clean up defines of vector when not actually used
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
dissimilarity index 78%
index 0055f79..9f38d5f 100644 (file)
-/*
-      This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
-      Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
-      Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
-      You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
-*/
-
-#include "libs/Module.h"
-#include "libs/Kernel.h"
-#include "libs/nuts_bolts.h"
-#include <math.h>
-#include <string>
-#include "Block.h"
-#include "Planner.h"
-#include "Player.h"
-using std::string;
-#include <vector>
-#include "../communication/utils/Gcode.h"
-
-Block::Block(){
-    clear_vector(this->steps);
-    this->times_taken = 0;   // A block can be "taken" by any number of modules, and the next block is not moved to until all the modules have "released" it. This value serves as a tracker.
-    this->is_ready = false;
-    this->initial_rate = -1;
-    this->final_rate = -1;
-}
-
-void Block::debug(Kernel* kernel){
-    kernel->streams->printf("%p: steps:%4d|%4d|%4d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d taken:%d ready:%d \r\n", this, this->steps[0], this->steps[1], this->steps[2], this->steps_event_count, this->nominal_rate, this->nominal_speed, this->millimeters, this->rate_delta, this->accelerate_until, this->decelerate_after, this->initial_rate, this->final_rate, this->times_taken, this->is_ready );
-}
-
-
-/* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
-// The factors represent a factor of braking and must be in the range 0.0-1.0.
-//                                +--------+ <- nominal_rate
-//                               /          \
-// nominal_rate*entry_factor -> +            \
-//                              |             + <- nominal_rate*exit_factor
-//                              +-------------+
-//                                  time -->
-//*/
-void Block::calculate_trapezoid( double entryfactor, double exitfactor ){
-
-    //this->player->kernel->streams->printf("%p calculating trapezoid\r\n", this);
-
-    this->initial_rate = ceil(this->nominal_rate * entryfactor);   // (step/min)
-    this->final_rate   = ceil(this->nominal_rate * exitfactor);    // (step/min)
-
-    //this->player->kernel->streams->printf("initrate:%f finalrate:%f\r\n", this->initial_rate, this->final_rate);
-
-    double acceleration_per_minute = this->rate_delta * this->planner->kernel->stepper->acceleration_ticks_per_second * 60.0; // ( step/min^2)
-    int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_minute ) );
-    int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate,  -acceleration_per_minute ) );
-
-
-    // Calculate the size of Plateau of Nominal Rate.
-    int plateau_steps = this->steps_event_count-accelerate_steps-decelerate_steps;
-
-    //this->player->kernel->streams->printf("accelperminute:%f accelerate_steps:%d decelerate_steps:%d plateau:%d \r\n", acceleration_per_minute, accelerate_steps, decelerate_steps, plateau_steps );
-
-   // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
-   // have to use intersection_distance() to calculate when to abort acceleration and start braking
-   // in order to reach the final_rate exactly at the end of this block.
-   if (plateau_steps < 0) {
-       accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_minute, this->steps_event_count));
-       accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
-       accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
-       plateau_steps = 0;
-   }
-
-   this->accelerate_until = accelerate_steps;
-   this->decelerate_after = accelerate_steps+plateau_steps;
-
-   //this->debug(this->player->kernel);
-
-   /*
-   // TODO: FIX THIS: DIRTY HACK so that we don't end too early for blocks with 0 as final_rate. Doing the math right would be better. Probably fixed in latest grbl
-   if( this->final_rate < 0.01 ){
-        this->decelerate_after += floor( this->nominal_rate / 60 / this->planner->kernel->stepper->acceleration_ticks_per_second ) * 3;
-    }
-    */
-}
-
-// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
-// given acceleration:
-double Block::estimate_acceleration_distance(double initialrate, double targetrate, double acceleration) {
-      return( ((targetrate*targetrate)-(initialrate*initialrate))/(2L*acceleration));
-}
-
-// This function gives you the point at which you must start braking (at the rate of -acceleration) if
-// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
-// a total travel of distance. This can be used to compute the intersection point between acceleration and
-// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
-//
-/*                          + <- some maximum rate we don't care about
-                           /|\
-                          / | \
-                         /  |  + <- final_rate
-                        /   |  |
-       initial_rate -> +----+--+
-                            ^ ^
-                            | |
-        intersection_distance distance */
-double Block::intersection_distance(double initialrate, double finalrate, double acceleration, double distance) {
-   return((2*acceleration*distance-initialrate*initialrate+finalrate*finalrate)/(4*acceleration));
-}
-
-// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
-// acceleration within the allotted distance.
-inline double max_allowable_speed(double acceleration, double target_velocity, double distance) {
-  return(
-    sqrt(target_velocity*target_velocity-2L*acceleration*distance)  //Was acceleration*60*60*distance, in case this breaks, but here we prefer to use seconds instead of minutes
-  );
-}
-
-
-// Called by Planner::recalculate() when scanning the plan from last to first entry.
-void Block::reverse_pass(Block* next, Block* previous){
-
-    if (next) {
-        // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
-        // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
-        // check for maximum allowable speed reductions to ensure maximum possible planned speed.
-        if (this->entry_speed != this->max_entry_speed) {
-
-            // If nominal length true, max junction speed is guaranteed to be reached. Only compute
-            // for max allowable speed if block is decelerating and nominal length is false.
-            if ((!this->nominal_length_flag) && (this->max_entry_speed > next->entry_speed)) {
-                this->entry_speed = min( this->max_entry_speed, max_allowable_speed(-this->planner->acceleration,next->entry_speed,this->millimeters));
-            } else {
-                this->entry_speed = this->max_entry_speed;
-            }
-            this->recalculate_flag = true;
-
-        }
-    } // Skip last block. Already initialized and set for recalculation.
-
-}
-
-
-// Called by Planner::recalculate() when scanning the plan from first to last entry.
-void Block::forward_pass(Block* previous, Block* next){
-
-    if(!previous) { return; } // Begin planning after buffer_tail
-
-    // If the previous block is an acceleration block, but it is not long enough to complete the
-    // full speed change within the block, we need to adjust the entry speed accordingly. Entry
-    // speeds have already been reset, maximized, and reverse planned by reverse planner.
-    // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
-    if (!previous->nominal_length_flag) {
-        if (previous->entry_speed < this->entry_speed) {
-          double entry_speed = min( this->entry_speed,
-            max_allowable_speed(-this->planner->acceleration,previous->entry_speed,previous->millimeters) );
-
-          // Check for junction speed change
-          if (this->entry_speed != entry_speed) {
-            this->entry_speed = entry_speed;
-            this->recalculate_flag = true;
-          }
-        }
-    }
-
-}
-
-
-// Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
-void Block::append_gcode(Gcode* gcode){
-   __disable_irq();
-   this->gcodes.push_back(gcode);
-   __enable_irq();
-}
-
-// The attached gcodes are then poped and the on_gcode_execute event is called with them as a parameter
-void Block::pop_and_execute_gcode(Kernel* &kernel){
-    Block* block = const_cast<Block*>(this);
-    for(unsigned short index=0; index<block->gcodes.size(); index++){
-        //printf("GCODE Z: %s \r\n", block->gcodes[index].command.c_str() );
-        kernel->call_event(ON_GCODE_EXECUTE, block->gcodes[index]);
-    }
-}
-
-// Signal the player that this block is ready to be injected into the system
-void Block::ready(){
-    this->is_ready = true;
-    this->player->new_block_added();
-}
-
-// Mark the block as taken by one more module
-void Block::take(){
-    this->times_taken++;
-    //printf("taking %p times now:%d\r\n", this, int(this->times_taken) );
-}
-
-// Mark the block as no longer taken by one module, go to next block if this free's it
-void Block::release(){
-    //printf("release %p \r\n", this );
-    this->times_taken--;
-    //printf("releasing %p times now:%d\r\n", this, int(this->times_taken) );
-    if( this->times_taken < 1 ){
-        this->player->kernel->call_event(ON_BLOCK_END, this);
-        this->pop_and_execute_gcode(this->player->kernel);
-        Player* player = this->player;
-
-        if( player->queue.size() > player->flush_blocks ){
-            player->flush_blocks++;
-        }
-
-        if( player->looking_for_new_block == false ){
-            if( player->queue.size() > player->flush_blocks ){
-                Block* candidate =  player->queue.get_ref(player->flush_blocks);
-                if( candidate->is_ready ){
-                    player->current_block = candidate;
-                    player->kernel->call_event(ON_BLOCK_BEGIN, player->current_block);
-                    if( player->current_block->times_taken < 1 ){
-                        player->current_block->times_taken = 1;
-                        player->current_block->release();
-                    }
-                }else{
-
-                    player->current_block = NULL;
-
-                }
-            }else{
-                player->current_block = NULL;
-            }
-        }
-    }
-}
-
-
-
+/*
+      This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
+      Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
+      Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
+      You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
+*/
+
+#include "libs/Module.h"
+#include "libs/Kernel.h"
+#include "libs/nuts_bolts.h"
+#include <cmath>
+#include <string>
+#include "Block.h"
+#include "Planner.h"
+#include "Conveyor.h"
+#include "Gcode.h"
+#include "libs/StreamOutputPool.h"
+#include "StepTicker.h"
+#include "platform_memory.h"
+
+#include "mri.h"
+#include <inttypes.h>
+
+using std::string;
+
+#define STEP_TICKER_FREQUENCY THEKERNEL->step_ticker->get_frequency()
+
+uint8_t Block::n_actuators= 0;
+double Block::fp_scale= 0;
+
+// A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
+// It's stacked on a queue, and that queue is then executed in order, to move the motors.
+// Most of the accel math is also done in this class
+// And GCode objects for use in on_gcode_execute are also help in here
+
+Block::Block()
+{
+    tick_info= nullptr;
+    clear();
+}
+
+void Block::init(uint8_t n)
+{
+    n_actuators= n;
+    fp_scale= (double)STEPTICKER_FPSCALE / pow((double)STEP_TICKER_FREQUENCY, 2.0); // we scale up by fixed point offset first to avoid tiny values
+}
+
+void Block::clear()
+{
+    is_ready            = false;
+
+    this->steps.fill(0);
+
+    steps_event_count   = 0;
+    nominal_rate        = 0.0F;
+    nominal_speed       = 0.0F;
+    millimeters         = 0.0F;
+    entry_speed         = 0.0F;
+    exit_speed          = 0.0F;
+    acceleration        = 100.0F; // we don't want to get divide by zeroes if this is not set
+    initial_rate        = 0.0F;
+    accelerate_until    = 0;
+    decelerate_after    = 0;
+    direction_bits      = 0;
+    recalculate_flag    = false;
+    nominal_length_flag = false;
+    max_entry_speed     = 0.0F;
+    is_ticking          = false;
+    is_g123             = false;
+    locked              = false;
+    s_value             = 0.0F;
+
+    total_move_ticks= 0;
+    if(tick_info == nullptr) {
+        // we create this once for this block
+        tick_info= new tickinfo_t[n_actuators]; //(tickinfo_t *)malloc(sizeof(tickinfo_t) * n_actuators);
+        if(tick_info == nullptr) {
+            // if we ran out of memory in AHB0 just stop here
+            __debugbreak();
+        }
+    }
+
+    for(int i = 0; i < n_actuators; ++i) {
+        tick_info[i].steps_per_tick= 0;
+        tick_info[i].counter= 0;
+        tick_info[i].acceleration_change= 0;
+        tick_info[i].deceleration_change= 0;
+        tick_info[i].plateau_rate= 0;
+        tick_info[i].steps_to_move= 0;
+        tick_info[i].step_count= 0;
+        tick_info[i].next_accel_event= 0;
+    }
+}
+
+void Block::debug() const
+{
+    THEKERNEL->streams->printf("%p: steps-X:%lu Y:%lu Z:%lu ", this, this->steps[0], this->steps[1], this->steps[2]);
+    for (size_t i = E_AXIS; i < n_actuators; ++i) {
+        THEKERNEL->streams->printf("%c:%lu ", 'A' + i-E_AXIS, this->steps[i]);
+    }
+    THEKERNEL->streams->printf("(max:%lu) nominal:r%1.4f/s%1.4f mm:%1.4f acc:%1.2f accu:%lu decu:%lu ticks:%lu rates:%1.4f/%1.4f entry/max:%1.4f/%1.4f exit:%1.4f primary:%d ready:%d locked:%d ticking:%d recalc:%d nomlen:%d time:%f\r\n",
+                               this->steps_event_count,
+                               this->nominal_rate,
+                               this->nominal_speed,
+                               this->millimeters,
+                               this->acceleration,
+                               this->accelerate_until,
+                               this->decelerate_after,
+                               this->total_move_ticks,
+                               this->initial_rate,
+                               this->maximum_rate,
+                               this->entry_speed,
+                               this->max_entry_speed,
+                               this->exit_speed,
+                               this->primary_axis,
+                               this->is_ready,
+                               this->locked,
+                               this->is_ticking,
+                               recalculate_flag ? 1 : 0,
+                               nominal_length_flag ? 1 : 0,
+                               total_move_ticks/STEP_TICKER_FREQUENCY
+                              );
+}
+
+
+/* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
+// The factors represent a factor of braking and must be in the range 0.0-1.0.
+//                                +--------+ <- nominal_rate
+//                               /          \
+// nominal_rate*entry_factor -> +            \
+//                              |             + <- nominal_rate*exit_factor
+//                              +-------------+
+//                                  time -->
+*/
+void Block::calculate_trapezoid( float entryspeed, float exitspeed )
+{
+    // if block is currently executing, don't touch anything!
+    if (is_ticking) return;
+
+    float initial_rate = this->nominal_rate * (entryspeed / this->nominal_speed); // steps/sec
+    float final_rate = this->nominal_rate * (exitspeed / this->nominal_speed);
+    //printf("Initial rate: %f, final_rate: %f\n", initial_rate, final_rate);
+    // How many steps ( can be fractions of steps, we need very precise values ) to accelerate and decelerate
+    // This is a simplification to get rid of rate_delta and get the steps/s² accel directly from the mm/s² accel
+    float acceleration_per_second = (this->acceleration * this->steps_event_count) / this->millimeters;
+
+    float maximum_possible_rate = sqrtf( ( this->steps_event_count * acceleration_per_second ) + ( ( powf(initial_rate, 2) + powf(final_rate, 2) ) / 2.0F ) );
+
+    //printf("id %d: acceleration_per_second: %f, maximum_possible_rate: %f steps/sec, %f mm/sec\n", this->id, acceleration_per_second, maximum_possible_rate, maximum_possible_rate/100);
+
+    // Now this is the maximum rate we'll achieve this move, either because
+    // it's the higher we can achieve, or because it's the higher we are
+    // allowed to achieve
+    this->maximum_rate = std::min(maximum_possible_rate, this->nominal_rate);
+
+    // Now figure out how long it takes to accelerate in seconds
+    float time_to_accelerate = ( this->maximum_rate - initial_rate ) / acceleration_per_second;
+
+    // Now figure out how long it takes to decelerate
+    float time_to_decelerate = ( final_rate -  this->maximum_rate ) / -acceleration_per_second;
+
+    // Now we know how long it takes to accelerate and decelerate, but we must
+    // also know how long the entire move takes so we can figure out how long
+    // is the plateau if there is one
+    float plateau_time = 0;
+
+    // Only if there is actually a plateau ( we are limited by nominal_rate )
+    if(maximum_possible_rate > this->nominal_rate) {
+        // Figure out the acceleration and deceleration distances ( in steps )
+        float acceleration_distance = ( ( initial_rate + this->maximum_rate ) / 2.0F ) * time_to_accelerate;
+        float deceleration_distance = ( ( this->maximum_rate + final_rate ) / 2.0F ) * time_to_decelerate;
+
+        // Figure out the plateau steps
+        float plateau_distance = this->steps_event_count - acceleration_distance - deceleration_distance;
+
+        // Figure out the plateau time in seconds
+        plateau_time = plateau_distance / this->maximum_rate;
+    }
+
+    // Figure out how long the move takes total ( in seconds )
+    float total_move_time = time_to_accelerate + time_to_decelerate + plateau_time;
+    //puts "total move time: #{total_move_time}s time to accelerate: #{time_to_accelerate}, time to decelerate: #{time_to_decelerate}"
+
+    // We now have the full timing for acceleration, plateau and deceleration,
+    // yay \o/ Now this is very important these are in seconds, and we need to
+    // round them into ticks. This means instead of accelerating in 100.23
+    // ticks we'll accelerate in 100 ticks. Which means to reach the exact
+    // speed we want to reach, we must figure out a new/slightly different
+    // acceleration/deceleration to be sure we accelerate and decelerate at
+    // the exact rate we want
+
+    // First off round total time, acceleration time and deceleration time in ticks
+    uint32_t acceleration_ticks = floorf( time_to_accelerate * STEP_TICKER_FREQUENCY );
+    uint32_t deceleration_ticks = floorf( time_to_decelerate * STEP_TICKER_FREQUENCY );
+    uint32_t total_move_ticks   = floorf( total_move_time    * STEP_TICKER_FREQUENCY );
+
+    // Now deduce the plateau time for those new values expressed in tick
+    //uint32_t plateau_ticks = total_move_ticks - acceleration_ticks - deceleration_ticks;
+
+    // Now we figure out the acceleration value to reach EXACTLY maximum_rate(steps/s) in EXACTLY acceleration_ticks(ticks) amount of time in seconds
+    float acceleration_time = acceleration_ticks / STEP_TICKER_FREQUENCY;  // This can be moved into the operation below, separated for clarity, note we need to do this instead of using time_to_accelerate(seconds) directly because time_to_accelerate(seconds) and acceleration_ticks(seconds) do not have the same value anymore due to the rounding
+    float deceleration_time = deceleration_ticks / STEP_TICKER_FREQUENCY;
+
+    float acceleration_in_steps = (acceleration_time > 0.0F ) ? ( this->maximum_rate - initial_rate ) / acceleration_time : 0;
+    float deceleration_in_steps =  (deceleration_time > 0.0F ) ? ( this->maximum_rate - final_rate ) / deceleration_time : 0;
+
+    // we have a potential race condition here as we could get interrupted anywhere in the middle of this call, we need to lock
+    // the updates to the blocks to get around it
+    this->locked= true;
+    // Now figure out the two acceleration ramp change events in ticks
+    this->accelerate_until = acceleration_ticks;
+    this->decelerate_after = total_move_ticks - deceleration_ticks;
+
+    // We now have everything we need for this block to call a Steppermotor->move method !!!!
+    // Theorically, if accel is done per tick, the speed curve should be perfect.
+    this->total_move_ticks = total_move_ticks;
+
+    this->initial_rate = initial_rate;
+    this->exit_speed = exitspeed;
+
+    // prepare the block for stepticker
+    this->prepare(acceleration_in_steps, deceleration_in_steps);
+
+    this->locked= false;
+}
+
+// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
+// acceleration within the allotted distance.
+float Block::max_allowable_speed(float acceleration, float target_velocity, float distance)
+{
+    return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
+}
+
+// Called by Planner::recalculate() when scanning the plan from last to first entry.
+float Block::reverse_pass(float exit_speed)
+{
+    // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
+    // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
+    // check for maximum allowable speed reductions to ensure maximum possible planned speed.
+    if (this->entry_speed != this->max_entry_speed) {
+        // If nominal length true, max junction speed is guaranteed to be reached. Only compute
+        // for max allowable speed if block is decelerating and nominal length is false.
+        if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed)) {
+            float max_entry_speed = max_allowable_speed(-this->acceleration, exit_speed, this->millimeters);
+
+            this->entry_speed = min(max_entry_speed, this->max_entry_speed);
+
+            return this->entry_speed;
+        } else
+            this->entry_speed = this->max_entry_speed;
+    }
+
+    return this->entry_speed;
+}
+
+
+// Called by Planner::recalculate() when scanning the plan from first to last entry.
+// returns maximum exit speed of this block
+float Block::forward_pass(float prev_max_exit_speed)
+{
+    // If the previous block is an acceleration block, but it is not long enough to complete the
+    // full speed change within the block, we need to adjust the entry speed accordingly. Entry
+    // speeds have already been reset, maximized, and reverse planned by reverse planner.
+    // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
+
+    // TODO: find out if both of these checks are necessary
+    if (prev_max_exit_speed > nominal_speed)
+        prev_max_exit_speed = nominal_speed;
+    if (prev_max_exit_speed > max_entry_speed)
+        prev_max_exit_speed = max_entry_speed;
+
+    if (prev_max_exit_speed <= entry_speed) {
+        // accel limited
+        entry_speed = prev_max_exit_speed;
+        // since we're now acceleration or cruise limited
+        // we don't need to recalculate our entry speed anymore
+        recalculate_flag = false;
+    }
+    // else
+    // // decel limited, do nothing
+
+    return max_exit_speed();
+}
+
+float Block::max_exit_speed()
+{
+    // if block is currently executing, return cached exit speed from calculate_trapezoid
+    // this ensures that a block following a currently executing block will have correct entry speed
+    if(is_ticking)
+        return this->exit_speed;
+
+    // if nominal_length_flag is asserted
+    // we are guaranteed to reach nominal speed regardless of entry speed
+    // thus, max exit will always be nominal
+    if (nominal_length_flag)
+        return nominal_speed;
+
+    // otherwise, we have to work out max exit speed based on entry and acceleration
+    float max = max_allowable_speed(-this->acceleration, this->entry_speed, this->millimeters);
+
+    return min(max, nominal_speed);
+}
+
+// prepare block for the step ticker, called everytime the block changes
+// this is done during planning so does not delay tick generation and step ticker can simply grab the next block during the interrupt
+void Block::prepare(float acceleration_in_steps, float deceleration_in_steps)
+{
+
+    float inv = 1.0F / this->steps_event_count;
+
+    // Now figure out the acceleration PER TICK, this should ideally be held as a double as it's very critical to the block timing
+    // steps/tick^2
+    // was....
+    // float acceleration_per_tick = acceleration_in_steps / STEP_TICKER_FREQUENCY_2; // that is 100,000² too big for a float
+    // float deceleration_per_tick = deceleration_in_steps / STEP_TICKER_FREQUENCY_2;
+    double acceleration_per_tick = acceleration_in_steps * fp_scale; // this is now scaled to fit a 2.30 fixed point number
+    double deceleration_per_tick = deceleration_in_steps * fp_scale;
+
+    for (uint8_t m = 0; m < n_actuators; m++) {
+        uint32_t steps = this->steps[m];
+        this->tick_info[m].steps_to_move = steps;
+        if(steps == 0) continue;
+
+        float aratio = inv * steps;
+
+        this->tick_info[m].steps_per_tick = (int64_t)round((((double)this->initial_rate * aratio) / STEP_TICKER_FREQUENCY) * STEPTICKER_FPSCALE); // steps/sec / tick frequency to get steps per tick in 2.62 fixed point
+        this->tick_info[m].counter = 0; // 2.62 fixed point
+        this->tick_info[m].step_count = 0;
+        this->tick_info[m].next_accel_event = this->total_move_ticks + 1;
+
+        double acceleration_change = 0;
+        if(this->accelerate_until != 0) { // If the next accel event is the end of accel
+            this->tick_info[m].next_accel_event = this->accelerate_until;
+            acceleration_change = acceleration_per_tick;
+
+        } else if(this->decelerate_after == 0 /*&& this->accelerate_until == 0*/) {
+            // we start off decelerating
+            acceleration_change = -deceleration_per_tick;
+
+        } else if(this->decelerate_after != this->total_move_ticks /*&& this->accelerate_until == 0*/) {
+            // If the next event is the start of decel ( don't set this if the next accel event is accel end )
+            this->tick_info[m].next_accel_event = this->decelerate_after;
+        }
+
+        // already converted to fixed point just needs scaling by ratio
+        //#define STEPTICKER_TOFP(x) ((int64_t)round((double)(x)*STEPTICKER_FPSCALE))
+        this->tick_info[m].acceleration_change= (int64_t)round(acceleration_change * aratio);
+        this->tick_info[m].deceleration_change= -(int64_t)round(deceleration_per_tick * aratio);
+        this->tick_info[m].plateau_rate= (int64_t)round(((this->maximum_rate * aratio) / STEP_TICKER_FREQUENCY) * STEPTICKER_FPSCALE);
+
+        #if 0
+        THEKERNEL->streams->printf("spt: %08lX %08lX, ac: %08lX %08lX, dc: %08lX %08lX, pr: %08lX %08lX\n",
+            (uint32_t)(this->tick_info[m].steps_per_tick>>32), // 2.62 fixed point
+            (uint32_t)(this->tick_info[m].steps_per_tick&0xFFFFFFFF), // 2.62 fixed point
+            (uint32_t)(this->tick_info[m].acceleration_change>>32), // 2.62 fixed point signed
+            (uint32_t)(this->tick_info[m].acceleration_change&0xFFFFFFFF), // 2.62 fixed point signed
+            (uint32_t)(this->tick_info[m].deceleration_change>>32), // 2.62 fixed point
+            (uint32_t)(this->tick_info[m].deceleration_change&0xFFFFFFFF), // 2.62 fixed point
+            (uint32_t)(this->tick_info[m].plateau_rate>>32), // 2.62 fixed point
+            (uint32_t)(this->tick_info[m].plateau_rate&0xFFFFFFFF) // 2.62 fixed point
+        );
+        #endif
+    }
+}
+
+// returns current rate (steps/sec) for the given actuator
+float Block::get_trapezoid_rate(int i) const
+{
+    // convert steps per tick from fixed point to float and convert to steps/sec
+    // FIXME steps_per_tick can change at any time, potential race condition if it changes while being read here
+    return STEPTICKER_FROMFP(tick_info[i].steps_per_tick) * STEP_TICKER_FREQUENCY;
+}