strip off Gxxx and Mxxx in Gcode
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
CommitLineData
7b49793d 1/*
4cff3ded
AW
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
7b49793d 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
10#include "libs/nuts_bolts.h"
11#include <math.h>
4cff3ded
AW
12#include <string>
13#include "Block.h"
14#include "Planner.h"
3fceb8eb 15#include "Conveyor.h"
9d005957 16#include "Gcode.h"
61134a65
JM
17#include "libs/StreamOutputPool.h"
18#include "Stepper.h"
9d005957
MM
19
20#include "mri.h"
21
4cff3ded
AW
22using std::string;
23#include <vector>
4cff3ded 24
edac9072
AW
25// A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
26// It's stacked on a queue, and that queue is then executed in order, to move the motors.
27// Most of the accel math is also done in this class
28// And GCode objects for use in on_gcode_execute are also help in here
29
1cf31736
JM
30Block::Block()
31{
32 clear();
33}
34
35void Block::clear()
36{
37 //commands.clear();
38 //travel_distances.clear();
39 gcodes.clear();
4cff3ded 40 clear_vector(this->steps);
1cf31736 41
f539c22f
MM
42 steps_event_count = 0;
43 nominal_rate = 0;
44 nominal_speed = 0.0F;
45 millimeters = 0.0F;
46 entry_speed = 0.0F;
528c2e16 47 exit_speed = 0.0F;
f539c22f
MM
48 rate_delta = 0.0F;
49 initial_rate = -1;
50 final_rate = -1;
51 accelerate_until = 0;
52 decelerate_after = 0;
53 direction_bits = 0;
54 recalculate_flag = false;
55 nominal_length_flag = false;
56 max_entry_speed = 0.0F;
57 is_ready = false;
58 times_taken = 0;
4cff3ded
AW
59}
60
1cf31736
JM
61void Block::debug()
62{
40d64348 63 THEKERNEL->streams->printf("%p: steps:X%04d Y%04d Z%04d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d entry/max: %10.4f/%10.4f taken:%d ready:%d recalc:%d nomlen:%d\r\n",
2134bcf2
MM
64 this,
65 this->steps[0],
66 this->steps[1],
67 this->steps[2],
68 this->steps_event_count,
69 this->nominal_rate,
70 this->nominal_speed,
71 this->millimeters,
72 this->rate_delta,
73 this->accelerate_until,
74 this->decelerate_after,
75 this->initial_rate,
76 this->final_rate,
77 this->entry_speed,
78 this->max_entry_speed,
79 this->times_taken,
80 this->is_ready,
a617ac35
MM
81 recalculate_flag?1:0,
82 nominal_length_flag?1:0
2134bcf2 83 );
4cff3ded
AW
84}
85
86
69735c09 87/* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
4cff3ded
AW
88// The factors represent a factor of braking and must be in the range 0.0-1.0.
89// +--------+ <- nominal_rate
90// / \
91// nominal_rate*entry_factor -> + \
92// | + <- nominal_rate*exit_factor
93// +-------------+
94// time -->
edac9072 95*/
a617ac35 96void Block::calculate_trapezoid( float entryspeed, float exitspeed )
1cf31736 97{
5de195be
MM
98 // if block is currently executing, don't touch anything!
99 if (times_taken)
100 return;
2bb8b390 101
edac9072 102 // The planner passes us factors, we need to transform them in rates
da947c62
MM
103 this->initial_rate = ceil(this->nominal_rate * entryspeed / this->nominal_speed); // (step/s)
104 this->final_rate = ceil(this->nominal_rate * exitspeed / this->nominal_speed); // (step/s)
813727fb 105
edac9072 106 // How many steps to accelerate and decelerate
38bf9a1c 107 float acceleration_per_second = this->rate_delta * THEKERNEL->stepper->get_acceleration_ticks_per_second(); // ( step/s^2)
da947c62
MM
108 int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_second ) );
109 int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate, -acceleration_per_second ) );
4cff3ded 110
edac9072 111 // Calculate the size of Plateau of Nominal Rate ( during which we don't accelerate nor decelerate, but just cruise )
1cf31736
JM
112 int plateau_steps = this->steps_event_count - accelerate_steps - decelerate_steps;
113
114 // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
115 // have to use intersection_distance() to calculate when to abort acceleration and start braking
116 // in order to reach the final_rate exactly at the end of this block.
117 if (plateau_steps < 0) {
da947c62 118 accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_second, this->steps_event_count));
1cf31736
JM
119 accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
120 accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
121 plateau_steps = 0;
122 }
123 this->accelerate_until = accelerate_steps;
124 this->decelerate_after = accelerate_steps + plateau_steps;
4cff3ded 125
5de195be 126 this->exit_speed = exitspeed;
4cff3ded
AW
127}
128
129// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
130// given acceleration:
1cf31736
JM
131float Block::estimate_acceleration_distance(float initialrate, float targetrate, float acceleration)
132{
133 return( ((targetrate * targetrate) - (initialrate * initialrate)) / (2.0F * acceleration));
4cff3ded
AW
134}
135
136// This function gives you the point at which you must start braking (at the rate of -acceleration) if
137// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
138// a total travel of distance. This can be used to compute the intersection point between acceleration and
139// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
140//
141/* + <- some maximum rate we don't care about
142 /|\
143 / | \
144 / | + <- final_rate
145 / | |
146 initial_rate -> +----+--+
147 ^ ^
148 | |
149 intersection_distance distance */
1cf31736
JM
150float Block::intersection_distance(float initialrate, float finalrate, float acceleration, float distance)
151{
152 return((2 * acceleration * distance - initialrate * initialrate + finalrate * finalrate) / (4 * acceleration));
4cff3ded
AW
153}
154
4cff3ded
AW
155// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
156// acceleration within the allotted distance.
1cf31736
JM
157inline float max_allowable_speed(float acceleration, float target_velocity, float distance)
158{
a617ac35 159 return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
4cff3ded
AW
160}
161
162
163// Called by Planner::recalculate() when scanning the plan from last to first entry.
a617ac35 164float Block::reverse_pass(float exit_speed)
1cf31736 165{
a617ac35
MM
166 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
167 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
168 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
169 if (this->entry_speed != this->max_entry_speed)
170 {
171 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
172 // for max allowable speed if block is decelerating and nominal length is false.
173 if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed))
174 {
38bf9a1c 175 float max_entry_speed = max_allowable_speed(-THEKERNEL->planner->get_acceleration(), exit_speed, this->millimeters);
a617ac35
MM
176
177 this->entry_speed = min(max_entry_speed, this->max_entry_speed);
178
179 return this->entry_speed;
aab6cbba 180 }
a617ac35
MM
181 else
182 this->entry_speed = this->max_entry_speed;
183 }
4cff3ded 184
a617ac35 185 return this->entry_speed;
aab6cbba 186}
4cff3ded
AW
187
188
189// Called by Planner::recalculate() when scanning the plan from first to last entry.
a617ac35
MM
190// returns maximum exit speed of this block
191float Block::forward_pass(float prev_max_exit_speed)
1cf31736 192{
aab6cbba
AW
193 // If the previous block is an acceleration block, but it is not long enough to complete the
194 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
195 // speeds have already been reset, maximized, and reverse planned by reverse planner.
196 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
a617ac35
MM
197
198 // TODO: find out if both of these checks are necessary
199 if (prev_max_exit_speed > nominal_speed)
200 prev_max_exit_speed = nominal_speed;
201 if (prev_max_exit_speed > max_entry_speed)
202 prev_max_exit_speed = max_entry_speed;
203
204 if (prev_max_exit_speed <= entry_speed)
205 {
206 // accel limited
207 entry_speed = prev_max_exit_speed;
208 // since we're now acceleration or cruise limited
209 // we don't need to recalculate our entry speed anymore
210 recalculate_flag = false;
aab6cbba 211 }
a617ac35
MM
212 // else
213 // // decel limited, do nothing
7b49793d 214
a617ac35
MM
215 return max_exit_speed();
216}
217
218float Block::max_exit_speed()
219{
5de195be
MM
220 // if block is currently executing, return cached exit speed from calculate_trapezoid
221 // this ensures that a block following a currently executing block will have correct entry speed
222 if (times_taken)
223 return exit_speed;
224
a617ac35
MM
225 // if nominal_length_flag is asserted
226 // we are guaranteed to reach nominal speed regardless of entry speed
227 // thus, max exit will always be nominal
228 if (nominal_length_flag)
229 return nominal_speed;
230
231 // otherwise, we have to work out max exit speed based on entry and acceleration
38bf9a1c 232 float max = max_allowable_speed(-THEKERNEL->planner->get_acceleration(), this->entry_speed, this->millimeters);
a617ac35
MM
233
234 return min(max, nominal_speed);
4cff3ded
AW
235}
236
4cff3ded 237// Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
2134bcf2 238void Block::append_gcode(Gcode* gcode)
1cf31736 239{
1cf31736 240 Gcode new_gcode = *gcode;
b9b1bb25 241 new_gcode.strip_parameters(); // optimization to save memory we strip off the XYZIJ parameters from the saved command
2134bcf2 242 gcodes.push_back(new_gcode);
4cff3ded
AW
243}
244
2134bcf2 245void Block::begin()
1cf31736 246{
2134bcf2 247 recalculate_flag = false;
a617ac35 248
9d005957
MM
249 if (!is_ready)
250 __debugbreak();
251
f2bb3f9f
MM
252 times_taken = -1;
253
2134bcf2
MM
254 // execute all the gcodes related to this block
255 for(unsigned int index = 0; index < gcodes.size(); index++)
256 THEKERNEL->call_event(ON_GCODE_EXECUTE, &(gcodes[index]));
257
258 THEKERNEL->call_event(ON_BLOCK_BEGIN, this);
1366cafd 259
f2bb3f9f 260 if (times_taken < 0)
1366cafd 261 release();
4cff3ded
AW
262}
263
3fceb8eb 264// Signal the conveyor that this block is ready to be injected into the system
1cf31736
JM
265void Block::ready()
266{
13e4a3f9 267 this->is_ready = true;
3a4fa0c1
AW
268}
269
270// Mark the block as taken by one more module
1cf31736
JM
271void Block::take()
272{
f2bb3f9f
MM
273 if (times_taken < 0)
274 times_taken = 0;
275 times_taken++;
3a4fa0c1 276}
4cff3ded 277
3a4fa0c1 278// Mark the block as no longer taken by one module, go to next block if this free's it
1cf31736
JM
279void Block::release()
280{
2134bcf2 281 if (--this->times_taken <= 0)
d5a58071 282 {
9d005957
MM
283 times_taken = 0;
284 if (is_ready)
285 {
286 is_ready = false;
287 THEKERNEL->call_event(ON_BLOCK_END, this);
06a96473 288
9d005957
MM
289 // ensure conveyor gets called last
290 THEKERNEL->conveyor->on_block_end(this);
291 }
d5a58071 292 }
3a4fa0c1 293}