Use static kernel singleton pointer instead of per-class instance pointer
[clinton/Smoothieware.git] / src / modules / robot / Robot.cpp
CommitLineData
df27a6a3 1/*
aab6cbba 2 This file is part of Smoothie (http://smoothieware.org/). The motion control part is heavily based on Grbl (https://github.com/simen/grbl) with additions from Sungeun K. Jeon (https://github.com/chamnit/grbl)
4cff3ded
AW
3 Smoothie is free software: you can redistribute it and/or modify it under the terms of the GNU General Public License as published by the Free Software Foundation, either version 3 of the License, or (at your option) any later version.
4 Smoothie is distributed in the hope that it will be useful, but WITHOUT ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU General Public License for more details.
df27a6a3 5 You should have received a copy of the GNU General Public License along with Smoothie. If not, see <http://www.gnu.org/licenses/>.
4cff3ded
AW
6*/
7
8#include "libs/Module.h"
9#include "libs/Kernel.h"
10#include <string>
11using std::string;
4cff3ded
AW
12#include <math.h>
13#include "Planner.h"
3fceb8eb 14#include "Conveyor.h"
4cff3ded
AW
15#include "Robot.h"
16#include "libs/nuts_bolts.h"
feb204be 17#include "libs/Pin.h"
670fa10b 18#include "libs/StepperMotor.h"
4cff3ded 19#include "../communication/utils/Gcode.h"
5647f709 20#include "PublicDataRequest.h"
4cff3ded
AW
21#include "arm_solutions/BaseSolution.h"
22#include "arm_solutions/CartesianSolution.h"
c41d6d95 23#include "arm_solutions/RotatableCartesianSolution.h"
4e04bcd3 24#include "arm_solutions/RostockSolution.h"
2c7ab192 25#include "arm_solutions/JohannKosselSolution.h"
bdaaa75d 26#include "arm_solutions/HBotSolution.h"
4cff3ded 27
43424972
JM
28#define default_seek_rate_checksum CHECKSUM("default_seek_rate")
29#define default_feed_rate_checksum CHECKSUM("default_feed_rate")
30#define mm_per_line_segment_checksum CHECKSUM("mm_per_line_segment")
31#define delta_segments_per_second_checksum CHECKSUM("delta_segments_per_second")
32#define mm_per_arc_segment_checksum CHECKSUM("mm_per_arc_segment")
33#define arc_correction_checksum CHECKSUM("arc_correction")
34#define x_axis_max_speed_checksum CHECKSUM("x_axis_max_speed")
35#define y_axis_max_speed_checksum CHECKSUM("y_axis_max_speed")
36#define z_axis_max_speed_checksum CHECKSUM("z_axis_max_speed")
37
38// arm solutions
39#define arm_solution_checksum CHECKSUM("arm_solution")
40#define cartesian_checksum CHECKSUM("cartesian")
41#define rotatable_cartesian_checksum CHECKSUM("rotatable_cartesian")
42#define rostock_checksum CHECKSUM("rostock")
43#define delta_checksum CHECKSUM("delta")
44#define hbot_checksum CHECKSUM("hbot")
45#define corexy_checksum CHECKSUM("corexy")
46#define kossel_checksum CHECKSUM("kossel")
47
edac9072
AW
48// The Robot converts GCodes into actual movements, and then adds them to the Planner, which passes them to the Conveyor so they can be added to the queue
49// It takes care of cutting arcs into segments, same thing for line that are too long
41fd89e0 50#define max(a,b) (((a) > (b)) ? (a) : (b))
edac9072 51
4cff3ded 52Robot::Robot(){
a1b7e9f0 53 this->inch_mode = false;
0e8b102e 54 this->absolute_mode = true;
df27a6a3 55 this->motion_mode = MOTION_MODE_SEEK;
4cff3ded
AW
56 this->select_plane(X_AXIS, Y_AXIS, Z_AXIS);
57 clear_vector(this->current_position);
df27a6a3 58 clear_vector(this->last_milestone);
0b804a41 59 this->arm_solution = NULL;
7369629d 60 seconds_per_minute = 60.0;
4cff3ded
AW
61}
62
63//Called when the module has just been loaded
64void Robot::on_module_loaded() {
476dcb96 65 register_for_event(ON_CONFIG_RELOAD);
4cff3ded 66 this->register_for_event(ON_GCODE_RECEIVED);
b55cfff1
JM
67 this->register_for_event(ON_GET_PUBLIC_DATA);
68 this->register_for_event(ON_SET_PUBLIC_DATA);
4cff3ded
AW
69
70 // Configuration
da24d6ae 71 this->on_config_reload(this);
feb204be
AW
72
73 // Make our 3 StepperMotors
314ab8f7
MM
74 this->alpha_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(&alpha_step_pin,&alpha_dir_pin,&alpha_en_pin) );
75 this->beta_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(&beta_step_pin, &beta_dir_pin, &beta_en_pin ) );
76 this->gamma_stepper_motor = THEKERNEL->step_ticker->add_stepper_motor( new StepperMotor(&gamma_step_pin,&gamma_dir_pin,&gamma_en_pin) );
feb204be 77
da24d6ae
AW
78}
79
80void Robot::on_config_reload(void* argument){
5984acdf 81
edac9072
AW
82 // Arm solutions are used to convert positions in millimeters into position in steps for each stepper motor.
83 // While for a cartesian arm solution, this is a simple multiplication, in other, less simple cases, there is some serious math to be done.
84 // To make adding those solution easier, they have their own, separate object.
5984acdf 85 // Here we read the config to find out which arm solution to use
0b804a41 86 if (this->arm_solution) delete this->arm_solution;
314ab8f7 87 int solution_checksum = get_checksum(THEKERNEL->config->value(arm_solution_checksum)->by_default("cartesian")->as_string());
d149c730 88 // Note checksums are not const expressions when in debug mode, so don't use switch
98761c28 89 if(solution_checksum == hbot_checksum || solution_checksum == corexy_checksum) {
314ab8f7 90 this->arm_solution = new HBotSolution(THEKERNEL->config);
bdaaa75d
L
91
92 }else if(solution_checksum == rostock_checksum) {
314ab8f7 93 this->arm_solution = new RostockSolution(THEKERNEL->config);
73a4e3c0 94
2c7ab192 95 }else if(solution_checksum == kossel_checksum) {
314ab8f7 96 this->arm_solution = new JohannKosselSolution(THEKERNEL->config);
2c7ab192 97
d149c730 98 }else if(solution_checksum == delta_checksum) {
4a0c8e14 99 // place holder for now
314ab8f7 100 this->arm_solution = new RostockSolution(THEKERNEL->config);
73a4e3c0 101
b73a756d 102 }else if(solution_checksum == rotatable_cartesian_checksum) {
314ab8f7 103 this->arm_solution = new RotatableCartesianSolution(THEKERNEL->config);
b73a756d 104
d149c730 105 }else if(solution_checksum == cartesian_checksum) {
314ab8f7 106 this->arm_solution = new CartesianSolution(THEKERNEL->config);
73a4e3c0 107
d149c730 108 }else{
314ab8f7 109 this->arm_solution = new CartesianSolution(THEKERNEL->config);
d149c730 110 }
73a4e3c0 111
0b804a41 112
314ab8f7
MM
113 this->feed_rate = THEKERNEL->config->value(default_feed_rate_checksum )->by_default(100 )->as_number() / 60;
114 this->seek_rate = THEKERNEL->config->value(default_seek_rate_checksum )->by_default(100 )->as_number() / 60;
115 this->mm_per_line_segment = THEKERNEL->config->value(mm_per_line_segment_checksum )->by_default(0.0 )->as_number();
116 this->delta_segments_per_second = THEKERNEL->config->value(delta_segments_per_second_checksum )->by_default(0.0 )->as_number();
117 this->mm_per_arc_segment = THEKERNEL->config->value(mm_per_arc_segment_checksum )->by_default(0.5 )->as_number();
118 this->arc_correction = THEKERNEL->config->value(arc_correction_checksum )->by_default(5 )->as_number();
119 this->max_speeds[X_AXIS] = THEKERNEL->config->value(x_axis_max_speed_checksum )->by_default(60000 )->as_number();
120 this->max_speeds[Y_AXIS] = THEKERNEL->config->value(y_axis_max_speed_checksum )->by_default(60000 )->as_number();
121 this->max_speeds[Z_AXIS] = THEKERNEL->config->value(z_axis_max_speed_checksum )->by_default(300 )->as_number();
122 this->alpha_step_pin.from_string( THEKERNEL->config->value(alpha_step_pin_checksum )->by_default("2.0" )->as_string())->as_output();
123 this->alpha_dir_pin.from_string( THEKERNEL->config->value(alpha_dir_pin_checksum )->by_default("0.5" )->as_string())->as_output();
124 this->alpha_en_pin.from_string( THEKERNEL->config->value(alpha_en_pin_checksum )->by_default("0.4" )->as_string())->as_output();
125 this->beta_step_pin.from_string( THEKERNEL->config->value(beta_step_pin_checksum )->by_default("2.1" )->as_string())->as_output();
126 this->gamma_step_pin.from_string( THEKERNEL->config->value(gamma_step_pin_checksum )->by_default("2.2" )->as_string())->as_output();
127 this->gamma_dir_pin.from_string( THEKERNEL->config->value(gamma_dir_pin_checksum )->by_default("0.20" )->as_string())->as_output();
128 this->gamma_en_pin.from_string( THEKERNEL->config->value(gamma_en_pin_checksum )->by_default("0.19" )->as_string())->as_output();
129 this->beta_dir_pin.from_string( THEKERNEL->config->value(beta_dir_pin_checksum )->by_default("0.11" )->as_string())->as_output();
130 this->beta_en_pin.from_string( THEKERNEL->config->value(beta_en_pin_checksum )->by_default("0.10" )->as_string())->as_output();
feb204be 131
4cff3ded
AW
132}
133
5647f709 134void Robot::on_get_public_data(void* argument){
b55cfff1
JM
135 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
136
137 if(!pdr->starts_with(robot_checksum)) return;
138
139 if(pdr->second_element_is(speed_override_percent_checksum)) {
58d6d841
JM
140 static double return_data;
141 return_data= 100*this->seconds_per_minute/60;
b55cfff1
JM
142 pdr->set_data_ptr(&return_data);
143 pdr->set_taken();
98761c28 144
b55cfff1
JM
145 }else if(pdr->second_element_is(current_position_checksum)) {
146 static double return_data[3];
147 return_data[0]= from_millimeters(this->current_position[0]);
148 return_data[1]= from_millimeters(this->current_position[1]);
149 return_data[2]= from_millimeters(this->current_position[2]);
150
151 pdr->set_data_ptr(&return_data);
98761c28 152 pdr->set_taken();
b55cfff1 153 }
5647f709
JM
154}
155
156void Robot::on_set_public_data(void* argument){
b55cfff1 157 PublicDataRequest* pdr = static_cast<PublicDataRequest*>(argument);
5647f709 158
b55cfff1 159 if(!pdr->starts_with(robot_checksum)) return;
5647f709 160
b55cfff1 161 if(pdr->second_element_is(speed_override_percent_checksum)) {
7a522ccc 162 // NOTE do not use this while printing!
b55cfff1 163 double t= *static_cast<double*>(pdr->get_data_ptr());
98761c28
JM
164 // enforce minimum 10% speed
165 if (t < 10.0) t= 10.0;
166
35089dc7 167 this->seconds_per_minute= t * 0.6;
b55cfff1
JM
168 pdr->set_taken();
169 }
5647f709
JM
170}
171
4cff3ded 172//A GCode has been received
edac9072 173//See if the current Gcode line has some orders for us
4cff3ded
AW
174void Robot::on_gcode_received(void * argument){
175 Gcode* gcode = static_cast<Gcode*>(argument);
6bc4a00a 176
4cff3ded
AW
177 //Temp variables, constant properties are stored in the object
178 uint8_t next_action = NEXT_ACTION_DEFAULT;
23c90ba6 179 this->motion_mode = -1;
4cff3ded
AW
180
181 //G-letter Gcodes are mostly what the Robot module is interrested in, other modules also catch the gcode event and do stuff accordingly
3c4f2dd8
AW
182 if( gcode->has_g){
183 switch( gcode->g ){
74b6303c
DD
184 case 0: this->motion_mode = MOTION_MODE_SEEK; gcode->mark_as_taken(); break;
185 case 1: this->motion_mode = MOTION_MODE_LINEAR; gcode->mark_as_taken(); break;
186 case 2: this->motion_mode = MOTION_MODE_CW_ARC; gcode->mark_as_taken(); break;
187 case 3: this->motion_mode = MOTION_MODE_CCW_ARC; gcode->mark_as_taken(); break;
188 case 17: this->select_plane(X_AXIS, Y_AXIS, Z_AXIS); gcode->mark_as_taken(); break;
189 case 18: this->select_plane(X_AXIS, Z_AXIS, Y_AXIS); gcode->mark_as_taken(); break;
190 case 19: this->select_plane(Y_AXIS, Z_AXIS, X_AXIS); gcode->mark_as_taken(); break;
191 case 20: this->inch_mode = true; gcode->mark_as_taken(); break;
192 case 21: this->inch_mode = false; gcode->mark_as_taken(); break;
193 case 90: this->absolute_mode = true; gcode->mark_as_taken(); break;
194 case 91: this->absolute_mode = false; gcode->mark_as_taken(); break;
0b804a41 195 case 92: {
6bc4a00a 196 if(gcode->get_num_args() == 0){
8a23b271 197 clear_vector(this->last_milestone);
6bc4a00a 198 }else{
eaf8a8a8
BG
199 for (char letter = 'X'; letter <= 'Z'; letter++){
200 if ( gcode->has_letter(letter) )
6bc4a00a 201 this->last_milestone[letter-'X'] = this->to_millimeters(gcode->get_value(letter));
eaf8a8a8 202 }
6bc4a00a
MM
203 }
204 memcpy(this->current_position, this->last_milestone, sizeof(double)*3); // current_position[] = last_milestone[];
314ab8f7 205 this->arm_solution->millimeters_to_steps(this->current_position, THEKERNEL->planner->position);
74b6303c 206 gcode->mark_as_taken();
6bc4a00a
MM
207 return; // TODO: Wait until queue empty
208 }
209 }
3c4f2dd8 210 }else if( gcode->has_m){
33e4cc02
JM
211 double steps[3];
212 switch( gcode->m ){
0fb5b438 213 case 92: // M92 - set steps per mm
0fb5b438
MM
214 this->arm_solution->get_steps_per_millimeter(steps);
215 if (gcode->has_letter('X'))
216 steps[0] = this->to_millimeters(gcode->get_value('X'));
217 if (gcode->has_letter('Y'))
218 steps[1] = this->to_millimeters(gcode->get_value('Y'));
219 if (gcode->has_letter('Z'))
220 steps[2] = this->to_millimeters(gcode->get_value('Z'));
7369629d
MM
221 if (gcode->has_letter('F'))
222 seconds_per_minute = gcode->get_value('F');
0fb5b438
MM
223 this->arm_solution->set_steps_per_millimeter(steps);
224 // update current position in steps
314ab8f7 225 this->arm_solution->millimeters_to_steps(this->current_position, THEKERNEL->planner->position);
7369629d 226 gcode->stream->printf("X:%g Y:%g Z:%g F:%g ", steps[0], steps[1], steps[2], seconds_per_minute);
0fb5b438 227 gcode->add_nl = true;
74b6303c 228 gcode->mark_as_taken();
0fb5b438 229 return;
58d6d841 230 case 114: gcode->stream->printf("C: X:%1.3f Y:%1.3f Z:%1.3f ",
bce9410e
MM
231 from_millimeters(this->current_position[0]),
232 from_millimeters(this->current_position[1]),
233 from_millimeters(this->current_position[2]));
6989211c 234 gcode->add_nl = true;
74b6303c 235 gcode->mark_as_taken();
6989211c 236 return;
33e4cc02 237
494dc541 238 // TODO I'm not sure if the following is safe to do here, or should it go on the block queue?
d4ee6ee2
JM
239 case 204: // M204 Snnn - set acceleration to nnn, NB only Snnn is currently supported
240 gcode->mark_as_taken();
241 if (gcode->has_letter('S'))
242 {
243 double acc= gcode->get_value('S') * 60 * 60; // mm/min^2
244 // enforce minimum
245 if (acc < 1.0)
246 acc = 1.0;
314ab8f7 247 THEKERNEL->planner->acceleration= acc;
d4ee6ee2
JM
248 }
249 break;
250
251 case 205: // M205 Xnnn - set junction deviation
252 gcode->mark_as_taken();
253 if (gcode->has_letter('X'))
254 {
255 double jd= gcode->get_value('X');
256 // enforce minimum
257 if (jd < 0.0)
258 jd = 0.0;
314ab8f7 259 THEKERNEL->planner->junction_deviation= jd;
d4ee6ee2
JM
260 }
261 break;
98761c28 262
7369629d 263 case 220: // M220 - speed override percentage
74b6303c 264 gcode->mark_as_taken();
7369629d
MM
265 if (gcode->has_letter('S'))
266 {
267 double factor = gcode->get_value('S');
98761c28
JM
268 // enforce minimum 10% speed
269 if (factor < 10.0)
270 factor = 10.0;
7369629d
MM
271 seconds_per_minute = factor * 0.6;
272 }
b4f56013 273 break;
ec4773e5 274
494dc541
JM
275 case 400: // wait until all moves are done up to this point
276 gcode->mark_as_taken();
314ab8f7 277 THEKERNEL->conveyor->wait_for_empty_queue();
494dc541
JM
278 break;
279
33e4cc02
JM
280 case 500: // M500 saves some volatile settings to config override file
281 case 503: // M503 just prints the settings
282 this->arm_solution->get_steps_per_millimeter(steps);
adf89655 283 gcode->stream->printf(";Steps per unit:\nM92 X%1.5f Y%1.5f Z%1.5f\n", steps[0], steps[1], steps[2]);
314ab8f7
MM
284 gcode->stream->printf(";Acceleration mm/sec^2:\nM204 S%1.5f\n", THEKERNEL->planner->acceleration/3600);
285 gcode->stream->printf(";Junction Deviation:\nM205 X%1.5f\n", THEKERNEL->planner->junction_deviation);
33e4cc02
JM
286 gcode->mark_as_taken();
287 break;
288
ec4773e5
JM
289 case 665: // M665 set optional arm solution variables based on arm solution
290 gcode->mark_as_taken();
291 // the parameter args could be any letter so try each one
292 for(char c='A';c<='Z';c++) {
293 double v;
294 bool supported= arm_solution->get_optional(c, &v); // retrieve current value if supported
295
296 if(supported && gcode->has_letter(c)) { // set new value if supported
297 v= gcode->get_value(c);
298 arm_solution->set_optional(c, v);
299 }
300 if(supported) { // print all current values of supported options
5523c05d
JM
301 gcode->stream->printf("%c %8.3f ", c, v);
302 gcode->add_nl = true;
ec4773e5
JM
303 }
304 }
305 break;
306
6989211c 307 }
494dc541
JM
308 }
309
c83887ea
MM
310 if( this->motion_mode < 0)
311 return;
6bc4a00a 312
4cff3ded
AW
313 //Get parameters
314 double target[3], offset[3];
df27a6a3 315 clear_vector(target); clear_vector(offset);
6bc4a00a 316
4cff3ded 317 memcpy(target, this->current_position, sizeof(target)); //default to last target
6bc4a00a 318
df27a6a3 319 for(char letter = 'I'; letter <= 'K'; letter++){ if( gcode->has_letter(letter) ){ offset[letter-'I'] = this->to_millimeters(gcode->get_value(letter)); } }
a63da33c 320 for(char letter = 'X'; letter <= 'Z'; letter++){ if( gcode->has_letter(letter) ){ target[letter-'X'] = this->to_millimeters(gcode->get_value(letter)) + ( this->absolute_mode ? 0 : target[letter-'X']); } }
6bc4a00a 321
7369629d
MM
322 if( gcode->has_letter('F') )
323 {
324 if( this->motion_mode == MOTION_MODE_SEEK )
325 this->seek_rate = this->to_millimeters( gcode->get_value('F') ) / 60.0;
326 else
327 this->feed_rate = this->to_millimeters( gcode->get_value('F') ) / 60.0;
328 }
6bc4a00a 329
4cff3ded
AW
330 //Perform any physical actions
331 switch( next_action ){
332 case NEXT_ACTION_DEFAULT:
333 switch(this->motion_mode){
334 case MOTION_MODE_CANCEL: break;
436a2cd1
AW
335 case MOTION_MODE_SEEK : this->append_line(gcode, target, this->seek_rate ); break;
336 case MOTION_MODE_LINEAR: this->append_line(gcode, target, this->feed_rate ); break;
df27a6a3 337 case MOTION_MODE_CW_ARC: case MOTION_MODE_CCW_ARC: this->compute_arc(gcode, offset, target ); break;
4cff3ded
AW
338 }
339 break;
340 }
13e4a3f9 341
4cff3ded
AW
342 // As far as the parser is concerned, the position is now == target. In reality the
343 // motion control system might still be processing the action and the real tool position
344 // in any intermediate location.
df27a6a3 345 memcpy(this->current_position, target, sizeof(double)*3); // this->position[] = target[];
4cff3ded 346
edac9072
AW
347}
348
5984acdf 349// We received a new gcode, and one of the functions
edac9072
AW
350// determined the distance for that given gcode. So now we can attach this gcode to the right block
351// and continue
352void Robot::distance_in_gcode_is_known(Gcode* gcode){
353
354 //If the queue is empty, execute immediatly, otherwise attach to the last added block
314ab8f7
MM
355 if( THEKERNEL->conveyor->queue.size() == 0 ){
356 THEKERNEL->call_event(ON_GCODE_EXECUTE, gcode );
edac9072 357 }else{
314ab8f7 358 Block* block = THEKERNEL->conveyor->queue.get_ref( THEKERNEL->conveyor->queue.size() - 1 );
edac9072
AW
359 block->append_gcode(gcode);
360 }
361
362}
363
364// Reset the position for all axes ( used in homing and G92 stuff )
365void Robot::reset_axis_position(double position, int axis) {
366 this->last_milestone[axis] = this->current_position[axis] = position;
314ab8f7 367 this->arm_solution->millimeters_to_steps(this->current_position, THEKERNEL->planner->position);
4cff3ded
AW
368}
369
edac9072 370
4cff3ded
AW
371// Convert target from millimeters to steps, and append this to the planner
372void Robot::append_milestone( double target[], double rate ){
373 int steps[3]; //Holds the result of the conversion
6bc4a00a 374
edac9072 375 // We use an arm solution object so exotic arm solutions can be used and neatly abstracted
4cff3ded 376 this->arm_solution->millimeters_to_steps( target, steps );
6bc4a00a 377
aab6cbba
AW
378 double deltas[3];
379 for(int axis=X_AXIS;axis<=Z_AXIS;axis++){deltas[axis]=target[axis]-this->last_milestone[axis];}
380
edac9072 381 // Compute how long this move moves, so we can attach it to the block for later use
df27a6a3 382 double millimeters_of_travel = sqrt( pow( deltas[X_AXIS], 2 ) + pow( deltas[Y_AXIS], 2 ) + pow( deltas[Z_AXIS], 2 ) );
7b470506 383
edac9072 384 // Do not move faster than the configured limits
7b470506 385 for(int axis=X_AXIS;axis<=Z_AXIS;axis++){
df27a6a3 386 if( this->max_speeds[axis] > 0 ){
7369629d 387 double axis_speed = ( fabs(deltas[axis]) / ( millimeters_of_travel / rate )) * seconds_per_minute;
df27a6a3
MM
388 if( axis_speed > this->max_speeds[axis] ){
389 rate = rate * ( this->max_speeds[axis] / axis_speed );
436a2cd1 390 }
7b470506
AW
391 }
392 }
4cff3ded 393
edac9072 394 // Append the block to the planner
314ab8f7 395 THEKERNEL->planner->append_block( steps, rate * seconds_per_minute, millimeters_of_travel, deltas );
4cff3ded 396
edac9072 397 // Update the last_milestone to the current target for the next time we use last_milestone
df27a6a3 398 memcpy(this->last_milestone, target, sizeof(double)*3); // this->last_milestone[] = target[];
4cff3ded
AW
399
400}
401
edac9072 402// Append a move to the queue ( cutting it into segments if needed )
436a2cd1 403void Robot::append_line(Gcode* gcode, double target[], double rate ){
4cff3ded 404
edac9072 405 // Find out the distance for this gcode
df27a6a3 406 gcode->millimeters_of_travel = sqrt( pow( target[X_AXIS]-this->current_position[X_AXIS], 2 ) + pow( target[Y_AXIS]-this->current_position[Y_AXIS], 2 ) + pow( target[Z_AXIS]-this->current_position[Z_AXIS], 2 ) );
4cff3ded 407
edac9072 408 // We ignore non-moves ( for example, extruder moves are not XYZ moves )
5dcb2ff3 409 if( gcode->millimeters_of_travel < 0.0001 ){ return; }
436a2cd1 410
edac9072 411 // Mark the gcode as having a known distance
5dcb2ff3 412 this->distance_in_gcode_is_known( gcode );
436a2cd1 413
4a0c8e14
JM
414 // We cut the line into smaller segments. This is not usefull in a cartesian robot, but necessary for robots with rotational axes.
415 // In cartesian robot, a high "mm_per_line_segment" setting will prevent waste.
416 // In delta robots either mm_per_line_segment can be used OR delta_segments_per_second The latter is more efficient and avoids splitting fast long lines into very small segments, like initial z move to 0, it is what Johanns Marlin delta port does
4a0c8e14 417 uint16_t segments;
5984acdf 418
4a0c8e14
JM
419 if(this->delta_segments_per_second > 1.0) {
420 // enabled if set to something > 1, it is set to 0.0 by default
421 // segment based on current speed and requested segments per second
422 // the faster the travel speed the fewer segments needed
423 // NOTE rate is mm/sec and we take into account any speed override
424 float seconds = 60.0/seconds_per_minute * gcode->millimeters_of_travel / rate;
425 segments= max(1, ceil(this->delta_segments_per_second * seconds));
426 // TODO if we are only moving in Z on a delta we don't really need to segment at all
5984acdf 427
4a0c8e14
JM
428 }else{
429 if(this->mm_per_line_segment == 0.0){
430 segments= 1; // don't split it up
431 }else{
432 segments = ceil( gcode->millimeters_of_travel/ this->mm_per_line_segment);
433 }
434 }
5984acdf 435
4cff3ded
AW
436 // A vector to keep track of the endpoint of each segment
437 double temp_target[3];
438 //Initialize axes
df27a6a3 439 memcpy( temp_target, this->current_position, sizeof(double)*3); // temp_target[] = this->current_position[];
4cff3ded
AW
440
441 //For each segment
442 for( int i=0; i<segments-1; i++ ){
df27a6a3 443 for(int axis=X_AXIS; axis <= Z_AXIS; axis++ ){ temp_target[axis] += ( target[axis]-this->current_position[axis] )/segments; }
5984acdf 444 // Append the end of this segment to the queue
df27a6a3 445 this->append_milestone(temp_target, rate);
4cff3ded 446 }
5984acdf
MM
447
448 // Append the end of this full move to the queue
4cff3ded
AW
449 this->append_milestone(target, rate);
450}
451
4cff3ded 452
edac9072 453// Append an arc to the queue ( cutting it into segments as needed )
436a2cd1 454void Robot::append_arc(Gcode* gcode, double target[], double offset[], double radius, bool is_clockwise ){
aab6cbba 455
edac9072 456 // Scary math
aab6cbba
AW
457 double center_axis0 = this->current_position[this->plane_axis_0] + offset[this->plane_axis_0];
458 double center_axis1 = this->current_position[this->plane_axis_1] + offset[this->plane_axis_1];
459 double linear_travel = target[this->plane_axis_2] - this->current_position[this->plane_axis_2];
460 double r_axis0 = -offset[this->plane_axis_0]; // Radius vector from center to current location
461 double r_axis1 = -offset[this->plane_axis_1];
462 double rt_axis0 = target[this->plane_axis_0] - center_axis0;
463 double rt_axis1 = target[this->plane_axis_1] - center_axis1;
464
465 // CCW angle between position and target from circle center. Only one atan2() trig computation required.
466 double angular_travel = atan2(r_axis0*rt_axis1-r_axis1*rt_axis0, r_axis0*rt_axis0+r_axis1*rt_axis1);
467 if (angular_travel < 0) { angular_travel += 2*M_PI; }
468 if (is_clockwise) { angular_travel -= 2*M_PI; }
469
edac9072 470 // Find the distance for this gcode
436a2cd1
AW
471 gcode->millimeters_of_travel = hypot(angular_travel*radius, fabs(linear_travel));
472
edac9072 473 // We don't care about non-XYZ moves ( for example the extruder produces some of those )
5dcb2ff3
AW
474 if( gcode->millimeters_of_travel < 0.0001 ){ return; }
475
edac9072 476 // Mark the gcode as having a known distance
d149c730 477 this->distance_in_gcode_is_known( gcode );
5984acdf
MM
478
479 // Figure out how many segments for this gcode
436a2cd1 480 uint16_t segments = floor(gcode->millimeters_of_travel/this->mm_per_arc_segment);
aab6cbba
AW
481
482 double theta_per_segment = angular_travel/segments;
483 double linear_per_segment = linear_travel/segments;
484
485 /* Vector rotation by transformation matrix: r is the original vector, r_T is the rotated vector,
486 and phi is the angle of rotation. Based on the solution approach by Jens Geisler.
487 r_T = [cos(phi) -sin(phi);
488 sin(phi) cos(phi] * r ;
489 For arc generation, the center of the circle is the axis of rotation and the radius vector is
490 defined from the circle center to the initial position. Each line segment is formed by successive
491 vector rotations. This requires only two cos() and sin() computations to form the rotation
492 matrix for the duration of the entire arc. Error may accumulate from numerical round-off, since
493 all double numbers are single precision on the Arduino. (True double precision will not have
494 round off issues for CNC applications.) Single precision error can accumulate to be greater than
495 tool precision in some cases. Therefore, arc path correction is implemented.
496
497 Small angle approximation may be used to reduce computation overhead further. This approximation
498 holds for everything, but very small circles and large mm_per_arc_segment values. In other words,
499 theta_per_segment would need to be greater than 0.1 rad and N_ARC_CORRECTION would need to be large
500 to cause an appreciable drift error. N_ARC_CORRECTION~=25 is more than small enough to correct for
501 numerical drift error. N_ARC_CORRECTION may be on the order a hundred(s) before error becomes an
502 issue for CNC machines with the single precision Arduino calculations.
503 This approximation also allows mc_arc to immediately insert a line segment into the planner
504 without the initial overhead of computing cos() or sin(). By the time the arc needs to be applied
505 a correction, the planner should have caught up to the lag caused by the initial mc_arc overhead.
506 This is important when there are successive arc motions.
507 */
508 // Vector rotation matrix values
509 double cos_T = 1-0.5*theta_per_segment*theta_per_segment; // Small angle approximation
510 double sin_T = theta_per_segment;
511
512 double arc_target[3];
513 double sin_Ti;
514 double cos_Ti;
515 double r_axisi;
516 uint16_t i;
517 int8_t count = 0;
518
519 // Initialize the linear axis
520 arc_target[this->plane_axis_2] = this->current_position[this->plane_axis_2];
521
522 for (i = 1; i<segments; i++) { // Increment (segments-1)
523
b66fb830 524 if (count < this->arc_correction ) {
aab6cbba
AW
525 // Apply vector rotation matrix
526 r_axisi = r_axis0*sin_T + r_axis1*cos_T;
527 r_axis0 = r_axis0*cos_T - r_axis1*sin_T;
528 r_axis1 = r_axisi;
529 count++;
530 } else {
531 // Arc correction to radius vector. Computed only every N_ARC_CORRECTION increments.
532 // Compute exact location by applying transformation matrix from initial radius vector(=-offset).
533 cos_Ti = cos(i*theta_per_segment);
534 sin_Ti = sin(i*theta_per_segment);
535 r_axis0 = -offset[this->plane_axis_0]*cos_Ti + offset[this->plane_axis_1]*sin_Ti;
536 r_axis1 = -offset[this->plane_axis_0]*sin_Ti - offset[this->plane_axis_1]*cos_Ti;
537 count = 0;
538 }
539
540 // Update arc_target location
541 arc_target[this->plane_axis_0] = center_axis0 + r_axis0;
542 arc_target[this->plane_axis_1] = center_axis1 + r_axis1;
543 arc_target[this->plane_axis_2] += linear_per_segment;
edac9072
AW
544
545 // Append this segment to the queue
aab6cbba
AW
546 this->append_milestone(arc_target, this->feed_rate);
547
548 }
edac9072 549
aab6cbba
AW
550 // Ensure last segment arrives at target location.
551 this->append_milestone(target, this->feed_rate);
552}
553
edac9072 554// Do the math for an arc and add it to the queue
436a2cd1 555void Robot::compute_arc(Gcode* gcode, double offset[], double target[]){
aab6cbba
AW
556
557 // Find the radius
558 double radius = hypot(offset[this->plane_axis_0], offset[this->plane_axis_1]);
559
560 // Set clockwise/counter-clockwise sign for mc_arc computations
561 bool is_clockwise = false;
df27a6a3 562 if( this->motion_mode == MOTION_MODE_CW_ARC ){ is_clockwise = true; }
aab6cbba
AW
563
564 // Append arc
436a2cd1 565 this->append_arc(gcode, target, offset, radius, is_clockwise );
aab6cbba
AW
566
567}
568
569
4cff3ded
AW
570double Robot::theta(double x, double y){
571 double t = atan(x/fabs(y));
572 if (y>0) {return(t);} else {if (t>0){return(M_PI-t);} else {return(-M_PI-t);}}
573}
574
575void Robot::select_plane(uint8_t axis_0, uint8_t axis_1, uint8_t axis_2){
576 this->plane_axis_0 = axis_0;
577 this->plane_axis_1 = axis_1;
578 this->plane_axis_2 = axis_2;
579}
580
581