1754 /* On failure, jump from laststart to b + 3, which will be the
1755 end of the buffer after this jump is inserted. */
1756 GET_BUFFER_SPACE (3);
1757 INSERT_JUMP (keep_string_p ? on_failure_keep_string_jump
1758 : on_failure_jump,
1759 laststart, b + 3);
1760 pending_exact = 0;
1761 b += 3;
1762
1763 if (!zero_times_ok)
1764 {
1765 /* At least one repetition is required, so insert a
1766 `dummy_failure_jump' before the initial
1767 `on_failure_jump' instruction of the loop. This
1768 effects a skip over that instruction the first time
1769 we hit that loop. */
1770 GET_BUFFER_SPACE (3);
1771 INSERT_JUMP (dummy_failure_jump, laststart, laststart + 6);
1772 b += 3;
1773 }
1774 }
1775 break;
1776
1777
1778 case '.':
1779 laststart = b;
1780 BUF_PUSH (anychar);
1781 break;
1782
1783
1784 case '[':
1785 {
1786 boolean had_char_class = false;
1787
1788 if (p == pend) return REG_EBRACK;
1789
1790 /* Ensure that we have enough space to push a charset: the
1791 opcode, the length count, and the bitset; 34 bytes in all. */
1792 GET_BUFFER_SPACE (34);
1793
1794 laststart = b;
1795
1796 /* We test `*p == '^' twice, instead of using an if
1797 statement, so we only need one BUF_PUSH. */
1798 BUF_PUSH (*p == '^' ? charset_not : charset);
1799 if (*p == '^')
1800 p++;
1801
1802 /* Remember the first position in the bracket expression. */
1803 p1 = p;
1804
1805 /* Push the number of bytes in the bitmap. */
1806 BUF_PUSH ((1 << BYTEWIDTH) / BYTEWIDTH);
1807
1808 /* Clear the whole map. */
1809 bzero (b, (1 << BYTEWIDTH) / BYTEWIDTH);
1810
1811 /* charset_not matches newline according to a syntax bit. */
1812 if ((re_opcode_t) b[-2] == charset_not
1813 && (syntax & RE_HAT_LISTS_NOT_NEWLINE))
1814 SET_LIST_BIT ('\n');
1815
1816 /* Read in characters and ranges, setting map bits. */
1817 for (;;)
1818 {
1819 if (p == pend) return REG_EBRACK;
1820
1821 PATFETCH (c);
1822
1823 /* \ might escape characters inside [...] and [^...]. */
1824 if ((syntax & RE_BACKSLASH_ESCAPE_IN_LISTS) && c == '\\')
1825 {
1826 if (p == pend) return REG_EESCAPE;
1827
1828 PATFETCH (c1);
1829 SET_LIST_BIT (c1);
1830 continue;
1831 }
1832
1833 /* Could be the end of the bracket expression. If it's
1834 not (i.e., when the bracket expression is `[]' so
1835 far), the ']' character bit gets set way below. */
1836 if (c == ']' && p != p1 + 1)
1837 break;
1838
1839 /* Look ahead to see if it's a range when the last thing
1840 was a character class. */
1841 if (had_char_class && c == '-' && *p != ']')
1842 return REG_ERANGE;
1843
1844 /* Look ahead to see if it's a range when the last thing
1845 was a character: if this is a hyphen not at the
1846 beginning or the end of a list, then it's the range
1847 operator. */
1848 if (c == '-'
1849 && !(p - 2 >= pattern && p[-2] == '[')
1850 && !(p - 3 >= pattern && p[-3] == '[' && p[-2] == '^')
1851 && *p != ']')
1852 {
1853 reg_errcode_t ret
1854 = compile_range (&p, pend, translate, syntax, b);
1855 if (ret != REG_NOERROR) return ret;
1856 }
1857
1858 else if (p[0] == '-' && p[1] != ']')
1859 { /* This handles ranges made up of characters only. */
1860 reg_errcode_t ret;
1861
1862 /* Move past the `-'. */
1863 PATFETCH (c1);
1864
1865 ret = compile_range (&p, pend, translate, syntax, b);
1866 if (ret != REG_NOERROR) return ret;
1867 }
1868
1869 /* See if we're at the beginning of a possible character
1870 class. */
1871
1872 else if (syntax & RE_CHAR_CLASSES && c == '[' && *p == ':')
1873 { /* Leave room for the null. */
1874 char str[CHAR_CLASS_MAX_LENGTH + 1];
1875
1876 PATFETCH (c);
1877 c1 = 0;
1878
1879 /* If pattern is `[[:'. */
1880 if (p == pend) return REG_EBRACK;
1881
1882 for (;;)
1883 {
1884 PATFETCH (c);
1885 if (c == ':' || c == ']' || p == pend
1886 || c1 == CHAR_CLASS_MAX_LENGTH)
1887 break;
1888 str[c1++] = c;
1889 }
1890 str[c1] = '\0';
1891
1892 /* If isn't a word bracketed by `[:' and:`]':
1893 undo the ending character, the letters, and leave
1894 the leading `:' and `[' (but set bits for them). */
1895 if (c == ':' && *p == ']')
1896 {
1897 int ch;
1898 boolean is_alnum = STREQ (str, "alnum");
1899 boolean is_alpha = STREQ (str, "alpha");
1900 boolean is_blank = STREQ (str, "blank");
1901 boolean is_cntrl = STREQ (str, "cntrl");
1902 boolean is_digit = STREQ (str, "digit");
1903 boolean is_graph = STREQ (str, "graph");
1904 boolean is_lower = STREQ (str, "lower");
1905 boolean is_print = STREQ (str, "print");
1906 boolean is_punct = STREQ (str, "punct");
1907 boolean is_space = STREQ (str, "space");
1908 boolean is_upper = STREQ (str, "upper");
1909 boolean is_xdigit = STREQ (str, "xdigit");
1910
1911 if (!IS_CHAR_CLASS (str)) return REG_ECTYPE;
1912
1913 /* Throw away the ] at the end of the character
1914 class. */
1915 PATFETCH (c);
1916
1917 if (p == pend) return REG_EBRACK;
1918
1919 for (ch = 0; ch < 1 << BYTEWIDTH; ch++)
1920 {
c6b40788
JM
1921 if ( (is_alnum && ISALNUM (ch))
1922 || (is_alpha && ISALPHA (ch))
1923 || (is_blank && ISBLANK (ch))
1924 || (is_cntrl && ISCNTRL (ch))
1925 || (is_digit && ISDIGIT (ch))
1926 || (is_graph && ISGRAPH (ch))
1927 || (is_lower && ISLOWER (ch))
1928 || (is_print && ISPRINT (ch))
1929 || (is_punct && ISPUNCT (ch))
1930 || (is_space && ISSPACE (ch))
1931 || (is_upper && ISUPPER (ch))
1932 || (is_xdigit && ISXDIGIT (ch)))
bc78d348
KB
1933 SET_LIST_BIT (ch);
1934 }
1935 had_char_class = true;
1936 }
1937 else
1938 {
1939 c1++;
1940 while (c1--)
1941 PATUNFETCH;
1942 SET_LIST_BIT ('[');
1943 SET_LIST_BIT (':');
1944 had_char_class = false;
1945 }
1946 }
1947 else
1948 {
1949 had_char_class = false;
1950 SET_LIST_BIT (c);
1951 }
1952 }
1953
1954 /* Discard any (non)matching list bytes that are all 0 at the
1955 end of the map. Decrease the map-length byte too. */
1956 while ((int) b[-1] > 0 && b[b[-1] - 1] == 0)
1957 b[-1]--;
1958 b += b[-1];
1959 }
1960 break;
1961
1962
1963 case '(':
1964 if (syntax & RE_NO_BK_PARENS)
1965 goto handle_open;
1966 else
1967 goto normal_char;
1968
1969
1970 case ')':
1971 if (syntax & RE_NO_BK_PARENS)
1972 goto handle_close;
1973 else
1974 goto normal_char;
1975
1976
1977 case '\n':
1978 if (syntax & RE_NEWLINE_ALT)
1979 goto handle_alt;
1980 else
1981 goto normal_char;
1982
1983
1984 case '|':
1985 if (syntax & RE_NO_BK_VBAR)
1986 goto handle_alt;
1987 else
1988 goto normal_char;
1989
1990
1991 case '{':
1992 if (syntax & RE_INTERVALS && syntax & RE_NO_BK_BRACES)
1993 goto handle_interval;
1994 else
1995 goto normal_char;
1996
1997
1998 case '\\':
1999 if (p == pend) return REG_EESCAPE;
2000
2001 /* Do not translate the character after the \, so that we can
2002 distinguish, e.g., \B from \b, even if we normally would
2003 translate, e.g., B to b. */
2004 PATFETCH_RAW (c);
2005
2006 switch (c)
2007 {
2008 case '(':
2009 if (syntax & RE_NO_BK_PARENS)
2010 goto normal_backslash;
2011
2012 handle_open:
2013 bufp->re_nsub++;
2014 regnum++;
2015
2016 if (COMPILE_STACK_FULL)
2017 {
2018 RETALLOC (compile_stack.stack, compile_stack.size << 1,
2019 compile_stack_elt_t);
2020 if (compile_stack.stack == NULL) return REG_ESPACE;
2021
2022 compile_stack.size <<= 1;
2023 }
2024
2025 /* These are the values to restore when we hit end of this
2026 group. They are all relative offsets, so that if the
2027 whole pattern moves because of realloc, they will still
2028 be valid. */
2029 COMPILE_STACK_TOP.begalt_offset = begalt - bufp->buffer;
2030 COMPILE_STACK_TOP.fixup_alt_jump
2031 = fixup_alt_jump ? fixup_alt_jump - bufp->buffer + 1 : 0;
2032 COMPILE_STACK_TOP.laststart_offset = b - bufp->buffer;
2033 COMPILE_STACK_TOP.regnum = regnum;
2034
2035 /* We will eventually replace the 0 with the number of
2036 groups inner to this one. But do not push a
2037 start_memory for groups beyond the last one we can
2038 represent in the compiled pattern. */
2039 if (regnum <= MAX_REGNUM)
2040 {
2041 COMPILE_STACK_TOP.inner_group_offset = b - bufp->buffer + 2;
2042 BUF_PUSH_3 (start_memory, regnum, 0);
2043 }
2044
2045 compile_stack.avail++;
2046
2047 fixup_alt_jump = 0;
2048 laststart = 0;
2049 begalt = b;
5745b086
JB
2050 /* If we've reached MAX_REGNUM groups, then this open
2051 won't actually generate any code, so we'll have to
2052 clear pending_exact explicitly. */
2053 pending_exact = 0;
bc78d348
KB
2054 break;
2055
2056
2057 case ')':
2058 if (syntax & RE_NO_BK_PARENS) goto normal_backslash;
2059
2060 if (COMPILE_STACK_EMPTY)
2061 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2062 goto normal_backslash;
2063 else
2064 return REG_ERPAREN;
2065
2066 handle_close:
2067 if (fixup_alt_jump)
2068 { /* Push a dummy failure point at the end of the
2069 alternative for a possible future
2070 `pop_failure_jump' to pop. See comments at
2071 `push_dummy_failure' in `re_match_2'. */
2072 BUF_PUSH (push_dummy_failure);
2073
2074 /* We allocated space for this jump when we assigned
2075 to `fixup_alt_jump', in the `handle_alt' case below. */
2076 STORE_JUMP (jump_past_alt, fixup_alt_jump, b - 1);
2077 }
2078
2079 /* See similar code for backslashed left paren above. */
2080 if (COMPILE_STACK_EMPTY)
2081 if (syntax & RE_UNMATCHED_RIGHT_PAREN_ORD)
2082 goto normal_char;
2083 else
2084 return REG_ERPAREN;
2085
2086 /* Since we just checked for an empty stack above, this
2087 ``can't happen''. */
2088 assert (compile_stack.avail != 0);
2089 {
2090 /* We don't just want to restore into `regnum', because
2091 later groups should continue to be numbered higher,
2092 as in `(ab)c(de)' -- the second group is #2. */
2093 regnum_t this_group_regnum;
2094
2095 compile_stack.avail--;
2096 begalt = bufp->buffer + COMPILE_STACK_TOP.begalt_offset;
2097 fixup_alt_jump
2098 = COMPILE_STACK_TOP.fixup_alt_jump
2099 ? bufp->buffer + COMPILE_STACK_TOP.fixup_alt_jump - 1
2100 : 0;
2101 laststart = bufp->buffer + COMPILE_STACK_TOP.laststart_offset;
2102 this_group_regnum = COMPILE_STACK_TOP.regnum;
5745b086
JB
2103 /* If we've reached MAX_REGNUM groups, then this open
2104 won't actually generate any code, so we'll have to
2105 clear pending_exact explicitly. */
2106 pending_exact = 0;
bc78d348
KB
2107
2108 /* We're at the end of the group, so now we know how many
2109 groups were inside this one. */
2110 if (this_group_regnum <= MAX_REGNUM)
2111 {
2112 unsigned char *inner_group_loc
2113 = bufp->buffer + COMPILE_STACK_TOP.inner_group_offset;
2114
2115 *inner_group_loc = regnum - this_group_regnum;
2116 BUF_PUSH_3 (stop_memory, this_group_regnum,
2117 regnum - this_group_regnum);
2118 }
2119 }
2120 break;
2121
2122
2123 case '|': /* `\|'. */
2124 if (syntax & RE_LIMITED_OPS || syntax & RE_NO_BK_VBAR)
2125 goto normal_backslash;
2126 handle_alt:
2127 if (syntax & RE_LIMITED_OPS)
2128 goto normal_char;
2129
2130 /* Insert before the previous alternative a jump which
2131 jumps to this alternative if the former fails. */
2132 GET_BUFFER_SPACE (3);
2133 INSERT_JUMP (on_failure_jump, begalt, b + 6);
2134 pending_exact = 0;
2135 b += 3;
2136
2137 /* The alternative before this one has a jump after it
2138 which gets executed if it gets matched. Adjust that
2139 jump so it will jump to this alternative's analogous
2140 jump (put in below, which in turn will jump to the next
2141 (if any) alternative's such jump, etc.). The last such
2142 jump jumps to the correct final destination. A picture:
2143 _____ _____
2144 | | | |
2145 | v | v
2146 a | b | c
2147
9114e279
KB
2148 If we are at `b', then fixup_alt_jump right now points to a
2149 three-byte space after `a'. We'll put in the jump, set
2150 fixup_alt_jump to right after `b', and leave behind three
2151 bytes which we'll fill in when we get to after `c'. */
bc78d348
KB
2152
2153 if (fixup_alt_jump)
2154 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
2155
2156 /* Mark and leave space for a jump after this alternative,
2157 to be filled in later either by next alternative or
2158 when know we're at the end of a series of alternatives. */
2159 fixup_alt_jump = b;
2160 GET_BUFFER_SPACE (3);
2161 b += 3;
2162
2163 laststart = 0;
2164 begalt = b;
2165 break;
2166
2167
2168 case '{':
2169 /* If \{ is a literal. */
2170 if (!(syntax & RE_INTERVALS)
2171 /* If we're at `\{' and it's not the open-interval
2172 operator. */
2173 || ((syntax & RE_INTERVALS) && (syntax & RE_NO_BK_BRACES))
2174 || (p - 2 == pattern && p == pend))
2175 goto normal_backslash;
2176
2177 handle_interval:
2178 {
2179 /* If got here, then the syntax allows intervals. */
2180
2181 /* At least (most) this many matches must be made. */
2182 int lower_bound = -1, upper_bound = -1;
2183
2184 beg_interval = p - 1;
2185
2186 if (p == pend)
2187 {
2188 if (syntax & RE_NO_BK_BRACES)
2189 goto unfetch_interval;
2190 else
2191 return REG_EBRACE;
2192 }
2193
2194 GET_UNSIGNED_NUMBER (lower_bound);
2195
2196 if (c == ',')
2197 {
2198 GET_UNSIGNED_NUMBER (upper_bound);
2199 if (upper_bound < 0) upper_bound = RE_DUP_MAX;
2200 }
2201 else
2202 /* Interval such as `{1}' => match exactly once. */
2203 upper_bound = lower_bound;
2204
2205 if (lower_bound < 0 || upper_bound > RE_DUP_MAX
2206 || lower_bound > upper_bound)
2207 {
2208 if (syntax & RE_NO_BK_BRACES)
2209 goto unfetch_interval;
2210 else
2211 return REG_BADBR;
2212 }
2213
2214 if (!(syntax & RE_NO_BK_BRACES))
2215 {
2216 if (c != '\\') return REG_EBRACE;
2217
2218 PATFETCH (c);
2219 }
2220
2221 if (c != '}')
2222 {
2223 if (syntax & RE_NO_BK_BRACES)
2224 goto unfetch_interval;
2225 else
2226 return REG_BADBR;
2227 }
2228
2229 /* We just parsed a valid interval. */
2230
2231 /* If it's invalid to have no preceding re. */
2232 if (!laststart)
2233 {
2234 if (syntax & RE_CONTEXT_INVALID_OPS)
2235 return REG_BADRPT;
2236 else if (syntax & RE_CONTEXT_INDEP_OPS)
2237 laststart = b;
2238 else
2239 goto unfetch_interval;
2240 }
2241
2242 /* If the upper bound is zero, don't want to succeed at
2243 all; jump from `laststart' to `b + 3', which will be
2244 the end of the buffer after we insert the jump. */
2245 if (upper_bound == 0)
2246 {
2247 GET_BUFFER_SPACE (3);
2248 INSERT_JUMP (jump, laststart, b + 3);
2249 b += 3;
2250 }
2251
2252 /* Otherwise, we have a nontrivial interval. When
2253 we're all done, the pattern will look like:
2254 set_number_at <jump count> <upper bound>
2255 set_number_at <succeed_n count> <lower bound>
63268f76 2256 succeed_n <after jump addr> <succeed_n count>
bc78d348
KB
2257 <body of loop>
2258 jump_n <succeed_n addr> <jump count>
2259 (The upper bound and `jump_n' are omitted if
2260 `upper_bound' is 1, though.) */
2261 else
2262 { /* If the upper bound is > 1, we need to insert
2263 more at the end of the loop. */
2264 unsigned nbytes = 10 + (upper_bound > 1) * 10;
2265
2266 GET_BUFFER_SPACE (nbytes);
2267
2268 /* Initialize lower bound of the `succeed_n', even
2269 though it will be set during matching by its
2270 attendant `set_number_at' (inserted next),
2271 because `re_compile_fastmap' needs to know.
2272 Jump to the `jump_n' we might insert below. */
2273 INSERT_JUMP2 (succeed_n, laststart,
2274 b + 5 + (upper_bound > 1) * 5,
2275 lower_bound);
2276 b += 5;
2277
2278 /* Code to initialize the lower bound. Insert
2279 before the `succeed_n'. The `5' is the last two
2280 bytes of this `set_number_at', plus 3 bytes of
2281 the following `succeed_n'. */
2282 insert_op2 (set_number_at, laststart, 5, lower_bound, b);
2283 b += 5;
2284
2285 if (upper_bound > 1)
2286 { /* More than one repetition is allowed, so
2287 append a backward jump to the `succeed_n'
2288 that starts this interval.
2289
2290 When we've reached this during matching,
2291 we'll have matched the interval once, so
2292 jump back only `upper_bound - 1' times. */
2293 STORE_JUMP2 (jump_n, b, laststart + 5,
2294 upper_bound - 1);
2295 b += 5;
2296
2297 /* The location we want to set is the second
2298 parameter of the `jump_n'; that is `b-2' as
2299 an absolute address. `laststart' will be
2300 the `set_number_at' we're about to insert;
2301 `laststart+3' the number to set, the source
2302 for the relative address. But we are
2303 inserting into the middle of the pattern --
2304 so everything is getting moved up by 5.
2305 Conclusion: (b - 2) - (laststart + 3) + 5,
2306 i.e., b - laststart.
2307
2308 We insert this at the beginning of the loop
2309 so that if we fail during matching, we'll
2310 reinitialize the bounds. */
2311 insert_op2 (set_number_at, laststart, b - laststart,
2312 upper_bound - 1, b);
2313 b += 5;
2314 }
2315 }
2316 pending_exact = 0;
2317 beg_interval = NULL;
2318 }
2319 break;
2320
2321 unfetch_interval:
2322 /* If an invalid interval, match the characters as literals. */
2323 assert (beg_interval);
2324 p = beg_interval;
2325 beg_interval = NULL;
2326
2327 /* normal_char and normal_backslash need `c'. */
2328 PATFETCH (c);
2329
2330 if (!(syntax & RE_NO_BK_BRACES))
2331 {
2332 if (p > pattern && p[-1] == '\\')
2333 goto normal_backslash;
2334 }
2335 goto normal_char;
2336
2337#ifdef emacs
2338 /* There is no way to specify the before_dot and after_dot
2339 operators. rms says this is ok. --karl */
2340 case '=':
2341 BUF_PUSH (at_dot);
2342 break;
2343
2344 case 's':
2345 laststart = b;
2346 PATFETCH (c);
2347 BUF_PUSH_2 (syntaxspec, syntax_spec_code[c]);
2348 break;
2349
2350 case 'S':
2351 laststart = b;
2352 PATFETCH (c);
2353 BUF_PUSH_2 (notsyntaxspec, syntax_spec_code[c]);
2354 break;
2355#endif /* emacs */
2356
2357
2358 case 'w':
2359 laststart = b;
2360 BUF_PUSH (wordchar);
2361 break;
2362
2363
2364 case 'W':
2365 laststart = b;
2366 BUF_PUSH (notwordchar);
2367 break;
2368
2369
2370 case '<':
2371 BUF_PUSH (wordbeg);
2372 break;
2373
2374 case '>':
2375 BUF_PUSH (wordend);
2376 break;
2377
2378 case 'b':
2379 BUF_PUSH (wordbound);
2380 break;
2381
2382 case 'B':
2383 BUF_PUSH (notwordbound);
2384 break;
2385
2386 case '`':
2387 BUF_PUSH (begbuf);
2388 break;
2389
2390 case '\'':
2391 BUF_PUSH (endbuf);
2392 break;
2393
2394 case '1': case '2': case '3': case '4': case '5':
2395 case '6': case '7': case '8': case '9':
2396 if (syntax & RE_NO_BK_REFS)
2397 goto normal_char;
2398
2399 c1 = c - '0';
2400
2401 if (c1 > regnum)
2402 return REG_ESUBREG;
2403
2404 /* Can't back reference to a subexpression if inside of it. */
2405 if (group_in_compile_stack (compile_stack, c1))
2406 goto normal_char;
2407
2408 laststart = b;
2409 BUF_PUSH_2 (duplicate, c1);
2410 break;
2411
2412
2413 case '+':
2414 case '?':
2415 if (syntax & RE_BK_PLUS_QM)
2416 goto handle_plus;
2417 else
2418 goto normal_backslash;
2419
2420 default:
2421 normal_backslash:
2422 /* You might think it would be useful for \ to mean
2423 not to translate; but if we don't translate it
2424 it will never match anything. */
2425 c = TRANSLATE (c);
2426 goto normal_char;
2427 }
2428 break;
2429
2430
2431 default:
2432 /* Expects the character in `c'. */
2433 normal_char:
2434 /* If no exactn currently being built. */
2435 if (!pending_exact
2436
2437 /* If last exactn not at current position. */
2438 || pending_exact + *pending_exact + 1 != b
2439
2440 /* We have only one byte following the exactn for the count. */
2441 || *pending_exact == (1 << BYTEWIDTH) - 1
2442
2443 /* If followed by a repetition operator. */
2444 || *p == '*' || *p == '^'
2445 || ((syntax & RE_BK_PLUS_QM)
2446 ? *p == '\\' && (p[1] == '+' || p[1] == '?')
2447 : (*p == '+' || *p == '?'))
2448 || ((syntax & RE_INTERVALS)
2449 && ((syntax & RE_NO_BK_BRACES)
2450 ? *p == '{'
2451 : (p[0] == '\\' && p[1] == '{'))))
2452 {
2453 /* Start building a new exactn. */
2454
2455 laststart = b;
2456
2457 BUF_PUSH_2 (exactn, 0);
2458 pending_exact = b - 1;
2459 }
2460
2461 BUF_PUSH (c);
2462 (*pending_exact)++;
2463 break;
2464 } /* switch (c) */
e959bada 2465 } /* while p != pend */
4af46de6 2466
e959bada
JB
2467
2468 /* Through the pattern now. */
2469
2470 if (fixup_alt_jump)
2471 STORE_JUMP (jump_past_alt, fixup_alt_jump, b);
bc78d348 2472
e959bada
JB
2473 if (!COMPILE_STACK_EMPTY)
2474 return REG_EPAREN;
bc78d348 2475
e959bada 2476 free (compile_stack.stack);
bc78d348 2477
e959bada
JB
2478 /* We have succeeded; set the length of the buffer. */
2479 bufp->used = b - bufp->buffer;
2480
2481#ifdef DEBUG
2482 if (debug)
bc78d348 2483 {
e959bada
JB
2484 DEBUG_PRINT1 ("\nCompiled pattern: \n");
2485 print_compiled_pattern (bufp);
bc78d348 2486 }
e959bada 2487#endif /* DEBUG */
bc78d348 2488
a822d92f 2489#ifndef MATCH_MAY_ALLOCATE
e959bada
JB
2490 /* Initialize the failure stack to the largest possible stack. This
2491 isn't necessary unless we're trying to avoid calling alloca in
2492 the search and match routines. */
2493 {
2494 int num_regs = bufp->re_nsub + 1;
2495
2496 /* Since DOUBLE_FAIL_STACK refuses to double only if the current size
2497 is strictly greater than re_max_failures, the largest possible stack
2498 is 2 * re_max_failures failure points. */
2499 fail_stack.size = (2 * re_max_failures * MAX_FAILURE_ITEMS);
63268f76 2500 if (! fail_stack.stack)
e959bada
JB
2501 fail_stack.stack =
2502 (fail_stack_elt_t *) malloc (fail_stack.size
2503 * sizeof (fail_stack_elt_t));
2504
2505 /* Initialize some other variables the matcher uses. */
2506 RETALLOC_IF (regstart, num_regs, const char *);
2507 RETALLOC_IF (regend, num_regs, const char *);
2508 RETALLOC_IF (old_regstart, num_regs, const char *);
2509 RETALLOC_IF (old_regend, num_regs, const char *);
2510 RETALLOC_IF (best_regstart, num_regs, const char *);
2511 RETALLOC_IF (best_regend, num_regs, const char *);
2512 RETALLOC_IF (reg_info, num_regs, register_info_type);
2513 RETALLOC_IF (reg_dummy, num_regs, const char *);
2514 RETALLOC_IF (reg_info_dummy, num_regs, register_info_type);
2515 }
bc78d348
KB
2516#endif
2517
e959bada
JB
2518 return REG_NOERROR;
2519} /* regex_compile */
2520\f
2521/* Subroutines for `regex_compile'. */
bc78d348 2522
e959bada 2523/* Store OP at LOC followed by two-byte integer parameter ARG. */
bc78d348 2524
e959bada
JB
2525static void
2526store_op1 (op, loc, arg)
2527 re_opcode_t op;
2528 unsigned char *loc;
2529 int arg;
bc78d348 2530{
e959bada
JB
2531 *loc = (unsigned char) op;
2532 STORE_NUMBER (loc + 1, arg);
2533}
bc78d348 2534
bc78d348 2535
e959bada 2536/* Like `store_op1', but for two two-byte parameters ARG1 and ARG2. */
bc78d348 2537
e959bada
JB
2538static void
2539store_op2 (op, loc, arg1, arg2)
2540 re_opcode_t op;
2541 unsigned char *loc;
2542 int arg1, arg2;
2543{
2544 *loc = (unsigned char) op;
2545 STORE_NUMBER (loc + 1, arg1);
2546 STORE_NUMBER (loc + 3, arg2);
2547}
bc78d348 2548
bc78d348 2549
e959bada
JB
2550/* Copy the bytes from LOC to END to open up three bytes of space at LOC
2551 for OP followed by two-byte integer parameter ARG. */
bc78d348 2552
e959bada
JB
2553static void
2554insert_op1 (op, loc, arg, end)
2555 re_opcode_t op;
2556 unsigned char *loc;
2557 int arg;
2558 unsigned char *end;
2559{
2560 register unsigned char *pfrom = end;
2561 register unsigned char *pto = end + 3;
bc78d348 2562
e959bada
JB
2563 while (pfrom != loc)
2564 *--pto = *--pfrom;
2565
2566 store_op1 (op, loc, arg);
2567}
bc78d348 2568
bc78d348 2569
e959bada 2570/* Like `insert_op1', but for two two-byte parameters ARG1 and ARG2. */
bc78d348 2571
e959bada
JB
2572static void
2573insert_op2 (op, loc, arg1, arg2, end)
2574 re_opcode_t op;
2575 unsigned char *loc;
2576 int arg1, arg2;
2577 unsigned char *end;
2578{
2579 register unsigned char *pfrom = end;
2580 register unsigned char *pto = end + 5;
bc78d348 2581
e959bada
JB
2582 while (pfrom != loc)
2583 *--pto = *--pfrom;
2584
2585 store_op2 (op, loc, arg1, arg2);
2586}
bc78d348 2587
bc78d348 2588
e959bada
JB
2589/* P points to just after a ^ in PATTERN. Return true if that ^ comes
2590 after an alternative or a begin-subexpression. We assume there is at
2591 least one character before the ^. */
bc78d348 2592
e959bada
JB
2593static boolean
2594at_begline_loc_p (pattern, p, syntax)
2595 const char *pattern, *p;
2596 reg_syntax_t syntax;
2597{
2598 const char *prev = p - 2;
2599 boolean prev_prev_backslash = prev > pattern && prev[-1] == '\\';
2600
2601 return
2602 /* After a subexpression? */
2603 (*prev == '(' && (syntax & RE_NO_BK_PARENS || prev_prev_backslash))
2604 /* After an alternative? */
2605 || (*prev == '|' && (syntax & RE_NO_BK_VBAR || prev_prev_backslash));
2606}
bc78d348 2607
bc78d348 2608
e959bada
JB
2609/* The dual of at_begline_loc_p. This one is for $. We assume there is
2610 at least one character after the $, i.e., `P < PEND'. */
2611
2612static boolean
2613at_endline_loc_p (p, pend, syntax)
2614 const char *p, *pend;
2615 int syntax;
2616{
2617 const char *next = p;
2618 boolean next_backslash = *next == '\\';
2619 const char *next_next = p + 1 < pend ? p + 1 : NULL;
2620
2621 return
2622 /* Before a subexpression? */
2623 (syntax & RE_NO_BK_PARENS ? *next == ')'
2624 : next_backslash && next_next && *next_next == ')')
2625 /* Before an alternative? */
2626 || (syntax & RE_NO_BK_VBAR ? *next == '|'
2627 : next_backslash && next_next && *next_next == '|');
2628}
bc78d348
KB
2629
2630
e959bada
JB
2631/* Returns true if REGNUM is in one of COMPILE_STACK's elements and
2632 false if it's not. */
bc78d348 2633
e959bada
JB
2634static boolean
2635group_in_compile_stack (compile_stack, regnum)
2636 compile_stack_type compile_stack;
2637 regnum_t regnum;
2638{
2639 int this_element;
2640
2641 for (this_element = compile_stack.avail - 1;
2642 this_element >= 0;
2643 this_element--)
2644 if (compile_stack.stack[this_element].regnum == regnum)
2645 return true;
2646
2647 return false;
2648}
2649
2650
2651/* Read the ending character of a range (in a bracket expression) from the
2652 uncompiled pattern *P_PTR (which ends at PEND). We assume the
2653 starting character is in `P[-2]'. (`P[-1]' is the character `-'.)
2654 Then we set the translation of all bits between the starting and
2655 ending characters (inclusive) in the compiled pattern B.
bc78d348 2656
e959bada
JB
2657 Return an error code.
2658
2659 We use these short variable names so we can use the same macros as
2660 `regex_compile' itself. */
bc78d348 2661
e959bada
JB
2662static reg_errcode_t
2663compile_range (p_ptr, pend, translate, syntax, b)
2664 const char **p_ptr, *pend;
2665 char *translate;
2666 reg_syntax_t syntax;
2667 unsigned char *b;
2668{
2669 unsigned this_char;
2670
2671 const char *p = *p_ptr;
2672 int range_start, range_end;
2673
2674 if (p == pend)
2675 return REG_ERANGE;
2676
2677 /* Even though the pattern is a signed `char *', we need to fetch
2678 with unsigned char *'s; if the high bit of the pattern character
2679 is set, the range endpoints will be negative if we fetch using a
2680 signed char *.
2681
2682 We also want to fetch the endpoints without translating them; the
2683 appropriate translation is done in the bit-setting loop below. */
2684 range_start = ((unsigned char *) p)[-2];
2685 range_end = ((unsigned char *) p)[0];
2686
2687 /* Have to increment the pointer into the pattern string, so the
2688 caller isn't still at the ending character. */
2689 (*p_ptr)++;
2690
2691 /* If the start is after the end, the range is empty. */
2692 if (range_start > range_end)
2693 return syntax & RE_NO_EMPTY_RANGES ? REG_ERANGE : REG_NOERROR;
2694
2695 /* Here we see why `this_char' has to be larger than an `unsigned
2696 char' -- the range is inclusive, so if `range_end' == 0xff
2697 (assuming 8-bit characters), we would otherwise go into an infinite
2698 loop, since all characters <= 0xff. */
2699 for (this_char = range_start; this_char <= range_end; this_char++)
2700 {
2701 SET_LIST_BIT (TRANSLATE (this_char));
2702 }
2703
2704 return REG_NOERROR;
2705}
bc78d348
KB
2706\f
2707/* re_compile_fastmap computes a ``fastmap'' for the compiled pattern in
2708 BUFP. A fastmap records which of the (1 << BYTEWIDTH) possible
2709 characters can start a string that matches the pattern. This fastmap
2710 is used by re_search to skip quickly over impossible starting points.
2711
2712 The caller must supply the address of a (1 << BYTEWIDTH)-byte data
2713 area as BUFP->fastmap.
2714
2715 We set the `fastmap', `fastmap_accurate', and `can_be_null' fields in
2716 the pattern buffer.
2717
2718 Returns 0 if we succeed, -2 if an internal error. */
2719
2720int
2721re_compile_fastmap (bufp)
2722 struct re_pattern_buffer *bufp;
2723{
2724 int j, k;
a822d92f 2725#ifdef MATCH_MAY_ALLOCATE
bc78d348 2726 fail_stack_type fail_stack;
e959bada 2727#endif
bc78d348
KB
2728#ifndef REGEX_MALLOC
2729 char *destination;
2730#endif
2731 /* We don't push any register information onto the failure stack. */
2732 unsigned num_regs = 0;
2733
2734 register char *fastmap = bufp->fastmap;
2735 unsigned char *pattern = bufp->buffer;
2736 unsigned long size = bufp->used;
794ce2c1 2737 unsigned char *p = pattern;
bc78d348
KB
2738 register unsigned char *pend = pattern + size;
2739
2740 /* Assume that each path through the pattern can be null until
2741 proven otherwise. We set this false at the bottom of switch
2742 statement, to which we get only if a particular path doesn't
2743 match the empty string. */
2744 boolean path_can_be_null = true;
2745
2746 /* We aren't doing a `succeed_n' to begin with. */
2747 boolean succeed_n_p = false;
2748
2749 assert (fastmap != NULL && p != NULL);
2750
2751 INIT_FAIL_STACK ();
2752 bzero (fastmap, 1 << BYTEWIDTH); /* Assume nothing's valid. */
2753 bufp->fastmap_accurate = 1; /* It will be when we're done. */
2754 bufp->can_be_null = 0;
2755
2756 while (p != pend || !FAIL_STACK_EMPTY ())
2757 {
2758 if (p == pend)
2759 {
2760 bufp->can_be_null |= path_can_be_null;
2761
2762 /* Reset for next path. */
2763 path_can_be_null = true;
2764
2765 p = fail_stack.stack[--fail_stack.avail];
2766 }
2767
2768 /* We should never be about to go beyond the end of the pattern. */
2769 assert (p < pend);
2770
2771#ifdef SWITCH_ENUM_BUG
2772 switch ((int) ((re_opcode_t) *p++))
2773#else
2774 switch ((re_opcode_t) *p++)
2775#endif
2776 {
2777
2778 /* I guess the idea here is to simply not bother with a fastmap
2779 if a backreference is used, since it's too hard to figure out
2780 the fastmap for the corresponding group. Setting
2781 `can_be_null' stops `re_search_2' from using the fastmap, so
2782 that is all we do. */
2783 case duplicate:
2784 bufp->can_be_null = 1;
2785 return 0;
2786
2787
2788 /* Following are the cases which match a character. These end
2789 with `break'. */
2790
2791 case exactn:
2792 fastmap[p[1]] = 1;
2793 break;
2794
2795
2796 case charset:
2797 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2798 if (p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH)))
2799 fastmap[j] = 1;
2800 break;
2801
2802
2803 case charset_not:
2804 /* Chars beyond end of map must be allowed. */
2805 for (j = *p * BYTEWIDTH; j < (1 << BYTEWIDTH); j++)
2806 fastmap[j] = 1;
2807
2808 for (j = *p++ * BYTEWIDTH - 1; j >= 0; j--)
2809 if (!(p[j / BYTEWIDTH] & (1 << (j % BYTEWIDTH))))
2810 fastmap[j] = 1;
2811 break;
2812
2813
2814 case wordchar:
2815 for (j = 0; j < (1 << BYTEWIDTH); j++)
2816 if (SYNTAX (j) == Sword)
2817 fastmap[j] = 1;
2818 break;
2819
2820
2821 case notwordchar:
2822 for (j = 0; j < (1 << BYTEWIDTH); j++)
2823 if (SYNTAX (j) != Sword)
2824 fastmap[j] = 1;
2825 break;
2826
2827
2828 case anychar:
2829 /* `.' matches anything ... */
2830 for (j = 0; j < (1 << BYTEWIDTH); j++)
2831 fastmap[j] = 1;
2832
2833 /* ... except perhaps newline. */
2834 if (!(bufp->syntax & RE_DOT_NEWLINE))
2835 fastmap['\n'] = 0;
2836
2837 /* Return if we have already set `can_be_null'; if we have,
2838 then the fastmap is irrelevant. Something's wrong here. */
2839 else if (bufp->can_be_null)
2840 return 0;
2841
2842 /* Otherwise, have to check alternative paths. */
2843 break;
2844
2845
2846#ifdef emacs
2847 case syntaxspec:
2848 k = *p++;
2849 for (j = 0; j < (1 << BYTEWIDTH); j++)
2850 if (SYNTAX (j) == (enum syntaxcode) k)
2851 fastmap[j] = 1;
2852 break;
2853
2854
2855 case notsyntaxspec:
2856 k = *p++;
2857 for (j = 0; j < (1 << BYTEWIDTH); j++)
2858 if (SYNTAX (j) != (enum syntaxcode) k)
2859 fastmap[j] = 1;
2860 break;
2861
2862
2863 /* All cases after this match the empty string. These end with
2864 `continue'. */
2865
2866
2867 case before_dot:
2868 case at_dot:
2869 case after_dot:
2870 continue;
2871#endif /* not emacs */
2872
2873
2874 case no_op:
2875 case begline:
2876 case endline:
2877 case begbuf:
2878 case endbuf:
2879 case wordbound:
2880 case notwordbound:
2881 case wordbeg:
2882 case wordend:
2883 case push_dummy_failure:
2884 continue;
2885
2886
2887 case jump_n:
2888 case pop_failure_jump:
2889 case maybe_pop_jump:
2890 case jump:
2891 case jump_past_alt:
2892 case dummy_failure_jump:
2893 EXTRACT_NUMBER_AND_INCR (j, p);
2894 p += j;
2895 if (j > 0)
2896 continue;
2897
2898 /* Jump backward implies we just went through the body of a
2899 loop and matched nothing. Opcode jumped to should be
2900 `on_failure_jump' or `succeed_n'. Just treat it like an
2901 ordinary jump. For a * loop, it has pushed its failure
2902 point already; if so, discard that as redundant. */
2903 if ((re_opcode_t) *p != on_failure_jump
2904 && (re_opcode_t) *p != succeed_n)
2905 continue;
2906
2907 p++;
2908 EXTRACT_NUMBER_AND_INCR (j, p);
2909 p += j;
2910
2911 /* If what's on the stack is where we are now, pop it. */
2912 if (!FAIL_STACK_EMPTY ()
2913 && fail_stack.stack[fail_stack.avail - 1] == p)
2914 fail_stack.avail--;
2915
2916 continue;
2917
2918
2919 case on_failure_jump:
2920 case on_failure_keep_string_jump:
2921 handle_on_failure_jump:
2922 EXTRACT_NUMBER_AND_INCR (j, p);
2923
2924 /* For some patterns, e.g., `(a?)?', `p+j' here points to the
2925 end of the pattern. We don't want to push such a point,
2926 since when we restore it above, entering the switch will
2927 increment `p' past the end of the pattern. We don't need
2928 to push such a point since we obviously won't find any more
2929 fastmap entries beyond `pend'. Such a pattern can match
2930 the null string, though. */
2931 if (p + j < pend)
2932 {
2933 if (!PUSH_PATTERN_OP (p + j, fail_stack))
2934 return -2;
2935 }
2936 else
2937 bufp->can_be_null = 1;
2938
2939 if (succeed_n_p)
2940 {
2941 EXTRACT_NUMBER_AND_INCR (k, p); /* Skip the n. */
2942 succeed_n_p = false;
2943 }
2944
2945 continue;
2946
2947
2948 case succeed_n:
2949 /* Get to the number of times to succeed. */
2950 p += 2;
2951
2952 /* Increment p past the n for when k != 0. */
2953 EXTRACT_NUMBER_AND_INCR (k, p);
2954 if (k == 0)
2955 {
2956 p -= 4;
2957 succeed_n_p = true; /* Spaghetti code alert. */
2958 goto handle_on_failure_jump;
2959 }
2960 continue;
2961
2962
2963 case set_number_at:
2964 p += 4;
2965 continue;
2966
2967
2968 case start_memory:
2969 case stop_memory:
2970 p += 2;
2971 continue;
2972
2973
2974 default:
2975 abort (); /* We have listed all the cases. */
2976 } /* switch *p++ */
2977
2978 /* Getting here means we have found the possible starting
2979 characters for one path of the pattern -- and that the empty
2980 string does not match. We need not follow this path further.
2981 Instead, look at the next alternative (remembered on the
2982 stack), or quit if no more. The test at the top of the loop
2983 does these things. */
2984 path_can_be_null = false;
2985 p = pend;
2986 } /* while p */
2987
2988 /* Set `can_be_null' for the last path (also the first path, if the
2989 pattern is empty). */
2990 bufp->can_be_null |= path_can_be_null;
2991 return 0;
2992} /* re_compile_fastmap */
2993\f
2994/* Set REGS to hold NUM_REGS registers, storing them in STARTS and
2995 ENDS. Subsequent matches using PATTERN_BUFFER and REGS will use
2996 this memory for recording register information. STARTS and ENDS
2997 must be allocated using the malloc library routine, and must each
2998 be at least NUM_REGS * sizeof (regoff_t) bytes long.
2999
3000 If NUM_REGS == 0, then subsequent matches should allocate their own
3001 register data.
3002
3003 Unless this function is called, the first search or match using
3004 PATTERN_BUFFER will allocate its own register data, without
3005 freeing the old data. */
3006
3007void
3008re_set_registers (bufp, regs, num_regs, starts, ends)
3009 struct re_pattern_buffer *bufp;
3010 struct re_registers *regs;
3011 unsigned num_regs;
3012 regoff_t *starts, *ends;
3013{
3014 if (num_regs)
3015 {
3016 bufp->regs_allocated = REGS_REALLOCATE;
3017 regs->num_regs = num_regs;
3018 regs->start = starts;
3019 regs->end = ends;
3020 }
3021 else
3022 {
3023 bufp->regs_allocated = REGS_UNALLOCATED;
3024 regs->num_regs = 0;
368481a5 3025 regs->start = regs->end = (regoff_t *) 0;
bc78d348
KB
3026 }
3027}
3028\f
3029/* Searching routines. */
3030
3031/* Like re_search_2, below, but only one string is specified, and
3032 doesn't let you say where to stop matching. */
3033
3034int
3035re_search (bufp, string, size, startpos, range, regs)
3036 struct re_pattern_buffer *bufp;
3037 const char *string;
3038 int size, startpos, range;
3039 struct re_registers *regs;
3040{
3041 return re_search_2 (bufp, NULL, 0, string, size, startpos, range,
3042 regs, size);
3043}
3044
3045
3046/* Using the compiled pattern in BUFP->buffer, first tries to match the
3047 virtual concatenation of STRING1 and STRING2, starting first at index
3048 STARTPOS, then at STARTPOS + 1, and so on.
3049
3050 STRING1 and STRING2 have length SIZE1 and SIZE2, respectively.
3051
3052 RANGE is how far to scan while trying to match. RANGE = 0 means try
3053 only at STARTPOS; in general, the last start tried is STARTPOS +
3054 RANGE.
3055
3056 In REGS, return the indices of the virtual concatenation of STRING1
3057 and STRING2 that matched the entire BUFP->buffer and its contained
3058 subexpressions.
3059
3060 Do not consider matching one past the index STOP in the virtual
3061 concatenation of STRING1 and STRING2.
3062
3063 We return either the position in the strings at which the match was
3064 found, -1 if no match, or -2 if error (such as failure
3065 stack overflow). */
3066
3067int
3068re_search_2 (bufp, string1, size1, string2, size2, startpos, range, regs, stop)
3069 struct re_pattern_buffer *bufp;
3070 const char *string1, *string2;
3071 int size1, size2;
3072 int startpos;
3073 int range;
3074 struct re_registers *regs;
3075 int stop;
3076{
3077 int val;
3078 register char *fastmap = bufp->fastmap;
3079 register char *translate = bufp->translate;
3080 int total_size = size1 + size2;
3081 int endpos = startpos + range;
3082
3083 /* Check for out-of-range STARTPOS. */
3084 if (startpos < 0 || startpos > total_size)
3085 return -1;
3086
3087 /* Fix up RANGE if it might eventually take us outside
3088 the virtual concatenation of STRING1 and STRING2. */
3089 if (endpos < -1)
3090 range = -1 - startpos;
3091 else if (endpos > total_size)
3092 range = total_size - startpos;
3093
bc78d348 3094 /* If the search isn't to be a backwards one, don't waste time in a
9114e279
KB
3095 search for a pattern that must be anchored. */
3096 if (bufp->used > 0 && (re_opcode_t) bufp->buffer[0] == begbuf && range > 0)
bc78d348
KB
3097 {
3098 if (startpos > 0)
3099 return -1;
3100 else
3101 range = 1;
3102 }
3103
9114e279
KB
3104 /* Update the fastmap now if not correct already. */
3105 if (fastmap && !bufp->fastmap_accurate)
3106 if (re_compile_fastmap (bufp) == -2)
3107 return -2;
3108
3109 /* Loop through the string, looking for a place to start matching. */
bc78d348
KB
3110 for (;;)
3111 {
3112 /* If a fastmap is supplied, skip quickly over characters that
3113 cannot be the start of a match. If the pattern can match the
3114 null string, however, we don't need to skip characters; we want
3115 the first null string. */
3116 if (fastmap && startpos < total_size && !bufp->can_be_null)
3117 {
3118 if (range > 0) /* Searching forwards. */
3119 {
3120 register const char *d;
3121 register int lim = 0;
3122 int irange = range;
3123
3124 if (startpos < size1 && startpos + range >= size1)
3125 lim = range - (size1 - startpos);
3126
3127 d = (startpos >= size1 ? string2 - size1 : string1) + startpos;
3128
3129 /* Written out as an if-else to avoid testing `translate'
3130 inside the loop. */
3131 if (translate)
3132 while (range > lim
11a364d9
JB
3133 && !fastmap[(unsigned char)
3134 translate[(unsigned char) *d++]])
bc78d348
KB
3135 range--;
3136 else
3137 while (range > lim && !fastmap[(unsigned char) *d++])
3138 range--;
3139
3140 startpos += irange - range;
3141 }
3142 else /* Searching backwards. */
3143 {
3144 register char c = (size1 == 0 || startpos >= size1
3145 ? string2[startpos - size1]
3146 : string1[startpos]);
3147
9114e279 3148 if (!fastmap[(unsigned char) TRANSLATE (c)])
bc78d348
KB
3149 goto advance;
3150 }
3151 }
3152
3153 /* If can't match the null string, and that's all we have left, fail. */
3154 if (range >= 0 && startpos == total_size && fastmap
3155 && !bufp->can_be_null)
3156 return -1;
3157
f765858e
KH
3158 val = re_match_2_internal (bufp, string1, size1, string2, size2,
3159 startpos, regs, stop);
3160 alloca (0);
3161
bc78d348
KB
3162 if (val >= 0)
3163 return startpos;
3164
3165 if (val == -2)
3166 return -2;
3167
3168 advance:
3169 if (!range)
3170 break;
3171 else if (range > 0)
3172 {
3173 range--;
3174 startpos++;
3175 }
3176 else
3177 {
3178 range++;
3179 startpos--;
3180 }
3181 }
3182 return -1;
3183} /* re_search_2 */
3184\f
3185/* Declarations and macros for re_match_2. */
3186
3187static int bcmp_translate ();
3188static boolean alt_match_null_string_p (),
3189 common_op_match_null_string_p (),
3190 group_match_null_string_p ();
3191
bc78d348
KB
3192/* This converts PTR, a pointer into one of the search strings `string1'
3193 and `string2' into an offset from the beginning of that string. */
794ce2c1
RS
3194#define POINTER_TO_OFFSET(ptr) \
3195 (FIRST_STRING_P (ptr) \
3196 ? ((regoff_t) ((ptr) - string1)) \
3197 : ((regoff_t) ((ptr) - string2 + size1)))
bc78d348 3198
bc78d348
KB
3199/* Macros for dealing with the split strings in re_match_2. */
3200
3201#define MATCHING_IN_FIRST_STRING (dend == end_match_1)
3202
3203/* Call before fetching a character with *d. This switches over to
3204 string2 if necessary. */
3205#define PREFETCH() \
3206 while (d == dend) \
3207 { \
3208 /* End of string2 => fail. */ \
3209 if (dend == end_match_2) \
3210 goto fail; \
3211 /* End of string1 => advance to string2. */ \
3212 d = string2; \
3213 dend = end_match_2; \
3214 }
3215
3216
3217/* Test if at very beginning or at very end of the virtual concatenation
3218 of `string1' and `string2'. If only one string, it's `string2'. */
9114e279
KB
3219#define AT_STRINGS_BEG(d) ((d) == (size1 ? string1 : string2) || !size2)
3220#define AT_STRINGS_END(d) ((d) == end2)
bc78d348
KB
3221
3222
3223/* Test if D points to a character which is word-constituent. We have
3224 two special cases to check for: if past the end of string1, look at
3225 the first character in string2; and if before the beginning of
9114e279
KB
3226 string2, look at the last character in string1. */
3227#define WORDCHAR_P(d) \
bc78d348 3228 (SYNTAX ((d) == end1 ? *string2 \
9114e279
KB
3229 : (d) == string2 - 1 ? *(end1 - 1) : *(d)) \
3230 == Sword)
bc78d348
KB
3231
3232/* Test if the character before D and the one at D differ with respect
3233 to being word-constituent. */
3234#define AT_WORD_BOUNDARY(d) \
9114e279
KB
3235 (AT_STRINGS_BEG (d) || AT_STRINGS_END (d) \
3236 || WORDCHAR_P (d - 1) != WORDCHAR_P (d))
bc78d348
KB
3237
3238
3239/* Free everything we malloc. */
a822d92f 3240#ifdef MATCH_MAY_ALLOCATE
bc78d348
KB
3241#ifdef REGEX_MALLOC
3242#define FREE_VAR(var) if (var) free (var); var = NULL
3243#define FREE_VARIABLES() \
3244 do { \
3245 FREE_VAR (fail_stack.stack); \
3246 FREE_VAR (regstart); \
3247 FREE_VAR (regend); \
3248 FREE_VAR (old_regstart); \
3249 FREE_VAR (old_regend); \
3250 FREE_VAR (best_regstart); \
3251 FREE_VAR (best_regend); \
3252 FREE_VAR (reg_info); \
3253 FREE_VAR (reg_dummy); \
3254 FREE_VAR (reg_info_dummy); \
3255 } while (0)
3256#else /* not REGEX_MALLOC */
f765858e
KH
3257/* This used to do alloca (0), but now we do that in the caller. */
3258#define FREE_VARIABLES() /* Nothing */
bc78d348 3259#endif /* not REGEX_MALLOC */
a822d92f
JB
3260#else
3261#define FREE_VARIABLES() /* Do nothing! */
3262#endif /* not MATCH_MAY_ALLOCATE */
bc78d348
KB
3263
3264/* These values must meet several constraints. They must not be valid
3265 register values; since we have a limit of 255 registers (because
3266 we use only one byte in the pattern for the register number), we can
3267 use numbers larger than 255. They must differ by 1, because of
3268 NUM_FAILURE_ITEMS above. And the value for the lowest register must
3269 be larger than the value for the highest register, so we do not try
3270 to actually save any registers when none are active. */
3271#define NO_HIGHEST_ACTIVE_REG (1 << BYTEWIDTH)
3272#define NO_LOWEST_ACTIVE_REG (NO_HIGHEST_ACTIVE_REG + 1)
3273\f
3274/* Matching routines. */
3275
3276#ifndef emacs /* Emacs never uses this. */
3277/* re_match is like re_match_2 except it takes only a single string. */
3278
3279int
3280re_match (bufp, string, size, pos, regs)
3281 struct re_pattern_buffer *bufp;
3282 const char *string;
3283 int size, pos;
3284 struct re_registers *regs;
f765858e
KH
3285{
3286 int result = re_match_2_internal (bufp, NULL, 0, string, size,
3287 pos, regs, size);
3288 alloca (0);
3289 return result;
bc78d348
KB
3290}
3291#endif /* not emacs */
3292
3293
3294/* re_match_2 matches the compiled pattern in BUFP against the
3295 the (virtual) concatenation of STRING1 and STRING2 (of length SIZE1
3296 and SIZE2, respectively). We start matching at POS, and stop
3297 matching at STOP.
3298
3299 If REGS is non-null and the `no_sub' field of BUFP is nonzero, we
3300 store offsets for the substring each group matched in REGS. See the
3301 documentation for exactly how many groups we fill.
3302
3303 We return -1 if no match, -2 if an internal error (such as the
3304 failure stack overflowing). Otherwise, we return the length of the
3305 matched substring. */
3306
3307int
3308re_match_2 (bufp, string1, size1, string2, size2, pos, regs, stop)
3309 struct re_pattern_buffer *bufp;
3310 const char *string1, *string2;
3311 int size1, size2;
3312 int pos;
3313 struct re_registers *regs;
3314 int stop;
f765858e
KH
3315{
3316 int result = re_match_2_internal (bufp, string1, size1, string2, size2,
3317 pos, regs, stop);
3318 alloca (0);
3319 return result;
3320}
3321
3322/* This is a separate function so that we can force an alloca cleanup
3323 afterwards. */
3324static int
3325re_match_2_internal (bufp, string1, size1, string2, size2, pos, regs, stop)
3326 struct re_pattern_buffer *bufp;
3327 const char *string1, *string2;
3328 int size1, size2;
3329 int pos;
3330 struct re_registers *regs;
3331 int stop;
bc78d348
KB
3332{
3333 /* General temporaries. */
3334 int mcnt;
3335 unsigned char *p1;
3336
3337 /* Just past the end of the corresponding string. */
3338 const char *end1, *end2;
3339
3340 /* Pointers into string1 and string2, just past the last characters in
3341 each to consider matching. */
3342 const char *end_match_1, *end_match_2;
3343
3344 /* Where we are in the data, and the end of the current string. */
3345 const char *d, *dend;
3346
3347 /* Where we are in the pattern, and the end of the pattern. */
3348 unsigned char *p = bufp->buffer;
3349 register unsigned char *pend = p + bufp->used;
3350
b391d2bf
JM
3351 /* Mark the opcode just after a start_memory, so we can test for an
3352 empty subpattern when we get to the stop_memory. */
3353 unsigned char *just_past_start_mem = 0;
3354
bc78d348
KB
3355 /* We use this to map every character in the string. */
3356 char *translate = bufp->translate;
3357
3358 /* Failure point stack. Each place that can handle a failure further
3359 down the line pushes a failure point on this stack. It consists of
3360 restart, regend, and reg_info for all registers corresponding to
3361 the subexpressions we're currently inside, plus the number of such
3362 registers, and, finally, two char *'s. The first char * is where
3363 to resume scanning the pattern; the second one is where to resume
3364 scanning the strings. If the latter is zero, the failure point is
3365 a ``dummy''; if a failure happens and the failure point is a dummy,
3366 it gets discarded and the next next one is tried. */
a822d92f 3367#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
bc78d348 3368 fail_stack_type fail_stack;
e959bada 3369#endif
bc78d348
KB
3370#ifdef DEBUG
3371 static unsigned failure_id = 0;
9114e279 3372 unsigned nfailure_points_pushed = 0, nfailure_points_popped = 0;
bc78d348
KB
3373#endif
3374
3375 /* We fill all the registers internally, independent of what we
3376 return, for use in backreferences. The number here includes
3377 an element for register zero. */
3378 unsigned num_regs = bufp->re_nsub + 1;
3379
3380 /* The currently active registers. */
3381 unsigned lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3382 unsigned highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3383
3384 /* Information on the contents of registers. These are pointers into
3385 the input strings; they record just what was matched (on this
3386 attempt) by a subexpression part of the pattern, that is, the
3387 regnum-th regstart pointer points to where in the pattern we began
3388 matching and the regnum-th regend points to right after where we
3389 stopped matching the regnum-th subexpression. (The zeroth register
3390 keeps track of what the whole pattern matches.) */
a822d92f 3391#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348 3392 const char **regstart, **regend;
e959bada 3393#endif
bc78d348
KB
3394
3395 /* If a group that's operated upon by a repetition operator fails to
3396 match anything, then the register for its start will need to be
3397 restored because it will have been set to wherever in the string we
3398 are when we last see its open-group operator. Similarly for a
3399 register's end. */
a822d92f 3400#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348 3401 const char **old_regstart, **old_regend;
e959bada 3402#endif
bc78d348
KB
3403
3404 /* The is_active field of reg_info helps us keep track of which (possibly
3405 nested) subexpressions we are currently in. The matched_something
3406 field of reg_info[reg_num] helps us tell whether or not we have
3407 matched any of the pattern so far this time through the reg_num-th
3408 subexpression. These two fields get reset each time through any
3409 loop their register is in. */
a822d92f 3410#ifdef MATCH_MAY_ALLOCATE /* otherwise, this is global. */
bc78d348 3411 register_info_type *reg_info;
e959bada 3412#endif
bc78d348
KB
3413
3414 /* The following record the register info as found in the above
3415 variables when we find a match better than any we've seen before.
3416 This happens as we backtrack through the failure points, which in
3417 turn happens only if we have not yet matched the entire string. */
3418 unsigned best_regs_set = false;
a822d92f 3419#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348 3420 const char **best_regstart, **best_regend;
e959bada 3421#endif
bc78d348
KB
3422
3423 /* Logically, this is `best_regend[0]'. But we don't want to have to
3424 allocate space for that if we're not allocating space for anything
3425 else (see below). Also, we never need info about register 0 for
3426 any of the other register vectors, and it seems rather a kludge to
3427 treat `best_regend' differently than the rest. So we keep track of
3428 the end of the best match so far in a separate variable. We
3429 initialize this to NULL so that when we backtrack the first time
3430 and need to test it, it's not garbage. */
3431 const char *match_end = NULL;
3432
3433 /* Used when we pop values we don't care about. */
a822d92f 3434#ifdef MATCH_MAY_ALLOCATE /* otherwise, these are global. */
bc78d348
KB
3435 const char **reg_dummy;
3436 register_info_type *reg_info_dummy;
e959bada 3437#endif
bc78d348
KB
3438
3439#ifdef DEBUG
3440 /* Counts the total number of registers pushed. */
3441 unsigned num_regs_pushed = 0;
3442#endif
3443
3444 DEBUG_PRINT1 ("\n\nEntering re_match_2.\n");
3445
3446 INIT_FAIL_STACK ();
3447
a822d92f 3448#ifdef MATCH_MAY_ALLOCATE
bc78d348
KB
3449 /* Do not bother to initialize all the register variables if there are
3450 no groups in the pattern, as it takes a fair amount of time. If
3451 there are groups, we include space for register 0 (the whole
3452 pattern), even though we never use it, since it simplifies the
3453 array indexing. We should fix this. */
3454 if (bufp->re_nsub)
3455 {
3456 regstart = REGEX_TALLOC (num_regs, const char *);
3457 regend = REGEX_TALLOC (num_regs, const char *);
3458 old_regstart = REGEX_TALLOC (num_regs, const char *);
3459 old_regend = REGEX_TALLOC (num_regs, const char *);
3460 best_regstart = REGEX_TALLOC (num_regs, const char *);
3461 best_regend = REGEX_TALLOC (num_regs, const char *);
3462 reg_info = REGEX_TALLOC (num_regs, register_info_type);
3463 reg_dummy = REGEX_TALLOC (num_regs, const char *);
3464 reg_info_dummy = REGEX_TALLOC (num_regs, register_info_type);
3465
3466 if (!(regstart && regend && old_regstart && old_regend && reg_info
3467 && best_regstart && best_regend && reg_dummy && reg_info_dummy))
3468 {
3469 FREE_VARIABLES ();
3470 return -2;
3471 }
3472 }
e959bada 3473#if defined (REGEX_MALLOC)
bc78d348
KB
3474 else
3475 {
3476 /* We must initialize all our variables to NULL, so that
9114e279 3477 `FREE_VARIABLES' doesn't try to free them. */
bc78d348
KB
3478 regstart = regend = old_regstart = old_regend = best_regstart
3479 = best_regend = reg_dummy = NULL;
3480 reg_info = reg_info_dummy = (register_info_type *) NULL;
3481 }
3482#endif /* REGEX_MALLOC */
a822d92f 3483#endif /* MATCH_MAY_ALLOCATE */
bc78d348
KB
3484
3485 /* The starting position is bogus. */
3486 if (pos < 0 || pos > size1 + size2)
3487 {
3488 FREE_VARIABLES ();
3489 return -1;
3490 }
3491
3492 /* Initialize subexpression text positions to -1 to mark ones that no
3493 start_memory/stop_memory has been seen for. Also initialize the
3494 register information struct. */
3495 for (mcnt = 1; mcnt < num_regs; mcnt++)
3496 {
3497 regstart[mcnt] = regend[mcnt]
3498 = old_regstart[mcnt] = old_regend[mcnt] = REG_UNSET_VALUE;
3499
3500 REG_MATCH_NULL_STRING_P (reg_info[mcnt]) = MATCH_NULL_UNSET_VALUE;
3501 IS_ACTIVE (reg_info[mcnt]) = 0;
3502 MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3503 EVER_MATCHED_SOMETHING (reg_info[mcnt]) = 0;
3504 }
3505
3506 /* We move `string1' into `string2' if the latter's empty -- but not if
3507 `string1' is null. */
3508 if (size2 == 0 && string1 != NULL)
3509 {
3510 string2 = string1;
3511 size2 = size1;
3512 string1 = 0;
3513 size1 = 0;
3514 }
3515 end1 = string1 + size1;
3516 end2 = string2 + size2;
3517
3518 /* Compute where to stop matching, within the two strings. */
3519 if (stop <= size1)
3520 {
3521 end_match_1 = string1 + stop;
3522 end_match_2 = string2;
3523 }
3524 else
3525 {
3526 end_match_1 = end1;
3527 end_match_2 = string2 + stop - size1;
3528 }
3529
3530 /* `p' scans through the pattern as `d' scans through the data.
3531 `dend' is the end of the input string that `d' points within. `d'
3532 is advanced into the following input string whenever necessary, but
3533 this happens before fetching; therefore, at the beginning of the
3534 loop, `d' can be pointing at the end of a string, but it cannot
3535 equal `string2'. */
3536 if (size1 > 0 && pos <= size1)
3537 {
3538 d = string1 + pos;
3539 dend = end_match_1;
3540 }
3541 else
3542 {
3543 d = string2 + pos - size1;
3544 dend = end_match_2;
3545 }
3546
3547 DEBUG_PRINT1 ("The compiled pattern is: ");
3548 DEBUG_PRINT_COMPILED_PATTERN (bufp, p, pend);
3549 DEBUG_PRINT1 ("The string to match is: `");
3550 DEBUG_PRINT_DOUBLE_STRING (d, string1, size1, string2, size2);
3551 DEBUG_PRINT1 ("'\n");
3552
3553 /* This loops over pattern commands. It exits by returning from the
3554 function if the match is complete, or it drops through if the match
3555 fails at this starting point in the input data. */
3556 for (;;)
3557 {
3558 DEBUG_PRINT2 ("\n0x%x: ", p);
3559
3560 if (p == pend)
3561 { /* End of pattern means we might have succeeded. */
9114e279
KB
3562 DEBUG_PRINT1 ("end of pattern ... ");
3563
3564 /* If we haven't matched the entire string, and we want the
3565 longest match, try backtracking. */
bc78d348
KB
3566 if (d != end_match_2)
3567 {
3568 DEBUG_PRINT1 ("backtracking.\n");
3569
3570 if (!FAIL_STACK_EMPTY ())
3571 { /* More failure points to try. */
3572 boolean same_str_p = (FIRST_STRING_P (match_end)
3573 == MATCHING_IN_FIRST_STRING);
3574
3575 /* If exceeds best match so far, save it. */
3576 if (!best_regs_set
3577 || (same_str_p && d > match_end)
3578 || (!same_str_p && !MATCHING_IN_FIRST_STRING))
3579 {
3580 best_regs_set = true;
3581 match_end = d;
3582
3583 DEBUG_PRINT1 ("\nSAVING match as best so far.\n");
3584
3585 for (mcnt = 1; mcnt < num_regs; mcnt++)
3586 {
3587 best_regstart[mcnt] = regstart[mcnt];
3588 best_regend[mcnt] = regend[mcnt];
3589 }
3590 }
3591 goto fail;
3592 }
3593
3594 /* If no failure points, don't restore garbage. */
3595 else if (best_regs_set)
3596 {
3597 restore_best_regs:
3598 /* Restore best match. It may happen that `dend ==
3599 end_match_1' while the restored d is in string2.
3600 For example, the pattern `x.*y.*z' against the
3601 strings `x-' and `y-z-', if the two strings are
3602 not consecutive in memory. */
9114e279
KB
3603 DEBUG_PRINT1 ("Restoring best registers.\n");
3604
bc78d348
KB
3605 d = match_end;
3606 dend = ((d >= string1 && d <= end1)
3607 ? end_match_1 : end_match_2);
3608
3609 for (mcnt = 1; mcnt < num_regs; mcnt++)
3610 {
3611 regstart[mcnt] = best_regstart[mcnt];
3612 regend[mcnt] = best_regend[mcnt];
3613 }
3614 }
3615 } /* d != end_match_2 */
3616
9114e279 3617 DEBUG_PRINT1 ("Accepting match.\n");
bc78d348
KB
3618
3619 /* If caller wants register contents data back, do it. */
3620 if (regs && !bufp->no_sub)
3621 {
3622 /* Have the register data arrays been allocated? */
3623 if (bufp->regs_allocated == REGS_UNALLOCATED)
3624 { /* No. So allocate them with malloc. We need one
3625 extra element beyond `num_regs' for the `-1' marker
3626 GNU code uses. */
3627 regs->num_regs = MAX (RE_NREGS, num_regs + 1);
3628 regs->start = TALLOC (regs->num_regs, regoff_t);
3629 regs->end = TALLOC (regs->num_regs, regoff_t);
3630 if (regs->start == NULL || regs->end == NULL)
3631 return -2;
3632 bufp->regs_allocated = REGS_REALLOCATE;
3633 }
3634 else if (bufp->regs_allocated == REGS_REALLOCATE)
3635 { /* Yes. If we need more elements than were already
3636 allocated, reallocate them. If we need fewer, just
3637 leave it alone. */
3638 if (regs->num_regs < num_regs + 1)
3639 {
3640 regs->num_regs = num_regs + 1;
3641 RETALLOC (regs->start, regs->num_regs, regoff_t);
3642 RETALLOC (regs->end, regs->num_regs, regoff_t);
3643 if (regs->start == NULL || regs->end == NULL)
3644 return -2;
3645 }
3646 }
3647 else
a1dd004b
JB
3648 {
3649 /* These braces fend off a "empty body in an else-statement"
3650 warning under GCC when assert expands to nothing. */
3651 assert (bufp->regs_allocated == REGS_FIXED);
3652 }
bc78d348
KB
3653
3654 /* Convert the pointer data in `regstart' and `regend' to
3655 indices. Register zero has to be set differently,
3656 since we haven't kept track of any info for it. */
3657 if (regs->num_regs > 0)
3658 {
3659 regs->start[0] = pos;
794ce2c1
RS
3660 regs->end[0] = (MATCHING_IN_FIRST_STRING
3661 ? ((regoff_t) (d - string1))
3662 : ((regoff_t) (d - string2 + size1)));
bc78d348
KB
3663 }
3664
3665 /* Go through the first `min (num_regs, regs->num_regs)'
3666 registers, since that is all we initialized. */
3667 for (mcnt = 1; mcnt < MIN (num_regs, regs->num_regs); mcnt++)
3668 {
3669 if (REG_UNSET (regstart[mcnt]) || REG_UNSET (regend[mcnt]))
3670 regs->start[mcnt] = regs->end[mcnt] = -1;
3671 else
3672 {
794ce2c1
RS
3673 regs->start[mcnt]
3674 = (regoff_t) POINTER_TO_OFFSET (regstart[mcnt]);
3675 regs->end[mcnt]
3676 = (regoff_t) POINTER_TO_OFFSET (regend[mcnt]);
bc78d348
KB
3677 }
3678 }
3679
3680 /* If the regs structure we return has more elements than
3681 were in the pattern, set the extra elements to -1. If
3682 we (re)allocated the registers, this is the case,
3683 because we always allocate enough to have at least one
3684 -1 at the end. */
3685 for (mcnt = num_regs; mcnt < regs->num_regs; mcnt++)
3686 regs->start[mcnt] = regs->end[mcnt] = -1;
3687 } /* regs && !bufp->no_sub */
3688
3689 FREE_VARIABLES ();
9114e279
KB
3690 DEBUG_PRINT4 ("%u failure points pushed, %u popped (%u remain).\n",
3691 nfailure_points_pushed, nfailure_points_popped,
3692 nfailure_points_pushed - nfailure_points_popped);
3693 DEBUG_PRINT2 ("%u registers pushed.\n", num_regs_pushed);
bc78d348
KB
3694
3695 mcnt = d - pos - (MATCHING_IN_FIRST_STRING
3696 ? string1
3697 : string2 - size1);
3698
3699 DEBUG_PRINT2 ("Returning %d from re_match_2.\n", mcnt);
3700
3701 return mcnt;
3702 }
3703
3704 /* Otherwise match next pattern command. */
3705#ifdef SWITCH_ENUM_BUG
3706 switch ((int) ((re_opcode_t) *p++))
3707#else
3708 switch ((re_opcode_t) *p++)
3709#endif
3710 {
3711 /* Ignore these. Used to ignore the n of succeed_n's which
3712 currently have n == 0. */
3713 case no_op:
3714 DEBUG_PRINT1 ("EXECUTING no_op.\n");
3715 break;
3716
3717
3718 /* Match the next n pattern characters exactly. The following
3719 byte in the pattern defines n, and the n bytes after that
3720 are the characters to match. */
3721 case exactn:
3722 mcnt = *p++;
3723 DEBUG_PRINT2 ("EXECUTING exactn %d.\n", mcnt);
3724
3725 /* This is written out as an if-else so we don't waste time
3726 testing `translate' inside the loop. */
3727 if (translate)
3728 {
3729 do
3730 {
3731 PREFETCH ();
3732 if (translate[(unsigned char) *d++] != (char) *p++)
3733 goto fail;
3734 }
3735 while (--mcnt);
3736 }
3737 else
3738 {
3739 do
3740 {
3741 PREFETCH ();
3742 if (*d++ != (char) *p++) goto fail;
3743 }
3744 while (--mcnt);
3745 }
3746 SET_REGS_MATCHED ();
3747 break;
3748
3749
3750 /* Match any character except possibly a newline or a null. */
3751 case anychar:
3752 DEBUG_PRINT1 ("EXECUTING anychar.\n");
3753
3754 PREFETCH ();
3755
3756 if ((!(bufp->syntax & RE_DOT_NEWLINE) && TRANSLATE (*d) == '\n')
3757 || (bufp->syntax & RE_DOT_NOT_NULL && TRANSLATE (*d) == '\000'))
3758 goto fail;
3759
3760 SET_REGS_MATCHED ();
3761 DEBUG_PRINT2 (" Matched `%d'.\n", *d);
3762 d++;
3763 break;
3764
3765
3766 case charset:
3767 case charset_not:
3768 {
3769 register unsigned char c;
3770 boolean not = (re_opcode_t) *(p - 1) == charset_not;
3771
3772 DEBUG_PRINT2 ("EXECUTING charset%s.\n", not ? "_not" : "");
3773
3774 PREFETCH ();
3775 c = TRANSLATE (*d); /* The character to match. */
3776
3777 /* Cast to `unsigned' instead of `unsigned char' in case the
3778 bit list is a full 32 bytes long. */
3779 if (c < (unsigned) (*p * BYTEWIDTH)
3780 && p[1 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
3781 not = !not;
3782
3783 p += 1 + *p;
3784
3785 if (!not) goto fail;
3786
3787 SET_REGS_MATCHED ();
3788 d++;
3789 break;
3790 }
3791
3792
3793 /* The beginning of a group is represented by start_memory.
3794 The arguments are the register number in the next byte, and the
3795 number of groups inner to this one in the next. The text
3796 matched within the group is recorded (in the internal
3797 registers data structure) under the register number. */
3798 case start_memory:
3799 DEBUG_PRINT3 ("EXECUTING start_memory %d (%d):\n", *p, p[1]);
3800
3801 /* Find out if this group can match the empty string. */
3802 p1 = p; /* To send to group_match_null_string_p. */
3803
3804 if (REG_MATCH_NULL_STRING_P (reg_info[*p]) == MATCH_NULL_UNSET_VALUE)
3805 REG_MATCH_NULL_STRING_P (reg_info[*p])
3806 = group_match_null_string_p (&p1, pend, reg_info);
3807
3808 /* Save the position in the string where we were the last time
3809 we were at this open-group operator in case the group is
3810 operated upon by a repetition operator, e.g., with `(a*)*b'
3811 against `ab'; then we want to ignore where we are now in
3812 the string in case this attempt to match fails. */
3813 old_regstart[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3814 ? REG_UNSET (regstart[*p]) ? d : regstart[*p]
3815 : regstart[*p];
3816 DEBUG_PRINT2 (" old_regstart: %d\n",
3817 POINTER_TO_OFFSET (old_regstart[*p]));
3818
3819 regstart[*p] = d;
3820 DEBUG_PRINT2 (" regstart: %d\n", POINTER_TO_OFFSET (regstart[*p]));
3821
3822 IS_ACTIVE (reg_info[*p]) = 1;
3823 MATCHED_SOMETHING (reg_info[*p]) = 0;
3824
3825 /* This is the new highest active register. */
3826 highest_active_reg = *p;
3827
3828 /* If nothing was active before, this is the new lowest active
3829 register. */
3830 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
3831 lowest_active_reg = *p;
3832
3833 /* Move past the register number and inner group count. */
3834 p += 2;
b391d2bf 3835 just_past_start_mem = p;
bc78d348
KB
3836 break;
3837
3838
3839 /* The stop_memory opcode represents the end of a group. Its
3840 arguments are the same as start_memory's: the register
3841 number, and the number of inner groups. */
3842 case stop_memory:
3843 DEBUG_PRINT3 ("EXECUTING stop_memory %d (%d):\n", *p, p[1]);
3844
3845 /* We need to save the string position the last time we were at
3846 this close-group operator in case the group is operated
3847 upon by a repetition operator, e.g., with `((a*)*(b*)*)*'
3848 against `aba'; then we want to ignore where we are now in
3849 the string in case this attempt to match fails. */
3850 old_regend[*p] = REG_MATCH_NULL_STRING_P (reg_info[*p])
3851 ? REG_UNSET (regend[*p]) ? d : regend[*p]
3852 : regend[*p];
3853 DEBUG_PRINT2 (" old_regend: %d\n",
3854 POINTER_TO_OFFSET (old_regend[*p]));
3855
3856 regend[*p] = d;
3857 DEBUG_PRINT2 (" regend: %d\n", POINTER_TO_OFFSET (regend[*p]));
3858
3859 /* This register isn't active anymore. */
3860 IS_ACTIVE (reg_info[*p]) = 0;
3861
3862 /* If this was the only register active, nothing is active
3863 anymore. */
3864 if (lowest_active_reg == highest_active_reg)
3865 {
3866 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3867 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3868 }
3869 else
3870 { /* We must scan for the new highest active register, since
3871 it isn't necessarily one less than now: consider
3872 (a(b)c(d(e)f)g). When group 3 ends, after the f), the
3873 new highest active register is 1. */
3874 unsigned char r = *p - 1;
3875 while (r > 0 && !IS_ACTIVE (reg_info[r]))
3876 r--;
3877
3878 /* If we end up at register zero, that means that we saved
3879 the registers as the result of an `on_failure_jump', not
3880 a `start_memory', and we jumped to past the innermost
3881 `stop_memory'. For example, in ((.)*) we save
3882 registers 1 and 2 as a result of the *, but when we pop
3883 back to the second ), we are at the stop_memory 1.
3884 Thus, nothing is active. */
3885 if (r == 0)
3886 {
3887 lowest_active_reg = NO_LOWEST_ACTIVE_REG;
3888 highest_active_reg = NO_HIGHEST_ACTIVE_REG;
3889 }
3890 else
3891 highest_active_reg = r;
3892 }
3893
3894 /* If just failed to match something this time around with a
3895 group that's operated on by a repetition operator, try to
9114e279 3896 force exit from the ``loop'', and restore the register
bc78d348
KB
3897 information for this group that we had before trying this
3898 last match. */
3899 if ((!MATCHED_SOMETHING (reg_info[*p])
b391d2bf 3900 || just_past_start_mem == p - 1)
bc78d348
KB
3901 && (p + 2) < pend)
3902 {
3903 boolean is_a_jump_n = false;
3904
3905 p1 = p + 2;
3906 mcnt = 0;
3907 switch ((re_opcode_t) *p1++)
3908 {
3909 case jump_n:
3910 is_a_jump_n = true;
3911 case pop_failure_jump:
3912 case maybe_pop_jump:
3913 case jump:
3914 case dummy_failure_jump:
3915 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3916 if (is_a_jump_n)
3917 p1 += 2;
3918 break;
3919
3920 default:
3921 /* do nothing */ ;
3922 }
3923 p1 += mcnt;
3924
3925 /* If the next operation is a jump backwards in the pattern
3926 to an on_failure_jump right before the start_memory
3927 corresponding to this stop_memory, exit from the loop
3928 by forcing a failure after pushing on the stack the
3929 on_failure_jump's jump in the pattern, and d. */
3930 if (mcnt < 0 && (re_opcode_t) *p1 == on_failure_jump
3931 && (re_opcode_t) p1[3] == start_memory && p1[4] == *p)
3932 {
3933 /* If this group ever matched anything, then restore
3934 what its registers were before trying this last
3935 failed match, e.g., with `(a*)*b' against `ab' for
3936 regstart[1], and, e.g., with `((a*)*(b*)*)*'
3937 against `aba' for regend[3].
3938
3939 Also restore the registers for inner groups for,
3940 e.g., `((a*)(b*))*' against `aba' (register 3 would
3941 otherwise get trashed). */
3942
3943 if (EVER_MATCHED_SOMETHING (reg_info[*p]))
3944 {
3945 unsigned r;
3946
3947 EVER_MATCHED_SOMETHING (reg_info[*p]) = 0;
3948
3949 /* Restore this and inner groups' (if any) registers. */
3950 for (r = *p; r < *p + *(p + 1); r++)
3951 {
3952 regstart[r] = old_regstart[r];
3953
3954 /* xx why this test? */
3955 if ((int) old_regend[r] >= (int) regstart[r])
3956 regend[r] = old_regend[r];
3957 }
3958 }
3959 p1++;
3960 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
3961 PUSH_FAILURE_POINT (p1 + mcnt, d, -2);
3962
3963 goto fail;
3964 }
3965 }
3966
3967 /* Move past the register number and the inner group count. */
3968 p += 2;
3969 break;
3970
3971
3972 /* \<digit> has been turned into a `duplicate' command which is
3973 followed by the numeric value of <digit> as the register number. */
3974 case duplicate:
3975 {
3976 register const char *d2, *dend2;
3977 int regno = *p++; /* Get which register to match against. */
3978 DEBUG_PRINT2 ("EXECUTING duplicate %d.\n", regno);
3979
3980 /* Can't back reference a group which we've never matched. */
3981 if (REG_UNSET (regstart[regno]) || REG_UNSET (regend[regno]))
3982 goto fail;
3983
3984 /* Where in input to try to start matching. */
3985 d2 = regstart[regno];
3986
3987 /* Where to stop matching; if both the place to start and
3988 the place to stop matching are in the same string, then
3989 set to the place to stop, otherwise, for now have to use
3990 the end of the first string. */
3991
3992 dend2 = ((FIRST_STRING_P (regstart[regno])
3993 == FIRST_STRING_P (regend[regno]))
3994 ? regend[regno] : end_match_1);
3995 for (;;)
3996 {
3997 /* If necessary, advance to next segment in register
3998 contents. */
3999 while (d2 == dend2)
4000 {
4001 if (dend2 == end_match_2) break;
4002 if (dend2 == regend[regno]) break;
4003
4004 /* End of string1 => advance to string2. */
4005 d2 = string2;
4006 dend2 = regend[regno];
4007 }
4008 /* At end of register contents => success */
4009 if (d2 == dend2) break;
4010
4011 /* If necessary, advance to next segment in data. */
4012 PREFETCH ();
4013
4014 /* How many characters left in this segment to match. */
4015 mcnt = dend - d;
4016
4017 /* Want how many consecutive characters we can match in
4018 one shot, so, if necessary, adjust the count. */
4019 if (mcnt > dend2 - d2)
4020 mcnt = dend2 - d2;
4021
4022 /* Compare that many; failure if mismatch, else move
4023 past them. */
4024 if (translate
4025 ? bcmp_translate (d, d2, mcnt, translate)
4026 : bcmp (d, d2, mcnt))
4027 goto fail;
4028 d += mcnt, d2 += mcnt;
4029 }
4030 }
4031 break;
4032
4033
4034 /* begline matches the empty string at the beginning of the string
4035 (unless `not_bol' is set in `bufp'), and, if
4036 `newline_anchor' is set, after newlines. */
4037 case begline:
4038 DEBUG_PRINT1 ("EXECUTING begline.\n");
4039
9114e279 4040 if (AT_STRINGS_BEG (d))
bc78d348
KB
4041 {
4042 if (!bufp->not_bol) break;
4043 }
4044 else if (d[-1] == '\n' && bufp->newline_anchor)
4045 {
4046 break;
4047 }
4048 /* In all other cases, we fail. */
4049 goto fail;
4050
4051
4052 /* endline is the dual of begline. */
4053 case endline:
4054 DEBUG_PRINT1 ("EXECUTING endline.\n");
4055
9114e279 4056 if (AT_STRINGS_END (d))
bc78d348
KB
4057 {
4058 if (!bufp->not_eol) break;
4059 }
4060
4061 /* We have to ``prefetch'' the next character. */
4062 else if ((d == end1 ? *string2 : *d) == '\n'
4063 && bufp->newline_anchor)
4064 {
4065 break;
4066 }
4067 goto fail;
4068
4069
4070 /* Match at the very beginning of the data. */
4071 case begbuf:
4072 DEBUG_PRINT1 ("EXECUTING begbuf.\n");
9114e279 4073 if (AT_STRINGS_BEG (d))
bc78d348
KB
4074 break;
4075 goto fail;
4076
4077
4078 /* Match at the very end of the data. */
4079 case endbuf:
4080 DEBUG_PRINT1 ("EXECUTING endbuf.\n");
9114e279 4081 if (AT_STRINGS_END (d))
bc78d348
KB
4082 break;
4083 goto fail;
4084
4085
4086 /* on_failure_keep_string_jump is used to optimize `.*\n'. It
4087 pushes NULL as the value for the string on the stack. Then
4088 `pop_failure_point' will keep the current value for the
4089 string, instead of restoring it. To see why, consider
4090 matching `foo\nbar' against `.*\n'. The .* matches the foo;
4091 then the . fails against the \n. But the next thing we want
4092 to do is match the \n against the \n; if we restored the
4093 string value, we would be back at the foo.
4094
4095 Because this is used only in specific cases, we don't need to
4096 check all the things that `on_failure_jump' does, to make
4097 sure the right things get saved on the stack. Hence we don't
4098 share its code. The only reason to push anything on the
4099 stack at all is that otherwise we would have to change
4100 `anychar's code to do something besides goto fail in this
4101 case; that seems worse than this. */
4102 case on_failure_keep_string_jump:
4103 DEBUG_PRINT1 ("EXECUTING on_failure_keep_string_jump");
4104
4105 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4106 DEBUG_PRINT3 (" %d (to 0x%x):\n", mcnt, p + mcnt);
4107
4108 PUSH_FAILURE_POINT (p + mcnt, NULL, -2);
4109 break;
4110
4111
4112 /* Uses of on_failure_jump:
4113
4114 Each alternative starts with an on_failure_jump that points
4115 to the beginning of the next alternative. Each alternative
4116 except the last ends with a jump that in effect jumps past
4117 the rest of the alternatives. (They really jump to the
4118 ending jump of the following alternative, because tensioning
4119 these jumps is a hassle.)
4120
4121 Repeats start with an on_failure_jump that points past both
4122 the repetition text and either the following jump or
4123 pop_failure_jump back to this on_failure_jump. */
4124 case on_failure_jump:
4125 on_failure:
4126 DEBUG_PRINT1 ("EXECUTING on_failure_jump");
4127
4128 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4129 DEBUG_PRINT3 (" %d (to 0x%x)", mcnt, p + mcnt);
4130
4131 /* If this on_failure_jump comes right before a group (i.e.,
4132 the original * applied to a group), save the information
4133 for that group and all inner ones, so that if we fail back
4134 to this point, the group's information will be correct.
9114e279 4135 For example, in \(a*\)*\1, we need the preceding group,
bc78d348
KB
4136 and in \(\(a*\)b*\)\2, we need the inner group. */
4137
4138 /* We can't use `p' to check ahead because we push
4139 a failure point to `p + mcnt' after we do this. */
4140 p1 = p;
4141
4142 /* We need to skip no_op's before we look for the
4143 start_memory in case this on_failure_jump is happening as
4144 the result of a completed succeed_n, as in \(a\)\{1,3\}b\1
4145 against aba. */
4146 while (p1 < pend && (re_opcode_t) *p1 == no_op)
4147 p1++;
4148
4149 if (p1 < pend && (re_opcode_t) *p1 == start_memory)
4150 {
4151 /* We have a new highest active register now. This will
4152 get reset at the start_memory we are about to get to,
4153 but we will have saved all the registers relevant to
4154 this repetition op, as described above. */
4155 highest_active_reg = *(p1 + 1) + *(p1 + 2);
4156 if (lowest_active_reg == NO_LOWEST_ACTIVE_REG)
4157 lowest_active_reg = *(p1 + 1);
4158 }
4159
4160 DEBUG_PRINT1 (":\n");
4161 PUSH_FAILURE_POINT (p + mcnt, d, -2);
4162 break;
4163
4164
9114e279
KB
4165 /* A smart repeat ends with `maybe_pop_jump'.
4166 We change it to either `pop_failure_jump' or `jump'. */
bc78d348
KB
4167 case maybe_pop_jump:
4168 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4169 DEBUG_PRINT2 ("EXECUTING maybe_pop_jump %d.\n", mcnt);
4170 {
4171 register unsigned char *p2 = p;
4172
4173 /* Compare the beginning of the repeat with what in the
4174 pattern follows its end. If we can establish that there
4175 is nothing that they would both match, i.e., that we
4176 would have to backtrack because of (as in, e.g., `a*a')
4177 then we can change to pop_failure_jump, because we'll
4178 never have to backtrack.
4179
4180 This is not true in the case of alternatives: in
4181 `(a|ab)*' we do need to backtrack to the `ab' alternative
4182 (e.g., if the string was `ab'). But instead of trying to
4183 detect that here, the alternative has put on a dummy
4184 failure point which is what we will end up popping. */
4185
4f9d3ad8
RS
4186 /* Skip over open/close-group commands.
4187 If what follows this loop is a ...+ construct,
4188 look at what begins its body, since we will have to
4189 match at least one of that. */
4190 while (1)
4191 {
4192 if (p2 + 2 < pend
4193 && ((re_opcode_t) *p2 == stop_memory
4194 || (re_opcode_t) *p2 == start_memory))
4195 p2 += 3;
4196 else if (p2 + 6 < pend
4197 && (re_opcode_t) *p2 == dummy_failure_jump)
4198 p2 += 6;
4199 else
4200 break;
4201 }
4202
4203 p1 = p + mcnt;
4204 /* p1[0] ... p1[2] are the `on_failure_jump' corresponding
4205 to the `maybe_finalize_jump' of this case. Examine what
4206 follows. */
bc78d348
KB
4207
4208 /* If we're at the end of the pattern, we can change. */
4209 if (p2 == pend)
71715da9
JB
4210 {
4211 /* Consider what happens when matching ":\(.*\)"
4212 against ":/". I don't really understand this code
4213 yet. */
bc78d348 4214 p[-3] = (unsigned char) pop_failure_jump;
71715da9
JB
4215 DEBUG_PRINT1
4216 (" End of pattern: change to `pop_failure_jump'.\n");
bc78d348
KB
4217 }
4218
4219 else if ((re_opcode_t) *p2 == exactn
4220 || (bufp->newline_anchor && (re_opcode_t) *p2 == endline))
4221 {
4222 register unsigned char c
4223 = *p2 == (unsigned char) endline ? '\n' : p2[2];
bc78d348 4224
bc78d348 4225 if ((re_opcode_t) p1[3] == exactn && p1[5] != c)
9114e279
KB
4226 {
4227 p[-3] = (unsigned char) pop_failure_jump;
4228 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4229 c, p1[5]);
4230 }
4231
bc78d348
KB
4232 else if ((re_opcode_t) p1[3] == charset
4233 || (re_opcode_t) p1[3] == charset_not)
4234 {
4235 int not = (re_opcode_t) p1[3] == charset_not;
4236
4237 if (c < (unsigned char) (p1[4] * BYTEWIDTH)
4238 && p1[5 + c / BYTEWIDTH] & (1 << (c % BYTEWIDTH)))
4239 not = !not;
4240
4241 /* `not' is equal to 1 if c would match, which means
4242 that we can't change to pop_failure_jump. */
4243 if (!not)
4244 {
4245 p[-3] = (unsigned char) pop_failure_jump;
9114e279 4246 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
bc78d348
KB
4247 }
4248 }
4249 }
4f9d3ad8
RS
4250 else if ((re_opcode_t) *p2 == charset)
4251 {
4252 register unsigned char c
4253 = *p2 == (unsigned char) endline ? '\n' : p2[2];
4254
4255 if ((re_opcode_t) p1[3] == exactn
4256 && ! (p2[1] * BYTEWIDTH > p1[4]
4257 && (p2[1 + p1[4] / BYTEWIDTH]
4258 & (1 << (p1[4] % BYTEWIDTH)))))
4259 {
4260 p[-3] = (unsigned char) pop_failure_jump;
4261 DEBUG_PRINT3 (" %c != %c => pop_failure_jump.\n",
4262 c, p1[5]);
4263 }
4264
4265 else if ((re_opcode_t) p1[3] == charset_not)
4266 {
4267 int idx;
4268 /* We win if the charset_not inside the loop
4269 lists every character listed in the charset after. */
4270 for (idx = 0; idx < p2[1]; idx++)
4271 if (! (p2[2 + idx] == 0
4272 || (idx < p1[4]
4273 && ((p2[2 + idx] & ~ p1[5 + idx]) == 0))))
4274 break;
4275
4276 if (idx == p2[1])
4277 {
4278 p[-3] = (unsigned char) pop_failure_jump;
4279 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4280 }
4281 }
4282 else if ((re_opcode_t) p1[3] == charset)
4283 {
4284 int idx;
4285 /* We win if the charset inside the loop
4286 has no overlap with the one after the loop. */
4287 for (idx = 0; idx < p2[1] && idx < p1[4]; idx++)
4288 if ((p2[2 + idx] & p1[5 + idx]) != 0)
4289 break;
4290
4291 if (idx == p2[1] || idx == p1[4])
4292 {
4293 p[-3] = (unsigned char) pop_failure_jump;
4294 DEBUG_PRINT1 (" No match => pop_failure_jump.\n");
4295 }
4296 }
4297 }
bc78d348
KB
4298 }
4299 p -= 2; /* Point at relative address again. */
4300 if ((re_opcode_t) p[-1] != pop_failure_jump)
4301 {
4302 p[-1] = (unsigned char) jump;
9114e279 4303 DEBUG_PRINT1 (" Match => jump.\n");
bc78d348
KB
4304 goto unconditional_jump;
4305 }
4306 /* Note fall through. */
4307
4308
4309 /* The end of a simple repeat has a pop_failure_jump back to
4310 its matching on_failure_jump, where the latter will push a
4311 failure point. The pop_failure_jump takes off failure
4312 points put on by this pop_failure_jump's matching
4313 on_failure_jump; we got through the pattern to here from the
4314 matching on_failure_jump, so didn't fail. */
4315 case pop_failure_jump:
4316 {
4317 /* We need to pass separate storage for the lowest and
4318 highest registers, even though we don't care about the
4319 actual values. Otherwise, we will restore only one
4320 register from the stack, since lowest will == highest in
4321 `pop_failure_point'. */
4322 unsigned dummy_low_reg, dummy_high_reg;
4323 unsigned char *pdummy;
4324 const char *sdummy;
4325
4326 DEBUG_PRINT1 ("EXECUTING pop_failure_jump.\n");
4327 POP_FAILURE_POINT (sdummy, pdummy,
4328 dummy_low_reg, dummy_high_reg,
4329 reg_dummy, reg_dummy, reg_info_dummy);
4330 }
4331 /* Note fall through. */
4332
4333
4334 /* Unconditionally jump (without popping any failure points). */
4335 case jump:
4336 unconditional_jump:
4337 EXTRACT_NUMBER_AND_INCR (mcnt, p); /* Get the amount to jump. */
4338 DEBUG_PRINT2 ("EXECUTING jump %d ", mcnt);
4339 p += mcnt; /* Do the jump. */
4340 DEBUG_PRINT2 ("(to 0x%x).\n", p);
4341 break;
4342
4343
4344 /* We need this opcode so we can detect where alternatives end
4345 in `group_match_null_string_p' et al. */
4346 case jump_past_alt:
4347 DEBUG_PRINT1 ("EXECUTING jump_past_alt.\n");
4348 goto unconditional_jump;
4349
4350
4351 /* Normally, the on_failure_jump pushes a failure point, which
4352 then gets popped at pop_failure_jump. We will end up at
4353 pop_failure_jump, also, and with a pattern of, say, `a+', we
4354 are skipping over the on_failure_jump, so we have to push
4355 something meaningless for pop_failure_jump to pop. */
4356 case dummy_failure_jump:
4357 DEBUG_PRINT1 ("EXECUTING dummy_failure_jump.\n");
4358 /* It doesn't matter what we push for the string here. What
4359 the code at `fail' tests is the value for the pattern. */
4360 PUSH_FAILURE_POINT (0, 0, -2);
4361 goto unconditional_jump;
4362
4363
4364 /* At the end of an alternative, we need to push a dummy failure
9114e279 4365 point in case we are followed by a `pop_failure_jump', because
bc78d348
KB
4366 we don't want the failure point for the alternative to be
4367 popped. For example, matching `(a|ab)*' against `aab'
4368 requires that we match the `ab' alternative. */
4369 case push_dummy_failure:
4370 DEBUG_PRINT1 ("EXECUTING push_dummy_failure.\n");
4371 /* See comments just above at `dummy_failure_jump' about the
4372 two zeroes. */
4373 PUSH_FAILURE_POINT (0, 0, -2);
4374 break;
4375
4376 /* Have to succeed matching what follows at least n times.
4377 After that, handle like `on_failure_jump'. */
4378 case succeed_n:
4379 EXTRACT_NUMBER (mcnt, p + 2);
4380 DEBUG_PRINT2 ("EXECUTING succeed_n %d.\n", mcnt);
4381
4382 assert (mcnt >= 0);
4383 /* Originally, this is how many times we HAVE to succeed. */
4384 if (mcnt > 0)
4385 {
4386 mcnt--;
4387 p += 2;
4388 STORE_NUMBER_AND_INCR (p, mcnt);
4389 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p, mcnt);
4390 }
4391 else if (mcnt == 0)
4392 {
4393 DEBUG_PRINT2 (" Setting two bytes from 0x%x to no_op.\n", p+2);
4394 p[2] = (unsigned char) no_op;
4395 p[3] = (unsigned char) no_op;
4396 goto on_failure;
4397 }
4398 break;
4399
4400 case jump_n:
4401 EXTRACT_NUMBER (mcnt, p + 2);
4402 DEBUG_PRINT2 ("EXECUTING jump_n %d.\n", mcnt);
4403
4404 /* Originally, this is how many times we CAN jump. */
4405 if (mcnt)
4406 {
4407 mcnt--;
4408 STORE_NUMBER (p + 2, mcnt);
4409 goto unconditional_jump;
4410 }
4411 /* If don't have to jump any more, skip over the rest of command. */
4412 else
4413 p += 4;
4414 break;
4415
4416 case set_number_at:
4417 {
4418 DEBUG_PRINT1 ("EXECUTING set_number_at.\n");
4419
4420 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4421 p1 = p + mcnt;
4422 EXTRACT_NUMBER_AND_INCR (mcnt, p);
4423 DEBUG_PRINT3 (" Setting 0x%x to %d.\n", p1, mcnt);
4424 STORE_NUMBER (p1, mcnt);
4425 break;
4426 }
4427
4428 case wordbound:
4429 DEBUG_PRINT1 ("EXECUTING wordbound.\n");
4430 if (AT_WORD_BOUNDARY (d))
4431 break;
4432 goto fail;
4433
4434 case notwordbound:
4435 DEBUG_PRINT1 ("EXECUTING notwordbound.\n");
4436 if (AT_WORD_BOUNDARY (d))
4437 goto fail;
4438 break;
4439
4440 case wordbeg:
4441 DEBUG_PRINT1 ("EXECUTING wordbeg.\n");
9114e279 4442 if (WORDCHAR_P (d) && (AT_STRINGS_BEG (d) || !WORDCHAR_P (d - 1)))
bc78d348
KB
4443 break;
4444 goto fail;
4445
4446 case wordend:
4447 DEBUG_PRINT1 ("EXECUTING wordend.\n");
9114e279
KB
4448 if (!AT_STRINGS_BEG (d) && WORDCHAR_P (d - 1)
4449 && (!WORDCHAR_P (d) || AT_STRINGS_END (d)))
bc78d348
KB
4450 break;
4451 goto fail;
4452
4453#ifdef emacs
bc78d348
KB
4454 case before_dot:
4455 DEBUG_PRINT1 ("EXECUTING before_dot.\n");
4456 if (PTR_CHAR_POS ((unsigned char *) d) >= point)
4457 goto fail;
4458 break;
4459
4460 case at_dot:
4461 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4462 if (PTR_CHAR_POS ((unsigned char *) d) != point)
4463 goto fail;
4464 break;
4465
4466 case after_dot:
4467 DEBUG_PRINT1 ("EXECUTING after_dot.\n");
4468 if (PTR_CHAR_POS ((unsigned char *) d) <= point)
4469 goto fail;
4470 break;
5b5bb5e4 4471#if 0 /* not emacs19 */
bc78d348
KB
4472 case at_dot:
4473 DEBUG_PRINT1 ("EXECUTING at_dot.\n");
4474 if (PTR_CHAR_POS ((unsigned char *) d) + 1 != point)
4475 goto fail;
4476 break;
4477#endif /* not emacs19 */
4478
4479 case syntaxspec:
4480 DEBUG_PRINT2 ("EXECUTING syntaxspec %d.\n", mcnt);
4481 mcnt = *p++;
4482 goto matchsyntax;
4483
4484 case wordchar:
9114e279 4485 DEBUG_PRINT1 ("EXECUTING Emacs wordchar.\n");
bc78d348
KB
4486 mcnt = (int) Sword;
4487 matchsyntax:
4488 PREFETCH ();
165c6714
KH
4489 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4490 d++;
4491 if (SYNTAX (d[-1]) != (enum syntaxcode) mcnt)
4492 goto fail;
bc78d348
KB
4493 SET_REGS_MATCHED ();
4494 break;
4495
4496 case notsyntaxspec:
4497 DEBUG_PRINT2 ("EXECUTING notsyntaxspec %d.\n", mcnt);
4498 mcnt = *p++;
4499 goto matchnotsyntax;
4500
4501 case notwordchar:
9114e279 4502 DEBUG_PRINT1 ("EXECUTING Emacs notwordchar.\n");
bc78d348 4503 mcnt = (int) Sword;
9114e279 4504 matchnotsyntax:
bc78d348 4505 PREFETCH ();
165c6714
KH
4506 /* Can't use *d++ here; SYNTAX may be an unsafe macro. */
4507 d++;
4508 if (SYNTAX (d[-1]) == (enum syntaxcode) mcnt)
4509 goto fail;
bc78d348
KB
4510 SET_REGS_MATCHED ();
4511 break;
4512
4513#else /* not emacs */
4514 case wordchar:
4515 DEBUG_PRINT1 ("EXECUTING non-Emacs wordchar.\n");
4516 PREFETCH ();
9114e279 4517 if (!WORDCHAR_P (d))
bc78d348
KB
4518 goto fail;
4519 SET_REGS_MATCHED ();
9114e279 4520 d++;
bc78d348
KB
4521 break;
4522
4523 case notwordchar:
4524 DEBUG_PRINT1 ("EXECUTING non-Emacs notwordchar.\n");
4525 PREFETCH ();
9114e279 4526 if (WORDCHAR_P (d))
bc78d348
KB
4527 goto fail;
4528 SET_REGS_MATCHED ();
9114e279 4529 d++;
bc78d348
KB
4530 break;
4531#endif /* not emacs */
4532
4533 default:
4534 abort ();
4535 }
4536 continue; /* Successfully executed one pattern command; keep going. */
4537
4538
4539 /* We goto here if a matching operation fails. */
4540 fail:
4541 if (!FAIL_STACK_EMPTY ())
4542 { /* A restart point is known. Restore to that state. */
4543 DEBUG_PRINT1 ("\nFAIL:\n");
4544 POP_FAILURE_POINT (d, p,
4545 lowest_active_reg, highest_active_reg,
4546 regstart, regend, reg_info);
4547
4548 /* If this failure point is a dummy, try the next one. */
4549 if (!p)
4550 goto fail;
4551
4552 /* If we failed to the end of the pattern, don't examine *p. */
4553 assert (p <= pend);
4554 if (p < pend)
4555 {
4556 boolean is_a_jump_n = false;
4557
4558 /* If failed to a backwards jump that's part of a repetition
4559 loop, need to pop this failure point and use the next one. */
4560 switch ((re_opcode_t) *p)
4561 {
4562 case jump_n:
4563 is_a_jump_n = true;
4564 case maybe_pop_jump:
4565 case pop_failure_jump:
4566 case jump:
4567 p1 = p + 1;
4568 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4569 p1 += mcnt;
4570
4571 if ((is_a_jump_n && (re_opcode_t) *p1 == succeed_n)
4572 || (!is_a_jump_n
4573 && (re_opcode_t) *p1 == on_failure_jump))
4574 goto fail;
4575 break;
4576 default:
4577 /* do nothing */ ;
4578 }
4579 }
4580
4581 if (d >= string1 && d <= end1)
4582 dend = end_match_1;
4583 }
4584 else
4585 break; /* Matching at this starting point really fails. */
4586 } /* for (;;) */
4587
4588 if (best_regs_set)
4589 goto restore_best_regs;
4590
4591 FREE_VARIABLES ();
4592
4593 return -1; /* Failure to match. */
4594} /* re_match_2 */
4595\f
4596/* Subroutine definitions for re_match_2. */
4597
4598
4599/* We are passed P pointing to a register number after a start_memory.
4600
4601 Return true if the pattern up to the corresponding stop_memory can
4602 match the empty string, and false otherwise.
4603
4604 If we find the matching stop_memory, sets P to point to one past its number.
4605 Otherwise, sets P to an undefined byte less than or equal to END.
4606
4607 We don't handle duplicates properly (yet). */
4608
4609static boolean
4610group_match_null_string_p (p, end, reg_info)
4611 unsigned char **p, *end;
4612 register_info_type *reg_info;
4613{
4614 int mcnt;
4615 /* Point to after the args to the start_memory. */
4616 unsigned char *p1 = *p + 2;
4617
4618 while (p1 < end)
4619 {
4620 /* Skip over opcodes that can match nothing, and return true or
4621 false, as appropriate, when we get to one that can't, or to the
4622 matching stop_memory. */
4623
4624 switch ((re_opcode_t) *p1)
4625 {
4626 /* Could be either a loop or a series of alternatives. */
4627 case on_failure_jump:
4628 p1++;
4629 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4630
4631 /* If the next operation is not a jump backwards in the
4632 pattern. */
4633
4634 if (mcnt >= 0)
4635 {
4636 /* Go through the on_failure_jumps of the alternatives,
4637 seeing if any of the alternatives cannot match nothing.
4638 The last alternative starts with only a jump,
4639 whereas the rest start with on_failure_jump and end
4640 with a jump, e.g., here is the pattern for `a|b|c':
4641
4642 /on_failure_jump/0/6/exactn/1/a/jump_past_alt/0/6
4643 /on_failure_jump/0/6/exactn/1/b/jump_past_alt/0/3
4644 /exactn/1/c
4645
4646 So, we have to first go through the first (n-1)
4647 alternatives and then deal with the last one separately. */
4648
4649
4650 /* Deal with the first (n-1) alternatives, which start
4651 with an on_failure_jump (see above) that jumps to right
4652 past a jump_past_alt. */
4653
4654 while ((re_opcode_t) p1[mcnt-3] == jump_past_alt)
4655 {
4656 /* `mcnt' holds how many bytes long the alternative
4657 is, including the ending `jump_past_alt' and
4658 its number. */
4659
4660 if (!alt_match_null_string_p (p1, p1 + mcnt - 3,
4661 reg_info))
4662 return false;
4663
4664 /* Move to right after this alternative, including the
4665 jump_past_alt. */
4666 p1 += mcnt;
4667
4668 /* Break if it's the beginning of an n-th alternative
4669 that doesn't begin with an on_failure_jump. */
4670 if ((re_opcode_t) *p1 != on_failure_jump)
4671 break;
4672
4673 /* Still have to check that it's not an n-th
4674 alternative that starts with an on_failure_jump. */
4675 p1++;
4676 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4677 if ((re_opcode_t) p1[mcnt-3] != jump_past_alt)
4678 {
4679 /* Get to the beginning of the n-th alternative. */
4680 p1 -= 3;
4681 break;
4682 }
4683 }
4684
4685 /* Deal with the last alternative: go back and get number
4686 of the `jump_past_alt' just before it. `mcnt' contains
4687 the length of the alternative. */
4688 EXTRACT_NUMBER (mcnt, p1 - 2);
4689
4690 if (!alt_match_null_string_p (p1, p1 + mcnt, reg_info))
4691 return false;
4692
4693 p1 += mcnt; /* Get past the n-th alternative. */
4694 } /* if mcnt > 0 */
4695 break;
4696
4697
4698 case stop_memory:
4699 assert (p1[1] == **p);
4700 *p = p1 + 2;
4701 return true;
4702
4703
4704 default:
4705 if (!common_op_match_null_string_p (&p1, end, reg_info))
4706 return false;
4707 }
4708 } /* while p1 < end */
4709
4710 return false;
4711} /* group_match_null_string_p */
4712
4713
4714/* Similar to group_match_null_string_p, but doesn't deal with alternatives:
4715 It expects P to be the first byte of a single alternative and END one
4716 byte past the last. The alternative can contain groups. */
4717
4718static boolean
4719alt_match_null_string_p (p, end, reg_info)
4720 unsigned char *p, *end;
4721 register_info_type *reg_info;
4722{
4723 int mcnt;
4724 unsigned char *p1 = p;
4725
4726 while (p1 < end)
4727 {
4728 /* Skip over opcodes that can match nothing, and break when we get
4729 to one that can't. */
4730
4731 switch ((re_opcode_t) *p1)
4732 {
4733 /* It's a loop. */
4734 case on_failure_jump:
4735 p1++;
4736 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4737 p1 += mcnt;
4738 break;
4739
4740 default:
4741 if (!common_op_match_null_string_p (&p1, end, reg_info))
4742 return false;
4743 }
4744 } /* while p1 < end */
4745
4746 return true;
4747} /* alt_match_null_string_p */
4748
4749
4750/* Deals with the ops common to group_match_null_string_p and
4751 alt_match_null_string_p.
4752
4753 Sets P to one after the op and its arguments, if any. */
4754
4755static boolean
4756common_op_match_null_string_p (p, end, reg_info)
4757 unsigned char **p, *end;
4758 register_info_type *reg_info;
4759{
4760 int mcnt;
4761 boolean ret;
4762 int reg_no;
4763 unsigned char *p1 = *p;
4764
4765 switch ((re_opcode_t) *p1++)
4766 {
4767 case no_op:
4768 case begline:
4769 case endline:
4770 case begbuf:
4771 case endbuf:
4772 case wordbeg:
4773 case wordend:
4774 case wordbound:
4775 case notwordbound:
4776#ifdef emacs
4777 case before_dot:
4778 case at_dot:
4779 case after_dot:
4780#endif
4781 break;
4782
4783 case start_memory:
4784 reg_no = *p1;
4785 assert (reg_no > 0 && reg_no <= MAX_REGNUM);
4786 ret = group_match_null_string_p (&p1, end, reg_info);
4787
4788 /* Have to set this here in case we're checking a group which
4789 contains a group and a back reference to it. */
4790
4791 if (REG_MATCH_NULL_STRING_P (reg_info[reg_no]) == MATCH_NULL_UNSET_VALUE)
4792 REG_MATCH_NULL_STRING_P (reg_info[reg_no]) = ret;
4793
4794 if (!ret)
4795 return false;
4796 break;
4797
4798 /* If this is an optimized succeed_n for zero times, make the jump. */
4799 case jump:
4800 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4801 if (mcnt >= 0)
4802 p1 += mcnt;
4803 else
4804 return false;
4805 break;
4806
4807 case succeed_n:
4808 /* Get to the number of times to succeed. */
4809 p1 += 2;
4810 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4811
4812 if (mcnt == 0)
4813 {
4814 p1 -= 4;
4815 EXTRACT_NUMBER_AND_INCR (mcnt, p1);
4816 p1 += mcnt;
4817 }
4818 else
4819 return false;
4820 break;
4821
4822 case duplicate:
4823 if (!REG_MATCH_NULL_STRING_P (reg_info[*p1]))
4824 return false;
4825 break;
4826
4827 case set_number_at:
4828 p1 += 4;
4829
4830 default:
4831 /* All other opcodes mean we cannot match the empty string. */
4832 return false;
4833 }
4834
4835 *p = p1;
4836 return true;
4837} /* common_op_match_null_string_p */
4838
4839
4840/* Return zero if TRANSLATE[S1] and TRANSLATE[S2] are identical for LEN
4841 bytes; nonzero otherwise. */
4842
4843static int
4844bcmp_translate (s1, s2, len, translate)
4845 unsigned char *s1, *s2;
4846 register int len;
4847 char *translate;
4848{
4849 register unsigned char *p1 = s1, *p2 = s2;
4850 while (len)
4851 {
4852 if (translate[*p1++] != translate[*p2++]) return 1;
4853 len--;
4854 }
4855 return 0;
4856}
4857\f
4858/* Entry points for GNU code. */
4859
4860/* re_compile_pattern is the GNU regular expression compiler: it
4861 compiles PATTERN (of length SIZE) and puts the result in BUFP.
4862 Returns 0 if the pattern was valid, otherwise an error string.
4863
4864 Assumes the `allocated' (and perhaps `buffer') and `translate' fields
4865 are set in BUFP on entry.
4866
4867 We call regex_compile to do the actual compilation. */
4868
4869const char *
4870re_compile_pattern (pattern, length, bufp)
4871 const char *pattern;
4872 int length;
4873 struct re_pattern_buffer *bufp;
4874{
4875 reg_errcode_t ret;
4876
4877 /* GNU code is written to assume at least RE_NREGS registers will be set
4878 (and at least one extra will be -1). */
4879 bufp->regs_allocated = REGS_UNALLOCATED;
4880
4881 /* And GNU code determines whether or not to get register information
4882 by passing null for the REGS argument to re_match, etc., not by
4883 setting no_sub. */
4884 bufp->no_sub = 0;
4885
4886 /* Match anchors at newline. */
4887 bufp->newline_anchor = 1;
4888
4889 ret = regex_compile (pattern, length, re_syntax_options, bufp);
4890
4891 return re_error_msg[(int) ret];
4892}
4893\f
4894/* Entry points compatible with 4.2 BSD regex library. We don't define
4895 them if this is an Emacs or POSIX compilation. */
4896
4897#if !defined (emacs) && !defined (_POSIX_SOURCE)
4898
4899/* BSD has one and only one pattern buffer. */
4900static struct re_pattern_buffer re_comp_buf;
4901
4902char *
4903re_comp (s)
4904 const char *s;
4905{
4906 reg_errcode_t ret;
4907
4908 if (!s)
4909 {
4910 if (!re_comp_buf.buffer)
4911 return "No previous regular expression";
4912 return 0;
4913 }
4914
4915 if (!re_comp_buf.buffer)
4916 {
4917 re_comp_buf.buffer = (unsigned char *) malloc (200);
4918 if (re_comp_buf.buffer == NULL)
4919 return "Memory exhausted";
4920 re_comp_buf.allocated = 200;
4921
4922 re_comp_buf.fastmap = (char *) malloc (1 << BYTEWIDTH);
4923 if (re_comp_buf.fastmap == NULL)
4924 return "Memory exhausted";
4925 }
4926
4927 /* Since `re_exec' always passes NULL for the `regs' argument, we
4928 don't need to initialize the pattern buffer fields which affect it. */
4929
4930 /* Match anchors at newlines. */
4931 re_comp_buf.newline_anchor = 1;
4932
4933 ret = regex_compile (s, strlen (s), re_syntax_options, &re_comp_buf);
4934
4935 /* Yes, we're discarding `const' here. */
4936 return (char *) re_error_msg[(int) ret];
4937}
4938
4939
4940int
4941re_exec (s)
4942 const char *s;
4943{
4944 const int len = strlen (s);
4945 return
4946 0 <= re_search (&re_comp_buf, s, len, 0, len, (struct re_registers *) 0);
4947}
4948#endif /* not emacs and not _POSIX_SOURCE */
4949\f
4950/* POSIX.2 functions. Don't define these for Emacs. */
4951
4952#ifndef emacs
4953
4954/* regcomp takes a regular expression as a string and compiles it.
4955
4956 PREG is a regex_t *. We do not expect any fields to be initialized,
4957 since POSIX says we shouldn't. Thus, we set
4958
4959 `buffer' to the compiled pattern;
4960 `used' to the length of the compiled pattern;
4961 `syntax' to RE_SYNTAX_POSIX_EXTENDED if the
4962 REG_EXTENDED bit in CFLAGS is set; otherwise, to
4963 RE_SYNTAX_POSIX_BASIC;
4964 `newline_anchor' to REG_NEWLINE being set in CFLAGS;
4965 `fastmap' and `fastmap_accurate' to zero;
4966 `re_nsub' to the number of subexpressions in PATTERN.
4967
4968 PATTERN is the address of the pattern string.
4969
4970 CFLAGS is a series of bits which affect compilation.
4971
4972 If REG_EXTENDED is set, we use POSIX extended syntax; otherwise, we
4973 use POSIX basic syntax.
4974
4975 If REG_NEWLINE is set, then . and [^...] don't match newline.
4976 Also, regexec will try a match beginning after every newline.
4977
4978 If REG_ICASE is set, then we considers upper- and lowercase
4979 versions of letters to be equivalent when matching.
4980
4981 If REG_NOSUB is set, then when PREG is passed to regexec, that
4982 routine will report only success or failure, and nothing about the
4983 registers.
4984
4985 It returns 0 if it succeeds, nonzero if it doesn't. (See regex.h for
4986 the return codes and their meanings.) */
4987
4988int
4989regcomp (preg, pattern, cflags)
4990 regex_t *preg;
4991 const char *pattern;
4992 int cflags;
4993{
4994 reg_errcode_t ret;
4995 unsigned syntax
d9088577
DM
4996 = (cflags & REG_EXTENDED) ?
4997 RE_SYNTAX_POSIX_EXTENDED : RE_SYNTAX_POSIX_BASIC;
bc78d348
KB
4998
4999 /* regex_compile will allocate the space for the compiled pattern. */
5000 preg->buffer = 0;
d9088577 5001 preg->allocated = 0;
8b4cc189 5002 preg->used = 0;
bc78d348
KB
5003
5004 /* Don't bother to use a fastmap when searching. This simplifies the
5005 REG_NEWLINE case: if we used a fastmap, we'd have to put all the
5006 characters after newlines into the fastmap. This way, we just try
5007 every character. */
5008 preg->fastmap = 0;
5009
5010 if (cflags & REG_ICASE)
5011 {
5012 unsigned i;
5013
5014 preg->translate = (char *) malloc (CHAR_SET_SIZE);
5015 if (preg->translate == NULL)
5016 return (int) REG_ESPACE;
5017
5018 /* Map uppercase characters to corresponding lowercase ones. */
5019 for (i = 0; i < CHAR_SET_SIZE; i++)
c6b40788 5020 preg->translate[i] = ISUPPER (i) ? tolower (i) : i;
bc78d348
KB
5021 }
5022 else
5023 preg->translate = NULL;
5024
5025 /* If REG_NEWLINE is set, newlines are treated differently. */
5026 if (cflags & REG_NEWLINE)
5027 { /* REG_NEWLINE implies neither . nor [^...] match newline. */
5028 syntax &= ~RE_DOT_NEWLINE;
5029 syntax |= RE_HAT_LISTS_NOT_NEWLINE;
5030 /* It also changes the matching behavior. */
5031 preg->newline_anchor = 1;
5032 }
5033 else
5034 preg->newline_anchor = 0;
5035
5036 preg->no_sub = !!(cflags & REG_NOSUB);
5037
5038 /* POSIX says a null character in the pattern terminates it, so we
5039 can use strlen here in compiling the pattern. */
5040 ret = regex_compile (pattern, strlen (pattern), syntax, preg);
5041
5042 /* POSIX doesn't distinguish between an unmatched open-group and an
5043 unmatched close-group: both are REG_EPAREN. */
5044 if (ret == REG_ERPAREN) ret = REG_EPAREN;
5045
5046 return (int) ret;
5047}
5048
5049
5050/* regexec searches for a given pattern, specified by PREG, in the
5051 string STRING.
5052
5053 If NMATCH is zero or REG_NOSUB was set in the cflags argument to
5054 `regcomp', we ignore PMATCH. Otherwise, we assume PMATCH has at
5055 least NMATCH elements, and we set them to the offsets of the
5056 corresponding matched substrings.
5057
5058 EFLAGS specifies `execution flags' which affect matching: if
5059 REG_NOTBOL is set, then ^ does not match at the beginning of the
5060 string; if REG_NOTEOL is set, then $ does not match at the end.
5061
5062 We return 0 if we find a match and REG_NOMATCH if not. */
5063
5064int
5065regexec (preg, string, nmatch, pmatch, eflags)
5066 const regex_t *preg;
5067 const char *string;
5068 size_t nmatch;
5069 regmatch_t pmatch[];
5070 int eflags;
5071{
5072 int ret;
5073 struct re_registers regs;
5074 regex_t private_preg;
5075 int len = strlen (string);
5076 boolean want_reg_info = !preg->no_sub && nmatch > 0;
5077
5078 private_preg = *preg;
5079
5080 private_preg.not_bol = !!(eflags & REG_NOTBOL);
5081 private_preg.not_eol = !!(eflags & REG_NOTEOL);
5082
5083 /* The user has told us exactly how many registers to return
5084 information about, via `nmatch'. We have to pass that on to the
5085 matching routines. */
5086 private_preg.regs_allocated = REGS_FIXED;
5087
5088 if (want_reg_info)
5089 {
5090 regs.num_regs = nmatch;
5091 regs.start = TALLOC (nmatch, regoff_t);
5092 regs.end = TALLOC (nmatch, regoff_t);
5093 if (regs.start == NULL || regs.end == NULL)
5094 return (int) REG_NOMATCH;
5095 }
5096
5097 /* Perform the searching operation. */
5098 ret = re_search (&private_preg, string, len,
5099 /* start: */ 0, /* range: */ len,
5100 want_reg_info ? &regs : (struct re_registers *) 0);
5101
5102 /* Copy the register information to the POSIX structure. */
5103 if (want_reg_info)
5104 {
5105 if (ret >= 0)
5106 {
5107 unsigned r;
5108
5109 for (r = 0; r < nmatch; r++)
5110 {
5111 pmatch[r].rm_so = regs.start[r];
5112 pmatch[r].rm_eo = regs.end[r];
5113 }
5114 }
5115
5116 /* If we needed the temporary register info, free the space now. */
5117 free (regs.start);
5118 free (regs.end);
5119 }
5120
5121 /* We want zero return to mean success, unlike `re_search'. */
5122 return ret >= 0 ? (int) REG_NOERROR : (int) REG_NOMATCH;
5123}
5124
5125
5126/* Returns a message corresponding to an error code, ERRCODE, returned
9114e279 5127 from either regcomp or regexec. We don't use PREG here. */
bc78d348
KB
5128
5129size_t
5130regerror (errcode, preg, errbuf, errbuf_size)
5131 int errcode;
5132 const regex_t *preg;
5133 char *errbuf;
5134 size_t errbuf_size;
5135{
85586484
JB
5136 const char *msg;
5137 size_t msg_size;
5138
5139 if (errcode < 0
5140 || errcode >= (sizeof (re_error_msg) / sizeof (re_error_msg[0])))
5141 /* Only error codes returned by the rest of the code should be passed
5142 to this routine. If we are given anything else, or if other regex
5143 code generates an invalid error code, then the program has a bug.
5144 Dump core so we can fix it. */
5145 abort ();
5146
5745b086
JB
5147 msg = re_error_msg[errcode];
5148
5149 /* POSIX doesn't require that we do anything in this case, but why
5150 not be nice. */
5151 if (! msg)
5152 msg = "Success";
5153
85586484 5154 msg_size = strlen (msg) + 1; /* Includes the null. */
bc78d348
KB
5155
5156 if (errbuf_size != 0)
5157 {
5158 if (msg_size > errbuf_size)
5159 {
5160 strncpy (errbuf, msg, errbuf_size - 1);
5161 errbuf[errbuf_size - 1] = 0;
5162 }
5163 else
5164 strcpy (errbuf, msg);
5165 }
5166
5167 return msg_size;
5168}
5169
5170
5171/* Free dynamically allocated space used by PREG. */
5172
5173void
5174regfree (preg)
5175 regex_t *preg;
5176{
5177 if (preg->buffer != NULL)
5178 free (preg->buffer);
5179 preg->buffer = NULL;
5180
5181 preg->allocated = 0;
5182 preg->used = 0;
5183
5184 if (preg->fastmap != NULL)
5185 free (preg->fastmap);
5186 preg->fastmap = NULL;
5187 preg->fastmap_accurate = 0;
5188
5189 if (preg->translate != NULL)
5190 free (preg->translate);
5191 preg->translate = NULL;
5192}
5193
5194#endif /* not emacs */
5195\f
5196/*
5197Local variables:
5198make-backup-files: t
5199version-control: t
5200trim-versions-without-asking: nil
5201End:
5202*/