
Coccinelle
User’s manual

release 1.0.0-rc9

Julia Lawall and Yoann Padioleau
(with contributions from Rene Rydhof Hansen, Nicolas Palix, Henrik Stuart)

March 11, 2012



Contents

I User Manual 3

1 Introduction 4

2 Installing Coccinelle 5
2.1 Requirements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Getting Coccinelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.3 Compiling Coccinelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.4 Running Coccinelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5

3 Tutorial 6

4 Examples 7
4.1 Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7

4.1.1 Function renaming . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 7
4.1.2 Removing a function argument . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8
4.1.3 Introduction of a macro . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9
4.1.4 Look for NULL dereference . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 11
4.1.5 Reference counter: the of_xxx API . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 12
4.1.6 Filtering identifiers, declarers or iterators with regular expression . . . . . . . . . . . . . . . 14

4.2 Tips and Tricks . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14
4.2.1 How to remove useless parentheses? . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

5 Isomorphisms and standard.iso 16

6 Parsing C, cpp, and standard.h 17

7 Developing a Semantic Patch 18

8 Advanced Features 19

II Reference Manual 20

9 SmPL grammar 21
9.1 Program . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.2 Metavariables for transformations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 21
9.3 Metavariables for scripts . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25
9.4 Transformation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 26
9.5 Types . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 28
9.6 Function declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 29
9.7 Declarations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30

1



9.8 Statements . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 30
9.9 Expressions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31
9.10 Constants, Identifiers and Types for Transformations . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.11 Comments and preprocessor directives . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 32
9.12 Command-line semantic match . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 33

10 spatch command line options 34
10.1 Introduction . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 34
10.2 Selecting and parsing the semantic patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10.2.1 Standalone options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.2.2 The semantic patch . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.2.3 Isomorphisms . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35
10.2.4 Display options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 35

10.3 Selecting and parsing the C files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.3.1 Standalone options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.3.2 Selecting C files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 36
10.3.3 Parsing C files . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 37

10.4 Application of the semantic patch to the C code . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 39
10.4.1 Feedback at the rule level during the application of the semantic patch . . . . . . . . . . . . . 39
10.4.2 Feedback at the CTL level during the application of the semantic patch . . . . . . . . . . . . 39
10.4.3 Actions during the application of the semantic patch . . . . . . . . . . . . . . . . . . . . . . 40

10.5 Generation of the result . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 41
10.6 Other options . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

10.6.1 Version information . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.6.2 Help . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.6.3 Controlling the execution of Coccinelle . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
10.6.4 Miscellaneous . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42

III Appendix 43

2



Foreword

This manual documents the release 1.0.0-rc9 of Coccinelle. It is organized as follows:

• Part I is an introduction to Coccinelle

• Part II is the reference description of Coccinelle, its language and command line tool.

Conventions

Copyright
Coccinelle copyright is
c© 2010, University of Copenhagen DIKU and INRIA.
c© 2005-2009, University of Copenhagen DIKU and Ecole des Mines de Nantes.

Coccinelle is open source and can be freely redistributed under the terms of the GNU General Public License
version 2. See the file license.txt in the distribution for licensing information.

Copyright c© 2010, Nicolas Palix, Julia Lawall, and Gilles Muller
Copyright c© 2008, 2009, Yoann Padioleau, Nicolas Palix, Julia Lawall, and Gilles Muller
Permission is granted to copy, distribute and/or modify this document under the terms of the GNU Free Documentation
License, Version 1.3; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license
is included in the section entitled "GNU Free Documentation License".

Availability
Coccinelle can be freely downloaded from http://coccinelle.lip6.fr.
This website contains also additional information and a wiki website.

3

http://coccinelle.lip6.fr


Part I

User Manual

4



Chapter 1

Introduction

Coccinelle is a tool to help automate repetitive source-to-source style-preserving program transformations on C source
code, like for instance to perform some refactorings. Coccinelle is presented as a command line tool called spatch
that takes as input the name of a file containing the specification of a program transformation, called a semantic patch,
and a set of C files, and then performs the transformation on all those C files.

To make it easy to express those transformations, Coccinelle proposes a WYSISWYG approach where the C
programmer can leverage the things he already knows: the C syntax and the patch syntax. Indeed, with Coccinelle
transformations are written in specific language called SmPL, for Semantic Patch Language, which as the name sug-
gests is very close to the syntax of a patch, but which does not work at a line level, than traditional patches do. but a
more high level, or semantic level.

Here is an example of a simple program transformation. To replace every calls to foo of any expression x to
a call to bar, create a semantic patch file ex1.cocci (semantic patches usually ends with the .cocci filename
extension) containing:

@@ expression x; @@

- foo(x)
+ bar(x)

Then to “apply” the specified program transformation to a set of C files, simply do:

$ spatch -sp_file ex1.cocci *.c

Coccinelle primarily targets ANSI C, and supports some GCC extensions. It has only partial support for K&R C.
K&R function declarations are only recognized if the parameter declarations are indented. Furthermore, the parameter
names are subsequently considered to be type names, due to confusion with function prototypes, in which a name by
itself is indeed the name of a type.

5



Chapter 2

Installing Coccinelle

2.1 Requirements

2.2 Getting Coccinelle

2.3 Compiling Coccinelle

2.4 Running Coccinelle

6



Chapter 3

Tutorial

7



Chapter 4

Examples

4.1 Examples
This section presents a range of examples. Each example is presented along with some C code to which it is applied.
The description explains the rules and the matching process.

4.1.1 Function renaming
One of the primary goals of Coccinelle is to perform software evolution. For instance, Coccinelle could be used to
perform function renaming. In the following example, every occurrence of a call to the function foo is replaced by a
call to the function bar.

Before Semantic patch After

1 #DEFINE TEST "foo"
2

3 printf("foo");
4

5 int main(int i) {
6 //Test
7 int k = foo();
8

9 if(1) {
10 foo();
11 } else {
12 foo();
13 }
14

15 foo();
16 }

1 @@
2

3 @@
4

5

6 - foo()
7 + bar()

1 #DEFINE TEST "foo"
2

3 printf("foo");
4

5 int main(int i) {
6 //Test
7 int k = bar();
8

9 if(1) {
10 bar();
11 } else {
12 bar();
13 }
14

15 bar();
16 }

8



4.1.2 Removing a function argument
Another important kind of evolution is the introduction or deletion of a function argument. In the following example,
the rule rule1 looks for definitions of functions having return type irqreturn_t and two parameters. A second
anonymous rule then looks for calls to the previously matched functions that have three arguments. The third argument
is then removed to correspond to the new function prototype.

1 @ rule1 @
2 identifier fn;
3 identifier irq, dev_id;
4 typedef irqreturn_t;
5 @@
6

7 static irqreturn_t fn (int irq, void *dev_id)
8 {
9 ...

10 }
11

12 @@
13 identifier rule1.fn;
14 expression E1, E2, E3;
15 @@
16

17 fn(E1, E2
18 - ,E3
19 )

drivers/atm/firestream.c at line 1653 before transformation

1 static void fs_poll (unsigned long data)
2 {
3 struct fs_dev *dev = (struct fs_dev *) data;
4

5 fs_irq (0, dev, NULL);
6 dev->timer.expires = jiffies + FS_POLL_FREQ;
7 add_timer (&dev->timer);
8 }

drivers/atm/firestream.c at line 1653 after transformation

1 static void fs_poll (unsigned long data)
2 {
3 struct fs_dev *dev = (struct fs_dev *) data;
4

5 fs_irq (0, dev);
6 dev->timer.expires = jiffies + FS_POLL_FREQ;
7 add_timer (&dev->timer);
8 }

9



4.1.3 Introduction of a macro
To avoid code duplication or error prone code, the kernel provides macros such as BUG_ON, DIV_ROUND_UP and
FIELD_SIZE. In these cases, the semantic patches look for the old code pattern and replace it by the new code.

A semantic patch to introduce uses of the DIV_ROUND_UP macro looks for the corresponding expression, i.e.,
(n+ d− 1)/d. When some code is matched, the metavariables n and d are bound to their corresponding expressions.
Finally, Coccinelle rewrites the code with the DIV_ROUND_UPmacro using the values bound to n and d, as illustrated
in the patch that follows.

Semantic patch to introduce uses of the DIV_ROUND_UP macro

1 @ haskernel @
2 @@
3

4 #include <linux/kernel.h>
5

6 @ depends on haskernel @
7 expression n,d;
8 @@
9

10 (
11 - (((n) + (d)) - 1) / (d))
12 + DIV_ROUND_UP(n,d)
13 |
14 - (((n) + ((d) - 1)) / (d))
15 + DIV_ROUND_UP(n,d)
16 )

Example of a generated patch hunk

1 --- a/drivers/atm/horizon.c
2 +++ b/drivers/atm/horizon.c
3 @@ -698,7 +698,7 @@ got_it:
4 if (bits)
5 *bits = (div<<CLOCK_SELECT_SHIFT) | (pre-1);
6 if (actual) {
7 - *actual = (br + (pre<<div) - 1) / (pre<<div);
8 + *actual = DIV_ROUND_UP(br, pre<<div);
9 PRINTD (DBG_QOS, "actual rate: %u", *actual);

10 }
11 return 0;

10



The BUG_ON macro makes a assertion about the value of an expression. However, because some parts of the
kernel define BUG_ON to be the empty statement when debugging is not wanted, care must be taken when the asserted
expression may have some side-effects, as is the case of a function call. Thus, we create a rule introducing BUG_ON
only in the case when the asserted expression does not perform a function call.

On particular piece of code that has the form of a function call is a use of unlikely, which informs the compiler
that a particular expression is unlikely to be true. In this case, because unlikely does not perform any side effects,
it is safe to use BUG_ON. The second rule takes care of this case. It furthermore disables the isomorphism that allows
a call to unlikely be replaced with its argument, as then the second rule would be the same as the first one.

1 @@
2 expression E,f;
3 @@
4

5 (
6 if (<+... f(...) ...+>) { BUG(); }
7 |
8 - if (E) { BUG(); }
9 + BUG_ON(E);

10 )
11

12 @ disable unlikely @
13 expression E,f;
14 @@
15

16 (
17 if (<+... f(...) ...+>) { BUG(); }
18 |
19 - if (unlikely(E)) { BUG(); }
20 + BUG_ON(E);
21 )

For instance, using the semantic patch above, Coccinelle generates patches like the following one.

1 --- a/fs/ext3/balloc.c
2 +++ b/fs/ext3/balloc.c
3 @@ -232,8 +232,7 @@ restart:
4 prev = rsv;
5 }
6 printk("Window map complete.\n");
7 - if (bad)
8 - BUG();
9 + BUG_ON(bad);

10 }
11 #define rsv_window_dump(root, verbose) \
12 __rsv_window_dump((root), (verbose), __FUNCTION__)

11



4.1.4 Look for NULL dereference
This SmPL match looks for NULL dereferences. Once an expression has been compared to NULL, a dereference to
this expression is prohibited unless the pointer variable is reassigned.

Original

1 foo = kmalloc(1024);
2 if (!foo) {
3 printk ("Error %s", foo->here);
4 return;
5 }
6 foo->ok = 1;
7 return;

Semantic match

1 @@
2 expression E, E1;
3 identifier f;
4 statement S1,S2,S3;
5 @@
6

7 * if (E == NULL)
8 {
9 ... when != if (E == NULL) S1 else S2

10 when != E = E1
11 * E->f
12 ... when any
13 return ...;
14 }
15 else S3

Matched lines

1 foo = kmalloc(1024);
2 if (!foo) {
3 printk ("Error %s", foo->here);
4 return;
5 }
6 foo->ok = 1;
7 return;

12



4.1.5 Reference counter: the of_xxx API
Coccinelle can embed Python code. Python code is used inside special SmPL rule annotated with script:python.
Python rules inherit metavariables, such as identifier or token positions, from other SmPL rules. The inherited
metavariables can then be manipulated by Python code.

The following semantic match looks for a call to the of_find_node_by_name function. This call increments
a counter which must be decremented to release the resource. Then, when there is no call to of_node_put, no new
assignment to the device_node variable n and a return statement is reached, a bug is detected and the position
p1 and p2 are initialized. As the Python only depends on the positions p1 and p2, it is evaluated. In the following
case, some emacs Org mode data are produced. This example illustrates the various fields that can be accessed in the
Python code from a position variable.

1 @ r exists @
2 local idexpression struct device_node *n;
3 position p1, p2;
4 statement S1,S2;
5 expression E,E1;
6 @@
7

8 (
9 if (!(n@p1 = of_find_node_by_name(...))) S1

10 |
11 n@p1 = of_find_node_by_name(...)
12 )
13 <... when != of_node_put(n)
14 when != if (...) { <+... of_node_put(n) ...+> }
15 when != true !n || ...
16 when != n = E
17 when != E = n
18 if (!n || ...) S2
19 ...>
20 (
21 return <+...n...+>;
22 |
23 return@p2 ...;
24 |
25 n = E1
26 |
27 E1 = n
28 )
29

30 @ script:python @
31 p1 << r.p1;
32 p2 << r.p2;
33 @@
34

35 print "* TODO [[view:%s::face=ovl-face1::linb=%s::colb=%s::cole=%s][inc.
counter:%s::%s]]" % (p1[0].file,p1[0].line,p1[0].column,p1[0].column_end,
p1[0].file,p1[0].line)

36 print "[[view:%s::face=ovl-face2::linb=%s::colb=%s::cole=%s][return]]" % (p2
[0].file,p2[0].line,p2[0].column,p2[0].column_end)

13



Lines 13 to 17 list a variety of constructs that should not appear between a call to of_find_node_by_name
and a buggy return site. Examples are a call to of_node_put (line 13) and a transition into the then branch of a
conditional testing whether n is NULL (line 15). Any number of conditionals testing whether n is NULL are allowed
as indicated by the use of a nest <... ...> to describe the path between the call to of_find_node_by_name,
the return and the conditional in the pattern on line 18.

The previously semantic match has been used to generate the following lines. They may be edited using the emacs
Org mode to navigate in the code from a site to another.

1 * TODO [[view:/linux-next/arch/powerpc/platforms/pseries/setup.c::face=ovl-
face1::linb=236::colb=18::cole=20][inc. counter:/linux-next/arch/powerpc/
platforms/pseries/setup.c::236]]

2 [[view:/linux-next/arch/powerpc/platforms/pseries/setup.c::face=ovl-face2::
linb=250::colb=3::cole=9][return]]

3 * TODO [[view:/linux-next/arch/powerpc/platforms/pseries/setup.c::face=ovl-
face1::linb=236::colb=18::cole=20][inc. counter:/linux-next/arch/powerpc/
platforms/pseries/setup.c::236]]

4 [[view:/linux-next/arch/powerpc/platforms/pseries/setup.c::face=ovl-face2::
linb=245::colb=3::cole=9][return]]

Note : Coccinelle provides some predefined Python functions, i.e., cocci.print_main, cocci.print_sec
and cocci.print_secs. One could alternatively write the following SmPL rule instead of the previously pre-
sented one.

1 @ script:python @
2 p1 << r.p1;
3 p2 << r.p2;
4 @@
5

6 cocci.print_main(p1)
7 cocci.print_sec(p2,"return")

The function cocci.print_secs is used when there is several positions which are matched by a single position
variable and that every matched position should be printed.

Any metavariable could be inherited in the Python code. However, accessible fields are not currently equally
supported among them.

14



4.1.6 Filtering identifiers, declarers or iterators with regular expression
If you consider the following SmPL file which uses the regexp functionality to filter the identifiers that contain, begin
or end by foo,

1 @anyid@
2 type t;
3 identifier id;
4 @@
5 t id () {...}
6

7 @script:python@
8 x << anyid.id;
9 @@

10 print "Identifier: %s" % x
11

12 @contains@
13 type t;
14 identifier foo =~ ".*foo";
15 @@
16 t foo () {...}
17

18 @script:python@
19 x << contains.foo;
20 @@
21 print "Contains foo: %s" % x

23 @endsby@
24 type t;
25 identifier foo =~ ".*foo$";
26 @@
27

28 t foo () {...}
29

30 @script:python@
31 x << endsby.foo;
32 @@
33 print "Ends by foo: %s" % x
34

35 @beginsby@
36 type t;
37 identifier foo =~ "^foo";
38 @@
39 t foo () {...}
40

41 @script:python@
42 x << beginsby.foo;
43 @@
44 print "Begins by foo: %s" % x

and the following C program, on the left, which defines the functions foo, bar, foobar, barfoobar and
barfoo, you will get the result on the right.

1 int foo () { return 0; }
2 int bar () { return 0; }
3 int foobar () { return 0; }
4 int barfoobar () { return 0; }
5 int barfoo () { return 0; }

1 Identifier: foo
2 Identifier: bar
3 Identifier: foobar
4 Identifier: barfoobar
5 Identifier: barfoo
6 Contains foo: foo
7 Contains foo: foobar
8 Contains foo: barfoobar
9 Contains foo: barfoo

10 Ends by foo: foo
11 Ends by foo: barfoo
12 Begins by foo: foo
13 Begins by foo: foobar

4.2 Tips and Tricks

4.2.1 How to remove useless parentheses?
If you want to rewrite any access to a pointer value by a function call, you may use the following semantic patch.

1 - a = *b
2 + a = readb(b)

15



However, if for some reason your code looks like bar = *(foo), you will end up with bar = readb((foo))
as the extra parentheses around foo are capture by the metavariable b.

In order to generate better output code, you can use the following semantic patch instead.

1 - a = *(b)
2 + a = readb(b)

And rely on your standard.iso isomorphism file which should contain:

1 Expression
2 @ paren @
3 expression E;
4 @@
5

6 (E) => E

Coccinelle will then consider bar = *(foo) as equivalent to bar = *foo (but not the other way around) and
capture both. Finally, it will generate bar = readb(foo) as expected.

16



Chapter 5

Isomorphisms and standard.iso

17



Chapter 6

Parsing C, cpp, and standard.h

18



Chapter 7

Developing a Semantic Patch

19



Chapter 8

Advanced Features

20



Part II

Reference Manual

21



Chapter 9

SmPL grammar

This document presents the grammar of the SmPL language used by the Coccinelle tool. For the most part, the
grammar is written using standard notation. In some rules, however, the left-hand side is in all uppercase letters.
These are macros, which take one or more grammar rule right-hand-sides as arguments. The grammar also uses some
unspecified nonterminals, such as id, const, etc. These refer to the sets suggested by the name, i.e., id refers to the set
of possible C-language identifiers, while const refers to the set of possible C-language constants. A HTML version of
this documentation is available online at http://coccinelle.lip6.fr/docs/main_grammar.html.

9.1 Program
program ::= include_cocci∗ changeset+

include_cocci ::= include string
| using string
| using pathToIsoFile
| virtual id (, id)∗

changeset ::= metavariables transformation
| script_metavariables script_code

script_code is any code in the chosen scripting language. Parsing of the semantic patch does not check the validity
of this code; any errors are first detected when the code is executed. Furthermore, @ should not be use in this code.
Spatch scans the script code for the next @ and considers that to be the beginning of the next rule, even if @ occurs
within e.g., a comment.

virtual keyword is used to declare virtual rules. Virtual rules may be subsequently used as a dependency for
the rules in the SmPL file. Whether a virtual rule is defined or not is controlled by the -D option on the command line.

9.2 Metavariables for transformations
The rulename portion of the metavariable declaration can specify properties of a rule such as its name, the names of
the rules that it depends on, the isomorphisms to be used in processing the rule, and whether quantification over paths
should be universal or existential. The optional annotation expression indicates that the pattern is to be considered
as matching an expression, and thus can be used to avoid some parsing problems.

The metadecl portion of the metavariable declaration defines various types of metavariables that will be used for
matching in the transformation section.

22

http://coccinelle.lip6.fr/
http://coccinelle.lip6.fr/docs/main_grammar.html


metavariables ::= @@ metadecl∗ @@
| @ rulename @ metadecl∗ @@

rulename ::= id [extends id] [depends on dep] [iso] [disable-iso] [exists] [expression]
dep ::= id

| !id
| !(dep)
| ever id
| never id
| dep && dep
| dep || dep
| (dep)

iso ::= using string (, string)∗

disable-iso ::= disable COMMA_LIST(id)
exists ::= exists

| forall
COMMA_LIST(elem) ::= elem (, elem)∗

The keyword disable is normally used with the names of isomorphisms defined in standard.iso or whatever
isomorphism file has been included. There are, however, some other isomorphisms that are built into the implementa-
tion of Coccinelle and that can be disabled as well. Their names are given below. In each case, the text describes the
standard behavior. Using disable-iso with the given name disables this behavior.

• optional_storage: A SmPL function definition that does not specify any visibility (i.e., static or extern),
or a SmPL variable declaration that does not specify any storage (i.e., auto, static, register, or extern), matches a
function declaration or variable declaration with any visibility or storage, respectively.

• optional_qualifier: This is similar to optional_storage, except that here is it the qualifier (i.e.,
const or volatile) that does not have to be specified in the SmPL code, but may be present in the C code.

• value_format: Integers in various formats, e.g., 1 and 0x1, are considered to be equivalent in the matching
process.

• optional_declarer_semicolon: Some declarers (top-level terms that look like function calls but serve
to declare some variable) don’t require a semicolon. This isomorphism allows a SmPL declarer with a semicolon
to match such a C declarer, if no transformation is specified on the SmPL semicolon.

• comm_assoc: An expression of the form exp bin_op ..., where bin_op is commutative and associative, is
considered to match any top-level sequence of bin_op operators containing exp as the top-level argument.

The possible types of metavariable declarations are defined by the grammar rule below. Metavariables should
occur at least once in the transformation immediately following their declaration. Fresh identifier metavariables must
only be used in + code. These properties are not expressed in the grammar, but are checked by a subsequent analysis.
The metavariables are designated according to the kind of terms they can match, such as a statement, an identifier, or
an expression. An expression metavariable can be further constrained by its type. A declaration metavariable matches
the declaration of one or more variables, all sharing the same type specification (e.g., int a,b,c=3;). A field
metavariable does the same, but for structure fields.

23



metadecl ::= metavariable ids ;
| fresh identifier ids ;
| identifier COMMA_LIST(pmid_with_regexp) ;
| identifier COMMA_LIST(pmid_with_virt_or_not_eq) ;
| parameter [list] ids ;
| parameter list [ id ] ids ;
| parameter list [ const ] ids ;
| type ids ;
| statement [list] ids ;
| declaration ids ;
| field [list] ids ;
| typedef ids ;
| declarer name ids ;
| declarer COMMA_LIST(pmid_with_regexp) ;
| declarer COMMA_LIST(pmid_with_not_eq) ;
| iterator name ids ;
| iterator COMMA_LIST(pmid_with_regexp) ;
| iterator COMMA_LIST(pmid_with_not_eq) ;
| [local] idexpression [ctype] COMMA_LIST(pmid_with_not_eq) ;
| [local] idexpression [{ctypes} *

∗] COMMA_LIST(pmid_with_not_eq) ;
| [local] idexpression *

+ COMMA_LIST(pmid_with_not_eq) ;
| expression list ids ;
| expression *

+ COMMA_LIST(pmid_with_not_eq) ;
| expression enum *

∗ COMMA_LIST(pmid_with_not_eq) ;
| expression struct *

∗ COMMA_LIST(pmid_with_not_eq) ;
| expression union *

∗ COMMA_LIST(pmid_with_not_eq) ;
| expression COMMA_LIST(pmid_with_not_ceq) ;
| expression list [ id ] ids ;
| expression list [ const ] ids ;
| ctype [ ] COMMA_LIST(pmid_with_not_eq) ;
| ctype COMMA_LIST(pmid_with_not_ceq) ;
| {ctypes} *

∗ COMMA_LIST(pmid_with_not_ceq) ;
| {ctypes} *

∗ [ ] COMMA_LIST(pmid_with_not_eq) ;
| constant [ctype] COMMA_LIST(pmid_with_not_eq) ;
| constant [{ctypes} *

∗] COMMA_LIST(pmid_with_not_eq) ;
| position [any] COMMA_LIST(pmid_with_not_eq_mid) ;
| symbol ids;

A metavariable declaration local idexpression v means that v is restricted to be a local variable. If it should just be
a variable, but not necessarily a local one, then drop local. A more complex description of a location, such as a->b is
considered to be an expression, not an ideexpression.

Constant is for constants, such as 27. But it also considers an identifier that is all capital letters (possibly containing
numbers) as a constant as well, because the names gives to macros in Linux usually have this form.

An identifier is the name of a structure field, a macro, a function, or a variable. Is is the name of something rather
than an expression that has a value. But an identifier can be used in the position of an expression as well, where it
represents a variable.

It is possible to specify that an expression list or a parameter list metavariable should match a specific number of
expressions or parameters.

It is possible to specify some information about the definition of a fresh identifier. See the wiki.
A symbol declaration specifies that the provided identifiers should be considered C identifiers when encountered

in the body of the rule. Identifiers in the body of the rule that are not declared explicitly are by default considered
symbols, thus symbol declarations are optional.

24



A position metavariable is used by attaching it using @ to any token, including another metavariable. Its value
is the position (file, line number, etc.) of the code matched by the token. It is also possible to attach expression,
declaration, type, initialiser, and statement metavariables in this manner. In that case, the metavariable is bound to the
closest enclosing expression, declaration, etc. If such a metavariable is itself followed by a position metavariable, the
position metavariable applies to the metavariable that it follows, and not to the attached token. This makes it possible
to get eg the starting and ending position of f(...), by writing f(...)@E@p, for expression metavariable E and
position metavariable p.

ids ::= COMMA_LIST(pmid)
pmid ::= id

| mid
mid ::= rulename_id.id
pmid_with_regexp ::= pmid =˜ regexp

| pmid !˜ regexp
pmid_with_not_eq ::= pmid [!= id_or_meta]

| pmid [!= { COMMA_LIST(id_or_meta) }]
pmid_with_virt_or_not_eq ::= virtual.id

| pmid_with_not_eq
pmid_with_not_ceq ::= pmid [!= id_or_cst]

| pmid [!= { COMMA_LIST(id_or_cst) }]
id_or_cst ::= id

| integer
id_or_meta ::= id

| rulename_id.id
pmid_with_not_eq_mid ::= pmid [!= mid]

| pmid [!= { COMMA_LIST(mid) }]

Subsequently, we refer to arbitrary metavariables as metaidty, where ty indicates the metakind used in the decla-
ration of the variable. For example, metaidType refers to a metavariable that was declared using type and stands for
any type.

metavariable declares a metavariable for which the parser tried to figure out the metavariable type based
on the usage context. Such a metavariable must be used consistently. These metavariables cannot be used in all
contexts; specifically, they cannot be used in context that would make the parsing ambiguous. Some examples are the
leftmost term of an expression, such as the left-hand side of an assignment, or the type in a variable declaration. These
restrictions may seems somewhat arbitrary from the user’s point of view. Thus, it is better to use metavariables with
metavariable types. If Coccinelle is given the argument -parse_cocci, it will print information about the type that
is inferred for each metavariable.

The ctype and ctypes nonterminals are used by both the grammar of metavariable declarations and the grammar of
transformations, and are defined on page 28.

An identifier metavariable with virtual as its “rule name” is given a value on the command line. For example,
if a semantic patch contains a rule that declares an identifier metavariable with the name virtual.alloc, then
the command line could contain -D alloc=kmalloc. There should not be space around the =. An example is in
demos/vm.cocci and demos/vm.c.

Warning: Each metavariable declaration causes the declared metavariables to be immediately usable, without any
inheritance indication. Thus the following are correct:

@@
type r.T;
T x;
@@

[...] // some semantic patch code

25



@@
r.T x;
type r.T;
@@

[...] // some semantic patch code

But the following is not correct:

@@
type r.T;
r.T x;
@@

[...] // some semantic patch code

This applies to position variables, type metavariables, identifier metavariables that may be used in specifying a
structure type, and metavariables used in the initialization of a fresh identifier. In the case of a structure type, any
identifier metavariable indeed has to be declared as an identifier metavariable in advance. The syntax does not permit
r.n as the name of a structure or union type in such a declaration.

9.3 Metavariables for scripts
Metavariables for scripts can only be inherited from transformation rules. In the spirit of scripting languages such as
Python that use dynamic typing, metavariables for scripts do not include type declarations.

script_metavariables ::= @ script:language [rulename] [depends on dep] @ script_metadecl∗ @@
| @ initialize:language [depends on dep] @
| @ finalize:language [depends on dep] @

language ::= python
| ocaml

script_metadecl ::= id << rulename_id.id ;
| id ;

Currently, the only scripting languages that are supported are Python and OCaml, indicated using python and
ocaml, respectively. The set of available scripting languages may be extended at some point.

Script rules declared with initialize are run before the treatment of any file. Script rules declared with
finalize are run when the treatment of all of the files has completed. There can be at most one of each per
scripting language (thus currently at most one of each). Initialize and finalize script rules do not have access to SmPL
metavariables. Nevertheless, a finalize script rule can access any variables initialized by the other script rules, allowing
information to be transmitted from the matching process to the finalize rule.

A script metavariable that does not specify an origin, using «, is newly declared by the script. This metavari-
able should be assigned to a string and can be inherited by subsequent rules as an identifier. In Python, the as-
signment of such a metavariable x should refer to the metavariable as coccinelle.x. Examples are in the files
demos/pythontococci.cocci and demos/camltococci.cocci.

In an ocaml script, the following extended form of script_metadecl may be used:

script_metadecl ::= (id,id) << rulename_id.id ;
| id << rulename_id.id ;
| id ;

In a declaration of the form (id,id) << rulename_id.id ;, the left component of (id,id) receives a string repre-
sentation of the value of the inherited metavariable while the right component receives its abstract syntax tree. The

26



file parsing_c/ast_c.ml in the Coccinelle implementation gives some information about the structure of the
abstract syntax tree. Either the left or right component may be replaced by _, indicating that the string representation
or abstract syntax trees representation is not wanted, respectively.

The abstract syntax tree of a metavariable declared using metavariable is not available.

9.4 Transformation
The transformation specification essentially has the form of C code, except that lines to remove are annotated with -
in the first column, and lines to add are annotated with +. A transformation specification can also use dots, “...”,
describing an arbitrary sequence of function arguments or instructions within a control-flow path. Implicitly, “...”
matches the shortest path between something that matches the pattern before the dots (or the beginning of the function,
if there is nothing before the dots) and something that matches the pattern after the dots (or the end of the function, if
there is nothing after the dots). Dots may be modified with a when clause, indicating a pattern that should not occur
anywhere within the matched sequence. when any removes the aforementioned constraint that “...” matches the
shortest path. Finally, a transformation can specify a disjunction of patterns, of the form ( pat1 | . . . | patn )
where each (, | or ) is in column 0 or preceded by \.

The grammar that we present for the transformation is not actually the grammar of the SmPL code that can be
written by the programmer, but is instead the grammar of the slice of this consisting of the - annotated and the
unannotated code (the context of the transformed lines), or the + annotated code and the unannotated code. For
example, for parsing purposes, the following transformation is split into the two variants shown below and each is
parsed separately.

1 proc_info_func(...) {
2 <...
3 - hostno
4 + hostptr->host_no
5 ...>
6 }

1 proc_info_func(...) {
2 <...
3 - hostno
4 ...>
5 }

1 proc_info_func(...) {
2 <...
3 + hostptr->host_no
4 ...>
5 }

Requiring that both slices parse correctly ensures that the rule matches syntactically valid C code and that it pro-
duces syntactically valid C code. The generated parse trees are then merged for use in the subsequent matching and
transformation process.

The grammar for the minus or plus slice of a transformation is as follows:

27



transformation ::= include+

| OPTDOTSEQ(expr, when)
| OPTDOTSEQ(decl_stmt+, when)
| OPTDOTSEQ(fundecl, when)

include ::= #include include_string
when ::= when != when_code

| when = rule_elem_stmt
| when COMMA_LIST(any_strict)
| when true != expr
| when false != expr

when_code ::= OPTDOTSEQ(decl_stmt+, when)
| OPTDOTSEQ(expr, when)

rule_elem_stmt ::= one_decl
| expr;
| return [expr];
| break;
| continue;
| \(rule_elem_stmt (\| rule_elem_stmt)+\)

any_strict ::= any
| strict
| forall
| exists

OPTDOTSEQ(grammar_ds, when_ds) ::=
[... (when_ds)∗] grammar_ds (... (when_ds)∗ grammar_ds)∗ [... (when_ds)∗]

Lines may be annotated with an element of the set {-,+,*} or the singleton ?, or one of each set. ? represents at most
one match of the given pattern, ie a match of the pattern is optional. * is used for semantic match, i.e., a pattern that
highlights the fragments annotated with *, but does not perform any modification of the matched code. * cannot be
mixed with - and +. There are some constraints on the use of these annotations:

• Dots, i.e. ..., cannot occur on a line marked +.

• Nested dots, i.e., dots enclosed in < and >, cannot occur on a line with any marking.

Each element of a disjunction must be a proper term like an expression, a statement, an identifier or a declaration.
Thus, the rule on the left below is not a syntactically correct SmPL rule. One may use the rule on the right instead.

1 @@
2 type T;
3 T b;
4 @@
5

6 (
7 writeb(...,
8 |
9 readb(...,

10 )
11 -(T)
12 b)

1 @@
2 type T;
3 T b;
4 @@
5

6 (
7 read
8 |
9 write

10 )
11 (...,
12 - (T)
13 b)

Some kinds of terms can only appear in + code. These include comments, ifdefs, and attributes (__attribute__((...))).

28



9.5 Types
ctypes ::= COMMA_LIST(ctype)
ctype ::= [const_vol] generic_ctype *

∗

| [const_vol] void *
+

| (ctype (| ctype)∗)
const_vol ::= const

| volatile
generic_ctype ::= ctype_qualif

| [ctype_qualif ] char
| [ctype_qualif ] short
| [ctype_qualif ] short int
| [ctype_qualif ] int
| [ctype_qualif ] long
| [ctype_qualif ] long int
| [ctype_qualif ] long long
| [ctype_qualif ] long long int
| double
| long double
| float
| size_t
| ssize_t
| ptrdiff_t
| enum id { PARAMSEQ(dot_expr, exp_whencode) [,] }
| [struct| union] id [{ struct_decl_list∗ }]

ctype_qualif ::= unsigned
| signed

struct_decl_list ::= struct_decl_list_start
struct_decl_list_start ::= struct_decl

| struct_decl struct_decl_list_start
| ... [when != struct_decl]† [continue_struct_decl_list]

continue_struct_decl_list ::= struct_decl struct_decl_list_start
| struct_decl

struct_decl ::= ctype d_ident;
| fn_ctype (* d_ident) (PARAMSEQ(name_opt_decl, ε));)
| [const_vol] id d_ident;

d_ident ::= id [[expr]]∗

fn_ctype ::= generic_ctype *
∗

| void *
∗

name_opt_decl ::= decl
| ctype
| fn_ctype

† The optional when construct ends at the end of the line.

29



9.6 Function declarations
fundecl ::= [fn_ctype] funinfo∗ funid ([PARAMSEQ(param, ε)]) { [stmt_seq] }
funproto ::= [fn_ctype] funinfo∗ funid ([PARAMSEQ(param, ε)]);
funinfo ::= inline

| storage
storage ::= static

| auto
| register
| extern

funid ::= id
| metaidId

| OR(stmt)
param ::= type id

| metaidParam

| metaidParamList

decl ::= ctype id
| fn_ctype (* id) (PARAMSEQ(name_opt_decl, ε))
| void
| metaidParam

PARAMSEQ(gram_p, when_p) ::= COMMA_LIST(gram_p | ...[when_p])

To match a function it is not necessary to provide all of the annotations that appear before the function name. For
example, the following semantic patch:

1 @@
2 @@
3

4 foo() { ... }

matches a function declared as follows:

1 static int foo() { return 12; }

This behavior can be turned off by disabling the optional_storage isomorphism. If one adds code before a
function declaration, then the effect depends on the kind of code that is added. If the added code is a function definition
or CPP code, then the new code is placed before all information associated with the function definition, including any
comments preceding the function definition. On the other hand, if the new code is associated with the function, such
as the addition of the keyword static, the new code is placed exactly where it appears with respect to the rest of the
function definition in the semantic patch. For example,

1 @@
2 @@
3

4 + static
5 foo() { ... }

causes static to be placed just before the function name. The following causes it to be placed just before the type

1 @@
2 type T;
3 @@
4

5 + static
6 T foo() { ... }

30



It may be necessary to consider several cases to ensure that the added ode is placed in the right position. For example,
one may need one pattern that considers that the function is declared inline and another that considers that it is not.

9.7 Declarations

decl_var ::= common_decl
| [storage] ctype COMMA_LIST(d_ident) ;
| [storage] [const_vol] id COMMA_LIST(d_ident) ;
| [storage] fn_ctype ( * d_ident ) ( PARAMSEQ(name_opt_decl, ε) ) = initialize ;
| typedef ctype typedef_ident ;

one_decl ::= common_decl
| [storage] ctype id;
| [storage] [const_vol] id d_ident ;

common_decl ::= ctype;
| funproto
| [storage] ctype d_ident = initialize ;
| [storage] [const_vol] id d_ident = initialize ;
| [storage] fn_ctype ( * d_ident ) ( PARAMSEQ(name_opt_decl, ε) ) ;
| decl_ident ( [COMMA_LIST(expr)] ) ;

initialize ::= dot_expr
| metaidInitialiser

| { [COMMA_LIST(init_list_elem)] }
init_list_elem ::= dot_expr

| designator = initialize
| metaidInitialiser

| metaidInitialiserList

| id : dot_expr
designator ::= . id

| [ dot_expr ]
| [ dot_expr ... dot_expr ]

decl_ident ::= DeclarerId
| metaidDeclarer

An initializer for a structure can be ordered or unordered. It is considered to be unordered if there is at least one
key-value pair initializer, e.g., .x = e.

9.8 Statements
The first rule statement describes the various forms of a statement. The remaining rules implement the constraints that
are sensitive to the context in which the statement occurs: single_statement for a context in which only one statement
is allowed, and decl_statement for a context in which a declaration, statement, or sequence thereof is allowed.

31



stmt ::= include
| metaidStmt

| expr;
| if (dot_expr) single_stmt [else single_stmt]
| for ([dot_expr]; [dot_expr]; [dot_expr]) single_stmt
| while (dot_expr) single_stmt
| do single_stmt while (dot_expr);
| iter_ident (dot_expr∗) single_stmt
| switch ([dot_expr]) {case_line∗ }
| return [dot_expr];
| { [stmt_seq] }
| NEST(decl_stmt+, when)
| NEST(expr, when)
| break;
| continue;
| id:
| goto id;
| {stmt_seq }

single_stmt ::= stmt
| OR(stmt)

decl_stmt ::= metaidStmtList

| decl_var
| stmt
| OR(stmt_seq)

stmt_seq ::= decl_stmt∗ [DOTSEQ(decl_stmt+, when) decl_stmt∗]
| decl_stmt∗ [DOTSEQ(expr, when) decl_stmt∗]

case_line ::= default : stmt_seq
| case dot_expr : stmt_seq

iter_ident ::= IteratorId
| metaidIterator

OR(gram_o) ::= ( gram_o (|gram_o)∗)
DOTSEQ(gram_d, when_d) ::= ...[when_d] (gram_d ...[when_d])∗

NEST(gram_n, when_n) ::= <...[when_n] gram_n (...[when_n] gram_n)∗ ...>
| <+...[when_n] gram_n (...[when_n] gram_n)∗ ...+>

OR is a macro that generates a disjunction of patterns. The three tokens (, |, and ) must appear in the leftmost column,
to differentiate them from the parentheses and bit-or tokens that can appear within expressions (and cannot appear in
the leftmost column). These token may also be preceded by \ when they are used in an other column. These tokens
are furthermore different from (, |, and ), which are part of the grammar metalanguage.

9.9 Expressions
A nest or a single ellipsis is allowed in some expression contexts, and causes ambiguity in others. For example, in
a sequence ...expr ..., the nonterminal expr must be instantiated as an explicit C-language expression, while
in an array reference, expr1 [ expr2 ], the nonterminal expr2, because it is delimited by brackets, can be also
instantiated as ..., representing an arbitrary expression. To distinguish between the various possibilities, we define
three nonterminals for expressions: expr does not allow either top-level nests or ellipses, nest_expr allows a nest but
not an ellipsis, and dot_expr allows both. The EXPR macro is used to express these variants in a concise way.

32



expr ::= EXPR(expr)
nest_expr ::= EXPR(nest_expr)

| NEST(nest_expr, exp_whencode)
dot_expr ::= EXPR(dot_expr)

| NEST(dot_expr, exp_whencode)
| ... [exp_whencode]

EXPR(exp) ::= exp assign_op exp
| exp++
| exp-
| unary_op exp
| exp bin_op exp
| exp ? dot_expr : exp
| (type) exp
| exp [dot_expr]
| exp . id
| exp -> id
| exp([PARAMSEQ(arg, exp_whencode)])
| id
| (type) { COMMA_LIST(init_list_elem) }
| metaidExp

| metaidConst

| const
| (dot_expr)
| OR(exp)

arg ::= nest_expr
| metaidExpList

exp_whencode ::= when != expr
assign_op ::= = | -= | += | *= | /= | %=

| &= | |= | ˆ= | <<= | >>=
bin_op ::= * | / | % | + | -

| <<| >>| ˆ | & | |
| < | > | <= | >= | == | != | && | ||

unary_op ::= ++ | - | & | * | + | - | !

9.10 Constants, Identifiers and Types for Transformations
const ::= string

| [0-9]+
| · · ·

string ::= "[ˆ"]∗"
id ::= id | metaidId | OR(stmt)
typedef_ident ::= id | metaidType

type ::= ctype | metaidType

pathToIsoFile ::= <.*>
regexp ::= "[ˆ"]∗"

9.11 Comments and preprocessor directives
A // or /* */ comment that is annotated with + in the leftmost column is considered to be added code. A // or
/* */ comment without such an annotation is considered to be a comment about the SmPL code, and thus is not
matched in the C code.

33



The following preprocessor directives can likewise be added. They cannot be matched against. The entire line is
added, but it is not parsed.

• if

• ifdef

• ifndef

• else

• elif

• endif

• error

• pragma

• line

9.12 Command-line semantic match
It is possible to specify a semantic match on the spatch command line, using the argument -sp. In such a semantic
match, any token beginning with a capital letter is assumed to be a metavariable of type metavariable. In this
case, the parser must be able to figure out what kind of metavariable it is. It is also possible to specify the type of a
metavariable by enclosing the type in :’s, concatenated directly to the metavariable name.

Some examples of semantic matches that can be given as an argument to -sp are as follows:

• f(e): This only matches the expression f(e).

• f(E): This matches a call to f with any argument.

• F(E): This gives a parse error; the semantic patch parser cannot figure out what kind of metavariable F is.

• F:identifier:(E): This matches any one argument function call.

• f:identifier:(e:struct foo *:): This matches any one argument function call where the argu-
ment has type struct foo *. Since the types of the metavariables are specified, it is not necessary for the
metavariable names to begin with a capital letter.

• F:identifier:(F): This matches any one argument function call where the argument is the name of the
function itself. This example shows that it is not necessary to repeat the metavariable type name.

• F:identifier:(F:identifier:): This matches any one argument function call where the argument is
the name of the function itself. This example shows that it is possible to repeat the metavariable type name.

When constraints, e.g. when != e, are allowed but the expression e must be represented as a single token.
The generated semantic match behaves as though there were a * in front of every token.

34



Chapter 10

spatch command line options

10.1 Introduction
This document describes the options provided by Coccinelle. The options have an impact on various phases of the
semantic patch application process. These are:

1. Selecting and parsing the semantic patch.

2. Selecting and parsing the C code.

3. Application of the semantic patch to the C code.

4. Transformation.

5. Generation of the result.

One can either initiate the complete process from step 1, or to perform step 1 or step 2 individually.
Coccinelle has quite a lot of options. The most common usages are as follows, for a semantic match foo.cocci,

a C file foo.c, and a directory foodir:

• spatch -parse-cocci foo.cocci: Check that the semantic patch is syntactically correct.

• spatch -parse-c foo.c: Check that the C file is syntactically correct. The Coccinelle C parser tries to
recover during the parsing process, so if one function does not parse, it will start up again with the next one.
Thus, a parse error is often not a cause for concern, unless it occurs in a function that is relevant to the semantic
patch.

• spatch -sp-file foo.cocci foo.c: Apply the semantic patch foo.cocci to the file foo.c and
print out any transformations as a diff. -sp-file is optional in this and the following cases.

• spatch -sp-file foo.cocci foo.c -debug: The same as the previous case, but print out some
information about the matching process.

• spatch -sp-file foo.cocci -dir foodir: Apply the semantic patch foo.cocci to all of the C
files in the directory foodir.

• spatch -sp-file foo.cocci -dir foodir -include-headers: Apply the semantic patch foo.cocci
to all of the C files and header files in the directory foodir.

In the rest of this document, the options are annotated as follows:

• V: a basic option, that is most likely of interest to all users.

35



• _: an option that is frequently used, often for better understanding the effect of a semantic patch.

• &: an option that is likely to be rarely used, but whose effect is still comprehensible to a user.

• An option with no annotation is likely of interest only to developers.

10.2 Selecting and parsing the semantic patch

10.2.1 Standalone options

_ –parse-cocci 〈file〉 Parse a semantic patch file and print out some information about it.

10.2.2 The semantic patch

V –sp-file 〈file〉, -c 〈file〉, -cocci-file 〈file〉 Specify the name of the file containing the semantic patch. The file name
should end in .cocci. All three options do the same thing. These options are optional. If they are not used, the
single file whose name ends in .cocci is assoumed to be the name of the file containing the semantic patch.

& –sp “semantic patch string” Specify a semantic match as a command-line argument. See the section “Command-
line semantic match” in the manual.

10.2.3 Isomorphisms

& –iso, –iso-file Specify a file containing isomorphisms to be used in place of the standard one. Normally one should
use the using construct within a semantic patch to specify isomorphisms to be used in addition to the standard ones.

& –iso-limit 〈int〉 Limit the depth of application of isomorphisms to the specified integer.

& –no-iso-limit Put no limit on the number of times that isomorphisms can be applied. This is the default.

& –disable-iso Disable a specific isomorphism from the command line. This option can be specified multiple times.

–track-iso Gather information about isomorphism usage.

–profile-iso Gather information about the time required for isomorphism expansion.

10.2.4 Display options

& –show-cocci Show the semantic patch that is being processed before expanding isomorphisms.

& –show-SP Show the semantic patch that is being processed after expanding isomorphisms.

& –show-ctl-text Show the representation of the semantic patch in CTL.

& –ctl-inline-let Sometimes let is used to name intermediate terms CTL representation. This option causes the
let-bound terms to be inlined at the point of their reference. This option implicitly sets –show-ctl-text.

& –ctl-show-mcodekind Show transformation information within the CTL representation of the semantic patch. This
option implicitly sets –show-ctl-text.

36



& –show-ctl-tex Create a LaTeX files showing the representation of the semantic patch in CTL.

10.3 Selecting and parsing the C files

10.3.1 Standalone options

_ –parse-c 〈file/dir〉 Parse a .c file or all of the .c files in a directory. This generates information about any parse
errors encountered.

_ –parse-h 〈file/dir〉 Parse a .h file or all of the .h files in a directory. This generates information about any parse
errors encountered.

_ –parse-ch 〈file/dir〉 Parse a .c or .h file or all of the .c or .h files in a directory. This generates information
about any parse errors encountered.

_ –control-flow 〈file〉, –control-flow 〈file〉:〈function〉 Print a control-flow graph for all of the functions in a file or
for a specific function in a file. This requires dot (http://www.graphviz.org/) and gv.

& –control-flow-to-file 〈file〉, –control-flow-to-file 〈file〉:〈function〉 Like –control-flow but just puts the dot output
in a file in the current directory. For PATH/file.c, this produces file:xxx.dot for each (selected) function xxx in PATH/-
file.c.

& –type-c 〈file〉 Parse a C file and pretty-print a version including type information.

–tokens-c 〈file〉 Prints the tokens in a C file.

–parse-unparse 〈file〉 Parse and then reconstruct a C file.

–compare-c 〈file〉 〈file〉, –compare-c-hardcoded Compares one C file to another, or compare the file tests/com-
pare1.c to the file tests/compare2.c.

–test-cfg-ifdef 〈file〉 Do some special processing of #ifdef and display the resulting control-flow graph. This requires
dot and gv.

–test-attributes 〈file〉, –test-cpp 〈file〉 Test the parsing of cpp code and attributes, respectively.

10.3.2 Selecting C files
An argument that ends in .c is assumed to be a C file to process. Normally, only one C file or one directory is
specified. If multiple C files are specified, they are treated in parallel, i.e., the first semantic patch rule is applied to
all functions in all files, then the second semantic patch rule is applied to all functions in all files, etc. If a directory is
specified then no files may be specified and only the rightmost directory specified is used.

_ –include-headers This option causes header files to be processed independently. This option only makes sense if a
directory is specified using –dir.

37



_ –use-glimpse Use a glimpse index to select the files to which a semantic patch may be relevant. This option requires
that a directory is specified. The index may be created using the script coccinelle/scripts/ glimpseindex-cocci.sh.
Glimpse is available at http://webglimpse.net/. In conjunction with the option –patch-cocci this option prints the reg-
ular expression that will be passed to glimpse.

_ –use-idutils Use an id-utils index created using lid to select the files to which a semantic patch may be relevant. This
option requires that a directory is specified. The index may be created using the script coccinelle/scripts/
idindex-cocci.sh. In conjunction with the option –patch-cocci this option prints the regular expression that
will be passed to glimpse.

& –dir Specify a directory containing C files to process. A trailing / is permitted on the directory name and has no
impact on the result. By default, the include path will be set to the “include” subdirectory of this directory. A different
include path can be specified using the option -I. –dir only considers the rightmost directory in the argument list. This
behavior is convenient for creating a script that always works on a single directory, but allows the user of the script to
override the provided directory with another one. Spatch collects the files in the directory using find and does not
follow symbolic links.

–kbuild-info 〈file〉 The specified file contains information about which sets of files should be considered in parallel.

–disable-worth-trying-opt Normally, a C file is only processed if it contains some keywords that have been deter-
mined to be essential for the semantic patch to match somewhere in the file. This option disables this optimization and
tries the semantic patch on all files.

–test 〈file〉 A shortcut for running Coccinelle on the semantic patch “file.cocci” and the C file “file.c”.

–testall A shortcut for running Coccinelle on all files in a subdirectory tests such that there are all of a .cocci
file, a .c file, and a .res file, where the .res contains the expected result.

–test-okfailed, –test-regression-okfailed Other options for keeping track of tests that have succeeded and failed.

–compare-with-expected Compare the result of applying Coccinelle to file.c to the file file.res representing the
expected result.

–expected-score-file 〈file〉 which score file to compare with in the testall run

10.3.3 Parsing C files

& –show-c Show the C code that is being processed.

& –parse-error-msg Show parsing errors in the C file.

& –verbose-parsing Show parsing errors in the C file, as well as information about attempts to accomodate such
errors. This implicitly sets –parse-error-msg.

& –type-error-msg Show information about where the C type checker was not able to determine the type of an
expression.

38



& –int-bits 〈n〉, –long-bits 〈n〉 Provide integer size information. n is the number of bits in an unsigned integer or
unsigned long, respectively. If only the option –int-bits is used, unsigned longs will be assumed to have twice as many
bits as unsigned integers. If only the option -long-bits is used, unsigned ints will be assumed to have half as many
bits as unsigned integers. This information is only used in determining the types of integer constants, according to the
ANSI C standard (C89). If neither is provided, the type of an integer constant is determined by the sequence of “u”
and “l” annotations following the constant. If there is none, the constant is assumed to be a signed integer. If there is
only “u”, the constant is assumed to be an unsigned integer, etc.

& –no-loops Drop back edges for loops. This may make a semantic patch/match run faster, at the cost of not finding
matches that wrap around loops.

–use-cache Use preparsed versions of the C files that are stored in a cache.

–cache-prefix Specify the directory in which to store preparsed versions of the C files. This sets –use-cache

–cache-limit Specify the maximum number of preparsed C files to store. The cache is cleared of all files with names
ending in .ast-raw and .depend-raw on reaching this limit. Only effective if –cache-prefix is used as well. This is most
useful when iteration is used to process a file multiple times within a single run of Coccinelle.

–debug-cpp, –debug-lexer, –debug-etdt, –debug-typedef Various options for debugging the C parser.

–filter-msg, –filter-define-error, –filter-passed-level Various options for debugging the C parser.

–only-return-is-error-exit In matching “...” in a semantic patch or when forall is specified, a rule must match all
control-flow paths starting from a node matching the beginning of the rule. This is relaxed, however, for error handling
code. Normally, error handling code is considered to be a conditional with only a then branch that ends in goto, break,
continue, or return. If this option is set, then only a then branch ending in a return is considered to be error handling
code. Usually a better strategy is to use when strict in the semantic patch, and then match explicitly the case
where there is a conditional whose then branch ends in a return.

Macros and other preprocessor code

_ –macro-file 〈file〉 Extra macro definitions to be taken into account when parsing the C files. This uses the provided
macro definitions in addition to those in the default macro file.

_ –macro-file-builtins 〈file〉 Builtin macro definitions to be taken into account when parsing the C files. This causes
the macro definitions provided in the default macro file to be ignored and the ones in the specified file to be used
instead.

& –ifdef-to-if,-no-ifdef-to-if The option –ifdef-to-if represents an #ifdef in the source code as a conditional in
the control-flow graph when doing so represents valid code. -no-ifdef-to-if disables this feature. –ifdef-to-if is the
default.

& –use-if0-code Normally code under #if 0 is ignored. If this option is set then the code is considered, just like the
code under any other #ifdef.

–noadd-typedef-root This seems to reduce the scope of a typedef declaration found in the C code.

39



Include files

_ –recursive-includes, –all-includes, –local-includes, –no-includes These options control which include files men-
tioned in a C file are taken into account. –recursive-includes indicates that all included files mentioned in the .c
file(s) or any included files will be processed. –all-includes indicates that all included files mentioned in the .c file(s)
will be processed. –local-includes indicates that only included files in the current directory will be processed. –
no-includes indicates that no included files will be processed. If the semantic patch contains type specifications on
expression metavariables, then the default is –local-includes. Otherwise the default is –no-includes. At most one of
these options can be specified.

_ -I 〈path〉 This option specifies a directory in which to find non-local include files. This option can be used several
times.

& –relax-include-path This option when combined with –all-includes causes the search for local include files to
consider the current directory, even if the include patch specifies a subdirectory. This is really only useful for testing,
eg with the option –testall

& –c++ Make an extremely minimal effort to parse C++ code. Currently, this is limited to allowing identifiers to
contain “::”, tilde, and template invocations. Consider testing your code first with spatch –type-c to see if there are any
type annotations in the code you are interested in processing. If not, then it was probably not parsed.

10.4 Application of the semantic patch to the C code

10.4.1 Feedback at the rule level during the application of the semantic patch

_ –show-bindings Show the environments with respect to which each rule is applied and the bindings that result from
each such application.

_ –show-dependencies Show the status (matched or unmatched) of the rules on which a given rule depends. –show-
dependencies implicitly sets –show-bindings, as the values of the dependencies are environment-specific.

_ –show-trying Show the name of each program element to which each rule is applied.

_ –show-transinfo Show information about each transformation that is performed. The node numbers that are refer-
enced are the number of the nodes in the control-flow graph, which can be seen using the option –control-flow (the
initial control-flow graph only) or the option –show-flow (the control-flow graph before and after each rule applica-
tion).

_ –show-misc Show some miscellaneous information.

& –show-flow 〈file〉, –show-flow 〈file〉:〈function〉 Show the control-flow graph before and after the application of
each rule.

–show-before-fixed-flow This is similar to –show-flow, but shows a preliminary version of the control-flow graph.

10.4.2 Feedback at the CTL level during the application of the semantic patch

_ –verbose-engine Show a trace of the matching of atomic terms to C code.

40



& –verbose-ctl-engine Show a trace of the CTL matching process. This is unfortunately rather voluminous and not so
helpful for someone who is not familiar with CTL in general and the translation of SmPL into CTL specifically. This
option implicitly sets the option –show-ctl-text.

& –graphical-trace Create a pdf file containing the control flow graph annotated with the various nodes matched
during the CTL matching process. Unfortunately, except for the most simple examples, the output is voluminous, and
so the option is not really practical for most examples. This requires dot (http://www.graphviz.org/) and pdftk.

& –gt-without-label The same as –graphical-trace, but the PDF file does not contain the CTL code.

& –partial-match Report partial matches of the semantic patch on the C file. This can be substantially slower than
normal matching.

& –verbose-match Report on when CTL matching is not applied to a function or other program unit because it does
not contain some required atomic pattern. This can be viewed as a simpler, more efficient, but less informative version
of –partial-match.

10.4.3 Actions during the application of the semantic patch

_ -D rulename Run the patch considering that the virtual rule “rulename” is satisfied. Virtual rules should be declared
at the beginning of the semantic patch in a comma separated list following the keyword virtual. Other rules can depend
on the satisfaction or non satifaction of these rules using the keyword depends on in the usual way.

_ -D variable=value Run the patch considering that the virtual identifier metavariable “variable” is bound to “value”.
Any identifier metavariable can be designated as being virtual by giving it the rule name virtual. An example is in
demos/vm.coci

& –allow-inconsistent-paths Normally, a term that is transformed should only be accessible from other terms that
are matched by the semantic patch. This option removes this constraint. Doing so, is unsafe, however, because the
properties that hold along the matched path might not hold at all along the unmatched path.

& –disallow-nested-exps In an expression that contains repeated nested subterms, e.g. of the form f(f(x)), a
pattern can match a single expression in multiple ways, some nested inside others. This option causes the matching
process to stop immediately at the outermost match. Thus, in the example f(f(x)), the possibility that the pattern
f(E), with metavariable E, matches with E as x will not be considered.

& –no-safe-expressions normally, we check that an expression does not match something earlier in the disjunction.
But for large disjunctions, this can result in a very big CTL formula. So this option give the user the option to say he
doesn’t want this feature, if that is the case.

& –pyoutput coccilib.output.Gtk, –pyoutput coccilib.output.Console This controls whether Python output is sent
to Gtk or to the console. –pyoutput coccilib.output.Console is the default. The Gtk option is currently not well
supported.

–loop When there is “...” in the semantic patch, the CTL operator AU is used if the current function does not
contain a loop, and AW may be used if it does. This option causes AW always to be used.

& –ocaml-regexps Use the regular expressions provided by the OCaml Str library. This is the default if the PCRE
library is not available. Otherwise PCRE regular expressions are used by default.

41



–steps 〈int〉 This limits the number of steps performed by the CTL engine to the specified number. This option is
unsafe as it might cause a rule to fail due to running out of steps rather than due to not matching.

–bench 〈int〉 This collects various information about the operations performed during the CTL matching process.

10.5 Generation of the result
Normally, the only output is a diff printed to standard output, containing the differences between the original code and
the transformed code. If stars are used in column 0 rather than - and +, then the - lines in the diff are the lines that
matched the stars.

_ –keep-comments Don’t remove comments adjacent to removed code.

_ –linux-spacing, –smpl-spacing Control the spacing within the code added by the semantic patch. The option –
linux-spacing causes spatch to follow the conventions of Linux, regardless of the spacing in the semantic patch. This
is the default. The option –smpl-spacing causes spatch to follow the spacing given in the semantic patch, within
individual lines.

& -o 〈file〉 This causes the transformed code to be placed in the file file. A diff is still printed to the standard output.
This option only makes sense when - and + are used.

& –in-place Modify the input file to contain the transformed code. A diff is still printed to the standard output. By
default, the input file is overwritten when using this option, with no backup. This option only makes sense when - and
+ are used.

& –backup-suffix The suffix of the file to use in making a backup of the original file(s). This suffix should include the
leading “.”, if one is desired. This option only has an effect when the option -in-place is also used.

& –out-place Store the result of modifying the code in a .cocci-res file. A diff is still printed to the standard output.
This option only makes sense when - and + are used.

& –no-show-diff Normally, a diff between the original and transformed code is printed on the standard output. This
option causes this not to be done.

& -U Set number of diff context lines.

& –patch 〈path〉 The prefix of the pathname of the directory or file name that should dropped from the diff line in
the generated patch. This is useful if you want to apply a patch only to a subdirectory of a source code tree but want
to create a patch that can be applied at the root of the source code tree. An example could be spatch -sp-file
foo.cocci -dir /var/linuxes/linux-next/drivers -patch /var/linuxes/linux-next. A
trailing / is permitted on the directory name and has no impact on the result.

& –save-tmp-files Coccinelle creates some temporary files in /tmp that it deletes after use. This option causes these
files to be saved.

–debug-unparsing Show some debugging information about the generation of the transformed code. This has the
side-effect of deleting the transformed code.

42



10.6 Other options

10.6.1 Version information
_ –version The version of Coccinelle. No other options are allowed.

_ –date The date of the current version of Coccinelle. No other options are allowed.

10.6.2 Help

V –h, –shorthelp The most useful commands.

V –help, –help, –longhelp A complete listing of the available commands.

10.6.3 Controlling the execution of Coccinelle

_ –timeout 〈int〉 The maximum time in seconds for processing a single file.

& –max 〈int〉 This option informs Coccinelle of the number of instances of Coccinelle that will be run concurrently.
This option requires –index. It is usually used with –dir.

& –index 〈int〉 This option informs Coccinelle of which of the concurrent instances is the current one. This option
requires –max.

& –mod-distrib When multiple instances of Coccinelle are run in parallel, normally the first instance processes the
first n files, the second instance the second n files, etc. With this option, the files are distributed among the instances
in a round-robin fashion.

–debugger Option for running Coccinelle from within the OCaml debugger.

–profile Gather timing information about the main Coccinelle functions.

–disable-once Print various warning messages every time some condition occurs, rather than only once.

10.6.4 Miscellaneous
& –quiet Suppress most output. This is the default.

–pad, –xxx, –l1

43



Part III

Appendix

44



GNU Free Documentation License

GNU Free Documentation License Version 1.3, 3 November 2008
Copyright (C) 2000, 2001, 2002, 2007, 2008 Free Software Foundation, Inc. <http://fsf.org/> Everyone is permit-

ted to copy and distribute verbatim copies of this license document, but changing it is not allowed.
0. PREAMBLE
The purpose of this License is to make a manual, textbook, or other functional and useful document "free" in the

sense of freedom: to assure everyone the effective freedom to copy and redistribute it, with or without modifying it,
either commercially or noncommercially. Secondarily, this License preserves for the author and publisher a way to get
credit for their work, while not being considered responsible for modifications made by others.

This License is a kind of "copyleft", which means that derivative works of the document must themselves be free
in the same sense. It complements the GNU General Public License, which is a copyleft license designed for free
software.

We have designed this License in order to use it for manuals for free software, because free software needs free
documentation: a free program should come with manuals providing the same freedoms that the software does. But
this License is not limited to software manuals; it can be used for any textual work, regardless of subject matter
or whether it is published as a printed book. We recommend this License principally for works whose purpose is
instruction or reference.

1. APPLICABILITY AND DEFINITIONS
This License applies to any manual or other work, in any medium, that contains a notice placed by the copyright

holder saying it can be distributed under the terms of this License. Such a notice grants a world-wide, royalty-free
license, unlimited in duration, to use that work under the conditions stated herein. The "Document", below, refers to
any such manual or work. Any member of the public is a licensee, and is addressed as "you". You accept the license
if you copy, modify or distribute the work in a way requiring permission under copyright law.

A "Modified Version" of the Document means any work containing the Document or a portion of it, either copied
verbatim, or with modifications and/or translated into another language.

A "Secondary Section" is a named appendix or a front-matter section of the Document that deals exclusively with
the relationship of the publishers or authors of the Document to the Document’s overall subject (or to related matters)
and contains nothing that could fall directly within that overall subject. (Thus, if the Document is in part a textbook of
mathematics, a Secondary Section may not explain any mathematics.) The relationship could be a matter of historical
connection with the subject or with related matters, or of legal, commercial, philosophical, ethical or political position
regarding them.

The "Invariant Sections" are certain Secondary Sections whose titles are designated, as being those of Invariant
Sections, in the notice that says that the Document is released under this License. If a section does not fit the above
definition of Secondary then it is not allowed to be designated as Invariant. The Document may contain zero Invariant
Sections. If the Document does not identify any Invariant Sections then there are none.

The "Cover Texts" are certain short passages of text that are listed, as Front-Cover Texts or Back-Cover Texts, in
the notice that says that the Document is released under this License. A Front-Cover Text may be at most 5 words,
and a Back-Cover Text may be at most 25 words.

A "Transparent" copy of the Document means a machine-readable copy, represented in a format whose specifi-
cation is available to the general public, that is suitable for revising the document straightforwardly with generic text
editors or (for images composed of pixels) generic paint programs or (for drawings) some widely available drawing

45



editor, and that is suitable for input to text formatters or for automatic translation to a variety of formats suitable for
input to text formatters. A copy made in an otherwise Transparent file format whose markup, or absence of markup,
has been arranged to thwart or discourage subsequent modification by readers is not Transparent. An image format is
not Transparent if used for any substantial amount of text. A copy that is not "Transparent" is called "Opaque".

Examples of suitable formats for Transparent copies include plain ASCII without markup, Texinfo input for-
mat, LaTeX input format, SGML or XML using a publicly available DTD, and standard-conforming simple HTML,
PostScript or PDF designed for human modification. Examples of transparent image formats include PNG, XCF and
JPG. Opaque formats include proprietary formats that can be read and edited only by proprietary word processors,
SGML or XML for which the DTD and/or processing tools are not generally available, and the machine-generated
HTML, PostScript or PDF produced by some word processors for output purposes only.

The "Title Page" means, for a printed book, the title page itself, plus such following pages as are needed to hold,
legibly, the material this License requires to appear in the title page. For works in formats which do not have any
title page as such, "Title Page" means the text near the most prominent appearance of the work’s title, preceding the
beginning of the body of the text.

The "publisher" means any person or entity that distributes copies of the Document to the public.
A section "Entitled XYZ" means a named subunit of the Document whose title either is precisely XYZ or contains

XYZ in parentheses following text that translates XYZ in another language. (Here XYZ stands for a specific section
name mentioned below, such as "Acknowledgements", "Dedications", "Endorsements", or "History".) To "Preserve
the Title" of such a section when you modify the Document means that it remains a section "Entitled XYZ" according
to this definition.

The Document may include Warranty Disclaimers next to the notice which states that this License applies to the
Document. These Warranty Disclaimers are considered to be included by reference in this License, but only as regards
disclaiming warranties: any other implication that these Warranty Disclaimers may have is void and has no effect on
the meaning of this License.

2. VERBATIM COPYING
You may copy and distribute the Document in any medium, either commercially or noncommercially, provided that

this License, the copyright notices, and the license notice saying this License applies to the Document are reproduced
in all copies, and that you add no other conditions whatsoever to those of this License. You may not use technical
measures to obstruct or control the reading or further copying of the copies you make or distribute. However, you may
accept compensation in exchange for copies. If you distribute a large enough number of copies you must also follow
the conditions in section 3.

You may also lend copies, under the same conditions stated above, and you may publicly display copies.
3. COPYING IN QUANTITY
If you publish printed copies (or copies in media that commonly have printed covers) of the Document, numbering

more than 100, and the Document’s license notice requires Cover Texts, you must enclose the copies in covers that
carry, clearly and legibly, all these Cover Texts: Front-Cover Texts on the front cover, and Back-Cover Texts on the
back cover. Both covers must also clearly and legibly identify you as the publisher of these copies. The front cover
must present the full title with all words of the title equally prominent and visible. You may add other material on the
covers in addition. Copying with changes limited to the covers, as long as they preserve the title of the Document and
satisfy these conditions, can be treated as verbatim copying in other respects.

If the required texts for either cover are too voluminous to fit legibly, you should put the first ones listed (as many
as fit reasonably) on the actual cover, and continue the rest onto adjacent pages.

If you publish or distribute Opaque copies of the Document numbering more than 100, you must either include a
machine-readable Transparent copy along with each Opaque copy, or state in or with each Opaque copy a computer-
network location from which the general network-using public has access to download using public-standard network
protocols a complete Transparent copy of the Document, free of added material. If you use the latter option, you must
take reasonably prudent steps, when you begin distribution of Opaque copies in quantity, to ensure that this Transparent
copy will remain thus accessible at the stated location until at least one year after the last time you distribute an Opaque
copy (directly or through your agents or retailers) of that edition to the public.

It is requested, but not required, that you contact the authors of the Document well before redistributing any large
number of copies, to give them a chance to provide you with an updated version of the Document.

46



4. MODIFICATIONS
You may copy and distribute a Modified Version of the Document under the conditions of sections 2 and 3 above,

provided that you release the Modified Version under precisely this License, with the Modified Version filling the role
of the Document, thus licensing distribution and modification of the Modified Version to whoever possesses a copy of
it. In addition, you must do these things in the Modified Version:

A. Use in the Title Page (and on the covers, if any) a title distinct from that of the Document, and from those of
previous versions (which should, if there were any, be listed in the History section of the Document). You may use
the same title as a previous version if the original publisher of that version gives permission. B. List on the Title Page,
as authors, one or more persons or entities responsible for authorship of the modifications in the Modified Version,
together with at least five of the principal authors of the Document (all of its principal authors, if it has fewer than five),
unless they release you from this requirement. C. State on the Title page the name of the publisher of the Modified
Version, as the publisher. D. Preserve all the copyright notices of the Document. E. Add an appropriate copyright
notice for your modifications adjacent to the other copyright notices. F. Include, immediately after the copyright
notices, a license notice giving the public permission to use the Modified Version under the terms of this License,
in the form shown in the Addendum below. G. Preserve in that license notice the full lists of Invariant Sections
and required Cover Texts given in the Document’s license notice. H. Include an unaltered copy of this License. I.
Preserve the section Entitled "History", Preserve its Title, and add to it an item stating at least the title, year, new
authors, and publisher of the Modified Version as given on the Title Page. If there is no section Entitled "History"
in the Document, create one stating the title, year, authors, and publisher of the Document as given on its Title Page,
then add an item describing the Modified Version as stated in the previous sentence. J. Preserve the network location,
if any, given in the Document for public access to a Transparent copy of the Document, and likewise the network
locations given in the Document for previous versions it was based on. These may be placed in the "History" section.
You may omit a network location for a work that was published at least four years before the Document itself, or if
the original publisher of the version it refers to gives permission. K. For any section Entitled "Acknowledgements"
or "Dedications", Preserve the Title of the section, and preserve in the section all the substance and tone of each
of the contributor acknowledgements and/or dedications given therein. L. Preserve all the Invariant Sections of the
Document, unaltered in their text and in their titles. Section numbers or the equivalent are not considered part of the
section titles. M. Delete any section Entitled "Endorsements". Such a section may not be included in the Modified
Version. N. Do not retitle any existing section to be Entitled "Endorsements" or to conflict in title with any Invariant
Section. O. Preserve any Warranty Disclaimers.

If the Modified Version includes new front-matter sections or appendices that qualify as Secondary Sections and
contain no material copied from the Document, you may at your option designate some or all of these sections as
invariant. To do this, add their titles to the list of Invariant Sections in the Modified Version’s license notice. These
titles must be distinct from any other section titles.

You may add a section Entitled "Endorsements", provided it contains nothing but endorsements of your Modified
Version by various parties–for example, statements of peer review or that the text has been approved by an organization
as the authoritative definition of a standard.

You may add a passage of up to five words as a Front-Cover Text, and a passage of up to 25 words as a Back-Cover
Text, to the end of the list of Cover Texts in the Modified Version. Only one passage of Front-Cover Text and one
of Back-Cover Text may be added by (or through arrangements made by) any one entity. If the Document already
includes a cover text for the same cover, previously added by you or by arrangement made by the same entity you
are acting on behalf of, you may not add another; but you may replace the old one, on explicit permission from the
previous publisher that added the old one.

The author(s) and publisher(s) of the Document do not by this License give permission to use their names for
publicity for or to assert or imply endorsement of any Modified Version.

5. COMBINING DOCUMENTS
You may combine the Document with other documents released under this License, under the terms defined in

section 4 above for modified versions, provided that you include in the combination all of the Invariant Sections of
all of the original documents, unmodified, and list them all as Invariant Sections of your combined work in its license
notice, and that you preserve all their Warranty Disclaimers.

The combined work need only contain one copy of this License, and multiple identical Invariant Sections may be

47



replaced with a single copy. If there are multiple Invariant Sections with the same name but different contents, make
the title of each such section unique by adding at the end of it, in parentheses, the name of the original author or
publisher of that section if known, or else a unique number. Make the same adjustment to the section titles in the list
of Invariant Sections in the license notice of the combined work.

In the combination, you must combine any sections Entitled "History" in the various original documents, forming
one section Entitled "History"; likewise combine any sections Entitled "Acknowledgements", and any sections Entitled
"Dedications". You must delete all sections Entitled "Endorsements".

6. COLLECTIONS OF DOCUMENTS
You may make a collection consisting of the Document and other documents released under this License, and

replace the individual copies of this License in the various documents with a single copy that is included in the
collection, provided that you follow the rules of this License for verbatim copying of each of the documents in all
other respects.

You may extract a single document from such a collection, and distribute it individually under this License, pro-
vided you insert a copy of this License into the extracted document, and follow this License in all other respects
regarding verbatim copying of that document.

7. AGGREGATION WITH INDEPENDENT WORKS
A compilation of the Document or its derivatives with other separate and independent documents or works, in or on

a volume of a storage or distribution medium, is called an "aggregate" if the copyright resulting from the compilation
is not used to limit the legal rights of the compilation’s users beyond what the individual works permit. When the
Document is included in an aggregate, this License does not apply to the other works in the aggregate which are not
themselves derivative works of the Document.

If the Cover Text requirement of section 3 is applicable to these copies of the Document, then if the Document
is less than one half of the entire aggregate, the Document’s Cover Texts may be placed on covers that bracket the
Document within the aggregate, or the electronic equivalent of covers if the Document is in electronic form. Otherwise
they must appear on printed covers that bracket the whole aggregate.

8. TRANSLATION
Translation is considered a kind of modification, so you may distribute translations of the Document under the

terms of section 4. Replacing Invariant Sections with translations requires special permission from their copyright
holders, but you may include translations of some or all Invariant Sections in addition to the original versions of these
Invariant Sections. You may include a translation of this License, and all the license notices in the Document, and
any Warranty Disclaimers, provided that you also include the original English version of this License and the original
versions of those notices and disclaimers. In case of a disagreement between the translation and the original version
of this License or a notice or disclaimer, the original version will prevail.

If a section in the Document is Entitled "Acknowledgements", "Dedications", or "History", the requirement (sec-
tion 4) to Preserve its Title (section 1) will typically require changing the actual title.

9. TERMINATION
You may not copy, modify, sublicense, or distribute the Document except as expressly provided under this License.

Any attempt otherwise to copy, modify, sublicense, or distribute it is void, and will automatically terminate your rights
under this License.

However, if you cease all violation of this License, then your license from a particular copyright holder is rein-
stated (a) provisionally, unless and until the copyright holder explicitly and finally terminates your license, and (b)
permanently, if the copyright holder fails to notify you of the violation by some reasonable means prior to 60 days
after the cessation.

Moreover, your license from a particular copyright holder is reinstated permanently if the copyright holder notifies
you of the violation by some reasonable means, this is the first time you have received notice of violation of this
License (for any work) from that copyright holder, and you cure the violation prior to 30 days after your receipt of the
notice.

Termination of your rights under this section does not terminate the licenses of parties who have received copies
or rights from you under this License. If your rights have been terminated and not permanently reinstated, receipt of a
copy of some or all of the same material does not give you any rights to use it.

10. FUTURE REVISIONS OF THIS LICENSE

48



The Free Software Foundation may publish new, revised versions of the GNU Free Documentation License from
time to time. Such new versions will be similar in spirit to the present version, but may differ in detail to address new
problems or concerns. See http://www.gnu.org/copyleft/.

Each version of the License is given a distinguishing version number. If the Document specifies that a particular
numbered version of this License "or any later version" applies to it, you have the option of following the terms and
conditions either of that specified version or of any later version that has been published (not as a draft) by the Free
Software Foundation. If the Document does not specify a version number of this License, you may choose any version
ever published (not as a draft) by the Free Software Foundation. If the Document specifies that a proxy can decide
which future versions of this License can be used, that proxy’s public statement of acceptance of a version permanently
authorizes you to choose that version for the Document.

11. RELICENSING
"Massive Multiauthor Collaboration Site" (or "MMC Site") means any World Wide Web server that publishes

copyrightable works and also provides prominent facilities for anybody to edit those works. A public wiki that anybody
can edit is an example of such a server. A "Massive Multiauthor Collaboration" (or "MMC") contained in the site
means any set of copyrightable works thus published on the MMC site.

"CC-BY-SA" means the Creative Commons Attribution-Share Alike 3.0 license published by Creative Commons
Corporation, a not-for-profit corporation with a principal place of business in San Francisco, California, as well as
future copyleft versions of that license published by that same organization.

"Incorporate" means to publish or republish a Document, in whole or in part, as part of another Document.
An MMC is "eligible for relicensing" if it is licensed under this License, and if all works that were first published

under this License somewhere other than this MMC, and subsequently incorporated in whole or in part into the MMC,
(1) had no cover texts or invariant sections, and (2) were thus incorporated prior to November 1, 2008.

The operator of an MMC Site may republish an MMC contained in the site under CC-BY-SA on the same site at
any time before August 1, 2009, provided the MMC is eligible for relicensing.

ADDENDUM: How to use this License for your documents
To use this License in a document you have written, include a copy of the License in the document and put the

following copyright and license notices just after the title page:
Copyright (c) YEAR YOUR NAME. Permission is granted to copy, distribute and/or modify this document under

the terms of the GNU Free Documentation License, Version 1.3 or any later version published by the Free Software
Foundation; with no Invariant Sections, no Front-Cover Texts, and no Back-Cover Texts. A copy of the license is
included in the section entitled "GNU Free Documentation License".

If you have Invariant Sections, Front-Cover Texts and Back-Cover Texts, replace the "with...Texts." line with this:
with the Invariant Sections being LIST THEIR TITLES, with the Front-Cover Texts being LIST, and with the

Back-Cover Texts being LIST.
If you have Invariant Sections without Cover Texts, or some other combination of the three, merge those two

alternatives to suit the situation.
If your document contains nontrivial examples of program code, we recommend releasing these examples in

parallel under your choice of free software license, such as the GNU General Public License, to permit their use in
free software.

49


	I User Manual
	Introduction
	Installing Coccinelle
	Requirements
	Getting Coccinelle
	Compiling Coccinelle
	Running Coccinelle

	Tutorial
	Examples
	Examples
	Function renaming
	Removing a function argument
	Introduction of a macro
	Look for NULL dereference
	Reference counter: the of_xxx API
	Filtering identifiers, declarers or iterators with regular expression

	Tips and Tricks
	How to remove useless parentheses?


	Isomorphisms and standard.iso
	Parsing C, cpp, and standard.h
	Developing a Semantic Patch
	Advanced Features

	II Reference Manual
	SmPL grammar
	Program
	Metavariables for transformations
	Metavariables for scripts
	Transformation
	Types
	Function declarations
	Declarations
	Statements
	Expressions
	Constants, Identifiers and Types for Transformations
	Comments and preprocessor directives
	Command-line semantic match

	spatch command line options
	Introduction
	Selecting and parsing the semantic patch
	Standalone options
	The semantic patch
	Isomorphisms
	Display options

	Selecting and parsing the C files
	Standalone options
	Selecting C files
	Parsing C files

	Application of the semantic patch to the C code
	Feedback at the rule level during the application of the semantic patch
	Feedback at the CTL level during the application of the semantic patch
	Actions during the application of the semantic patch

	Generation of the result
	Other options
	Version information
	Help
	Controlling the execution of Coccinelle
	Miscellaneous



	III Appendix

