whitespace changes...
[clinton/Smoothieware.git] / src / modules / robot / Planner.cpp
index 45dde74..a7525d5 100644 (file)
@@ -36,13 +36,15 @@ using namespace std;
 // It makes sure the speed stays within the configured constraints ( acceleration, junction_deviation, etc )
 // It goes over the list in both direction, every time a block is added, re-doing the math to make sure everything is optimal
 
-Planner::Planner(){
+Planner::Planner()
+{
     clear_vector_float(this->previous_unit_vec);
     config_load();
 }
 
 // Configure acceleration
-void Planner::config_load(){
+void Planner::config_load()
+{
     this->acceleration = THEKERNEL->config->value(acceleration_checksum)->by_default(100.0F )->as_number(); // Acceleration is in mm/s^2
     this->z_acceleration = THEKERNEL->config->value(z_acceleration_checksum)->by_default(0.0F )->as_number(); // disabled by default
 
@@ -62,8 +64,7 @@ void Planner::append_block( ActuatorCoordinates &actuator_pos, float rate_mm_s,
 
 
     // Direction bits
-    for (size_t i = 0; i < THEKERNEL->robot->actuators.size(); i++)
-    {
+    for (size_t i = 0; i < THEKERNEL->robot->actuators.size(); i++) {
         int steps = THEKERNEL->robot->actuators[i]->steps_to_target(actuator_pos[i]);
 
         block->direction_bits[i] = (steps < 0) ? 1 : 0;
@@ -75,32 +76,33 @@ void Planner::append_block( ActuatorCoordinates &actuator_pos, float rate_mm_s,
         block->steps[i] = labs(steps);
     }
 
-    acceleration= this->acceleration;
-    junction_deviation= this->junction_deviation;
+    acceleration = this->acceleration;
+    junction_deviation = this->junction_deviation;
 
     // use either regular acceleration or a z only move accleration
     if(block->steps[ALPHA_STEPPER] == 0 && block->steps[BETA_STEPPER] == 0) {
         // z only move
-        if(this->z_acceleration > 0.0F) acceleration= this->z_acceleration;
-        if(this->z_junction_deviation >= 0.0F) junction_deviation= this->z_junction_deviation;
+        if(this->z_acceleration > 0.0F) acceleration = this->z_acceleration;
+        if(this->z_junction_deviation >= 0.0F) junction_deviation = this->z_junction_deviation;
     }
 
-    block->acceleration= acceleration; // save in block
+    block->acceleration = acceleration; // save in block
 
     // Max number of steps, for all axes
-    int steps_event_count = 0;
-    for (size_t s = 0; s < THEKERNEL->robot->actuators.size(); s++)
+    uint32_t steps_event_count = 0;
+    for (size_t s = 0; s < THEKERNEL->robot->actuators.size(); s++) {
         steps_event_count = std::max(steps_event_count, block->steps[s]);
+    }
     block->steps_event_count = steps_event_count;
 
     block->millimeters = distance;
 
     // Calculate speed in mm/sec for each axis. No divide by zero due to previous checks.
     // NOTE: Minimum stepper speed is limited by MINIMUM_STEPS_PER_MINUTE in stepper.c
-    if( distance > 0.0F ){
+    if( distance > 0.0F ) {
         block->nominal_speed = rate_mm_s;           // (mm/s) Always > 0
         block->nominal_rate = ceilf(block->steps_event_count * rate_mm_s / distance); // (step/s) Always > 0
-    }else{
+    } else {
         block->nominal_speed = 0.0F;
         block->nominal_rate  = 0;
     }
@@ -128,16 +130,15 @@ void Planner::append_block( ActuatorCoordinates &actuator_pos, float rate_mm_s,
     // and this allows one to stop with little to no decleration in many cases. This is particualrly bad on leadscrew based systems that will skip steps.
     float vmax_junction = minimum_planner_speed; // Set default max junction speed
 
-    if (!THEKERNEL->conveyor->is_queue_empty())
-    {
+    if (!THEKERNEL->conveyor->is_queue_empty()) {
         float previous_nominal_speed = THEKERNEL->conveyor->queue.item_ref(THEKERNEL->conveyor->queue.prev(THEKERNEL->conveyor->queue.head_i))->nominal_speed;
 
         if (previous_nominal_speed > 0.0F && junction_deviation > 0.0F) {
             // Compute cosine of angle between previous and current path. (prev_unit_vec is negative)
             // NOTE: Max junction velocity is computed without sin() or acos() by trig half angle identity.
             float cos_theta = - this->previous_unit_vec[X_AXIS] * unit_vec[X_AXIS]
-                                - this->previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
-                                - this->previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
+                              - this->previous_unit_vec[Y_AXIS] * unit_vec[Y_AXIS]
+                              - this->previous_unit_vec[Z_AXIS] * unit_vec[Z_AXIS] ;
 
             // Skip and use default max junction speed for 0 degree acute junction.
             if (cos_theta < 0.95F) {
@@ -183,7 +184,8 @@ void Planner::append_block( ActuatorCoordinates &actuator_pos, float rate_mm_s,
     THEKERNEL->conveyor->queue_head_block();
 }
 
-void Planner::recalculate() {
+void Planner::recalculate()
+{
     Conveyor::Queue_t &queue = THEKERNEL->conveyor->queue;
 
     unsigned int block_index;
@@ -227,10 +229,8 @@ void Planner::recalculate() {
     block_index = queue.head_i;
     current     = queue.item_ref(block_index);
 
-    if (!queue.is_empty())
-    {
-        while ((block_index != queue.tail_i) && current->recalculate_flag)
-        {
+    if (!queue.is_empty()) {
+        while ((block_index != queue.tail_i) && current->recalculate_flag) {
             entry_speed = current->reverse_pass(entry_speed);
 
             block_index = queue.prev(block_index);
@@ -248,8 +248,7 @@ void Planner::recalculate() {
 
         float exit_speed = current->max_exit_speed();
 
-        while (block_index != queue.head_i)
-        {
+        while (block_index != queue.head_i) {
             previous    = current;
             block_index = queue.next(block_index);
             current     = queue.item_ref(block_index);
@@ -275,10 +274,11 @@ void Planner::recalculate() {
 
 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
 // acceleration within the allotted distance.
-float Planner::max_allowable_speed(float acceleration, float target_velocity, float distance) {
-  return(
-    sqrtf(target_velocity*target_velocity-2.0F*acceleration*distance)  //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
-  );
+float Planner::max_allowable_speed(float acceleration, float target_velocity, float distance)
+{
+    return(
+              sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance) //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
+          );
 }