fix extruder E values when in volumetric mode. this is a breaking change as it now...
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
... / ...
CommitLineData
1/*
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
10
11#include "Robot.h"
12#include "Planner.h"
13#include "Conveyor.h"
14#include "Pin.h"
15#include "StepperMotor.h"
16#include "Gcode.h"
17#include "PublicDataRequest.h"
18#include "PublicData.h"
19#include "arm_solutions/BaseSolution.h"
20#include "arm_solutions/CartesianSolution.h"
21#include "arm_solutions/RotatableCartesianSolution.h"
22#include "arm_solutions/LinearDeltaSolution.h"
23#include "arm_solutions/RotaryDeltaSolution.h"
24#include "arm_solutions/HBotSolution.h"
25#include "arm_solutions/CoreXZSolution.h"
26#include "arm_solutions/MorganSCARASolution.h"
27#include "StepTicker.h"
28#include "checksumm.h"
29#include "utils.h"
30#include "ConfigValue.h"
31#include "libs/StreamOutput.h"
32#include "StreamOutputPool.h"
33#include "ExtruderPublicAccess.h"
34#include "GcodeDispatch.h"
35#include "ActuatorCoordinates.h"
36
37#include "mbed.h" // for us_ticker_read()
38#include "mri.h"
39
40#include <fastmath.h>
41#include <string>
42#include <algorithm>
43using std::string;
44
45#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
46#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
47#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
48#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
49#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
50#define mm_max_arc_error_checksum CHECKSUM("mm_max_arc_error")
51#define arc_correction_checksum CHECKSUM("arc_correction")
52#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
53#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
54#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
55#define segment_z_moves_checksum CHECKSUM("segment_z_moves")
56#define save_g92_checksum CHECKSUM("save_g92")
57
58// arm solutions
59#define arm_solution_checksum CHECKSUM("arm_solution")
60#define cartesian_checksum CHECKSUM("cartesian")
61#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
62#define rostock_checksum CHECKSUM("rostock")
63#define linear_delta_checksum CHECKSUM("linear_delta")
64#define rotary_delta_checksum CHECKSUM("rotary_delta")
65#define delta_checksum CHECKSUM("delta")
66#define hbot_checksum CHECKSUM("hbot")
67#define corexy_checksum CHECKSUM("corexy")
68#define corexz_checksum CHECKSUM("corexz")
69#define kossel_checksum CHECKSUM("kossel")
70#define morgan_checksum CHECKSUM("morgan")
71
72// new-style actuator stuff
73#define actuator_checksum CHEKCSUM("actuator")
74
75#define step_pin_checksum CHECKSUM("step_pin")
76#define dir_pin_checksum CHEKCSUM("dir_pin")
77#define en_pin_checksum CHECKSUM("en_pin")
78
79#define steps_per_mm_checksum CHECKSUM("steps_per_mm")
80#define max_rate_checksum CHECKSUM("max_rate")
81#define acceleration_checksum CHECKSUM("acceleration")
82#define z_acceleration_checksum CHECKSUM("z_acceleration")
83
84#define alpha_checksum CHECKSUM("alpha")
85#define beta_checksum CHECKSUM("beta")
86#define gamma_checksum CHECKSUM("gamma")
87
88#define ARC_ANGULAR_TRAVEL_EPSILON 5E-7F // Float (radians)
89#define PI 3.14159265358979323846F // force to be float, do not use M_PI
90
91// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
92// It takes care of cutting arcs into segments, same thing for line that are too long
93
94Robot::Robot()
95{
96 this->inch_mode = false;
97 this->absolute_mode = true;
98 this->e_absolute_mode = true;
99 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
100 memset(this->last_milestone, 0, sizeof last_milestone);
101 memset(this->last_machine_position, 0, sizeof last_machine_position);
102 this->arm_solution = NULL;
103 seconds_per_minute = 60.0F;
104 this->clearToolOffset();
105 this->compensationTransform = nullptr;
106 this->get_e_scale_fnc= nullptr;
107 this->wcs_offsets.fill(wcs_t(0.0F, 0.0F, 0.0F));
108 this->g92_offset = wcs_t(0.0F, 0.0F, 0.0F);
109 this->next_command_is_MCS = false;
110 this->disable_segmentation= false;
111 this->n_motors= 0;
112}
113
114//Called when the module has just been loaded
115void Robot::on_module_loaded()
116{
117 this->register_for_event(ON_GCODE_RECEIVED);
118
119 // Configuration
120 this->load_config();
121}
122
123#define ACTUATOR_CHECKSUMS(X) { \
124 CHECKSUM(X "_step_pin"), \
125 CHECKSUM(X "_dir_pin"), \
126 CHECKSUM(X "_en_pin"), \
127 CHECKSUM(X "_steps_per_mm"), \
128 CHECKSUM(X "_max_rate"), \
129 CHECKSUM(X "_acceleration") \
130}
131
132void Robot::load_config()
133{
134 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
135 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
136 // To make adding those solution easier, they have their own, separate object.
137 // Here we read the config to find out which arm solution to use
138 if (this->arm_solution) delete this->arm_solution;
139 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
140 // Note checksums are not const expressions when in debug mode, so don't use switch
141 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
142 this->arm_solution = new HBotSolution(THEKERNEL->config);
143
144 } else if(solution_checksum == corexz_checksum) {
145 this->arm_solution = new CoreXZSolution(THEKERNEL->config);
146
147 } else if(solution_checksum == rostock_checksum || solution_checksum == kossel_checksum || solution_checksum == delta_checksum || solution_checksum == linear_delta_checksum) {
148 this->arm_solution = new LinearDeltaSolution(THEKERNEL->config);
149
150 } else if(solution_checksum == rotatable_cartesian_checksum) {
151 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
152
153 } else if(solution_checksum == rotary_delta_checksum) {
154 this->arm_solution = new RotaryDeltaSolution(THEKERNEL->config);
155
156 } else if(solution_checksum == morgan_checksum) {
157 this->arm_solution = new MorganSCARASolution(THEKERNEL->config);
158
159 } else if(solution_checksum == cartesian_checksum) {
160 this->arm_solution = new CartesianSolution(THEKERNEL->config);
161
162 } else {
163 this->arm_solution = new CartesianSolution(THEKERNEL->config);
164 }
165
166 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default( 100.0F)->as_number();
167 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default( 100.0F)->as_number();
168 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default( 0.0F)->as_number();
169 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0f )->as_number();
170 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default( 0.0f)->as_number();
171 this->mm_max_arc_error = THEKERNEL->config->value(mm_max_arc_error_checksum )->by_default( 0.01f)->as_number();
172 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default( 5 )->as_number();
173
174 // in mm/sec but specified in config as mm/min
175 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
176 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000.0F)->as_number() / 60.0F;
177 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default( 300.0F)->as_number() / 60.0F;
178
179 this->segment_z_moves = THEKERNEL->config->value(segment_z_moves_checksum )->by_default(true)->as_bool();
180 this->save_g92 = THEKERNEL->config->value(save_g92_checksum )->by_default(false)->as_bool();
181
182 // Make our Primary XYZ StepperMotors
183 uint16_t const checksums[][6] = {
184 ACTUATOR_CHECKSUMS("alpha"), // X
185 ACTUATOR_CHECKSUMS("beta"), // Y
186 ACTUATOR_CHECKSUMS("gamma"), // Z
187 };
188
189 // default acceleration setting, can be overriden with newer per axis settings
190 this->default_acceleration= THEKERNEL->config->value(acceleration_checksum)->by_default(100.0F )->as_number(); // Acceleration is in mm/s^2
191
192 // make each motor
193 for (size_t a = X_AXIS; a <= Z_AXIS; a++) {
194 Pin pins[3]; //step, dir, enable
195 for (size_t i = 0; i < 3; i++) {
196 pins[i].from_string(THEKERNEL->config->value(checksums[a][i])->by_default("nc")->as_string())->as_output();
197 }
198 StepperMotor *sm = new StepperMotor(pins[0], pins[1], pins[2]);
199 // register this motor (NB This must be 0,1,2) of the actuators array
200 uint8_t n= register_motor(sm);
201 if(n != a) {
202 // this is a fatal error
203 THEKERNEL->streams->printf("FATAL: motor %d does not match index %d\n", n, a);
204 __debugbreak();
205 }
206
207 actuators[a]->change_steps_per_mm(THEKERNEL->config->value(checksums[a][3])->by_default(a == 2 ? 2560.0F : 80.0F)->as_number());
208 actuators[a]->set_max_rate(THEKERNEL->config->value(checksums[a][4])->by_default(30000.0F)->as_number()/60.0F); // it is in mm/min and converted to mm/sec
209 actuators[a]->set_acceleration(THEKERNEL->config->value(checksums[a][5])->by_default(NAN)->as_number()); // mm/secs²
210 }
211
212 check_max_actuator_speeds(); // check the configs are sane
213
214 // if we have not specified a z acceleration see if the legacy config was set
215 if(isnan(actuators[Z_AXIS]->get_acceleration())) {
216 float acc= THEKERNEL->config->value(z_acceleration_checksum)->by_default(NAN)->as_number(); // disabled by default
217 if(!isnan(acc)) {
218 actuators[Z_AXIS]->set_acceleration(acc);
219 }
220 }
221
222 // initialise actuator positions to current cartesian position (X0 Y0 Z0)
223 // so the first move can be correct if homing is not performed
224 ActuatorCoordinates actuator_pos;
225 arm_solution->cartesian_to_actuator(last_milestone, actuator_pos);
226 for (size_t i = 0; i < n_motors; i++)
227 actuators[i]->change_last_milestone(actuator_pos[i]);
228
229 //this->clearToolOffset();
230}
231
232uint8_t Robot::register_motor(StepperMotor *motor)
233{
234 // register this motor with the step ticker
235 THEKERNEL->step_ticker->register_motor(motor);
236 if(n_motors >= k_max_actuators) {
237 // this is a fatal error
238 THEKERNEL->streams->printf("FATAL: too many motors, increase k_max_actuators\n");
239 __debugbreak();
240 }
241 actuators.push_back(motor);
242 return n_motors++;
243}
244
245void Robot::push_state()
246{
247 bool am = this->absolute_mode;
248 bool em = this->e_absolute_mode;
249 bool im = this->inch_mode;
250 saved_state_t s(this->feed_rate, this->seek_rate, am, em, im, current_wcs);
251 state_stack.push(s);
252}
253
254void Robot::pop_state()
255{
256 if(!state_stack.empty()) {
257 auto s = state_stack.top();
258 state_stack.pop();
259 this->feed_rate = std::get<0>(s);
260 this->seek_rate = std::get<1>(s);
261 this->absolute_mode = std::get<2>(s);
262 this->e_absolute_mode = std::get<3>(s);
263 this->inch_mode = std::get<4>(s);
264 this->current_wcs = std::get<5>(s);
265 }
266}
267
268std::vector<Robot::wcs_t> Robot::get_wcs_state() const
269{
270 std::vector<wcs_t> v;
271 v.push_back(wcs_t(current_wcs, MAX_WCS, 0));
272 for(auto& i : wcs_offsets) {
273 v.push_back(i);
274 }
275 v.push_back(g92_offset);
276 v.push_back(tool_offset);
277 return v;
278}
279
280int Robot::print_position(uint8_t subcode, char *buf, size_t bufsize) const
281{
282 // M114.1 is a new way to do this (similar to how GRBL does it).
283 // it returns the realtime position based on the current step position of the actuators.
284 // this does require a FK to get a machine position from the actuator position
285 // and then invert all the transforms to get a workspace position from machine position
286 // M114 just does it the old way uses last_milestone and does inversse transforms to get the requested position
287 int n = 0;
288 if(subcode == 0) { // M114 print WCS
289 wcs_t pos= mcs2wcs(last_milestone);
290 n = snprintf(buf, bufsize, "C: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
291
292 } else if(subcode == 4) { // M114.4 print last milestone (which should be the same as machine position if axis are not moving and no level compensation)
293 n = snprintf(buf, bufsize, "LMS: X:%1.4f Y:%1.4f Z:%1.4f", last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
294
295 } else if(subcode == 5) { // M114.5 print last machine position (which should be the same as M114.1 if axis are not moving and no level compensation)
296 n = snprintf(buf, bufsize, "LMP: X:%1.4f Y:%1.4f Z:%1.4f", last_machine_position[X_AXIS], last_machine_position[Y_AXIS], last_machine_position[Z_AXIS]);
297
298 } else {
299 // get real time positions
300 // current actuator position in mm
301 ActuatorCoordinates current_position{
302 actuators[X_AXIS]->get_current_position(),
303 actuators[Y_AXIS]->get_current_position(),
304 actuators[Z_AXIS]->get_current_position()
305 };
306
307 // get machine position from the actuator position using FK
308 float mpos[3];
309 arm_solution->actuator_to_cartesian(current_position, mpos);
310
311 if(subcode == 1) { // M114.1 print realtime WCS
312 // FIXME this currently includes the compensation transform which is incorrect so will be slightly off if it is in effect (but by very little)
313 wcs_t pos= mcs2wcs(mpos);
314 n = snprintf(buf, bufsize, "WPOS: X:%1.4f Y:%1.4f Z:%1.4f", from_millimeters(std::get<X_AXIS>(pos)), from_millimeters(std::get<Y_AXIS>(pos)), from_millimeters(std::get<Z_AXIS>(pos)));
315
316 } else if(subcode == 2) { // M114.2 print realtime Machine coordinate system
317 n = snprintf(buf, bufsize, "MPOS: X:%1.4f Y:%1.4f Z:%1.4f", mpos[X_AXIS], mpos[Y_AXIS], mpos[Z_AXIS]);
318
319 } else if(subcode == 3) { // M114.3 print realtime actuator position
320 n = snprintf(buf, bufsize, "APOS: X:%1.4f Y:%1.4f Z:%1.4f", current_position[X_AXIS], current_position[Y_AXIS], current_position[Z_AXIS]);
321 }
322 }
323 return n;
324}
325
326// converts current last milestone (machine position without compensation transform) to work coordinate system (inverse transform)
327Robot::wcs_t Robot::mcs2wcs(const Robot::wcs_t& pos) const
328{
329 return std::make_tuple(
330 std::get<X_AXIS>(pos) - std::get<X_AXIS>(wcs_offsets[current_wcs]) + std::get<X_AXIS>(g92_offset) - std::get<X_AXIS>(tool_offset),
331 std::get<Y_AXIS>(pos) - std::get<Y_AXIS>(wcs_offsets[current_wcs]) + std::get<Y_AXIS>(g92_offset) - std::get<Y_AXIS>(tool_offset),
332 std::get<Z_AXIS>(pos) - std::get<Z_AXIS>(wcs_offsets[current_wcs]) + std::get<Z_AXIS>(g92_offset) - std::get<Z_AXIS>(tool_offset)
333 );
334}
335
336// this does a sanity check that actuator speeds do not exceed steps rate capability
337// we will override the actuator max_rate if the combination of max_rate and steps/sec exceeds base_stepping_frequency
338void Robot::check_max_actuator_speeds()
339{
340 for (size_t i = 0; i < n_motors; i++) {
341 float step_freq = actuators[i]->get_max_rate() * actuators[i]->get_steps_per_mm();
342 if (step_freq > THEKERNEL->base_stepping_frequency) {
343 actuators[i]->set_max_rate(floorf(THEKERNEL->base_stepping_frequency / actuators[i]->get_steps_per_mm()));
344 THEKERNEL->streams->printf("WARNING: actuator %d rate exceeds base_stepping_frequency * ..._steps_per_mm: %f, setting to %f\n", i, step_freq, actuators[i]->get_max_rate());
345 }
346 }
347}
348
349//A GCode has been received
350//See if the current Gcode line has some orders for us
351void Robot::on_gcode_received(void *argument)
352{
353 Gcode *gcode = static_cast<Gcode *>(argument);
354
355 enum MOTION_MODE_T motion_mode= NONE;
356
357 if( gcode->has_g) {
358 switch( gcode->g ) {
359 case 0: motion_mode = SEEK; break;
360 case 1: motion_mode = LINEAR; break;
361 case 2: motion_mode = CW_ARC; break;
362 case 3: motion_mode = CCW_ARC; break;
363 case 4: { // G4 pause
364 uint32_t delay_ms = 0;
365 if (gcode->has_letter('P')) {
366 delay_ms = gcode->get_int('P');
367 }
368 if (gcode->has_letter('S')) {
369 delay_ms += gcode->get_int('S') * 1000;
370 }
371 if (delay_ms > 0) {
372 // drain queue
373 THEKERNEL->conveyor->wait_for_empty_queue();
374 // wait for specified time
375 uint32_t start = us_ticker_read(); // mbed call
376 while ((us_ticker_read() - start) < delay_ms * 1000) {
377 THEKERNEL->call_event(ON_IDLE, this);
378 if(THEKERNEL->is_halted()) return;
379 }
380 }
381 }
382 break;
383
384 case 10: // G10 L2 [L20] Pn Xn Yn Zn set WCS
385 if(gcode->has_letter('L') && (gcode->get_int('L') == 2 || gcode->get_int('L') == 20) && gcode->has_letter('P')) {
386 size_t n = gcode->get_uint('P');
387 if(n == 0) n = current_wcs; // set current coordinate system
388 else --n;
389 if(n < MAX_WCS) {
390 float x, y, z;
391 std::tie(x, y, z) = wcs_offsets[n];
392 if(gcode->get_int('L') == 20) {
393 // this makes the current machine position (less compensation transform) the offset
394 // get current position in WCS
395 wcs_t pos= mcs2wcs(last_milestone);
396
397 if(gcode->has_letter('X')){
398 x -= to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
399 }
400
401 if(gcode->has_letter('Y')){
402 y -= to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
403 }
404 if(gcode->has_letter('Z')) {
405 z -= to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
406 }
407
408 } else {
409 // the value is the offset from machine zero
410 if(gcode->has_letter('X')) x = to_millimeters(gcode->get_value('X'));
411 if(gcode->has_letter('Y')) y = to_millimeters(gcode->get_value('Y'));
412 if(gcode->has_letter('Z')) z = to_millimeters(gcode->get_value('Z'));
413 }
414 wcs_offsets[n] = wcs_t(x, y, z);
415 }
416 }
417 break;
418
419 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); break;
420 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); break;
421 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); break;
422 case 20: this->inch_mode = true; break;
423 case 21: this->inch_mode = false; break;
424
425 case 54: case 55: case 56: case 57: case 58: case 59:
426 // select WCS 0-8: G54..G59, G59.1, G59.2, G59.3
427 current_wcs = gcode->g - 54;
428 if(gcode->g == 59 && gcode->subcode > 0) {
429 current_wcs += gcode->subcode;
430 if(current_wcs >= MAX_WCS) current_wcs = MAX_WCS - 1;
431 }
432 break;
433
434 case 90: this->absolute_mode = true; this->e_absolute_mode = true; break;
435 case 91: this->absolute_mode = false; this->e_absolute_mode = false; break;
436
437 case 92: {
438 if(gcode->subcode == 1 || gcode->subcode == 2 || gcode->get_num_args() == 0) {
439 // reset G92 offsets to 0
440 g92_offset = wcs_t(0, 0, 0);
441
442 } else if(gcode->subcode == 3) {
443 // initialize G92 to the specified values, only used for saving it with M500
444 float x= 0, y= 0, z= 0;
445 if(gcode->has_letter('X')) x= gcode->get_value('X');
446 if(gcode->has_letter('Y')) y= gcode->get_value('Y');
447 if(gcode->has_letter('Z')) z= gcode->get_value('Z');
448 g92_offset = wcs_t(x, y, z);
449
450 } else {
451 // standard setting of the g92 offsets, making current WCS position whatever the coordinate arguments are
452 float x, y, z;
453 std::tie(x, y, z) = g92_offset;
454 // get current position in WCS
455 wcs_t pos= mcs2wcs(last_milestone);
456
457 // adjust g92 offset to make the current wpos == the value requested
458 if(gcode->has_letter('X')){
459 x += to_millimeters(gcode->get_value('X')) - std::get<X_AXIS>(pos);
460 }
461 if(gcode->has_letter('Y')){
462 y += to_millimeters(gcode->get_value('Y')) - std::get<Y_AXIS>(pos);
463 }
464 if(gcode->has_letter('Z')) {
465 z += to_millimeters(gcode->get_value('Z')) - std::get<Z_AXIS>(pos);
466 }
467 g92_offset = wcs_t(x, y, z);
468 }
469
470 #if MAX_ROBOT_ACTUATORS > 3
471 if(gcode->subcode == 0 && (gcode->has_letter('E') || gcode->get_num_args() == 0)){
472 // reset the E position, legacy for 3d Printers to be reprap compatible
473 // find the selected extruder
474 // NOTE this will only work when E is 0 if volumetric and/or scaling is used as the actuator last milestone will be different if it was scaled
475 for (int i = E_AXIS; i < n_motors; ++i) {
476 if(actuators[i]->is_selected()) {
477 float e= gcode->has_letter('E') ? gcode->get_value('E') : 0;
478 last_milestone[i]= last_machine_position[i]= e;
479 actuators[i]->change_last_milestone(e);
480 break;
481 }
482 }
483 }
484 #endif
485
486 return;
487 }
488 }
489
490 } else if( gcode->has_m) {
491 switch( gcode->m ) {
492 // case 0: // M0 feed hold, (M0.1 is release feed hold, except we are in feed hold)
493 // if(THEKERNEL->is_grbl_mode()) THEKERNEL->set_feed_hold(gcode->subcode == 0);
494 // break;
495
496 case 30: // M30 end of program in grbl mode (otherwise it is delete sdcard file)
497 if(!THEKERNEL->is_grbl_mode()) break;
498 // fall through to M2
499 case 2: // M2 end of program
500 current_wcs = 0;
501 absolute_mode = true;
502 break;
503 case 17:
504 THEKERNEL->call_event(ON_ENABLE, (void*)1); // turn all enable pins on
505 break;
506
507 case 18: // this used to support parameters, now it ignores them
508 case 84:
509 THEKERNEL->conveyor->wait_for_empty_queue();
510 THEKERNEL->call_event(ON_ENABLE, nullptr); // turn all enable pins off
511 break;
512
513 case 82: e_absolute_mode= true; break;
514 case 83: e_absolute_mode= false; break;
515
516 case 92: // M92 - set steps per mm
517 if (gcode->has_letter('X'))
518 actuators[0]->change_steps_per_mm(this->to_millimeters(gcode->get_value('X')));
519 if (gcode->has_letter('Y'))
520 actuators[1]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Y')));
521 if (gcode->has_letter('Z'))
522 actuators[2]->change_steps_per_mm(this->to_millimeters(gcode->get_value('Z')));
523
524 gcode->stream->printf("X:%f Y:%f Z:%f ", actuators[0]->get_steps_per_mm(), actuators[1]->get_steps_per_mm(), actuators[2]->get_steps_per_mm());
525 gcode->add_nl = true;
526 check_max_actuator_speeds();
527 return;
528
529 case 114:{
530 char buf[64];
531 int n= print_position(gcode->subcode, buf, sizeof buf);
532 if(n > 0) gcode->txt_after_ok.append(buf, n);
533 return;
534 }
535
536 case 120: // push state
537 push_state();
538 break;
539
540 case 121: // pop state
541 pop_state();
542 break;
543
544 case 203: // M203 Set maximum feedrates in mm/sec, M203.1 set maximum actuator feedrates
545 if(gcode->get_num_args() == 0) {
546 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
547 gcode->stream->printf(" %c: %g ", 'X' + i, gcode->subcode == 0 ? this->max_speeds[i] : actuators[i]->get_max_rate());
548 }
549 gcode->add_nl = true;
550
551 }else{
552 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
553 if (gcode->has_letter('X' + i)) {
554 float v= gcode->get_value('X'+i);
555 if(gcode->subcode == 0) this->max_speeds[i]= v;
556 else if(gcode->subcode == 1) actuators[i]->set_max_rate(v);
557 }
558 }
559 if(gcode->subcode == 1) check_max_actuator_speeds();
560 }
561 break;
562
563 case 204: // M204 Snnn - set default acceleration to nnn, Xnnn Ynnn Znnn sets axis specific acceleration
564 if (gcode->has_letter('S')) {
565 float acc = gcode->get_value('S'); // mm/s^2
566 // enforce minimum
567 if (acc < 1.0F) acc = 1.0F;
568 this->default_acceleration = acc;
569 }
570 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
571 if (gcode->has_letter(i+'X')) {
572 float acc = gcode->get_value(i+'X'); // mm/s^2
573 // enforce positive
574 if (acc <= 0.0F) acc = NAN;
575 actuators[i]->set_acceleration(acc);
576 }
577 }
578 break;
579
580 case 205: // M205 Xnnn - set junction deviation, Z - set Z junction deviation, Snnn - Set minimum planner speed
581 if (gcode->has_letter('X')) {
582 float jd = gcode->get_value('X');
583 // enforce minimum
584 if (jd < 0.0F)
585 jd = 0.0F;
586 THEKERNEL->planner->junction_deviation = jd;
587 }
588 if (gcode->has_letter('Z')) {
589 float jd = gcode->get_value('Z');
590 // enforce minimum, -1 disables it and uses regular junction deviation
591 if (jd < -1.0F)
592 jd = -1.0F;
593 THEKERNEL->planner->z_junction_deviation = jd;
594 }
595 if (gcode->has_letter('S')) {
596 float mps = gcode->get_value('S');
597 // enforce minimum
598 if (mps < 0.0F)
599 mps = 0.0F;
600 THEKERNEL->planner->minimum_planner_speed = mps;
601 }
602 break;
603
604 case 220: // M220 - speed override percentage
605 if (gcode->has_letter('S')) {
606 float factor = gcode->get_value('S');
607 // enforce minimum 10% speed
608 if (factor < 10.0F)
609 factor = 10.0F;
610 // enforce maximum 10x speed
611 if (factor > 1000.0F)
612 factor = 1000.0F;
613
614 seconds_per_minute = 6000.0F / factor;
615 } else {
616 gcode->stream->printf("Speed factor at %6.2f %%\n", 6000.0F / seconds_per_minute);
617 }
618 break;
619
620 case 400: // wait until all moves are done up to this point
621 THEKERNEL->conveyor->wait_for_empty_queue();
622 break;
623
624 case 500: // M500 saves some volatile settings to config override file
625 case 503: { // M503 just prints the settings
626 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", actuators[0]->get_steps_per_mm(), actuators[1]->get_steps_per_mm(), actuators[2]->get_steps_per_mm());
627
628 // only print XYZ if not NAN
629 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f ", default_acceleration);
630 for (int i = X_AXIS; i <= Z_AXIS; ++i) {
631 if(!isnan(actuators[i]->get_acceleration())) gcode->stream->printf("%c%1.5f ", 'X'+i, actuators[i]->get_acceleration());
632 }
633 gcode->stream->printf("\n");
634
635 gcode->stream->printf(";X- Junction Deviation, Z- Z junction deviation, S - Minimum Planner speed mm/sec:\nM205 X%1.5f Z%1.5f S%1.5f\n", THEKERNEL->planner->junction_deviation, THEKERNEL->planner->z_junction_deviation, THEKERNEL->planner->minimum_planner_speed);
636
637 gcode->stream->printf(";Max cartesian feedrates in mm/sec:\nM203 X%1.5f Y%1.5f Z%1.5f\n", this->max_speeds[X_AXIS], this->max_speeds[Y_AXIS], this->max_speeds[Z_AXIS]);
638 gcode->stream->printf(";Max actuator feedrates in mm/sec:\nM203.1 X%1.5f Y%1.5f Z%1.5f\n", actuators[X_AXIS]->get_max_rate(), actuators[Y_AXIS]->get_max_rate(), actuators[Z_AXIS]->get_max_rate());
639
640 // get or save any arm solution specific optional values
641 BaseSolution::arm_options_t options;
642 if(arm_solution->get_optional(options) && !options.empty()) {
643 gcode->stream->printf(";Optional arm solution specific settings:\nM665");
644 for(auto &i : options) {
645 gcode->stream->printf(" %c%1.4f", i.first, i.second);
646 }
647 gcode->stream->printf("\n");
648 }
649
650 // save wcs_offsets and current_wcs
651 // TODO this may need to be done whenever they change to be compliant
652 gcode->stream->printf(";WCS settings\n");
653 gcode->stream->printf("%s\n", wcs2gcode(current_wcs).c_str());
654 int n = 1;
655 for(auto &i : wcs_offsets) {
656 if(i != wcs_t(0, 0, 0)) {
657 float x, y, z;
658 std::tie(x, y, z) = i;
659 gcode->stream->printf("G10 L2 P%d X%f Y%f Z%f ; %s\n", n, x, y, z, wcs2gcode(n-1).c_str());
660 }
661 ++n;
662 }
663 if(save_g92) {
664 // linuxcnc saves G92, so we do too if configured, default is to not save to maintain backward compatibility
665 // also it needs to be used to set Z0 on rotary deltas as M206/306 can't be used, so saving it is necessary in that case
666 if(g92_offset != wcs_t(0, 0, 0)) {
667 float x, y, z;
668 std::tie(x, y, z) = g92_offset;
669 gcode->stream->printf("G92.3 X%f Y%f Z%f\n", x, y, z); // sets G92 to the specified values
670 }
671 }
672 }
673 break;
674
675 case 665: { // M665 set optional arm solution variables based on arm solution.
676 // the parameter args could be any letter each arm solution only accepts certain ones
677 BaseSolution::arm_options_t options = gcode->get_args();
678 options.erase('S'); // don't include the S
679 options.erase('U'); // don't include the U
680 if(options.size() > 0) {
681 // set the specified options
682 arm_solution->set_optional(options);
683 }
684 options.clear();
685 if(arm_solution->get_optional(options)) {
686 // foreach optional value
687 for(auto &i : options) {
688 // print all current values of supported options
689 gcode->stream->printf("%c: %8.4f ", i.first, i.second);
690 gcode->add_nl = true;
691 }
692 }
693
694 if(gcode->has_letter('S')) { // set delta segments per second, not saved by M500
695 this->delta_segments_per_second = gcode->get_value('S');
696 gcode->stream->printf("Delta segments set to %8.4f segs/sec\n", this->delta_segments_per_second);
697
698 } else if(gcode->has_letter('U')) { // or set mm_per_line_segment, not saved by M500
699 this->mm_per_line_segment = gcode->get_value('U');
700 this->delta_segments_per_second = 0;
701 gcode->stream->printf("mm per line segment set to %8.4f\n", this->mm_per_line_segment);
702 }
703
704 break;
705 }
706 }
707 }
708
709 if( motion_mode != NONE) {
710 process_move(gcode, motion_mode);
711 }
712
713 next_command_is_MCS = false; // must be on same line as G0 or G1
714}
715
716// process a G0/G1/G2/G3
717void Robot::process_move(Gcode *gcode, enum MOTION_MODE_T motion_mode)
718{
719 // we have a G0/G1/G2/G3 so extract parameters and apply offsets to get machine coordinate target
720 // get XYZ and one E (which goes to the selected extruder)
721 float param[4]{NAN, NAN, NAN, NAN};
722
723 // process primary axis
724 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
725 char letter= 'X'+i;
726 if( gcode->has_letter(letter) ) {
727 param[i] = this->to_millimeters(gcode->get_value(letter));
728 }
729 }
730
731 float offset[3]{0,0,0};
732 for(char letter = 'I'; letter <= 'K'; letter++) {
733 if( gcode->has_letter(letter) ) {
734 offset[letter - 'I'] = this->to_millimeters(gcode->get_value(letter));
735 }
736 }
737
738 // calculate target in machine coordinates (less compensation transform which needs to be done after segmentation)
739 float target[n_motors];
740 memcpy(target, last_milestone, n_motors*sizeof(float));
741
742 if(!next_command_is_MCS) {
743 if(this->absolute_mode) {
744 // apply wcs offsets and g92 offset and tool offset
745 if(!isnan(param[X_AXIS])) {
746 target[X_AXIS]= param[X_AXIS] + std::get<X_AXIS>(wcs_offsets[current_wcs]) - std::get<X_AXIS>(g92_offset) + std::get<X_AXIS>(tool_offset);
747 }
748
749 if(!isnan(param[Y_AXIS])) {
750 target[Y_AXIS]= param[Y_AXIS] + std::get<Y_AXIS>(wcs_offsets[current_wcs]) - std::get<Y_AXIS>(g92_offset) + std::get<Y_AXIS>(tool_offset);
751 }
752
753 if(!isnan(param[Z_AXIS])) {
754 target[Z_AXIS]= param[Z_AXIS] + std::get<Z_AXIS>(wcs_offsets[current_wcs]) - std::get<Z_AXIS>(g92_offset) + std::get<Z_AXIS>(tool_offset);
755 }
756
757 }else{
758 // they are deltas from the last_milestone if specified
759 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
760 if(!isnan(param[i])) target[i] = param[i] + last_milestone[i];
761 }
762 }
763
764 }else{
765 // already in machine coordinates, we do not add tool offset for that
766 for(int i= X_AXIS; i <= Z_AXIS; ++i) {
767 if(!isnan(param[i])) target[i] = param[i];
768 }
769 }
770
771 // process extruder parameters, for active extruder only (only one active extruder at a time)
772 selected_extruder= 0;
773 if(gcode->has_letter('E')) {
774 for (int i = E_AXIS; i < n_motors; ++i) {
775 // find first selected extruder
776 if(actuators[i]->is_selected()) {
777 param[E_AXIS]= gcode->get_value('E');
778 selected_extruder= i;
779 break;
780 }
781 }
782 }
783
784 // do E for the selected extruder
785 float delta_e= NAN;
786 if(selected_extruder > 0 && !isnan(param[E_AXIS])) {
787 if(this->e_absolute_mode) {
788 target[selected_extruder]= param[E_AXIS];
789 delta_e= target[selected_extruder] - last_milestone[selected_extruder];
790 }else{
791 delta_e= param[E_AXIS];
792 target[selected_extruder] = delta_e + last_milestone[selected_extruder];
793 }
794 }
795
796 if( gcode->has_letter('F') ) {
797 if( motion_mode == SEEK )
798 this->seek_rate = this->to_millimeters( gcode->get_value('F') );
799 else
800 this->feed_rate = this->to_millimeters( gcode->get_value('F') );
801 }
802
803 bool moved= false;
804
805 // Perform any physical actions
806 switch(motion_mode) {
807 case NONE: break;
808
809 case SEEK:
810 moved= this->append_line(gcode, target, this->seek_rate / seconds_per_minute, delta_e );
811 break;
812
813 case LINEAR:
814 moved= this->append_line(gcode, target, this->feed_rate / seconds_per_minute, delta_e );
815 break;
816
817 case CW_ARC:
818 case CCW_ARC:
819 // Note arcs are not currently supported by extruder based machines, as 3D slicers do not use arcs (G2/G3)
820 moved= this->compute_arc(gcode, offset, target, motion_mode);
821 break;
822 }
823
824 if(moved) {
825 // set last_milestone to the calculated target
826 memcpy(last_milestone, target, n_motors*sizeof(float));
827 }
828}
829
830// reset the machine position for all axis. Used for homing.
831// During homing compensation is turned off (actually not used as it drives steppers directly)
832// once homed and reset_axis called compensation is used for the move to origin and back off home if enabled,
833// so in those cases the final position is compensated.
834void Robot::reset_axis_position(float x, float y, float z)
835{
836 // these are set to the same as compensation was not used to get to the current position
837 last_machine_position[X_AXIS]= last_milestone[X_AXIS] = x;
838 last_machine_position[Y_AXIS]= last_milestone[Y_AXIS] = y;
839 last_machine_position[Z_AXIS]= last_milestone[Z_AXIS] = z;
840
841 // now set the actuator positions to match
842 ActuatorCoordinates actuator_pos;
843 arm_solution->cartesian_to_actuator(this->last_machine_position, actuator_pos);
844 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
845 actuators[i]->change_last_milestone(actuator_pos[i]);
846}
847
848// Reset the position for an axis (used in homing, and to reset extruder after suspend)
849void Robot::reset_axis_position(float position, int axis)
850{
851 last_milestone[axis] = position;
852 if(axis <= Z_AXIS) {
853 reset_axis_position(last_milestone[X_AXIS], last_milestone[Y_AXIS], last_milestone[Z_AXIS]);
854 }else{
855 // extruders need to be set not calculated
856 last_machine_position[axis]= position;
857 }
858}
859
860// similar to reset_axis_position but directly sets the actuator positions in actuators units (eg mm for cartesian, degrees for rotary delta)
861// then sets the axis positions to match. currently only called from Endstops.cpp
862void Robot::reset_actuator_position(const ActuatorCoordinates &ac)
863{
864 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
865 actuators[i]->change_last_milestone(ac[i]);
866
867 // now correct axis positions then recorrect actuator to account for rounding
868 reset_position_from_current_actuator_position();
869}
870
871// Use FK to find out where actuator is and reset to match
872void Robot::reset_position_from_current_actuator_position()
873{
874 ActuatorCoordinates actuator_pos;
875 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
876 // NOTE actuator::current_position is curently NOT the same as actuator::last_milestone after an abrupt abort
877 actuator_pos[i] = actuators[i]->get_current_position();
878 }
879
880 // discover machine position from where actuators actually are
881 arm_solution->actuator_to_cartesian(actuator_pos, last_machine_position);
882 // FIXME problem is this includes any compensation transform, and without an inverse compensation we cannot get a correct last_milestone
883 memcpy(last_milestone, last_machine_position, sizeof last_milestone);
884
885 // now reset actuator::last_milestone, NOTE this may lose a little precision as FK is not always entirely accurate.
886 // NOTE This is required to sync the machine position with the actuator position, we do a somewhat redundant cartesian_to_actuator() call
887 // to get everything in perfect sync.
888 arm_solution->cartesian_to_actuator(last_machine_position, actuator_pos);
889 for (size_t i = X_AXIS; i <= Z_AXIS; i++)
890 actuators[i]->change_last_milestone(actuator_pos[i]);
891}
892
893// Convert target (in machine coordinates) to machine_position, then convert to actuator position and append this to the planner
894// target is in machine coordinates without the compensation transform, however we save a last_machine_position that includes
895// all transforms and is what we actually convert to actuator positions
896bool Robot::append_milestone(const float target[], float rate_mm_s, bool disable_compensation)
897{
898 float deltas[n_motors];
899 float transformed_target[n_motors]; // adjust target for bed compensation
900 float unit_vec[N_PRIMARY_AXIS];
901 float millimeters_of_travel= 0;
902
903 // unity transform by default
904 memcpy(transformed_target, target, n_motors*sizeof(float));
905
906 // check function pointer and call if set to transform the target to compensate for bed
907 if(!disable_compensation && compensationTransform) {
908 // some compensation strategies can transform XYZ, some just change Z
909 compensationTransform(transformed_target);
910 }
911
912 bool move= false;
913 float sos= 0, sosxyz= 0; // sun of squares for all axis and just XYZ
914
915 // find distance moved by each axis, use transformed target from the current machine position
916 for (size_t i = 0; i < n_motors; i++) {
917 deltas[i] = transformed_target[i] - last_machine_position[i];
918 if(deltas[i] == 0) continue;
919 // at least one non zero delta
920 move = true;
921 if(i <= Z_AXIS) {
922 sosxyz += powf(deltas[i], 2);
923 sos= sosxyz;
924 }else{
925 sos += powf(deltas[i], 2);
926 }
927 }
928
929 // nothing moved
930 if(!move) return false;
931
932 // total movement (includes all axis so not a real distance over the bed but needed for when E may be large)
933 millimeters_of_travel= sqrtf(sos);
934
935 // set if none of the primary axis is moving
936 // bool auxilliary_move= false;
937 // if(sos > 0.0F){
938 // millimeters_of_travel= sqrtf(sos);
939
940 // } else if(n_motors >= E_AXIS) { // if we have more than 3 axis/actuators (XYZE)
941 // // non primary axis move (like extrude)
942 // // select the biggest one, will be the only active E
943 // auto mi= std::max_element(&deltas[E_AXIS], &deltas[n_motors], [](float a, float b){ return std::abs(a) < std::abs(b); } );
944 // millimeters_of_travel= std::abs(*mi);
945 // auxilliary_move= true;
946
947 // }else{
948 // // shouldn't happen but just in case
949 // return false;
950 // }
951
952
953 // it is unlikely but we need to protect against divide by zero, so ignore insanely small moves here
954 // as the last milestone won't be updated we do not actually lose any moves as they will be accounted for in the next move
955 if(millimeters_of_travel < 0.00001F) return false;
956
957 // see if this is a primary axis move or not
958 bool auxilliary_move= deltas[X_AXIS] == 0 && deltas[Y_AXIS] == 0 && deltas[Z_AXIS] == 0;
959
960 // this is the machine position
961 memcpy(this->last_machine_position, transformed_target, n_motors*sizeof(float));
962
963 if(!auxilliary_move) {
964 float d= sqrtf(sosxyz); // we need the actual distance over the bed
965
966 for (size_t i = X_AXIS; i <= Z_AXIS; i++) {
967 // find distance unit vector for primary axis only
968 unit_vec[i] = deltas[i] / d;
969
970 // Do not move faster than the configured cartesian limits for XYZ
971 if ( max_speeds[i] > 0 ) {
972 float axis_speed = fabsf(unit_vec[i] * rate_mm_s);
973
974 if (axis_speed > max_speeds[i])
975 rate_mm_s *= ( max_speeds[i] / axis_speed );
976 }
977 }
978 }
979
980 // find actuator position given the machine position, use actual adjusted target
981 ActuatorCoordinates actuator_pos;
982 arm_solution->cartesian_to_actuator( this->last_machine_position, actuator_pos );
983
984#if MAX_ROBOT_ACTUATORS > 3
985 // for the extruders just copy the position, and possibly scale it from mm³ to mm
986 for (size_t i = E_AXIS; i < n_motors; i++) {
987 actuator_pos[i]= last_machine_position[i];
988 if(get_e_scale_fnc) {
989 // NOTE this relies on the fact only one extruder is active at a time
990 // scale for volumetric or flow rate
991 // TODO is this correct? scaling the absolute target? what if the scale changes?
992 // for volumetric it basically converts mm³ to mm, but what about flow rate?
993 actuator_pos[i] *= get_e_scale_fnc();
994 }
995 }
996#endif
997
998 // use default acceleration to start with
999 float acceleration = default_acceleration;
1000
1001 float isecs = rate_mm_s / millimeters_of_travel;
1002
1003 // check per-actuator speed limits
1004 for (size_t actuator = 0; actuator < n_motors; actuator++) {
1005 float d = fabsf(actuator_pos[actuator] - actuators[actuator]->get_last_milestone());
1006 if(d == 0 || !actuators[actuator]->is_selected()) continue; // no movement for this actuator
1007
1008 float actuator_rate= d * isecs;
1009 if (actuator_rate > actuators[actuator]->get_max_rate()) {
1010 rate_mm_s *= (actuators[actuator]->get_max_rate() / actuator_rate);
1011 isecs = rate_mm_s / millimeters_of_travel;
1012 }
1013
1014 // adjust acceleration to lowest found, for now just primary axis unless it is an auxiliary move
1015 // TODO we may need to do all of them, check E won't limit XYZ.. it does on long E moves, but not checking it could exceed the E acceleration.
1016 if(auxilliary_move || actuator <= Z_AXIS) {
1017 float ma = actuators[actuator]->get_acceleration(); // in mm/sec²
1018 if(!isnan(ma)) { // if axis does not have acceleration set then it uses the default_acceleration
1019 float ca = fabsf((deltas[actuator]/millimeters_of_travel) * acceleration);
1020 if (ca > ma) {
1021 acceleration *= ( ma / ca );
1022 }
1023 }
1024 }
1025 }
1026
1027 // Append the block to the planner
1028 THEKERNEL->planner->append_block( actuator_pos, n_motors, rate_mm_s, millimeters_of_travel, auxilliary_move? nullptr : unit_vec, acceleration );
1029
1030 return true;
1031}
1032
1033// Used to plan a single move used by things like endstops when homing, zprobe, extruder firmware retracts etc.
1034bool Robot::delta_move(const float *delta, float rate_mm_s, uint8_t naxis)
1035{
1036 if(THEKERNEL->is_halted()) return false;
1037
1038 // catch negative or zero feed rates
1039 if(rate_mm_s <= 0.0F) {
1040 return false;
1041 }
1042
1043 // get the absolute target position, default is current last_milestone
1044 float target[n_motors];
1045 memcpy(target, last_milestone, n_motors*sizeof(float));
1046
1047 // add in the deltas to get new target
1048 for (int i= 0; i < naxis; i++) {
1049 target[i] += delta[i];
1050 }
1051
1052 // submit for planning and if moved update last_milestone
1053 // NOTE this disabled compensation transforms as homing and zprobe must not use them
1054 if(append_milestone(target, rate_mm_s, true)) {
1055 memcpy(last_milestone, target, n_motors*sizeof(float));
1056 return true;
1057 }
1058
1059 return false;
1060}
1061
1062// Append a move to the queue ( cutting it into segments if needed )
1063bool Robot::append_line(Gcode *gcode, const float target[], float rate_mm_s, float delta_e)
1064{
1065 // catch negative or zero feed rates and return the same error as GRBL does
1066 if(rate_mm_s <= 0.0F) {
1067 gcode->is_error= true;
1068 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1069 return false;
1070 }
1071
1072 // Find out the distance for this move in XYZ in MCS
1073 float millimeters_of_travel = sqrtf(powf( target[X_AXIS] - last_milestone[X_AXIS], 2 ) + powf( target[Y_AXIS] - last_milestone[Y_AXIS], 2 ) + powf( target[Z_AXIS] - last_milestone[Z_AXIS], 2 ));
1074
1075 if(millimeters_of_travel < 0.00001F) {
1076 // we have no movement in XYZ, probably E only extrude or retract
1077 return this->append_milestone(target, rate_mm_s);
1078 }
1079
1080 /*
1081 For extruders, we need to do some extra work...
1082 if we have volumetric limits enabled we calculate the volume for this move and limit the rate if it exceeds the stated limit.
1083 Note we need to be using volumetric extrusion for this to work as Ennn is in mm³ not mm
1084 We ask Extruder to do all the work but we need to pass in the relevant data.
1085 NOTE we need to do this before we segment the line (for deltas)
1086 This also sets any scaling due to flow rate and volumetric if a G1
1087 */
1088 if(!isnan(delta_e) && gcode->has_g && gcode->g == 1) {
1089 float data[2]= {delta_e, rate_mm_s / millimeters_of_travel};
1090 if(PublicData::set_value(extruder_checksum, target_checksum, data)) {
1091 rate_mm_s *= data[1]; // adjust the feedrate
1092 }
1093 }
1094
1095 // We cut the line into smaller segments. This is only needed on a cartesian robot for zgrid, but always necessary for robots with rotational axes like Deltas.
1096 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second
1097 // The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
1098 uint16_t segments;
1099
1100 if(this->disable_segmentation || (!segment_z_moves && !gcode->has_letter('X') && !gcode->has_letter('Y'))) {
1101 segments= 1;
1102
1103 } else if(this->delta_segments_per_second > 1.0F) {
1104 // enabled if set to something > 1, it is set to 0.0 by default
1105 // segment based on current speed and requested segments per second
1106 // the faster the travel speed the fewer segments needed
1107 // NOTE rate is mm/sec and we take into account any speed override
1108 float seconds = millimeters_of_travel / rate_mm_s;
1109 segments = max(1.0F, ceilf(this->delta_segments_per_second * seconds));
1110 // TODO if we are only moving in Z on a delta we don't really need to segment at all
1111
1112 } else {
1113 if(this->mm_per_line_segment == 0.0F) {
1114 segments = 1; // don't split it up
1115 } else {
1116 segments = ceilf( millimeters_of_travel / this->mm_per_line_segment);
1117 }
1118 }
1119
1120 bool moved= false;
1121 if (segments > 1) {
1122 // A vector to keep track of the endpoint of each segment
1123 float segment_delta[n_motors];
1124 float segment_end[n_motors];
1125 memcpy(segment_end, last_milestone, n_motors*sizeof(float));
1126
1127 // How far do we move each segment?
1128 for (int i = 0; i < n_motors; i++)
1129 segment_delta[i] = (target[i] - last_milestone[i]) / segments;
1130
1131 // segment 0 is already done - it's the end point of the previous move so we start at segment 1
1132 // We always add another point after this loop so we stop at segments-1, ie i < segments
1133 for (int i = 1; i < segments; i++) {
1134 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
1135 for (int i = 0; i < n_motors; i++)
1136 segment_end[i] += segment_delta[i];
1137
1138 // Append the end of this segment to the queue
1139 bool b= this->append_milestone(segment_end, rate_mm_s);
1140 moved= moved || b;
1141 }
1142 }
1143
1144 // Append the end of this full move to the queue
1145 if(this->append_milestone(target, rate_mm_s)) moved= true;
1146
1147 this->next_command_is_MCS = false; // always reset this
1148
1149 return moved;
1150}
1151
1152
1153// Append an arc to the queue ( cutting it into segments as needed )
1154bool Robot::append_arc(Gcode * gcode, const float target[], const float offset[], float radius, bool is_clockwise )
1155{
1156 float rate_mm_s= this->feed_rate / seconds_per_minute;
1157 // catch negative or zero feed rates and return the same error as GRBL does
1158 if(rate_mm_s <= 0.0F) {
1159 gcode->is_error= true;
1160 gcode->txt_after_ok= (rate_mm_s == 0 ? "Undefined feed rate" : "feed rate < 0");
1161 return false;
1162 }
1163
1164 // Scary math
1165 float center_axis0 = this->last_milestone[this->plane_axis_0] + offset[this->plane_axis_0];
1166 float center_axis1 = this->last_milestone[this->plane_axis_1] + offset[this->plane_axis_1];
1167 float linear_travel = target[this->plane_axis_2] - this->last_milestone[this->plane_axis_2];
1168 float r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
1169 float r_axis1 = -offset[this->plane_axis_1];
1170 float rt_axis0 = target[this->plane_axis_0] - center_axis0;
1171 float rt_axis1 = target[this->plane_axis_1] - center_axis1;
1172
1173 // Patch from GRBL Firmware - Christoph Baumann 04072015
1174 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
1175 float angular_travel = atan2f(r_axis0 * rt_axis1 - r_axis1 * rt_axis0, r_axis0 * rt_axis0 + r_axis1 * rt_axis1);
1176 if (is_clockwise) { // Correct atan2 output per direction
1177 if (angular_travel >= -ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel -= (2 * PI); }
1178 } else {
1179 if (angular_travel <= ARC_ANGULAR_TRAVEL_EPSILON) { angular_travel += (2 * PI); }
1180 }
1181
1182 // Find the distance for this gcode
1183 float millimeters_of_travel = hypotf(angular_travel * radius, fabsf(linear_travel));
1184
1185 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
1186 if( millimeters_of_travel < 0.00001F ) {
1187 return false;
1188 }
1189
1190 // limit segments by maximum arc error
1191 float arc_segment = this->mm_per_arc_segment;
1192 if ((this->mm_max_arc_error > 0) && (2 * radius > this->mm_max_arc_error)) {
1193 float min_err_segment = 2 * sqrtf((this->mm_max_arc_error * (2 * radius - this->mm_max_arc_error)));
1194 if (this->mm_per_arc_segment < min_err_segment) {
1195 arc_segment = min_err_segment;
1196 }
1197 }
1198 // Figure out how many segments for this gcode
1199 uint16_t segments = ceilf(millimeters_of_travel / arc_segment);
1200
1201 //printf("Radius %f - Segment Length %f - Number of Segments %d\r\n",radius,arc_segment,segments); // Testing Purposes ONLY
1202 float theta_per_segment = angular_travel / segments;
1203 float linear_per_segment = linear_travel / segments;
1204
1205 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
1206 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
1207 r_T = [cos(phi) -sin(phi);
1208 sin(phi) cos(phi] * r ;
1209 For arc generation, the center of the circle is the axis of rotation and the radius vector is
1210 defined from the circle center to the initial position. Each line segment is formed by successive
1211 vector rotations. This requires only two cos() and sin() computations to form the rotation
1212 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
1213 all float numbers are single precision on the Arduino. (True float precision will not have
1214 round off issues for CNC applications.) Single precision error can accumulate to be greater than
1215 tool precision in some cases. Therefore, arc path correction is implemented.
1216
1217 Small angle approximation may be used to reduce computation overhead further. This approximation
1218 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
1219 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
1220 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
1221 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
1222 issue for CNC machines with the single precision Arduino calculations.
1223 This approximation also allows mc_arc to immediately insert a line segment into the planner
1224 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
1225 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
1226 This is important when there are successive arc motions.
1227 */
1228 // Vector rotation matrix values
1229 float cos_T = 1 - 0.5F * theta_per_segment * theta_per_segment; // Small angle approximation
1230 float sin_T = theta_per_segment;
1231
1232 float arc_target[3];
1233 float sin_Ti;
1234 float cos_Ti;
1235 float r_axisi;
1236 uint16_t i;
1237 int8_t count = 0;
1238
1239 // Initialize the linear axis
1240 arc_target[this->plane_axis_2] = this->last_milestone[this->plane_axis_2];
1241
1242 bool moved= false;
1243 for (i = 1; i < segments; i++) { // Increment (segments-1)
1244 if(THEKERNEL->is_halted()) return false; // don't queue any more segments
1245
1246 if (count < this->arc_correction ) {
1247 // Apply vector rotation matrix
1248 r_axisi = r_axis0 * sin_T + r_axis1 * cos_T;
1249 r_axis0 = r_axis0 * cos_T - r_axis1 * sin_T;
1250 r_axis1 = r_axisi;
1251 count++;
1252 } else {
1253 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
1254 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
1255 cos_Ti = cosf(i * theta_per_segment);
1256 sin_Ti = sinf(i * theta_per_segment);
1257 r_axis0 = -offset[this->plane_axis_0] * cos_Ti + offset[this->plane_axis_1] * sin_Ti;
1258 r_axis1 = -offset[this->plane_axis_0] * sin_Ti - offset[this->plane_axis_1] * cos_Ti;
1259 count = 0;
1260 }
1261
1262 // Update arc_target location
1263 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
1264 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
1265 arc_target[this->plane_axis_2] += linear_per_segment;
1266
1267 // Append this segment to the queue
1268 bool b= this->append_milestone(arc_target, rate_mm_s);
1269 moved= moved || b;
1270 }
1271
1272 // Ensure last segment arrives at target location.
1273 if(this->append_milestone(target, rate_mm_s)) moved= true;
1274
1275 return moved;
1276}
1277
1278// Do the math for an arc and add it to the queue
1279bool Robot::compute_arc(Gcode * gcode, const float offset[], const float target[], enum MOTION_MODE_T motion_mode)
1280{
1281
1282 // Find the radius
1283 float radius = hypotf(offset[this->plane_axis_0], offset[this->plane_axis_1]);
1284
1285 // Set clockwise/counter-clockwise sign for mc_arc computations
1286 bool is_clockwise = false;
1287 if( motion_mode == CW_ARC ) {
1288 is_clockwise = true;
1289 }
1290
1291 // Append arc
1292 return this->append_arc(gcode, target, offset, radius, is_clockwise );
1293}
1294
1295
1296float Robot::theta(float x, float y)
1297{
1298 float t = atanf(x / fabs(y));
1299 if (y > 0) {
1300 return(t);
1301 } else {
1302 if (t > 0) {
1303 return(PI - t);
1304 } else {
1305 return(-PI - t);
1306 }
1307 }
1308}
1309
1310void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2)
1311{
1312 this->plane_axis_0 = axis_0;
1313 this->plane_axis_1 = axis_1;
1314 this->plane_axis_2 = axis_2;
1315}
1316
1317void Robot::clearToolOffset()
1318{
1319 this->tool_offset= wcs_t(0,0,0);
1320}
1321
1322void Robot::setToolOffset(const float offset[3])
1323{
1324 this->tool_offset= wcs_t(offset[0], offset[1], offset[2]);
1325}
1326
1327float Robot::get_feed_rate() const
1328{
1329 return THEKERNEL->gcode_dispatch->get_modal_command() == 0 ? seek_rate : feed_rate;
1330}