reallocate the gcode vector in block to reduce memory usage when block is cleared
[clinton/Smoothieware.git] / src / modules / robot / Block.cpp
CommitLineData
7b49793d 1/*
4cff3ded
AW
2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl).
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
7b49793d 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
10#include "libs/nuts_bolts.h"
11#include <math.h>
4cff3ded
AW
12#include <string>
13#include "Block.h"
14#include "Planner.h"
3fceb8eb 15#include "Conveyor.h"
9d005957 16#include "Gcode.h"
61134a65
JM
17#include "libs/StreamOutputPool.h"
18#include "Stepper.h"
9d005957
MM
19
20#include "mri.h"
21
4cff3ded
AW
22using std::string;
23#include <vector>
4cff3ded 24
edac9072
AW
25// A block represents a movement, it's length for each stepper motor, and the corresponding acceleration curves.
26// It's stacked on a queue, and that queue is then executed in order, to move the motors.
27// Most of the accel math is also done in this class
28// And GCode objects for use in on_gcode_execute are also help in here
29
1cf31736
JM
30Block::Block()
31{
32 clear();
33}
34
35void Block::clear()
36{
37 //commands.clear();
38 //travel_distances.clear();
39 gcodes.clear();
b64cb3dd
JM
40 std::vector<Gcode>().swap(gcodes); // this resizes the vector releasing its memory
41
4cff3ded 42 clear_vector(this->steps);
1cf31736 43
f539c22f
MM
44 steps_event_count = 0;
45 nominal_rate = 0;
46 nominal_speed = 0.0F;
47 millimeters = 0.0F;
48 entry_speed = 0.0F;
528c2e16 49 exit_speed = 0.0F;
f539c22f
MM
50 rate_delta = 0.0F;
51 initial_rate = -1;
52 final_rate = -1;
53 accelerate_until = 0;
54 decelerate_after = 0;
55 direction_bits = 0;
56 recalculate_flag = false;
57 nominal_length_flag = false;
58 max_entry_speed = 0.0F;
59 is_ready = false;
60 times_taken = 0;
4cff3ded
AW
61}
62
1cf31736
JM
63void Block::debug()
64{
40d64348 65 THEKERNEL->streams->printf("%p: steps:X%04d Y%04d Z%04d(max:%4d) nominal:r%10d/s%6.1f mm:%9.6f rdelta:%8f acc:%5d dec:%5d rates:%10d>%10d entry/max: %10.4f/%10.4f taken:%d ready:%d recalc:%d nomlen:%d\r\n",
2134bcf2
MM
66 this,
67 this->steps[0],
68 this->steps[1],
69 this->steps[2],
70 this->steps_event_count,
71 this->nominal_rate,
72 this->nominal_speed,
73 this->millimeters,
74 this->rate_delta,
75 this->accelerate_until,
76 this->decelerate_after,
77 this->initial_rate,
78 this->final_rate,
79 this->entry_speed,
80 this->max_entry_speed,
81 this->times_taken,
82 this->is_ready,
a617ac35
MM
83 recalculate_flag?1:0,
84 nominal_length_flag?1:0
2134bcf2 85 );
4cff3ded
AW
86}
87
88
69735c09 89/* Calculates trapezoid parameters so that the entry- and exit-speed is compensated by the provided factors.
4cff3ded
AW
90// The factors represent a factor of braking and must be in the range 0.0-1.0.
91// +--------+ <- nominal_rate
92// / \
93// nominal_rate*entry_factor -> + \
94// | + <- nominal_rate*exit_factor
95// +-------------+
96// time -->
edac9072 97*/
a617ac35 98void Block::calculate_trapezoid( float entryspeed, float exitspeed )
1cf31736 99{
5de195be
MM
100 // if block is currently executing, don't touch anything!
101 if (times_taken)
102 return;
2bb8b390 103
edac9072 104 // The planner passes us factors, we need to transform them in rates
da947c62
MM
105 this->initial_rate = ceil(this->nominal_rate * entryspeed / this->nominal_speed); // (step/s)
106 this->final_rate = ceil(this->nominal_rate * exitspeed / this->nominal_speed); // (step/s)
813727fb 107
edac9072 108 // How many steps to accelerate and decelerate
38bf9a1c 109 float acceleration_per_second = this->rate_delta * THEKERNEL->stepper->get_acceleration_ticks_per_second(); // ( step/s^2)
da947c62
MM
110 int accelerate_steps = ceil( this->estimate_acceleration_distance( this->initial_rate, this->nominal_rate, acceleration_per_second ) );
111 int decelerate_steps = floor( this->estimate_acceleration_distance( this->nominal_rate, this->final_rate, -acceleration_per_second ) );
4cff3ded 112
edac9072 113 // Calculate the size of Plateau of Nominal Rate ( during which we don't accelerate nor decelerate, but just cruise )
1cf31736
JM
114 int plateau_steps = this->steps_event_count - accelerate_steps - decelerate_steps;
115
116 // Is the Plateau of Nominal Rate smaller than nothing? That means no cruising, and we will
117 // have to use intersection_distance() to calculate when to abort acceleration and start braking
118 // in order to reach the final_rate exactly at the end of this block.
119 if (plateau_steps < 0) {
da947c62 120 accelerate_steps = ceil(this->intersection_distance(this->initial_rate, this->final_rate, acceleration_per_second, this->steps_event_count));
1cf31736
JM
121 accelerate_steps = max( accelerate_steps, 0 ); // Check limits due to numerical round-off
122 accelerate_steps = min( accelerate_steps, int(this->steps_event_count) );
123 plateau_steps = 0;
124 }
125 this->accelerate_until = accelerate_steps;
126 this->decelerate_after = accelerate_steps + plateau_steps;
4cff3ded 127
5de195be 128 this->exit_speed = exitspeed;
4cff3ded
AW
129}
130
131// Calculates the distance (not time) it takes to accelerate from initial_rate to target_rate using the
132// given acceleration:
1cf31736
JM
133float Block::estimate_acceleration_distance(float initialrate, float targetrate, float acceleration)
134{
135 return( ((targetrate * targetrate) - (initialrate * initialrate)) / (2.0F * acceleration));
4cff3ded
AW
136}
137
138// This function gives you the point at which you must start braking (at the rate of -acceleration) if
139// you started at speed initial_rate and accelerated until this point and want to end at the final_rate after
140// a total travel of distance. This can be used to compute the intersection point between acceleration and
141// deceleration in the cases where the trapezoid has no plateau (i.e. never reaches maximum speed)
142//
143/* + <- some maximum rate we don't care about
144 /|\
145 / | \
146 / | + <- final_rate
147 / | |
148 initial_rate -> +----+--+
149 ^ ^
150 | |
151 intersection_distance distance */
1cf31736
JM
152float Block::intersection_distance(float initialrate, float finalrate, float acceleration, float distance)
153{
154 return((2 * acceleration * distance - initialrate * initialrate + finalrate * finalrate) / (4 * acceleration));
4cff3ded
AW
155}
156
4cff3ded
AW
157// Calculates the maximum allowable speed at this point when you must be able to reach target_velocity using the
158// acceleration within the allotted distance.
1cf31736
JM
159inline float max_allowable_speed(float acceleration, float target_velocity, float distance)
160{
a617ac35 161 return sqrtf(target_velocity * target_velocity - 2.0F * acceleration * distance);
4cff3ded
AW
162}
163
164
165// Called by Planner::recalculate() when scanning the plan from last to first entry.
a617ac35 166float Block::reverse_pass(float exit_speed)
1cf31736 167{
a617ac35
MM
168 // If entry speed is already at the maximum entry speed, no need to recheck. Block is cruising.
169 // If not, block in state of acceleration or deceleration. Reset entry speed to maximum and
170 // check for maximum allowable speed reductions to ensure maximum possible planned speed.
171 if (this->entry_speed != this->max_entry_speed)
172 {
173 // If nominal length true, max junction speed is guaranteed to be reached. Only compute
174 // for max allowable speed if block is decelerating and nominal length is false.
175 if ((!this->nominal_length_flag) && (this->max_entry_speed > exit_speed))
176 {
38bf9a1c 177 float max_entry_speed = max_allowable_speed(-THEKERNEL->planner->get_acceleration(), exit_speed, this->millimeters);
a617ac35
MM
178
179 this->entry_speed = min(max_entry_speed, this->max_entry_speed);
180
181 return this->entry_speed;
aab6cbba 182 }
a617ac35
MM
183 else
184 this->entry_speed = this->max_entry_speed;
185 }
4cff3ded 186
a617ac35 187 return this->entry_speed;
aab6cbba 188}
4cff3ded
AW
189
190
191// Called by Planner::recalculate() when scanning the plan from first to last entry.
a617ac35
MM
192// returns maximum exit speed of this block
193float Block::forward_pass(float prev_max_exit_speed)
1cf31736 194{
aab6cbba
AW
195 // If the previous block is an acceleration block, but it is not long enough to complete the
196 // full speed change within the block, we need to adjust the entry speed accordingly. Entry
197 // speeds have already been reset, maximized, and reverse planned by reverse planner.
198 // If nominal length is true, max junction speed is guaranteed to be reached. No need to recheck.
a617ac35
MM
199
200 // TODO: find out if both of these checks are necessary
201 if (prev_max_exit_speed > nominal_speed)
202 prev_max_exit_speed = nominal_speed;
203 if (prev_max_exit_speed > max_entry_speed)
204 prev_max_exit_speed = max_entry_speed;
205
206 if (prev_max_exit_speed <= entry_speed)
207 {
208 // accel limited
209 entry_speed = prev_max_exit_speed;
210 // since we're now acceleration or cruise limited
211 // we don't need to recalculate our entry speed anymore
212 recalculate_flag = false;
aab6cbba 213 }
a617ac35
MM
214 // else
215 // // decel limited, do nothing
7b49793d 216
a617ac35
MM
217 return max_exit_speed();
218}
219
220float Block::max_exit_speed()
221{
5de195be
MM
222 // if block is currently executing, return cached exit speed from calculate_trapezoid
223 // this ensures that a block following a currently executing block will have correct entry speed
224 if (times_taken)
225 return exit_speed;
226
a617ac35
MM
227 // if nominal_length_flag is asserted
228 // we are guaranteed to reach nominal speed regardless of entry speed
229 // thus, max exit will always be nominal
230 if (nominal_length_flag)
231 return nominal_speed;
232
233 // otherwise, we have to work out max exit speed based on entry and acceleration
38bf9a1c 234 float max = max_allowable_speed(-THEKERNEL->planner->get_acceleration(), this->entry_speed, this->millimeters);
a617ac35
MM
235
236 return min(max, nominal_speed);
4cff3ded
AW
237}
238
4cff3ded 239// Gcodes are attached to their respective blocks so that on_gcode_execute can be called with it
2134bcf2 240void Block::append_gcode(Gcode* gcode)
1cf31736 241{
1cf31736 242 Gcode new_gcode = *gcode;
b9b1bb25 243 new_gcode.strip_parameters(); // optimization to save memory we strip off the XYZIJ parameters from the saved command
2134bcf2 244 gcodes.push_back(new_gcode);
4cff3ded
AW
245}
246
2134bcf2 247void Block::begin()
1cf31736 248{
2134bcf2 249 recalculate_flag = false;
a617ac35 250
9d005957
MM
251 if (!is_ready)
252 __debugbreak();
253
f2bb3f9f
MM
254 times_taken = -1;
255
2134bcf2
MM
256 // execute all the gcodes related to this block
257 for(unsigned int index = 0; index < gcodes.size(); index++)
258 THEKERNEL->call_event(ON_GCODE_EXECUTE, &(gcodes[index]));
259
260 THEKERNEL->call_event(ON_BLOCK_BEGIN, this);
1366cafd 261
f2bb3f9f 262 if (times_taken < 0)
1366cafd 263 release();
4cff3ded
AW
264}
265
3fceb8eb 266// Signal the conveyor that this block is ready to be injected into the system
1cf31736
JM
267void Block::ready()
268{
13e4a3f9 269 this->is_ready = true;
3a4fa0c1
AW
270}
271
272// Mark the block as taken by one more module
1cf31736
JM
273void Block::take()
274{
f2bb3f9f
MM
275 if (times_taken < 0)
276 times_taken = 0;
277 times_taken++;
3a4fa0c1 278}
4cff3ded 279
3a4fa0c1 280// Mark the block as no longer taken by one module, go to next block if this free's it
1cf31736
JM
281void Block::release()
282{
2134bcf2 283 if (--this->times_taken <= 0)
d5a58071 284 {
9d005957
MM
285 times_taken = 0;
286 if (is_ready)
287 {
288 is_ready = false;
289 THEKERNEL->call_event(ON_BLOCK_END, this);
06a96473 290
9d005957
MM
291 // ensure conveyor gets called last
292 THEKERNEL->conveyor->on_block_end(this);
293 }
d5a58071 294 }
3a4fa0c1 295}