clean up defines of vector when not actually used
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
index 1b016e5..9f38d5f 100644 (file)
@@ -8,7 +8,7 @@
 #include "libs/Module.h"
 #include "libs/Kernel.h"
 #include "libs/nuts_bolts.h"
-#include <math.h>
+#include <cmath>
 #include <string>
 #include "Block.h"
 #include "Planner.h"
 #include "Gcode.h"
 #include "libs/StreamOutputPool.h"
 #include "StepTicker.h"
+#include "platform_memory.h"
 
 #include "mri.h"
+#include <inttypes.h>
 
 using std::string;
-#include <vector>
 
 #define STEP_TICKER_FREQUENCY THEKERNEL->step_ticker->get_frequency()
-#define STEP_TICKER_FREQUENCY_2 (STEP_TICKER_FREQUENCY*STEP_TICKER_FREQUENCY)
+
+uint8_t Block::n_actuators= 0;
+double Block::fp_scale= 0;
 
 // A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
 // It's stacked on a queue, and that queue is then executed in order, to move the motors.
@@ -32,15 +35,19 @@ using std::string;
 
 Block::Block()
 {
+    tick_info= nullptr;
     clear();
 }
 
+void Block::init(uint8_t n)
+{
+    n_actuators= n;
+    fp_scale= (double)STEPTICKER_FPSCALE / pow((double)STEP_TICKER_FREQUENCY, 2.0); // we scale up by fixed point offset first to avoid tiny values
+}
+
 void Block::clear()
 {
-    //commands.clear();
-    //travel_distances.clear();
-    //gcodes.clear();
-    //std::vector<Gcode>().swap(gcodes); // this resizes the vector releasing its memory
+    is_ready            = false;
 
     this->steps.fill(0);
 
@@ -49,8 +56,8 @@ void Block::clear()
     nominal_speed       = 0.0F;
     millimeters         = 0.0F;
     entry_speed         = 0.0F;
-    //exit_speed          = 0.0F;
-    acceleration        = 100.0F; // we don't want to get devide by zeroes if this is not set
+    exit_speed          = 0.0F;
+    acceleration        = 100.0F; // we don't want to get divide by zeroes if this is not set
     initial_rate        = 0.0F;
     accelerate_until    = 0;
     decelerate_after    = 0;
@@ -58,30 +65,57 @@ void Block::clear()
     recalculate_flag    = false;
     nominal_length_flag = false;
     max_entry_speed     = 0.0F;
-    is_ready            = false;
+    is_ticking          = false;
+    is_g123             = false;
+    locked              = false;
+    s_value             = 0.0F;
 
-    acceleration_per_tick= 0;
-    deceleration_per_tick= 0;
     total_move_ticks= 0;
+    if(tick_info == nullptr) {
+        // we create this once for this block
+        tick_info= new tickinfo_t[n_actuators]; //(tickinfo_t *)malloc(sizeof(tickinfo_t) * n_actuators);
+        if(tick_info == nullptr) {
+            // if we ran out of memory in AHB0 just stop here
+            __debugbreak();
+        }
+    }
+
+    for(int i = 0; i < n_actuators; ++i) {
+        tick_info[i].steps_per_tick= 0;
+        tick_info[i].counter= 0;
+        tick_info[i].acceleration_change= 0;
+        tick_info[i].deceleration_change= 0;
+        tick_info[i].plateau_rate= 0;
+        tick_info[i].steps_to_move= 0;
+        tick_info[i].step_count= 0;
+        tick_info[i].next_accel_event= 0;
+    }
 }
 
 void Block::debug() const
 {
-    THEKERNEL->streams->printf("%p: steps:X%04lu Y%04lu Z%04lu(max:%4lu) nominal:r%6.1f/s%6.1f mm:%9.6f acc:%5lu dec:%5lu rates:%10.4f entry/max: %10.4f/%10.4f ready:%d recalc:%d nomlen:%d time:%f\r\n",
-                               this,
-                               this->steps[0],
-                               this->steps[1],
-                               this->steps[2],
+    THEKERNEL->streams->printf("%p: steps-X:%lu Y:%lu Z:%lu ", this, this->steps[0], this->steps[1], this->steps[2]);
+    for (size_t i = E_AXIS; i < n_actuators; ++i) {
+        THEKERNEL->streams->printf("%c:%lu ", 'A' + i-E_AXIS, this->steps[i]);
+    }
+    THEKERNEL->streams->printf("(max:%lu) nominal:r%1.4f/s%1.4f mm:%1.4f acc:%1.2f accu:%lu decu:%lu ticks:%lu rates:%1.4f/%1.4f entry/max:%1.4f/%1.4f exit:%1.4f primary:%d ready:%d locked:%d ticking:%d recalc:%d nomlen:%d time:%f\r\n",
                                this->steps_event_count,
                                this->nominal_rate,
                                this->nominal_speed,
                                this->millimeters,
+                               this->acceleration,
                                this->accelerate_until,
                                this->decelerate_after,
+                               this->total_move_ticks,
                                this->initial_rate,
+                               this->maximum_rate,
                                this->entry_speed,
                                this->max_entry_speed,
+                               this->exit_speed,
+                               this->primary_axis,
                                this->is_ready,
+                               this->locked,
+                               this->is_ticking,
                                recalculate_flag ? 1 : 0,
                                nominal_length_flag ? 1 : 0,
                                total_move_ticks/STEP_TICKER_FREQUENCY
@@ -100,6 +134,9 @@ void Block::debug() const
 */
 void Block::calculate_trapezoid( float entryspeed, float exitspeed )
 {
+    // if block is currently executing, don't touch anything!
+    if (is_ticking) return;
+
     float initial_rate = this->nominal_rate * (entryspeed / this->nominal_speed); // steps/sec
     float final_rate = this->nominal_rate * (exitspeed / this->nominal_speed);
     //printf("Initial rate: %f, final_rate: %f\n", initial_rate, final_rate);
@@ -167,26 +204,24 @@ void Block::calculate_trapezoid( float entryspeed, float exitspeed )
     float acceleration_in_steps = (acceleration_time > 0.0F ) ? ( this->maximum_rate - initial_rate ) / acceleration_time : 0;
     float deceleration_in_steps =  (deceleration_time > 0.0F ) ? ( this->maximum_rate - final_rate ) / deceleration_time : 0;
 
+    // we have a potential race condition here as we could get interrupted anywhere in the middle of this call, we need to lock
+    // the updates to the blocks to get around it
+    this->locked= true;
     // Now figure out the two acceleration ramp change events in ticks
     this->accelerate_until = acceleration_ticks;
     this->decelerate_after = total_move_ticks - deceleration_ticks;
 
-    // Now figure out the acceleration PER TICK, this should ideally be held as a float, even a double if possible as it's very critical to the block timing
-    // steps/tick^2
-
-    this->acceleration_per_tick =  acceleration_in_steps / STEP_TICKER_FREQUENCY_2;
-    this->deceleration_per_tick = deceleration_in_steps / STEP_TICKER_FREQUENCY_2;
-
     // We now have everything we need for this block to call a Steppermotor->move method !!!!
     // Theorically, if accel is done per tick, the speed curve should be perfect.
-
-    // We need this to call move()
     this->total_move_ticks = total_move_ticks;
 
-    //puts "accelerate_until: #{this->accelerate_until}, decelerate_after: #{this->decelerate_after}, acceleration_per_tick: #{this->acceleration_per_tick}, total_move_ticks: #{this->total_move_ticks}"
-
     this->initial_rate = initial_rate;
-    //this->exit_speed = exitspeed;
+    this->exit_speed = exitspeed;
+
+    // prepare the block for stepticker
+    this->prepare(acceleration_in_steps, deceleration_in_steps);
+
+    this->locked= false;
 }
 
 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
@@ -251,9 +286,8 @@ float Block::max_exit_speed()
 {
     // if block is currently executing, return cached exit speed from calculate_trapezoid
     // this ensures that a block following a currently executing block will have correct entry speed
-    // FIXME
-    // if (times_taken)
-    //     return exit_speed;
+    if(is_ticking)
+        return this->exit_speed;
 
     // if nominal_length_flag is asserted
     // we are guaranteed to reach nominal speed regardless of entry speed
@@ -267,30 +301,72 @@ float Block::max_exit_speed()
     return min(max, nominal_speed);
 }
 
-// Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
-// void Block::append_gcode(Gcode* gcode)
-// {
-//     Gcode new_gcode = *gcode;
-//     new_gcode.strip_parameters(); // optimization to save memory we strip off the XYZIJK parameters from the saved command
-//     gcodes.push_back(new_gcode);
-// }
-
-// void Block::begin()
-// {
-//     // can no longer be used in planning
-//     recalculate_flag = false;
-
-//     // TODO probably should remove this
-//     if (!is_ready)
-//         __debugbreak();
-
-// }
-
-// Mark the block as finished
-//void Block::release()
-//{
-    // if (is_ready) {
-    //     is_ready = false;
-    //     THEKERNEL->conveyor->on_block_end(this);
-    // }
-//}
+// prepare block for the step ticker, called everytime the block changes
+// this is done during planning so does not delay tick generation and step ticker can simply grab the next block during the interrupt
+void Block::prepare(float acceleration_in_steps, float deceleration_in_steps)
+{
+
+    float inv = 1.0F / this->steps_event_count;
+
+    // Now figure out the acceleration PER TICK, this should ideally be held as a double as it's very critical to the block timing
+    // steps/tick^2
+    // was....
+    // float acceleration_per_tick = acceleration_in_steps / STEP_TICKER_FREQUENCY_2; // that is 100,000² too big for a float
+    // float deceleration_per_tick = deceleration_in_steps / STEP_TICKER_FREQUENCY_2;
+    double acceleration_per_tick = acceleration_in_steps * fp_scale; // this is now scaled to fit a 2.30 fixed point number
+    double deceleration_per_tick = deceleration_in_steps * fp_scale;
+
+    for (uint8_t m = 0; m < n_actuators; m++) {
+        uint32_t steps = this->steps[m];
+        this->tick_info[m].steps_to_move = steps;
+        if(steps == 0) continue;
+
+        float aratio = inv * steps;
+
+        this->tick_info[m].steps_per_tick = (int64_t)round((((double)this->initial_rate * aratio) / STEP_TICKER_FREQUENCY) * STEPTICKER_FPSCALE); // steps/sec / tick frequency to get steps per tick in 2.62 fixed point
+        this->tick_info[m].counter = 0; // 2.62 fixed point
+        this->tick_info[m].step_count = 0;
+        this->tick_info[m].next_accel_event = this->total_move_ticks + 1;
+
+        double acceleration_change = 0;
+        if(this->accelerate_until != 0) { // If the next accel event is the end of accel
+            this->tick_info[m].next_accel_event = this->accelerate_until;
+            acceleration_change = acceleration_per_tick;
+
+        } else if(this->decelerate_after == 0 /*&& this->accelerate_until == 0*/) {
+            // we start off decelerating
+            acceleration_change = -deceleration_per_tick;
+
+        } else if(this->decelerate_after != this->total_move_ticks /*&& this->accelerate_until == 0*/) {
+            // If the next event is the start of decel ( don't set this if the next accel event is accel end )
+            this->tick_info[m].next_accel_event = this->decelerate_after;
+        }
+
+        // already converted to fixed point just needs scaling by ratio
+        //#define STEPTICKER_TOFP(x) ((int64_t)round((double)(x)*STEPTICKER_FPSCALE))
+        this->tick_info[m].acceleration_change= (int64_t)round(acceleration_change * aratio);
+        this->tick_info[m].deceleration_change= -(int64_t)round(deceleration_per_tick * aratio);
+        this->tick_info[m].plateau_rate= (int64_t)round(((this->maximum_rate * aratio) / STEP_TICKER_FREQUENCY) * STEPTICKER_FPSCALE);
+
+        #if 0
+        THEKERNEL->streams->printf("spt: %08lX %08lX, ac: %08lX %08lX, dc: %08lX %08lX, pr: %08lX %08lX\n",
+            (uint32_t)(this->tick_info[m].steps_per_tick>>32), // 2.62 fixed point
+            (uint32_t)(this->tick_info[m].steps_per_tick&0xFFFFFFFF), // 2.62 fixed point
+            (uint32_t)(this->tick_info[m].acceleration_change>>32), // 2.62 fixed point signed
+            (uint32_t)(this->tick_info[m].acceleration_change&0xFFFFFFFF), // 2.62 fixed point signed
+            (uint32_t)(this->tick_info[m].deceleration_change>>32), // 2.62 fixed point
+            (uint32_t)(this->tick_info[m].deceleration_change&0xFFFFFFFF), // 2.62 fixed point
+            (uint32_t)(this->tick_info[m].plateau_rate>>32), // 2.62 fixed point
+            (uint32_t)(this->tick_info[m].plateau_rate&0xFFFFFFFF) // 2.62 fixed point
+        );
+        #endif
+    }
+}
+
+// returns current rate (steps/sec) for the given actuator
+float Block::get_trapezoid_rate(int i) const
+{
+    // convert steps per tick from fixed point to float and convert to steps/sec
+    // FIXME steps_per_tick can change at any time, potential race condition if it changes while being read here
+    return STEPTICKER_FROMFP(tick_info[i].steps_per_tick) * STEP_TICKER_FREQUENCY;
+}