
Coccinelle Usage (version 0.2.2)

May 24, 2010

1 Introduction

This document describes the options provided by Coccinelle. The options have an impact on various phases
of the semantic patch application process. These are:

1. Selecting and parsing the semantic patch.

2. Selecting and parsing the C code.

3. Application of the semantic patch to the C code.

4. Transformation.

5. Generation of the result.

One can either initiate the complete process from step 1, or to perform step 1 or step 2 individually.
Coccinelle has quite a lot of options. The most common usages are as follows, for a semantic match

foo.cocci, a C �le foo.c, and a directory foodir:

• spatch -parse_cocci foo.cocci: Check that the semantic patch is syntactically correct.

• spatch -parse_c foo.c: Check that the C �le is syntactically correct. The Coccinelle C parser tries
to recover during the parsing process, so if one function does not parse, it will start up again with the
next one. Thus, a parse error is often not a cause for concern, unless it occurs in a function that is
relevant to the semantic patch.

• spatch -sp_file foo.cocci foo.c: Apply the semantic patch foo.cocci to the �le foo.c and print
out any transformations as a di�.

• spatch -sp_file foo.cocci foo.c -debug: The same as the previous case, but print out some
information about the matching process.

• spatch -sp_file foo.cocci -dir foodir: Apply the semantic patch foo.cocci to all of the C �les
in the directory foodir.

• spatch -sp_file foo.cocci -dir foodir -include_headers: Apply the semantic patch foo.cocci
to all of the C �les and header �les in the directory foodir.

In the rest of this document, the options are annotated as follows:

• V: a basic option, that is most likely of interest to all users.

• _: an option that is frequently used, often for better understanding the e�ect of a semantic patch.

• &: an option that is likely to be rarely used, but whose e�ect is still comprehensible to a user.

• An option with no annotation is likely of interest only to developers.

1



2 Selecting and parsing the semantic patch

2.1 Standalone options

_ -parse_cocci 〈�le〉 Parse a semantic patch �le and print out some information about it.

2.2 The semantic patch

V -sp_�le 〈�le〉, -c 〈�le〉, -cocci_�le 〈�le〉 Specify the name of the �le containing the semantic patch.
The �le name should end in .cocci. All three options do the same thing; the last two are deprecated.

2.3 Isomorphisms

& -iso, -iso_�le Specify a �le containing isomorphisms to be used in place of the standard one. Normally
one should use the using construct within a semantic patch to specify isomorphisms to be used in addition

to the standard ones.

& -iso_limit 〈int〉 Limit the depth of application of isomorphisms to the speci�ed integer.

& -no_iso_limit Put no limit on the number of times that isomorphisms can be applied. This is the
default.

-track_iso Gather information about isomorphism usage.

-pro�le_iso Gather information about the time required for isomorphism expansion.

2.4 Display options

& -show_cocci Show the semantic patch that is being processed before expanding isomorphisms.

& -show_SP Show the semantic patch that is being processed after expanding isomorphisms.

& -show_ctl_text Show the representation of the semantic patch in CTL.

& -ctl_inline_let Sometimes let is used to name intermediate terms CTL representation. This option
causes the let-bound terms to be inlined at the point of their reference. This option implicitly sets -
show_ctl_text.

& -ctl_show_mcodekind Show transformation information within the CTL representation of the semantic
patch. This option implicitly sets -show_ctl_text.

& -show_ctl_tex Create a LaTeX �les showing the representation of the semantic patch in CTL.

3 Selecting and parsing the C �les

3.1 Standalone options

_ -parse_c 〈�le/dir〉 Parse a .c �le or all of the .c �les in a directory. This generates information about
any parse errors encountered.

2



_ -parse_h 〈�le/dir〉 Parse a .h �le or all of the .h �les in a directory. This generates information about
any parse errors encountered.

_ -parse_ch 〈�le/dir〉 Parse a .c or .h �le or all of the .c or .h �les in a directory. This generates
information about any parse errors encountered.

_ -control_�ow 〈�le〉, -control_�ow 〈�le〉:〈function〉 Print a control-�ow graph for all of the functions
in a �le or for a speci�c function in a �le. This requires dot (http://www.graphviz.org/) and gv.

& -type_c 〈�le〉 Parse a C �le and pretty-print a version including type information.

-tokens_c 〈�le〉 Prints the tokens in a C �le.

-parse_unparse 〈�le〉 Parse and then reconstruct a C �le.

-compare_c 〈�le〉 〈�le〉, -compare_c_hardcoded Compares one C �le to another, or compare the
�le tests/compare1.c to the �le tests/compare2.c.

-test_cfg_ifdef 〈�le〉 Do some special processing of #ifdef and display the resulting control-�ow graph.
This requires dot and gv.

-test_attributes 〈�le〉, -test_cpp 〈�le〉 Test the parsing of cpp code and attributes, respectively.

3.2 Selecting C �les

An argument that ends in .c is assumed to be a C �le to process. Normally, only one C �le or one directory
is speci�ed. If multiple C �les are speci�ed, they are treated in parallel, i.e., the �rst semantic patch rule
is applied to all functions in all �les, then the second semantic patch rule is applied to all functions in all
�les, etc. If a directory is speci�ed then no �les may be speci�ed and only the rightmost directory speci�ed
is used.

_ -include_headers This option causes header �les to be processed independently. This option only makes
sense if a directory is speci�ed using -dir.

_ -use_glimpse Use a glimpse index to select the �les to which a semantic patch may be relevant. This
option requires that a directory is speci�ed. The index may be created using the script coccinelle/scripts/
glimpseindex_cocci.sh. Glimpse is available at http://webglimpse.net/. In conjunction with the option
-patch_cocci this option prints the regular expression that will be passed to glimpse.

& -dir Specify a directory containing C �les to process. A trailing / is permitted on the directory name and
has no impact on the result. By default, the include path will be set to the �include� subdirectory of this
directory. A di�erent include path can be speci�ed using the option -I. -dir only considers the rightmost
directory in the argument list. This behavior is convenient for creating a script that always works on a
single directory, but allows the user of the script to override the provided directory with another one. Spatch
collects the �les in the directory using find and does not follow symbolic links.

-kbuild_info 〈�le〉 The speci�ed �le contains information about which sets of �les should be considered
in parallel.

3



-disable_worth_trying_opt Normally, a C �le is only processed if it contains some keywords that have
been determined to be essential for the semantic patch to match somewhere in the �le. This option disables
this optimization and tries the semantic patch on all �les.

-test 〈�le〉 A shortcut for running Coccinelle on the semantic patch ��le.cocci� and the C �le ��le.c�.

-testall A shortcut for running Coccinelle on all �les in a subdirectory tests such that there are all of a
.cocci �le, a .c �le, and a .res �le, where the .res contains the expected result.

-test_okfailed, -test_regression_okfailed Other options for keeping track of tests that have succeeded
and failed.

-compare_with_expected Compare the result of applying Coccinelle to �le.c to the �le �le.res rep-
resenting the expected result.

-expected_score_�le 〈�le〉 which score �le to compare with in the testall run

3.3 Parsing C �les

& -show_c Show the C code that is being processed.

& -parse_error_msg Show parsing errors in the C �le.

& -verbose_parsing Show parsing errors in the C �le, as well as information about attempts to accomodate
such errors. This implicitly sets -parse_error_msg.

& -type_error_msg Show information about where the C type checker was not able to determine the
type of an expression.

& -int_bits 〈n〉, -long_bits 〈n〉 Provide integer size information. n is the number of bits in an unsigned
integer or unsigned long, respectively. If only the option -int_bits is used, unsigned longs will be assumed
to have twice as many bits as unsigned integers. If only the option -long_bits is used, unsigned ints will
be assumed to have half as many bits as unsigned integers. This information is only used in determining the
types of integer constants, according to the ANSI C standard (C89). If neither is provided, the type of an
integer constant is determined by the sequence of �u� and �l� annotations following the constant. If there is
none, the constant is assumed to be a signed integer. If there is only �u�, the constant is assumed to be an
unsigned integer, etc.

& -no_loops Drop back edges for loops. This may make a semantic patch/match run faster, at the cost of
not �nding matches that wrap around loops.

-use_cache Use preparsed versions of the C �les that are stored in a cache.

-debug_cpp, -debug_lexer, -debug_etdt, -debug_typedef Various options for debugging the C
parser.

-�lter_msg, -�lter_de�ne_error, -�lter_passed_level Various options for debugging the C parser.

4



-only_return_is_error_exit In matching �...� in a semantic patch or when forall is speci�ed, a rule
must match all control-�ow paths starting from a node matching the beginning of the rule. This is relaxed,
however, for error handling code. Normally, error handling code is considered to be a conditional with only
a then branch that ends in goto, break, continue, or return. If this option is set, then only a then branch
ending in a return is considered to be error handling code. Usually a better strategy is to use when strict

in the semantic patch, and then match explicitly the case where there is a conditional whose then branch
ends in a return.

Macros and other preprocessor code

_ -macro_�le 〈�le〉 Extra macro de�nitions to be taken into account when parsing the C �les.

_ -macro_�le_builtins 〈�le〉 Builtin macro de�nitions to be taken into account when parsing the C �les.

& -ifdef_to_if,-no_ifdef_to_if The option -ifdef_to_if represents an #ifdef in the source code as a
conditional in the control-�ow graph when doing so represents valid code. -no_ifdef_to_if disables this
feature. -ifdef_to_if is the default.

& -use_if0_code Normally code under #if 0 is ignored. If this option is set then the code is considered,
just like the code under any other #ifdef.

-noadd_typedef_root This seems to reduce the scope of a typedef declaration found in the C code.

Include �les

_ -all_includes, -local_includes, -no_includes These options control which include �les mentioned
in a C �le are taken into account. -all_includes indicates that all included �les will be processed. -
local_includes indicates that only included �les in the current directory will be processed. -no_includes
indicates that no included �les will be processed. If the semantic patch contains type speci�cations on
expression metavariables, then the default is -local_includes. Otherwise the default is -no_includes. At
most one of these options can be speci�ed.

_ -I 〈path〉 This option speci�es a directory in which to �nd non-local include �les. This option can be
used several times.

& -relax_include_path This option when combined with -all_includes causes the search for local include
�les to consider the directory speci�ed using -I if the included �le is not found in the current directory.

4 Application of the semantic patch to the C code

4.1 Feedback at the rule level during the application of the semantic patch

_ -show_bindings Show the environments with respect to which each rule is applied and the bindings
that result from each such application.

_ -show_dependencies Show the status (matched or unmatched) of the rules on which a given rule
depends. -show_dependencies implicitly sets -show_bindings, as the values of the dependencies are
environment-speci�c.

_ -show_trying Show the name of each program element to which each rule is applied.

5



_ -show_transinfo Show information about each transformation that is performed. The node numbers
that are referenced are the number of the nodes in the control-�ow graph, which can be seen using the
option -control_�ow (the initial control-�ow graph only) or the option -show_�ow (the control-�ow
graph before and after each rule application).

_ -show_misc Show some miscellaneous information.

& -show_�ow 〈�le〉, -show_�ow 〈�le〉:〈function〉 Show the control-�ow graph before and after the
application of each rule.

-show_before_�xed_�ow This is similar to -show_�ow, but shows a preliminary version of the
control-�ow graph.

4.2 Feedback at the CTL level during the application of the semantic patch

_ -verbose_engine Show a trace of the matching of atomic terms to C code.

& -verbose_ctl_engine Show a trace of the CTL matching process. This is unfortunately rather volumi-
nous and not so helpful for someone who is not familiar with CTL in general and the translation of SmPL
into CTL speci�cally. This option implicitly sets the option -show_ctl_text.

& -graphical_trace Create a pdf �le containing the control �ow graph annotated with the various nodes
matched during the CTL matching process. Unfortunately, except for the most simple examples, the
output is voluminous, and so the option is not really practical for most examples. This requires dot

(http://www.graphviz.org/) and pdftk.

& -gt_without_label The same as -graphical_trace, but the PDF �le does not contain the CTL code.

& -partial_match Report partial matches of the semantic patch on the C �le. This can be substantially
slower than normal matching.

& -verbose_match Report on when CTL matching is not applied to a function or other program unit
because it does not contain some required atomic pattern. This can be viewed as a simpler, more e�cient,
but less informative version of -partial_match.

4.3 Actions during the application of the semantic patch

_ -D rulename Run the patch considering that the virtual rule �rulename� is satis�ed. Virtual rules should
be declared at the beginning of the semantic patch in a comma separated list following the keyword virtual.
Other rules can depend on the satisfaction or non satifaction of these rules using the keyword depends on

in the usual way.

_ -D variable=value Run the patch considering that the virtual identi�er metavariable �variable� is bound
to �value�. Any identi�er metavariable can be designated as being virtual by giving it the rule name virtual.
An example is in demos/vm.coci

6



& -allow_inconsistent_paths Normally, a term that is transformed should only be accessible from other
terms that are matched by the semantic patch. This option removes this constraint. Doing so, is unsafe,
however, because the properties that hold along the matched path might not hold at all along the unmatched
path.

& -disallow_nested_exps In an expression that contains repeated nested subterms, e.g. of the form
f(f(x)), a pattern can match a single expression in multiple ways, some nested inside others. This option
causes the matching process to stop immediately at the outermost match. Thus, in the example f(f(x)),
the possibility that the pattern f(E), with metavariable E, matches with E as x will not be considered.

& -no_safe_expressions normally, we check that an expression does not match something earlier in the
disjunction. But for large disjunctions, this can result in a very big CTL formula. So this option give the
user the option to say he doesn't want this feature, if that is the case.

& -pyoutput coccilib.output.Gtk, -pyoutput coccilib.output.Console This controls whether Python
output is sent to Gtk or to the console. -pyoutput coccilib.output.Console is the default. The Gtk
option is currently not well supported.

-loop When there is �...� in the semantic patch, the CTL operator AU is used if the current function
does not contain a loop, and AW may be used if it does. This option causes AW always to be used.

-steps 〈int〉 This limits the number of steps performed by the CTL engine to the speci�ed number. This
option is unsafe as it might cause a rule to fail due to running out of steps rather than due to not matching.

-bench 〈int〉 This collects various information about the operations performed during the CTL matching
process.

-popl, -popl_mark_all, -popl_keep_all_wits These options use a simpli�ed version of the SmPL
language. -popl_mark_all and -popl_keep_all_wits implicitly set -popl.

5 Generation of the result

Normally, the only output is a di� printed to standard output.

_ -keep_comments Don't remove comments adjacent to removed code.

_ -linux_spacing, -smpl_spacing Control the spacing within the code added by the semantic patch.
The option -linux_spacing causes spatch to follow the conventions of Linux, regardless of the spacing in
the semantic patch. This is the default. The option -smpl_spacing causes spatch to follow the spacing
given in the semantic patch, within individual lines.

& -o 〈�le〉 The output �le.

& -in_place Modify the input �le. By default, the input �le is overwritten, with no backup.

& -backup_su�x The su�x of the �le to use in making a backup of the original �le(s). This su�x should
include the leading �.�, if one is desired. This option only has an e�ect when the option -in_place is also
used.

7



& -out_place Store modi�cations in a .cocci_res �le.

& -no_show_di� Normally, a di� between the original and transformed code is printed on the standard
output. This option causes this not to be done.

& -U Set number of di� context lines.

& -patch 〈path〉 The pre�x of the pathname of the directory or �le name that should dropped from
the di� line in the generated patch. This is useful if you want to apply a patch only to a subdirec-
tory of a source code tree but want to create a patch that can be applied at the root of the source
code tree. An example could be spatch -sp_file foo.cocci -dir /var/linuxes/linux-next/drivers

-patch /var/linuxes/linux-next. A trailing / is permitted on the directory name and has no impact on
the result.

& -save_tmp_�les Coccinelle creates some temporary �les in /tmp that it deletes after use. This option
causes these �les to be saved.

-debug_unparsing Show some debugging information about the generation of the transformed code.
This has the side-e�ect of deleting the transformed code.

6 Other options

6.1 Version information

_ -version The version of Coccinelle. No other options are allowed.

_ -date The date of the current version of Coccinelle. No other options are allowed.

6.2 Help

V -h, -shorthelp The most useful commands.

V -help, �help, -longhelp A complete listing of the available commands.

6.3 Controlling the execution of Coccinelle

_ -timeout 〈int〉 The maximum time in seconds for processing a single �le.

& -max 〈int〉 This option informs Coccinelle of the number of instances of Coccinelle that will be run
concurrently. This option requires -index. It is usually used with -dir.

& -index 〈int〉 This option informs Coccinelle of which of the concurrent instances is the current one. This
option requires -max.

& -mod_distrib When multiple instances of Coccinelle are run in parallel, normally the �rst instance
processes the �rst n �les, the second instance the second n �les, etc. With this option, the �les are distributed
among the instances in a round-robin fashion.

-debugger Option for running Coccinelle from within the OCaml debugger.

8



-pro�le Gather timing information about the main Coccinelle functions.

-disable_once Print various warning messages every time some condition occurs, rather than only once.

6.4 Miscellaneous

& -quiet Suppress most output. This is the default.

-pad, -hrule 〈dir〉, -xxx, -l1

9


