
Semantic Patches
Documenting and Automating Collateral Evolutions in Linux Device Drivers

Yoann Padioleau
EMN

padator@wanadoo.fr

Julia L. Lawall
DIKU

julia@diku.dk

Gilles Muller
EMN

Gilles.Muller@emn.fr

1 Introduction

Device drivers form the glue code between an
operating system and its devices. In Linux, de-
vice drivers are highly reliant for this on the
various Linux internal libraries, which encap-
sulate generic functionalities related to the var-
ious busses and device types. In recent years,
these libraries have been evolving rapidly, to
address new requirements and improve perfor-
mance. In response to each evolution, col-
lateral evolutions are often required in driver
code, to bring the drivers up to date with the
new library API. Currently, collateral evolu-
tions are mostly done manually. The large num-
ber of drivers, however, implies that this ap-
proach is time-consuming and unreliable, lead-
ing to subtle errors when modifications are not
done consistently.

To address this problem, we propose a scripting
language for specifying and automating collat-
eral evolutions. This language offers a WYSI-
WYG approach to program transformation. In
the spirit of Linux development practice, this
language is based on the patch syntax. As op-
posed to traditional patches, our patches are not
line-oriented but semantics-oriented, and hence
we give them the name semantic patches.

This paper gives a tutorial on our semantic
patch language, SmPL, and its associated trans-

formation tool, spatch. We first give an
idea of the kind of program transformations we
target, collateral evolutions, and then present
SmPL using an example based on Linux driver
code. We then present some further examples
of evolutions and collateral evolutions that il-
lustrate other issues in semantic patch develop-
ment. Finally, we describe the current status of
our project and propose some future work. Our
work is directed mainly to device driver main-
tainers, library developers, and kernel janitors,
but anyone who has ever performed a repetitive
editing task on C code can benefit from it.

2 Evolutions and
Collateral Evolutions

The evolutions we consider are those that affect
a library API. Elements of a library API that
can be affected include functions, both those
defined by the library and the callback func-
tions that the library expects to receive from
a driver, global variables and constants, types,
and macros. A library may also implicitly spec-
ify rules for using these elements. Many kinds
of changes in the API can result from an evolu-
tion that affect one of these elements. For ex-
ample, functions or macros can change name
or gain or lose arguments. Structure types can

1

be reorganized and accesses to them can be en-
capsulated in getter and setter functions. The
protocol for using a sequence of functions, such
as up and down can change, as can the proto-
col for when error checking is needed and what
kind of error values should be returned.

Each of these changes requires corresponding
collateral evolutions, in all drivers using the
API. When a function or macro changes name,
all callers need to be updated with the new
name. When a function or macro gains or loses
arguments, new argument values have to be
constructed and old ones have to be dropped
in the driver code, respectively. When a struc-
ture type is reorganized, all drivers accessing
affected fields of that structure have to be up-
dated, either to perform the new field refer-
ences or to use any introduced getter and setter
functions. Changes in protocols may require
a whole sequence of modifications, to remove
the old code and introduce the new. Many of
these collateral evolutions can have a non-local
effect, as, for example, changing a new argu-
ment value may trigger a whole set of new com-
putations, and changing a protocol may require
substantial code restructuring. The interaction
of a driver with the API may furthermore in-
clude some device-specific aspects. Thus, these
changes have to be mapped onto the structure
of each affected driver file.

We have characterized evoluations and collat-
eral evolutions in more detail, including numer-
ous examples, in a paper at EuroSys 2006.1

3 Semantic Patch Tutorial

In this section, we describe SmPL (Semantic
Patch Language), our language for writing se-

1Understanding Collateral Evolution in Linux Device
Drivers Yoann Padioleau, Julia L. Lawall, and Gilles
Muller Proceedings of the ACM SIGOPS EuroSys 2006
Conference, Leuven, Belgium, April 2006, pages 59-71.

mantic patches. To motivate the features of
SmPL, we first consider a moderately complex
collateral evolution that raises many typical is-
sues. We then present SmPL in terms of this
example.

3.1 The “proc_info” evolution

As an example, we consider an evolution and
associated collateral evolutions affecting the
SCSI API functions scsi_host_hn_get and
scsi_host_put. These functions access and
release, respectively, a structure of type Scsi_
Host, and additionally increment and decre-
ment, respectively, a reference count. In Linux
2.5.71, it was decided that, due to the criticality
of the reference count, driver code could not be
trusted to use these functions correctly and they
were removed from the SCSI API.2

This evolution had collateral effects on the
“proc_info” callback functions defined by
SCSI drivers, which call these API func-
tions. Figure 1 shows a slightly simpli-
fied excerpt of the traditional patch file up-
dating the proc_info function of drivers/

usb/storage/scsiglue.c. Similar collat-
eral evolutions were performed in Linux 2.5.71
in 18 other SCSI driver files inside the kernel
source tree. To compensate for the removal of
scsi_host_hn_get and scsi_host_put,
the SCSI library began in Linux 2.5.71 to pass
to these callback functions a Scsi_Host-typed
structure as an argument. Collateral evolutions
were then needed in all the proc_info func-
tions to remove the calls to scsi_host_hn_

get (line 19 for the scsiglue.c driver), and
scsi_host_put (lines 27 and 42), and to add
the new argument (line 4). Those changes in
turn entailed the removal of a local variable
(line 11) and of null-checking code (line 20-
22), as the library is assumed not to call the

2http://lwn.net/Articles/36311/

2

0 --- a/drivers/usb/storage/scsiglue.c
1 +++ b/drivers/usb/storage/scsiglue.c
2 @@ -264,33 +300,21 @@
3 -static int usb_storage_proc_info (
4 +static int usb_storage_proc_info (struct Scsi_Host *hostptr,
5 char *buffer, char **start, off_t offset,
6 - int hostno, int inout)
7 + int inout)
8 {
9 struct us_data *us;
10 char *pos = buffer;
11 - struct Scsi_Host *hostptr;
12 unsigned long f;
13
14 /* if someone is sending us data, just throw it away */
15 if (inout)
16 return offset;
17
18 - /* find our data from the given hostno */
19 - hostptr = scsi_host_hn_get(hostno);
20 - if (!hostptr) {
21 - return -ESRCH;
22 - }
23 us = (struct us_data*)hostptr->hostdata[0];
24
25 /* if we couldn’t find it, we return an error */
26 if (!us) {
27 - scsi_host_put(hostptr);
28 return -ESRCH;
29 }
30
31 /* print the controller name */
32 - SPRINTF(" Host scsi%d: usb-storage\n", hostno);
33 + SPRINTF(" Host scsi%d: usb-storage\n", hostptr->host_no);
34 /* print product, vendor, and serial number strings */
35 SPRINTF(" Vendor: %s\n", us->vendor);
36
37 @@ -318,9 +342,6 @@
38 *(pos++) = ’\n’;
39 }
40
41 - /* release the reference count on this host */
42 - scsi_host_put(hostptr);
43
44 /*
45 * Calculate start of next buffer, and return value.
46

Figure 1: Simplified excerpt of the patch file
from Linux 2.5.70 to Linux 2.5.71

proc_info function on a null value. Finally, one
of the parameters of the proc_info function was
dropped (line 6) and every use of this parameter
was replaced by a field access (line 33) on the
new structure argument.

Of the possible API changes identified in Sec-
tion 2, this example illustrates the dropping of
two library functions and changes in the param-
eter list of a callback function. These changes
have non-local effects in the driver code, as the
context of the dropped call to scsi_host_hn_
get must change as well, to eliminate the stor-
age of the result and the subsequent error check,
and the value of the dropped parameter must be
reconstructed wherever it is used.

3.2 A semantic patch, step by step

We now describe the semantic patch that will
perform the previous collateral evolutions, on
any of the 19 relevant files inside the kernel
source tree, and on any relevant drivers outside
the kernel source tree. We first describe step-
by-step various excerpts of this semantic patch,
and then present its complete definition in Sec-
tion 3.3.

3.2.1 Modifiers

The first excerpt adds and removes the affected
parameters of the proc_info callback function:

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
- int hostno,

int inout) { ... }

Like a traditional patch, a semantic patch con-
sists of a sequence of lines, some of which be-
gin with the modifiers + and - in the first col-
umn. These lines are added or removed, respec-
tively. The remaining lines serve as context, to
more precisely identify the code that should be
modified.

Unlike a traditional patch, a semantic patch
must have the form of a complete C-language
term (an expression, a statement, a function
definition, etc.). Here we are modifying a func-
tion, so the semantic patch has the form of a
function definition. Because our only goal at
this point is to modify the parameter list, we
do not care about the function body. Thus, we
have represented it with “...”. The meaning
and use of “...” are described in more detail
in Section 3.2.4.

Because of the wide range of possible collat-
eral evolutions, as described in Section 2, col-
lateral evolutions may affect almost any C con-
structs, such as structures, initializers, function

3

parameters, if statements, in many different
ways. SmPL, for flexibility, allows to write al-
most any C code in a semantic patch and to an-
notate freely any part of this code with the +
and - modifiers. The combination of the unan-
notated context code with the - code and the
combination of the unannotated context code
with the + code must, however, each have the
form of valid C code, to ensure that the pat-
tern described by the former can match against
valid driver code and that the transformation
described by the latter will produce valid C
code as a result.

Another difference as compared to a traditional
patch is that the meaning of a semantic patch is
insensitive to newlines, spaces, comments, etc.
Thus, the above semantic patch will match and
transform driver code that has the parameters
of the proc_info function all on the same line,
spread over multiple lines as in scsiglue.c,
or separated by comments. We have split the
semantic patch over four lines only to better
highlight what is added and removed. We could
have equivalently written it as:

- proc_info_func (char *buffer, char **start, off_t offset,
- int hostno, int inout)
+ proc_info_func (struct Scsi_Host *hostptr, char *buffer,
+ char **start, off_t offset, int inout)

{ ... }

To apply this semantic patch, it should be stored
in a file, e.g., procinfo.spatch. It can then
be applied to e.g. the set of C files in the current
directory using our spatch tool:
spatch *.c < procinfo.spatch.

3.2.2 Metavariables

A traditional patch, like the one in Figure 1, de-
scribes a transformation of a specific set of lines
in a specific driver. This specificity is due to
the fact that a patch hardcodes some informa-
tion, such as the name of the driver’s proc_info

callback function. Thus a separate patch is typ-
ically needed for every driver. The goal of
SmPL on the other hand is to write a generic se-
mantic patch that can transform all the relevant
drivers, accommodating the variations among
them. In this section and the following ones we
describe the features of SmPL that make a se-
mantic patch generic.

In the excerpt of the previous section, the reader
may have wondered about the name proc_

info_func, which indeed does not match the
name of the scsiglue proc_info function, as
shown in Figure 1, lines 3 and 4, or the names
of any of the proc_info functions in the kernel
source tree. Furthermore, the names of the pa-
rameters are not necessarily buffer, start,
etc.; in particular, the introduced parameter
hostptr is sometimes called simply host. To
abstract away from these variations, SmPL pro-
vides metavariables. A metavariable is a vari-
able that matches an arbitrary term in the driver
source code. Metavariables are declared be-
fore the patch code specifying the transforma-
tion, between two @@s, borrowing the nota-
tion for delimiting line numbers in a traditional
patch (Figure 1, lines 2 and 37). Metavariables
are designated as matching terms of a specific
kind, such as an identifier, expression,
or statement, or terms of a specific type, such
as int or off_t. We call the combination of
the declaration of a set of metavariables and a
transformation specification a rule.

Back to our running example, the previous ex-
cerpt is made into a rule as follows:

@@
identifier proc_info_func;
identifier buffer, start, offset, inout, hostno;
identifier hostptr;
@@

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
- int hostno,

int inout) { ... }

4

This code now amounts to a complete, valid
semantic patch, although it still only performs
part of our desired collateral evolution.

3.2.3 Multiple rules and
inherited metavariables

The previous excerpt matches and transforms
any function with parameters of the specified
types. A proc_info function, however, is one
that has these properties and interacts with the
SCSI library in a specific way, namely by being
provided by the driver to the SCSI library on the
proc_info field of a SHT structure (for SCSI
Host Template), which from the point of view
of the SCSI library represents the device. To
specify this constraint, we define another rule
that identifies any assignment to such a field in
the driver file. SmPL allows a semantic patch to
define multiple rules, just as a traditional patch
contains multiple regions separated by @@. The
rules are applied in sequence, with each of them
being applied to the entire source code of the
driver. In our example we thus define one rule
to identify the name of the callback function
and another to transform its definition, as fol-
lows:

@ rule1 @
struct SHT ops;
identifier proc_info_func;
@@

ops.proc_info = proc_info_func;

@ rule2 @
identifier rule1.proc_info_func;
identifier buffer, start, offset, inout, hostno;
identifier hostptr;
@@

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
- int hostno,

int inout) { ... }

In the new semantic patch, the metavariable
proc_info_func is defined in the first rule
and referenced in the second rule, where we

expect it to have the same value, which is en-
forced by spatch. In general, a rule may de-
clare new metavariables and inherit metavari-
ables from previous rules. Inheritance is ex-
plicit, in that the inherited metavariable must be
declared again in the inheriting rule, and is as-
sociated with the name of the rule from which
its value should be inherited (the rule name is
only used in the metavariable declaration, but
not in the transformation specification, which
retains the form of ordinary C code). To allow
this kind of inheritance, we must have means of
naming rules. As shown in the semantic patch
above, the name of a rule is placed between the
two @@s at the beginning of a metavariable dec-
laration. A name is optional, and is not needed
if the rule does not export any metavariables.

Note that the first rule does not perform any
transformations. Instead, its only role is to bind
the proc_info_func metavariable to con-
strain the matching of the second rule. Once a
metavariable obtains a value it keeps this value
until the end of the current rule and in any sub-
sequent rules that inherit it. Metavariables thus
not only make a semantic patch generic by ab-
stracting away from details of the driver code,
but also allow communicating information and
constraints from one part of the semantic patch
to another, e.g., from ’–’ code to ’+’ code, or
from one rule to another.

A metavariable may take on multiple values, if
the rule matches at multiple places in the driver
code. If such a metavariable is inherited, the
inheriting rule is applied once for each possi-
ble set of bindings of the metavariables it in-
herits. For example, in our case, a driver may
set the proc_info field multiple times, to dif-
ferent functions, in which case rule 2 would be
applied multiple times, for the names of each of
them.

5

3.2.4 Sequences

So far, we have only considered the collateral
evolutions on the header of the proc_info func-
tion. But collateral evolutions are needed in
its body as well: deleting the calls to scsi_

host_hn_get and scsi_host_put, deleting
the local variable holding the result of call-
ing scsi_host_hn_get and the error check-
ing code on its value. The affected code frag-
ments are scattered throughout the body of the
proc_info function and are separated from each
other by arbitrary code specific to each SCSI
driver. To abstract away from these irrelevant
variations, SmPL provides the “...” operator,
which matches any sequence of code. Refin-
ing rule2 of the semantic patch to perform these
collateral evolutions gives:

@ rule2 @
identifier rule1.proc_info_func;
identifier buffer, start, offset, inout, hostno;
identifier hostptr;
@@

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
- int hostno,

int inout) {
...

- struct Scsi_Host *hostptr;
...

- hostptr = scsi_host_hn_get(hostno);
...

- if (!hostptr) { ... return ...; }
...

- scsi_host_put(hostptr);
...

}

The second rule of the semantic patch now has
the form of the definition of a function that first
contains a declaration of the hostptr vari-
able, then a call to the function scsi_host_

hn_get, then an error check, and finally a
call to scsi_host_put sometime before the
end. In practice, however, a proc_info func-
tion may e.g. contain many calls to scsi_

host_put, as illustrated by the scsiglue ex-
ample (Figure 1, lines 27 and 42). Closer

inspection of the original scsiglue source
code, however, shows that at execution time,
the driver only executes one or the other of
these calls to scsi_host_put, as the one on
line 27 is only executed in an error case, and
the one on line 42 is only executed in a non-
error case. This is illustrated by Figure 2,
which shows part of the control-flow graph of
the scsiglue proc_info function. Because
the execution pattern declare/scsi_host_
hn_get/error-check/scsi_host_put is what
must be followed by every SCSI proc_info
driver, it is this pattern that the semantic patch
should match against. The operator “...” thus
matches paths in the control-flow graph rather
than an arbitrary block of code in the driver
source code. Thus, in practice, a single mi-
nus or plus line in the semantic patch can delete
or add multiple lines in the source code of the
driver.

The transformation specified in a rule is applied
on driver code only if the whole rule matches
code, not if only parts of the rule match code.
Thus, here, the rule only matches proc_info
callback functions having 5 parameters of
the specified types, and the sequence of in-
structions declare/scsi_host_hn_get/error-
check/scsi_host_put, and where these in-
structions share the use of the same variable,
represented in the semantic patch by the re-
peated use of the same metavariable hostptr.

As said in the previous section, the repeated use
of the same metavariable, here hostptr, can
serve multiple purposes. First, it is used here to
constrain some transformations by forcing two
pieces of code to be equal in the driver code.
So, for example, not all conditionals will be re-
moved in the driver, only those testing the lo-
cal structure returned by scsi_host_hn_get.
Metavariables are also used to move code from
one place to another. Here hostptr is used
to move the matched local variable name into
the parameter list. Metavariables declared as

6

...
��

hostptr = scsi_host_hn_get(hostno);

��
if (!hostptr)

ssfffffffffffffff
,,YYYYYYYYYYYY

,,
{

��
us = hostptr→...;

����
return -ESRCH;

��
if(!us)

rr ��
}

--

{

��
SPRINTF(...);

��
scsi_host_put(hostptr);

��

scsi_host_put(hostptr);

��
return -ESRCH;

��

...

oo

}

��
}

Figure 2: Simplified control-flow graph for part of Figure 1

expression or statement can be used to
move more complex terms.

3.2.5 Nested Sequences

The last transformation concerning the
proc_info function is the replacement of every
reference to the dropped hostno parameter
by a field access. SmPL provides the <...
...> operator to perform such universal
replacements. This operator is analogous to the
/g operator of Perl. In order to avoid having
to consider how references to hostno may in-
terleave with the calls to scsi_host_hn_get

and scsi_host_put, etc., we define a third
rule that simply makes this transformation
everywhere it applies:

@ rule3 @
identifier rule1.proc_info_func;
identifier rule2.hostno;
identifier rule2.hostptr;
@@

proc_info_func(...) {
<...

- hostno
+ hostptr->host_no

...>
}

Note that the operator “...” can be used
to represent any kind of sequence. Here, in
the function header, it is used to represent a
sequence of parameters. It can also be used
to provide flexible matching in initializers and
structure definitions.

3.2.6 Isomorphisms

We have already mentioned that a semantic
patch is insensitive to spacing, indentation and
comments. Moreover, by defining sequences in
terms of control-flow paths, we abstract away
from the various ways of sequencing instruc-
tions that exist in C code. These features help
make a semantic patch generic, allowing the
patch developer to specify only a few scenarios,
while spatch handles other scenarios that are
semantically equivalent.

Other differences that we would like to abstract
away from include variations within the use

7

of specific C constructs. For example, if x is
any expression that has pointer type, then !x,
x == NULL, and NULL == x are all equiva-
lent. For this, we provide a variant of the SmPL
syntax for defining isomorphisms, sets of syn-
tactically different terms that have the same se-
mantics. The null pointer-test isomorphism is
defined in this variant of SmPL as follows:

// iso file, not a semantic patch
@@ expression *X; @@
X == NULL <=> !X <=> NULL == X

Given this specification, the pattern
if(!hostptr) in the semantic patch matches
a conditional in the driver code that tests the
value of hostptr using any of the listed
variants.

In addition to a semantic patch, spatch ac-
cepts a file of isomorphisms as an extra argu-
ment. A file of isomorphisms is provided with
the spatch distribution, which contains 30
equivalences commonly found in driver code.
Finally, it is possible to specify that a single
rule should use only the isomorphisms in a spe-
cific file, file, by annotating the rule name with
using file.

3.3 All Together Now

The complete semantic patch for the proc_info
collateral evolutions is shown below. As com-
pared to the rules described above, this seman-
tic patch contains an additional rule, rule4,
which adjusts any calls to the proc_info func-
tion from within the driver. Note that in this
rule, the metavariables that were declared as
identifiers in rule2 to represent the parame-
ters of the proc_info function are redeclared as
expressions, to represent the proc_info func-
tion’s arguments.

The second rule has also been slightly modi-
fied, in that two lines have been annotated with

the “?” operator stating that those lines may
or may not be present in the driver. Indeed,
many drivers forget to check the return value
of scsi_host_hn_get or forget to release the
structure before exiting the function. As previ-
ously noted, the latter omission is indeed what
motivated the proc_info evolution.

Note that there is no rule for updating the pro-
totype of the proc_info function, if one is con-
tained in the file. When the type of a func-
tion changes, spatch automatically updates
its prototype, if any.

@ rule1 @
struct SHT ops;
identifier proc_info_func;
@@

ops.proc_info = proc_info_func;

@ rule2 @
identifier rule1.proc_info_func;
identifier buffer, start, offset, inout, hostno;
identifier hostptr;
@@

proc_info_func (
+ struct Scsi_Host *hostptr,

char *buffer, char **start, off_t offset,
- int hostno,

int inout) {
...

- struct Scsi_Host *hostptr;
...

- hostptr = scsi_host_hn_get(hostno);
...

?- if (!hostptr) { ... return ...; }
...

?- scsi_host_put(hostptr);
...

}

@ rule3 @
identifier rule1.proc_info_func;
identifier rule2.hostno;
identifier rule2.hostptr;
@@

proc_info_func(...) {
<...

- hostno
+ hostptr->host_no

...>
}

@ rule4 @
identifier rule1.proc_info_func;
identifier func;
expression buffer, start, offset, inout, hostno;
identifier hostptr;
@@

func(..., struct Scsi_Host *hostptr, ...) {

8

<...
proc_info_func(

+ hostptr,
buffer, start, offset,,

- hostno,
inout)

...>
}

On the 30 isomorphisms we have written, 3
of them “apply” to this semantic patch, ac-
commodating many variations among the 19
drivers inside the kernel source tree. We have
already mentioned the different ways to write
a test such as if(!hostptr) in the previ-
ous section. There is also the various ways to
assign a value in a field, which can be writ-
ten ops.proc_info = fn as in our semantic
patch, or written ops->proc_info = fn in
some drivers, or written using a global structure
initializer. Indeed, the last case was used for the
scsiglue.c driver as shown by the following
excerpt of this driver:

struct SHT usb_stor_host_template = {
/* basic userland interface stuff */
.name = "usb-storage",
.proc_name = "usb-storage",
.proc_info = usb_storage_proc_info,
.proc_dir = NULL,

Finally, braces are not needed in C code when
a branch contains only one statement. So, the
pattern { ... return ...; } in rule2 also
matches a branch containing only the return
statement.

It takes 23 seconds to spatch given the whole
semantic patch to correctly update the 19 rele-
vant drivers. If run on all the 2404 driver files
inside the kernel source tree, it takes spatch
3 minutes to correctly update the same 19
drivers.

4 More Features, More Examples

So far we have written and tested 49 seman-
tic patches for collateral evolutions found in the

Linux 2.5 and Linux 2.6. By comparing the re-
sults produced by the semantic patch to the re-
sults produced by the traditional patch, we have
found that spatch updates 92% of the driver
files affected by these collateral evolutions cor-
rectly. In the remaining cases, there is typically
a problem parsing the driver code, or needed in-
formation is missing because spatch currently
does not parse header files. Parsing the driver
code is a particular problem in our case, be-
cause our goal is to perform a source-to-source
transformation, which means that we have cho-
sen not to expand macros and preprocessor di-
rectives, and instead parse them directly.

In this section, we consider some other exam-
ples from our test suite, to illustrate some typi-
cal issues in semantic patch development.

4.1 Replacing one function name by an-
other

In Linux 2.5.22, the function end_request

was given a new first argument, of type
struct request *. In practice, the value of
this argument should be the next request from
one of the driver’s queue, as represented by a
reference to the macro CURRENT. This collat-
eral evolution affected 27 files spread across the
directories acorn, block, cdrom, ide, mtd,
s390, sbus.

The following semantic patch implements this
collateral evolution:

@@ expression X; @@
- end_request(X)
+ end_request(CURRENT,X)

This semantic patch updates the 27 affected
files in the Linux source tree correctly.

This example may seem almost too simple to
be worth writing an explicit specification, as

9

one can e.g. write a one-line sed command that
has the same effect. Nevertheless, such solu-
tions are error prone: we found that in the file
drivers/block/swim_iop.c, the transfor-
mation was applied to the function swimiop_

send_request, which has no relation to this
collateral evolution. We conjecture that this
is the result of applying a sed command, or
some similar script, that replaces calls to end_

request without checking whether this string
is part of a more complicated function name.
spatch enforces the syntactic structure of se-
mantic patch code, allowing matches on iden-
tifier, expression, statement, etc. boundaries,
rather than simply accepting anything that a su-
perstring of the given pattern.

4.2 Collecting scattered information

In Linux 2.5.7, the function video_generic_
ioctl, later renamed video_usercopy, was
introduced to encapsulate the copying to and
from user space required by ioctl functions.
Ioctl functions allow the user level to config-
ure and control a device, as they accept com-
mands from the user level and perform the cor-
responding action at the kernel level. Without
video_usercopy, an ioctl function has to use
functions such as copy_from_user or get_
user to access data passed in with the com-
mand, and functions such as copy_to_user

or put_user to return information to the user
level. With video_usercopy, the ioctl func-
tion receives a pointer to a kernel-level data
structure containing the user-level arguments
and can modify this data structure to return any
values to user level.

Making an ioctl function video_usercopy-
ready involves the following steps:

• Adding some new parameters to the func-
tion.

• Eliminating calls to copy_from_user,
put_user, etc.

• Changing the references to the local struc-
ture used by these functions to use the
pointer prepared by video_usercopy.

The last two points are somewhat complex, be-
cause the various commands interpreted by the
ioctl function may each have their own require-
ments with respect to the user-level data. A
command may or may not have a user-level ar-
gument, and it may or may not return a result
to the user level. In the case where there is
no use or returned value then no transforma-
tion should be performed; in the other cases,
the structure containing the user-level argument
or result should be converted to a pointer. Fur-
thermore, there are multiple possible copying
functions, and there are multiple forms that the
references to the copied data can take.

Figure 3 shows a semantic patch implementing
this transformation, under the simplifying as-
sumption that the kernel-level representation of
the user-level data is stored in a locally declared
structure. This semantic patch consists of a sin-
gle rule that changes the prototype of this func-
tion (adding some new variables, as indicated
by fresh identifier), changes the types of
the local structures, and removes the copy func-
tions.

The many variations in an ioctl function noted
above are visible in this rule. To express mul-
tiple possibilities, SmPL provides a disjunction
operator, which begins with an open parenthe-
sis in column 0, contains a list of possible pat-
terns separated by a vertical bar in column 0,
and then ends with a close parenthesis in col-
umn 0. Most of the body of the ioctl func-
tion pattern is represented as one large disjunc-
tion that considers the possibility of there being
both a user-level argument and a user-level re-
turn value (lines 14-39), the possibility of there

10

1 @@
2 identifier ioctl, dev, cmd, arg, v, fld;
3 fresh identifier inode, file;
4 expression E, E1, e1,e2,e3;
5 type T;
6 @@
7 ioctl(
8 - struct video_device *dev,
9 + struct inode *inode, struct file *file,
10 unsigned int cmd, void *arg) {
11 + struct video_device *dev = video_devdata(file);
12 ...
13 (
14 - T v;
15 + T *v = arg;
16 ...
17 (
18 - if (copy_from_user(&v,arg,E)) { ... return ...; }
19 |
20 - if (get_user(v,(T *)arg)) { ... return ...; }
21)
22 <...
23 (
24 - v.fld
25 + v->fld
26 |
27 - &v
28 + v
29 |
30 - v
31 + *v
32)
33 ...>
34 (
35 - if (copy_to_user(arg,&v,E1)) { ... return ...; }
36 |
37 - if (put_user(v,(T *)arg)) { ... return ...; }
38)
39 ...
40 |
41 // a copy of the above pattern with the copy_to_user/put_user
42 // pattern dropped
43 |
44 // a copy of the above pattern with the copy_from_user/get_user
45 // pattern dropped
46 |
47 ... when != \(copy_from_user(e1,e2,e3)\|copy_to_user(e1,e2,e3)
48 \|get_user(e1,e2)\|put_user(e1,e2)\)
49)
50 }

Figure 3: Semantic patch for the
video_usercopy collateral evolution

being a user-level argument but no user-level
return value (elided in comments on line 41),
the possibility of there being a user-level re-
turn value but no user-level argument (elided in
comments on line 41-42), and there being nei-
ther a user-level argument nor a user-level re-
turn value (line 44-45). These possibilities are
considered from top to bottom, with only the
first one that matches being applied. This strat-
egy is convenient in this case, because e.g. code
using both a user-level argument and a user-
level return value also matches all of the other
patterns. The last cases uses “...” with the
construct when. The when construct indicates
a pattern that should not be matched anywhere

in the code matched by the associated “...”.

Within each of the branches of the outermost
disjunction, there are several nested disjunc-
tions. First, another disjunction is used to
account for the two kinds of copy functions,
copy_from_user or get_user. This case
does not rely on the top-to-bottom strategy, be-
cause the patterns are disjoint. Next, between
any copying, there is a nest (see Section 3.2.5)
replacing the different variations on how to re-
fer to a structure by the pointer-based counter-
part. Here again, the ordering of the disjunc-
tion is essential, as the final case, v, should
only be used when the variable is not used
in a field access or address expression. Fi-
nally, there is a third disjunction allowing either
copy_to_user or put_user.

Like the proc_info semantic patch, this seman-
tic patch relies on isomorphisms. Specifically,
the calls to the copy functions may appear alone
in a conditional test as shown, or may be com-
pared to 0, and as in the proc_info case, the re-
turn pattern in each of the conditional branches
can match a single return statement, without
braces.

4.3 Collecting scattered information

In Linux 2.6.20, the strategy for creating work
queues and setting and invoking their callback
functions changed as follows:

• Previously, all work queues were declared
with some variant of INIT_WORK, and
then could choose between delayed or
undelayed work dynamically, by using
either some variant of schedule_work

or some variant of schedule_delayed_
work. Since the changes in Linux 2.6.20,
the choice between delayed or undelayed
work has to be made statically, by cre-
ating the work queue with either INIT_

11

DELAYED_WORK or INIT_WORK, respec-
tively.

• Previously, creation of a work queue took
as arguments a queue, a callback func-
tion, and a pointer to the value to be
passed as an argument to the callback
function. Since 2.6.20, the third argument
is dropped, and the callback function is
simply passed the work queue as an argu-
ment. From this, it can access the local
data structure containing the queue, which
can itself store whatever information was
required by the callback function.

For simplicity, we consider only the case where
the work queue is created using INIT_WORK,
where it is the field of a local structure, and
where the callback function passed to INIT_

WORK expects this local structure as an argu-
ment.

Figure 4 shows the semantic patch. In this se-
mantic patch, we name all of the rules, to ease
the presentation, but only those with descriptive
names, such as is_delayed, are necessary.

The semantic patch is divided into two sec-
tions, the first for the case where the work
queue is somewhere used with a delaying func-
tion such as schedule_delayed_work and
the second for the case where such a function
is not used on the work queue. Both cases can
occur within a single driver, for different work
queues. The choice between these two vari-
ants is made at the first rule, is_delayed, us-
ing a trick based on metavariable binding. This
rule matches all calls to schedule_delayed_
work and other functions indicating delayed
work, for any work queue &device->fld and
arbitrary task E. The next five rules, up to the
commented dividing line, refer directly or indi-
rectly to the type of the structure containing the
matched work queue &device->fld, and thus
these rules are only applied to work queues for

@ is_delayed @
type local_type; local_type *device; expression E,E1;
identifier fld;
@@
(schedule_delayed_work(&device->fld,E)
| cancel_delayed_work(&device->fld)
| schedule_delayed_work_on(E1,&device->fld,E)
| queue_delayed_work(E1,&device->fld,E)
)

@ rule2 @
is_delayed.local_type *device;
identifier is_delayed.fld; expression E1;
@@
(
- schedule_work(&device->fld)
+ schedule_delayed_work(&device->fld,0)
|
- schedule_work_on(E1,&device->fld)
+ schedule_delayed_work_on(E1,&device->fld,0)
|
- queue_work(E1,&device->fld)
+ queue_delayed_work(E1,&device->fld,0)
)

@ delayed_fn @
type T,T1; identifier is_delayed.fld, fn;
is_delayed.local_type *device;
@@
- INIT_WORK(&device->fld, (T)fn, (T1)device);
+ INIT_DELAYED_WORK(&device->fld, fn);

@ rule4 @
type is_delayed.local_type; identifier is_delayed.fld;
@@
local_type { ...
- struct work_struct fld;
+ struct delayed_work fld;

... };

@ rule5 @
identifier data, delayed_fn.fn, is_delayed.fld;
type T, is_delayed.local_type; fresh identifier work;
@@
- fn(void *data) {
+ fn(struct work_struct *work) {

<...
- (T)data
+ container_of(work,local_type,fld.work)

...>
}

@ rule5a @
identifier data, delayed_fn.fn, is_delayed.fld;
type is_delayed.local_type; fresh identifier work;
@@
- fn(local_type *data) {
+ fn(struct work_struct *work) {
+ local_type *data = container_of(work,local_type,fld.work);

...
}

//--
@ non_delayed_fn @
type local_type, T,T1; local_type *device; identifier fld, fn;
@@
- INIT_WORK(&device->fld, (T)fn, (T1)device);
+ INIT_WORK(&device->fld, fn);

@ rule7 @
identifier data, non_delayed_fn.fn, non_delayed_fn.fld;
type T, non_delayed_fn.local_type; fresh identifier work;
@@
- fn(void *data) {
+ fn(struct work_struct *work) {

<...
- (T)data
+ container_of(work,local_type,fld)

...>
}

@ rule7a @
identifier data, non_delayed_fn.fn, non_delayed_fn.fld;
type non_delayed_fn.local_type; fresh identifier work;
@@
- fn(local_type *data) {
+ fn(struct work_struct *work) {
+ local_type *data = container_of(work,local_type,fld);

...
}

Figure 4: Semantic patch for the INIT_WORK
collateral evolution

12

which the match in is_delayed somewhere
succeeds. The remaining three rules, at the bot-
tom of the semantic patch, do not depend on
the rule is_delayed, and thus apply to work
queues for which there is no call to any delay-
ing function.

In the first half of the semantic patch, the
next task is to convert any call to a non-
delaying work queue function to a delaying
one, by adding a delay of 0 (rule2). The
rule delayed_fn then changes calls to INIT_

WORK to calls to INIT_DELAYED_WORK and ad-
justs the argument lists such that the cast on
the second argument (the work queue callback
function) is dropped and the third argument is
dropped completely. Note that the casts on
the second and third arguments need not be
present in the driver code, thanks to an iso-
morphism. Next (rule4), the work queue is
changed from having type work_struct to
having type delayed_work. The last two
rules of this section, rule5 and rule5a, up-
date the callback functions identified in the
call to INIT_WORK. The first, rule5, is for
the case where the current parameter type is
void * and the second, rule5a, is for the
case where the parameter type is the type of
the local structure containing the work queue.
In both cases, the parameter is given the type
struct work_struct, and then code using
the macro container_of is added to the body
of the function to reconstruct the original argu-
ment value.

In the second section, calls to INIT_WORK for
non-delayed work queues have their second and
third arguments transformed as in the delayed
case. The rules rule7 and rule7a then up-
date the callback functions analogously to rules
rule5 and rule5a.

Using the Linux 2.6 git repository,3 we have
identified 245 driver files that use work queues.

3http://git.kernel.org/git/?p=
linux/kernel/git/torvalds/linux-2.

Of these, 45% satisfy the assumptions on which
this semantic patch is based. This semantic
patch applies correctly to 91% of them. The re-
maining cases are due to some constructs that
are not treated adequately by our approach,
to inter-file effects, and to some optimizations
made by the programmer that are too special-
purpose to be reasonable to add to a generic
transformation rule.

5 Conclusion

In this paper we have presented SmPL, our
scripting language to automate and document
collateral evolutions in Linux device drivers.
This language is based on the patch syntax, fa-
miliar to Linux developers, but accommodates
many variations among drivers. As opposed to
a traditional patch, a single semantic patch can
update hundreds of drivers at thousands of code
sites because of the features of SmPL, includ-
ing the use of metavariables, isomorphisms,
and control-flow paths, which makes a seman-
tic patch generic. We hope that the use of
semantic patches will make collateral evolu-
tions in Linux less tedious and more reliable.
We also hope that it will help developers with
drivers outside the kernel source tree to better
cope with the fast evolution of Linux.

Until now we have tried to replay what was al-
ready done by Linux programmers. We would
like now to interact with the Linux community
and really contribute to Linux by implementing
or assisting library developers in performing
new evolutions and collateral evolutions. As a
first step we have subscribed to the janitors ker-
nel mailing list and planned to contribute by au-
tomating some known janitorings4. We would
also like to investigate if SmPL could be used

6.git;a=summary
4http://kernelnewbies.org/

KernelJanitors/Todo

13

to perform collateral evolutions in other Linux
subsystems such as filesystems or network pro-
tocols or to perform other kinds of program
transformations.

Finally, introducing semantic patches in the de-
velopment process may lead to new processes,
or new tools. For instance, how can semantic
patches be integrated in versioning tools such
as git. We could imagine a versioning tool
aware of semantic patches and of the seman-
tics of C, that could for example automatically
update new drivers coming from outside the
kernel source tree with respect to some recent
semantic patches. Semantic patches, due to
their degree of genericity, can also help with the
problem of conflicts between multiple patches
that are developed concurrently and affect some
common lines of code, but in an orthogonal
way. Finally, for the same reason, seman-
tic patches should be more portable from one
Linux version to the next, in the case of a patch
that is not immediately accepted into the Linux
kernel source tree.

All the semantic patches we have written, as
well as a binary version of spatch, are avail-
able on our website: http://www.emn.fr/

x-info/coccinelle. Reading those seman-
tic patches can give a better feeling of the ex-
pressivity of SmPL. They can also be used as a
complement to this tutorial.

14

