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Abstract

Collateral evolutions are a pervasive problem in large-scale software development.
Such evolutions occur when an evolution that affects the interface of a generic library
entails modifications, i.e., collateral evolutions, in all library clients. Performing
these collateral evolutions requires identifying the affected files and modifying all of
the code fragments in these files that in some way depend on the changed interface.

We have studied the collateral evolution problem in the context of Linux device
drivers. Currently, collateral evolutions in Linux are mostly done manually using
a text editor, possibly with the help of tools such as grep. The large number of
Linux drivers, however, implies that this approach is time-consuming and unreliable,
leading to subtle errors when modifications are not done consistently.

In this paper, we propose a transformation language, SmPL, to specify collateral
evolutions. Because Linux programmers are accustomed to exchanging, reading,
and manipulating program modifications in terms of patches, we build our language
around the idea and syntax of a patch, extending patches to semantic patches.

Key words: Linux, device drivers, collateral evolutions,
domain-specific languages.

1 Introduction

One major difficulty, and the source of highest cost, in software development
is to manage evolution. Software evolves to add new features, to adapt to new
requirements, and to improve performance, safety, or the software architec-
ture. Nevertheless, while evolution can provide long-term benefits, it can also
introduce short-term difficulties, when the evolution of one component affects
interfaces on which other components rely.
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In previous work [16], we have identified the phenomenon of collateral evo-
lution, in which an evolution that affects the interface of a generic library
entails modifications, i.e., collateral evolutions, in all library clients. As part
of this previous work, we have furthermore studied this phenomenon in the
context of Linux device drivers. Collateral evolutions are a significant problem
in this context because device drivers make up over half of the Linux source
code and are highly dependent on the kernel and various driver support li-
braries for functions and data structures. This previous study concluded by
identifying a taxonomy of the kinds of collateral evolutions that are required
in device drivers. These include changes in calls to driver support library func-
tions to add or drop new arguments, changes in callback functions defined by
drivers to add or drop required parameters, changes in data structures to add
or drop fields, and changes in function usage protocols.

Performing collateral evolutions in Linux device drivers requires identify-
ing the affected driver files and modifying all of the code fragments in these
files that somehow depend on the changes in the driver support library inter-
face. Standard techniques include manual search and replace in a text editor,
tools such as grep to find driver files with relevant properties, and tools such as
sed, perl scripts, and emacs macros to update affected driver code fragments.
None of these approaches, however, provides any support for taking into ac-
count the syntax and semantics of C code. Errors result, such as deleting more
lines of code than intended or overlooking some relevant code fragments. Fur-
thermore, many collateral evolutions involve control-flow properties, and thus
require substantial programming-language expertise to implement correctly.

In this paper, we propose a declarative transformation language, SmPL
(Semantic Patch Language), to express precisely and concisely collateral evo-
lutions of Linux device drivers. Linux programmers are accustomed to ex-
changing, reading, and manipulating patch files that provide a record of pre-
viously performed changes. Thus, we base the syntax of SmPL on the patch
file notation. Unlike traditional patches, which record changes at specific sites
in specific files, SmPL can describe generic transformations that apply to mul-
tiple collateral evolution sites. In particular, transformations are defined in
terms of control-flow graphs rather than abstract syntax trees, and thus fol-
low not the syntax of the C code but its semantics. We thus refer to the
transformation rules expressed using SmPL as semantic patches.

SmPL is a first step in a larger project to develop a transformation tool,
Coccinelle, providing automated assistance for performing collateral evolu-
tions. This assistance will comprise the SmPL language for specifying collat-
eral evolutions and a transformation engine for applying them to device driver
code. We expect that when the developer of a driver support library modifies
the library’s interface, he will create the corresponding semantic patch, relying
on his understanding of the protocol for using the affected interface elements
and the structure of typical driver code. He will then distribute the seman-
tic patch to driver maintainers who will use it to update their drivers. Our
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goal is that the transformation process should be robust, and interactive when
necessary. In particular, it should remain able to assist the driver maintainer
even when an exact match of the rule against the source code is not possible,
in the case of unexpected variations in driver coding style.

The rest of this paper is organized as follows. Section 2 describes a set of
collateral evolutions that will be used as our running example. Section 3 illus-
trates how one of these collateral evolutions is expressed using the standard
patch notation. Section 4 presents SmPL in terms of this example. Finally,
Sections 5 and 6 present related work and conclusions, respectively.

2 Motivating Example

As a running example, we consider the collateral evolutions that took place
in SCSI drivers in Linux 2.5.71, in each driver’s “proc info” function. Such
a function is exported by a SCSI driver to the SCSI driver support library
via the proc info field of a SHT (for SCSI Host Template) structure. Each
function prints information about the status of the corresponding device in a
format compatible with the Linux procfs file system.

The collateral evolutions in the proc info functions were triggered by the
decision that it is undesirable for drivers to directly use the functions scsi -

host hn get to obtain access to a representation of the device and scsi -

host put to give up this access, because any incorrect use of these functions
can break the integrity of associated reference counts [11]. Starting in Linux
2.5.71, these functions were no longer exported by the SCSI driver support
library. To compensate for this evolution, the proc info functions were then
passed a representation of the device as an extra argument. An existing pa-
rameter that was used as the argument of scsi host hn get was also removed.
Among the drivers in the Linux source tree, these collateral evolutions affect
19 SCSI driver files, in 4 different directories.

The collateral evolution in the case of the scsiglue driver is illustrated in
Figure 1. As shown in Figure 1a, in Linux 2.5.70 the function usb storage -

proc info declares a local variable hostptr (line 7), representing the device,
and contains code to access (line 15), test (lines 16-18), and release (lines
23 and 33) the device value. All of this code is removed in Linux 2.5.71
(Figure 1b). 1 Instead, the local variable hostptr becomes a parameter of
usb storage proc info, with the same type. Additionally, the hostno pa-
rameter of usb storage proc info in Linux 2.5.70 is dropped in Linux 2.5.71.
References to hostno are replaced by accesses to the host no field of the new
hostptr parameter.

This example illustrates the combination of two of the basic kinds of col-
lateral evolutions identified in our previous work [16]: (i) the introduction of

1 The conditional on lines 21-25 is removed as well in Linux 2.5.71, but that appears to be
related to another evolution, and thus we have left it in for the purposes of the example.
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1 static int usb_storage_proc_info (

2 char *buffer, char **start, off_t offset,

3 int length, int hostno, int inout)

4 {

5 struct us_data *us;

6 char *pos = buffer;

7 struct Scsi_Host *hostptr;

8 unsigned long f;

9

10 /* if someone is sending us data, just throw it away */

11 if (inout)

12 return length;

13

14 /* find our data from the given hostno */

15 hostptr = scsi_host_hn_get(hostno);

16 if (!hostptr) {

17 return -ESRCH;

18 }

19 us = (struct us_data*)hostptr->hostdata[0];

20

21 /* if we couldn’t find it, we return an error */

22 if (!us) {

23 scsi_host_put(hostptr);

24 return -ESRCH;

25 }

26

27 /* print the controller name */

28 SPRINTF(" Host scsi%d: usb-storage\n", hostno);

29 /* print product, vendor, and serial number strings */

30 SPRINTF(" Vendor: %s\n", us->vendor);

31 . . . // some code omitted
32 /* release the reference count on this host */

33 scsi_host_put(hostptr);

34 . . . // some code omitted
35 return length;

36 }

(a) Linux 2.5.70

1 static int usb_storage_proc_info (struct Scsi_Host *hostptr,

2 char *buffer, char **start, off_t offset,

3 int length, int inout)

4 {

5 struct us_data *us;

6 char *pos = buffer;

7

8 unsigned long f;

9

10 /* if someone is sending us data, just throw it away */

11 if (inout)

12 return length;

13

14

15

16

17

18

19 us = (struct us_data*)hostptr->hostdata[0];

20

21 /* if we couldn’t find it, we return an error */

22 if (!us) {

23

24 return -ESRCH;

25 }

26

27 /* print the controller name */

28 SPRINTF(" Host scsi%d: usb-storage\n", hostptr->host_no);

29 /* print product, vendor, and serial number strings */

30 SPRINTF(" Vendor: %s\n", us->vendor);

31 . . . // some code omitted
32

33

34 . . . // some code omitted
35 return length;

36 }

(b) Linux 2.5.71

Fig. 1. An example of collateral evolution, in drivers/usb/storage/scsiglue.c

a new parameter and the corresponding elimination of computation that this
parameter makes redundant, and (ii) the elimination of a parameter and the
introduction of computations to reconstruct its value.

3 The Patch Approach

Traditionally, changes in the Linux operating system are published using patch
files [12]. A patch file is created by manually performing the change in the
source code, and then running the diff tool on the old and new versions,
with special arguments so that diff records not only the differences, but also
some position and context information. An entry in a patch file begins with a
header, indicating the name of the old file preceded by --- and the name of
the new file preceded by +++. The header is followed by a sequence of regions,
each beginning with @@ ... @@, which specifies the starting line numbers in
the old and new files. A region then contains a sequence of lines of text, in
which lines that are added are indicated by + in the first column, lines that are
removed are indicated by - in the first column, and lines that provide context
information are indicated by a space in the first column. To apply a patch file,
each mentioned file is visited, and the indicated lines are added and removed.

Normally, a patch file is applied to a file that is identical to the one used
by the Linux developer to create it. It is possible to instruct the patch tool
to ignore the line numbers or some of the lines of context, to be able to
apply a patch to a file that is similar but not identical to the one intended.
Nevertheless, because there is no semantic analysis of either the meaning of
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--- a/drivers/usb/storage/scsiglue.c Sat Jun 14 12:18:55 2003

+++ b/drivers/usb/storage/scsiglue.c Sat Jun 14 12:18:55 2003

@@ -264,33 +300,21 @@

-static int usb_storage_proc_info (

+static int usb_storage_proc_info (struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,

- int length, int hostno, int inout)

+ int length, int inout)

{

struct us_data *us;

char *pos = buffer;

- struct Scsi_Host *hostptr;

unsigned long f;

/* if someone is sending us data, just throw it away */

if (inout)

return length;

- /* find our data from the given hostno */

- hostptr = scsi_host_hn_get(hostno);

- if (!hostptr) {

- return -ESRCH;

- }

us = (struct us_data*)hostptr->hostdata[0];

/* if we couldn’t find it, we return an error */

if (!us) {

- scsi_host_put(hostptr);

return -ESRCH;

}

/* print the controller name */

- SPRINTF(" Host scsi%d: usb-storage\n", hostno);

+ SPRINTF(" Host scsi%d: usb-storage\n", hostptr->host_no);

/* print product, vendor, and serial number strings */

SPRINTF(" Vendor: %s\n", us->vendor);

@@ -318,9 +342,6 @@

*(pos++) = ’\n’;

}

- /* release the reference count on this host */

- scsi_host_put(hostptr);

/*

* Calculate start of next buffer, and return value.

Fig. 2. Excerpt of the patch file from Linux 2.5.70 to Linux 2.5.71

the patch or that of the affected source code, this approach is error prone.
Furthermore, in practice, patches are quite brittle, and variations in the source
code imply that parts of the patch cannot be applied at all.

Figure 2 shows part of the patch file used to update the function usb -

storage proc info from Linux 2.5.70 to Linux 2.5.71. While this patch may
apply to minor variations of the scsiglue.c file, it cannot be applied to proc -
info functions in other SCSI drivers, because of the scsiglue-specific names
such as usb storage proc info used in the modified lines of code. This is
unfortunate, because multiple files have to be updated in the same way.
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4 Expressing Collateral Evolutions as a Semantic Patch

To express collateral evolutions, we propose a new language SmPL as a means
of generalizing patches to semantic patches. A semantic patch is a specifica-
tion that visually resembles a patch, but whose application is based on the
semantics of the code to be transformed, rather than its syntax. The complete
language is defined in the appendix. Here, we present SmPL via an example,
a semantic patch expressing the collateral evolutions described in Section 2.
We develop the semantic patch incrementally, by showing successive excerpts
that each illustrate a feature of SmPL. In contrast to a patch that applies to
only one file, the semantic patch can be applied to all of the files in the Linux
source tree, to selected files, to an individual file, or even to files outside the
Linux source tree.

4.1 Replacement

Our first task is to change the function signature, to add an argument that
points to a Scsi host structure and to drop the hostno argument. We express
these modifications in SmPL as follows:

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset, int length,
- int hostno,

int inout)

As in a standard patch, the lines beginning with + and - are added and
deleted, respectively. The remaining lines describe the modification context.
This excerpt is applied throughout a file, and transforms every matching code
fragment, regardless of the fragment’s spacing, indentation or comments.

4.2 Metavariables, part 1

The previous rule assumes that the proc info function has parameters buffer,
start, etc. In practice, however, the parameter names vary from one driver
to another. To make the rule insensitive to the choice of names, we replace
the explicit names by metavariables. These are declared in a section delimited
by @@ that appears before each transformation, as illustrated below:

@@
identifier buffer, start, offset, length, inout, hostno;
fresh identifier hostptr;
@@
proc_info_func (

+ struct Scsi_Host *hostptr,
char *buffer, char **start, off_t offset, int length,

- int hostno,
int inout)
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The metavariables buffer, start, offset, length, hostno, and inout

are used on lines annotated with - or space, and thus match terms in the
original source program. They are declared as identifier, indicating that
they match any identifier. The metavariable hostptr represents a parameter
that is newly added to the function signature. We thus declare it as a fresh

identifier, indicating that some identifier should be chosen that does not
conflict with the other identifiers in the program.

A semantic patch may contain multiple regions, each declaring some meta-
variables and specifying a transformation rule. Once declared, a metavariable
obtains its value from matching the given transformation rule against the
source code. It then keeps its value over subsequent regions until it is rede-
clared.

4.3 Metavariables, part 2

As illustrated in Figure 1, the name of the function to transform is generally
not proc info func, but is something specific to each driver. Rather than
rely on properties of the name chosen, we identify the function in terms of its
relation with the SCSI interface. Specifically, the function to modify is the
one that is stored in the proc info field of a SHT structure. The following
excerpt, placed before the excerpt of Section 4.2, expresses this constraint:

@@
struct SHT sht;
local function proc_info_func;
@@

sht.proc_info = proc_info_func;

The declaration struct SHT sht; indicates that the metavariable sht

represents an expression of type struct SHT. This type specification avoids
ambiguity in the reference to the proc info field when multiple structure
types have fields of the same name. If there is more than one assignment
of the proc info field, the metavariable proc info func is bound to the set
of all possible right-hand sides. Subsequent transformations that use this
metavariable are instantiated for all elements of this set.

The rule above is written as a direct assignment of the proc info field to
the name of a local function. In the code to be transformed, however, the
right-hand-side of this assignment could be some other expression that is the
alias of a local function. The patterns of such aliasing that we have observed in
driver code are very simple, such as initializing a local variable to a different
function in each branch of a conditional, and then using this local variable
immediately thereafter. Such aliases can be detected by a standard dataflow
analysis.
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4.4 Sequences, part 1

The next step is to remove the sequence of statements that declares the
hostptr local variable and accesses, tests, and releases its value. In prac-
tice these statements can be separated by arbitrary code, as illustrated in
Figure 1a (lines 7, 15-18, 23, and 33). To specify arbitrary sequences SmPL
provides the operator “...”, which we use as follows:

@@
identifier buffer, start, offset, length, inout, hostptr, hostno;
@@
proc_info_func (

+ struct Scsi_Host *hostptr,
char *buffer, char **start, off_t offset, int length,

- int hostno,
int inout) {

...
- struct Scsi_Host *hostptr;

...
- hostptr = scsi_host_hn_get(hostno);

...
- if (!hostptr) { ... }

...
- scsi_host_put(hostptr);

...
}

If we compare this rule to Figure 1a, we see that the declaration, access,
and test of hostptr each appear exactly once in the source program, as in
the rule, but that scsi host put is called twice, once in line 23 just before
returning an error code, and once in line 33 near the end of the function.
To address this case, sequences in SmPL describe sequences in the control-
flow graph rather than sequences in the abstract-syntax tree. Specifically,
when a transformation includes the operator “...”, it is applied to every
control flow path between the terms matching the endpoints, which here are
the beginning and end of the function definition. For instance, in Figure 1a,
after the assignment of the variable us, there are two control flow paths, one
that is an error path (lines 23-24), and another that continues until the final
return (lines 27-35). A call to scsi host put is removed from each of them.
Thus, in practice, a single - line may erase multiple lines of code, one per
control flow path.

Recall that in Section 4.2, we created a fresh identifier as the new parame-
ter hostptr. In fact, when the collateral evolutions were performed by hand,
the parameter was always given the name of the deleted Scsi Host-typed local
variable. Now that we have expanded the semantic patch excerpt to contain
both the parameter and the local variable declaration, we can express this
naming strategy by using the same metavariable, declared as an identifier,
in both cases. This repetition implies that both occurrences refer to the same
term, thus transmitting the name of the old local variable to the new parame-
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ter. Metavariables are thus similar to logic variables, in that every occurrence
of a metavariable within a rule refers to the same set of terms. Unlike the
logic variables of Prolog, however, metavariables are always bound to ground
terms.

The collateral evolution described in this section introduced some bugs in
the Linux 2.5.71 version. For example, in two files the hostno parameter was
not dropped, resulting in a function that expected too many arguments. This
problem was fixed in Linux 2.6.0, which was released 6 months later.

4.5 Sequences, part 2

Finally, we consider the treatment of references to the deleted hostno param-
eter. In each case, the reference should be replaced by hostptr->host no.
Here we are not interested in enforcing any particular number of occurrences
of hostno along any given control-flow path, so we use the operator <...

...> that applies the transformation everywhere within the matched region:

@@
@@
proc_info_func(...) {
<...

- hostno
+ hostptr->host_no

...>
}

Note that the operator “...” can be used to represent any kind of sequence.
Here, in the function header, it is used to represent a sequence of parameters.

4.6 Isomorphisms

We have already mentioned that a semantic patch is insensitive to spacing, in-
dentation and comments. Moreover, by defining sequences in terms of control-
flow paths and taking into account data flow, we abstract away from the var-
ious ways of constructing e.g. loops and complex expressions that exist in C
code. These features help make a semantic patch generic, allowing the patch
developer to write only a few scenarios, while the transformation tool handles
other scenarios that are semantically equivalent.

In fact, these features are a part of a larger set of semantic equivalences
that we refer to as isomorphisms. Other isomorphisms that are relevant to
this example include typedef aliasing (e.g., struct SHT is commonly referred
to as SCSI Host Template), the various ways of referencing a structure field
(e.g., exp->field and *exp.field), and the various ways of testing for a null
pointer (e.g., !hostno and hostno == NULL). We have identified many more
useful isomorphisms, and continue to discover new ones.
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4.7 All together now

Figure 3 presents the complete semantic patch that implements the collateral
evolutions described in Section 2. This version is augmented as compared to
the previous excerpts in that the error checking code if (!hostptr) { ... }

and the call to scsi host put are annotated with ?, indicating that matching
these patterns is optional (although removing them if they are matched is
obligatory). The ? annotation is often useful with error checking code, as
studies such as that of Engler et al. [1] show that error checking code is often
(incorrectly) omitted in device drivers.

@@

struct SHT sht;

local function proc_info_func;

@@

sht.proc_info = proc_info_func;

@@

identifier buffer, start, offset, length, inout, hostptr, hostno;

@@

proc_info_func (

+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset, int length,

- int hostno,

int inout) {

...

- struct Scsi_Host *hostptr;

...

- hostptr = scsi_host_hn_get(hostno);

...

?- if (!hostptr) { ... }

...

?- scsi_host_put(hostptr);

...

}

@@

@@

proc_info_func(...) {

<...

- hostno

+ hostptr->host_no

...>

}

Fig. 3. A complete Semantic Patch

4.8 Assessment

Considering Figure 3, it is apparent that much of the description of the collat-
eral evolution is in terms of ordinary C code. Among the 62 semantic patches
we have written, we have often found it possible to construct a semantic patch
by copying and modifying existing driver code. The close relationship to ac-
tual driver code should furthermore make it easy for a driver maintainer who
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wants to apply a semantic patch to understand its intent and the relationship
between the various transformed terms.

The “proc info” semantic patch applies to 19 files in 4 different directories
of the Linux source tree. In the standard patch notation, the specification of
the required changes amounts to 614 lines of code for the files in the Linux
source tree, resulting in on average 32.3 lines per file. The semantic patch is 33
lines of code and applies to all relevant files including those not in the Linux
source tree. Because semantic patches are intended to implement collateral
evolutions, which are determined by interface changes, and because interface
elements are typically used only according to very restricted protocols, we
expect that most semantic patches will exhibit a similar degree of reusabil-
ity. Indeed, in our previous study of collateral evolutions in over 1600 driver
files [16], we have found that there is little variation in the structure of the
code affected by a given evolution, an observation that is further substantiated
by another study of driver code [10].

5 Related work

Influences. The design of SmPL was influenced by a number of sources. Fore-
most among these is our target domain, the world of Linux device drivers.
Linux programmers manipulate patches extensively, have designed various
tools around them [13], and use its syntax informally in e-mail to describe soft-
ware evolutions. This has encouraged us to consider the patch syntax as a valid
alternative to classical rewriting systems. Other influences include the Struc-
tured Search and Replace (SSR) facility of the IDEA development environment
from JetBrains [14], which allows specifying patterns using metavariables and
provides some isomorphisms, and the work of De Volder on JQuery [3], which
uses Prolog logic variables in a system for browsing source code. Finally, we
were inspired to base the semantics of SmPL on control-flow graphs rather
than abstract syntax trees by the work of Lacey and de Moor on formally
specifying compiler optimizations. [8]

Other work. Refactoring is a generic program transformation that reorganizes
the structure of a program without changing its semantics [6]. Some of the
collateral evolutions in Linux drivers can be seen as refactorings. Refactorings,
however, apply to the whole program, requiring accesses to all usage sites of
affected definitions. In the case of Linux, however, the entire code base is not
available, as many drivers are developed outside the Linux source tree. There
is currently no way of expressing or generating the effect of a refactoring on
such external code. Other collateral evolutions are very specific to an OS API,
and thus cannot be described as part of a generic refactoring [9]. Moreover, in
practice, refactorings are used via a development environment such as Eclipse
that only provides a fixed set of transformations. JunGL is a scripting lan-
guage that allows programmers to implement new refactorings [20]. This lan-
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guage should be able to express collateral evolutions. Nevertheless, a JunGL
transformation rule does not follow the structure of the source terms, and thus
does not make visually apparent the relationship between transformed terms,
which we have found makes the provided examples difficult to read. Further-
more, the language is in the spirit of ML, which is not part of the standard
toolbox of Linux developers.

A number of program transformation frameworks have recently been pro-
posed, targeting industrial-strength languages such as C and Java. CIL [15]
and XTC [7] are essentially parsers that provide some support for implement-
ing abstract syntax tree traversals. No program transformation abstractions,
such as pattern matching using logic variables, are currently provided. CIL
also manages the C source code in terms of a simpler intermediate repre-
sentation. Rewrite rules must be expressed in terms of this representation
rather than in terms of the code found in a relevant driver. Stratego is a
domain-specific language for writing program transformations [21]. Conve-
nient pattern-matching and rule management strategies are built in, implying
that the programmer can specify what transformations should occur without
cluttering the code with the implementation of transformation mechanisms.
Nevertheless, only a few program analyses are provided. Any other analyses
that are required, such as control-flow analysis, have to be implemented in the
Stratego language. In our experience, this leads to rules that are very complex
for expressing even simple collateral evolutions.

Coady et al. have used Aspect-Oriented Programming (AOP) to extend
OS code with new features [2,5]. Nevertheless, AOP is targeted towards mod-
ularizing concerns rather than integrating them into a monolithic source code.
In the case of collateral evolutions, our observations suggest that Linux devel-
opers favor approaches that update the source code, resulting in uniformity
among driver implementations. For example, on occasion, wrapper functions
have been introduced to allow code respecting both old and new versions of an
interface to coexist, but these wrapper functions have typically been removed
after a few versions, when a concerted effort has been made to update the
code to respect the new version of the interface.

The Linux community has recently begun using various tools to better
analyze C code. Sparse [18] is a library that, like a compiler front end, pro-
vides convenient access to the abstract syntax tree and typing information of
a C program. This library has been used to implement some static analyses
targeting bug detection, building on annotations added to variable declara-
tions, in the spirit of the familiar static and const. Smatch [19] is a similar
project and enables a programmer to write Perl scripts to analyze C code.
Both projects were inspired by the work of Engler et al. [4] on automated
bug finding in operating systems code. These examples show that the Linux
community is open to the use of automated tools to improve code quality, par-
ticularly when these tools build on the traditional areas of expertise of Linux
developers.
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6 Conclusion

In this paper, we have proposed a declarative language, SmPL, for express-
ing the transformations required in performing collateral evolutions in Linux
device drivers. This language is based on the patch syntax familiar to Linux
developers, but enables transformations to be expressed in a more general
form. The use of isomorphisms in particular allows a concise representation of
a transformation that can nevertheless accommodate multiple programming
styles. SmPL furthermore addresses all of the elements of the taxonomy of the
kinds of collateral evolutions in Linux device drivers identified in our previous
work.

We are currently completing a formal specification of the semantics of
SmPL, and are exploring avenues for an efficient implementation. In the longer
term, we plan to use SmPL to specify the complete set of collateral evolutions
required to update drivers from one version of Linux to a subsequent one.
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A The SmPL Grammar

This section presents the SmPL grammar. This definition follows closely our
implementation using the Menhir parser generator [17].

The grammar uses some rules where the left-hand side is in all capital
letters. These are macros, which take one or more grammar rule right-hand-
sides as arguments. The grammar also uses some unspecified nonterminals,
such as id, const, etc. These refer to the sets suggested by the name, i.e., id
refers to the set of possible C-language identifiers, while const refers to the set
of possible C-language constants.

Program

program ::= (metavariables [--- filename +++ filename] transformation)+

Between the metavariables and the transformation rule, there can be a
specification of constraints on the names of the old and new files, analogous
to the filename specifications in the standard patch syntax (see Figure 2).

Metavariables

Fresh metavariables must only be used in + code. Metavariables must occur
at least once in the transformation immediately following their declaration.
These properties are not expressed in the grammar, but are checked by a
subsequent analysis.

metavariables ::= @@ metadec∗ @@

metadec ::= [! | ? | +] metakind (id ,)∗ id ;

metakind ::= [fresh] identifier | type | parameter [list] | error

| expression [list] | statement [list] | [local] function

| [constant] metaexptype | constant

metaexptype ::= type | { (type ,)∗ type }

Subsequently, we refer to arbitrary metavariables as metaidty, where ty
indicates the metakind used in the declaration of the variable. For example,
metaidType refers to a metavariable that stands for any type.

The type nonterminal is used by both the grammar of metavariable decla-
rations and the grammar of transformations, and is defined on the next page.
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Transformation

The grammar of the transformation is not actually the grammar of the SmPL
code that can be written by the programmer, but the grammar of the slice
of this consisting of the - annotated and the unannotated code (the context
of the transformed lines), or the + annotated code and the unannotated code.
For example, for parsing purposes, the transformation presented in Section
4.5 is split into the two variants shown below and each is parsed separately.

proc_info_func(...) {

<...

hostno

...>

}

proc_info_func(...) {

<...

hostptr->host_no

...>

}

Requiring that both slices parse correctly ensures that the rule matches syn-
tactically valid C code and that it produces syntactically valid C code. The
generated parse trees are then merged for use in the subsequent matching and
transformation process.

The grammar rule for the minus or plus slice of a transformation is as
follows:

transformation ::= (#include include string)∗

[OPTDOTSEQ(fun decl statement+ | expr, stmt whencode)]

fun decl statement ::= decl statement | fun decl

OPTDOTSEQ(grammar,whencode) ::=

[... [whencode]] grammar (... [whencode] grammar)∗ [... [whencode]]

| [ooo [whencode]] grammar (ooo [whencode] grammar)∗ [ooo [whencode]]

| [*** [whencode]] grammar (*** [whencode] grammar)∗ [*** [whencode]]

ooo is analogous to ..., but the terms may appear in any order. *** is
also analogous to ..., but expresses interprocedural sequences. Lines may be
annotated with an element of the set {-, +} or an element of the set {!, ?, \+},
or one of each. !, ?, \+ represent exactly one, at most one, and at least one
match of the given pattern. There are some constraints on the use of these
annotations:

• Dots, i.e. ..., ooo, or ***, cannot occur on a line marked +.

• Nested dots, i.e. dots enclosed in < and >, cannot occur on a line with any
marking.

Types

type ::= [const | volatile] type desc (*)∗

type desc ::= simple type | [signed | unsigned] signable type | [struct | union] id

| metaidType
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simple type ::= void | double | float

signable type ::= char | short | int | long

Function declarations

fundecl ::= [static] funid ( [PARAMSEQ(param,ε)] ) { [statement sequence] }

funid ::= id | metaidFunc | metaidLocalFunc

param ::= type id | metaidParam | metaidParamList

PARAMSEQ(grammar,whencode) ::=

(grammar , | . . . [whencode] ,)∗ (grammar | . . . [whencode])

| (grammar , | ooo [whencode] ,)∗ (grammar | ooo [whencode])

Declarations

decl var ::= type [(id [[ [dot expr] ]] ,)∗ id [[ [dot expr] ]]] ;

| type id [[ [dot expr] ]] = nest expr ;

Statements

The first rule statement describes the various forms of a statement. The
remaining rules implement the constraints that are sensitive to the context in
which the statement occurs: single statement for a context in which only one
statement is allowed, and decl statement for a context in which a declaration,
statement, or sequence thereof is allowed.

statement ::= metaidStmt

| expr ;

| if ( dot expr ) single statement [else single statement]

| for ( [dot expr] ; [dot expr] ; [dot expr] ) single statement

| while ( dot expr ) single statement

| do single statement while ( dot expr ) ;

| return [dot expr] ;

| { [statement sequence] }

| NEST(decl statement+ | expr, stmt whencode)

single statement ::= statement | OR(statement)

decl statement ::= metaidStmtList | decl var | statement | OR(statement sequence)

statement sequence ::=

decl statement∗ [DOTSEQ(decl statement+ | expr, stmt whencode) decl statement∗]

stmt whencode ::= WHEN != OPTDOTSEQ(decl statement+ | expr,stmt whencode)

OR(grammar) ::= ( grammar (|grammar)∗ )
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DOTSEQ(grammar,whencode) ::=

... [whencode] (grammar ... [whencode])∗

| ooo [whencode] (grammar ooo [whencode])∗

| *** [whencode] (grammar *** [whencode])∗

NEST(grammar,whencode) ::=

<... grammar (. . . [whencode] grammar)∗ ...>

| <ooo grammar (ooo [whencode] grammar)∗ ooo>

| <*** grammar (*** [whencode] grammar)∗ ***>

OR is a macro that generates a disjunction of patterns. The tokens (, |,
and ) must appear in the leftmost column, to differentiate them from the
parentheses and bit-or tokens that can appear within expressions (and cannot
appear in the leftmost column). These tokens are furthermore different from
(, |, and ), which are part of the grammar metalanguage.

Expressions

A nest or a single ellipsis is allowed in some expression contexts, and causes
ambiguity in others. For example, in a sequence ...expr ..., the nontermi-
nal expr must be instantiated as an explicit C-language expression, while in
an array reference, expr1 [ expr2 ], the nonterminal expr2, because it is de-
limited by brackets, can be also instantiated as ..., representing an arbitrary
expression. To distinguish between the various possibilities, we define three
nonterminals for expressions: expr does not allow either top-level nests or el-
lipses, nest expr allows a nest but not an ellipsis, and dot expr allows both.
The EXPR macro is used to express these variants in a concise way.

expr ::= EXPR(expr)

nest expr ::= EXPR(nest expr) | NEST(nest expr, exp whencode)

dot expr ::= EXPR(dot expr) | NEST(dot expr, exp whencode) | ... [exp whencode]

EXPR(exp) ::= exp assign op exp | exp binary op exp | exp ? [dot expr] : exp

| ( type ) exp | unary op exp | exp [ dot expr ] | exp . id

| exp -> id | exp ++ | exp -- | exp ( [PARAMSEQ(arg,exp whencode)] )

| id | metaidFunc | metaidLocalFunc | metaidExp | metaidErr | metaidConst

| const | ( dot expr ) | OR(exp)

arg ::= nest expr | metaidExpList

exp whencode ::= WHEN != dot expr

assign op ::= = | -= | += | *= | /= | %= | &= | |= | ^= | <<= | >>=

binary op ::= * | / | % | + | - | << | >> | < | > | <= | >= | == | != | & | | | ^ | && | ||

18



Padioleau, Lawall, Muller

unary op ::= ++ | -- | & | * | + | - | !

Identifiers

id ::= id | metaidId

19


	Introduction
	Motivating Example
	The Patch Approach
	Expressing Collateral Evolutions as a Semantic Patch
	Replacement
	Metavariables, part 1
	Metavariables, part 2
	Sequences, part 1
	Sequences, part 2
	Isomorphisms
	All together now
	Assessment

	Related work
	Conclusion
	References
	The SmPL Grammar

