X-Git-Url: http://git.hcoop.net/bpt/guile.git/blobdiff_plain/e1724d200d3d1c81e67c5a5b20413f4889a3acce..2500356c67755723d802538e8938b30019f64163:/libguile/numbers.c?ds=sidebyside diff --git a/libguile/numbers.c b/libguile/numbers.c dissimilarity index 88% index 070f52911..6d3e808ce 100644 --- a/libguile/numbers.c +++ b/libguile/numbers.c @@ -1,4112 +1,4363 @@ -/* Copyright (C) 1995,1996 Free Software Foundation, Inc. - * - * This program is free software; you can redistribute it and/or modify - * it under the terms of the GNU General Public License as published by - * the Free Software Foundation; either version 2, or (at your option) - * any later version. - * - * This program is distributed in the hope that it will be useful, - * but WITHOUT ANY WARRANTY; without even the implied warranty of - * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the - * GNU General Public License for more details. - * - * You should have received a copy of the GNU General Public License - * along with this software; see the file COPYING. If not, write to - * the Free Software Foundation, 675 Mass Ave, Cambridge, MA 02139, USA. - * - * As a special exception, the Free Software Foundation gives permission - * for additional uses of the text contained in its release of GUILE. - * - * The exception is that, if you link the GUILE library with other files - * to produce an executable, this does not by itself cause the - * resulting executable to be covered by the GNU General Public License. - * Your use of that executable is in no way restricted on account of - * linking the GUILE library code into it. - * - * This exception does not however invalidate any other reasons why - * the executable file might be covered by the GNU General Public License. - * - * This exception applies only to the code released by the - * Free Software Foundation under the name GUILE. If you copy - * code from other Free Software Foundation releases into a copy of - * GUILE, as the General Public License permits, the exception does - * not apply to the code that you add in this way. To avoid misleading - * anyone as to the status of such modified files, you must delete - * this exception notice from them. - * - * If you write modifications of your own for GUILE, it is your choice - * whether to permit this exception to apply to your modifications. - * If you do not wish that, delete this exception notice. - */ - - -#include -#include -#include "_scm.h" -#include "genio.h" -#include "unif.h" - -#include "numbers.h" - -#define DIGITS '0':case '1':case '2':case '3':case '4':\ - case '5':case '6':case '7':case '8':case '9' - - -/* IS_INF tests its floating point number for infiniteness - */ -#ifndef IS_INF -# define IS_INF(x) ((x)==(x)/2) -#endif - -/* MAXEXP is the maximum double precision expontent - * FLTMAX is less than or scm_equal the largest single precision float - */ - -#ifdef SCM_FLOATS -# ifdef STDC_HEADERS -# ifndef GO32 -# include -# endif /* ndef GO32 */ -# endif /* def STDC_HEADERS */ -# ifdef DBL_MAX_10_EXP -# define MAXEXP DBL_MAX_10_EXP -# else -# define MAXEXP 308 /* IEEE doubles */ -# endif /* def DBL_MAX_10_EXP */ -# ifdef FLT_MAX -# define FLTMAX FLT_MAX -# else -# define FLTMAX 1e+23 -# endif /* def FLT_MAX */ -#endif /* def SCM_FLOATS */ - - - -SCM_PROC(s_exact_p, "exact?", 1, 0, 0, scm_exact_p); -#ifdef __STDC__ -SCM -scm_exact_p(SCM x) -#else -SCM -scm_exact_p(x) - SCM x; -#endif -{ - if SCM_INUMP(x) return SCM_BOOL_T; -#ifdef SCM_BIGDIG - if (SCM_NIMP(x) && SCM_BIGP(x)) return SCM_BOOL_T; -#endif - return SCM_BOOL_F; -} - -SCM_PROC(s_odd_p, "odd?", 1, 0, 0, scm_odd_p); -#ifdef __STDC__ -SCM -scm_odd_p(SCM n) -#else -SCM -scm_odd_p(n) - SCM n; -#endif -{ -#ifdef SCM_BIGDIG - if SCM_NINUMP(n) { - SCM_ASSERT(SCM_NIMP(n) && SCM_BIGP(n), n, SCM_ARG1, s_odd_p); - return (1 & SCM_BDIGITS(n)[0]) ? SCM_BOOL_T : SCM_BOOL_F; - } -#else - SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_odd_p); -#endif - return (4 & (int)n) ? SCM_BOOL_T : SCM_BOOL_F; -} - -SCM_PROC(s_even_p, "even?", 1, 0, 0, scm_even_p); -#ifdef __STDC__ -SCM -scm_even_p(SCM n) -#else -SCM -scm_even_p(n) - SCM n; -#endif -{ -#ifdef SCM_BIGDIG - if SCM_NINUMP(n) { - SCM_ASSERT(SCM_NIMP(n) && SCM_BIGP(n), n, SCM_ARG1, s_even_p); - return (1 & SCM_BDIGITS(n)[0]) ? SCM_BOOL_F : SCM_BOOL_T; - } -#else - SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_even_p); -#endif - return (4 & (int)n) ? SCM_BOOL_F : SCM_BOOL_T; -} - -SCM_PROC(s_abs, "abs", 1, 0, 0, scm_abs); -#ifdef __STDC__ -SCM -scm_abs(SCM x) -#else -SCM -scm_abs(x) - SCM x; -#endif -{ -#ifdef SCM_BIGDIG - if SCM_NINUMP(x) { - SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_abs); - if (SCM_TYP16(x)==scm_tc16_bigpos) return x; - return scm_copybig(x, 0); - } -#else - SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_abs); -#endif - if (SCM_INUM(x) >= 0) return x; - x = -SCM_INUM(x); - if (!SCM_POSFIXABLE(x)) -#ifdef SCM_BIGDIG - return scm_long2big(x); -#else - SCM_NUM_OVERFLOW (s_abs); -#endif - return SCM_MAKINUM(x); -} - -SCM_PROC(s_quotient, "quotient", 2, 0, 0, scm_quotient); -#ifdef __STDC__ -SCM -scm_quotient(SCM x, SCM y) -#else -SCM -scm_quotient(x, y) - SCM x; - SCM y; -#endif -{ - register long z; -#ifdef SCM_BIGDIG - if SCM_NINUMP(x) { - long w; - SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_quotient); - if SCM_NINUMP(y) { - SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); - return scm_divbigbig(SCM_BDIGITS(x), - SCM_NUMDIGS(x), - SCM_BDIGITS(y), - SCM_NUMDIGS(y), - SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y), - 2); - } - z = SCM_INUM(y); - SCM_ASRTGO(z, ov); - if (1==z) return x; - if (z < 0) z = -z; - if (z < SCM_BIGRAD) { - w = scm_copybig(x, SCM_BIGSIGN(x) ? (y>0) : (y<0)); - scm_divbigdig(SCM_BDIGITS(w), SCM_NUMDIGS(w), (SCM_BIGDIG)z); - return scm_normbig(w); - } -#ifndef SCM_DIGSTOOBIG - w = scm_pseudolong(z); - return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), (SCM_BIGDIG *)&w, SCM_DIGSPERLONG, - SCM_BIGSIGN(x) ? (y>0) : (y<0), 2); -#else - { SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; - scm_longdigs(z, zdigs); - return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), zdigs, SCM_DIGSPERLONG, - SCM_BIGSIGN(x) ? (y>0) : (y<0), 2); - } -#endif - } - if SCM_NINUMP(y) { -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_BIGP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_quotient); -# endif - return SCM_INUM0; - } -#else - SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_quotient); - SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_quotient); -#endif - if ((z = SCM_INUM(y))==0) - ov: SCM_NUM_OVERFLOW (s_quotient); - z = SCM_INUM(x)/z; -#ifdef BADIVSGNS - { -#if (__TURBOC__==1) - long t = ((y<0) ? -SCM_INUM(x) : SCM_INUM(x))%SCM_INUM(y); -#else - long t = SCM_INUM(x)%SCM_INUM(y); -#endif - if (t==0) ; - else if (t < 0) - if (x < 0) ; - else z--; - else if (x < 0) z++; - } -#endif - if (!SCM_FIXABLE(z)) -#ifdef SCM_BIGDIG - return scm_long2big(z); -#else - SCM_NUM_OVERFLOW (s_quotient); -#endif - return SCM_MAKINUM(z); -} - -SCM_PROC(s_remainder, "remainder", 2, 0, 0, scm_remainder); -#ifdef __STDC__ -SCM -scm_remainder(SCM x, SCM y) -#else -SCM -scm_remainder(x, y) - SCM x; - SCM y; -#endif -{ - register long z; -#ifdef SCM_BIGDIG - if SCM_NINUMP(x) { - SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_remainder); - if SCM_NINUMP(y) { - SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); - return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y), - SCM_BIGSIGN(x), 0); - } - if (!(z = SCM_INUM(y))) goto ov; - return scm_divbigint(x, z, SCM_BIGSIGN(x), 0); - } - if SCM_NINUMP(y) { -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_BIGP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_remainder); -# endif - return x; - } -#else - SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_remainder); - SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_remainder); -#endif - if (!(z = SCM_INUM(y))) - ov: SCM_NUM_OVERFLOW (s_remainder); -#if (__TURBOC__==1) - if (z < 0) z = -z; -#endif - z = SCM_INUM(x)%z; -#ifdef BADIVSGNS - if (!z) ; - else if (z < 0) - if (x < 0) ; - else z += SCM_INUM(y); - else if (x < 0) z -= SCM_INUM(y); -#endif - return SCM_MAKINUM(z); -} - -SCM_PROC(s_modulo, "modulo", 2, 0, 0, scm_modulo); -#ifdef __STDC__ -SCM -scm_modulo(SCM x, SCM y) -#else -SCM -scm_modulo(x, y) - SCM x; - SCM y; -#endif -{ - register long yy, z; -#ifdef SCM_BIGDIG - if SCM_NINUMP(x) { - SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_modulo); - if SCM_NINUMP(y) { - SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); - return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y), - SCM_BIGSIGN(y), (SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y)) ? 1 : 0); - } - if (!(z = SCM_INUM(y))) goto ov; - return scm_divbigint(x, z, y < 0, (SCM_BIGSIGN(x) ? (y > 0) : (y < 0)) ? 1 : 0); - } - if SCM_NINUMP(y) { -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_BIGP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_modulo); -# endif - return (SCM_BIGSIGN(y) ? (x>0) : (x<0)) ? scm_sum(x, y) : x; - } -#else - SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_modulo); - SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_modulo); -#endif - if (!(yy = SCM_INUM(y))) - ov: SCM_NUM_OVERFLOW (s_modulo); -#if (__TURBOC__==1) - z = SCM_INUM(x); - z = ((yy<0) ? -z : z)%yy; -#else - z = SCM_INUM(x)%yy; -#endif - return SCM_MAKINUM(((yy<0) ? (z>0) : (z<0)) ? z+yy : z); -} - -SCM_PROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd); -#ifdef __STDC__ -SCM -scm_gcd(SCM x, SCM y) -#else -SCM -scm_gcd(x, y) - SCM x; - SCM y; -#endif -{ - register long u, v, k, t; - if SCM_UNBNDP(y) return SCM_UNBNDP(x) ? SCM_INUM0 : x; - tailrec: -#ifdef SCM_BIGDIG - if SCM_NINUMP(x) { - big_gcd: - SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_gcd); - if SCM_BIGSIGN(x) x = scm_copybig(x, 0); - newy: - if SCM_NINUMP(y) { - SCM_ASSERT(SCM_NIMP(y) && SCM_BIGP(y), y, SCM_ARG2, s_gcd); - if SCM_BIGSIGN(y) y = scm_copybig(y, 0); - switch (scm_bigcomp(x, y)) { - case -1: - swaprec: t = scm_remainder(x, y); x = y; y = t; goto tailrec; - case 0: return x; - case 1: y = scm_remainder(y, x); goto newy; - } - /* instead of the switch, we could just return scm_gcd(y, scm_modulo(x, y)); */ - } - if (SCM_INUM0==y) return x; goto swaprec; - } - if SCM_NINUMP(y) { t=x; x=y; y=t; goto big_gcd;} -#else - SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_gcd); - SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_gcd); -#endif - u = SCM_INUM(x); - if (u<0) u = -u; - v = SCM_INUM(y); - if (v<0) v = -v; - else if (0==v) goto getout; - if (0==u) {u = v; goto getout;} - for (k = 1;!(1 & ((int)u|(int)v));k <<= 1, u >>= 1, v >>= 1); - if (1 & (int)u) t = -v; - else { - t = u; - b3: - t = SCM_SRS(t, 1); - } - if (!(1 & (int)t)) goto b3; - if (t>0) u = t; - else v = -t; - if ((t = u-v)) goto b3; - u = u*k; - getout: - if (!SCM_POSFIXABLE(u)) -#ifdef SCM_BIGDIG - return scm_long2big(u); -#else - SCM_NUM_OVERFLOW (s_gcd); -#endif - return SCM_MAKINUM(u); -} - -SCM_PROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm); -#ifdef __STDC__ -SCM -scm_lcm(SCM n1, SCM n2) -#else -SCM -scm_lcm(n1, n2) - SCM n1; - SCM n2; -#endif -{ - SCM d; - if SCM_UNBNDP(n2) { - n2 = SCM_MAKINUM(1L); - if SCM_UNBNDP(n1) return n2; - } - d = scm_gcd(n1, n2); - if (SCM_INUM0==d) return d; - return scm_abs(scm_product(n1, scm_quotient(n2, d))); -} - -#ifndef SCM_BIGDIG -# ifndef SCM_FLOATS -# define scm_long2num SCM_MAKINUM -# endif -#endif - -#ifndef scm_long2num -SCM_PROC1 (s_logand, "logand", scm_tc7_asubr, scm_logand); -#ifdef __STDC__ -SCM -scm_logand(SCM n1, SCM n2) -#else -SCM -scm_logand(n1, n2) - SCM n1; - SCM n2; -#endif -{ - return scm_long2num(scm_num2long(n1, (char *)SCM_ARG1, s_logand) - & scm_num2long(n2, (char *)SCM_ARG2, s_logand)); -} - -SCM_PROC1 (s_logior, "logior", scm_tc7_asubr, scm_logior); -#ifdef __STDC__ -SCM -scm_logior(SCM n1, SCM n2) -#else -SCM -scm_logior(n1, n2) - SCM n1; - SCM n2; -#endif -{ - return scm_long2num(scm_num2long(n1, (char *)SCM_ARG1, s_logior) - | scm_num2long(n2, (char *)SCM_ARG2, s_logior)); -} - -SCM_PROC1 (s_logxor, "logxor", scm_tc7_asubr, scm_logxor); -#ifdef __STDC__ -SCM -scm_logxor(SCM n1, SCM n2) -#else -SCM -scm_logxor(n1, n2) - SCM n1; - SCM n2; -#endif -{ - return scm_long2num(scm_num2long(n1, (char *)SCM_ARG1, s_logxor) - ^ scm_num2long(n2, (char *)SCM_ARG2, s_logxor)); -} - -SCM_PROC(s_logtest, "logtest", 2, 0, 0, scm_logtest); -#ifdef __STDC__ -SCM -scm_logtest(SCM n1, SCM n2) -#else -SCM -scm_logtest(n1, n2) - SCM n1; - SCM n2; -#endif -{ - return ((scm_num2long (n1, (char *)SCM_ARG1, s_logtest) - & scm_num2long (n2, (char *)SCM_ARG2, s_logtest)) - ? SCM_BOOL_T : SCM_BOOL_F); -} - - -SCM_PROC(s_logbit_p, "logbit?", 2, 0, 0, scm_logbit_p); -#ifdef __STDC__ -SCM -scm_logbit_p(SCM n1, SCM n2) -#else -SCM -scm_logbit_p(n1, n2) - SCM n1; - SCM n2; -#endif -{ - return (((1 << scm_num2long (n1, (char *)SCM_ARG1, s_logtest)) - & scm_num2long (n2, (char *)SCM_ARG2, s_logtest)) - ? SCM_BOOL_T : SCM_BOOL_F); -} - -#else - -SCM_PROC1 (s_logand, "logand", scm_tc7_asubr, scm_logand); -#ifdef __STDC__ -SCM -scm_logand(SCM n1, SCM n2) -#else -SCM -scm_logand(n1, n2) - SCM n1; - SCM n2; -#endif -{ - SCM_ASSERT(SCM_INUMP(n1), n1, SCM_ARG1, s_logand); - SCM_ASSERT(SCM_INUMP(n2), n2, SCM_ARG2, s_logand); - return SCM_MAKINUM(SCM_INUM(n1) & SCM_INUM(n2)); -} - -SCM_PROC1 (s_logior, "logior", scm_tc7_asubr, scm_logior); -#ifdef __STDC__ -SCM -scm_logior(SCM n1, SCM n2) -#else -SCM -scm_logior(n1, n2) - SCM n1; - SCM n2; -#endif -{ - SCM_ASSERT(SCM_INUMP(n1), n1, SCM_ARG1, s_logior); - SCM_ASSERT(SCM_INUMP(n2), n2, SCM_ARG2, s_logior); - return SCM_MAKINUM(SCM_INUM(n1) | SCM_INUM(n2)); -} - -SCM_PROC1 (s_logxor, "logxor", scm_tc7_asubr, scm_logxor); -#ifdef __STDC__ -SCM -scm_logxor(SCM n1, SCM n2) -#else -SCM -scm_logxor(n1, n2) - SCM n1; - SCM n2; -#endif -{ - SCM_ASSERT(SCM_INUMP(n1), n1, SCM_ARG1, s_logxor); - SCM_ASSERT(SCM_INUMP(n2), n2, SCM_ARG2, s_logxor); - return SCM_MAKINUM(SCM_INUM(n1) ^ SCM_INUM(n2)); -} - -SCM_PROC(s_logtest, "logtest", 2, 0, 0, scm_logtest); -#ifdef __STDC__ -SCM -scm_logtest(SCM n1, SCM n2) -#else -SCM -scm_logtest(n1, n2) - SCM n1; - SCM n2; -#endif -{ - SCM_ASSERT(SCM_INUMP(n1), n1, SCM_ARG1, s_logtest); - SCM_ASSERT(SCM_INUMP(n2), n2, SCM_ARG2, s_logtest); - return (SCM_INUM(n1) & SCM_INUM(n2)) ? SCM_BOOL_T : SCM_BOOL_F; -} - -SCM_PROC(s_logbit_p, "logbit?", 2, 0, 0, scm_logbit_p); -#ifdef __STDC__ -SCM -scm_logbit_p(SCM n1, SCM n2) -#else -SCM -scm_logbit_p(n1, n2) - SCM n1; - SCM n2; -#endif -{ - SCM_ASSERT(SCM_INUMP(n1) && SCM_INUM(n1) >= 0, n1, SCM_ARG1, s_logbit_p); - SCM_ASSERT(SCM_INUMP(n2), n2, SCM_ARG2, s_logbit_p); - return ((1 << SCM_INUM(n1)) & SCM_INUM(n2)) ? SCM_BOOL_T : SCM_BOOL_F; -} -#endif - -SCM_PROC(s_lognot, "lognot", 1, 0, 0, scm_lognot); -#ifdef __STDC__ -SCM -scm_lognot(SCM n) -#else -SCM -scm_lognot(n) - SCM n; -#endif -{ - SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_lognot); - return scm_difference(SCM_MAKINUM(-1L), n); -} - -SCM_PROC(s_integer_expt, "integer-expt", 2, 0, 0, scm_integer_expt); -#ifdef __STDC__ -SCM -scm_integer_expt(SCM z1, SCM z2) -#else -SCM -scm_integer_expt(z1, z2) - SCM z1; - SCM z2; -#endif -{ - SCM acc = SCM_MAKINUM(1L); -#ifdef SCM_BIGDIG - if (SCM_INUM0==z1 || acc==z1) return z1; - else if (SCM_MAKINUM(-1L)==z1) return SCM_BOOL_F==scm_even_p(z2)?z1:acc; -#endif - SCM_ASSERT(SCM_INUMP(z2), z2, SCM_ARG2, s_integer_expt); - z2 = SCM_INUM(z2); - if (z2 < 0) { - z2 = -z2; - z1 = scm_divide(z1, SCM_UNDEFINED); - } - while(1) { - if (0==z2) return acc; - if (1==z2) return scm_product(acc, z1); - if (z2 & 1) acc = scm_product(acc, z1); - z1 = scm_product(z1, z1); - z2 >>= 1; - } -} - -SCM_PROC(s_ash, "ash", 2, 0, 0, scm_ash); -#ifdef __STDC__ -SCM -scm_ash(SCM n, SCM cnt) -#else -SCM -scm_ash(n, cnt) - SCM n; - SCM cnt; -#endif -{ - SCM res = SCM_INUM(n); - SCM_ASSERT(SCM_INUMP(cnt), cnt, SCM_ARG2, s_ash); -#ifdef SCM_BIGDIG - if(cnt < 0) { - res = scm_integer_expt(SCM_MAKINUM(2), SCM_MAKINUM(-SCM_INUM(cnt))); - if (SCM_NFALSEP(scm_negative_p(n))) - return scm_sum(SCM_MAKINUM(-1L), scm_quotient(scm_sum(SCM_MAKINUM(1L), n), res)); - else return scm_quotient(n, res); - } - else return scm_product(n, scm_integer_expt(SCM_MAKINUM(2), cnt)); -#else - SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_ash); - cnt = SCM_INUM(cnt); - if (cnt < 0) return SCM_MAKINUM(SCM_SRS(res, -cnt)); - res = SCM_MAKINUM(res<>cnt != SCM_INUM(n)) - SCM_NUM_OVERFLOW (s_ash); - return res; -#endif -} - -SCM_PROC(s_bit_extract, "bit-extract", 3, 0, 0, scm_bit_extract); -#ifdef __STDC__ -SCM -scm_bit_extract(SCM n, SCM start, SCM end) -#else -SCM -scm_bit_extract(n, start, end) - SCM n; - SCM start; - SCM end; -#endif -{ - SCM_ASSERT(SCM_INUMP(start), start, SCM_ARG2, s_bit_extract); - SCM_ASSERT(SCM_INUMP(end), end, SCM_ARG3, s_bit_extract); - start = SCM_INUM(start); end = SCM_INUM(end); - SCM_ASSERT(end >= start, SCM_MAKINUM(end), SCM_OUTOFRANGE, s_bit_extract); -#ifdef SCM_BIGDIG - if SCM_NINUMP(n) - return - scm_logand(scm_difference(scm_integer_expt(SCM_MAKINUM(2), SCM_MAKINUM(end - start)), - SCM_MAKINUM(1L)), - scm_ash(n, SCM_MAKINUM(-start))); -#else - SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_bit_extract); -#endif - return SCM_MAKINUM((SCM_INUM(n)>>start) & ((1L<<(end-start))-1)); -} - -char scm_logtab[] = {0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4}; -SCM_PROC(s_logcount, "logcount", 1, 0, 0, scm_logcount); -#ifdef __STDC__ -SCM -scm_logcount (SCM n) -#else -SCM -scm_logcount(n) - SCM n; -#endif -{ - register unsigned long c = 0; - register long nn; -#ifdef SCM_BIGDIG - if SCM_NINUMP(n) { - scm_sizet i; SCM_BIGDIG *ds, d; - SCM_ASSERT(SCM_NIMP(n) && SCM_BIGP(n), n, SCM_ARG1, s_logcount); - if SCM_BIGSIGN(n) return scm_logcount(scm_difference(SCM_MAKINUM(-1L), n)); - ds = SCM_BDIGITS(n); - for(i = SCM_NUMDIGS(n); i--; ) - for(d = ds[i]; d; d >>= 4) c += scm_logtab[15 & d]; - return SCM_MAKINUM(c); - } -#else - SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_logcount); -#endif - if ((nn = SCM_INUM(n)) < 0) nn = -1 - nn; - for(; nn; nn >>= 4) c += scm_logtab[15 & nn]; - return SCM_MAKINUM(c); -} - -char scm_ilentab[] = {0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4}; -SCM_PROC(s_integer_length, "integer-length", 1, 0, 0, scm_integer_length); -#ifdef __STDC__ -SCM -scm_integer_length(SCM n) -#else -SCM -scm_integer_length(n) - SCM n; -#endif -{ - register unsigned long c = 0; - register long nn; - unsigned int l = 4; -#ifdef SCM_BIGDIG - if SCM_NINUMP(n) { - SCM_BIGDIG *ds, d; - SCM_ASSERT(SCM_NIMP(n) && SCM_BIGP(n), n, SCM_ARG1, s_integer_length); - if SCM_BIGSIGN(n) return scm_integer_length(scm_difference(SCM_MAKINUM(-1L), n)); - ds = SCM_BDIGITS(n); - d = ds[c = SCM_NUMDIGS(n)-1]; - for(c *= SCM_BITSPERDIG; d; d >>= 4) {c += 4; l = scm_ilentab[15 & d];} - return SCM_MAKINUM(c - 4 + l); - } -#else - SCM_ASSERT(SCM_INUMP(n), n, SCM_ARG1, s_integer_length); -#endif - if ((nn = SCM_INUM(n)) < 0) nn = -1 - nn; - for(;nn; nn >>= 4) {c += 4; l = scm_ilentab[15 & nn];} - return SCM_MAKINUM(c - 4 + l); -} - - -#ifdef SCM_BIGDIG -char s_bignum[] = "bignum"; -#ifdef __STDC__ -SCM -scm_mkbig(scm_sizet nlen, int sign) -#else -SCM -scm_mkbig(nlen, sign) - scm_sizet nlen; - int sign; -#endif -{ - SCM v = nlen; - if (((v << 16) >> 16) != nlen) - scm_wta(SCM_MAKINUM(nlen), (char *)SCM_NALLOC, s_bignum); - SCM_NEWCELL(v); - SCM_DEFER_INTS; - SCM_SETCHARS(v, scm_must_malloc((long)(nlen*sizeof(SCM_BIGDIG)), s_bignum)); - SCM_SETNUMDIGS(v, nlen, sign?scm_tc16_bigneg:scm_tc16_bigpos); - SCM_ALLOW_INTS; - return v; -} - -#ifdef __STDC__ -SCM -scm_big2inum(SCM b, scm_sizet l) -#else -SCM -scm_big2inum(b, l) - SCM b; - scm_sizet l; -#endif -{ - unsigned long num = 0; - SCM_BIGDIG *tmp = SCM_BDIGITS(b); - while (l--) num = SCM_BIGUP(num) + tmp[l]; - if (SCM_TYP16(b)==scm_tc16_bigpos) { - if SCM_POSFIXABLE(num) return SCM_MAKINUM(num); - } - else if SCM_UNEGFIXABLE(num) return SCM_MAKINUM(-num); - return b; -} - - -char s_adjbig[] = "scm_adjbig"; -#ifdef __STDC__ -SCM -scm_adjbig(SCM b, scm_sizet nlen) -#else -SCM -scm_adjbig(b, nlen) - SCM b; - scm_sizet nlen; -#endif -{ - long nsiz = nlen; - if (((nsiz << 16) >> 16) != nlen) scm_wta(SCM_MAKINUM(nsiz), (char *)SCM_NALLOC, s_adjbig); - SCM_DEFER_INTS; - SCM_SETCHARS(b, (SCM_BIGDIG *)scm_must_realloc((char *)SCM_CHARS(b), - (long)(SCM_NUMDIGS(b)*sizeof(SCM_BIGDIG)), - (long)(nsiz*sizeof(SCM_BIGDIG)), s_adjbig)); - SCM_SETNUMDIGS(b, nsiz, SCM_TYP16(b)); - SCM_ALLOW_INTS; - return b; -} - - -#ifdef __STDC__ -SCM -scm_normbig(SCM b) -#else -SCM -scm_normbig(b) - SCM b; -#endif -{ -#ifndef _UNICOS - scm_sizet nlen = SCM_NUMDIGS(b); -#else - int nlen = SCM_NUMDIGS(b); /* unsigned nlen breaks on Cray when nlen => 0 */ -#endif - SCM_BIGDIG *zds = SCM_BDIGITS(b); - while (nlen-- && !zds[nlen]); nlen++; - if (nlen * SCM_BITSPERDIG/SCM_CHAR_BIT <= sizeof(SCM)) - if SCM_INUMP(b = scm_big2inum(b, (scm_sizet)nlen)) return b; - if (SCM_NUMDIGS(b)==nlen) return b; - return scm_adjbig(b, (scm_sizet)nlen); -} - - -#ifdef __STDC__ -SCM -scm_copybig(SCM b, int sign) -#else -SCM -scm_copybig(b, sign) - SCM b; - int sign; -#endif -{ - scm_sizet i = SCM_NUMDIGS(b); - SCM ans = scm_mkbig(i, sign); - SCM_BIGDIG *src = SCM_BDIGITS(b), *dst = SCM_BDIGITS(ans); - while (i--) dst[i] = src[i]; - return ans; -} - - -#ifdef __STDC__ -SCM -scm_long2big(long n) -#else -SCM -scm_long2big(n) - long n; -#endif -{ - scm_sizet i = 0; - SCM_BIGDIG *digits; - SCM ans = scm_mkbig(SCM_DIGSPERLONG, n<0); - digits = SCM_BDIGITS(ans); - if (n < 0) n = -n; - while (i < SCM_DIGSPERLONG) { - digits[i++] = SCM_BIGLO(n); - n = SCM_BIGDN((unsigned long)n); - } - return ans; -} - -#ifdef LONGLONGS -#ifdef __STDC__ -SCM -scm_long_long2big(long_long n) -#else -SCM -scm_long_long2big(n) - long_long n; -#endif -{ - scm_sizet i; - SCM_BIGDIG *digits; - SCM ans; - int n_digits; - - { - long tn; - tn = (long) n; - if ((long long)tn == n) - return scm_long2big (tn); - } - - { - long_long tn; - - for (tn = n, n_digits = 0; - tn; - ++n_digits, tn = SCM_BIGDN ((ulong_long)tn)) - ; - } - - i = 0; - ans = scm_mkbig(n_digits, n<0); - digits = SCM_BDIGITS(ans); - if (n < 0) - n = -n; - while (i < n_digits) { - digits[i++] = SCM_BIGLO(n); - n = SCM_BIGDN((ulong_long)n); - } - return ans; -} -#endif - -#ifdef __STDC__ -SCM -scm_2ulong2big(unsigned long * np) -#else -SCM -scm_2ulong2big(np) - unsigned long * np; -#endif -{ - unsigned long n; - scm_sizet i; - SCM_BIGDIG *digits; - SCM ans; - - ans = scm_mkbig(2 * SCM_DIGSPERLONG, 0); - digits = SCM_BDIGITS(ans); - - n = np[0]; - for (i = 0; i < SCM_DIGSPERLONG; ++i) - { - digits[i] = SCM_BIGLO(n); - n = SCM_BIGDN((unsigned long)n); - } - n = np[1]; - for (i = 0; i < SCM_DIGSPERLONG; ++i) - { - digits[i + SCM_DIGSPERLONG] = SCM_BIGLO(n); - n = SCM_BIGDN((unsigned long)n); - } - return ans; -} - - -#ifdef __STDC__ -SCM -scm_ulong2big(unsigned long n) -#else -SCM -scm_ulong2big(n) - unsigned long n; -#endif -{ - scm_sizet i = 0; - SCM_BIGDIG *digits; - SCM ans = scm_mkbig(SCM_DIGSPERLONG, 0); - digits = SCM_BDIGITS(ans); - while (i < SCM_DIGSPERLONG) { - digits[i++] = SCM_BIGLO(n); - n = SCM_BIGDN(n); - } - return ans; -} - - -#ifdef __STDC__ -int -scm_bigcomp(SCM x, SCM y) -#else -int -scm_bigcomp(x, y) - SCM x; - SCM y; -#endif -{ - int xsign = SCM_BIGSIGN(x); - int ysign = SCM_BIGSIGN(y); - scm_sizet xlen, ylen; - if (ysign < xsign) return 1; - if (ysign > xsign) return -1; - if ((ylen = SCM_NUMDIGS(y)) > (xlen = SCM_NUMDIGS(x))) return (xsign) ? -1 : 1; - if (ylen < xlen) return (xsign) ? 1 : -1; - while(xlen-- && (SCM_BDIGITS(y)[xlen]==SCM_BDIGITS(x)[xlen])); - if (-1==xlen) return 0; - return (SCM_BDIGITS(y)[xlen] > SCM_BDIGITS(x)[xlen]) ? - (xsign ? -1 : 1) : (xsign ? 1 : -1); -} - -#ifndef SCM_DIGSTOOBIG - -#ifdef __STDC__ -long -scm_pseudolong(long x) -#else -long -scm_pseudolong(x) - long x; -#endif -{ - union { - long l; - SCM_BIGDIG bd[SCM_DIGSPERLONG]; - } p; - scm_sizet i = 0; - if (x < 0) x = -x; - while (i < SCM_DIGSPERLONG) {p.bd[i++] = SCM_BIGLO(x); x = SCM_BIGDN(x);} - /* p.bd[0] = SCM_BIGLO(x); p.bd[1] = SCM_BIGDN(x); */ - return p.l; -} - -#else - -#ifdef __STDC__ -void -scm_longdigs(long x, SCM_BIGDIG digs[]) -#else -void -scm_longdigs(x, digs) - long x; - SCM_BIGDIG digs[]; -#endif -{ - scm_sizet i = 0; - if (x < 0) x = -x; - while (i < SCM_DIGSPERLONG) {digs[i++] = SCM_BIGLO(x); x = SCM_BIGDN(x);} -} -#endif - - -#ifdef __STDC__ -SCM -scm_addbig(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy, int sgny) -#else -SCM -scm_addbig(x, nx, xsgn, bigy, sgny) - SCM_BIGDIG *x; - scm_sizet nx; - int xsgn; - SCM bigy; - int sgny; -#endif -{ - /* Assumes nx <= SCM_NUMDIGS(bigy) */ - /* Assumes xsgn and sgny scm_equal either 0 or 0x0100 */ - long num = 0; - scm_sizet i = 0, ny = SCM_NUMDIGS(bigy); - SCM z = scm_copybig(bigy, SCM_BIGSIGN(bigy) ^ sgny); - SCM_BIGDIG *zds = SCM_BDIGITS(z); - if (xsgn ^ SCM_BIGSIGN(z)) { - do { - num += (long) zds[i] - x[i]; - if (num < 0) {zds[i] = num + SCM_BIGRAD; num = -1;} - else {zds[i] = SCM_BIGLO(num); num = 0;} - } while (++i < nx); - if (num && nx==ny) { - num = 1; i = 0; - SCM_CAR(z) ^= 0x0100; - do { - num += (SCM_BIGRAD-1) - zds[i]; - zds[i++] = SCM_BIGLO(num); - num = SCM_BIGDN(num); - } while (i < ny); - } - else while (i < ny) { - num += zds[i]; - if (num < 0) {zds[i++] = num + SCM_BIGRAD; num = -1;} - else {zds[i++] = SCM_BIGLO(num); num = 0;} - } - } else { - do { - num += (long) zds[i] + x[i]; - zds[i++] = SCM_BIGLO(num); - num = SCM_BIGDN(num); - } while (i < nx); - if (!num) return z; - while (i < ny) { - num += zds[i]; - zds[i++] = SCM_BIGLO(num); - num = SCM_BIGDN(num); - if (!num) return z; - } - if (num) {z = scm_adjbig(z, ny+1); SCM_BDIGITS(z)[ny] = num; return z;} - } - return scm_normbig(z); -} - -#ifdef __STDC__ -SCM -scm_mulbig(SCM_BIGDIG *x, scm_sizet nx, SCM_BIGDIG *y, scm_sizet ny, int sgn) -#else -SCM -scm_mulbig(x, nx, y, ny, sgn) - SCM_BIGDIG *x; - scm_sizet nx; - SCM_BIGDIG *y; - scm_sizet ny; - int sgn; -#endif -{ - scm_sizet i = 0, j = nx + ny; - unsigned long n = 0; - SCM z = scm_mkbig(j, sgn); - SCM_BIGDIG *zds = SCM_BDIGITS(z); - while (j--) zds[j] = 0; - do { - j = 0; - if (x[i]) { - do { - n += zds[i + j] + ((unsigned long) x[i] * y[j]); - zds[i + j++] = SCM_BIGLO(n); - n = SCM_BIGDN(n); - } while (j < ny); - if (n) {zds[i + j] = n; n = 0;} - } - } while (++i < nx); - return scm_normbig(z); -} - -#ifdef __STDC__ -unsigned int -scm_divbigdig(SCM_BIGDIG *ds, scm_sizet h, SCM_BIGDIG div) -#else -unsigned int -scm_divbigdig(ds, h, div) - SCM_BIGDIG *ds; - scm_sizet h; - SCM_BIGDIG div; -#endif -{ - register unsigned long t2 = 0; - while(h--) { - t2 = SCM_BIGUP(t2) + ds[h]; - ds[h] = t2 / div; - t2 %= div; - } - return t2; -} - - -#ifdef __STDC__ -SCM -scm_divbigint(SCM x, long z, int sgn, int mode) -#else -SCM -scm_divbigint(x, z, sgn, mode) - SCM x; - long z; - int sgn; - int mode; -#endif -{ - if (z < 0) z = -z; - if (z < SCM_BIGRAD) { - register unsigned long t2 = 0; - register SCM_BIGDIG *ds = SCM_BDIGITS(x); - scm_sizet nd = SCM_NUMDIGS(x); - while(nd--) t2 = (SCM_BIGUP(t2) + ds[nd]) % z; - if (mode) t2 = z - t2; - return SCM_MAKINUM(sgn ? -t2 : t2); - } - { -#ifndef SCM_DIGSTOOBIG - unsigned long t2 = scm_pseudolong(z); - return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), (SCM_BIGDIG *)&t2, - SCM_DIGSPERLONG, sgn, mode); -#else - SCM_BIGDIG t2[SCM_DIGSPERLONG]; - scm_longdigs(z, t2); - return scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), t2, SCM_DIGSPERLONG, sgn, mode); -#endif - } -} - -#ifdef __STDC__ -SCM -scm_divbigbig(SCM_BIGDIG *x, scm_sizet nx, SCM_BIGDIG *y, scm_sizet ny, int sgn, int modes) -#else -SCM -scm_divbigbig(x, nx, y, ny, sgn, modes) - SCM_BIGDIG *x; - scm_sizet nx; - SCM_BIGDIG *y; - scm_sizet ny; - int sgn; - int modes; -#endif -{ - /* modes description - 0 remainder - 1 scm_modulo - 2 quotient - 3 quotient but returns 0 if division is not exact. */ - scm_sizet i = 0, j = 0; - long num = 0; - unsigned long t2 = 0; - SCM z, newy; - SCM_BIGDIG d = 0, qhat, *zds, *yds; - /* algorithm requires nx >= ny */ - if (nx < ny) - switch (modes) { - case 0: /* remainder -- just return x */ - z = scm_mkbig(nx, sgn); zds = SCM_BDIGITS(z); - do {zds[i] = x[i];} while (++i < nx); - return z; - case 1: /* scm_modulo -- return y-x */ - z = scm_mkbig(ny, sgn); zds = SCM_BDIGITS(z); - do { - num += (long) y[i] - x[i]; - if (num < 0) {zds[i] = num + SCM_BIGRAD; num = -1;} - else {zds[i] = num; num = 0;} - } while (++i < nx); - while (i < ny) { - num += y[i]; - if (num < 0) {zds[i++] = num + SCM_BIGRAD; num = -1;} - else {zds[i++] = num; num = 0;} - } - goto doadj; - case 2: return SCM_INUM0; /* quotient is zero */ - case 3: return 0; /* the division is not exact */ - } - - z = scm_mkbig(nx==ny ? nx+2 : nx+1, sgn); zds = SCM_BDIGITS(z); - if (nx==ny) zds[nx+1] = 0; - while(!y[ny-1]) ny--; /* in case y came in as a psuedolong */ - if (y[ny-1] < (SCM_BIGRAD>>1)) { /* normalize operands */ - d = SCM_BIGRAD/(y[ny-1]+1); - newy = scm_mkbig(ny, 0); yds = SCM_BDIGITS(newy); - while(j < ny) - {t2 += (unsigned long) y[j]*d; yds[j++] = SCM_BIGLO(t2); t2 = SCM_BIGDN(t2);} - y = yds; j = 0; t2 = 0; - while(j < nx) - {t2 += (unsigned long) x[j]*d; zds[j++] = SCM_BIGLO(t2); t2 = SCM_BIGDN(t2);} - zds[j] = t2; - } - else {zds[j = nx] = 0; while (j--) zds[j] = x[j];} - j = nx==ny ? nx+1 : nx; /* dividend needs more digits than divisor */ - do { /* loop over digits of quotient */ - if (zds[j]==y[ny-1]) qhat = SCM_BIGRAD-1; - else qhat = (SCM_BIGUP(zds[j]) + zds[j-1])/y[ny-1]; - if (!qhat) continue; - i = 0; num = 0; t2 = 0; - do { /* multiply and subtract */ - t2 += (unsigned long) y[i] * qhat; - num += zds[j - ny + i] - SCM_BIGLO(t2); - if (num < 0) {zds[j - ny + i] = num + SCM_BIGRAD; num = -1;} - else {zds[j - ny + i] = num; num = 0;} - t2 = SCM_BIGDN(t2); - } while (++i < ny); - num += zds[j - ny + i] - t2; /* borrow from high digit; don't update */ - while (num) { /* "add back" required */ - i = 0; num = 0; qhat--; - do { - num += (long) zds[j - ny + i] + y[i]; - zds[j - ny + i] = SCM_BIGLO(num); - num = SCM_BIGDN(num); - } while (++i < ny); - num--; - } - if (modes & 2) zds[j] = qhat; - } while (--j >= ny); - switch (modes) { - case 3: /* check that remainder==0 */ - for(j = ny;j && !zds[j-1];--j) ; if (j) return 0; - case 2: /* move quotient down in z */ - j = (nx==ny ? nx+2 : nx+1) - ny; - for (i = 0;i < j;i++) zds[i] = zds[i+ny]; - ny = i; - break; - case 1: /* subtract for scm_modulo */ - i = 0; num = 0; j = 0; - do {num += y[i] - zds[i]; - j = j | zds[i]; - if (num < 0) {zds[i] = num + SCM_BIGRAD; num = -1;} - else {zds[i] = num; num = 0;} - } while (++i < ny); - if (!j) return SCM_INUM0; - case 0: /* just normalize remainder */ - if (d) scm_divbigdig(zds, ny, d); - } - doadj: - for(j = ny;j && !zds[j-1];--j) ; - if (j * SCM_BITSPERDIG <= sizeof(SCM)*SCM_CHAR_BIT) - if SCM_INUMP(z = scm_big2inum(z, j)) return z; - return scm_adjbig(z, j); -} -#endif - - - - - -/*** NUMBERS -> STRINGS ***/ -#ifdef SCM_FLOATS -int scm_dblprec; -static double fx[] = {0.0, 5e-1, 5e-2, 5e-3, 5e-4, 5e-5, - 5e-6, 5e-7, 5e-8, 5e-9, 5e-10, - 5e-11,5e-12,5e-13,5e-14,5e-15, - 5e-16,5e-17,5e-18,5e-19,5e-20}; - - - -#ifdef __STDC__ -static scm_sizet -idbl2str(double f, char *a) -#else -static scm_sizet -idbl2str(f, a) - double f; - char *a; -#endif -{ - int efmt, dpt, d, i, wp = scm_dblprec; - scm_sizet ch = 0; - int exp = 0; - - if (f == 0.0) goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;}*/ - if (f < 0.0) {f = -f;a[ch++]='-';} - else if (f > 0.0) ; - else goto funny; - if (IS_INF(f)) - { - if (ch == 0) a[ch++]='+'; - funny: a[ch++]='#'; a[ch++]='.'; a[ch++]='#'; return ch; - } -# ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from - make-uniform-vector, from causing infinite loops. */ - while (f < 1.0) {f *= 10.0; if (exp-- < DBL_MIN_10_EXP) goto funny;} - while (f > 10.0) {f *= 0.10; if (exp++ > DBL_MAX_10_EXP) goto funny;} -# else - while (f < 1.0) {f *= 10.0; exp--;} - while (f > 10.0) {f /= 10.0; exp++;} -# endif - if (f+fx[wp] >= 10.0) {f = 1.0; exp++;} - zero: -# ifdef ENGNOT - dpt = (exp+9999)%3; - exp -= dpt++; - efmt = 1; -# else - efmt = (exp < -3) || (exp > wp+2); - if (!efmt) - if (exp < 0) { - a[ch++] = '0'; - a[ch++] = '.'; - dpt = exp; - while (++dpt) a[ch++] = '0'; - } else - dpt = exp+1; - else - dpt = 1; -# endif - - do { - d = f; - f -= d; - a[ch++] = d+'0'; - if (f < fx[wp]) break; - if (f+fx[wp] >= 1.0) { - a[ch-1]++; - break; - } - f *= 10.0; - if (!(--dpt)) a[ch++] = '.'; - } while (wp--); - - if (dpt > 0) -# ifndef ENGNOT - if ((dpt > 4) && (exp > 6)) { - d = (a[0]=='-'?2:1); - for (i = ch++; i > d; i--) - a[i] = a[i-1]; - a[d] = '.'; - efmt = 1; - } else -# endif - { - while (--dpt) a[ch++] = '0'; - a[ch++] = '.'; - } - if (a[ch-1]=='.') a[ch++]='0'; /* trailing zero */ - if (efmt && exp) { - a[ch++] = 'e'; - if (exp < 0) { - exp = -exp; - a[ch++] = '-'; - } - for (i = 10; i <= exp; i *= 10); - for (i /= 10; i; i /= 10) { - a[ch++] = exp/i + '0'; - exp %= i; - } - } - return ch; -} - -#ifdef __STDC__ -static scm_sizet -iflo2str(SCM flt, char *str) -#else -static scm_sizet -iflo2str(flt, str) - SCM flt; - char *str; -#endif -{ - scm_sizet i; -# ifdef SCM_SINGLES - if SCM_SINGP(flt) i = idbl2str(SCM_FLO(flt), str); - else -# endif - i = idbl2str(SCM_REAL(flt), str); - if SCM_CPLXP(flt) { - if(0 <= SCM_IMAG(flt)) /* jeh */ - str[i++] = '+'; /* jeh */ - i += idbl2str(SCM_IMAG(flt), &str[i]); - str[i++] = 'i'; - } - return i; -} -#endif /* SCM_FLOATS */ - -#ifdef __STDC__ -scm_sizet -scm_iint2str(long num, int rad, char *p) -#else -scm_sizet -scm_iint2str(num, rad, p) - long num; - int rad; - char *p; -#endif -{ - scm_sizet j; - register int i = 1, d; - register long n = num; - if (n < 0) {n = -n; i++;} - for (n /= rad;n > 0;n /= rad) i++; - j = i; - n = num; - if (n < 0) {n = -n; *p++ = '-'; i--;} - while (i--) { - d = n % rad; - n /= rad; - p[i] = d + ((d < 10) ? '0' : 'a' - 10); - } - return j; -} - - -#ifdef SCM_BIGDIG -#ifdef __STDC__ -static SCM -big2str(SCM b, register unsigned int radix) -#else -static SCM -big2str(b, radix) - SCM b; - register unsigned int radix; -#endif -{ - SCM t = scm_copybig(b, 0); /* sign of temp doesn't matter */ - register SCM_BIGDIG *ds = SCM_BDIGITS(t); - scm_sizet i = SCM_NUMDIGS(t); - scm_sizet j = radix==16 ? (SCM_BITSPERDIG*i)/4+2 - : radix >= 10 ? (SCM_BITSPERDIG*i*241L)/800+2 - : (SCM_BITSPERDIG*i)+2; - scm_sizet k = 0; - scm_sizet radct = 0; - scm_sizet ch; /* jeh */ - SCM_BIGDIG radpow = 1, radmod = 0; - SCM ss = scm_makstr((long)j, 0); - char *s = SCM_CHARS(ss), c; - while ((long) radpow * radix < SCM_BIGRAD) { - radpow *= radix; - radct++; - } - s[0] = scm_tc16_bigneg==SCM_TYP16(b) ? '-' : '+'; - while ((i || radmod) && j) { - if (k == 0) { - radmod = (SCM_BIGDIG)scm_divbigdig(ds, i, radpow); - k = radct; - if (!ds[i-1]) i--; - } - c = radmod % radix; radmod /= radix; k--; - s[--j] = c < 10 ? c + '0' : c + 'a' - 10; - } - ch = s[0] == '-' ? 1 : 0; /* jeh */ - if (ch < j) { /* jeh */ - for(i = j;j < SCM_LENGTH(ss);j++) s[ch+j-i] = s[j]; /* jeh */ - scm_vector_set_length_x(ss, (SCM)SCM_MAKINUM(ch+SCM_LENGTH(ss)-i)); /* jeh */ - } - return ss; -} -#endif - - -SCM_PROC(s_number_to_string, "number->string", 1, 1, 0, scm_number_to_string); -#ifdef __STDC__ -SCM -scm_number_to_string(SCM x, SCM radix) -#else -SCM -scm_number_to_string(x, radix) - SCM x; - SCM radix; -#endif -{ - if SCM_UNBNDP(radix) radix=SCM_MAKINUM(10L); - else SCM_ASSERT(SCM_INUMP(radix), radix, SCM_ARG2, s_number_to_string); -#ifdef SCM_FLOATS - if SCM_NINUMP(x) { - char num_buf[SCM_FLOBUFLEN]; -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(x), badx); - if SCM_BIGP(x) return big2str(x, (unsigned int)SCM_INUM(radix)); -# ifndef RECKLESS - if (!(SCM_INEXP(x))) - badx: scm_wta(x, (char *)SCM_ARG1, s_number_to_string); -# endif -# else - SCM_ASSERT(SCM_NIMP(x) && SCM_INEXP(x), x, SCM_ARG1, s_number_to_string); -# endif - return scm_makfromstr(num_buf, iflo2str(x, num_buf), 0); - } -#else -# ifdef SCM_BIGDIG - if SCM_NINUMP(x) { - SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_number_to_string); - return big2str(x, (unsigned int)SCM_INUM(radix)); - } -# else - SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_number_to_string); -# endif -#endif - { - char num_buf[SCM_INTBUFLEN]; - return scm_makfromstr(num_buf, - scm_iint2str(SCM_INUM(x), (int)SCM_INUM(radix), num_buf), 0); - } -} - - -/* These print routines are stubbed here so that scm_repl.c doesn't need - SCM_FLOATS or SCM_BIGDIGs conditionals */ -#ifdef __STDC__ -int -scm_floprint(SCM sexp, SCM port, int writing) -#else -int -scm_floprint(sexp, port, writing) - SCM sexp; - SCM port; - int writing; -#endif -{ -#ifdef SCM_FLOATS - char num_buf[SCM_FLOBUFLEN]; - scm_gen_write (scm_regular_string, num_buf, iflo2str(sexp, num_buf), port); -#else - scm_ipruk("float", sexp, port); -#endif - return !0; -} - - -#ifdef __STDC__ -int -scm_bigprint(SCM exp, SCM port, int writing) -#else -int -scm_bigprint(exp, port, writing) - SCM exp; - SCM port; - int writing; -#endif -{ -#ifdef SCM_BIGDIG - exp = big2str(exp, (unsigned int)10); - scm_gen_write (scm_regular_string, SCM_CHARS(exp), (scm_sizet)SCM_LENGTH(exp), port); -#else - scm_ipruk("bignum", exp, port); -#endif - return !0; -} -/*** END nums->strs ***/ - -/*** STRINGS -> NUMBERS ***/ -#ifdef SCM_BIGDIG -#ifdef __STDC__ -SCM -scm_istr2int(char *str, long len, long radix) -#else -SCM -scm_istr2int(str, len, radix) - char *str; - long len; - long radix; -#endif -{ - scm_sizet j; - register scm_sizet k, blen = 1; - scm_sizet i = 0; - int c; - SCM res; - register SCM_BIGDIG *ds; - register unsigned long t2; - - if (0 >= len) return SCM_BOOL_F; /* zero scm_length */ - if (16==radix) j = 1+(4*len*sizeof(char))/(SCM_BITSPERDIG); - else if (10 <= radix) - j = 1+(84*len*sizeof(char))/(SCM_BITSPERDIG*25); - else j = 1+(len*sizeof(char))/(SCM_BITSPERDIG); - switch (str[0]) { /* leading sign */ - case '-': - case '+': if (++i==len) return SCM_BOOL_F; /* bad if lone `+' or `-' */ - } - res = scm_mkbig(j, '-'==str[0]); - ds = SCM_BDIGITS(res); - for (k = j;k--;) ds[k] = 0; - do { - switch (c = str[i++]) { - case DIGITS: - c = c - '0'; - goto accumulate; - case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': - c = c-'A'+10; - goto accumulate; - case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': - c = c-'a'+10; - accumulate: - if (c >= radix) return SCM_BOOL_F; /* bad digit for radix */ - k = 0; - t2 = c; - moretodo: - while(k < blen) { - /* printf("k = %d, blen = %d, t2 = %ld, ds[k] = %d\n", k, blen, t2, ds[k]);*/ - t2 += ds[k]*radix; - ds[k++] = SCM_BIGLO(t2); - t2 = SCM_BIGDN(t2); - } - if (blen > j) - SCM_NUM_OVERFLOW ("bignum"); - if (t2) {blen++; goto moretodo;} - break; - default: - return SCM_BOOL_F; /* not a digit */ - } - } while (i < len); - if (blen * SCM_BITSPERDIG/SCM_CHAR_BIT <= sizeof(SCM)) - if SCM_INUMP(res = scm_big2inum(res, blen)) return res; - if (j==blen) return res; - return scm_adjbig(res, blen); -} -#else - - - -#ifdef __STDC__ -SCM -scm_istr2int(char *str, long len, long radix) -#else -SCM -scm_istr2int(str, len, radix) - char *str; - long len; - long radix; -#endif -{ - register long n = 0, ln; - register int c; - register int i = 0; - int lead_neg = 0; - if (0 >= len) return SCM_BOOL_F; /* zero scm_length */ - switch (*str) { /* leading sign */ - case '-': lead_neg = 1; - case '+': if (++i==len) return SCM_BOOL_F; /* bad if lone `+' or `-' */ - } - - do { - switch (c = str[i++]) { - case DIGITS: - c = c - '0'; - goto accumulate; - case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': - c = c-'A'+10; - goto accumulate; - case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': - c = c-'a'+10; - accumulate: - if (c >= radix) return SCM_BOOL_F; /* bad digit for radix */ - ln = n; - n = n * radix - c; - /* Negation is a workaround for HP700 cc bug */ - if (n > ln || (-n > -SCM_MOST_NEGATIVE_FIXNUM)) goto ovfl; - break; - default: - return SCM_BOOL_F; /* not a digit */ - } - } while (i < len); - if (!lead_neg) if ((n = -n) > SCM_MOST_POSITIVE_FIXNUM) goto ovfl; - return SCM_MAKINUM(n); - ovfl: /* overflow scheme integer */ - return SCM_BOOL_F; -} -#endif - -#ifdef SCM_FLOATS -#ifdef __STDC__ -SCM -scm_istr2flo(char *str, long len, long radix) -#else -SCM -scm_istr2flo(str, len, radix) - char *str; - long len; - long radix; -#endif -{ - register int c, i = 0; - double lead_sgn; - double res = 0.0, tmp = 0.0; - int flg = 0; - int point = 0; - SCM second; - - if (i >= len) return SCM_BOOL_F; /* zero scm_length */ - - switch (*str) { /* leading sign */ - case '-': lead_sgn = -1.0; i++; break; - case '+': lead_sgn = 1.0; i++; break; - default : lead_sgn = 0.0; - } - if (i==len) return SCM_BOOL_F; /* bad if lone `+' or `-' */ - - if (str[i]=='i' || str[i]=='I') { /* handle `+i' and `-i' */ - if (lead_sgn==0.0) return SCM_BOOL_F; /* must have leading sign */ - if (++i < len) return SCM_BOOL_F; /* `i' not last character */ - return scm_makdbl(0.0, lead_sgn); - } - do { /* check initial digits */ - switch (c = str[i]) { - case DIGITS: - c = c - '0'; - goto accum1; - case 'D': case 'E': case 'F': - if (radix==10) goto out1; /* must be exponent */ - case 'A': case 'B': case 'C': - c = c-'A'+10; - goto accum1; - case 'd': case 'e': case 'f': - if (radix==10) goto out1; - case 'a': case 'b': case 'c': - c = c-'a'+10; - accum1: - if (c >= radix) return SCM_BOOL_F; /* bad digit for radix */ - res = res * radix + c; - flg = 1; /* res is valid */ - break; - default: - goto out1; - } - } while (++i < len); - out1: - - /* if true, then we did see a digit above, and res is valid */ - if (i==len) goto done; - - /* By here, must have seen a digit, - or must have next char be a `.' with radix==10 */ - if (!flg) - if (!(str[i]=='.' && radix==10)) - return SCM_BOOL_F; - - while (str[i]=='#') { /* optional sharps */ - res *= radix; - if (++i==len) goto done; - } - - if (str[i]=='/') { - while (++i < len) { - switch (c = str[i]) { - case DIGITS: - c = c - '0'; - goto accum2; - case 'A': case 'B': case 'C': case 'D': case 'E': case 'F': - c = c-'A'+10; - goto accum2; - case 'a': case 'b': case 'c': case 'd': case 'e': case 'f': - c = c-'a'+10; - accum2: - if (c >= radix) return SCM_BOOL_F; - tmp = tmp * radix + c; - break; - default: - goto out2; - } - } - out2: - if (tmp==0.0) return SCM_BOOL_F; /* `slash zero' not allowed */ - if (i < len) - while (str[i]=='#') { /* optional sharps */ - tmp *= radix; - if (++i==len) break; - } - res /= tmp; - goto done; - } - - if (str[i]=='.') { /* decimal point notation */ - if (radix != 10) return SCM_BOOL_F; /* must be radix 10 */ - while (++i < len) { - switch (c = str[i]) { - case DIGITS: - point--; - res = res*10.0 + c-'0'; - flg = 1; - break; - default: - goto out3; - } - } - out3: - if (!flg) return SCM_BOOL_F; /* no digits before or after decimal point */ - if (i==len) goto adjust; - while (str[i]=='#') { /* ignore remaining sharps */ - if (++i==len) goto adjust; - } - } - - switch (str[i]) { /* exponent */ - case 'd': case 'D': - case 'e': case 'E': - case 'f': case 'F': - case 'l': case 'L': - case 's': case 'S': { - int expsgn = 1, expon = 0; - if (radix != 10) return SCM_BOOL_F; /* only in radix 10 */ - if (++i==len) return SCM_BOOL_F; /* bad exponent */ - switch (str[i]) { - case '-': expsgn=(-1); - case '+': if (++i==len) return SCM_BOOL_F; /* bad exponent */ - } - if (str[i] < '0' || str[i] > '9') return SCM_BOOL_F; /* bad exponent */ - do { - switch (c = str[i]) { - case DIGITS: - expon = expon*10 + c-'0'; - if (expon > MAXEXP) return SCM_BOOL_F; /* exponent too large */ - break; - default: - goto out4; - } - } while (++i < len); - out4: - point += expsgn*expon; - } - } - - adjust: - if (point >= 0) - while (point--) res *= 10.0; - else -# ifdef _UNICOS - while (point++) res *= 0.1; -# else - while (point++) res /= 10.0; -# endif - - done: - /* at this point, we have a legitimate floating point result */ - if (lead_sgn==-1.0) res = -res; - if (i==len) return scm_makdbl(res, 0.0); - - if (str[i]=='i' || str[i]=='I') { /* pure imaginary number */ - if (lead_sgn==0.0) return SCM_BOOL_F; /* must have leading sign */ - if (++i < len) return SCM_BOOL_F; /* `i' not last character */ - return scm_makdbl(0.0, res); - } - - switch (str[i++]) { - case '-': lead_sgn = -1.0; break; - case '+': lead_sgn = 1.0; break; - case '@': { /* polar input for complex number */ - /* get a `real' for scm_angle */ - second = scm_istr2flo(&str[i], (long)(len-i), radix); - if (!(SCM_INEXP(second))) return SCM_BOOL_F; /* not `real' */ - if (SCM_CPLXP(second)) return SCM_BOOL_F; /* not `real' */ - tmp = SCM_REALPART(second); - return scm_makdbl(res*cos(tmp), res*sin(tmp)); - } - default: return SCM_BOOL_F; - } - - /* at this point, last char must be `i' */ - if (str[len-1] != 'i' && str[len-1] != 'I') return SCM_BOOL_F; - /* handles `x+i' and `x-i' */ - if (i==(len-1)) return scm_makdbl(res, lead_sgn); - /* get a `ureal' for complex part */ - second = scm_istr2flo(&str[i], (long)((len-i)-1), radix); - if (!(SCM_INEXP(second))) return SCM_BOOL_F; /* not `ureal' */ - if (SCM_CPLXP(second)) return SCM_BOOL_F; /* not `ureal' */ - tmp = SCM_REALPART(second); - if (tmp < 0.0) return SCM_BOOL_F; /* not `ureal' */ - return scm_makdbl(res, (lead_sgn*tmp)); -} -#endif /* SCM_FLOATS */ - - -#ifdef __STDC__ -SCM -scm_istring2number(char *str, long len, long radix) -#else -SCM -scm_istring2number(str, len, radix) - char *str; - long len; - long radix; -#endif -{ - int i = 0; - char ex = 0; - char ex_p = 0, rx_p = 0; /* Only allow 1 exactness and 1 radix prefix */ - SCM res; - if (len==1) - if (*str=='+' || *str=='-') /* Catches lone `+' and `-' for speed */ - return SCM_BOOL_F; - - while ((len-i) >= 2 && str[i]=='#' && ++i) - switch (str[i++]) { - case 'b': case 'B': if (rx_p++) return SCM_BOOL_F; radix = 2; break; - case 'o': case 'O': if (rx_p++) return SCM_BOOL_F; radix = 8; break; - case 'd': case 'D': if (rx_p++) return SCM_BOOL_F; radix = 10; break; - case 'x': case 'X': if (rx_p++) return SCM_BOOL_F; radix = 16; break; - case 'i': case 'I': if (ex_p++) return SCM_BOOL_F; ex = 2; break; - case 'e': case 'E': if (ex_p++) return SCM_BOOL_F; ex = 1; break; - default: return SCM_BOOL_F; - } - - switch (ex) { - case 1: - return scm_istr2int(&str[i], len-i, radix); - case 0: - res = scm_istr2int(&str[i], len-i, radix); - if SCM_NFALSEP(res) return res; -#ifdef SCM_FLOATS - case 2: return scm_istr2flo(&str[i], len-i, radix); -#endif - } - return SCM_BOOL_F; -} - - -SCM_PROC(s_string_to_number, "string->number", 1, 1, 0, scm_string_to_number); -#ifdef __STDC__ -SCM -scm_string_to_number(SCM str, SCM radix) -#else -SCM -scm_string_to_number(str, radix) - SCM str; - SCM radix; -#endif -{ - SCM answer; - if SCM_UNBNDP(radix) radix=SCM_MAKINUM(10L); - else SCM_ASSERT(SCM_INUMP(radix), radix, SCM_ARG2, s_string_to_number); - SCM_ASSERT(SCM_NIMP(str) && SCM_ROSTRINGP(str), str, SCM_ARG1, s_string_to_number); - answer = scm_istring2number(SCM_ROCHARS(str), SCM_ROLENGTH(str), SCM_INUM(radix)); - return scm_return_first (answer, str); -} -/*** END strs->nums ***/ - -#ifdef SCM_FLOATS -#ifdef __STDC__ -SCM -scm_makdbl (double x, double y) -#else -SCM -scm_makdbl (x, y) - double x; - double y; -#endif -{ - SCM z; - if ((y==0.0) && (x==0.0)) return scm_flo0; - SCM_NEWCELL(z); - SCM_DEFER_INTS; - if (y==0.0) { -# ifdef SCM_SINGLES - float fx = x; -# ifndef SCM_SINGLESONLY - if ((-FLTMAX < x) && (x < FLTMAX) && (fx==x)) -# endif - { - SCM_CAR(z) = scm_tc_flo; - SCM_FLO(z) = x; - SCM_ALLOW_INTS; - return z; - } -# endif/* def SCM_SINGLES */ - SCM_CDR(z) = (SCM)scm_must_malloc(1L*sizeof(double), "real"); - SCM_CAR(z) = scm_tc_dblr; - } - else { - SCM_CDR(z) = (SCM)scm_must_malloc(2L*sizeof(double), "complex"); - SCM_CAR(z) = scm_tc_dblc; - SCM_IMAG(z) = y; - } - SCM_REAL(z) = x; - SCM_ALLOW_INTS; - return z; -} -#endif - - -#ifdef __STDC__ -SCM -scm_bigequal(SCM x, SCM y) -#else -SCM -scm_bigequal(x, y) - SCM x; - SCM y; -#endif -{ -#ifdef SCM_BIGDIG - if (0==scm_bigcomp(x, y)) return SCM_BOOL_T; -#endif - return SCM_BOOL_F; -} - - -#ifdef __STDC__ -SCM -scm_floequal(SCM x, SCM y) -#else -SCM -scm_floequal(x, y) - SCM x; - SCM y; -#endif -{ -#ifdef SCM_FLOATS - if (SCM_REALPART(x) != SCM_REALPART(y)) return SCM_BOOL_F; - if (!(SCM_CPLXP(x) && (SCM_IMAG(x) != SCM_IMAG(y)))) return SCM_BOOL_T; -#endif - return SCM_BOOL_F; -} - - - - -SCM_PROC(s_number_p, "number?", 1, 0, 0, scm_number_p); -SCM_PROC(s_complex_p, "complex?", 1, 0, 0, scm_number_p); -#ifdef __STDC__ -SCM -scm_number_p(SCM x) -#else -SCM -scm_number_p(x) - SCM x; -#endif -{ - if SCM_INUMP(x) return SCM_BOOL_T; -#ifdef SCM_FLOATS - if (SCM_NIMP(x) && SCM_NUMP(x)) return SCM_BOOL_T; -#else -# ifdef SCM_BIGDIG - if (SCM_NIMP(x) && SCM_NUMP(x)) return SCM_BOOL_T; -# endif -#endif - return SCM_BOOL_F; -} - - - -#ifdef SCM_FLOATS -SCM_PROC(s_real_p, "real?", 1, 0, 0, scm_real_p); -SCM_PROC(s_rational_p, "rational?", 1, 0, 0, scm_real_p); -#ifdef __STDC__ -SCM -scm_real_p(SCM x) -#else -SCM -scm_real_p(x) - SCM x; -#endif -{ - if (SCM_INUMP(x)) - return SCM_BOOL_T; - if (SCM_IMP(x)) - return SCM_BOOL_F; - if (SCM_REALP(x)) - return SCM_BOOL_T; -# ifdef SCM_BIGDIG - if (SCM_BIGP(x)) - return SCM_BOOL_T; -# endif - return SCM_BOOL_F; -} - - - -SCM_PROC(s_int_p, "int?", 1, 0, 0, scm_int_p); -#ifdef __STDC__ -SCM -scm_int_p(SCM x) -#else -SCM -scm_int_p(x) - SCM x; -#endif -{ - double r; - if SCM_INUMP(x) return SCM_BOOL_T; - if SCM_IMP(x) return SCM_BOOL_F; -# ifdef SCM_BIGDIG - if SCM_BIGP(x) return SCM_BOOL_T; -# endif - if (!SCM_INEXP(x)) return SCM_BOOL_F; - if SCM_CPLXP(x) return SCM_BOOL_F; - r = SCM_REALPART(x); - if (r==floor(r)) return SCM_BOOL_T; - return SCM_BOOL_F; -} - - - -#endif /* SCM_FLOATS */ - -SCM_PROC(s_inexact_p, "inexact?", 1, 0, 0, scm_inexact_p); -#ifdef __STDC__ -SCM -scm_inexact_p(SCM x) -#else -SCM -scm_inexact_p(x) - SCM x; -#endif -{ -#ifdef SCM_FLOATS - if (SCM_NIMP(x) && SCM_INEXP(x)) return SCM_BOOL_T; -#endif - return SCM_BOOL_F; -} - - - - -SCM_PROC1 (s_eq_p, "=?", scm_tc7_rpsubr, scm_num_eq_p); -#ifdef __STDC__ -SCM -scm_num_eq_p (SCM x, SCM y) -#else -SCM -scm_num_eq_p (x, y) - SCM x; - SCM y; -#endif -{ -#ifdef SCM_FLOATS - SCM t; - if SCM_NINUMP(x) { -# ifdef SCM_BIGDIG -# ifndef RECKLESS - if (!(SCM_NIMP(x))) - badx: scm_wta(x, (char *)SCM_ARG1, s_eq_p); -# endif - if SCM_BIGP(x) { - if SCM_INUMP(y) return SCM_BOOL_F; - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) return (0==scm_bigcomp(x, y)) ? SCM_BOOL_T : SCM_BOOL_F; - SCM_ASRTGO(SCM_INEXP(y), bady); - bigreal: - return (SCM_REALP(y) && (scm_big2dbl(x)==SCM_REALPART(y))) ? SCM_BOOL_T : SCM_BOOL_F; - } - SCM_ASRTGO(SCM_INEXP(x), badx); -# else - SCM_ASSERT(SCM_NIMP(x) && SCM_INEXP(x), x, SCM_ARG1, s_eq_p); -# endif - if SCM_INUMP(y) {t = x; x = y; y = t; goto realint;} -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) {t = x; x = y; y = t; goto bigreal;} - SCM_ASRTGO(SCM_INEXP(y), bady); -# else - SCM_ASRTGO(SCM_NIMP(y) && SCM_INEXP(y), bady); -# endif - if (SCM_REALPART(x) != SCM_REALPART(y)) return SCM_BOOL_F; - if SCM_CPLXP(x) - return (SCM_CPLXP(y) && (SCM_IMAG(x)==SCM_IMAG(y))) ? SCM_BOOL_T : SCM_BOOL_F; - return SCM_CPLXP(y) ? SCM_BOOL_F : SCM_BOOL_T; - } - if SCM_NINUMP(y) { -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) return SCM_BOOL_F; -# ifndef RECKLESS - if (!(SCM_INEXP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_eq_p); -# endif -# else -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_INEXP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_eq_p); -# endif -# endif - realint: - return (SCM_REALP(y) && (((double)SCM_INUM(x))==SCM_REALPART(y))) ? SCM_BOOL_T : SCM_BOOL_F; - } -#else -# ifdef SCM_BIGDIG - if SCM_NINUMP(x) { - SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_eq_p); - if SCM_INUMP(y) return SCM_BOOL_F; - SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); - return (0==scm_bigcomp(x, y)) ? SCM_BOOL_T : SCM_BOOL_F; - } - if SCM_NINUMP(y) { -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_BIGP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_eq_p); -# endif - return SCM_BOOL_F; - } -# else - SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_eq_p); - SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_eq_p); -# endif -#endif - return ((long)x==(long)y) ? SCM_BOOL_T : SCM_BOOL_F; -} - - - -SCM_PROC1 (s_less_p, "?", scm_tc7_rpsubr, scm_gr_p); -#ifdef __STDC__ -SCM -scm_gr_p(SCM x, SCM y) -#else -SCM -scm_gr_p(x, y) - SCM x; - SCM y; -#endif -{ - return scm_less_p(y, x); -} - - - -SCM_PROC1 (s_leq_p, "<=?", scm_tc7_rpsubr, scm_leq_p); -#ifdef __STDC__ -SCM -scm_leq_p(SCM x, SCM y) -#else -SCM -scm_leq_p(x, y) - SCM x; - SCM y; -#endif -{ - return SCM_BOOL_NOT(scm_less_p(y, x)); -} - - - -SCM_PROC1 (s_geq_p, ">=?", scm_tc7_rpsubr, scm_geq_p); -#ifdef __STDC__ -SCM -scm_geq_p(SCM x, SCM y) -#else -SCM -scm_geq_p(x, y) - SCM x; - SCM y; -#endif -{ - return SCM_BOOL_NOT(scm_less_p(x, y)); -} - - - -SCM_PROC(s_zero_p, "zero?", 1, 0, 0, scm_zero_p); -#ifdef __STDC__ -SCM -scm_zero_p(SCM z) -#else -SCM -scm_zero_p(z) - SCM z; -#endif -{ -#ifdef SCM_FLOATS - if SCM_NINUMP(z) { -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(z), badz); - if SCM_BIGP(z) return SCM_BOOL_F; -# ifndef RECKLESS - if (!(SCM_INEXP(z))) - badz: scm_wta(z, (char *)SCM_ARG1, s_zero_p); -# endif -# else - SCM_ASSERT(SCM_NIMP(z) && SCM_INEXP(z), z, SCM_ARG1, s_zero_p); -# endif - return (z==scm_flo0) ? SCM_BOOL_T : SCM_BOOL_F; - } -#else -# ifdef SCM_BIGDIG - if SCM_NINUMP(z) { - SCM_ASSERT(SCM_NIMP(z) && SCM_BIGP(z), z, SCM_ARG1, s_zero_p); - return SCM_BOOL_F; - } -# else - SCM_ASSERT(SCM_INUMP(z), z, SCM_ARG1, s_zero_p); -# endif -#endif - return (z==SCM_INUM0) ? SCM_BOOL_T: SCM_BOOL_F; -} - - - -SCM_PROC(s_positive_p, "positive?", 1, 0, 0, scm_positive_p); -#ifdef __STDC__ -SCM -scm_positive_p(SCM x) -#else -SCM -scm_positive_p(x) - SCM x; -#endif -{ -#ifdef SCM_FLOATS - if SCM_NINUMP(x) { -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(x), badx); - if SCM_BIGP(x) return SCM_TYP16(x)==scm_tc16_bigpos ? SCM_BOOL_T : SCM_BOOL_F; -# ifndef RECKLESS - if (!(SCM_REALP(x))) - badx: scm_wta(x, (char *)SCM_ARG1, s_positive_p); -# endif -# else - SCM_ASSERT(SCM_NIMP(x) && SCM_REALP(x), x, SCM_ARG1, s_positive_p); -# endif - return (SCM_REALPART(x) > 0.0) ? SCM_BOOL_T : SCM_BOOL_F; - } -#else -# ifdef SCM_BIGDIG - if SCM_NINUMP(x) { - SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_positive_p); - return SCM_TYP16(x)==scm_tc16_bigpos ? SCM_BOOL_T : SCM_BOOL_F; - } -# else - SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_positive_p); -# endif -#endif - return (x > SCM_INUM0) ? SCM_BOOL_T : SCM_BOOL_F; -} - - - -SCM_PROC(s_negative_p, "negative?", 1, 0, 0, scm_negative_p); -#ifdef __STDC__ -SCM -scm_negative_p(SCM x) -#else -SCM -scm_negative_p(x) - SCM x; -#endif -{ -#ifdef SCM_FLOATS - if SCM_NINUMP(x) { -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(x), badx); - if SCM_BIGP(x) return SCM_TYP16(x)==scm_tc16_bigpos ? SCM_BOOL_F : SCM_BOOL_T; -# ifndef RECKLESS - if (!(SCM_REALP(x))) - badx: scm_wta(x, (char *)SCM_ARG1, s_negative_p); -# endif -# else - SCM_ASSERT(SCM_NIMP(x) && SCM_REALP(x), x, SCM_ARG1, s_negative_p); -# endif - return (SCM_REALPART(x) < 0.0) ? SCM_BOOL_T : SCM_BOOL_F; - } -#else -# ifdef SCM_BIGDIG - if SCM_NINUMP(x) { - SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_negative_p); - return (SCM_TYP16(x)==scm_tc16_bigneg) ? SCM_BOOL_T : SCM_BOOL_F; - } -# else - SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_negative_p); -# endif -#endif - return (x < SCM_INUM0) ? SCM_BOOL_T : SCM_BOOL_F; -} - - -SCM_PROC1 (s_max, "max", scm_tc7_asubr, scm_max); -#ifdef __STDC__ -SCM -scm_max(SCM x, SCM y) -#else -SCM -scm_max(x, y) - SCM x; - SCM y; -#endif -{ -#ifdef SCM_FLOATS - double z; -#endif - if SCM_UNBNDP(y) { -#ifndef RECKLESS - if (!(SCM_NUMBERP(x))) - badx: scm_wta(x, (char *)SCM_ARG1, s_max); -#endif - return x; - } -#ifdef SCM_FLOATS - if SCM_NINUMP(x) { -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(x), badx); - if SCM_BIGP(x) { - if SCM_INUMP(y) return SCM_BIGSIGN(x) ? y : x; - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) return (1==scm_bigcomp(x, y)) ? y : x; - SCM_ASRTGO(SCM_REALP(y), bady); - z = scm_big2dbl(x); - return (z < SCM_REALPART(y)) ? y : scm_makdbl(z, 0.0); - } - SCM_ASRTGO(SCM_REALP(x), badx); -# else - SCM_ASSERT(SCM_NIMP(x) && SCM_REALP(x), x, SCM_ARG1, s_max); -# endif - if (SCM_INUMP(y)) - return (SCM_REALPART(x) < (z = SCM_INUM(y))) ? scm_makdbl(z, 0.0) : x; -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(y), bady); - if (SCM_BIGP(y)) - return (SCM_REALPART(x) < (z = scm_big2dbl(y))) ? scm_makdbl(z, 0.0) : x; - SCM_ASRTGO(SCM_REALP(y), bady); -# else - SCM_ASRTGO(SCM_NIMP(y) && SCM_REALP(y), bady); -# endif - return (SCM_REALPART(x) < SCM_REALPART(y)) ? y : x; - } - if SCM_NINUMP(y) { -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) return SCM_BIGSIGN(y) ? x : y; -# ifndef RECKLESS - if (!(SCM_REALP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_max); -# endif -# else -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_REALP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_max); -# endif -# endif - return ((z = SCM_INUM(x)) < SCM_REALPART(y)) ? y : scm_makdbl(z, 0.0); - } -#else -# ifdef SCM_BIGDIG - if SCM_NINUMP(x) { - SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_max); - if SCM_INUMP(y) return SCM_BIGSIGN(x) ? y : x; - SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); - return (1==scm_bigcomp(x, y)) ? y : x; - } - if SCM_NINUMP(y) { -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_BIGP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_max); -# endif - return SCM_BIGSIGN(y) ? x : y; - } -# else - SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_max); - SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_max); -# endif -#endif - return ((long)x < (long)y) ? y : x; -} - - - - -SCM_PROC1 (s_min, "min", scm_tc7_asubr, scm_min); -#ifdef __STDC__ -SCM -scm_min(SCM x, SCM y) -#else -SCM -scm_min(x, y) - SCM x; - SCM y; -#endif -{ -#ifdef SCM_FLOATS - double z; -#endif - if SCM_UNBNDP(y) { -#ifndef RECKLESS - if (!(SCM_NUMBERP(x))) - badx:scm_wta(x, (char *)SCM_ARG1, s_min); -#endif - return x; - } -#ifdef SCM_FLOATS - if SCM_NINUMP(x) { -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(x), badx); - if SCM_BIGP(x) { - if SCM_INUMP(y) return SCM_BIGSIGN(x) ? x : y; - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) return (-1==scm_bigcomp(x, y)) ? y : x; - SCM_ASRTGO(SCM_REALP(y), bady); - z = scm_big2dbl(x); - return (z > SCM_REALPART(y)) ? y : scm_makdbl(z, 0.0); - } - SCM_ASRTGO(SCM_REALP(x), badx); -# else - SCM_ASSERT(SCM_NIMP(x) && SCM_REALP(x), x, SCM_ARG1, s_min); -# endif - if SCM_INUMP(y) return (SCM_REALPART(x) > (z = SCM_INUM(y))) ? scm_makdbl(z, 0.0) : x; -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) return (SCM_REALPART(x) > (z = scm_big2dbl(y))) ? scm_makdbl(z, 0.0) : x; - SCM_ASRTGO(SCM_REALP(y), bady); -# else - SCM_ASRTGO(SCM_NIMP(y) && SCM_REALP(y), bady); -# endif - return (SCM_REALPART(x) > SCM_REALPART(y)) ? y : x; - } - if SCM_NINUMP(y) { -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) return SCM_BIGSIGN(y) ? y : x; -# ifndef RECKLESS - if (!(SCM_REALP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_min); -# endif -# else -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_REALP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_min); -# endif -# endif - return ((z = SCM_INUM(x)) > SCM_REALPART(y)) ? y : scm_makdbl(z, 0.0); - } -#else -# ifdef SCM_BIGDIG - if SCM_NINUMP(x) { - SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_min); - if SCM_INUMP(y) return SCM_BIGSIGN(x) ? x : y; - SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); - return (-1==scm_bigcomp(x, y)) ? y : x; - } - if SCM_NINUMP(y) { -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_BIGP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_min); -# endif - return SCM_BIGSIGN(y) ? y : x; - } -# else - SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_min); - SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_min); -# endif -#endif - return ((long)x > (long)y) ? y : x; -} - - - - -SCM_PROC1 (s_sum, "+", scm_tc7_asubr, scm_sum); -#ifdef __STDC__ -SCM -scm_sum(SCM x, SCM y) -#else -SCM -scm_sum(x, y) - SCM x; - SCM y; -#endif -{ - if SCM_UNBNDP(y) { - if SCM_UNBNDP(x) return SCM_INUM0; -#ifndef RECKLESS - if (!(SCM_NUMBERP(x))) - badx: scm_wta(x, (char *)SCM_ARG1, s_sum); -#endif - return x; - } -#ifdef SCM_FLOATS - if SCM_NINUMP(x) { - SCM t; -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(x), badx); - if SCM_BIGP(x) { - if SCM_INUMP(y) {t = x; x = y; y = t; goto intbig;} - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) { - if (SCM_NUMDIGS(x) > SCM_NUMDIGS(y)) {t = x; x = y; y = t;} - return scm_addbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BIGSIGN(x), y, 0); - } - SCM_ASRTGO(SCM_INEXP(y), bady); - bigreal: return scm_makdbl(scm_big2dbl(x)+SCM_REALPART(y), SCM_CPLXP(y)?SCM_IMAG(y):0.0); - } - SCM_ASRTGO(SCM_INEXP(x), badx); -# else - SCM_ASRTGO(SCM_NIMP(x) && SCM_INEXP(x), badx); -# endif - if SCM_INUMP(y) {t = x; x = y; y = t; goto intreal;} -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) {t = x; x = y; y = t; goto bigreal;} -# ifndef RECKLESS - else if (!(SCM_INEXP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_sum); -# endif -# else -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_INEXP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_sum); -# endif -# endif - { double i = 0.0; - if SCM_CPLXP(x) i = SCM_IMAG(x); - if SCM_CPLXP(y) i += SCM_IMAG(y); - return scm_makdbl(SCM_REALPART(x)+SCM_REALPART(y), i); } - } - if SCM_NINUMP(y) { -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) - intbig: { -# ifndef SCM_DIGSTOOBIG - long z = scm_pseudolong(SCM_INUM(x)); - return scm_addbig((SCM_BIGDIG *)&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0); -# else - SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; - scm_longdigs(SCM_INUM(x), zdigs); - return scm_addbig(zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0); -# endif - } - SCM_ASRTGO(SCM_INEXP(y), bady); -# else - SCM_ASRTGO(SCM_NIMP(y) && SCM_INEXP(y), bady); -# endif - intreal: return scm_makdbl(SCM_INUM(x)+SCM_REALPART(y), SCM_CPLXP(y)?SCM_IMAG(y):0.0); - } -#else -# ifdef SCM_BIGDIG - if SCM_NINUMP(x) { - SCM t; - SCM_ASRTGO(SCM_NIMP(x) && SCM_BIGP(x), badx); - if SCM_INUMP(y) {t = x; x = y; y = t; goto intbig;} - SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); - if (SCM_NUMDIGS(x) > SCM_NUMDIGS(y)) {t = x; x = y; y = t;} - return scm_addbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BIGSIGN(x), y, 0); - } - if SCM_NINUMP(y) { -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_BIGP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_sum); -# endif - intbig: { -# ifndef SCM_DIGSTOOBIG - long z = scm_pseudolong(SCM_INUM(x)); - return scm_addbig(&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0); -# else - SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; - scm_longdigs(SCM_INUM(x), zdigs); - return scm_addbig(zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0); -# endif - } - } -# else - SCM_ASRTGO(SCM_INUMP(x), badx); - SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_sum); -# endif -#endif - x = SCM_INUM(x)+SCM_INUM(y); - if SCM_FIXABLE(x) return SCM_MAKINUM(x); -#ifdef SCM_BIGDIG - return scm_long2big(x); -#else -# ifdef SCM_FLOATS - return scm_makdbl((double)x, 0.0); -# else - SCM_NUM_OVERFLOW (s_sum); - return SCM_UNSPECIFIED; -# endif -#endif -} - - - - -SCM_PROC1 (s_difference, "-", scm_tc7_asubr, scm_difference); -#ifdef __STDC__ -SCM -scm_difference(SCM x, SCM y) -#else -SCM -scm_difference(x, y) - SCM x; - SCM y; -#endif -{ -#ifdef SCM_FLOATS - if SCM_NINUMP(x) { -# ifndef RECKLESS - if (!(SCM_NIMP(x))) - badx: scm_wta(x, (char *)SCM_ARG1, s_difference); -# endif - if SCM_UNBNDP(y) { -# ifdef SCM_BIGDIG - if SCM_BIGP(x) { - x = scm_copybig(x, !SCM_BIGSIGN(x)); - return SCM_NUMDIGS(x) * SCM_BITSPERDIG/SCM_CHAR_BIT <= sizeof(SCM) ? - scm_big2inum(x, SCM_NUMDIGS(x)) : x; - } -# endif - SCM_ASRTGO(SCM_INEXP(x), badx); - return scm_makdbl(-SCM_REALPART(x), SCM_CPLXP(x)?-SCM_IMAG(x):0.0); - } - if SCM_INUMP(y) return scm_sum(x, SCM_MAKINUM(-SCM_INUM(y))); -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(x) { - if SCM_BIGP(y) return (SCM_NUMDIGS(x) < SCM_NUMDIGS(y)) ? - scm_addbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BIGSIGN(x), y, 0x0100) : - scm_addbig(SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(y) ^ 0x0100, x, 0); - SCM_ASRTGO(SCM_INEXP(y), bady); - return scm_makdbl(scm_big2dbl(x)-SCM_REALPART(y), SCM_CPLXP(y)?-SCM_IMAG(y):0.0); - } - SCM_ASRTGO(SCM_INEXP(x), badx); - if SCM_BIGP(y) return scm_makdbl(SCM_REALPART(x)-scm_big2dbl(y), SCM_CPLXP(x)?SCM_IMAG(x):0.0); - SCM_ASRTGO(SCM_INEXP(y), bady); -# else - SCM_ASRTGO(SCM_INEXP(x), badx); - SCM_ASRTGO(SCM_NIMP(y) && SCM_INEXP(y), bady); -# endif - if SCM_CPLXP(x) - if SCM_CPLXP(y) - return scm_makdbl(SCM_REAL(x)-SCM_REAL(y), SCM_IMAG(x)-SCM_IMAG(y)); - else - return scm_makdbl(SCM_REAL(x)-SCM_REALPART(y), SCM_IMAG(x)); - return scm_makdbl(SCM_REALPART(x)-SCM_REALPART(y), SCM_CPLXP(y)?-SCM_IMAG(y):0.0); - } - if SCM_UNBNDP(y) {x = -SCM_INUM(x); goto checkx;} - if SCM_NINUMP(y) { -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) { -# ifndef SCM_DIGSTOOBIG - long z = scm_pseudolong(SCM_INUM(x)); - return scm_addbig((SCM_BIGDIG *)&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100); -# else - SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; - scm_longdigs(SCM_INUM(x), zdigs); - return scm_addbig(zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100); -# endif - } -# ifndef RECKLESS - if (!(SCM_INEXP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_difference); -# endif -# else -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_INEXP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_difference); -# endif -# endif - return scm_makdbl(SCM_INUM(x)-SCM_REALPART(y), SCM_CPLXP(y)?-SCM_IMAG(y):0.0); - } -#else -# ifdef SCM_BIGDIG - if SCM_NINUMP(x) { - SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_difference); - if SCM_UNBNDP(y) { - x = scm_copybig(x, !SCM_BIGSIGN(x)); - return SCM_NUMDIGS(x) * SCM_BITSPERDIG/SCM_CHAR_BIT <= sizeof(SCM) ? - scm_big2inum(x, SCM_NUMDIGS(x)) : x; - } - if SCM_INUMP(y) { -# ifndef SCM_DIGSTOOBIG - long z = scm_pseudolong(SCM_INUM(y)); - return scm_addbig(&z, SCM_DIGSPERLONG, (y < 0) ? 0 : 0x0100, x, 0); -# else - SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; - scm_longdigs(SCM_INUM(x), zdigs); - return scm_addbig(zdigs, SCM_DIGSPERLONG, (y < 0) ? 0 : 0x0100, x, 0); -# endif - } - SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); - return (SCM_NUMDIGS(x) < SCM_NUMDIGS(y)) ? - scm_addbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BIGSIGN(x), y, 0x0100) : - scm_addbig(SCM_BDIGITS(y), SCM_NUMDIGS(y), SCM_BIGSIGN(y) ^ 0x0100, x, 0); - } - if SCM_UNBNDP(y) {x = -SCM_INUM(x); goto checkx;} - if SCM_NINUMP(y) { -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_BIGP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_difference); -# endif - { -# ifndef SCM_DIGSTOOBIG - long z = scm_pseudolong(SCM_INUM(x)); - return scm_addbig(&z, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100); -# else - SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; - scm_longdigs(SCM_INUM(x), zdigs); - return scm_addbig(zdigs, SCM_DIGSPERLONG, (x < 0) ? 0x0100 : 0, y, 0x0100); -# endif - } - } -# else - SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_difference); - if SCM_UNBNDP(y) {x = -SCM_INUM(x); goto checkx;} - SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_difference); -# endif -#endif - x = SCM_INUM(x)-SCM_INUM(y); - checkx: - if SCM_FIXABLE(x) return SCM_MAKINUM(x); -#ifdef SCM_BIGDIG - return scm_long2big(x); -#else -# ifdef SCM_FLOATS - return scm_makdbl((double)x, 0.0); -# else - SCM_NUM_OVERFLOW (s_difference); - return SCM_UNSPECIFIED; -# endif -#endif -} - - - - -SCM_PROC1 (s_product, "*", scm_tc7_asubr, scm_product); -#ifdef __STDC__ -SCM -scm_product(SCM x, SCM y) -#else -SCM -scm_product(x, y) - SCM x; - SCM y; -#endif -{ - if SCM_UNBNDP(y) { - if SCM_UNBNDP(x) return SCM_MAKINUM(1L); -#ifndef RECKLESS - if (!(SCM_NUMBERP(x))) - badx: scm_wta(x, (char *)SCM_ARG1, s_product); -#endif - return x; - } -#ifdef SCM_FLOATS - if SCM_NINUMP(x) { - SCM t; -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(x), badx); - if SCM_BIGP(x) { - if SCM_INUMP(y) {t = x; x = y; y = t; goto intbig;} - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) return scm_mulbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y), - SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y)); - SCM_ASRTGO(SCM_INEXP(y), bady); - bigreal: { - double bg = scm_big2dbl(x); - return scm_makdbl(bg*SCM_REALPART(y), SCM_CPLXP(y)?bg*SCM_IMAG(y):0.0); } - } - SCM_ASRTGO(SCM_INEXP(x), badx); -# else - SCM_ASRTGO(SCM_NIMP(x) && SCM_INEXP(x), badx); -# endif - if SCM_INUMP(y) {t = x; x = y; y = t; goto intreal;} -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) {t = x; x = y; y = t; goto bigreal;} -# ifndef RECKLESS - else if (!(SCM_INEXP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_product); -# endif -# else -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_INEXP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_product); -# endif -# endif - if SCM_CPLXP(x) - if SCM_CPLXP(y) - return scm_makdbl(SCM_REAL(x)*SCM_REAL(y)-SCM_IMAG(x)*SCM_IMAG(y), - SCM_REAL(x)*SCM_IMAG(y)+SCM_IMAG(x)*SCM_REAL(y)); - else - return scm_makdbl(SCM_REAL(x)*SCM_REALPART(y), SCM_IMAG(x)*SCM_REALPART(y)); - return scm_makdbl(SCM_REALPART(x)*SCM_REALPART(y), - SCM_CPLXP(y)?SCM_REALPART(x)*SCM_IMAG(y):0.0); - } - if SCM_NINUMP(y) { -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) { - intbig: if (SCM_INUM0==x) return x; if (SCM_MAKINUM(1L)==x) return y; - { -# ifndef SCM_DIGSTOOBIG - long z = scm_pseudolong(SCM_INUM(x)); - return scm_mulbig((SCM_BIGDIG *)&z, SCM_DIGSPERLONG, SCM_BDIGITS(y), SCM_NUMDIGS(y), - SCM_BIGSIGN(y) ? (x>0) : (x<0)); -# else - SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; - scm_longdigs(SCM_INUM(x), zdigs); - return scm_mulbig(zdigs, SCM_DIGSPERLONG, SCM_BDIGITS(y), SCM_NUMDIGS(y), - SCM_BIGSIGN(y) ? (x>0) : (x<0)); -# endif - } - } - SCM_ASRTGO(SCM_INEXP(y), bady); -# else - SCM_ASRTGO(SCM_NIMP(y) && SCM_INEXP(y), bady); -# endif - intreal: return scm_makdbl(SCM_INUM(x)*SCM_REALPART(y), SCM_CPLXP(y)?SCM_INUM(x)*SCM_IMAG(y):0.0); - } -#else -# ifdef SCM_BIGDIG - if SCM_NINUMP(x) { - SCM_ASRTGO(SCM_NIMP(x) && SCM_BIGP(x), badx); - if SCM_INUMP(y) {SCM t = x; x = y; y = t; goto intbig;} - SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); - return scm_mulbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y), - SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y)); - } - if SCM_NINUMP(y) { -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_BIGP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_product); -# endif - intbig: if (SCM_INUM0==x) return x; if (SCM_MAKINUM(1L)==x) return y; - { -# ifndef SCM_DIGSTOOBIG - long z = scm_pseudolong(SCM_INUM(x)); - return scm_mulbig(&z, SCM_DIGSPERLONG, SCM_BDIGITS(y), SCM_NUMDIGS(y), - SCM_BIGSIGN(y) ? (x>0) : (x<0)); -# else - SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; - scm_longdigs(SCM_INUM(x), zdigs); - return scm_mulbig(zdigs, SCM_DIGSPERLONG, SCM_BDIGITS(y), SCM_NUMDIGS(y), - SCM_BIGSIGN(y) ? (x>0) : (x<0)); -# endif - } - } -# else - SCM_ASRTGO(SCM_INUMP(x), badx); - SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_product); -# endif -#endif - { - long i, j, k; - i = SCM_INUM(x); - if (0==i) return x; - j = SCM_INUM(y); - k = i * j; - y = SCM_MAKINUM(k); - if (k != SCM_INUM(y) || k/i != j) -#ifdef SCM_BIGDIG - { int sgn = (i < 0) ^ (j < 0); -# ifndef SCM_DIGSTOOBIG - i = scm_pseudolong(i); - j = scm_pseudolong(j); - return scm_mulbig((SCM_BIGDIG *)&i, SCM_DIGSPERLONG, - (SCM_BIGDIG *)&j, SCM_DIGSPERLONG, sgn); -# else /* SCM_DIGSTOOBIG */ - SCM_BIGDIG idigs[SCM_DIGSPERLONG]; - SCM_BIGDIG jdigs[SCM_DIGSPERLONG]; - scm_longdigs(i, idigs); - scm_longdigs(j, jdigs); - return scm_mulbig(idigs, SCM_DIGSPERLONG, jdigs, SCM_DIGSPERLONG, sgn); -# endif - } -#else -# ifdef SCM_FLOATS - return scm_makdbl(((double)i)*((double)j), 0.0); -# else - SCM_NUM_OVERFLOW (s_product); -# endif -#endif - return y; - } -} - - -#ifdef __STDC__ -double -scm_num2dbl (SCM a, char * why) -#else -double -scm_num2dbl (a, why) - SCM a; - char * why; -#endif -{ - if (SCM_INUMP (a)) - return (double) SCM_INUM (a); -#ifdef SCM_FLOATS - SCM_ASSERT (SCM_NIMP (a), a, "wrong type argument", why); - if (SCM_REALP (a)) - return (SCM_REALPART (a)); -#endif -#ifdef SCM_BIGDIG - return scm_big2dbl (a); -#endif - SCM_ASSERT (0, a, "wrong type argument", why); - return SCM_UNSPECIFIED; -} - - -SCM_PROC(s_fuck, "fuck", 1, 0, 0, scm_fuck); -#ifdef __STDC__ -SCM -scm_fuck (SCM a) -#else -SCM -scm_fuck (a) - SCM a; -#endif -{ - return scm_makdbl (scm_num2dbl (a, "just because"), 0.0); -} - -SCM_PROC1 (s_divide, "/", scm_tc7_asubr, scm_divide); -#ifdef __STDC__ -SCM -scm_divide(SCM x, SCM y) -#else -SCM -scm_divide(x, y) - SCM x; - SCM y; -#endif -{ -#ifdef SCM_FLOATS - double d, r, i, a; - if SCM_NINUMP(x) { -# ifndef RECKLESS - if (!(SCM_NIMP(x))) - badx: scm_wta(x, (char *)SCM_ARG1, s_divide); -# endif - if SCM_UNBNDP(y) { -# ifdef SCM_BIGDIG - if SCM_BIGP(x) return scm_makdbl(1.0/scm_big2dbl(x), 0.0); -# endif - SCM_ASRTGO(SCM_INEXP(x), badx); - if SCM_REALP(x) return scm_makdbl(1.0/SCM_REALPART(x), 0.0); - r = SCM_REAL(x); i = SCM_IMAG(x); d = r*r+i*i; - return scm_makdbl(r/d, -i/d); - } -# ifdef SCM_BIGDIG - if SCM_BIGP(x) { - SCM z; - if SCM_INUMP(y) { - z = SCM_INUM(y); -#ifndef RECKLESS - if (!z) - SCM_NUM_OVERFLOW (s_divide); -#endif - if (1==z) return x; - if (z < 0) z = -z; - if (z < SCM_BIGRAD) { - SCM w = scm_copybig(x, SCM_BIGSIGN(x) ? (y>0) : (y<0)); - return scm_divbigdig(SCM_BDIGITS(w), SCM_NUMDIGS(w), (SCM_BIGDIG)z) ? - scm_makdbl(scm_big2dbl(x)/SCM_INUM(y), 0.0) : scm_normbig(w); - } -# ifndef SCM_DIGSTOOBIG - z = scm_pseudolong(z); - z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), (SCM_BIGDIG *)&z, SCM_DIGSPERLONG, - SCM_BIGSIGN(x) ? (y>0) : (y<0), 3); -# else - { SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; - scm_longdigs(z, zdigs); - z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), zdigs, SCM_DIGSPERLONG, - SCM_BIGSIGN(x) ? (y>0) : (y<0), 3);} -# endif - return z ? z : scm_makdbl(scm_big2dbl(x)/SCM_INUM(y), 0.0); - } - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) { - z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y), - SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y), 3); - return z ? z : scm_makdbl(scm_big2dbl(x)/scm_big2dbl(y), 0.0); - } - SCM_ASRTGO(SCM_INEXP(y), bady); - if SCM_REALP(y) return scm_makdbl(scm_big2dbl(x)/SCM_REALPART(y), 0.0); - a = scm_big2dbl(x); - goto complex_div; - } -# endif - SCM_ASRTGO(SCM_INEXP(x), badx); - if SCM_INUMP(y) {d = SCM_INUM(y); goto basic_div;} -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) {d = scm_big2dbl(y); goto basic_div;} - SCM_ASRTGO(SCM_INEXP(y), bady); -# else - SCM_ASRTGO(SCM_NIMP(y) && SCM_INEXP(y), bady); -# endif - if SCM_REALP(y) { - d = SCM_REALPART(y); - basic_div: return scm_makdbl(SCM_REALPART(x)/d, SCM_CPLXP(x)?SCM_IMAG(x)/d:0.0); - } - a = SCM_REALPART(x); - if SCM_REALP(x) goto complex_div; - r = SCM_REAL(y); i = SCM_IMAG(y); d = r*r+i*i; - return scm_makdbl((a*r+SCM_IMAG(x)*i)/d, (SCM_IMAG(x)*r-a*i)/d); - } - if SCM_UNBNDP(y) { - if ((SCM_MAKINUM(1L)==x) || (SCM_MAKINUM(-1L)==x)) return x; - return scm_makdbl(1.0/((double)SCM_INUM(x)), 0.0); - } - if SCM_NINUMP(y) { -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(y), bady); - if SCM_BIGP(y) return scm_makdbl(SCM_INUM(x)/scm_big2dbl(y), 0.0); -# ifndef RECKLESS - if (!(SCM_INEXP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_divide); -# endif -# else -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_INEXP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_divide); -# endif -# endif - if (SCM_REALP(y)) - return scm_makdbl(SCM_INUM(x)/SCM_REALPART(y), 0.0); - a = SCM_INUM(x); - complex_div: - r = SCM_REAL(y); i = SCM_IMAG(y); d = r*r+i*i; - return scm_makdbl((a*r)/d, (-a*i)/d); - } -#else -# ifdef SCM_BIGDIG - if SCM_NINUMP(x) { - SCM z; - SCM_ASSERT(SCM_NIMP(x) && SCM_BIGP(x), x, SCM_ARG1, s_divide); - if SCM_UNBNDP(y) goto ov; - if SCM_INUMP(y) { - z = SCM_INUM(y); - if (!z) goto ov; - if (1==z) return x; - if (z < 0) z = -z; - if (z < SCM_BIGRAD) { - SCM w = scm_copybig(x, SCM_BIGSIGN(x) ? (y>0) : (y<0)); - if (scm_divbigdig(SCM_BDIGITS(w), SCM_NUMDIGS(w), (SCM_BIGDIG)z)) goto ov; - return w; - } -# ifndef SCM_DIGSTOOBIG - z = scm_pseudolong(z); - z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), &z, SCM_DIGSPERLONG, - SCM_BIGSIGN(x) ? (y>0) : (y<0), 3); -# else - { SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; - scm_longdigs(z, zdigs); - z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), zdigs, SCM_DIGSPERLONG, - SCM_BIGSIGN(x) ? (y>0) : (y<0), 3);} -# endif - } else { - SCM_ASRTGO(SCM_NIMP(y) && SCM_BIGP(y), bady); - z = scm_divbigbig(SCM_BDIGITS(x), SCM_NUMDIGS(x), SCM_BDIGITS(y), SCM_NUMDIGS(y), - SCM_BIGSIGN(x) ^ SCM_BIGSIGN(y), 3); - } - if (!z) goto ov; - return z; - } - if SCM_UNBNDP(y) { - if ((SCM_MAKINUM(1L)==x) || (SCM_MAKINUM(-1L)==x)) return x; - goto ov; - } - if SCM_NINUMP(y) { -# ifndef RECKLESS - if (!(SCM_NIMP(y) && SCM_BIGP(y))) - bady: scm_wta(y, (char *)SCM_ARG2, s_divide); -# endif - goto ov; - } -# else - SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_divide); - if SCM_UNBNDP(y) { - if ((SCM_MAKINUM(1L)==x) || (SCM_MAKINUM(-1L)==x)) return x; - goto ov; - } - SCM_ASSERT(SCM_INUMP(y), y, SCM_ARG2, s_divide); -# endif -#endif - { - long z = SCM_INUM(y); - if ((0==z) || SCM_INUM(x)%z) goto ov; - z = SCM_INUM(x)/z; - if SCM_FIXABLE(z) return SCM_MAKINUM(z); -#ifdef SCM_BIGDIG - return scm_long2big(z); -#endif -#ifdef SCM_FLOATS - ov: return scm_makdbl(((double)SCM_INUM(x))/((double)SCM_INUM(y)), 0.0); -#else - ov: SCM_NUM_OVERFLOW (s_divide); - return SCM_UNSPECIFIED; -#endif - } -} - - - - -#ifdef SCM_FLOATS -SCM_PROC1 (s_asinh, "$asinh", scm_tc7_cxr, (SCM (*)()) scm_asinh); -#ifdef __STDC__ -double -scm_asinh(double x) -#else -double -scm_asinh(x) - double x; -#endif -{ - return log(x+sqrt(x*x+1)); -} - - - - -SCM_PROC1 (s_acosh, "$acosh", scm_tc7_cxr, (SCM (*)()) scm_acosh); -#ifdef __STDC__ -double -scm_acosh(double x) -#else -double -scm_acosh(x) - double x; -#endif -{ - return log(x+sqrt(x*x-1)); -} - - - - -SCM_PROC1 (s_atanh, "$atanh", scm_tc7_cxr, (SCM (*)()) scm_atanh); -#ifdef __STDC__ -double -scm_atanh(double x) -#else -double -scm_atanh(x) - double x; -#endif -{ - return 0.5*log((1+x)/(1-x)); -} - - - - -SCM_PROC1 (s_truncate, "truncate", scm_tc7_cxr, (SCM (*)()) scm_truncate); -#ifdef __STDC__ -double -scm_truncate(double x) -#else -double -scm_truncate(x) - double x; -#endif -{ - if (x < 0.0) return -floor(-x); - return floor(x); -} - - - -SCM_PROC1 (s_round, "round", scm_tc7_cxr, (SCM (*)()) scm_round); -#ifdef __STDC__ -double -scm_round(double x) -#else -double -scm_round(x) - double x; -#endif -{ - double plus_half = x + 0.5; - double result = floor(plus_half); - /* Adjust so that the scm_round is towards even. */ - return (plus_half == result && plus_half / 2 != floor(plus_half / 2)) - ? result - 1 : result; -} - - - -SCM_PROC1 (s_exact_to_inexact, "exact->inexact", scm_tc7_cxr, (SCM (*)()) scm_exact_to_inexact); -#ifdef __STDC__ -double -scm_exact_to_inexact(double z) -#else -double -scm_exact_to_inexact(z) - double z; -#endif -{ - return z; -} - - -SCM_PROC1 (s_i_floor, "floor", scm_tc7_cxr, (SCM (*)()) floor); -SCM_PROC1 (s_i_ceil, "ceiling", scm_tc7_cxr, (SCM (*)()) ceil); -SCM_PROC1 (s_i_sqrt, "$sqrt", scm_tc7_cxr, (SCM (*)())sqrt); -SCM_PROC1 (s_i_abs, "$abs", scm_tc7_cxr, (SCM (*)())fabs); -SCM_PROC1 (s_i_exp, "$exp", scm_tc7_cxr, (SCM (*)())exp); -SCM_PROC1 (s_i_log, "$log", scm_tc7_cxr, (SCM (*)())log); -SCM_PROC1 (s_i_sin, "$sin", scm_tc7_cxr, (SCM (*)())sin); -SCM_PROC1 (s_i_cos, "$cos", scm_tc7_cxr, (SCM (*)())cos); -SCM_PROC1 (s_i_tan, "$tan", scm_tc7_cxr, (SCM (*)())tan); -SCM_PROC1 (s_i_asin, "$asin", scm_tc7_cxr, (SCM (*)())asin); -SCM_PROC1 (s_i_acos, "$acos", scm_tc7_cxr, (SCM (*)())acos); -SCM_PROC1 (s_i_atan, "$atan", scm_tc7_cxr, (SCM (*)())atan); -SCM_PROC1 (s_i_sinh, "$sinh", scm_tc7_cxr, (SCM (*)())sinh); -SCM_PROC1 (s_i_cosh, "$cosh", scm_tc7_cxr, (SCM (*)())cosh); -SCM_PROC1 (s_i_tanh, "$tanh", scm_tc7_cxr, (SCM (*)())tanh); - -struct dpair {double x, y;}; - -static void -scm_two_doubles(z1, z2, sstring, xy) - SCM z1, z2; - char *sstring; - struct dpair *xy; -{ - if SCM_INUMP(z1) xy->x = SCM_INUM(z1); - else { -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(z1), badz1); - if SCM_BIGP(z1) xy->x = scm_big2dbl(z1); - else { -# ifndef RECKLESS - if (!(SCM_REALP(z1))) - badz1: scm_wta(z1, (char *)SCM_ARG1, sstring); -# endif - xy->x = SCM_REALPART(z1);} -# else - {SCM_ASSERT(SCM_NIMP(z1) && SCM_REALP(z1), z1, SCM_ARG1, sstring); - xy->x = SCM_REALPART(z1);} -# endif - } - if SCM_INUMP(z2) xy->y = SCM_INUM(z2); - else { -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(z2), badz2); - if SCM_BIGP(z2) xy->y = scm_big2dbl(z2); - else { -# ifndef RECKLESS - if (!(SCM_REALP(z2))) - badz2: scm_wta(z2, (char *)SCM_ARG2, sstring); -# endif - xy->y = SCM_REALPART(z2);} -# else - {SCM_ASSERT(SCM_NIMP(z2) && SCM_REALP(z2), z2, SCM_ARG2, sstring); - xy->y = SCM_REALPART(z2);} -# endif - } -} - - - - -SCM_PROC(s_sys_expt, "$expt", 2, 0, 0, scm_sys_expt); -#ifdef __STDC__ -SCM -scm_sys_expt(SCM z1, SCM z2) -#else -SCM -scm_sys_expt(z1, z2) - SCM z1; - SCM z2; -#endif -{ - struct dpair xy; - scm_two_doubles(z1, z2, s_sys_expt, &xy); - return scm_makdbl(pow(xy.x, xy.y), 0.0); -} - - - -SCM_PROC(s_sys_atan2, "$atan2", 2, 0, 0, scm_sys_atan2); -#ifdef __STDC__ -SCM -scm_sys_atan2(SCM z1, SCM z2) -#else -SCM -scm_sys_atan2(z1, z2) - SCM z1; - SCM z2; -#endif -{ - struct dpair xy; - scm_two_doubles(z1, z2, s_sys_atan2, &xy); - return scm_makdbl(atan2(xy.x, xy.y), 0.0); -} - - - -SCM_PROC(s_make_rectangular, "make-rectangular", 2, 0, 0, scm_make_rectangular); -#ifdef __STDC__ -SCM -scm_make_rectangular(SCM z1, SCM z2) -#else -SCM -scm_make_rectangular(z1, z2) - SCM z1; - SCM z2; -#endif -{ - struct dpair xy; - scm_two_doubles(z1, z2, s_make_rectangular, &xy); - return scm_makdbl(xy.x, xy.y); -} - - - -SCM_PROC(s_make_polar, "make-polar", 2, 0, 0, scm_make_polar); -#ifdef __STDC__ -SCM -scm_make_polar(SCM z1, SCM z2) -#else -SCM -scm_make_polar(z1, z2) - SCM z1; - SCM z2; -#endif -{ - struct dpair xy; - scm_two_doubles(z1, z2, s_make_polar, &xy); - return scm_makdbl(xy.x*cos(xy.y), xy.x*sin(xy.y)); -} - - - - -SCM_PROC(s_real_part, "real-part", 1, 0, 0, scm_real_part); -#ifdef __STDC__ -SCM -scm_real_part(SCM z) -#else -SCM -scm_real_part(z) - SCM z; -#endif -{ - if SCM_NINUMP(z) { -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(z), badz); - if SCM_BIGP(z) return z; -# ifndef RECKLESS - if (!(SCM_INEXP(z))) - badz: scm_wta(z, (char *)SCM_ARG1, s_real_part); -# endif -# else - SCM_ASSERT(SCM_NIMP(z) && SCM_INEXP(z), z, SCM_ARG1, s_real_part); -# endif - if SCM_CPLXP(z) return scm_makdbl(SCM_REAL(z), 0.0); - } - return z; -} - - - -SCM_PROC(s_imag_part, "imag-part", 1, 0, 0, scm_imag_part); -#ifdef __STDC__ -SCM -scm_imag_part(SCM z) -#else -SCM -scm_imag_part(z) - SCM z; -#endif -{ - if SCM_INUMP(z) return SCM_INUM0; -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(z), badz); - if SCM_BIGP(z) return SCM_INUM0; -# ifndef RECKLESS - if (!(SCM_INEXP(z))) - badz: scm_wta(z, (char *)SCM_ARG1, s_imag_part); -# endif -# else - SCM_ASSERT(SCM_NIMP(z) && SCM_INEXP(z), z, SCM_ARG1, s_imag_part); -# endif - if SCM_CPLXP(z) return scm_makdbl(SCM_IMAG(z), 0.0); - return scm_flo0; -} - - - -SCM_PROC(s_magnitude, "magnitude", 1, 0, 0, scm_magnitude); -#ifdef __STDC__ -SCM -scm_magnitude(SCM z) -#else -SCM -scm_magnitude(z) - SCM z; -#endif -{ - if SCM_INUMP(z) return scm_abs(z); -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(z), badz); - if SCM_BIGP(z) return scm_abs(z); -# ifndef RECKLESS - if (!(SCM_INEXP(z))) - badz: scm_wta(z, (char *)SCM_ARG1, s_magnitude); -# endif -# else - SCM_ASSERT(SCM_NIMP(z) && SCM_INEXP(z), z, SCM_ARG1, s_magnitude); -# endif - if SCM_CPLXP(z) - { - double i = SCM_IMAG(z), r = SCM_REAL(z); - return scm_makdbl(sqrt(i*i+r*r), 0.0); - } - return scm_makdbl(fabs(SCM_REALPART(z)), 0.0); -} - - - - -SCM_PROC(s_angle, "angle", 1, 0, 0, scm_angle); -#ifdef __STDC__ -SCM -scm_angle(SCM z) -#else -SCM -scm_angle(z) - SCM z; -#endif -{ - double x, y = 0.0; - if SCM_INUMP(z) {x = (z>=SCM_INUM0) ? 1.0 : -1.0; goto do_angle;} -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(z), badz); - if SCM_BIGP(z) {x = (SCM_TYP16(z)==scm_tc16_bigpos) ? 1.0 : -1.0; goto do_angle;} -# ifndef RECKLESS - if (!(SCM_INEXP(z))) { - badz: scm_wta(z, (char *)SCM_ARG1, s_angle);} -# endif -# else - SCM_ASSERT(SCM_NIMP(z) && SCM_INEXP(z), z, SCM_ARG1, s_angle); -# endif - if (SCM_REALP(z)) - { - x = SCM_REALPART(z); - goto do_angle; - } - x = SCM_REAL(z); y = SCM_IMAG(z); - do_angle: - return scm_makdbl(atan2(y, x), 0.0); -} - - -SCM_PROC(s_inexact_to_exact, "inexact->exact", 1, 0, 0, scm_inexact_to_exact); -#ifdef __STDC__ -SCM -scm_inexact_to_exact(SCM z) -#else -SCM -scm_inexact_to_exact(z) - SCM z; -#endif -{ - if SCM_INUMP(z) return z; -# ifdef SCM_BIGDIG - SCM_ASRTGO(SCM_NIMP(z), badz); - if SCM_BIGP(z) return z; -# ifndef RECKLESS - if (!(SCM_REALP(z))) - badz: scm_wta(z, (char *)SCM_ARG1, s_inexact_to_exact); -# endif -# else - SCM_ASSERT(SCM_NIMP(z) && SCM_REALP(z), z, SCM_ARG1, s_inexact_to_exact); -# endif -# ifdef SCM_BIGDIG - { - double u = floor(SCM_REALPART(z)+0.5); - if ((u <= SCM_MOST_POSITIVE_FIXNUM) && (-u <= -SCM_MOST_NEGATIVE_FIXNUM)) { - /* Negation is a workaround for HP700 cc bug */ - SCM ans = SCM_MAKINUM((long)u); - if (SCM_INUM(ans)==(long)u) return ans; - } - SCM_ASRTGO(!IS_INF(u), badz); /* problem? */ - return scm_dbl2big(u); - } -# else - return SCM_MAKINUM((long)floor(SCM_REALPART(z)+0.5)); -# endif -} - - - -#else /* ~SCM_FLOATS */ -SCM_PROC(s_trunc, "truncate", 1, 0, 0, scm_trunc); -#ifdef __STDC__ -SCM -scm_trunc(SCM x) -#else -SCM -scm_trunc(x) - SCM x; -#endif -{ - SCM_ASSERT(SCM_INUMP(x), x, SCM_ARG1, s_truncate); - return x; -} - - - -#endif /* SCM_FLOATS */ - -#ifdef SCM_BIGDIG -# ifdef SCM_FLOATS -/* d must be integer */ -#ifdef __STDC__ -SCM -scm_dbl2big(double d) -#else -SCM -scm_dbl2big(d) - double d; -#endif -{ - scm_sizet i = 0; - long c; - SCM_BIGDIG *digits; - SCM ans; - double u = (d < 0)?-d:d; - while (0 != floor(u)) {u /= SCM_BIGRAD;i++;} - ans = scm_mkbig(i, d < 0); - digits = SCM_BDIGITS(ans); - while (i--) { - u *= SCM_BIGRAD; - c = floor(u); - u -= c; - digits[i] = c; - } -#ifndef RECKLESS - if (u != 0) - SCM_NUM_OVERFLOW ("dbl2big"); -#endif - return ans; -} - - - -#ifdef __STDC__ -double -scm_big2dbl(SCM b) -#else -double -scm_big2dbl(b) - SCM b; -#endif -{ - double ans = 0.0; - scm_sizet i = SCM_NUMDIGS(b); - SCM_BIGDIG *digits = SCM_BDIGITS(b); - while (i--) ans = digits[i] + SCM_BIGRAD*ans; - if (scm_tc16_bigneg==SCM_TYP16(b)) return -ans; - return ans; -} -# endif -#endif - -#ifdef __STDC__ -SCM -scm_long2num(long sl) -#else -SCM -scm_long2num(sl) - long sl; -#endif -{ - if (!SCM_FIXABLE(sl)) { -#ifdef SCM_BIGDIG - return scm_long2big(sl); -#else -# ifdef SCM_FLOATS - return scm_makdbl((double) sl, 0.0); -# else - return SCM_BOOL_F; -# endif -#endif - } - return SCM_MAKINUM(sl); -} - - -#ifdef LONGLONGS -#ifdef __STDC__ -SCM -scm_long_long2num(long_long sl) -#else -SCM -scm_long_long2num(sl) - long_long sl; -#endif -{ - if (!SCM_FIXABLE(sl)) { -#ifdef SCM_BIGDIG - return scm_long_long2big(sl); -#else -# ifdef SCM_FLOATS - return scm_makdbl((double) sl, 0.0); -# else - return SCM_BOOL_F; -# endif -#endif - } - return SCM_MAKINUM(sl); -} -#endif - - -#ifdef __STDC__ -SCM -scm_ulong2num(unsigned long sl) -#else -SCM -scm_ulong2num(sl) - unsigned long sl; -#endif -{ - if (!SCM_POSFIXABLE(sl)) { -#ifdef SCM_BIGDIG - return scm_ulong2big(sl); -#else -# ifdef SCM_FLOATS - return scm_makdbl((double) sl, 0.0); -# else - return SCM_BOOL_F; -# endif -#endif - } - return SCM_MAKINUM(sl); -} - -#ifdef __STDC__ -long -scm_num2long(SCM num, char *pos, char *s_caller) -#else -long -scm_num2long(num, pos, s_caller) - SCM num; - char *pos; - char *s_caller; -#endif -{ - long res; - if (SCM_INUMP(num)) - { - res = SCM_INUM(num); - return res; - } - SCM_ASRTGO(SCM_NIMP(num), errout); -#ifdef SCM_FLOATS - if (SCM_REALP(num)) - { - double u = SCM_REALPART(num); - res = u; - if ((double)res == u) - { - return res; - } - } -#endif -#ifdef SCM_BIGDIG - if (SCM_BIGP(num)) { - long oldres; - scm_sizet l; - res = 0; - oldres = 0; - for(l = SCM_NUMDIGS(num);l--;) - { - res = SCM_BIGUP(res) + SCM_BDIGITS(num)[l]; - if (res < oldres) - goto errout; - oldres = res; - } - if (SCM_TYP16 (num) == scm_tc16_bigpos) - return res; - else - return -res; - } -#endif - errout: scm_wta(num, pos, s_caller); - return SCM_UNSPECIFIED; -} - - - - -#ifdef __STDC__ -long -num2long(SCM num, char *pos, char *s_caller) -#else -long -num2long(num, pos, s_caller) - SCM num; - char *pos; - char *s_caller; -#endif -{ - long res; - if SCM_INUMP(num) { - res = SCM_INUM((long)num); - return res; - } - SCM_ASRTGO(SCM_NIMP(num), errout); -#ifdef SCM_FLOATS - if SCM_REALP(num) { - double u = SCM_REALPART(num); - if (((SCM_MOST_NEGATIVE_FIXNUM * 4) <= u) - && (u <= (SCM_MOST_POSITIVE_FIXNUM * 4 + 3))) { - res = u; - return res; - } - } -#endif -#ifdef SCM_BIGDIG - if SCM_BIGP(num) { - scm_sizet l = SCM_NUMDIGS(num); - SCM_ASRTGO(SCM_DIGSPERLONG >= l, errout); - res = 0; - for(;l--;) res = SCM_BIGUP(res) + SCM_BDIGITS(num)[l]; - return res; - } -#endif - errout: scm_wta(num, pos, s_caller); - return SCM_UNSPECIFIED; -} - - -#ifdef LONGLONGS -#ifdef __STDC__ -long_long -scm_num2long_long(SCM num, char *pos, char *s_caller) -#else -long_long -scm_num2long_long(num, pos, s_caller) - SCM num; - char *pos; - char *s_caller; -#endif -{ - long_long res; - if SCM_INUMP(num) { - res = SCM_INUM((long_long)num); - return res; - } - SCM_ASRTGO(SCM_NIMP(num), errout); -#ifdef SCM_FLOATS - if SCM_REALP(num) { - double u = SCM_REALPART(num); - if (((SCM_MOST_NEGATIVE_FIXNUM * 4) <= u) - && (u <= (SCM_MOST_POSITIVE_FIXNUM * 4 + 3))) { - res = u; - return res; - } - } -#endif -#ifdef SCM_BIGDIG - if SCM_BIGP(num) { - scm_sizet l = SCM_NUMDIGS(num); - SCM_ASRTGO(SCM_DIGSPERLONGLONG >= l, errout); - res = 0; - for(;l--;) res = SCM_LONGLONGBIGUP(res) + SCM_BDIGITS(num)[l]; - return res; - } -#endif - errout: scm_wta(num, pos, s_caller); - return SCM_UNSPECIFIED; -} -#endif - - -#ifdef __STDC__ -unsigned long -scm_num2ulong(SCM num, char *pos, char *s_caller) -#else -unsigned long -scm_num2ulong(num, pos, s_caller) - SCM num; - char *pos; - char *s_caller; -#endif -{ - unsigned long res; - if (SCM_INUMP(num)) - { - res = SCM_INUM((unsigned long)num); - return res; - } - SCM_ASRTGO(SCM_NIMP(num), errout); -#ifdef SCM_FLOATS - if (SCM_REALP(num)) - { - double u = SCM_REALPART(num); - if ((0 <= u) && (u <= (unsigned long)~0L)) - { - res = u; - return res; - } - } -#endif -#ifdef SCM_BIGDIG - if (SCM_BIGP(num)) { - unsigned long oldres; - scm_sizet l; - res = 0; - oldres = 0; - for(l = SCM_NUMDIGS(num);l--;) - { - res = SCM_BIGUP(res) + SCM_BDIGITS(num)[l]; - if (res < oldres) - goto errout; - oldres = res; - } - return res; - } -#endif - errout: scm_wta(num, pos, s_caller); - return SCM_UNSPECIFIED; -} - - -#ifdef SCM_FLOATS -# ifndef DBL_DIG -static void add1(f, fsum) - double f, *fsum; -{ - *fsum = f + 1.0; -} -# endif -#endif - - -#ifdef __STDC__ -void -scm_init_numbers (void) -#else -void -scm_init_numbers () -#endif -{ -#ifdef SCM_FLOATS - SCM_NEWCELL(scm_flo0); -# ifdef SCM_SINGLES - SCM_CAR(scm_flo0) = scm_tc_flo; - SCM_FLO(scm_flo0) = 0.0; -# else - SCM_CDR(scm_flo0) = (SCM)scm_must_malloc(1L*sizeof(double), "real"); - SCM_REAL(scm_flo0) = 0.0; - SCM_CAR(scm_flo0) = scm_tc_dblr; -# endif -# ifdef DBL_DIG - scm_dblprec = (DBL_DIG > 20) ? 20 : DBL_DIG; -# else - { /* determine floating point precision */ - double f = 0.1; - double fsum = 1.0+f; - while (fsum != 1.0) { - f /= 10.0; - if (++scm_dblprec > 20) break; - add1(f, &fsum); - } - scm_dblprec = scm_dblprec-1; - } -# endif /* DBL_DIG */ -#endif -#include "numbers.x" -} - +/* Copyright (C) 1995,1996,1997,1998,1999,2000 Free Software Foundation, Inc. + * + * This program is free software; you can redistribute it and/or modify + * it under the terms of the GNU General Public License as published by + * the Free Software Foundation; either version 2, or (at your option) + * any later version. + * + * This program is distributed in the hope that it will be useful, + * but WITHOUT ANY WARRANTY; without even the implied warranty of + * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the + * GNU General Public License for more details. + * + * You should have received a copy of the GNU General Public License + * along with this software; see the file COPYING. If not, write to + * the Free Software Foundation, Inc., 59 Temple Place, Suite 330, + * Boston, MA 02111-1307 USA + * + * As a special exception, the Free Software Foundation gives permission + * for additional uses of the text contained in its release of GUILE. + * + * The exception is that, if you link the GUILE library with other files + * to produce an executable, this does not by itself cause the + * resulting executable to be covered by the GNU General Public License. + * Your use of that executable is in no way restricted on account of + * linking the GUILE library code into it. + * + * This exception does not however invalidate any other reasons why + * the executable file might be covered by the GNU General Public License. + * + * This exception applies only to the code released by the + * Free Software Foundation under the name GUILE. If you copy + * code from other Free Software Foundation releases into a copy of + * GUILE, as the General Public License permits, the exception does + * not apply to the code that you add in this way. To avoid misleading + * anyone as to the status of such modified files, you must delete + * this exception notice from them. + * + * If you write modifications of your own for GUILE, it is your choice + * whether to permit this exception to apply to your modifications. + * If you do not wish that, delete this exception notice. */ + +/* Software engineering face-lift by Greg J. Badros, 11-Dec-1999, + gjb@cs.washington.edu, http://www.cs.washington.edu/homes/gjb */ + + + +#include +#include +#include "libguile/_scm.h" +#include "libguile/feature.h" +#include "libguile/ports.h" +#include "libguile/root.h" +#include "libguile/smob.h" +#include "libguile/strings.h" +#include "libguile/vectors.h" + +#include "libguile/validate.h" +#include "libguile/numbers.h" + + + +static SCM scm_divbigbig (SCM_BIGDIG *x, scm_sizet nx, SCM_BIGDIG *y, scm_sizet ny, int sgn, int modes); +static SCM scm_divbigint (SCM x, long z, int sgn, int mode); + + +#define DIGITS '0':case '1':case '2':case '3':case '4':\ + case '5':case '6':case '7':case '8':case '9' + + +#define SCM_SWAP(x,y) do { SCM __t = x; x = y; y = __t; } while (0) + + +#if (SCM_DEBUG_DEPRECATED == 1) /* not defined in header yet? */ + +/* SCM_FLOBUFLEN is the maximum number of characters neccessary for the + * printed or scm_string representation of an inexact number. + */ +#define SCM_FLOBUFLEN (10+2*(sizeof(double)/sizeof(char)*SCM_CHAR_BIT*3+9)/10) + +#endif /* SCM_DEBUG_DEPRECATED == 1 */ + + +/* IS_INF tests its floating point number for infiniteness + Dirk:FIXME:: This test does not work if x == 0 + */ +#ifndef IS_INF +#define IS_INF(x) ((x) == (x) / 2) +#endif + + +/* Return true if X is not infinite and is not a NaN + Dirk:FIXME:: Since IS_INF is broken, this test does not work if x == 0 + */ +#ifndef isfinite +#define isfinite(x) (!IS_INF (x) && (x) == (x)) +#endif + + + + +SCM_DEFINE (scm_exact_p, "exact?", 1, 0, 0, + (SCM x), + "Return #t if X is an exact number, #f otherwise.") +#define FUNC_NAME s_scm_exact_p +{ + if (SCM_INUMP (x)) { + return SCM_BOOL_T; + } else if (SCM_BIGP (x)) { + return SCM_BOOL_T; + } else { + return SCM_BOOL_F; + } +} +#undef FUNC_NAME + + +SCM_DEFINE (scm_odd_p, "odd?", 1, 0, 0, + (SCM n), + "Return #t if N is an odd number, #f otherwise.") +#define FUNC_NAME s_scm_odd_p +{ + if (SCM_INUMP (n)) { + return SCM_BOOL ((4 & SCM_UNPACK (n)) != 0); + } else if (SCM_BIGP (n)) { + return SCM_BOOL ((1 & SCM_BDIGITS (n) [0]) != 0); + } else { + SCM_WRONG_TYPE_ARG (1, n); + } +} +#undef FUNC_NAME + + +SCM_DEFINE (scm_even_p, "even?", 1, 0, 0, + (SCM n), + "Return #t if N is an even number, #f otherwise.") +#define FUNC_NAME s_scm_even_p +{ + if (SCM_INUMP (n)) { + return SCM_BOOL ((4 & SCM_UNPACK (n)) == 0); + } else if (SCM_BIGP (n)) { + return SCM_BOOL ((1 & SCM_BDIGITS (n) [0]) == 0); + } else { + SCM_WRONG_TYPE_ARG (1, n); + } +} +#undef FUNC_NAME + + +SCM_GPROC (s_abs, "abs", 1, 0, 0, scm_abs, g_abs); + +SCM +scm_abs (SCM x) +{ + if (SCM_INUMP (x)) { + long int xx = SCM_INUM (x); + if (xx >= 0) { + return x; + } else if (SCM_POSFIXABLE (-xx)) { + return SCM_MAKINUM (-xx); + } else { +#ifdef SCM_BIGDIG + return scm_long2big (-xx); +#else + scm_num_overflow (s_abs); +#endif + } + } else if (SCM_BIGP (x)) { + if (!SCM_BIGSIGN (x)) { + return x; + } else { + return scm_copybig (x, 0); + } + } else if (SCM_REALP (x)) { + return scm_make_real (fabs (SCM_REAL_VALUE (x))); + } else { + SCM_WTA_DISPATCH_1 (g_abs, x, 1, s_abs); + } +} + + +SCM_GPROC (s_quotient, "quotient", 2, 0, 0, scm_quotient, g_quotient); + +SCM +scm_quotient (SCM x, SCM y) +{ + if (SCM_INUMP (x)) { + long xx = SCM_INUM (x); + if (SCM_INUMP (y)) { + long yy = SCM_INUM (y); + if (yy == 0) { + scm_num_overflow (s_quotient); + } else { + long z = xx / yy; + if (SCM_FIXABLE (z)) { + return SCM_MAKINUM (z); + } else { +#ifdef SCM_BIGDIG + return scm_long2big (z); +#else + scm_num_overflow (s_quotient); +#endif + } + } + } else if (SCM_BIGP (y)) { + return SCM_INUM0; + } else { + SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient); + } + } else if (SCM_BIGP (x)) { + if (SCM_INUMP (y)) { + long yy = SCM_INUM (y); + if (yy == 0) { + scm_num_overflow (s_quotient); + } else if (yy == 1) { + return x; + } else { + long z = yy < 0 ? -yy : yy; + + if (z < SCM_BIGRAD) { + SCM sw = scm_copybig (x, SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0)); + scm_divbigdig (SCM_BDIGITS (sw), SCM_NUMDIGS (sw), (SCM_BIGDIG) z); + return scm_normbig (sw); + } else { +#ifndef SCM_DIGSTOOBIG + long w = scm_pseudolong (z); + return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), + (SCM_BIGDIG *) & w, SCM_DIGSPERLONG, + SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0), 2); +#else + SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; + scm_longdigs (z, zdigs); + return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), + zdigs, SCM_DIGSPERLONG, + SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0), 2); +#endif + } + } + } else if (SCM_BIGP (y)) { + return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), + SCM_BDIGITS (y), SCM_NUMDIGS (y), + SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y), 2); + } else { + SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG2, s_quotient); + } + } else { + SCM_WTA_DISPATCH_2 (g_quotient, x, y, SCM_ARG1, s_quotient); + } +} + + +SCM_GPROC (s_remainder, "remainder", 2, 0, 0, scm_remainder, g_remainder); + +SCM +scm_remainder (SCM x, SCM y) +{ + if (SCM_INUMP (x)) { + if (SCM_INUMP (y)) { + long yy = SCM_INUM (y); + if (yy == 0) { + scm_num_overflow (s_remainder); + } else { + long z = SCM_INUM (x) % yy; + return SCM_MAKINUM (z); + } + } else if (SCM_BIGP (y)) { + return x; + } else { + SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder); + } + } else if (SCM_BIGP (x)) { + if (SCM_INUMP (y)) { + long yy = SCM_INUM (y); + if (yy == 0) { + scm_num_overflow (s_remainder); + } else { + return scm_divbigint (x, yy, SCM_BIGSIGN (x), 0); + } + } else if (SCM_BIGP (y)) { + return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), + SCM_BDIGITS (y), SCM_NUMDIGS (y), + SCM_BIGSIGN (x), 0); + } else { + SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG2, s_remainder); + } + } else { + SCM_WTA_DISPATCH_2 (g_remainder, x, y, SCM_ARG1, s_remainder); + } +} + + +SCM_GPROC (s_modulo, "modulo", 2, 0, 0, scm_modulo, g_modulo); + +SCM +scm_modulo (SCM x, SCM y) +{ + if (SCM_INUMP (x)) { + long xx = SCM_INUM (x); + if (SCM_INUMP (y)) { + long yy = SCM_INUM (y); + if (yy == 0) { + scm_num_overflow (s_modulo); + } else { + long z = xx % yy; + return SCM_MAKINUM (((yy < 0) ? (z > 0) : (z < 0)) ? z + yy : z); + } + } else if (SCM_BIGP (y)) { + return (SCM_BIGSIGN (y) ? (xx > 0) : (xx < 0)) ? scm_sum (x, y) : x; + } else { + SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo); + } + } else if (SCM_BIGP (x)) { + if (SCM_INUMP (y)) { + long yy = SCM_INUM (y); + if (yy == 0) { + scm_num_overflow (s_modulo); + } else { + return scm_divbigint (x, yy, yy < 0, + (SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0)) ? 1 : 0); + } + } else if (SCM_BIGP (y)) { + return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), + SCM_BDIGITS (y), SCM_NUMDIGS (y), + SCM_BIGSIGN (y), + (SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y)) ? 1 : 0); + } else { + SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG2, s_modulo); + } + } else { + SCM_WTA_DISPATCH_2 (g_modulo, x, y, SCM_ARG1, s_modulo); + } +} + + +SCM_GPROC1 (s_gcd, "gcd", scm_tc7_asubr, scm_gcd, g_gcd); + +SCM +scm_gcd (SCM x, SCM y) +{ + if (SCM_UNBNDP (y)) { + if (SCM_UNBNDP (x)) { + return SCM_INUM0; + } else { + return x; + } + } + + tailrec: + if (SCM_INUMP (x)) { + if (SCM_INUMP (y)) { + long xx = SCM_INUM (x); + long yy = SCM_INUM (y); + long u = xx < 0 ? -xx : xx; + long v = yy < 0 ? -yy : yy; + long result; + + if (xx == 0) { + result = v; + } else if (yy == 0) { + result = u; + } else { + int k = 1; + long t; + + /* Determine a common factor 2^k */ + while (!(1 & (u | v))) { + k <<= 1; + u >>= 1; + v >>= 1; + } + + /* Now, any factor 2^n can be eliminated */ + if (u & 1) { + t = -v; + } else { + t = u; + b3: + t = SCM_SRS (t, 1); + } + if (!(1 & t)) + goto b3; + if (t > 0) + u = t; + else + v = -t; + t = u - v; + if (t != 0) + goto b3; + + result = u * k; + } + if (SCM_POSFIXABLE (result)) { + return SCM_MAKINUM (result); + } else { +#ifdef SCM_BIGDIG + return scm_long2big (result); +#else + scm_num_overflow (s_gcd); +#endif + } + } else if (SCM_BIGP (y)) { + SCM_SWAP (x, y); + goto big_gcd; + } else { + SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd); + } + } else if (SCM_BIGP (x)) { + big_gcd: + if (SCM_BIGSIGN (x)) + x = scm_copybig (x, 0); + newy: + if (SCM_INUMP (y)) { + if (SCM_EQ_P (y, SCM_INUM0)) { + return x; + } else { + goto swaprec; + } + } else if (SCM_BIGP (y)) { + if (SCM_BIGSIGN (y)) + y = scm_copybig (y, 0); + switch (scm_bigcomp (x, y)) + { + case -1: /* x > y */ + swaprec: + { + SCM t = scm_remainder (x, y); + x = y; + y = t; + } + goto tailrec; + case 1: /* x < y */ + y = scm_remainder (y, x); + goto newy; + default: /* x == y */ + return x; + } + /* instead of the switch, we could just + return scm_gcd (y, scm_modulo (x, y)); */ + } else { + SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG2, s_gcd); + } + } else { + SCM_WTA_DISPATCH_2 (g_gcd, x, y, SCM_ARG1, s_gcd); + } +} + + +SCM_GPROC1 (s_lcm, "lcm", scm_tc7_asubr, scm_lcm, g_lcm); + +SCM +scm_lcm (SCM n1, SCM n2) +{ + if (SCM_UNBNDP (n2)) { + if (SCM_UNBNDP (n1)) { + return SCM_MAKINUM (1L); + } else { + n2 = SCM_MAKINUM (1L); + } + }; + +#ifndef SCM_BIGDIG + SCM_GASSERT2 (SCM_INUMP (n1), g_lcm, n1, n2, SCM_ARG1, s_lcm); + SCM_GASSERT2 (SCM_INUMP (n2), g_lcm, n1, n2, SCM_ARGn, s_lcm); +#else + SCM_GASSERT2 (SCM_INUMP (n1) || SCM_BIGP (n1), + g_lcm, n1, n2, SCM_ARG1, s_lcm); + SCM_GASSERT2 (SCM_INUMP (n2) || SCM_BIGP (n2), + g_lcm, n1, n2, SCM_ARGn, s_lcm); +#endif + + { + SCM d = scm_gcd (n1, n2); + if (SCM_EQ_P (d, SCM_INUM0)) { + return d; + } else { + return scm_abs (scm_product (n1, scm_quotient (n2, d))); + } + } +} + + +#ifndef scm_long2num +#define SCM_LOGOP_RETURN(x) scm_ulong2num(x) +#else +#define SCM_LOGOP_RETURN(x) SCM_MAKINUM(x) +#endif + + +/* Emulating 2's complement bignums with sign magnitude arithmetic: + + Logand: + X Y Result Method: + (len) + + + + x (map digit:logand X Y) + + - + x (map digit:logand X (lognot (+ -1 Y))) + - + + y (map digit:logand (lognot (+ -1 X)) Y) + - - - (+ 1 (map digit:logior (+ -1 X) (+ -1 Y))) + + Logior: + X Y Result Method: + + + + + (map digit:logior X Y) + + - - y (+ 1 (map digit:logand (lognot X) (+ -1 Y))) + - + - x (+ 1 (map digit:logand (+ -1 X) (lognot Y))) + - - - x (+ 1 (map digit:logand (+ -1 X) (+ -1 Y))) + + Logxor: + X Y Result Method: + + + + + (map digit:logxor X Y) + + - - (+ 1 (map digit:logxor X (+ -1 Y))) + - + - (+ 1 (map digit:logxor (+ -1 X) Y)) + - - + (map digit:logxor (+ -1 X) (+ -1 Y)) + + Logtest: + X Y Result + + + + (any digit:logand X Y) + + - (any digit:logand X (lognot (+ -1 Y))) + - + (any digit:logand (lognot (+ -1 X)) Y) + - - #t + +*/ + +#ifdef SCM_BIGDIG + +SCM scm_copy_big_dec(SCM b, int sign); +SCM scm_copy_smaller(SCM_BIGDIG *x, scm_sizet nx, int zsgn); +SCM scm_big_ior(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy); +SCM scm_big_xor(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy); +SCM scm_big_and(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy, int zsgn); +SCM scm_big_test(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy); + +SCM scm_copy_big_dec(SCM b, int sign) +{ + long num = -1; + scm_sizet nx = SCM_NUMDIGS(b); + scm_sizet i = 0; + SCM ans = scm_mkbig(nx, sign); + SCM_BIGDIG *src = SCM_BDIGITS(b), *dst = SCM_BDIGITS(ans); + if SCM_BIGSIGN(b) do { + num += src[i]; + if (num < 0) {dst[i] = num + SCM_BIGRAD; num = -1;} + else {dst[i] = SCM_BIGLO(num); num = 0;} + } while (++i < nx); + else + while (nx--) dst[nx] = src[nx]; + return ans; +} + +SCM scm_copy_smaller(SCM_BIGDIG *x, scm_sizet nx, int zsgn) +{ + long num = -1; + scm_sizet i = 0; + SCM z = scm_mkbig(nx, zsgn); + SCM_BIGDIG *zds = SCM_BDIGITS(z); + if (zsgn) do { + num += x[i]; + if (num < 0) {zds[i] = num + SCM_BIGRAD; num = -1;} + else {zds[i] = SCM_BIGLO(num); num = 0;} + } while (++i < nx); + else do zds[i] = x[i]; while (++i < nx); + return z; +} + +SCM scm_big_ior(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy) +/* Assumes nx <= SCM_NUMDIGS(bigy) */ +/* Assumes xsgn equals either 0 or SCM_BIGSIGNFLAG */ +{ + long num = -1; + scm_sizet i = 0, ny = SCM_NUMDIGS(bigy); + SCM z = scm_copy_big_dec (bigy, xsgn & SCM_BIGSIGN (bigy)); + SCM_BIGDIG *zds = SCM_BDIGITS(z); + if (xsgn) { + do { + num += x[i]; + if (num < 0) {zds[i] |= num + SCM_BIGRAD; num = -1;} + else {zds[i] |= SCM_BIGLO(num); num = 0;} + } while (++i < nx); + /* ========= Need to increment zds now =========== */ + i = 0; num = 1; + while (i < ny) { + num += zds[i]; + zds[i++] = SCM_BIGLO(num); + num = SCM_BIGDN(num); + if (!num) return z; + } + scm_adjbig(z, 1 + ny); /* OOPS, overflowed into next digit. */ + SCM_BDIGITS(z)[ny] = 1; + return z; + } + else do zds[i] = zds[i] | x[i]; while (++i < nx); + return z; +} + +SCM scm_big_xor(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy) +/* Assumes nx <= SCM_NUMDIGS(bigy) */ +/* Assumes xsgn equals either 0 or SCM_BIGSIGNFLAG */ +{ + long num = -1; + scm_sizet i = 0, ny = SCM_NUMDIGS(bigy); + SCM z = scm_copy_big_dec(bigy, xsgn ^ SCM_BIGSIGN(bigy)); + SCM_BIGDIG *zds = SCM_BDIGITS(z); + if (xsgn) do { + num += x[i]; + if (num < 0) {zds[i] ^= num + SCM_BIGRAD; num = -1;} + else {zds[i] ^= SCM_BIGLO(num); num = 0;} + } while (++i < nx); + else do { + zds[i] = zds[i] ^ x[i]; + } while (++i < nx); + + if (xsgn ^ SCM_BIGSIGN(bigy)) { + /* ========= Need to increment zds now =========== */ + i = 0; num = 1; + while (i < ny) { + num += zds[i]; + zds[i++] = SCM_BIGLO(num); + num = SCM_BIGDN(num); + if (!num) return scm_normbig(z); + } + } + return scm_normbig(z); +} + +SCM scm_big_and(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy, int zsgn) +/* Assumes nx <= SCM_NUMDIGS(bigy) */ +/* Assumes xsgn equals either 0 or SCM_BIGSIGNFLAG */ +/* return sign equals either 0 or SCM_BIGSIGNFLAG */ +{ + long num = -1; + scm_sizet i = 0; + SCM z; + SCM_BIGDIG *zds; + if (xsgn==zsgn) { + z = scm_copy_smaller(x, nx, zsgn); + x = SCM_BDIGITS(bigy); + xsgn = SCM_BIGSIGN(bigy); + } + else z = scm_copy_big_dec(bigy, zsgn); + zds = SCM_BDIGITS(z); + + if (zsgn) { + if (xsgn) do { + num += x[i]; + if (num < 0) {zds[i] &= num + SCM_BIGRAD; num = -1;} + else {zds[i] &= SCM_BIGLO(num); num = 0;} + } while (++i < nx); + else do zds[i] = zds[i] & ~x[i]; while (++i < nx); + /* ========= need to increment zds now =========== */ + i = 0; num = 1; + while (i < nx) { + num += zds[i]; + zds[i++] = SCM_BIGLO(num); + num = SCM_BIGDN(num); + if (!num) return scm_normbig(z); + } + } + else if (xsgn) do { + num += x[i]; + if (num < 0) {zds[i] &= num + SCM_BIGRAD; num = -1;} + else {zds[i] &= ~SCM_BIGLO(num); num = 0;} + } while (++i < nx); + else do zds[i] = zds[i] & x[i]; while (++i < nx); + return scm_normbig(z); +} + +SCM scm_big_test(SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy) +/* Assumes nx <= SCM_NUMDIGS(bigy) */ +/* Assumes xsgn equals either 0 or SCM_BIGSIGNFLAG */ +{ + SCM_BIGDIG *y; + scm_sizet i = 0; + long num = -1; + if (SCM_BIGSIGN(bigy) & xsgn) return SCM_BOOL_T; + if (SCM_NUMDIGS(bigy) != nx && xsgn) return SCM_BOOL_T; + y = SCM_BDIGITS(bigy); + if (xsgn) + do { + num += x[i]; + if (num < 0) { + if (y[i] & ~(num + SCM_BIGRAD)) return SCM_BOOL_T; + num = -1; + } + else { + if (y[i] & ~SCM_BIGLO(num)) return SCM_BOOL_T; + num = 0; + } + } while (++i < nx); + else if SCM_BIGSIGN(bigy) + do { + num += y[i]; + if (num < 0) { + if (x[i] & ~(num + SCM_BIGRAD)) return SCM_BOOL_T; + num = -1; + } + else { + if (x[i] & ~SCM_BIGLO(num)) return SCM_BOOL_T; + num = 0; + } + } while (++i < nx); + else + do if (x[i] & y[i]) return SCM_BOOL_T; + while (++i < nx); + return SCM_BOOL_F; +} + +#endif + + +SCM_DEFINE1 (scm_logand, "logand", scm_tc7_asubr, + (SCM n1, SCM n2), + "Returns the integer which is the bit-wise AND of the two integer\n" + "arguments.\n\n" + "Example:\n" + "@lisp\n" + "(number->string (logand #b1100 #b1010) 2)\n" + " @result{} \"1000\"") +#define FUNC_NAME s_scm_logand +{ + long int nn1; + + if (SCM_UNBNDP (n2)) { + if (SCM_UNBNDP (n1)) { + return SCM_MAKINUM (-1); + } else if (!SCM_NUMBERP (n1)) { + SCM_WRONG_TYPE_ARG (SCM_ARG1, n1); +#ifndef SCM_RECKLESS + } else if (SCM_NUMBERP (n1)) { + return n1; + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG1, n1); +#else + } else { + return n1; +#endif + } + } + + if (SCM_INUMP (n1)) { + nn1 = SCM_INUM (n1); + if (SCM_INUMP (n2)) { + long nn2 = SCM_INUM (n2); + return SCM_MAKINUM (nn1 & nn2); + } else if SCM_BIGP (n2) { + intbig: + { +# ifndef SCM_DIGSTOOBIG + long z = scm_pseudolong (nn1); + if ((nn1 < 0) && SCM_BIGSIGN (n2)) { + return scm_big_ior ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG, + SCM_BIGSIGNFLAG, n2); + } else { + return scm_big_and ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG, + (nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2, 0); + } +# else + SCM_BIGDIG zdigs [SCM_DIGSPERLONG]; + scm_longdigs (nn1, zdigs); + if ((nn1 < 0) && SCM_BIGSIGN (n2)) { + return scm_big_ior (zdigs, SCM_DIGSPERLONG, SCM_BIGSIGNFLAG, n2); + } else { + return scm_big_and (zdigs, SCM_DIGSPERLONG, + (nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2, 0); + } +# endif + } + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG2, n2); + } + } else if (SCM_BIGP (n1)) { + if (SCM_INUMP (n2)) { + SCM_SWAP (n1, n2); + nn1 = SCM_INUM (n1); + goto intbig; + } else if (SCM_BIGP (n2)) { + if (SCM_NUMDIGS (n1) > SCM_NUMDIGS (n2)) { + SCM_SWAP (n1, n2); + }; + if ((SCM_BIGSIGN (n1)) && SCM_BIGSIGN (n2)) { + return scm_big_ior (SCM_BDIGITS (n1), SCM_NUMDIGS (n1), + SCM_BIGSIGNFLAG, n2); + } else { + return scm_big_and (SCM_BDIGITS (n1), SCM_NUMDIGS (n1), + SCM_BIGSIGN (n1), n2, 0); + } + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG2, n2); + } + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG1, n1); + } +} +#undef FUNC_NAME + + +SCM_DEFINE1 (scm_logior, "logior", scm_tc7_asubr, + (SCM n1, SCM n2), + "Returns the integer which is the bit-wise OR of the two integer\n" + "arguments.\n\n" + "Example:\n" + "@lisp\n" + "(number->string (logior #b1100 #b1010) 2)\n" + " @result{} \"1110\"\n" + "@end lisp") +#define FUNC_NAME s_scm_logior +{ + long int nn1; + + if (SCM_UNBNDP (n2)) { + if (SCM_UNBNDP (n1)) { + return SCM_INUM0; +#ifndef SCM_RECKLESS + } else if (SCM_NUMBERP (n1)) { + return n1; + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG1, n1); +#else + } else { + return n1; +#endif + } + } + + if (SCM_INUMP (n1)) { + nn1 = SCM_INUM (n1); + if (SCM_INUMP (n2)) { + long nn2 = SCM_INUM (n2); + return SCM_MAKINUM (nn1 | nn2); + } else if (SCM_BIGP (n2)) { + intbig: + { +# ifndef SCM_DIGSTOOBIG + long z = scm_pseudolong (nn1); + if ((!(nn1 < 0)) && !SCM_BIGSIGN (n2)) { + return scm_big_ior ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG, + (nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2); + } else { + return scm_big_and ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG, + (nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2, SCM_BIGSIGNFLAG); + } +# else + BIGDIG zdigs [DIGSPERLONG]; + scm_longdigs (nn1, zdigs); + if ((!(nn1 < 0)) && !SCM_BIGSIGN (n2)) { + return scm_big_ior (zdigs, SCM_DIGSPERLONG, + (nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2); + } else { + return scm_big_and (zdigs, SCM_DIGSPERLONG, + (nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2, SCM_BIGSIGNFLAG); + } +# endif + } + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG2, n2); + } + } else if (SCM_BIGP (n1)) { + if (SCM_INUMP (n2)) { + SCM_SWAP (n1, n2); + nn1 = SCM_INUM (n1); + goto intbig; + } else if (SCM_BIGP (n2)) { + if (SCM_NUMDIGS (n1) > SCM_NUMDIGS (n2)) { + SCM_SWAP (n1, n2); + }; + if ((!SCM_BIGSIGN (n1)) && !SCM_BIGSIGN (n2)) { + return scm_big_ior (SCM_BDIGITS (n1), SCM_NUMDIGS (n1), + SCM_BIGSIGN (n1), n2); + } else { + return scm_big_and (SCM_BDIGITS (n1), SCM_NUMDIGS (n1), + SCM_BIGSIGN (n1), n2, SCM_BIGSIGNFLAG); + } + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG2, n2); + } + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG1, n1); + } +} +#undef FUNC_NAME + + +SCM_DEFINE1 (scm_logxor, "logxor", scm_tc7_asubr, + (SCM n1, SCM n2), + "Returns the integer which is the bit-wise XOR of the two integer\n" + "arguments.\n\n" + "Example:\n" + "@lisp\n" + "(number->string (logxor #b1100 #b1010) 2)\n" + " @result{} \"110\"\n" + "@end lisp") +#define FUNC_NAME s_scm_logxor +{ + long int nn1; + + if (SCM_UNBNDP (n2)) { + if (SCM_UNBNDP (n1)) { + return SCM_INUM0; +#ifndef SCM_RECKLESS + } else if (SCM_NUMBERP (n1)) { + return n1; + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG1, n1); +#else + } else { + return n1; +#endif + } + } + + if (SCM_INUMP (n1)) { + nn1 = SCM_INUM (n1); + if (SCM_INUMP (n2)) { + long nn2 = SCM_INUM (n2); + return SCM_MAKINUM (nn1 ^ nn2); + } else if (SCM_BIGP (n2)) { + intbig: + { +# ifndef SCM_DIGSTOOBIG + long z = scm_pseudolong (nn1); + return scm_big_xor ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG, + (nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2); +# else + SCM_BIGDIG zdigs [SCM_DIGSPERLONG]; + scm_longdigs (nn1, zdigs); + return scm_big_xor (zdigs, SCM_DIGSPERLONG, + (nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2); +# endif + } + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG2, n2); + } + } else if (SCM_BIGP (n1)) { + if (SCM_INUMP (n2)) { + SCM_SWAP (n1, n2); + nn1 = SCM_INUM (n1); + goto intbig; + } else if (SCM_BIGP (n2)) { + if (SCM_NUMDIGS(n1) > SCM_NUMDIGS(n2)) { + SCM_SWAP (n1, n2); + } + return scm_big_xor (SCM_BDIGITS (n1), SCM_NUMDIGS (n1), + SCM_BIGSIGN (n1), n2); + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG2, n2); + } + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG1, n1); + } +} +#undef FUNC_NAME + + +SCM_DEFINE (scm_logtest, "logtest", 2, 0, 0, + (SCM n1, SCM n2), + "@example\n" + "(logtest j k) @equiv{} (not (zero? (logand j k)))\n\n" + "(logtest #b0100 #b1011) @result{} #f\n" + "(logtest #b0100 #b0111) @result{} #t\n" + "@end example") +#define FUNC_NAME s_scm_logtest +{ + long int nn1; + + if (SCM_INUMP (n1)) { + nn1 = SCM_INUM (n1); + if (SCM_INUMP (n2)) { + long nn2 = SCM_INUM (n2); + return SCM_BOOL (nn1 & nn2); + } else if (SCM_BIGP (n2)) { + intbig: + { +# ifndef SCM_DIGSTOOBIG + long z = scm_pseudolong (nn1); + return scm_big_test ((SCM_BIGDIG *)&z, SCM_DIGSPERLONG, + (nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2); +# else + SCM_BIGDIG zdigs [SCM_DIGSPERLONG]; + scm_longdigs (nn1, zdigs); + return scm_big_test (zdigs, SCM_DIGSPERLONG, + (nn1 < 0) ? SCM_BIGSIGNFLAG : 0, n2); +# endif + } + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG2, n2); + } + } else if (SCM_BIGP (n1)) { + if (SCM_INUMP (n2)) { + SCM_SWAP (n1, n2); + nn1 = SCM_INUM (n1); + goto intbig; + } else if (SCM_BIGP (n2)) { + if (SCM_NUMDIGS (n1) > SCM_NUMDIGS (n2)) { + SCM_SWAP (n1, n2); + } + return scm_big_test (SCM_BDIGITS (n1), SCM_NUMDIGS (n1), + SCM_BIGSIGN (n1), n2); + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG2, n2); + } + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG1, n1); + } +} +#undef FUNC_NAME + + +SCM_DEFINE (scm_logbit_p, "logbit?", 2, 0, 0, + (SCM index, SCM j), + "@example\n" + "(logbit? index j) @equiv{} (logtest (integer-expt 2 index) j)\n\n" + "(logbit? 0 #b1101) @result{} #t\n" + "(logbit? 1 #b1101) @result{} #f\n" + "(logbit? 2 #b1101) @result{} #t\n" + "(logbit? 3 #b1101) @result{} #t\n" + "(logbit? 4 #b1101) @result{} #f\n" + "@end example") +#define FUNC_NAME s_scm_logbit_p +{ + unsigned long int iindex; + + SCM_VALIDATE_INUM_MIN (SCM_ARG1, index, 0); + iindex = (unsigned long int) SCM_INUM (index); + + if (SCM_INUMP (j)) { + return SCM_BOOL ((1L << iindex) & SCM_INUM (j)); + } else if (SCM_BIGP (j)) { + if (SCM_NUMDIGS (j) * SCM_BITSPERDIG < iindex) { + return SCM_BOOL_F; + } else if (SCM_BIGSIGN (j)) { + long num = -1; + scm_sizet i = 0; + SCM_BIGDIG * x = SCM_BDIGITS (j); + scm_sizet nx = iindex / SCM_BITSPERDIG; + while (1) { + num += x[i]; + if (nx == i++) { + return SCM_BOOL (((1L << (iindex % SCM_BITSPERDIG)) & num) == 0); + } else if (num < 0) { + num = -1; + } else { + num = 0; + } + } + } else { + return SCM_BOOL (SCM_BDIGITS (j) [iindex / SCM_BITSPERDIG] + & (1L << (iindex % SCM_BITSPERDIG))); + } + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG2, j); + } +} +#undef FUNC_NAME + + +SCM_DEFINE (scm_lognot, "lognot", 1, 0, 0, + (SCM n), + "Returns the integer which is the 2s-complement of the integer argument.\n\n" + "Example:\n" + "@lisp\n" + "(number->string (lognot #b10000000) 2)\n" + " @result{} \"-10000001\"\n" + "(number->string (lognot #b0) 2)\n" + " @result{} \"-1\"\n" + "@end lisp\n" + "") +#define FUNC_NAME s_scm_lognot +{ + return scm_difference (SCM_MAKINUM (-1L), n); +} +#undef FUNC_NAME + +SCM_DEFINE (scm_integer_expt, "integer-expt", 2, 0, 0, + (SCM n, SCM k), + "Returns @var{n} raised to the non-negative integer exponent @var{k}.\n\n" + "Example:\n" + "@lisp\n" + "(integer-expt 2 5)\n" + " @result{} 32\n" + "(integer-expt -3 3)\n" + " @result{} -27\n" + "@end lisp") +#define FUNC_NAME s_scm_integer_expt +{ + SCM acc = SCM_MAKINUM (1L); + int i2; +#ifdef SCM_BIGDIG + if (SCM_EQ_P (n, SCM_INUM0) || SCM_EQ_P (n, acc)) + return n; + else if (SCM_EQ_P (n, SCM_MAKINUM (-1L))) + return SCM_FALSEP (scm_even_p (k)) ? n : acc; +#endif + SCM_VALIDATE_ULONG_COPY (2,k,i2); + if (i2 < 0) + { + i2 = -i2; + n = scm_divide (n, SCM_UNDEFINED); + } + while (1) + { + if (0 == i2) + return acc; + if (1 == i2) + return scm_product (acc, n); + if (i2 & 1) + acc = scm_product (acc, n); + n = scm_product (n, n); + i2 >>= 1; + } +} +#undef FUNC_NAME + +SCM_DEFINE (scm_ash, "ash", 2, 0, 0, + (SCM n, SCM cnt), + "The function ash performs an arithmetic shift left by CNT bits\n" + "(or shift right, if CNT is negative). 'Arithmetic' means, that\n" + "the function does not guarantee to keep the bit structure of N,\n" + "but rather guarantees that the result will always be rounded\n" + "towards minus infinity. Therefore, the results of ash and a\n" + "corresponding bitwise shift will differ if N is negative.\n\n" + "Formally, the function returns an integer equivalent to\n" + "@code{(inexact->exact (floor (* N (expt 2 CNT))))}.@refill\n\n" + "Example:\n" + "@lisp\n" + "(number->string (ash #b1 3) 2)\n" + " @result{} \"1000\"" + "(number->string (ash #b1010 -1) 2)" + " @result{} \"101\"" + "@end lisp") +#define FUNC_NAME s_scm_ash +{ + long bits_to_shift; + +#ifndef SCM_BIGDIG + SCM_VALIDATE_INUM (1, n) +#endif + SCM_VALIDATE_INUM (2, cnt); + + bits_to_shift = SCM_INUM (cnt); +#ifdef SCM_BIGDIG + if (bits_to_shift < 0) { + /* Shift right by abs(cnt) bits. This is realized as a division by + div:=2^abs(cnt). However, to guarantee the floor rounding, negative + values require some special treatment. + */ + SCM div = scm_integer_expt (SCM_MAKINUM (2), SCM_MAKINUM (-bits_to_shift)); + if (SCM_FALSEP (scm_negative_p (n))) + return scm_quotient (n, div); + else + return scm_sum (SCM_MAKINUM (-1L), + scm_quotient (scm_sum (SCM_MAKINUM (1L), n), div)); + } else + /* Shift left is done by multiplication with 2^CNT */ + return scm_product (n, scm_integer_expt (SCM_MAKINUM (2), cnt)); +#else + if (bits_to_shift < 0) + /* Signed right shift (SCM_SRS does it right) by abs(cnt) bits. */ + return SCM_MAKINUM (SCM_SRS (SCM_INUM (n), -bits_to_shift)); + else { + /* Shift left, but make sure not to leave the range of inums */ + SCM res = SCM_MAKINUM (SCM_INUM (n) << cnt); + if (SCM_INUM (res) >> cnt != SCM_INUM (n)) + scm_num_overflow (FUNC_NAME); + return res; + } +#endif +} +#undef FUNC_NAME + + +SCM_DEFINE (scm_bit_extract, "bit-extract", 3, 0, 0, + (SCM n, SCM start, SCM end), + "Returns the integer composed of the @var{start} (inclusive) through\n" + "@var{end} (exclusive) bits of @var{n}. The @var{start}th bit becomes\n" + "the 0-th bit in the result.@refill\n\n" + "Example:\n" + "@lisp\n" + "(number->string (bit-extract #b1101101010 0 4) 2)\n" + " @result{} \"1010\"\n" + "(number->string (bit-extract #b1101101010 4 9) 2)\n" + " @result{} \"10110\"\n" + "@end lisp") +#define FUNC_NAME s_scm_bit_extract +{ + int istart, iend; + SCM_VALIDATE_INUM_MIN_COPY (2,start,0,istart); + SCM_VALIDATE_INUM_MIN_COPY (3, end, 0, iend); + SCM_ASSERT_RANGE (3, end, (iend >= istart)); + + if (SCM_INUMP (n)) { + return SCM_MAKINUM ((SCM_INUM (n) >> istart) & ((1L << (iend - istart)) - 1)); + } else if (SCM_BIGP (n)) { + SCM num1 = SCM_MAKINUM (1L); + SCM num2 = SCM_MAKINUM (2L); + SCM bits = SCM_MAKINUM (iend - istart); + SCM mask = scm_difference (scm_integer_expt (num2, bits), num1); + return scm_logand (mask, scm_ash (n, SCM_MAKINUM (-istart))); + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG1, n); + } +} +#undef FUNC_NAME + + +static const char scm_logtab[] = { + 0, 1, 1, 2, 1, 2, 2, 3, 1, 2, 2, 3, 2, 3, 3, 4 +}; + +SCM_DEFINE (scm_logcount, "logcount", 1, 0, 0, + (SCM n), + "Returns the number of bits in integer @var{n}. If integer is positive,\n" + "the 1-bits in its binary representation are counted. If negative, the\n" + "0-bits in its two's-complement binary representation are counted. If 0,\n" + "0 is returned.\n\n" + "Example:\n" + "@lisp\n" + "(logcount #b10101010)\n" + " @result{} 4\n" + "(logcount 0)\n" + " @result{} 0\n" + "(logcount -2)\n" + " @result{} 1\n" + "@end lisp") +#define FUNC_NAME s_scm_logcount +{ + if (SCM_INUMP (n)) { + unsigned long int c = 0; + long int nn = SCM_INUM (n); + if (nn < 0) { + nn = -1 - nn; + }; + while (nn) { + c += scm_logtab[15 & nn]; + nn >>= 4; + }; + return SCM_MAKINUM (c); + } else if (SCM_BIGP (n)) { + if (SCM_BIGSIGN (n)) { + return scm_logcount (scm_difference (SCM_MAKINUM (-1L), n)); + } else { + unsigned long int c = 0; + scm_sizet i = SCM_NUMDIGS (n); + SCM_BIGDIG * ds = SCM_BDIGITS (n); + while (i--) { + SCM_BIGDIG d; + for (d = ds[i]; d; d >>= 4) { + c += scm_logtab[15 & d]; + } + } + return SCM_MAKINUM (c); + } + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG1, n); + } +} +#undef FUNC_NAME + + +static const char scm_ilentab[] = { + 0, 1, 2, 2, 3, 3, 3, 3, 4, 4, 4, 4, 4, 4, 4, 4 +}; + +SCM_DEFINE (scm_integer_length, "integer-length", 1, 0, 0, + (SCM n), + "Returns the number of bits neccessary to represent @var{n}.\n\n" + "Example:\n" + "@lisp\n" + "(integer-length #b10101010)\n" + " @result{} 8\n" + "(integer-length 0)\n" + " @result{} 0\n" + "(integer-length #b1111)\n" + " @result{} 4\n" + "@end lisp") +#define FUNC_NAME s_scm_integer_length +{ + if (SCM_INUMP (n)) { + unsigned long int c = 0; + unsigned int l = 4; + long int nn = SCM_INUM (n); + if (nn < 0) { + nn = -1 - nn; + }; + while (nn) { + c += 4; + l = scm_ilentab [15 & nn]; + nn >>= 4; + }; + return SCM_MAKINUM (c - 4 + l); + } else if (SCM_BIGP (n)) { + if (SCM_BIGSIGN (n)) { + return scm_integer_length (scm_difference (SCM_MAKINUM (-1L), n)); + } else { + unsigned long int digs = SCM_NUMDIGS (n) - 1; + unsigned long int c = digs * SCM_BITSPERDIG; + unsigned int l = 4; + SCM_BIGDIG * ds = SCM_BDIGITS (n); + SCM_BIGDIG d = ds [digs]; + while (d) { + c += 4; + l = scm_ilentab [15 & d]; + d >>= 4; + }; + return SCM_MAKINUM (c - 4 + l); + } + } else { + SCM_WRONG_TYPE_ARG (SCM_ARG1, n); + } +} +#undef FUNC_NAME + + +#ifdef SCM_BIGDIG +static const char s_bignum[] = "bignum"; + +SCM +scm_mkbig (scm_sizet nlen, int sign) +{ + SCM v; + /* Cast to long int to avoid signed/unsigned comparison warnings. */ + if ((( ((long int) nlen) << SCM_BIGSIZEFIELD) >> SCM_BIGSIZEFIELD) + != (long int) nlen) + scm_memory_error (s_bignum); + + SCM_NEWCELL (v); + SCM_DEFER_INTS; + SCM_SETCHARS (v, scm_must_malloc ((long) (nlen * sizeof (SCM_BIGDIG)), + s_bignum)); + SCM_SETNUMDIGS (v, nlen, sign); + SCM_ALLOW_INTS; + return v; +} + + +SCM +scm_big2inum (SCM b, scm_sizet l) +{ + unsigned long num = 0; + SCM_BIGDIG *tmp = SCM_BDIGITS (b); + while (l--) + num = SCM_BIGUP (num) + tmp[l]; + if (!SCM_BIGSIGN (b)) + { + if (SCM_POSFIXABLE (num)) + return SCM_MAKINUM (num); + } + else if (num <= -SCM_MOST_NEGATIVE_FIXNUM) + return SCM_MAKINUM (-num); + return b; +} + + +static const char s_adjbig[] = "scm_adjbig"; + +SCM +scm_adjbig (SCM b, scm_sizet nlen) +{ + scm_sizet nsiz = nlen; + if (((nsiz << SCM_BIGSIZEFIELD) >> SCM_BIGSIZEFIELD) != nlen) + scm_memory_error (s_adjbig); + + SCM_DEFER_INTS; + { + SCM_BIGDIG *digits + = ((SCM_BIGDIG *) + scm_must_realloc ((char *) SCM_CHARS (b), + (long) (SCM_NUMDIGS (b) * sizeof (SCM_BIGDIG)), + (long) (nsiz * sizeof (SCM_BIGDIG)), s_bignum)); + + SCM_SETCHARS (b, digits); + SCM_SETNUMDIGS (b, nsiz, SCM_BIGSIGN (b)); + } + SCM_ALLOW_INTS; + return b; +} + + + +SCM +scm_normbig (SCM b) +{ +#ifndef _UNICOS + scm_sizet nlen = SCM_NUMDIGS (b); +#else + int nlen = SCM_NUMDIGS (b); /* unsigned nlen breaks on Cray when nlen => 0 */ +#endif + SCM_BIGDIG *zds = SCM_BDIGITS (b); + while (nlen-- && !zds[nlen]); + nlen++; + if (nlen * SCM_BITSPERDIG / SCM_CHAR_BIT <= sizeof (SCM)) + if (SCM_INUMP (b = scm_big2inum (b, (scm_sizet) nlen))) + return b; + if (SCM_NUMDIGS (b) == nlen) + return b; + return scm_adjbig (b, (scm_sizet) nlen); +} + + + +SCM +scm_copybig (SCM b, int sign) +{ + scm_sizet i = SCM_NUMDIGS (b); + SCM ans = scm_mkbig (i, sign); + SCM_BIGDIG *src = SCM_BDIGITS (b), *dst = SCM_BDIGITS (ans); + while (i--) + dst[i] = src[i]; + return ans; +} + + + +SCM +scm_long2big (long n) +{ + scm_sizet i = 0; + SCM_BIGDIG *digits; + SCM ans = scm_mkbig (SCM_DIGSPERLONG, n < 0); + digits = SCM_BDIGITS (ans); + if (n < 0) + n = -n; + while (i < SCM_DIGSPERLONG) + { + digits[i++] = SCM_BIGLO (n); + n = SCM_BIGDN ((unsigned long) n); + } + return ans; +} + +#ifdef HAVE_LONG_LONGS + +SCM +scm_long_long2big (long_long n) +{ + scm_sizet i; + SCM_BIGDIG *digits; + SCM ans; + int n_digits; + + { + long tn; + tn = (long) n; + if ((long long) tn == n) + return scm_long2big (tn); + } + + { + long_long tn; + + for (tn = n, n_digits = 0; + tn; + ++n_digits, tn = SCM_BIGDN ((ulong_long) tn)) + ; + } + + i = 0; + ans = scm_mkbig (n_digits, n < 0); + digits = SCM_BDIGITS (ans); + if (n < 0) + n = -n; + while (i < n_digits) + { + digits[i++] = SCM_BIGLO (n); + n = SCM_BIGDN ((ulong_long) n); + } + return ans; +} +#endif /* HAVE_LONG_LONGS */ + + +SCM +scm_2ulong2big (unsigned long *np) +{ + unsigned long n; + scm_sizet i; + SCM_BIGDIG *digits; + SCM ans; + + ans = scm_mkbig (2 * SCM_DIGSPERLONG, 0); + digits = SCM_BDIGITS (ans); + + n = np[0]; + for (i = 0; i < SCM_DIGSPERLONG; ++i) + { + digits[i] = SCM_BIGLO (n); + n = SCM_BIGDN ((unsigned long) n); + } + n = np[1]; + for (i = 0; i < SCM_DIGSPERLONG; ++i) + { + digits[i + SCM_DIGSPERLONG] = SCM_BIGLO (n); + n = SCM_BIGDN ((unsigned long) n); + } + return ans; +} + + + +SCM +scm_ulong2big (unsigned long n) +{ + scm_sizet i = 0; + SCM_BIGDIG *digits; + SCM ans = scm_mkbig (SCM_DIGSPERLONG, 0); + digits = SCM_BDIGITS (ans); + while (i < SCM_DIGSPERLONG) + { + digits[i++] = SCM_BIGLO (n); + n = SCM_BIGDN (n); + } + return ans; +} + + + +int +scm_bigcomp (SCM x, SCM y) +{ + int xsign = SCM_BIGSIGN (x); + int ysign = SCM_BIGSIGN (y); + scm_sizet xlen, ylen; + + /* Look at the signs, first. */ + if (ysign < xsign) + return 1; + if (ysign > xsign) + return -1; + + /* They're the same sign, so see which one has more digits. Note + that, if they are negative, the longer number is the lesser. */ + ylen = SCM_NUMDIGS (y); + xlen = SCM_NUMDIGS (x); + if (ylen > xlen) + return (xsign) ? -1 : 1; + if (ylen < xlen) + return (xsign) ? 1 : -1; + + /* They have the same number of digits, so find the most significant + digit where they differ. */ + while (xlen) + { + --xlen; + if (SCM_BDIGITS (y)[xlen] != SCM_BDIGITS (x)[xlen]) + /* Make the discrimination based on the digit that differs. */ + return ((SCM_BDIGITS (y)[xlen] > SCM_BDIGITS (x)[xlen]) + ? (xsign ? -1 : 1) + : (xsign ? 1 : -1)); + } + + /* The numbers are identical. */ + return 0; +} + +#ifndef SCM_DIGSTOOBIG + + +long +scm_pseudolong (long x) +{ + union + { + long l; + SCM_BIGDIG bd[SCM_DIGSPERLONG]; + } + p; + scm_sizet i = 0; + if (x < 0) + x = -x; + while (i < SCM_DIGSPERLONG) + { + p.bd[i++] = SCM_BIGLO (x); + x = SCM_BIGDN (x); + } + /* p.bd[0] = SCM_BIGLO(x); p.bd[1] = SCM_BIGDN(x); */ + return p.l; +} + +#else + + +void +scm_longdigs (long x, SCM_BIGDIG digs[]) +{ + scm_sizet i = 0; + if (x < 0) + x = -x; + while (i < SCM_DIGSPERLONG) + { + digs[i++] = SCM_BIGLO (x); + x = SCM_BIGDN (x); + } +} +#endif + + + +SCM +scm_addbig (SCM_BIGDIG *x, scm_sizet nx, int xsgn, SCM bigy, int sgny) +{ + /* Assumes nx <= SCM_NUMDIGS(bigy) */ + /* Assumes xsgn and sgny scm_equal either 0 or SCM_BIGSIGNFLAG */ + long num = 0; + scm_sizet i = 0, ny = SCM_NUMDIGS (bigy); + SCM z = scm_copybig (bigy, SCM_BIGSIGN (bigy) ^ sgny); + SCM_BIGDIG *zds = SCM_BDIGITS (z); + if (xsgn ^ SCM_BIGSIGN (z)) + { + do + { + num += (long) zds[i] - x[i]; + if (num < 0) + { + zds[i] = num + SCM_BIGRAD; + num = -1; + } + else + { + zds[i] = SCM_BIGLO (num); + num = 0; + } + } + while (++i < nx); + if (num && nx == ny) + { + num = 1; + i = 0; + SCM_SET_CELL_WORD_0 (z, SCM_CELL_WORD_0 (z) ^ SCM_BIGSIGNFLAG); + do + { + num += (SCM_BIGRAD - 1) - zds[i]; + zds[i++] = SCM_BIGLO (num); + num = SCM_BIGDN (num); + } + while (i < ny); + } + else + while (i < ny) + { + num += zds[i]; + if (num < 0) + { + zds[i++] = num + SCM_BIGRAD; + num = -1; + } + else + { + zds[i++] = SCM_BIGLO (num); + num = 0; + } + } + } + else + { + do + { + num += (long) zds[i] + x[i]; + zds[i++] = SCM_BIGLO (num); + num = SCM_BIGDN (num); + } + while (i < nx); + if (!num) + return z; + while (i < ny) + { + num += zds[i]; + zds[i++] = SCM_BIGLO (num); + num = SCM_BIGDN (num); + if (!num) + return z; + } + if (num) + { + z = scm_adjbig (z, ny + 1); + SCM_BDIGITS (z)[ny] = num; + return z; + } + } + return scm_normbig (z); +} + + +SCM +scm_mulbig (SCM_BIGDIG *x, scm_sizet nx, SCM_BIGDIG *y, scm_sizet ny, int sgn) +{ + scm_sizet i = 0, j = nx + ny; + unsigned long n = 0; + SCM z = scm_mkbig (j, sgn); + SCM_BIGDIG *zds = SCM_BDIGITS (z); + while (j--) + zds[j] = 0; + do + { + j = 0; + if (x[i]) + { + do + { + n += zds[i + j] + ((unsigned long) x[i] * y[j]); + zds[i + j++] = SCM_BIGLO (n); + n = SCM_BIGDN (n); + } + while (j < ny); + if (n) + { + zds[i + j] = n; + n = 0; + } + } + } + while (++i < nx); + return scm_normbig (z); +} + + +unsigned int +scm_divbigdig (SCM_BIGDIG * ds, scm_sizet h, SCM_BIGDIG div) +{ + register unsigned long t2 = 0; + while (h--) + { + t2 = SCM_BIGUP (t2) + ds[h]; + ds[h] = t2 / div; + t2 %= div; + } + return t2; +} + + + +static SCM +scm_divbigint (SCM x, long z, int sgn, int mode) +{ + if (z < 0) + z = -z; + if (z < SCM_BIGRAD) + { + register unsigned long t2 = 0; + register SCM_BIGDIG *ds = SCM_BDIGITS (x); + scm_sizet nd = SCM_NUMDIGS (x); + while (nd--) + t2 = (SCM_BIGUP (t2) + ds[nd]) % z; + if (mode && t2) + t2 = z - t2; + return SCM_MAKINUM (sgn ? -t2 : t2); + } + { +#ifndef SCM_DIGSTOOBIG + unsigned long t2 = scm_pseudolong (z); + return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), + (SCM_BIGDIG *) & t2, SCM_DIGSPERLONG, + sgn, mode); +#else + SCM_BIGDIG t2[SCM_DIGSPERLONG]; + scm_longdigs (z, t2); + return scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), + t2, SCM_DIGSPERLONG, + sgn, mode); +#endif + } +} + + +static SCM +scm_divbigbig (SCM_BIGDIG *x, scm_sizet nx, SCM_BIGDIG *y, scm_sizet ny, int sgn, int modes) +{ + /* modes description + 0 remainder + 1 scm_modulo + 2 quotient + 3 quotient but returns SCM_UNDEFINED if division is not exact. */ + scm_sizet i = 0, j = 0; + long num = 0; + unsigned long t2 = 0; + SCM z, newy; + SCM_BIGDIG d = 0, qhat, *zds, *yds; + /* algorithm requires nx >= ny */ + if (nx < ny) + switch (modes) + { + case 0: /* remainder -- just return x */ + z = scm_mkbig (nx, sgn); + zds = SCM_BDIGITS (z); + do + { + zds[i] = x[i]; + } + while (++i < nx); + return z; + case 1: /* scm_modulo -- return y-x */ + z = scm_mkbig (ny, sgn); + zds = SCM_BDIGITS (z); + do + { + num += (long) y[i] - x[i]; + if (num < 0) + { + zds[i] = num + SCM_BIGRAD; + num = -1; + } + else + { + zds[i] = num; + num = 0; + } + } + while (++i < nx); + while (i < ny) + { + num += y[i]; + if (num < 0) + { + zds[i++] = num + SCM_BIGRAD; + num = -1; + } + else + { + zds[i++] = num; + num = 0; + } + } + goto doadj; + case 2: + return SCM_INUM0; /* quotient is zero */ + case 3: + return SCM_UNDEFINED; /* the division is not exact */ + } + + z = scm_mkbig (nx == ny ? nx + 2 : nx + 1, sgn); + zds = SCM_BDIGITS (z); + if (nx == ny) + zds[nx + 1] = 0; + while (!y[ny - 1]) + ny--; /* in case y came in as a psuedolong */ + if (y[ny - 1] < (SCM_BIGRAD >> 1)) + { /* normalize operands */ + d = SCM_BIGRAD / (y[ny - 1] + 1); + newy = scm_mkbig (ny, 0); + yds = SCM_BDIGITS (newy); + while (j < ny) + { + t2 += (unsigned long) y[j] * d; + yds[j++] = SCM_BIGLO (t2); + t2 = SCM_BIGDN (t2); + } + y = yds; + j = 0; + t2 = 0; + while (j < nx) + { + t2 += (unsigned long) x[j] * d; + zds[j++] = SCM_BIGLO (t2); + t2 = SCM_BIGDN (t2); + } + zds[j] = t2; + } + else + { + zds[j = nx] = 0; + while (j--) + zds[j] = x[j]; + } + j = nx == ny ? nx + 1 : nx; /* dividend needs more digits than divisor */ + do + { /* loop over digits of quotient */ + if (zds[j] == y[ny - 1]) + qhat = SCM_BIGRAD - 1; + else + qhat = (SCM_BIGUP (zds[j]) + zds[j - 1]) / y[ny - 1]; + if (!qhat) + continue; + i = 0; + num = 0; + t2 = 0; + do + { /* multiply and subtract */ + t2 += (unsigned long) y[i] * qhat; + num += zds[j - ny + i] - SCM_BIGLO (t2); + if (num < 0) + { + zds[j - ny + i] = num + SCM_BIGRAD; + num = -1; + } + else + { + zds[j - ny + i] = num; + num = 0; + } + t2 = SCM_BIGDN (t2); + } + while (++i < ny); + num += zds[j - ny + i] - t2; /* borrow from high digit; don't update */ + while (num) + { /* "add back" required */ + i = 0; + num = 0; + qhat--; + do + { + num += (long) zds[j - ny + i] + y[i]; + zds[j - ny + i] = SCM_BIGLO (num); + num = SCM_BIGDN (num); + } + while (++i < ny); + num--; + } + if (modes & 2) + zds[j] = qhat; + } + while (--j >= ny); + switch (modes) + { + case 3: /* check that remainder==0 */ + for (j = ny; j && !zds[j - 1]; --j); + if (j) + return SCM_UNDEFINED; + case 2: /* move quotient down in z */ + j = (nx == ny ? nx + 2 : nx + 1) - ny; + for (i = 0; i < j; i++) + zds[i] = zds[i + ny]; + ny = i; + break; + case 1: /* subtract for scm_modulo */ + i = 0; + num = 0; + j = 0; + do + { + num += y[i] - zds[i]; + j = j | zds[i]; + if (num < 0) + { + zds[i] = num + SCM_BIGRAD; + num = -1; + } + else + { + zds[i] = num; + num = 0; + } + } + while (++i < ny); + if (!j) + return SCM_INUM0; + case 0: /* just normalize remainder */ + if (d) + scm_divbigdig (zds, ny, d); + } + doadj: + for (j = ny; j && !zds[j - 1]; --j); + if (j * SCM_BITSPERDIG <= sizeof (SCM) * SCM_CHAR_BIT) + if (SCM_INUMP (z = scm_big2inum (z, j))) + return z; + return scm_adjbig (z, j); +} +#endif + + + + + +/*** NUMBERS -> STRINGS ***/ +int scm_dblprec; +static const double fx[] = +{ 0.0, 5e-1, 5e-2, 5e-3, 5e-4, 5e-5, + 5e-6, 5e-7, 5e-8, 5e-9, 5e-10, + 5e-11, 5e-12, 5e-13, 5e-14, 5e-15, + 5e-16, 5e-17, 5e-18, 5e-19, 5e-20}; + + + + +static scm_sizet +idbl2str (double f, char *a) +{ + int efmt, dpt, d, i, wp = scm_dblprec; + scm_sizet ch = 0; + int exp = 0; + + if (f == 0.0) + goto zero; /*{a[0]='0'; a[1]='.'; a[2]='0'; return 3;} */ + if (f < 0.0) + { + f = -f; + a[ch++] = '-'; + } + else if (f > 0.0); + else + goto funny; + if (IS_INF (f)) + { + if (ch == 0) + a[ch++] = '+'; + funny: + a[ch++] = '#'; + a[ch++] = '.'; + a[ch++] = '#'; + return ch; + } +#ifdef DBL_MIN_10_EXP /* Prevent unnormalized values, as from + make-uniform-vector, from causing infinite loops. */ + while (f < 1.0) + { + f *= 10.0; + if (exp-- < DBL_MIN_10_EXP) + goto funny; + } + while (f > 10.0) + { + f *= 0.10; + if (exp++ > DBL_MAX_10_EXP) + goto funny; + } +#else + while (f < 1.0) + { + f *= 10.0; + exp--; + } + while (f > 10.0) + { + f /= 10.0; + exp++; + } +#endif + if (f + fx[wp] >= 10.0) + { + f = 1.0; + exp++; + } + zero: +#ifdef ENGNOT + dpt = (exp + 9999) % 3; + exp -= dpt++; + efmt = 1; +#else + efmt = (exp < -3) || (exp > wp + 2); + if (!efmt) + { + if (exp < 0) + { + a[ch++] = '0'; + a[ch++] = '.'; + dpt = exp; + while (++dpt) + a[ch++] = '0'; + } + else + dpt = exp + 1; + } + else + dpt = 1; +#endif + + do + { + d = f; + f -= d; + a[ch++] = d + '0'; + if (f < fx[wp]) + break; + if (f + fx[wp] >= 1.0) + { + a[ch - 1]++; + break; + } + f *= 10.0; + if (!(--dpt)) + a[ch++] = '.'; + } + while (wp--); + + if (dpt > 0) + { +#ifndef ENGNOT + if ((dpt > 4) && (exp > 6)) + { + d = (a[0] == '-' ? 2 : 1); + for (i = ch++; i > d; i--) + a[i] = a[i - 1]; + a[d] = '.'; + efmt = 1; + } + else +#endif + { + while (--dpt) + a[ch++] = '0'; + a[ch++] = '.'; + } + } + if (a[ch - 1] == '.') + a[ch++] = '0'; /* trailing zero */ + if (efmt && exp) + { + a[ch++] = 'e'; + if (exp < 0) + { + exp = -exp; + a[ch++] = '-'; + } + for (i = 10; i <= exp; i *= 10); + for (i /= 10; i; i /= 10) + { + a[ch++] = exp / i + '0'; + exp %= i; + } + } + return ch; +} + + +static scm_sizet +iflo2str (SCM flt, char *str) +{ + scm_sizet i; + if (SCM_SLOPPY_REALP (flt)) + i = idbl2str (SCM_REAL_VALUE (flt), str); + else + { + i = idbl2str (SCM_COMPLEX_REAL (flt), str); + if (SCM_COMPLEX_IMAG (flt) != 0.0) + { + if (0 <= SCM_COMPLEX_IMAG (flt)) + str[i++] = '+'; + i += idbl2str (SCM_COMPLEX_IMAG (flt), &str[i]); + str[i++] = 'i'; + } + } + return i; +} + +/* convert a long to a string (unterminated). returns the number of + characters in the result. + rad is output base + p is destination: worst case (base 2) is SCM_INTBUFLEN */ +scm_sizet +scm_iint2str (long num, int rad, char *p) +{ + scm_sizet j = 1; + scm_sizet i; + unsigned long n = (num < 0) ? -num : num; + + for (n /= rad; n > 0; n /= rad) + j++; + + i = j; + if (num < 0) + { + *p++ = '-'; + j++; + n = -num; + } + else + n = num; + while (i--) + { + int d = n % rad; + + n /= rad; + p[i] = d + ((d < 10) ? '0' : 'a' - 10); + } + return j; +} + + +#ifdef SCM_BIGDIG + +static SCM +big2str (SCM b, unsigned int radix) +{ + SCM t = scm_copybig (b, 0); /* sign of temp doesn't matter */ + register SCM_BIGDIG *ds = SCM_BDIGITS (t); + scm_sizet i = SCM_NUMDIGS (t); + scm_sizet j = radix == 16 ? (SCM_BITSPERDIG * i) / 4 + 2 + : radix >= 10 ? (SCM_BITSPERDIG * i * 241L) / 800 + 2 + : (SCM_BITSPERDIG * i) + 2; + scm_sizet k = 0; + scm_sizet radct = 0; + scm_sizet ch; /* jeh */ + SCM_BIGDIG radpow = 1, radmod = 0; + SCM ss = scm_makstr ((long) j, 0); + char *s = SCM_CHARS (ss), c; + while ((long) radpow * radix < SCM_BIGRAD) + { + radpow *= radix; + radct++; + } + s[0] = SCM_BIGSIGN (b) ? '-' : '+'; + while ((i || radmod) && j) + { + if (k == 0) + { + radmod = (SCM_BIGDIG) scm_divbigdig (ds, i, radpow); + k = radct; + if (!ds[i - 1]) + i--; + } + c = radmod % radix; + radmod /= radix; + k--; + s[--j] = c < 10 ? c + '0' : c + 'a' - 10; + } + ch = s[0] == '-' ? 1 : 0; /* jeh */ + if (ch < j) + { /* jeh */ + for (i = j; j < SCM_LENGTH (ss); j++) + s[ch + j - i] = s[j]; /* jeh */ + scm_vector_set_length_x (ss, /* jeh */ + SCM_MAKINUM (ch + SCM_LENGTH (ss) - i)); + } + + return scm_return_first (ss, t); +} +#endif + + +SCM_DEFINE (scm_number_to_string, "number->string", 1, 1, 0, + (SCM n, SCM radix), + "Return a string holding the external representation of the\n" + "number N in the given RADIX. If N is inexact, a radix of 10\n" + "will be used.") +#define FUNC_NAME s_scm_number_to_string +{ + int base; + + if (SCM_UNBNDP (radix)) { + base = 10; + } else { + SCM_VALIDATE_INUM (2, radix); + base = SCM_INUM (radix); + SCM_ASSERT_RANGE (2, radix, base >= 2); + } + + if (SCM_INUMP (n)) { + char num_buf [SCM_INTBUFLEN]; + scm_sizet length = scm_iint2str (SCM_INUM (n), base, num_buf); + return scm_makfromstr (num_buf, length, 0); + } else if (SCM_BIGP (n)) { + return big2str (n, (unsigned int) base); + } else if (SCM_INEXACTP (n)) { + char num_buf [SCM_FLOBUFLEN]; + return scm_makfromstr (num_buf, iflo2str (n, num_buf), 0); + } else { + SCM_WRONG_TYPE_ARG (1, n); + } +} +#undef FUNC_NAME + + +/* These print routines are stubbed here so that scm_repl.c doesn't need + SCM_BIGDIG conditionals */ + +int +scm_print_real (SCM sexp, SCM port, scm_print_state *pstate) +{ + char num_buf[SCM_FLOBUFLEN]; + scm_lfwrite (num_buf, iflo2str (sexp, num_buf), port); + return !0; +} + +int +scm_print_complex (SCM sexp, SCM port, scm_print_state *pstate) +{ + char num_buf[SCM_FLOBUFLEN]; + scm_lfwrite (num_buf, iflo2str (sexp, num_buf), port); + return !0; +} + +int +scm_bigprint (SCM exp, SCM port, scm_print_state *pstate) +{ +#ifdef SCM_BIGDIG + exp = big2str (exp, (unsigned int) 10); + scm_lfwrite (SCM_CHARS (exp), (scm_sizet) SCM_LENGTH (exp), port); +#else + scm_ipruk ("bignum", exp, port); +#endif + return !0; +} +/*** END nums->strs ***/ + +/*** STRINGS -> NUMBERS ***/ + +static SCM +scm_small_istr2int (char *str, long len, long radix) +{ + register long n = 0, ln; + register int c; + register int i = 0; + int lead_neg = 0; + if (0 >= len) + return SCM_BOOL_F; /* zero scm_length */ + switch (*str) + { /* leading sign */ + case '-': + lead_neg = 1; + case '+': + if (++i == len) + return SCM_BOOL_F; /* bad if lone `+' or `-' */ + } + + do + { + switch (c = str[i++]) + { + case DIGITS: + c = c - '0'; + goto accumulate; + case 'A': + case 'B': + case 'C': + case 'D': + case 'E': + case 'F': + c = c - 'A' + 10; + goto accumulate; + case 'a': + case 'b': + case 'c': + case 'd': + case 'e': + case 'f': + c = c - 'a' + 10; + accumulate: + if (c >= radix) + return SCM_BOOL_F; /* bad digit for radix */ + ln = n; + n = n * radix - c; + /* Negation is a workaround for HP700 cc bug */ + if (n > ln || (-n > -SCM_MOST_NEGATIVE_FIXNUM)) + goto ovfl; + break; + default: + return SCM_BOOL_F; /* not a digit */ + } + } + while (i < len); + if (!lead_neg) + if ((n = -n) > SCM_MOST_POSITIVE_FIXNUM) + goto ovfl; + return SCM_MAKINUM (n); + ovfl: /* overflow scheme integer */ + return SCM_BOOL_F; +} + + + +SCM +scm_istr2int (char *str, long len, long radix) +{ + scm_sizet j; + register scm_sizet k, blen = 1; + scm_sizet i = 0; + int c; + SCM res; + register SCM_BIGDIG *ds; + register unsigned long t2; + + if (0 >= len) + return SCM_BOOL_F; /* zero scm_length */ + + /* Short numbers we parse directly into an int, to avoid the overhead + of creating a bignum. */ + if (len < 6) + return scm_small_istr2int (str, len, radix); + + if (16 == radix) + j = 1 + (4 * len * sizeof (char)) / (SCM_BITSPERDIG); + else if (10 <= radix) + j = 1 + (84 * len * sizeof (char)) / (SCM_BITSPERDIG * 25); + else + j = 1 + (len * sizeof (char)) / (SCM_BITSPERDIG); + switch (str[0]) + { /* leading sign */ + case '-': + case '+': + if (++i == (unsigned) len) + return SCM_BOOL_F; /* bad if lone `+' or `-' */ + } + res = scm_mkbig (j, '-' == str[0]); + ds = SCM_BDIGITS (res); + for (k = j; k--;) + ds[k] = 0; + do + { + switch (c = str[i++]) + { + case DIGITS: + c = c - '0'; + goto accumulate; + case 'A': + case 'B': + case 'C': + case 'D': + case 'E': + case 'F': + c = c - 'A' + 10; + goto accumulate; + case 'a': + case 'b': + case 'c': + case 'd': + case 'e': + case 'f': + c = c - 'a' + 10; + accumulate: + if (c >= radix) + return SCM_BOOL_F; /* bad digit for radix */ + k = 0; + t2 = c; + moretodo: + while (k < blen) + { +/* printf ("k = %d, blen = %d, t2 = %ld, ds[k] = %d\n", k, blen, t2, ds[k]); */ + t2 += ds[k] * radix; + ds[k++] = SCM_BIGLO (t2); + t2 = SCM_BIGDN (t2); + } + if (blen > j) + scm_num_overflow ("bignum"); + if (t2) + { + blen++; + goto moretodo; + } + break; + default: + return SCM_BOOL_F; /* not a digit */ + } + } + while (i < (unsigned) len); + if (blen * SCM_BITSPERDIG / SCM_CHAR_BIT <= sizeof (SCM)) + if (SCM_INUMP (res = scm_big2inum (res, blen))) + return res; + if (j == blen) + return res; + return scm_adjbig (res, blen); +} + +SCM +scm_istr2flo (char *str, long len, long radix) +{ + register int c, i = 0; + double lead_sgn; + double res = 0.0, tmp = 0.0; + int flg = 0; + int point = 0; + SCM second; + + if (i >= len) + return SCM_BOOL_F; /* zero scm_length */ + + switch (*str) + { /* leading sign */ + case '-': + lead_sgn = -1.0; + i++; + break; + case '+': + lead_sgn = 1.0; + i++; + break; + default: + lead_sgn = 0.0; + } + if (i == len) + return SCM_BOOL_F; /* bad if lone `+' or `-' */ + + if (str[i] == 'i' || str[i] == 'I') + { /* handle `+i' and `-i' */ + if (lead_sgn == 0.0) + return SCM_BOOL_F; /* must have leading sign */ + if (++i < len) + return SCM_BOOL_F; /* `i' not last character */ + return scm_make_complex (0.0, lead_sgn); + } + do + { /* check initial digits */ + switch (c = str[i]) + { + case DIGITS: + c = c - '0'; + goto accum1; + case 'D': + case 'E': + case 'F': + if (radix == 10) + goto out1; /* must be exponent */ + case 'A': + case 'B': + case 'C': + c = c - 'A' + 10; + goto accum1; + case 'd': + case 'e': + case 'f': + if (radix == 10) + goto out1; + case 'a': + case 'b': + case 'c': + c = c - 'a' + 10; + accum1: + if (c >= radix) + return SCM_BOOL_F; /* bad digit for radix */ + res = res * radix + c; + flg = 1; /* res is valid */ + break; + default: + goto out1; + } + } + while (++i < len); + out1: + + /* if true, then we did see a digit above, and res is valid */ + if (i == len) + goto done; + + /* By here, must have seen a digit, + or must have next char be a `.' with radix==10 */ + if (!flg) + if (!(str[i] == '.' && radix == 10)) + return SCM_BOOL_F; + + while (str[i] == '#') + { /* optional sharps */ + res *= radix; + if (++i == len) + goto done; + } + + if (str[i] == '/') + { + while (++i < len) + { + switch (c = str[i]) + { + case DIGITS: + c = c - '0'; + goto accum2; + case 'A': + case 'B': + case 'C': + case 'D': + case 'E': + case 'F': + c = c - 'A' + 10; + goto accum2; + case 'a': + case 'b': + case 'c': + case 'd': + case 'e': + case 'f': + c = c - 'a' + 10; + accum2: + if (c >= radix) + return SCM_BOOL_F; + tmp = tmp * radix + c; + break; + default: + goto out2; + } + } + out2: + if (tmp == 0.0) + return SCM_BOOL_F; /* `slash zero' not allowed */ + if (i < len) + while (str[i] == '#') + { /* optional sharps */ + tmp *= radix; + if (++i == len) + break; + } + res /= tmp; + goto done; + } + + if (str[i] == '.') + { /* decimal point notation */ + if (radix != 10) + return SCM_BOOL_F; /* must be radix 10 */ + while (++i < len) + { + switch (c = str[i]) + { + case DIGITS: + point--; + res = res * 10.0 + c - '0'; + flg = 1; + break; + default: + goto out3; + } + } + out3: + if (!flg) + return SCM_BOOL_F; /* no digits before or after decimal point */ + if (i == len) + goto adjust; + while (str[i] == '#') + { /* ignore remaining sharps */ + if (++i == len) + goto adjust; + } + } + + switch (str[i]) + { /* exponent */ + case 'd': + case 'D': + case 'e': + case 'E': + case 'f': + case 'F': + case 'l': + case 'L': + case 's': + case 'S': + { + int expsgn = 1, expon = 0; + if (radix != 10) + return SCM_BOOL_F; /* only in radix 10 */ + if (++i == len) + return SCM_BOOL_F; /* bad exponent */ + switch (str[i]) + { + case '-': + expsgn = (-1); + case '+': + if (++i == len) + return SCM_BOOL_F; /* bad exponent */ + } + if (str[i] < '0' || str[i] > '9') + return SCM_BOOL_F; /* bad exponent */ + do + { + switch (c = str[i]) + { + case DIGITS: + expon = expon * 10 + c - '0'; + if (expon > SCM_MAXEXP) + return SCM_BOOL_F; /* exponent too large */ + break; + default: + goto out4; + } + } + while (++i < len); + out4: + point += expsgn * expon; + } + } + + adjust: + if (point >= 0) + while (point--) + res *= 10.0; + else +#ifdef _UNICOS + while (point++) + res *= 0.1; +#else + while (point++) + res /= 10.0; +#endif + + done: + /* at this point, we have a legitimate floating point result */ + if (lead_sgn == -1.0) + res = -res; + if (i == len) + return scm_make_real (res); + + if (str[i] == 'i' || str[i] == 'I') + { /* pure imaginary number */ + if (lead_sgn == 0.0) + return SCM_BOOL_F; /* must have leading sign */ + if (++i < len) + return SCM_BOOL_F; /* `i' not last character */ + return scm_make_complex (0.0, res); + } + + switch (str[i++]) + { + case '-': + lead_sgn = -1.0; + break; + case '+': + lead_sgn = 1.0; + break; + case '@': + { /* polar input for complex number */ + /* get a `real' for scm_angle */ + second = scm_istr2flo (&str[i], (long) (len - i), radix); + if (!SCM_SLOPPY_INEXACTP (second)) + return SCM_BOOL_F; /* not `real' */ + if (SCM_SLOPPY_COMPLEXP (second)) + return SCM_BOOL_F; /* not `real' */ + tmp = SCM_REAL_VALUE (second); + return scm_make_complex (res * cos (tmp), res * sin (tmp)); + } + default: + return SCM_BOOL_F; + } + + /* at this point, last char must be `i' */ + if (str[len - 1] != 'i' && str[len - 1] != 'I') + return SCM_BOOL_F; + /* handles `x+i' and `x-i' */ + if (i == (len - 1)) + return scm_make_complex (res, lead_sgn); + /* get a `ureal' for complex part */ + second = scm_istr2flo (&str[i], (long) ((len - i) - 1), radix); + if (!SCM_INEXACTP (second)) + return SCM_BOOL_F; /* not `ureal' */ + if (SCM_SLOPPY_COMPLEXP (second)) + return SCM_BOOL_F; /* not `ureal' */ + tmp = SCM_REAL_VALUE (second); + if (tmp < 0.0) + return SCM_BOOL_F; /* not `ureal' */ + return scm_make_complex (res, (lead_sgn * tmp)); +} + + + +SCM +scm_istring2number (char *str, long len, long radix) +{ + int i = 0; + char ex = 0; + char ex_p = 0, rx_p = 0; /* Only allow 1 exactness and 1 radix prefix */ + SCM res; + if (len == 1) + if (*str == '+' || *str == '-') /* Catches lone `+' and `-' for speed */ + return SCM_BOOL_F; + + while ((len - i) >= 2 && str[i] == '#' && ++i) + switch (str[i++]) + { + case 'b': + case 'B': + if (rx_p++) + return SCM_BOOL_F; + radix = 2; + break; + case 'o': + case 'O': + if (rx_p++) + return SCM_BOOL_F; + radix = 8; + break; + case 'd': + case 'D': + if (rx_p++) + return SCM_BOOL_F; + radix = 10; + break; + case 'x': + case 'X': + if (rx_p++) + return SCM_BOOL_F; + radix = 16; + break; + case 'i': + case 'I': + if (ex_p++) + return SCM_BOOL_F; + ex = 2; + break; + case 'e': + case 'E': + if (ex_p++) + return SCM_BOOL_F; + ex = 1; + break; + default: + return SCM_BOOL_F; + } + + switch (ex) + { + case 1: + return scm_istr2int (&str[i], len - i, radix); + case 0: + res = scm_istr2int (&str[i], len - i, radix); + if (SCM_NFALSEP (res)) + return res; + case 2: + return scm_istr2flo (&str[i], len - i, radix); + } + return SCM_BOOL_F; +} + + +SCM_DEFINE (scm_string_to_number, "string->number", 1, 1, 0, + (SCM string, SCM radix), + "Returns a number of the maximally precise representation\n" + "expressed by the given STRING. RADIX must be an exact integer,\n" + "either 2, 8, 10, or 16. If supplied, RADIX is a default radix\n" + "that may be overridden by an explicit radix prefix in STRING\n" + "(e.g. \"#o177\"). If RADIX is not supplied, then the default\n" + "radix is 10. If string is not a syntactically valid notation\n" + "for a number, then `string->number' returns #f. (r5rs)") +#define FUNC_NAME s_scm_string_to_number +{ + SCM answer; + int base; + SCM_VALIDATE_ROSTRING (1,string); + SCM_VALIDATE_INUM_MIN_DEF_COPY (2,radix,2,10,base); + answer = scm_istring2number (SCM_ROCHARS (string), + SCM_ROLENGTH (string), + base); + return scm_return_first (answer, string); +} +#undef FUNC_NAME +/*** END strs->nums ***/ + + +SCM +scm_make_real (double x) +{ + SCM z; + SCM_NEWCELL2 (z); + SCM_SET_CELL_TYPE (z, scm_tc16_real); + SCM_REAL_VALUE (z) = x; + return z; +} + + +SCM +scm_make_complex (double x, double y) +{ + if (y == 0.0) { + return scm_make_real (x); + } else { + SCM z; + SCM_NEWSMOB (z, scm_tc16_complex, scm_must_malloc (2L * sizeof (double), "complex")); + SCM_COMPLEX_REAL (z) = x; + SCM_COMPLEX_IMAG (z) = y; + return z; + } +} + + +SCM +scm_bigequal (SCM x, SCM y) +{ +#ifdef SCM_BIGDIG + if (0 == scm_bigcomp (x, y)) + return SCM_BOOL_T; +#endif + return SCM_BOOL_F; +} + +SCM +scm_real_equalp (SCM x, SCM y) +{ + return SCM_BOOL (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y)); +} + +SCM +scm_complex_equalp (SCM x, SCM y) +{ + return SCM_BOOL (SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y) + && SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y)); +} + + + +SCM_REGISTER_PROC (s_number_p, "number?", 1, 0, 0, scm_number_p); + +SCM_DEFINE (scm_number_p, "complex?", 1, 0, 0, + (SCM x), + "Return #t if X is a complex number, #f else. Note that the\n" + "sets of real, rational and integer values form subsets of the\n" + "set of complex numbers, i. e. the predicate will also be\n" + "fulfilled if X is a real, rational or integer number.") +#define FUNC_NAME s_scm_number_p +{ + return SCM_BOOL (SCM_NUMBERP (x)); +} +#undef FUNC_NAME + + +SCM_REGISTER_PROC (s_real_p, "real?", 1, 0, 0, scm_real_p); + +SCM_DEFINE (scm_real_p, "rational?", 1, 0, 0, + (SCM x), + "Return #t if X is a rational number, #f else. Note that the\n" + "set of integer values forms a subset of the set of rational\n" + "numbers, i. e. the predicate will also be fulfilled if X is an\n" + "integer number.") +#define FUNC_NAME s_scm_real_p +{ + if (SCM_INUMP (x)) { + return SCM_BOOL_T; + } else if (SCM_IMP (x)) { + return SCM_BOOL_F; + } else if (SCM_SLOPPY_REALP (x)) { + return SCM_BOOL_T; + } else if (SCM_BIGP (x)) { + return SCM_BOOL_T; + } else { + return SCM_BOOL_F; + } +} +#undef FUNC_NAME + + +SCM_DEFINE (scm_integer_p, "integer?", 1, 0, 0, + (SCM x), + "Return #t if X is an integer number, #f else.") +#define FUNC_NAME s_scm_integer_p +{ + double r; + if (SCM_INUMP (x)) + return SCM_BOOL_T; + if (SCM_IMP (x)) + return SCM_BOOL_F; + if (SCM_BIGP (x)) + return SCM_BOOL_T; + if (!SCM_SLOPPY_INEXACTP (x)) + return SCM_BOOL_F; + if (SCM_SLOPPY_COMPLEXP (x)) + return SCM_BOOL_F; + r = SCM_REAL_VALUE (x); + if (r == floor (r)) + return SCM_BOOL_T; + return SCM_BOOL_F; +} +#undef FUNC_NAME + + +SCM_DEFINE (scm_inexact_p, "inexact?", 1, 0, 0, + (SCM x), + "Return #t if X is an inexact number, #f else.") +#define FUNC_NAME s_scm_inexact_p +{ + return SCM_BOOL (SCM_INEXACTP (x)); +} +#undef FUNC_NAME + + +SCM_GPROC1 (s_eq_p, "=", scm_tc7_rpsubr, scm_num_eq_p, g_eq_p); + +SCM +scm_num_eq_p (SCM x, SCM y) +{ + if (SCM_INUMP (x)) { + long xx = SCM_INUM (x); + if (SCM_INUMP (y)) { + long yy = SCM_INUM (y); + return SCM_BOOL (xx == yy); + } else if (SCM_BIGP (y)) { + return SCM_BOOL_F; + } else if (SCM_REALP (y)) { + return SCM_BOOL ((double) xx == SCM_REAL_VALUE (y)); + } else if (SCM_COMPLEXP (y)) { + return SCM_BOOL (((double) xx == SCM_COMPLEX_REAL (y)) + && (0.0 == SCM_COMPLEX_IMAG (y))); + } else { + SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p); + } + } else if (SCM_BIGP (x)) { + if (SCM_INUMP (y)) { + return SCM_BOOL_F; + } else if (SCM_BIGP (y)) { + return SCM_BOOL (0 == scm_bigcomp (x, y)); + } else if (SCM_REALP (y)) { + return SCM_BOOL (scm_big2dbl (x) == SCM_REAL_VALUE (y)); + } else if (SCM_COMPLEXP (y)) { + return SCM_BOOL ((scm_big2dbl (x) == SCM_COMPLEX_REAL (y)) + && (0.0 == SCM_COMPLEX_IMAG (y))); + } else { + SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p); + } + } else if (SCM_REALP (x)) { + if (SCM_INUMP (y)) { + return SCM_BOOL (SCM_REAL_VALUE (x) == (double) SCM_INUM (y)); + } else if (SCM_BIGP (y)) { + return SCM_BOOL (SCM_REAL_VALUE (x) == scm_big2dbl (y)); + } else if (SCM_REALP (y)) { + return SCM_BOOL (SCM_REAL_VALUE (x) == SCM_REAL_VALUE (y)); + } else if (SCM_COMPLEXP (y)) { + return SCM_BOOL ((SCM_REAL_VALUE (x) == SCM_COMPLEX_REAL (y)) + && (0.0 == SCM_COMPLEX_IMAG (y))); + } else { + SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p); + } + } else if (SCM_COMPLEXP (x)) { + if (SCM_INUMP (y)) { + return SCM_BOOL ((SCM_COMPLEX_REAL (x) == (double) SCM_INUM (y)) + && (SCM_COMPLEX_IMAG (x) == 0.0)); + } else if (SCM_BIGP (y)) { + return SCM_BOOL ((SCM_COMPLEX_REAL (x) == scm_big2dbl (y)) + && (SCM_COMPLEX_IMAG (x) == 0.0)); + } else if (SCM_REALP (y)) { + return SCM_BOOL ((SCM_COMPLEX_REAL (x) == SCM_REAL_VALUE (y)) + && (SCM_COMPLEX_IMAG (x) == 0.0)); + } else if (SCM_COMPLEXP (y)) { + return SCM_BOOL ((SCM_COMPLEX_REAL (x) == SCM_COMPLEX_REAL (y)) + && (SCM_COMPLEX_IMAG (x) == SCM_COMPLEX_IMAG (y))); + } else { + SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARGn, s_eq_p); + } + } else { + SCM_WTA_DISPATCH_2 (g_eq_p, x, y, SCM_ARG1, s_eq_p); + } +} + + +SCM_GPROC1 (s_less_p, "<", scm_tc7_rpsubr, scm_less_p, g_less_p); + +SCM +scm_less_p (SCM x, SCM y) +{ + if (SCM_INUMP (x)) { + long xx = SCM_INUM (x); + if (SCM_INUMP (y)) { + long yy = SCM_INUM (y); + return SCM_BOOL (xx < yy); + } else if (SCM_BIGP (y)) { + return SCM_BOOL (!SCM_BIGSIGN (y)); + } else if (SCM_REALP (y)) { + return SCM_BOOL ((double) xx < SCM_REAL_VALUE (y)); + } else { + SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p); + } + } else if (SCM_BIGP (x)) { + if (SCM_INUMP (y)) { + return SCM_BOOL (SCM_BIGSIGN (x)); + } else if (SCM_BIGP (y)) { + return SCM_BOOL (1 == scm_bigcomp (x, y)); + } else if (SCM_REALP (y)) { + return SCM_BOOL (scm_big2dbl (x) < SCM_REAL_VALUE (y)); + } else { + SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p); + } + } else if (SCM_REALP (x)) { + if (SCM_INUMP (y)) { + return SCM_BOOL (SCM_REAL_VALUE (x) < (double) SCM_INUM (y)); + } else if (SCM_BIGP (y)) { + return SCM_BOOL (SCM_REAL_VALUE (x) < scm_big2dbl (y)); + } else if (SCM_REALP (y)) { + return SCM_BOOL (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y)); + } else { + SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARGn, s_less_p); + } + } else { + SCM_WTA_DISPATCH_2 (g_less_p, x, y, SCM_ARG1, s_less_p); + } +} + + +SCM_DEFINE1 (scm_gr_p, ">", scm_tc7_rpsubr, + (SCM x, SCM y), + "Return #t if the list of parameters is monotonically\n" + "increasing.") +#define FUNC_NAME s_scm_gr_p +{ + return scm_less_p (y, x); +} +#undef FUNC_NAME + + +SCM_DEFINE1 (scm_leq_p, "<=", scm_tc7_rpsubr, + (SCM x, SCM y), + "Return #t if the list of parameters is monotonically\n" + "non-decreasing.") +#define FUNC_NAME s_scm_leq_p +{ + return SCM_BOOL_NOT (scm_less_p (y, x)); +} +#undef FUNC_NAME + + +SCM_DEFINE1 (scm_geq_p, ">=", scm_tc7_rpsubr, + (SCM x, SCM y), + "Return #t if the list of parameters is monotonically\n" + "non-increasing.") +#define FUNC_NAME s_scm_geq_p +{ + return SCM_BOOL_NOT (scm_less_p (x, y)); +} +#undef FUNC_NAME + + +SCM_GPROC (s_zero_p, "zero?", 1, 0, 0, scm_zero_p, g_zero_p); + +SCM +scm_zero_p (SCM z) +{ + if (SCM_INUMP (z)) { + return SCM_BOOL (SCM_EQ_P (z, SCM_INUM0)); + } else if (SCM_BIGP (z)) { + return SCM_BOOL_F; + } else if (SCM_REALP (z)) { + return SCM_BOOL (SCM_REAL_VALUE (z) == 0.0); + } else if (SCM_COMPLEXP (z)) { + return SCM_BOOL (SCM_COMPLEX_REAL (z) == 0.0 + && SCM_COMPLEX_IMAG (z) == 0.0); + } else { + SCM_WTA_DISPATCH_1 (g_zero_p, z, SCM_ARG1, s_zero_p); + } +} + + +SCM_GPROC (s_positive_p, "positive?", 1, 0, 0, scm_positive_p, g_positive_p); + +SCM +scm_positive_p (SCM x) +{ + if (SCM_INUMP (x)) { + return SCM_BOOL (SCM_INUM (x) > 0); + } else if (SCM_BIGP (x)) { + return SCM_BOOL (!SCM_BIGSIGN (x)); + } else if (SCM_REALP (x)) { + return SCM_BOOL(SCM_REAL_VALUE (x) > 0.0); + } else { + SCM_WTA_DISPATCH_1 (g_positive_p, x, SCM_ARG1, s_positive_p); + } +} + + +SCM_GPROC (s_negative_p, "negative?", 1, 0, 0, scm_negative_p, g_negative_p); + +SCM +scm_negative_p (SCM x) +{ + if (SCM_INUMP (x)) { + return SCM_BOOL (SCM_INUM (x) < 0); + } else if (SCM_BIGP (x)) { + return SCM_BOOL (SCM_BIGSIGN (x)); + } else if (SCM_REALP (x)) { + return SCM_BOOL(SCM_REAL_VALUE (x) < 0.0); + } else { + SCM_WTA_DISPATCH_1 (g_negative_p, x, SCM_ARG1, s_negative_p); + } +} + + +SCM_GPROC1 (s_max, "max", scm_tc7_asubr, scm_max, g_max); + +SCM +scm_max (SCM x, SCM y) +{ + if (SCM_UNBNDP (y)) { + if (SCM_UNBNDP (x)) { + SCM_WTA_DISPATCH_0 (g_max, x, SCM_ARG1, s_max); + } else if (SCM_NUMBERP (x)) { + return x; + } else { + SCM_WTA_DISPATCH_1 (g_max, x, SCM_ARG1, s_max); + } + } + + if (SCM_INUMP (x)) { + long xx = SCM_INUM (x); + if (SCM_INUMP (y)) { + long yy = SCM_INUM (y); + return (xx < yy) ? y : x; + } else if (SCM_BIGP (y)) { + return SCM_BIGSIGN (y) ? x : y; + } else if (SCM_REALP (y)) { + double z = xx; + return (z <= SCM_REAL_VALUE (y)) ? y : scm_make_real (z); + } else { + SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max); + } + } else if (SCM_BIGP (x)) { + if (SCM_INUMP (y)) { + return SCM_BIGSIGN (x) ? y : x; + } else if (SCM_BIGP (y)) { + return (1 == scm_bigcomp (x, y)) ? y : x; + } else if (SCM_REALP (y)) { + double z = scm_big2dbl (x); + return (z <= SCM_REAL_VALUE (y)) ? y : scm_make_real (z); + } else { + SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max); + } + } else if (SCM_REALP (x)) { + if (SCM_INUMP (y)) { + double z = SCM_INUM (y); + return (SCM_REAL_VALUE (x) < z) ? scm_make_real (z) : x; + } else if (SCM_BIGP (y)) { + double z = scm_big2dbl (y); + return (SCM_REAL_VALUE (x) < z) ? scm_make_real (z) : x; + } else if (SCM_REALP (y)) { + return (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y)) ? y : x; + } else { + SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARGn, s_max); + } + } else { + SCM_WTA_DISPATCH_2 (g_max, x, y, SCM_ARG1, s_max); + } +} + + +SCM_GPROC1 (s_min, "min", scm_tc7_asubr, scm_min, g_min); + +SCM +scm_min (SCM x, SCM y) +{ + if (SCM_UNBNDP (y)) { + if (SCM_UNBNDP (x)) { + SCM_WTA_DISPATCH_0 (g_min, x, SCM_ARG1, s_min); + } else if (SCM_NUMBERP (x)) { + return x; + } else { + SCM_WTA_DISPATCH_1 (g_min, x, SCM_ARG1, s_min); + } + } + + if (SCM_INUMP (x)) { + long xx = SCM_INUM (x); + if (SCM_INUMP (y)) { + long yy = SCM_INUM (y); + return (xx < yy) ? x : y; + } else if (SCM_BIGP (y)) { + return SCM_BIGSIGN (y) ? y : x; + } else if (SCM_REALP (y)) { + double z = xx; + return (z < SCM_REAL_VALUE (y)) ? scm_make_real (z) : y; + } else { + SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min); + } + } else if (SCM_BIGP (x)) { + if (SCM_INUMP (y)) { + return SCM_BIGSIGN (x) ? x : y; + } else if (SCM_BIGP (y)) { + return (-1 == scm_bigcomp (x, y)) ? y : x; + } else if (SCM_REALP (y)) { + double z = scm_big2dbl (x); + return (z < SCM_REAL_VALUE (y)) ? scm_make_real (z) : y; + } else { + SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min); + } + } else if (SCM_REALP (x)) { + if (SCM_INUMP (y)) { + double z = SCM_INUM (y); + return (SCM_REAL_VALUE (x) <= z) ? x : scm_make_real (z); + } else if (SCM_BIGP (y)) { + double z = scm_big2dbl (y); + return (SCM_REAL_VALUE (x) <= z) ? x : scm_make_real (z); + } else if (SCM_REALP (y)) { + return (SCM_REAL_VALUE (x) < SCM_REAL_VALUE (y)) ? x : y; + } else { + SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARGn, s_min); + } + } else { + SCM_WTA_DISPATCH_2 (g_min, x, y, SCM_ARG1, s_min); + } +} + + +SCM_GPROC1 (s_sum, "+", scm_tc7_asubr, scm_sum, g_sum); + +SCM +scm_sum (SCM x, SCM y) +{ + if (SCM_UNBNDP (y)) { + if (SCM_UNBNDP (x)) { + return SCM_INUM0; + } else if (SCM_NUMBERP (x)) { + return x; + } else { + SCM_WTA_DISPATCH_1 (g_sum, x, SCM_ARG1, s_sum); + } + } + + if (SCM_INUMP (x)) { + long int xx = SCM_INUM (x); + if (SCM_INUMP (y)) { + long int yy = SCM_INUM (y); + long int z = xx + yy; + if (SCM_FIXABLE (z)) { + return SCM_MAKINUM (z); + } else { +#ifdef SCM_BIGDIG + return scm_long2big (z); +#else /* SCM_BIGDIG */ + return scm_make_real ((double) z); +#endif /* SCM_BIGDIG */ + } + } else if (SCM_BIGP (y)) { + intbig: + { + long int xx = SCM_INUM (x); +#ifndef SCM_DIGSTOOBIG + long z = scm_pseudolong (xx); + return scm_addbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG, + (xx < 0) ? SCM_BIGSIGNFLAG : 0, y, 0); +#else /* SCM_DIGSTOOBIG */ + SCM_BIGDIG zdigs [SCM_DIGSPERLONG]; + scm_longdigs (xx, zdigs); + return scm_addbig (zdigs, SCM_DIGSPERLONG, + (xx < 0) ? SCM_BIGSIGNFLAG : 0, y, 0); +#endif /* SCM_DIGSTOOBIG */ + } + } else if (SCM_REALP (y)) { + return scm_make_real (xx + SCM_REAL_VALUE (y)); + } else if (SCM_COMPLEXP (y)) { + return scm_make_complex (xx + SCM_COMPLEX_REAL (y), + SCM_COMPLEX_IMAG (y)); + } else { + SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum); + } + } else if (SCM_BIGP (x)) { + if (SCM_INUMP (y)) { + SCM_SWAP (x, y); + goto intbig; + } else if (SCM_BIGP (y)) { + if (SCM_NUMDIGS (x) > SCM_NUMDIGS (y)) { + SCM_SWAP (x, y); + } + return scm_addbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), + SCM_BIGSIGN (x), y, 0); + } else if (SCM_REALP (y)) { + return scm_make_real (scm_big2dbl (x) + SCM_REAL_VALUE (y)); + } else if (SCM_COMPLEXP (y)) { + return scm_make_complex (scm_big2dbl (x) + SCM_COMPLEX_REAL (y), + SCM_COMPLEX_IMAG (y)); + } else { + SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum); + } + } else if (SCM_REALP (x)) { + if (SCM_INUMP (y)) { + return scm_make_real (SCM_REAL_VALUE (x) + SCM_INUM (y)); + } else if (SCM_BIGP (y)) { + return scm_make_real (SCM_REAL_VALUE (x) + scm_big2dbl (y)); + } else if (SCM_REALP (y)) { + return scm_make_real (SCM_REAL_VALUE (x) + SCM_REAL_VALUE (y)); + } else if (SCM_COMPLEXP (y)) { + return scm_make_complex (SCM_REAL_VALUE (x) + SCM_COMPLEX_REAL (y), + SCM_COMPLEX_IMAG (y)); + } else { + SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum); + } + } else if (SCM_COMPLEXP (x)) { + if (SCM_INUMP (y)) { + return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_INUM (y), + SCM_COMPLEX_IMAG (x)); + } else if (SCM_BIGP (y)) { + return scm_make_complex (SCM_COMPLEX_REAL (x) + scm_big2dbl (y), + SCM_COMPLEX_IMAG (x)); + } else if (SCM_REALP (y)) { + return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_REAL_VALUE (y), + SCM_COMPLEX_IMAG (x)); + } else if (SCM_COMPLEXP (y)) { + return scm_make_complex (SCM_COMPLEX_REAL (x) + SCM_COMPLEX_REAL (y), + SCM_COMPLEX_IMAG (x) + SCM_COMPLEX_IMAG (y)); + } else { + SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARGn, s_sum); + } + } else { + SCM_WTA_DISPATCH_2 (g_sum, x, y, SCM_ARG1, s_sum); + } +} + + +SCM_GPROC1 (s_difference, "-", scm_tc7_asubr, scm_difference, g_difference); + +SCM +scm_difference (SCM x, SCM y) +{ + if (SCM_UNBNDP (y)) { + if (SCM_INUMP (x)) { + long xx = -SCM_INUM (x); + if (SCM_FIXABLE (xx)) { + return SCM_MAKINUM (xx); + } else { +#ifdef SCM_BIGDIG + return scm_long2big (xx); +#else + return scm_make_real ((double) xx); +#endif + } + } else if (SCM_BIGP (x)) { + SCM z = scm_copybig (x, !SCM_BIGSIGN (x)); + unsigned int digs = SCM_NUMDIGS (z); + unsigned int size = digs * SCM_BITSPERDIG / SCM_CHAR_BIT; + return size <= sizeof (SCM) ? scm_big2inum (z, digs) : z; + } else if (SCM_REALP (x)) { + return scm_make_real (-SCM_REAL_VALUE (x)); + } else if (SCM_COMPLEXP (x)) { + return scm_make_complex (-SCM_COMPLEX_REAL (x), -SCM_COMPLEX_IMAG (x)); + } else { + SCM_WTA_DISPATCH_1 (g_difference, x, SCM_ARG1, s_difference); + } + } + + if (SCM_INUMP (x)) { + long int xx = SCM_INUM (x); + if (SCM_INUMP (y)) { + long int yy = SCM_INUM (y); + long int z = xx - yy; + if (SCM_FIXABLE (z)) { + return SCM_MAKINUM (z); + } else { +#ifdef SCM_BIGDIG + return scm_long2big (z); +#else + return scm_make_real ((double) z); +#endif + } + } else if (SCM_BIGP (y)) { +#ifndef SCM_DIGSTOOBIG + long z = scm_pseudolong (xx); + return scm_addbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG, + (xx < 0) ? SCM_BIGSIGNFLAG : 0, y, SCM_BIGSIGNFLAG); +#else + SCM_BIGDIG zdigs [SCM_DIGSPERLONG]; + scm_longdigs (xx, zdigs); + return scm_addbig (zdigs, SCM_DIGSPERLONG, + (xx < 0) ? SCM_BIGSIGNFLAG : 0, y, SCM_BIGSIGNFLAG); +#endif + } else if (SCM_REALP (y)) { + return scm_make_real (xx - SCM_REAL_VALUE (y)); + } else if (SCM_COMPLEXP (y)) { + return scm_make_complex (xx - SCM_COMPLEX_REAL (y), + -SCM_COMPLEX_IMAG (y)); + } else { + SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference); + } + } else if (SCM_BIGP (x)) { + if (SCM_INUMP (y)) { + long int yy = SCM_INUM (y); +#ifndef SCM_DIGSTOOBIG + long z = scm_pseudolong (yy); + return scm_addbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG, + (yy < 0) ? 0 : SCM_BIGSIGNFLAG, x, 0); +#else + SCM_BIGDIG zdigs [SCM_DIGSPERLONG]; + scm_longdigs (yy, zdigs); + return scm_addbig (zdigs, SCM_DIGSPERLONG, + (yy < 0) ? 0 : SCM_BIGSIGNFLAG, x, 0); +#endif + } else if (SCM_BIGP (y)) { + return (SCM_NUMDIGS (x) < SCM_NUMDIGS (y)) + ? scm_addbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), + SCM_BIGSIGN (x), y, SCM_BIGSIGNFLAG) + : scm_addbig (SCM_BDIGITS (y), SCM_NUMDIGS (y), + SCM_BIGSIGN (y) ^ SCM_BIGSIGNFLAG, x, 0); + } else if (SCM_REALP (y)) { + return scm_make_real (scm_big2dbl (x) - SCM_REAL_VALUE (y)); + } else if (SCM_COMPLEXP (y)) { + return scm_make_complex (scm_big2dbl (x) - SCM_COMPLEX_REAL (y), + - SCM_COMPLEX_IMAG (y)); + } else { + SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference); + } + } else if (SCM_REALP (x)) { + if (SCM_INUMP (y)) { + return scm_make_real (SCM_REAL_VALUE (x) - SCM_INUM (y)); + } else if (SCM_BIGP (y)) { + return scm_make_real (SCM_REAL_VALUE (x) - scm_big2dbl (y)); + } else if (SCM_REALP (y)) { + return scm_make_real (SCM_REAL_VALUE (x) - SCM_REAL_VALUE (y)); + } else if (SCM_COMPLEXP (y)) { + return scm_make_complex (SCM_REAL_VALUE (x) - SCM_COMPLEX_REAL (y), + -SCM_COMPLEX_IMAG (y)); + } else { + SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference); + } + } else if (SCM_COMPLEXP (x)) { + if (SCM_INUMP (y)) { + return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_INUM (y), + SCM_COMPLEX_IMAG (x)); + } else if (SCM_BIGP (y)) { + return scm_make_complex (SCM_COMPLEX_REAL (x) - scm_big2dbl (y), + SCM_COMPLEX_IMAG (x)); + } else if (SCM_REALP (y)) { + return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_REAL_VALUE (y), + SCM_COMPLEX_IMAG (x)); + } else if (SCM_COMPLEXP (y)) { + return scm_make_complex (SCM_COMPLEX_REAL (x) - SCM_COMPLEX_REAL (y), + SCM_COMPLEX_IMAG (x) - SCM_COMPLEX_IMAG (y)); + } else { + SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARGn, s_difference); + } + } else { + SCM_WTA_DISPATCH_2 (g_difference, x, y, SCM_ARG1, s_difference); + } +} + + +SCM_GPROC1 (s_product, "*", scm_tc7_asubr, scm_product, g_product); + +SCM +scm_product (SCM x, SCM y) +{ + if (SCM_UNBNDP (y)) { + if (SCM_UNBNDP (x)) { + return SCM_MAKINUM (1L); + } else if (SCM_NUMBERP (x)) { + return x; + } else { + SCM_WTA_DISPATCH_1 (g_product, x, SCM_ARG1, s_product); + } + } + + if (SCM_INUMP (x)) { + long xx; + + intbig: + xx = SCM_INUM (x); + + if (xx == 0) { + return x; + } else if (xx == 1) { + return y; + } + + if (SCM_INUMP (y)) { + long yy = SCM_INUM (y); + long kk = xx * yy; + SCM k = SCM_MAKINUM (kk); + if (kk != SCM_INUM (k) || kk / xx != yy) { +#ifdef SCM_BIGDIG + int sgn = (xx < 0) ^ (yy < 0); +#ifndef SCM_DIGSTOOBIG + long i = scm_pseudolong (xx); + long j = scm_pseudolong (yy); + return scm_mulbig ((SCM_BIGDIG *) & i, SCM_DIGSPERLONG, + (SCM_BIGDIG *) & j, SCM_DIGSPERLONG, sgn); +#else /* SCM_DIGSTOOBIG */ + SCM_BIGDIG xdigs [SCM_DIGSPERLONG]; + SCM_BIGDIG ydigs [SCM_DIGSPERLONG]; + scm_longdigs (xx, xdigs); + scm_longdigs (yy, ydigs); + return scm_mulbig (xdigs, SCM_DIGSPERLONG, + ydigs, SCM_DIGSPERLONG, + sgn); +#endif +#else + return scm_make_real (((double) xx) * ((double) yy)); +#endif + } else { + return k; + } + } else if (SCM_BIGP (y)) { +#ifndef SCM_DIGSTOOBIG + long z = scm_pseudolong (xx); + return scm_mulbig ((SCM_BIGDIG *) & z, SCM_DIGSPERLONG, + SCM_BDIGITS (y), SCM_NUMDIGS (y), + SCM_BIGSIGN (y) ? (xx > 0) : (xx < 0)); +#else + SCM_BIGDIG zdigs [SCM_DIGSPERLONG]; + scm_longdigs (xx, zdigs); + return scm_mulbig (zdigs, SCM_DIGSPERLONG, + SCM_BDIGITS (y), SCM_NUMDIGS (y), + SCM_BIGSIGN (y) ? (xx > 0) : (xx < 0)); +#endif + } else if (SCM_REALP (y)) { + return scm_make_real (xx * SCM_REAL_VALUE (y)); + } else if (SCM_COMPLEXP (y)) { + return scm_make_complex (xx * SCM_COMPLEX_REAL (y), + xx * SCM_COMPLEX_IMAG (y)); + } else { + SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product); + } + } else if (SCM_BIGP (x)) { + if (SCM_INUMP (y)) { + SCM_SWAP (x, y); + goto intbig; + } else if (SCM_BIGP (y)) { + return scm_mulbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), + SCM_BDIGITS (y), SCM_NUMDIGS (y), + SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y)); + } else if (SCM_REALP (y)) { + return scm_make_real (scm_big2dbl (x) * SCM_REAL_VALUE (y)); + } else if (SCM_COMPLEXP (y)) { + double z = scm_big2dbl (x); + return scm_make_complex (z * SCM_COMPLEX_REAL (y), + z * SCM_COMPLEX_IMAG (y)); + } else { + SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product); + } + } else if (SCM_REALP (x)) { + if (SCM_INUMP (y)) { + return scm_make_real (SCM_INUM (y) * SCM_REAL_VALUE (x)); + } else if (SCM_BIGP (y)) { + return scm_make_real (scm_big2dbl (y) * SCM_REAL_VALUE (x)); + } else if (SCM_REALP (y)) { + return scm_make_real (SCM_REAL_VALUE (x) * SCM_REAL_VALUE (y)); + } else if (SCM_COMPLEXP (y)) { + return scm_make_complex (SCM_REAL_VALUE (x) * SCM_COMPLEX_REAL (y), + SCM_REAL_VALUE (x) * SCM_COMPLEX_IMAG (y)); + } else { + SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product); + } + } else if (SCM_COMPLEXP (x)) { + if (SCM_INUMP (y)) { + return scm_make_complex (SCM_INUM (y) * SCM_COMPLEX_REAL (x), + SCM_INUM (y) * SCM_COMPLEX_IMAG (x)); + } else if (SCM_BIGP (y)) { + double z = scm_big2dbl (y); + return scm_make_complex (z * SCM_COMPLEX_REAL (x), + z * SCM_COMPLEX_IMAG (x)); + } else if (SCM_REALP (y)) { + return scm_make_complex (SCM_REAL_VALUE (y) * SCM_COMPLEX_REAL (x), + SCM_REAL_VALUE (y) * SCM_COMPLEX_IMAG (x)); + } else if (SCM_COMPLEXP (y)) { + return scm_make_complex (SCM_COMPLEX_REAL (x) * SCM_COMPLEX_REAL (y) + - SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_IMAG (y), + SCM_COMPLEX_REAL (x) * SCM_COMPLEX_IMAG (y) + + SCM_COMPLEX_IMAG (x) * SCM_COMPLEX_REAL (y)); + } else { + SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARGn, s_product); + } + } else { + SCM_WTA_DISPATCH_2 (g_product, x, y, SCM_ARG1, s_product); + } +} + + +double +scm_num2dbl (SCM a, const char *why) +#define FUNC_NAME why +{ + if (SCM_INUMP (a)) { + return (double) SCM_INUM (a); + } else if (SCM_BIGP (a)) { + return scm_big2dbl (a); + } else if (SCM_REALP (a)) { + return (SCM_REAL_VALUE (a)); + } else { + SCM_WRONG_TYPE_ARG (SCM_ARGn, a); + } +} +#undef FUNC_NAME + + +SCM_GPROC1 (s_divide, "/", scm_tc7_asubr, scm_divide, g_divide); + +SCM +scm_divide (SCM x, SCM y) +{ + double a; + + if (SCM_UNBNDP (y)) { + if (SCM_UNBNDP (x)) { + SCM_WTA_DISPATCH_0 (g_divide, x, SCM_ARG1, s_divide); + } else if (SCM_INUMP (x)) { + if (SCM_EQ_P (x, SCM_MAKINUM (1L)) || SCM_EQ_P (x, SCM_MAKINUM (-1L))) { + return x; + } else { + return scm_make_real (1.0 / (double) SCM_INUM (x)); + } + } else if (SCM_BIGP (x)) { + return scm_make_real (1.0 / scm_big2dbl (x)); + } else if (SCM_REALP (x)) { + return scm_make_real (1.0 / SCM_REAL_VALUE (x)); + } else if (SCM_COMPLEXP (x)) { + double r = SCM_COMPLEX_REAL (x); + double i = SCM_COMPLEX_IMAG (x); + double d = r * r + i * i; + return scm_make_complex (r / d, -i / d); + } else { + SCM_WTA_DISPATCH_1 (g_divide, x, SCM_ARG1, s_divide); + } + } + + if (SCM_INUMP (x)) { + long xx = SCM_INUM (x); + if (SCM_INUMP (y)) { + long yy = SCM_INUM (y); + if (yy == 0) { + scm_num_overflow (s_divide); + } else if (xx % yy != 0) { + return scm_make_real ((double) xx / (double) yy); + } else { + long z = xx / yy; + if (SCM_FIXABLE (z)) { + return SCM_MAKINUM (z); + } else { +#ifdef SCM_BIGDIG + return scm_long2big (z); +#else + return scm_make_real ((double) xx / (double) yy); +#endif + } + } + } else if (SCM_BIGP (y)) { + return scm_make_real ((double) xx / scm_big2dbl (y)); + } else if (SCM_REALP (y)) { + return scm_make_real ((double) xx / SCM_REAL_VALUE (y)); + } else if (SCM_COMPLEXP (y)) { + a = xx; + complex_div: /* y _must_ be a complex number */ + { + double r = SCM_COMPLEX_REAL (y); + double i = SCM_COMPLEX_IMAG (y); + double d = r * r + i * i; + return scm_make_complex ((a * r) / d, (-a * i) / d); + } + } else { + SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide); + } + } else if (SCM_BIGP (x)) { + if (SCM_INUMP (y)) { + long int yy = SCM_INUM (y); + if (yy == 0) { + scm_num_overflow (s_divide); + } else if (yy == 1) { + return x; + } else { + long z = yy < 0 ? -yy : yy; + if (z < SCM_BIGRAD) { + SCM w = scm_copybig (x, SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0)); + return scm_divbigdig (SCM_BDIGITS (w), SCM_NUMDIGS (w), + (SCM_BIGDIG) z) + ? scm_make_real (scm_big2dbl (x) / (double) yy) + : scm_normbig (w); + } else { + SCM w; +#ifndef SCM_DIGSTOOBIG + z = scm_pseudolong (z); + w = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), + (SCM_BIGDIG *) & z, SCM_DIGSPERLONG, + SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0), 3); +#else + SCM_BIGDIG zdigs[SCM_DIGSPERLONG]; + scm_longdigs (z, zdigs); + w = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), + zdigs, SCM_DIGSPERLONG, + SCM_BIGSIGN (x) ? (yy > 0) : (yy < 0), 3); +#endif + return (!SCM_UNBNDP (w)) + ? w + : scm_make_real (scm_big2dbl (x) / (double) yy); + } + } + } else if (SCM_BIGP (y)) { + SCM w = scm_divbigbig (SCM_BDIGITS (x), SCM_NUMDIGS (x), + SCM_BDIGITS (y), SCM_NUMDIGS (y), + SCM_BIGSIGN (x) ^ SCM_BIGSIGN (y), 3); + return (!SCM_UNBNDP (w)) + ? w + : scm_make_real (scm_big2dbl (x) / scm_big2dbl (y)); + } else if (SCM_REALP (y)) { + return scm_make_real (scm_big2dbl (x) / SCM_REAL_VALUE (y)); + } else if (SCM_COMPLEXP (y)) { + a = scm_big2dbl (x); + goto complex_div; + } else { + SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide); + } + } else if (SCM_REALP (x)) { + double rx = SCM_REAL_VALUE (x); + if (SCM_INUMP (y)) { + return scm_make_real (rx / (double) SCM_INUM (y)); + } else if (SCM_BIGP (y)) { + return scm_make_real (rx / scm_big2dbl (y)); + } else if (SCM_REALP (y)) { + return scm_make_real (rx / SCM_REAL_VALUE (y)); + } else if (SCM_COMPLEXP (y)) { + a = rx; + goto complex_div; + } else { + SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide); + } + } else if (SCM_COMPLEXP (x)) { + double rx = SCM_COMPLEX_REAL (x); + double ix = SCM_COMPLEX_IMAG (x); + if (SCM_INUMP (y)) { + double d = SCM_INUM (y); + return scm_make_complex (rx / d, ix / d); + } else if (SCM_BIGP (y)) { + double d = scm_big2dbl (y); + return scm_make_complex (rx / d, ix / d); + } else if (SCM_REALP (y)) { + double d = SCM_REAL_VALUE (y); + return scm_make_complex (rx / d, ix / d); + } else if (SCM_COMPLEXP (y)) { + double ry = SCM_COMPLEX_REAL (y); + double iy = SCM_COMPLEX_IMAG (y); + double d = ry * ry + iy * iy; + return scm_make_complex ((rx * ry + ix * iy) / d, + (ix * ry - rx * iy) / d); + } else { + SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARGn, s_divide); + } + } else { + SCM_WTA_DISPATCH_2 (g_divide, x, y, SCM_ARG1, s_divide); + } +} + + +SCM_GPROC1 (s_asinh, "$asinh", scm_tc7_cxr, (SCM (*)()) scm_asinh, g_asinh); + +double +scm_asinh (double x) +{ + return log (x + sqrt (x * x + 1)); +} + + + + +SCM_GPROC1 (s_acosh, "$acosh", scm_tc7_cxr, (SCM (*)()) scm_acosh, g_acosh); + +double +scm_acosh (double x) +{ + return log (x + sqrt (x * x - 1)); +} + + + + +SCM_GPROC1 (s_atanh, "$atanh", scm_tc7_cxr, (SCM (*)()) scm_atanh, g_atanh); + +double +scm_atanh (double x) +{ + return 0.5 * log ((1 + x) / (1 - x)); +} + + + + +SCM_GPROC1 (s_truncate, "truncate", scm_tc7_cxr, (SCM (*)()) scm_truncate, g_truncate); + +double +scm_truncate (double x) +{ + if (x < 0.0) + return -floor (-x); + return floor (x); +} + + + +SCM_GPROC1 (s_round, "round", scm_tc7_cxr, (SCM (*)()) scm_round, g_round); + +double +scm_round (double x) +{ + double plus_half = x + 0.5; + double result = floor (plus_half); + /* Adjust so that the scm_round is towards even. */ + return (plus_half == result && plus_half / 2 != floor (plus_half / 2)) + ? result - 1 : result; +} + + + +SCM_GPROC1 (s_exact_to_inexact, "exact->inexact", scm_tc7_cxr, (SCM (*)()) scm_exact_to_inexact, g_exact_to_inexact); + +double +scm_exact_to_inexact (double z) +{ + return z; +} + + +SCM_GPROC1 (s_i_floor, "floor", scm_tc7_cxr, (SCM (*)()) floor, g_i_floor); +SCM_GPROC1 (s_i_ceil, "ceiling", scm_tc7_cxr, (SCM (*)()) ceil, g_i_ceil); +SCM_GPROC1 (s_i_sqrt, "$sqrt", scm_tc7_cxr, (SCM (*)()) sqrt, g_i_sqrt); +SCM_GPROC1 (s_i_abs, "$abs", scm_tc7_cxr, (SCM (*)()) fabs, g_i_abs); +SCM_GPROC1 (s_i_exp, "$exp", scm_tc7_cxr, (SCM (*)()) exp, g_i_exp); +SCM_GPROC1 (s_i_log, "$log", scm_tc7_cxr, (SCM (*)()) log, g_i_log); +SCM_GPROC1 (s_i_sin, "$sin", scm_tc7_cxr, (SCM (*)()) sin, g_i_sin); +SCM_GPROC1 (s_i_cos, "$cos", scm_tc7_cxr, (SCM (*)()) cos, g_i_cos); +SCM_GPROC1 (s_i_tan, "$tan", scm_tc7_cxr, (SCM (*)()) tan, g_i_tan); +SCM_GPROC1 (s_i_asin, "$asin", scm_tc7_cxr, (SCM (*)()) asin, g_i_asin); +SCM_GPROC1 (s_i_acos, "$acos", scm_tc7_cxr, (SCM (*)()) acos, g_i_acos); +SCM_GPROC1 (s_i_atan, "$atan", scm_tc7_cxr, (SCM (*)()) atan, g_i_atan); +SCM_GPROC1 (s_i_sinh, "$sinh", scm_tc7_cxr, (SCM (*)()) sinh, g_i_sinh); +SCM_GPROC1 (s_i_cosh, "$cosh", scm_tc7_cxr, (SCM (*)()) cosh, g_i_cosh); +SCM_GPROC1 (s_i_tanh, "$tanh", scm_tc7_cxr, (SCM (*)()) tanh, g_i_tanh); + +struct dpair +{ + double x, y; +}; + +static void scm_two_doubles (SCM z1, + SCM z2, + const char *sstring, + struct dpair * xy); + +static void +scm_two_doubles (SCM z1, SCM z2, const char *sstring, struct dpair *xy) +{ + if (SCM_INUMP (z1)) { + xy->x = SCM_INUM (z1); + } else if (SCM_BIGP (z1)) { + xy->x = scm_big2dbl (z1); + } else if (SCM_REALP (z1)) { + xy->x = SCM_REAL_VALUE (z1); + } else { + scm_wrong_type_arg (sstring, SCM_ARG1, z1); + } + + if (SCM_INUMP (z2)) { + xy->y = SCM_INUM (z2); + } else if (SCM_BIGP (z2)) { + xy->y = scm_big2dbl (z2); + } else if (SCM_REALP (z2)) { + xy->y = SCM_REAL_VALUE (z2); + } else { + scm_wrong_type_arg (sstring, SCM_ARG2, z2); + } +} + + +SCM_DEFINE (scm_sys_expt, "$expt", 2, 0, 0, + (SCM z1, SCM z2), + "") +#define FUNC_NAME s_scm_sys_expt +{ + struct dpair xy; + scm_two_doubles (z1, z2, FUNC_NAME, &xy); + return scm_make_real (pow (xy.x, xy.y)); +} +#undef FUNC_NAME + + +SCM_DEFINE (scm_sys_atan2, "$atan2", 2, 0, 0, + (SCM z1, SCM z2), + "") +#define FUNC_NAME s_scm_sys_atan2 +{ + struct dpair xy; + scm_two_doubles (z1, z2, FUNC_NAME, &xy); + return scm_make_real (atan2 (xy.x, xy.y)); +} +#undef FUNC_NAME + + +SCM_DEFINE (scm_make_rectangular, "make-rectangular", 2, 0, 0, + (SCM real, SCM imaginary), + "Return a complex number constructed of the given REAL and\n" + "IMAGINARY parts.") +#define FUNC_NAME s_scm_make_rectangular +{ + struct dpair xy; + scm_two_doubles (real, imaginary, FUNC_NAME, &xy); + return scm_make_complex (xy.x, xy.y); +} +#undef FUNC_NAME + + + +SCM_DEFINE (scm_make_polar, "make-polar", 2, 0, 0, + (SCM z1, SCM z2), + "Return the complex number Z1 * e^(i * Z2).") +#define FUNC_NAME s_scm_make_polar +{ + struct dpair xy; + scm_two_doubles (z1, z2, FUNC_NAME, &xy); + return scm_make_complex (xy.x * cos (xy.y), xy.x * sin (xy.y)); +} +#undef FUNC_NAME + + +SCM_GPROC (s_real_part, "real-part", 1, 0, 0, scm_real_part, g_real_part); + +SCM +scm_real_part (SCM z) +{ + if (SCM_INUMP (z)) { + return z; + } else if (SCM_BIGP (z)) { + return z; + } else if (SCM_REALP (z)) { + return z; + } else if (SCM_COMPLEXP (z)) { + return scm_make_real (SCM_COMPLEX_REAL (z)); + } else { + SCM_WTA_DISPATCH_1 (g_real_part, z, SCM_ARG1, s_real_part); + } +} + + +SCM_GPROC (s_imag_part, "imag-part", 1, 0, 0, scm_imag_part, g_imag_part); + +SCM +scm_imag_part (SCM z) +{ + if (SCM_INUMP (z)) { + return SCM_INUM0; + } else if (SCM_BIGP (z)) { + return SCM_INUM0; + } else if (SCM_REALP (z)) { + return scm_flo0; + } else if (SCM_COMPLEXP (z)) { + return scm_make_real (SCM_COMPLEX_IMAG (z)); + } else { + SCM_WTA_DISPATCH_1 (g_imag_part, z, SCM_ARG1, s_imag_part); + } +} + + +SCM_GPROC (s_magnitude, "magnitude", 1, 0, 0, scm_magnitude, g_magnitude); + +SCM +scm_magnitude (SCM z) +{ + if (SCM_INUMP (z)) { + long int zz = SCM_INUM (z); + if (zz >= 0) { + return z; + } else if (SCM_POSFIXABLE (-zz)) { + return SCM_MAKINUM (-zz); + } else { +#ifdef SCM_BIGDIG + return scm_long2big (-zz); +#else + scm_num_overflow (s_magnitude); +#endif + } + } else if (SCM_BIGP (z)) { + if (!SCM_BIGSIGN (z)) { + return z; + } else { + return scm_copybig (z, 0); + } + } else if (SCM_REALP (z)) { + return scm_make_real (fabs (SCM_REAL_VALUE (z))); + } else if (SCM_COMPLEXP (z)) { + double r = SCM_COMPLEX_REAL (z); + double i = SCM_COMPLEX_IMAG (z); + return scm_make_real (sqrt (i * i + r * r)); + } else { + SCM_WTA_DISPATCH_1 (g_magnitude, z, SCM_ARG1, s_magnitude); + } +} + + +SCM_GPROC (s_angle, "angle", 1, 0, 0, scm_angle, g_angle); + +SCM +scm_angle (SCM z) +{ + if (SCM_INUMP (z)) { + if (SCM_INUM (z) >= 0) { + return scm_make_real (atan2 (0.0, 1.0)); + } else { + return scm_make_real (atan2 (0.0, -1.0)); + } + } else if (SCM_BIGP (z)) { + if (SCM_BIGSIGN (z)) { + return scm_make_real (atan2 (0.0, -1.0)); + } else { + return scm_make_real (atan2 (0.0, 1.0)); + } + } else if (SCM_REALP (z)) { + return scm_make_real (atan2 (0.0, SCM_REAL_VALUE (z))); + } else if (SCM_COMPLEXP (z)) { + return scm_make_real (atan2 (SCM_COMPLEX_IMAG (z), SCM_COMPLEX_REAL (z))); + } else { + SCM_WTA_DISPATCH_1 (g_angle, z, SCM_ARG1, s_angle); + } +} + + +SCM_DEFINE (scm_inexact_to_exact, "inexact->exact", 1, 0, 0, + (SCM z), + "Returns an exact number that is numerically closest to Z.") +#define FUNC_NAME s_scm_inexact_to_exact +{ + if (SCM_INUMP (z)) { + return z; + } else if (SCM_BIGP (z)) { + return z; + } else if (SCM_REALP (z)) { + double u = floor (SCM_REAL_VALUE (z) + 0.5); + long lu = (long) u; + if (SCM_FIXABLE (lu)) { + return SCM_MAKINUM (lu); +#ifdef SCM_BIGDIG + } else if (isfinite (u)) { + return scm_dbl2big (u); +#endif + } else { + scm_num_overflow (s_scm_inexact_to_exact); + } + } else { + SCM_WRONG_TYPE_ARG (1, z); + } +} +#undef FUNC_NAME + + +#ifdef SCM_BIGDIG +/* d must be integer */ + +SCM +scm_dbl2big (double d) +{ + scm_sizet i = 0; + long c; + SCM_BIGDIG *digits; + SCM ans; + double u = (d < 0) ? -d : d; + while (0 != floor (u)) + { + u /= SCM_BIGRAD; + i++; + } + ans = scm_mkbig (i, d < 0); + digits = SCM_BDIGITS (ans); + while (i--) + { + u *= SCM_BIGRAD; + c = floor (u); + u -= c; + digits[i] = c; + } +#ifndef SCM_RECKLESS + if (u != 0) + scm_num_overflow ("dbl2big"); +#endif + return ans; +} + + + +double +scm_big2dbl (SCM b) +{ + double ans = 0.0; + scm_sizet i = SCM_NUMDIGS (b); + SCM_BIGDIG *digits = SCM_BDIGITS (b); + while (i--) + ans = digits[i] + SCM_BIGRAD * ans; + if (SCM_BIGSIGN (b)) + return - ans; + return ans; +} +#endif + + +SCM +scm_long2num (long sl) +{ + if (!SCM_FIXABLE (sl)) + { +#ifdef SCM_BIGDIG + return scm_long2big (sl); +#else + return scm_make_real ((double) sl); +#endif + } + return SCM_MAKINUM (sl); +} + + +#ifdef HAVE_LONG_LONGS + +SCM +scm_long_long2num (long_long sl) +{ + if (!SCM_FIXABLE (sl)) + { +#ifdef SCM_BIGDIG + return scm_long_long2big (sl); +#else + return scm_make_real ((double) sl); +#endif + } + else + { + /* we know that sl fits into an inum */ + return SCM_MAKINUM ((scm_bits_t) sl); + } +} + +#endif /* HAVE_LONG_LONGS */ + + +SCM +scm_ulong2num (unsigned long sl) +{ + if (!SCM_POSFIXABLE (sl)) + { +#ifdef SCM_BIGDIG + return scm_ulong2big (sl); +#else + return scm_make_real ((double) sl); +#endif + } + return SCM_MAKINUM (sl); +} + + +long +scm_num2long (SCM num, char *pos, const char *s_caller) +{ + if (SCM_INUMP (num)) { + return SCM_INUM (num); + } else if (SCM_BIGP (num)) { + long int res; + /* can't use res directly in case num is -2^31. */ + unsigned long int pos_res = 0; + unsigned long int old_res = 0; + scm_sizet l; + + for (l = SCM_NUMDIGS (num); l--;) { + pos_res = SCM_BIGUP (pos_res) + SCM_BDIGITS (num)[l]; + if (pos_res >= old_res) { + old_res = pos_res; + } else { + /* overflow. */ + scm_out_of_range (s_caller, num); + } + } + if (SCM_BIGSIGN (num)) { + res = -pos_res; + if (res <= 0) { + return res; + } else { + scm_out_of_range (s_caller, num); + } + } else { + res = pos_res; + if (res >= 0) { + return res; + } else { + scm_out_of_range (s_caller, num); + } + } + } else if (SCM_REALP (num)) { + double u = SCM_REAL_VALUE (num); + long int res = u; + if ((double) res == u) { + return res; + } else { + scm_out_of_range (s_caller, num); + } + } else { + scm_wrong_type_arg (s_caller, (int) pos, num); + } +} + + +#ifdef HAVE_LONG_LONGS + +long_long +scm_num2long_long (SCM num, char *pos, const char *s_caller) +{ + if (SCM_INUMP (num)) { + return SCM_INUM (num); + } else if (SCM_BIGP (num)) { + long long res; + /* can't use res directly in case num is -2^63. */ + unsigned long long int pos_res = 0; + unsigned long long int old_res = 0; + scm_sizet l; + + for (l = SCM_NUMDIGS (num); l--;) { + pos_res = SCM_LONGLONGBIGUP (pos_res) + SCM_BDIGITS (num)[l]; + if (pos_res >= old_res) { + old_res = pos_res; + } else { + /* overflow. */ + scm_out_of_range (s_caller, num); + } + } + if (SCM_BIGSIGN (num)) { + res = -pos_res; + if (res <= 0) { + return res; + } else { + scm_out_of_range (s_caller, num); + } + } else { + res = pos_res; + if (res >= 0) { + return res; + } else { + scm_out_of_range (s_caller, num); + } + } + } else if (SCM_REALP (num)) { + double u = SCM_REAL_VALUE (num); + long long int res = u; + if ((double) res == u) { + return res; + } else { + scm_out_of_range (s_caller, num); + } + } else { + scm_wrong_type_arg (s_caller, (int) pos, num); + } +} + +#endif /* HAVE_LONG_LONGS */ + + +unsigned long +scm_num2ulong (SCM num, char *pos, const char *s_caller) +{ + if (SCM_INUMP (num)) { + long nnum = SCM_INUM (num); + if (nnum >= 0) { + return nnum; + } else { + scm_out_of_range (s_caller, num); + } + } else if (SCM_BIGP (num)) { + unsigned long int res = 0; + unsigned long int old_res = 0; + scm_sizet l; + + for (l = SCM_NUMDIGS (num); l--;) { + res = SCM_BIGUP (res) + SCM_BDIGITS (num)[l]; + if (res >= old_res) { + old_res = res; + } else { + scm_out_of_range (s_caller, num); + } + } + return res; + } else if (SCM_REALP (num)) { + double u = SCM_REAL_VALUE (num); + unsigned long int res = u; + if ((double) res == u) { + return res; + } else { + scm_out_of_range (s_caller, num); + } + } else { + scm_wrong_type_arg (s_caller, (int) pos, num); + } +} + + +void +scm_init_numbers () +{ + scm_add_feature ("complex"); + scm_add_feature ("inexact"); + scm_flo0 = scm_make_real (0.0); +#ifdef DBL_DIG + scm_dblprec = (DBL_DIG > 20) ? 20 : DBL_DIG; +#else + { /* determine floating point precision */ + double f = 0.1; + double fsum = 1.0 + f; + while (fsum != 1.0) { + if (++scm_dblprec > 20) { + fsum = 1.0; + } else { + f /= 10.0; + fsum = f + 1.0; + } + } + scm_dblprec = scm_dblprec - 1; + } +#endif /* DBL_DIG */ +#include "libguile/numbers.x" +} + +/* + Local Variables: + c-file-style: "gnu" + End: +*/