bca5c51ab35b462255c16fca99ba08a81b6e133f
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
1 /*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6 */
7
8 #include "libs/Module.h"
9 #include "libs/Kernel.h"
10 #include "libs/nuts_bolts.h"
11 #include <math.h>
12 #include <string>
13 #include "Block.h"
14 #include "Planner.h"
15 #include "Conveyor.h"
16 #include "Gcode.h"
17 #include "libs/StreamOutputPool.h"
18 #include "Stepper.h"
19
20 #include "mri.h"
21
22 using std::string;
23 #include <vector>
24
25 #ifdef BLOCK_DEBUG_PIN
26 #include "gpio.h"
27 extern GPIO block_debug_pin;
28 #endif
29
30 // A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
31 // It's stacked on a queue, and that queue is then executed in order, to move the motors.
32 // Most of the accel math is also done in this class
33 // And GCode objects for use in on_gcode_execute are also help in here
34
35 Block::Block()
36 {
37 clear();
38 }
39
40 void Block::clear()
41 {
42 //commands.clear();
43 //travel_distances.clear();
44 gcodes.clear();
45 std::vector<Gcode>().swap(gcodes); // this resizes the vector releasing its memory
46
47 clear_vector(this->steps);
48
49 steps_event_count = 0;
50 nominal_rate = 0;
51 nominal_speed = 0.0F;
52 millimeters = 0.0F;
53 entry_speed = 0.0F;
54 exit_speed = 0.0F;
55 rate_delta = 0.0F;
56 acceleration = 100.0F; // we don't want to get devide by zeroes if this is not set
57 initial_rate = -1;
58 final_rate = -1;
59 accelerate_until = 0;
60 decelerate_after = 0;
61 direction_bits = 0;
62 recalculate_flag = false;
63 nominal_length_flag = false;
64 max_entry_speed = 0.0F;
65 is_ready = false;
66 times_taken = 0;
67 }
68
69 void Block::debug()
70 {
71 THEKERNEL->streams->printf("%p: steps:X%04d Y%04d Z%04d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d entry/max: %10.4f/%10.4f taken:%d ready:%d recalc:%d nomlen:%d\r\n",
72 this,
73 this->steps[0],
74 this->steps[1],
75 this->steps[2],
76 this->steps_event_count,
77 this->nominal_rate,
78 this->nominal_speed,
79 this->millimeters,
80 this->rate_delta,
81 this->accelerate_until,
82 this->decelerate_after,
83 this->initial_rate,
84 this->final_rate,
85 this->entry_speed,
86 this->max_entry_speed,
87 this->times_taken,
88 this->is_ready,
89 recalculate_flag?1:0,
90 nominal_length_flag?1:0
91 );
92 }
93
94
95 /* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
96 // The factors represent a factor of braking and must be in the range 0.0-1.0.
97 // +--------+ <- nominal_rate
98 // / \
99 // nominal_rate*entry_factor -> + \
100 // | + <- nominal_rate*exit_factor
101 // +-------------+
102 // time -->
103 */
104 void Block::calculate_trapezoid( float entryspeed, float exitspeed )
105 {
106 // if block is currently executing, don't touch anything!
107 if (times_taken)
108 return;
109
110 // The planner passes us factors, we need to transform them in rates
111 this->initial_rate = ceilf(this->nominal_rate * entryspeed / this->nominal_speed); // (step/s)
112 this->final_rate = ceilf(this->nominal_rate * exitspeed / this->nominal_speed); // (step/s)
113
114 // How many steps to accelerate and decelerate
115 float acceleration_per_second = this->rate_delta * THEKERNEL->acceleration_ticks_per_second; // ( step/s^2)
116 int accelerate_steps = ceilf( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_second ) );
117 int decelerate_steps = floorf( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate, -acceleration_per_second ) );
118
119 // Calculate the size of Plateau of Nominal Rate ( during which we don't accelerate nor decelerate, but just cruise )
120 int plateau_steps = this->steps_event_count - accelerate_steps - decelerate_steps;
121
122 // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
123 // have to use intersection_distance() to calculate when to abort acceleration and start braking
124 // in order to reach the final_rate exactly at the end of this block.
125 if (plateau_steps < 0) {
126 accelerate_steps = ceilf(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_second, this->steps_event_count));
127 accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
128 accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
129 plateau_steps = 0;
130 }
131 this->accelerate_until = accelerate_steps;
132 this->decelerate_after = accelerate_steps + plateau_steps;
133
134 this->exit_speed = exitspeed;
135 }
136
137 // Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
138 // given acceleration:
139 float Block::estimate_acceleration_distance(float initialrate, float targetrate, float acceleration)
140 {
141 return( ((targetrate * targetrate) - (initialrate * initialrate)) / (2.0F * acceleration));
142 }
143
144 // This function gives you the point at which you must start braking (at the rate of -acceleration) if
145 // you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
146 // a total travel of distance. This can be used to compute the intersection point between acceleration and
147 // deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
148 //
149 /* + <- some maximum rate we don't care about
150 /|\
151 / | \
152 / | + <- final_rate
153 / | |
154 initial_rate -> +----+--+
155 ^ ^
156 | |
157 intersection_distance distance */
158 float Block::intersection_distance(float initialrate, float finalrate, float acceleration, float distance)
159 {
160 return((2 * acceleration * distance - initialrate * initialrate + finalrate * finalrate) / (4 * acceleration));
161 }
162
163 // Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
164 // acceleration within the allotted distance.
165 float Block::max_allowable_speed(float acceleration, float target_velocity, float distance)
166 {
167 return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
168 }
169
170
171 // Called by Planner::recalculate() when scanning the plan from last to first entry.
172 float Block::reverse_pass(float exit_speed)
173 {
174 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
175 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
176 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
177 if (this->entry_speed != this->max_entry_speed)
178 {
179 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
180 // for max allowable speed if block is decelerating and nominal length is false.
181 if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed))
182 {
183 float max_entry_speed = max_allowable_speed(-this->acceleration, exit_speed, this->millimeters);
184
185 this->entry_speed = min(max_entry_speed, this->max_entry_speed);
186
187 return this->entry_speed;
188 }
189 else
190 this->entry_speed = this->max_entry_speed;
191 }
192
193 return this->entry_speed;
194 }
195
196
197 // Called by Planner::recalculate() when scanning the plan from first to last entry.
198 // returns maximum exit speed of this block
199 float Block::forward_pass(float prev_max_exit_speed)
200 {
201 // If the previous block is an acceleration block, but it is not long enough to complete the
202 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
203 // speeds have already been reset, maximized, and reverse planned by reverse planner.
204 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
205
206 // TODO: find out if both of these checks are necessary
207 if (prev_max_exit_speed > nominal_speed)
208 prev_max_exit_speed = nominal_speed;
209 if (prev_max_exit_speed > max_entry_speed)
210 prev_max_exit_speed = max_entry_speed;
211
212 if (prev_max_exit_speed <= entry_speed)
213 {
214 // accel limited
215 entry_speed = prev_max_exit_speed;
216 // since we're now acceleration or cruise limited
217 // we don't need to recalculate our entry speed anymore
218 recalculate_flag = false;
219 }
220 // else
221 // // decel limited, do nothing
222
223 return max_exit_speed();
224 }
225
226 float Block::max_exit_speed()
227 {
228 // if block is currently executing, return cached exit speed from calculate_trapezoid
229 // this ensures that a block following a currently executing block will have correct entry speed
230 if (times_taken)
231 return exit_speed;
232
233 // if nominal_length_flag is asserted
234 // we are guaranteed to reach nominal speed regardless of entry speed
235 // thus, max exit will always be nominal
236 if (nominal_length_flag)
237 return nominal_speed;
238
239 // otherwise, we have to work out max exit speed based on entry and acceleration
240 float max = max_allowable_speed(-this->acceleration, this->entry_speed, this->millimeters);
241
242 return min(max, nominal_speed);
243 }
244
245 // Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
246 void Block::append_gcode(Gcode* gcode)
247 {
248 Gcode new_gcode = *gcode;
249 new_gcode.strip_parameters(); // optimization to save memory we strip off the XYZIJK parameters from the saved command
250 gcodes.push_back(new_gcode);
251 }
252
253 void Block::begin()
254 {
255 #ifdef BLOCK_DEBUG_PIN
256 block_debug_pin= 1;
257 #endif
258
259 recalculate_flag = false;
260
261 if (!is_ready)
262 __debugbreak();
263
264 times_taken = -1;
265
266 // execute all the gcodes related to this block
267 for(unsigned int index = 0; index < gcodes.size(); index++)
268 THEKERNEL->call_event(ON_GCODE_EXECUTE, &(gcodes[index]));
269
270
271 THEKERNEL->call_event(ON_BLOCK_BEGIN, this);
272
273 if (times_taken < 0)
274 release();
275 }
276
277 // Signal the conveyor that this block is ready to be injected into the system
278 void Block::ready()
279 {
280 this->is_ready = true;
281 }
282
283 // Mark the block as taken by one more module
284 void Block::take()
285 {
286 if (times_taken < 0)
287 times_taken = 0;
288 times_taken++;
289 }
290
291 // Mark the block as no longer taken by one module, go to next block if this free's it
292 void Block::release()
293 {
294 if (--this->times_taken <= 0)
295 {
296 times_taken = 0;
297 if (is_ready)
298 {
299 #ifdef BLOCK_DEBUG_PIN
300 block_debug_pin= 0;
301 #endif
302 is_ready = false;
303 THEKERNEL->call_event(ON_BLOCK_END, this);
304
305 // ensure conveyor gets called last
306 THEKERNEL->conveyor->on_block_end(this);
307
308 }
309 }
310 }