(* * Copyright 2010, INRIA, University of Copenhagen * Julia Lawall, Rene Rydhof Hansen, Gilles Muller, Nicolas Palix * Copyright 2005-2009, Ecole des Mines de Nantes, University of Copenhagen * Yoann Padioleau, Julia Lawall, Rene Rydhof Hansen, Henrik Stuart, Gilles Muller, Nicolas Palix * This file is part of Coccinelle. * * Coccinelle is free software: you can redistribute it and/or modify * it under the terms of the GNU General Public License as published by * the Free Software Foundation, according to version 2 of the License. * * Coccinelle is distributed in the hope that it will be useful, * but WITHOUT ANY WARRANTY; without even the implied warranty of * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the * GNU General Public License for more details. * * You should have received a copy of the GNU General Public License * along with Coccinelle. If not, see . * * The authors reserve the right to distribute this or future versions of * Coccinelle under other licenses. *) (* Detects subtrees that are all minus/plus and nodes that are "binding context nodes". The latter is a node whose structure and immediate tokens are the same in the minus and plus trees, and such that for every child, the set of context nodes in the child subtree is the same in the minus and plus subtrees. *) module Ast = Ast_cocci module Ast0 = Ast0_cocci module V0 = Visitor_ast0 module VT0 = Visitor_ast0_types module U = Unparse_ast0 (* --------------------------------------------------------------------- *) (* Generic access to code *) let set_mcodekind x mcodekind = match x with Ast0.DotsExprTag(d) -> Ast0.set_mcodekind d mcodekind | Ast0.DotsInitTag(d) -> Ast0.set_mcodekind d mcodekind | Ast0.DotsParamTag(d) -> Ast0.set_mcodekind d mcodekind | Ast0.DotsStmtTag(d) -> Ast0.set_mcodekind d mcodekind | Ast0.DotsDeclTag(d) -> Ast0.set_mcodekind d mcodekind | Ast0.DotsCaseTag(d) -> Ast0.set_mcodekind d mcodekind | Ast0.IdentTag(d) -> Ast0.set_mcodekind d mcodekind | Ast0.ExprTag(d) -> Ast0.set_mcodekind d mcodekind | Ast0.ArgExprTag(d) | Ast0.TestExprTag(d) -> failwith "not possible - iso only" | Ast0.TypeCTag(d) -> Ast0.set_mcodekind d mcodekind | Ast0.ParamTag(d) -> Ast0.set_mcodekind d mcodekind | Ast0.DeclTag(d) -> Ast0.set_mcodekind d mcodekind | Ast0.InitTag(d) -> Ast0.set_mcodekind d mcodekind | Ast0.StmtTag(d) -> Ast0.set_mcodekind d mcodekind | Ast0.CaseLineTag(d) -> Ast0.set_mcodekind d mcodekind | Ast0.TopTag(d) -> Ast0.set_mcodekind d mcodekind | Ast0.IsoWhenTag(_) -> failwith "only within iso phase" | Ast0.IsoWhenTTag(_) -> failwith "only within iso phase" | Ast0.IsoWhenFTag(_) -> failwith "only within iso phase" | Ast0.MetaPosTag(p) -> failwith "metapostag only within iso phase" let set_index x index = match x with Ast0.DotsExprTag(d) -> Ast0.set_index d index | Ast0.DotsInitTag(d) -> Ast0.set_index d index | Ast0.DotsParamTag(d) -> Ast0.set_index d index | Ast0.DotsStmtTag(d) -> Ast0.set_index d index | Ast0.DotsDeclTag(d) -> Ast0.set_index d index | Ast0.DotsCaseTag(d) -> Ast0.set_index d index | Ast0.IdentTag(d) -> Ast0.set_index d index | Ast0.ExprTag(d) -> Ast0.set_index d index | Ast0.ArgExprTag(d) | Ast0.TestExprTag(d) -> failwith "not possible - iso only" | Ast0.TypeCTag(d) -> Ast0.set_index d index | Ast0.ParamTag(d) -> Ast0.set_index d index | Ast0.InitTag(d) -> Ast0.set_index d index | Ast0.DeclTag(d) -> Ast0.set_index d index | Ast0.StmtTag(d) -> Ast0.set_index d index | Ast0.CaseLineTag(d) -> Ast0.set_index d index | Ast0.TopTag(d) -> Ast0.set_index d index | Ast0.IsoWhenTag(_) -> failwith "only within iso phase" | Ast0.IsoWhenTTag(_) -> failwith "only within iso phase" | Ast0.IsoWhenFTag(_) -> failwith "only within iso phase" | Ast0.MetaPosTag(p) -> failwith "metapostag only within iso phase" let get_index = function Ast0.DotsExprTag(d) -> Index.expression_dots d | Ast0.DotsInitTag(d) -> Index.initialiser_dots d | Ast0.DotsParamTag(d) -> Index.parameter_dots d | Ast0.DotsStmtTag(d) -> Index.statement_dots d | Ast0.DotsDeclTag(d) -> Index.declaration_dots d | Ast0.DotsCaseTag(d) -> Index.case_line_dots d | Ast0.IdentTag(d) -> Index.ident d | Ast0.ExprTag(d) -> Index.expression d | Ast0.ArgExprTag(d) | Ast0.TestExprTag(d) -> failwith "not possible - iso only" | Ast0.TypeCTag(d) -> Index.typeC d | Ast0.ParamTag(d) -> Index.parameterTypeDef d | Ast0.InitTag(d) -> Index.initialiser d | Ast0.DeclTag(d) -> Index.declaration d | Ast0.StmtTag(d) -> Index.statement d | Ast0.CaseLineTag(d) -> Index.case_line d | Ast0.TopTag(d) -> Index.top_level d | Ast0.IsoWhenTag(_) -> failwith "only within iso phase" | Ast0.IsoWhenTTag(_) -> failwith "only within iso phase" | Ast0.IsoWhenFTag(_) -> failwith "only within iso phase" | Ast0.MetaPosTag(p) -> failwith "metapostag only within iso phase" (* --------------------------------------------------------------------- *) (* Collect the line numbers of the plus code. This is used for disjunctions. It is not completely clear why this is necessary, but it seems like an easy fix for whatever is the problem that is discussed in disj_cases *) let plus_lines = ref ([] : int list) let insert n = let rec loop = function [] -> [n] | x::xs -> match compare n x with 1 -> x::(loop xs) | 0 -> x::xs | -1 -> n::x::xs | _ -> failwith "not possible" in plus_lines := loop !plus_lines let find n min max = let rec loop = function [] -> (min,max) | [x] -> if n < x then (min,x) else (x,max) | x1::x2::rest -> if n < x1 then (min,x1) else if n > x1 && n < x2 then (x1,x2) else loop (x2::rest) in loop !plus_lines let collect_plus_lines top = plus_lines := []; let bind x y = () in let option_default = () in let donothing r k e = k e in let mcode (_,_,info,mcodekind,_,_) = match mcodekind with Ast0.PLUS _ -> insert info.Ast0.pos_info.Ast0.line_start | _ -> () in let fn = V0.flat_combiner bind option_default mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode donothing donothing donothing donothing donothing donothing donothing donothing donothing donothing donothing donothing donothing donothing donothing in fn.VT0.combiner_rec_top_level top (* --------------------------------------------------------------------- *) type kind = Neutral | AllMarked of Ast.count | NotAllMarked (* marked means + or - *) (* --------------------------------------------------------------------- *) (* The first part analyzes each of the minus tree and the plus tree separately *) (* ints are unique token indices (offset field) *) type node = Token (* tokens *) of kind * int (* unique index *) * Ast0.mcodekind * int list (* context tokens *) | Recursor (* children *) of kind * int list (* indices of all tokens at the level below *) * Ast0.mcodekind list (* tokens at the level below *) * int list | Bind (* neighbors *) of kind * int list (* indices of all tokens at current level *) * Ast0.mcodekind list (* tokens at current level *) * int list (* indices of all tokens at the level below *) * Ast0.mcodekind list (* tokens at the level below *) * int list list let kind2c = function Neutral -> "neutral" | AllMarked _ -> "allmarked" | NotAllMarked -> "notallmarked" let node2c = function Token(k,_,_,_) -> Printf.sprintf "token %s\n" (kind2c k) | Recursor(k,_,_,_) -> Printf.sprintf "recursor %s\n" (kind2c k) | Bind(k,_,_,_,_,_) -> Printf.sprintf "bind %s\n" (kind2c k) (* goal: detect negative in both tokens and recursors, or context only in tokens *) let bind c1 c2 = let lub = function (k1,k2) when k1 = k2 -> k1 | (Neutral,AllMarked c) -> AllMarked c | (AllMarked c,Neutral) -> AllMarked c | _ -> NotAllMarked in match (c1,c2) with (* token/token *) (* there are tokens at this level, so ignore the level below *) (Token(k1,i1,t1,l1),Token(k2,i2,t2,l2)) -> Bind(lub(k1,k2),[i1;i2],[t1;t2],[],[],[l1;l2]) (* token/recursor *) (* there are tokens at this level, so ignore the level below *) | (Token(k1,i1,t1,l1),Recursor(k2,_,_,l2)) -> Bind(lub(k1,k2),[i1],[t1],[],[],[l1;l2]) | (Recursor(k1,_,_,l1),Token(k2,i2,t2,l2)) -> Bind(lub(k1,k2),[i2],[t2],[],[],[l1;l2]) (* token/bind *) (* there are tokens at this level, so ignore the level below *) | (Token(k1,i1,t1,l1),Bind(k2,i2,t2,_,_,l2)) -> Bind(lub(k1,k2),i1::i2,t1::t2,[],[],l1::l2) | (Bind(k1,i1,t1,_,_,l1),Token(k2,i2,t2,l2)) -> Bind(lub(k1,k2),i1@[i2],t1@[t2],[],[],l1@[l2]) (* recursor/bind *) | (Recursor(k1,bi1,bt1,l1),Bind(k2,i2,t2,bi2,bt2,l2)) -> Bind(lub(k1,k2),i2,t2,bi1@bi2,bt1@bt2,l1::l2) | (Bind(k1,i1,t1,bi1,bt1,l1),Recursor(k2,bi2,bt2,l2)) -> Bind(lub(k1,k2),i1,t1,bi1@bi2,bt1@bt2,l1@[l2]) (* recursor/recursor and bind/bind - not likely to ever occur *) | (Recursor(k1,bi1,bt1,l1),Recursor(k2,bi2,bt2,l2)) -> Bind(lub(k1,k2),[],[],bi1@bi2,bt1@bt2,[l1;l2]) | (Bind(k1,i1,t1,bi1,bt1,l1),Bind(k2,i2,t2,bi2,bt2,l2)) -> Bind(lub(k1,k2),i1@i2,t1@t2,bi1@bi2,bt1@bt2,l1@l2) let option_default = (*Bind(Neutral,[],[],[],[],[])*) Recursor(Neutral,[],[],[]) let mcode (_,_,info,mcodekind,pos,_) = let offset = info.Ast0.pos_info.Ast0.offset in match mcodekind with Ast0.MINUS(_) -> Token(AllMarked Ast.ONE,offset,mcodekind,[]) | Ast0.PLUS c -> Token(AllMarked c,offset,mcodekind,[]) | Ast0.CONTEXT(_) -> Token(NotAllMarked,offset,mcodekind,[offset]) | _ -> failwith "not possible" let neutral_mcode (_,_,info,mcodekind,pos,_) = let offset = info.Ast0.pos_info.Ast0.offset in match mcodekind with Ast0.MINUS(_) -> Token(Neutral,offset,mcodekind,[]) | Ast0.PLUS _ -> Token(Neutral,offset,mcodekind,[]) | Ast0.CONTEXT(_) -> Token(Neutral,offset,mcodekind,[offset]) | _ -> failwith "not possible" (* neutral for context; used for mcode in bef aft nodes that don't represent anything if they don't contain some information *) let nc_mcode (_,_,info,mcodekind,pos,_) = (* distinguish from the offset of some real token *) let offset = (-1) * info.Ast0.pos_info.Ast0.offset in match mcodekind with Ast0.MINUS(_) -> Token(AllMarked Ast.ONE,offset,mcodekind,[]) | Ast0.PLUS c -> Token(AllMarked c,offset,mcodekind,[]) | Ast0.CONTEXT(_) -> (* Unlike the other mcode cases, we drop the offset from the context offsets. This is because we don't know whether the term this is associated with is - or context. In any case, the context offsets are used for identification, and this invisible node should not be needed for this purpose. *) Token(Neutral,offset,mcodekind,[]) | _ -> failwith "not possible" let is_context = function Ast0.CONTEXT(_) -> true | _ -> false let union_all l = List.fold_left Common.union_set [] l (* is minus is true when we are processing minus code that might be intermingled with plus code. it is used in disj_cases *) let classify is_minus all_marked table code = let mkres builder k il tl bil btl l e = (match k with AllMarked count -> Ast0.set_mcodekind e (all_marked count) (* definitive *) | _ -> let check_index il tl = if List.for_all is_context tl then (let e1 = builder e in let index = (get_index e1)@il in try let _ = Hashtbl.find table index in failwith (Printf.sprintf "line %d: index %s already used\n" (Ast0.get_info e).Ast0.pos_info.Ast0.line_start (String.concat " " (List.map string_of_int index))) with Not_found -> Hashtbl.add table index (e1,l)) in if il = [] then check_index bil btl else check_index il tl); if il = [] then Recursor(k, bil, btl, union_all l) else Recursor(k, il, tl, union_all l) in let compute_result builder e = function Bind(k,il,tl,bil,btl,l) -> mkres builder k il tl bil btl l e | Token(k,il,tl,l) -> mkres builder k [il] [tl] [] [] [l] e | Recursor(k,bil,btl,l) -> mkres builder k [] [] bil btl [l] e in let make_not_marked = function Bind(k,il,tl,bil,btl,l) -> Bind(NotAllMarked,il,tl,bil,btl,l) | Token(k,il,tl,l) -> Token(NotAllMarked,il,tl,l) | Recursor(k,bil,btl,l) -> Recursor(NotAllMarked,bil,btl,l) in let do_nothing builder r k e = compute_result builder e (k e) in let disj_cases disj starter code fn ender = (* neutral_mcode used so starter and ender don't have an affect on whether the code is considered all plus/minus, but so that they are consider in the index list, which is needed to make a disj with something in one branch and nothing in the other different from code that just has the something (starter/ender enough, mids not needed for this). Cannot agglomerate + code over | boundaries, because two - cases might have different + code, and don't want to put the + code together into one unit. *) let make_not_marked = if is_minus then (let min = Ast0.get_line disj in let max = Ast0.get_line_end disj in let (plus_min,plus_max) = find min (min-1) (max+1) in if max > plus_max then make_not_marked else (function x -> x)) else make_not_marked in bind (neutral_mcode starter) (bind (List.fold_right bind (List.map make_not_marked (List.map fn code)) option_default) (neutral_mcode ender)) in (* no whencode in plus tree so have to drop it *) (* need special cases for dots, nests, and disjs *) let expression r k e = compute_result Ast0.expr e (match Ast0.unwrap e with Ast0.NestExpr(starter,exp,ender,whencode,multi) -> k (Ast0.rewrap e (Ast0.NestExpr(starter,exp,ender,None,multi))) | Ast0.Edots(dots,whencode) -> k (Ast0.rewrap e (Ast0.Edots(dots,None))) | Ast0.Ecircles(dots,whencode) -> k (Ast0.rewrap e (Ast0.Ecircles(dots,None))) | Ast0.Estars(dots,whencode) -> k (Ast0.rewrap e (Ast0.Estars(dots,None))) | Ast0.DisjExpr(starter,expr_list,_,ender) -> disj_cases e starter expr_list r.VT0.combiner_rec_expression ender | _ -> k e) in (* not clear why we have the next two cases, since DisjDecl and DisjType shouldn't have been constructed yet, as they only come from isos *) let declaration r k e = compute_result Ast0.decl e (match Ast0.unwrap e with Ast0.DisjDecl(starter,decls,_,ender) -> disj_cases e starter decls r.VT0.combiner_rec_declaration ender | Ast0.Ddots(dots,whencode) -> k (Ast0.rewrap e (Ast0.Ddots(dots,None))) (* Need special cases for the following so that the type will be considered as a unit, rather than distributed around the declared variable. This needs to be done because of the call to compute_result, ie the processing of each term should make a side-effect on the complete term structure as well as collecting some information about it. So we have to visit each complete term structure. In (all?) other such cases, we visit the terms using rebuilder, which just visits the subterms, rather than reordering their components. *) | Ast0.Init(stg,ty,id,eq,ini,sem) -> bind (match stg with Some stg -> mcode stg | _ -> option_default) (bind (r.VT0.combiner_rec_typeC ty) (bind (r.VT0.combiner_rec_ident id) (bind (mcode eq) (bind (r.VT0.combiner_rec_initialiser ini) (mcode sem))))) | Ast0.UnInit(stg,ty,id,sem) -> bind (match stg with Some stg -> mcode stg | _ -> option_default) (bind (r.VT0.combiner_rec_typeC ty) (bind (r.VT0.combiner_rec_ident id) (mcode sem))) | _ -> k e) in let param r k e = compute_result Ast0.param e (match Ast0.unwrap e with Ast0.Param(ty,Some id) -> (* needed for the same reason as in the Init and UnInit cases *) bind (r.VT0.combiner_rec_typeC ty) (r.VT0.combiner_rec_ident id) | _ -> k e) in let typeC r k e = compute_result Ast0.typeC e (match Ast0.unwrap e with Ast0.DisjType(starter,types,_,ender) -> disj_cases e starter types r.VT0.combiner_rec_typeC ender | _ -> k e) in let initialiser r k i = compute_result Ast0.ini i (match Ast0.unwrap i with Ast0.Idots(dots,whencode) -> k (Ast0.rewrap i (Ast0.Idots(dots,None))) | _ -> k i) in let case_line r k e = compute_result Ast0.case_line e (match Ast0.unwrap e with Ast0.DisjCase(starter,case_list,_,ender) -> disj_cases e starter case_list r.VT0.combiner_rec_case_line ender | _ -> k e) in let statement r k s = compute_result Ast0.stmt s (match Ast0.unwrap s with Ast0.Nest(started,stm_dots,ender,whencode,multi) -> k (Ast0.rewrap s (Ast0.Nest(started,stm_dots,ender,[],multi))) | Ast0.Dots(dots,whencode) -> k (Ast0.rewrap s (Ast0.Dots(dots,[]))) | Ast0.Circles(dots,whencode) -> k (Ast0.rewrap s (Ast0.Circles(dots,[]))) | Ast0.Stars(dots,whencode) -> k (Ast0.rewrap s (Ast0.Stars(dots,[]))) | Ast0.Disj(starter,statement_dots_list,_,ender) -> disj_cases s starter statement_dots_list r.VT0.combiner_rec_statement_dots ender (* cases for everything with extra mcode *) | Ast0.FunDecl((info,bef),_,_,_,_,_,_,_,_) | Ast0.Decl((info,bef),_) -> bind (nc_mcode ((),(),info,bef,(),-1)) (k s) | Ast0.IfThen(_,_,_,_,_,(info,aft)) | Ast0.IfThenElse(_,_,_,_,_,_,_,(info,aft)) | Ast0.Iterator(_,_,_,_,_,(info,aft)) | Ast0.While(_,_,_,_,_,(info,aft)) | Ast0.For(_,_,_,_,_,_,_,_,_,(info,aft)) -> bind (k s) (nc_mcode ((),(),info,aft,(),-1)) | _ -> k s ) in let do_top builder r k e = compute_result builder e (k e) in let combiner = V0.flat_combiner bind option_default mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode (do_nothing Ast0.dotsExpr) (do_nothing Ast0.dotsInit) (do_nothing Ast0.dotsParam) (do_nothing Ast0.dotsStmt) (do_nothing Ast0.dotsDecl) (do_nothing Ast0.dotsCase) (do_nothing Ast0.ident) expression typeC initialiser param declaration statement case_line (do_top Ast0.top) in combiner.VT0.combiner_rec_top_level code (* --------------------------------------------------------------------- *) (* Traverse the hash tables and find corresponding context nodes that have the same context children *) (* this is just a sanity check - really only need to look at the top-level structure *) let equal_mcode (_,_,info1,_,_,_) (_,_,info2,_,_,_) = info1.Ast0.pos_info.Ast0.offset = info2.Ast0.pos_info.Ast0.offset let equal_option e1 e2 = match (e1,e2) with (Some x, Some y) -> equal_mcode x y | (None, None) -> true | _ -> false let dots fn d1 d2 = match (Ast0.unwrap d1,Ast0.unwrap d2) with (Ast0.DOTS(l1),Ast0.DOTS(l2)) -> List.length l1 = List.length l2 | (Ast0.CIRCLES(l1),Ast0.CIRCLES(l2)) -> List.length l1 = List.length l2 | (Ast0.STARS(l1),Ast0.STARS(l2)) -> List.length l1 = List.length l2 | _ -> false let rec equal_ident i1 i2 = match (Ast0.unwrap i1,Ast0.unwrap i2) with (Ast0.Id(name1),Ast0.Id(name2)) -> equal_mcode name1 name2 | (Ast0.MetaId(name1,_,_),Ast0.MetaId(name2,_,_)) -> equal_mcode name1 name2 | (Ast0.MetaFunc(name1,_,_),Ast0.MetaFunc(name2,_,_)) -> equal_mcode name1 name2 | (Ast0.MetaLocalFunc(name1,_,_),Ast0.MetaLocalFunc(name2,_,_)) -> equal_mcode name1 name2 | (Ast0.OptIdent(_),Ast0.OptIdent(_)) -> true | (Ast0.UniqueIdent(_),Ast0.UniqueIdent(_)) -> true | _ -> false let rec equal_expression e1 e2 = match (Ast0.unwrap e1,Ast0.unwrap e2) with (Ast0.Ident(_),Ast0.Ident(_)) -> true | (Ast0.Constant(const1),Ast0.Constant(const2)) -> equal_mcode const1 const2 | (Ast0.FunCall(_,lp1,_,rp1),Ast0.FunCall(_,lp2,_,rp2)) -> equal_mcode lp1 lp2 && equal_mcode rp1 rp2 | (Ast0.Assignment(_,op1,_,_),Ast0.Assignment(_,op2,_,_)) -> equal_mcode op1 op2 | (Ast0.CondExpr(_,why1,_,colon1,_),Ast0.CondExpr(_,why2,_,colon2,_)) -> equal_mcode why1 why2 && equal_mcode colon1 colon2 | (Ast0.Postfix(_,op1),Ast0.Postfix(_,op2)) -> equal_mcode op1 op2 | (Ast0.Infix(_,op1),Ast0.Infix(_,op2)) -> equal_mcode op1 op2 | (Ast0.Unary(_,op1),Ast0.Unary(_,op2)) -> equal_mcode op1 op2 | (Ast0.Binary(_,op1,_),Ast0.Binary(_,op2,_)) -> equal_mcode op1 op2 | (Ast0.Paren(lp1,_,rp1),Ast0.Paren(lp2,_,rp2)) -> equal_mcode lp1 lp2 && equal_mcode rp1 rp2 | (Ast0.ArrayAccess(_,lb1,_,rb1),Ast0.ArrayAccess(_,lb2,_,rb2)) -> equal_mcode lb1 lb2 && equal_mcode rb1 rb2 | (Ast0.RecordAccess(_,pt1,_),Ast0.RecordAccess(_,pt2,_)) -> equal_mcode pt1 pt2 | (Ast0.RecordPtAccess(_,ar1,_),Ast0.RecordPtAccess(_,ar2,_)) -> equal_mcode ar1 ar2 | (Ast0.Cast(lp1,_,rp1,_),Ast0.Cast(lp2,_,rp2,_)) -> equal_mcode lp1 lp2 && equal_mcode rp1 rp2 | (Ast0.SizeOfExpr(szf1,_),Ast0.SizeOfExpr(szf2,_)) -> equal_mcode szf1 szf2 | (Ast0.SizeOfType(szf1,lp1,_,rp1),Ast0.SizeOfType(szf2,lp2,_,rp2)) -> equal_mcode szf1 szf2 && equal_mcode lp1 lp2 && equal_mcode rp1 rp2 | (Ast0.TypeExp(_),Ast0.TypeExp(_)) -> true | (Ast0.MetaErr(name1,_,_),Ast0.MetaErr(name2,_,_)) | (Ast0.MetaExpr(name1,_,_,_,_),Ast0.MetaExpr(name2,_,_,_,_)) | (Ast0.MetaExprList(name1,_,_),Ast0.MetaExprList(name2,_,_)) -> equal_mcode name1 name2 | (Ast0.EComma(cm1),Ast0.EComma(cm2)) -> equal_mcode cm1 cm2 | (Ast0.DisjExpr(starter1,_,mids1,ender1), Ast0.DisjExpr(starter2,_,mids2,ender2)) -> equal_mcode starter1 starter2 && List.for_all2 equal_mcode mids1 mids2 && equal_mcode ender1 ender2 | (Ast0.NestExpr(starter1,_,ender1,_,m1), Ast0.NestExpr(starter2,_,ender2,_,m2)) -> equal_mcode starter1 starter2 && equal_mcode ender1 ender2 && m1 = m2 | (Ast0.Edots(dots1,_),Ast0.Edots(dots2,_)) | (Ast0.Ecircles(dots1,_),Ast0.Ecircles(dots2,_)) | (Ast0.Estars(dots1,_),Ast0.Estars(dots2,_)) -> equal_mcode dots1 dots2 | (Ast0.OptExp(_),Ast0.OptExp(_)) -> true | (Ast0.UniqueExp(_),Ast0.UniqueExp(_)) -> true | _ -> false let rec equal_typeC t1 t2 = match (Ast0.unwrap t1,Ast0.unwrap t2) with (Ast0.ConstVol(cv1,_),Ast0.ConstVol(cv2,_)) -> equal_mcode cv1 cv2 | (Ast0.BaseType(ty1,stringsa),Ast0.BaseType(ty2,stringsb)) -> List.for_all2 equal_mcode stringsa stringsb | (Ast0.Signed(sign1,_),Ast0.Signed(sign2,_)) -> equal_mcode sign1 sign2 | (Ast0.Pointer(_,star1),Ast0.Pointer(_,star2)) -> equal_mcode star1 star2 | (Ast0.Array(_,lb1,_,rb1),Ast0.Array(_,lb2,_,rb2)) -> equal_mcode lb1 lb2 && equal_mcode rb1 rb2 | (Ast0.EnumName(kind1,_),Ast0.EnumName(kind2,_)) -> equal_mcode kind1 kind2 | (Ast0.EnumDef(_,lb1,_,rb1),Ast0.EnumDef(_,lb2,_,rb2)) -> equal_mcode lb1 lb2 && equal_mcode rb1 rb2 | (Ast0.StructUnionName(kind1,_),Ast0.StructUnionName(kind2,_)) -> equal_mcode kind1 kind2 | (Ast0.FunctionType(ty1,lp1,p1,rp1),Ast0.FunctionType(ty2,lp2,p2,rp2)) -> equal_mcode lp1 lp2 && equal_mcode rp1 rp2 | (Ast0.StructUnionDef(_,lb1,_,rb1), Ast0.StructUnionDef(_,lb2,_,rb2)) -> equal_mcode lb1 lb2 && equal_mcode rb1 rb2 | (Ast0.TypeName(name1),Ast0.TypeName(name2)) -> equal_mcode name1 name2 | (Ast0.MetaType(name1,_),Ast0.MetaType(name2,_)) -> equal_mcode name1 name2 | (Ast0.DisjType(starter1,_,mids1,ender1), Ast0.DisjType(starter2,_,mids2,ender2)) -> equal_mcode starter1 starter2 && List.for_all2 equal_mcode mids1 mids2 && equal_mcode ender1 ender2 | (Ast0.OptType(_),Ast0.OptType(_)) -> true | (Ast0.UniqueType(_),Ast0.UniqueType(_)) -> true | _ -> false let equal_declaration d1 d2 = match (Ast0.unwrap d1,Ast0.unwrap d2) with (Ast0.MetaDecl(name1,_),Ast0.MetaDecl(name2,_)) | (Ast0.MetaField(name1,_),Ast0.MetaField(name2,_)) -> equal_mcode name1 name2 | (Ast0.Init(stg1,_,_,eq1,_,sem1),Ast0.Init(stg2,_,_,eq2,_,sem2)) -> equal_option stg1 stg2 && equal_mcode eq1 eq2 && equal_mcode sem1 sem2 | (Ast0.UnInit(stg1,_,_,sem1),Ast0.UnInit(stg2,_,_,sem2)) -> equal_option stg1 stg2 && equal_mcode sem1 sem2 | (Ast0.MacroDecl(nm1,lp1,_,rp1,sem1),Ast0.MacroDecl(nm2,lp2,_,rp2,sem2)) -> equal_mcode lp1 lp2 && equal_mcode rp1 rp2 && equal_mcode sem1 sem2 | (Ast0.TyDecl(_,sem1),Ast0.TyDecl(_,sem2)) -> equal_mcode sem1 sem2 | (Ast0.Ddots(dots1,_),Ast0.Ddots(dots2,_)) -> equal_mcode dots1 dots2 | (Ast0.OptDecl(_),Ast0.OptDecl(_)) -> true | (Ast0.UniqueDecl(_),Ast0.UniqueDecl(_)) -> true | (Ast0.DisjDecl _,_) | (_,Ast0.DisjDecl _) -> failwith "DisjDecl not expected here" | _ -> false let equal_designator d1 d2 = match (d1,d2) with (Ast0.DesignatorField(dot1,_),Ast0.DesignatorField(dot2,_)) -> equal_mcode dot1 dot2 | (Ast0.DesignatorIndex(lb1,_,rb1),Ast0.DesignatorIndex(lb2,_,rb2)) -> (equal_mcode lb1 lb2) && (equal_mcode rb1 rb2) | (Ast0.DesignatorRange(lb1,_,dots1,_,rb1), Ast0.DesignatorRange(lb2,_,dots2,_,rb2)) -> (equal_mcode lb1 lb2) && (equal_mcode dots1 dots2) && (equal_mcode rb1 rb2) | _ -> false let equal_initialiser i1 i2 = match (Ast0.unwrap i1,Ast0.unwrap i2) with (Ast0.MetaInit(name1,_),Ast0.MetaInit(name2,_)) -> equal_mcode name1 name2 | (Ast0.InitExpr(_),Ast0.InitExpr(_)) -> true | (Ast0.InitList(lb1,_,rb1,o1),Ast0.InitList(lb2,_,rb2,o2)) -> (* can't compare orderedness, because this can differ between - and + code *) (equal_mcode lb1 lb2) && (equal_mcode rb1 rb2) | (Ast0.InitGccExt(designators1,eq1,_), Ast0.InitGccExt(designators2,eq2,_)) -> (List.for_all2 equal_designator designators1 designators2) && (equal_mcode eq1 eq2) | (Ast0.InitGccName(_,eq1,_),Ast0.InitGccName(_,eq2,_)) -> equal_mcode eq1 eq2 | (Ast0.IComma(cm1),Ast0.IComma(cm2)) -> equal_mcode cm1 cm2 | (Ast0.Idots(d1,_),Ast0.Idots(d2,_)) -> equal_mcode d1 d2 | (Ast0.OptIni(_),Ast0.OptIni(_)) -> true | (Ast0.UniqueIni(_),Ast0.UniqueIni(_)) -> true | _ -> false let equal_parameterTypeDef p1 p2 = match (Ast0.unwrap p1,Ast0.unwrap p2) with (Ast0.VoidParam(_),Ast0.VoidParam(_)) -> true | (Ast0.Param(_,_),Ast0.Param(_,_)) -> true | (Ast0.MetaParam(name1,_),Ast0.MetaParam(name2,_)) | (Ast0.MetaParamList(name1,_,_),Ast0.MetaParamList(name2,_,_)) -> equal_mcode name1 name2 | (Ast0.PComma(cm1),Ast0.PComma(cm2)) -> equal_mcode cm1 cm2 | (Ast0.Pdots(dots1),Ast0.Pdots(dots2)) | (Ast0.Pcircles(dots1),Ast0.Pcircles(dots2)) -> equal_mcode dots1 dots2 | (Ast0.OptParam(_),Ast0.OptParam(_)) -> true | (Ast0.UniqueParam(_),Ast0.UniqueParam(_)) -> true | _ -> false let rec equal_statement s1 s2 = match (Ast0.unwrap s1,Ast0.unwrap s2) with (Ast0.FunDecl(_,fninfo1,_,lp1,_,rp1,lbrace1,_,rbrace1), Ast0.FunDecl(_,fninfo2,_,lp2,_,rp2,lbrace2,_,rbrace2)) -> (List.length fninfo1) = (List.length fninfo2) && List.for_all2 equal_fninfo fninfo1 fninfo2 && equal_mcode lp1 lp2 && equal_mcode rp1 rp2 && equal_mcode lbrace1 lbrace2 && equal_mcode rbrace1 rbrace2 | (Ast0.Decl(_,_),Ast0.Decl(_,_)) -> true | (Ast0.Seq(lbrace1,_,rbrace1),Ast0.Seq(lbrace2,_,rbrace2)) -> equal_mcode lbrace1 lbrace2 && equal_mcode rbrace1 rbrace2 | (Ast0.ExprStatement(_,sem1),Ast0.ExprStatement(_,sem2)) -> equal_mcode sem1 sem2 | (Ast0.IfThen(iff1,lp1,_,rp1,_,_),Ast0.IfThen(iff2,lp2,_,rp2,_,_)) -> equal_mcode iff1 iff2 && equal_mcode lp1 lp2 && equal_mcode rp1 rp2 | (Ast0.IfThenElse(iff1,lp1,_,rp1,_,els1,_,_), Ast0.IfThenElse(iff2,lp2,_,rp2,_,els2,_,_)) -> equal_mcode iff1 iff2 && equal_mcode lp1 lp2 && equal_mcode rp1 rp2 && equal_mcode els1 els2 | (Ast0.While(whl1,lp1,_,rp1,_,_),Ast0.While(whl2,lp2,_,rp2,_,_)) -> equal_mcode whl1 whl2 && equal_mcode lp1 lp2 && equal_mcode rp1 rp2 | (Ast0.Do(d1,_,whl1,lp1,_,rp1,sem1),Ast0.Do(d2,_,whl2,lp2,_,rp2,sem2)) -> equal_mcode whl1 whl2 && equal_mcode d1 d2 && equal_mcode lp1 lp2 && equal_mcode rp1 rp2 && equal_mcode sem1 sem2 | (Ast0.For(fr1,lp1,_,sem11,_,sem21,_,rp1,_,_), Ast0.For(fr2,lp2,_,sem12,_,sem22,_,rp2,_,_)) -> equal_mcode fr1 fr2 && equal_mcode lp1 lp2 && equal_mcode sem11 sem12 && equal_mcode sem21 sem22 && equal_mcode rp1 rp2 | (Ast0.Iterator(nm1,lp1,_,rp1,_,_),Ast0.Iterator(nm2,lp2,_,rp2,_,_)) -> equal_mcode lp1 lp2 && equal_mcode rp1 rp2 | (Ast0.Switch(switch1,lp1,_,rp1,lb1,_,_,rb1), Ast0.Switch(switch2,lp2,_,rp2,lb2,_,_,rb2)) -> equal_mcode switch1 switch2 && equal_mcode lp1 lp2 && equal_mcode rp1 rp2 && equal_mcode lb1 lb2 && equal_mcode rb1 rb2 | (Ast0.Break(br1,sem1),Ast0.Break(br2,sem2)) -> equal_mcode br1 br2 && equal_mcode sem1 sem2 | (Ast0.Continue(cont1,sem1),Ast0.Continue(cont2,sem2)) -> equal_mcode cont1 cont2 && equal_mcode sem1 sem2 | (Ast0.Label(_,dd1),Ast0.Label(_,dd2)) -> equal_mcode dd1 dd2 | (Ast0.Goto(g1,_,sem1),Ast0.Goto(g2,_,sem2)) -> equal_mcode g1 g2 && equal_mcode sem1 sem2 | (Ast0.Return(ret1,sem1),Ast0.Return(ret2,sem2)) -> equal_mcode ret1 ret2 && equal_mcode sem1 sem2 | (Ast0.ReturnExpr(ret1,_,sem1),Ast0.ReturnExpr(ret2,_,sem2)) -> equal_mcode ret1 ret2 && equal_mcode sem1 sem2 | (Ast0.MetaStmt(name1,_),Ast0.MetaStmt(name2,_)) | (Ast0.MetaStmtList(name1,_),Ast0.MetaStmtList(name2,_)) -> equal_mcode name1 name2 | (Ast0.Disj(starter1,_,mids1,ender1),Ast0.Disj(starter2,_,mids2,ender2)) -> equal_mcode starter1 starter2 && List.for_all2 equal_mcode mids1 mids2 && equal_mcode ender1 ender2 | (Ast0.Nest(starter1,_,ender1,_,m1),Ast0.Nest(starter2,_,ender2,_,m2)) -> equal_mcode starter1 starter2 && equal_mcode ender1 ender2 && m1 = m2 | (Ast0.Exp(_),Ast0.Exp(_)) -> true | (Ast0.TopExp(_),Ast0.TopExp(_)) -> true | (Ast0.Ty(_),Ast0.Ty(_)) -> true | (Ast0.TopInit(_),Ast0.TopInit(_)) -> true | (Ast0.Dots(d1,_),Ast0.Dots(d2,_)) | (Ast0.Circles(d1,_),Ast0.Circles(d2,_)) | (Ast0.Stars(d1,_),Ast0.Stars(d2,_)) -> equal_mcode d1 d2 | (Ast0.Include(inc1,name1),Ast0.Include(inc2,name2)) -> equal_mcode inc1 inc2 && equal_mcode name1 name2 | (Ast0.Define(def1,_,_,_),Ast0.Define(def2,_,_,_)) -> equal_mcode def1 def2 | (Ast0.OptStm(_),Ast0.OptStm(_)) -> true | (Ast0.UniqueStm(_),Ast0.UniqueStm(_)) -> true | _ -> false and equal_fninfo x y = match (x,y) with (Ast0.FStorage(s1),Ast0.FStorage(s2)) -> equal_mcode s1 s2 | (Ast0.FType(_),Ast0.FType(_)) -> true | (Ast0.FInline(i1),Ast0.FInline(i2)) -> equal_mcode i1 i2 | (Ast0.FAttr(i1),Ast0.FAttr(i2)) -> equal_mcode i1 i2 | _ -> false let equal_case_line c1 c2 = match (Ast0.unwrap c1,Ast0.unwrap c2) with (Ast0.Default(def1,colon1,_),Ast0.Default(def2,colon2,_)) -> equal_mcode def1 def2 && equal_mcode colon1 colon2 | (Ast0.Case(case1,_,colon1,_),Ast0.Case(case2,_,colon2,_)) -> equal_mcode case1 case2 && equal_mcode colon1 colon2 | (Ast0.DisjCase(starter1,_,mids1,ender1), Ast0.DisjCase(starter2,_,mids2,ender2)) -> equal_mcode starter1 starter2 && List.for_all2 equal_mcode mids1 mids2 && equal_mcode ender1 ender2 | (Ast0.OptCase(_),Ast0.OptCase(_)) -> true | _ -> false let rec equal_top_level t1 t2 = match (Ast0.unwrap t1,Ast0.unwrap t2) with (Ast0.DECL(_),Ast0.DECL(_)) -> true | (Ast0.FILEINFO(old_file1,new_file1),Ast0.FILEINFO(old_file2,new_file2)) -> equal_mcode old_file1 old_file2 && equal_mcode new_file1 new_file2 | (Ast0.CODE(_),Ast0.CODE(_)) -> true | (Ast0.ERRORWORDS(_),Ast0.ERRORWORDS(_)) -> true | _ -> false let root_equal e1 e2 = match (e1,e2) with (Ast0.DotsExprTag(d1),Ast0.DotsExprTag(d2)) -> dots equal_expression d1 d2 | (Ast0.DotsParamTag(d1),Ast0.DotsParamTag(d2)) -> dots equal_parameterTypeDef d1 d2 | (Ast0.DotsStmtTag(d1),Ast0.DotsStmtTag(d2)) -> dots equal_statement d1 d2 | (Ast0.DotsDeclTag(d1),Ast0.DotsDeclTag(d2)) -> dots equal_declaration d1 d2 | (Ast0.DotsCaseTag(d1),Ast0.DotsCaseTag(d2)) -> dots equal_case_line d1 d2 | (Ast0.IdentTag(i1),Ast0.IdentTag(i2)) -> equal_ident i1 i2 | (Ast0.ExprTag(e1),Ast0.ExprTag(e2)) -> equal_expression e1 e2 | (Ast0.ArgExprTag(d),_) -> failwith "not possible - iso only" | (Ast0.TypeCTag(t1),Ast0.TypeCTag(t2)) -> equal_typeC t1 t2 | (Ast0.ParamTag(p1),Ast0.ParamTag(p2)) -> equal_parameterTypeDef p1 p2 | (Ast0.InitTag(d1),Ast0.InitTag(d2)) -> equal_initialiser d1 d2 | (Ast0.DeclTag(d1),Ast0.DeclTag(d2)) -> equal_declaration d1 d2 | (Ast0.StmtTag(s1),Ast0.StmtTag(s2)) -> equal_statement s1 s2 | (Ast0.TopTag(t1),Ast0.TopTag(t2)) -> equal_top_level t1 t2 | (Ast0.IsoWhenTag(_),_) | (_,Ast0.IsoWhenTag(_)) | (Ast0.IsoWhenTTag(_),_) | (_,Ast0.IsoWhenTTag(_)) | (Ast0.IsoWhenFTag(_),_) | (_,Ast0.IsoWhenFTag(_)) -> failwith "only within iso phase" | _ -> false let default_context _ = Ast0.CONTEXT(ref(Ast.NOTHING, Ast0.default_token_info,Ast0.default_token_info)) let traverse minus_table plus_table = Hashtbl.iter (function key -> function (e,l) -> try let (plus_e,plus_l) = Hashtbl.find plus_table key in if root_equal e plus_e && List.for_all (function x -> x) (List.map2 Common.equal_set l plus_l) then let i = Ast0.fresh_index() in (set_index e i; set_index plus_e i; set_mcodekind e (default_context()); set_mcodekind plus_e (default_context())) with Not_found -> ()) minus_table (* --------------------------------------------------------------------- *) (* contextify the whencode *) let contextify_all = let bind x y = () in let option_default = () in let mcode x = () in let do_nothing r k e = Ast0.set_mcodekind e (default_context()); k e in V0.flat_combiner bind option_default mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode mcode do_nothing do_nothing do_nothing do_nothing do_nothing do_nothing do_nothing do_nothing do_nothing do_nothing do_nothing do_nothing do_nothing do_nothing do_nothing let contextify_whencode = let bind x y = () in let option_default = () in let expression r k e = k e; match Ast0.unwrap e with Ast0.NestExpr(_,_,_,Some whencode,_) | Ast0.Edots(_,Some whencode) | Ast0.Ecircles(_,Some whencode) | Ast0.Estars(_,Some whencode) -> contextify_all.VT0.combiner_rec_expression whencode | _ -> () in let initialiser r k i = match Ast0.unwrap i with Ast0.Idots(dots,Some whencode) -> contextify_all.VT0.combiner_rec_initialiser whencode | _ -> k i in let whencode = function Ast0.WhenNot sd -> contextify_all.VT0.combiner_rec_statement_dots sd | Ast0.WhenAlways s -> contextify_all.VT0.combiner_rec_statement s | Ast0.WhenModifier(_) -> () | Ast0.WhenNotTrue(e) -> contextify_all.VT0.combiner_rec_expression e | Ast0.WhenNotFalse(e) -> contextify_all.VT0.combiner_rec_expression e in let statement r k (s : Ast0.statement) = k s; match Ast0.unwrap s with Ast0.Nest(_,_,_,whn,_) | Ast0.Dots(_,whn) | Ast0.Circles(_,whn) | Ast0.Stars(_,whn) -> List.iter whencode whn | _ -> () in let combiner = V0.combiner bind option_default {V0.combiner_functions with VT0.combiner_exprfn = expression; VT0.combiner_initfn = initialiser; VT0.combiner_stmtfn = statement} in combiner.VT0.combiner_rec_top_level (* --------------------------------------------------------------------- *) (* the first int list is the tokens in the node, the second is the tokens in the descendents *) let minus_table = (Hashtbl.create(50) : (int list, Ast0.anything * int list list) Hashtbl.t) let plus_table = (Hashtbl.create(50) : (int list, Ast0.anything * int list list) Hashtbl.t) let iscode t = match Ast0.unwrap t with Ast0.DECL(_) -> true | Ast0.FILEINFO(_) -> true | Ast0.ERRORWORDS(_) -> false | Ast0.CODE(_) -> true | Ast0.OTHER(_) -> failwith "unexpected top level code" (* ------------------------------------------------------------------- *) (* alignment of minus and plus *) let concat = function [] -> [] | [s] -> [s] | l -> let rec loop = function [] -> [] | x::rest -> (match Ast0.unwrap x with Ast0.DECL(s) -> let stms = loop rest in s::stms | Ast0.CODE(ss) -> let stms = loop rest in (match Ast0.unwrap ss with Ast0.DOTS(d) -> d@stms | _ -> failwith "no dots allowed in pure plus code") | _ -> failwith "plus code is being discarded") in let res = Compute_lines.compute_statement_dots_lines false (Ast0.rewrap (List.hd l) (Ast0.DOTS (loop l))) in [Ast0.rewrap res (Ast0.CODE res)] let collect_up_to m plus = let minfo = Ast0.get_info m in let mend = minfo.Ast0.pos_info.Ast0.logical_end in let rec loop = function [] -> ([],[]) | p::plus -> let pinfo = Ast0.get_info p in let pstart = pinfo.Ast0.pos_info.Ast0.logical_start in if pstart > mend then ([],p::plus) else let (plus,rest) = loop plus in (p::plus,rest) in let (plus,rest) = loop plus in (concat plus,rest) let realign minus plus = let rec loop = function ([],_) -> failwith "not possible, some context required" | ([m],p) -> ([m],concat p) | (m::minus,plus) -> let (p,plus) = collect_up_to m plus in let (minus,plus) = loop (minus,plus) in (m::minus,p@plus) in loop (minus,plus) (* ------------------------------------------------------------------- *) (* check compatible: check that at the top level the minus and plus code is of the same kind. Could go further and make the correspondence between the code between ...s. *) let isonly f l = match Ast0.undots l with [s] -> f s | _ -> false let isall f l = List.for_all (isonly f) l let rec is_exp s = match Ast0.unwrap s with Ast0.Exp(e) -> true | Ast0.Disj(_,stmts,_,_) -> isall is_exp stmts | _ -> false let rec is_ty s = match Ast0.unwrap s with Ast0.Ty(e) -> true | Ast0.Disj(_,stmts,_,_) -> isall is_ty stmts | _ -> false let rec is_init s = match Ast0.unwrap s with Ast0.TopInit(e) -> true | Ast0.Disj(_,stmts,_,_) -> isall is_init stmts | _ -> false let rec is_decl s = match Ast0.unwrap s with Ast0.Decl(_,e) -> true | Ast0.FunDecl(_,_,_,_,_,_,_,_,_) -> true | Ast0.Disj(_,stmts,_,_) -> isall is_decl stmts | _ -> false let rec is_fndecl s = match Ast0.unwrap s with Ast0.FunDecl(_,_,_,_,_,_,_,_,_) -> true | Ast0.Disj(_,stmts,_,_) -> isall is_fndecl stmts | _ -> false let rec is_toplevel s = match Ast0.unwrap s with Ast0.Decl(_,e) -> true | Ast0.FunDecl(_,_,_,_,_,_,_,_,_) -> true | Ast0.Disj(_,stmts,_,_) -> isall is_toplevel stmts | Ast0.ExprStatement(fc,_) -> (match Ast0.unwrap fc with Ast0.FunCall(_,_,_,_) -> true | _ -> false) | Ast0.Include(_,_) -> true | Ast0.Define(_,_,_,_) -> true | _ -> false let check_compatible m p = let fail _ = failwith (Printf.sprintf "incompatible minus and plus code starting on lines %d and %d" (Ast0.get_line m) (Ast0.get_line p)) in match (Ast0.unwrap m, Ast0.unwrap p) with (Ast0.DECL(decl1),Ast0.DECL(decl2)) -> if not (is_decl decl1 && is_decl decl2) then fail() | (Ast0.DECL(decl1),Ast0.CODE(code2)) -> let v1 = is_decl decl1 in let v2 = List.for_all is_toplevel (Ast0.undots code2) in if !Flag.make_hrule = None && v1 && not v2 then fail() | (Ast0.CODE(code1),Ast0.DECL(decl2)) -> let v1 = List.for_all is_toplevel (Ast0.undots code1) in let v2 = is_decl decl2 in if v1 && not v2 then fail() | (Ast0.CODE(code1),Ast0.CODE(code2)) -> let v1 = isonly is_init code1 in let v2a = isonly is_init code2 in let v2b = isonly is_exp code2 in if v1 then (if not (v2a || v2b) then fail()) else let testers = [is_exp;is_ty] in List.iter (function tester -> let v1 = isonly tester code1 in let v2 = isonly tester code2 in if (v1 && not v2) or (!Flag.make_hrule = None && v2 && not v1) then fail()) testers; let v1 = isonly is_fndecl code1 in let v2 = List.for_all is_toplevel (Ast0.undots code2) in if !Flag.make_hrule = None && v1 && not v2 then fail() | (Ast0.FILEINFO(_,_),Ast0.FILEINFO(_,_)) -> () | (Ast0.OTHER(_),Ast0.OTHER(_)) -> () | _ -> fail() (* ------------------------------------------------------------------- *) (* returns a list of corresponding minus and plus trees *) let context_neg minus plus = Hashtbl.clear minus_table; Hashtbl.clear plus_table; List.iter contextify_whencode minus; let (minus,plus) = realign minus plus in let rec loop = function ([],[]) -> [] | ([],l) -> failwith (Printf.sprintf "%d plus things remaining" (List.length l)) | (minus,[]) -> plus_lines := []; let _ = List.map (function m -> classify true (function _ -> Ast0.MINUS(ref([],Ast0.default_token_info))) minus_table m) minus in [] | (((m::minus) as mall),((p::plus) as pall)) -> let minfo = Ast0.get_info m in let pinfo = Ast0.get_info p in let mstart = minfo.Ast0.pos_info.Ast0.logical_start in let mend = minfo.Ast0.pos_info.Ast0.logical_end in let pstart = pinfo.Ast0.pos_info.Ast0.logical_start in let pend = pinfo.Ast0.pos_info.Ast0.logical_end in if (iscode m or iscode p) && (mend + 1 = pstart or pend + 1 = mstart or (* adjacent *) (mstart <= pstart && mend >= pstart) or (pstart <= mstart && pend >= mstart)) (* overlapping or nested *) then begin (* ensure that the root of each tree has a unique index, although it might get overwritten if the node is a context node *) let i = Ast0.fresh_index() in Ast0.set_index m i; Ast0.set_index p i; check_compatible m p; collect_plus_lines p; let _ = classify true (function _ -> Ast0.MINUS(ref([],Ast0.default_token_info))) minus_table m in let _ = classify false (function c -> Ast0.PLUS c) plus_table p in traverse minus_table plus_table; (m,p)::loop(minus,plus) end else if not(iscode m or iscode p) then loop(minus,plus) else if mstart < pstart then begin plus_lines := []; let _ = classify true (function _ -> Ast0.MINUS(ref([],Ast0.default_token_info))) minus_table m in loop(minus,pall) end else loop(mall,plus) in loop(minus,plus)