elisp @@ macro
[bpt/guile.git] / doc / ref / api-procedures.texi
index c087f4c..02bf682 100644 (file)
@@ -1,7 +1,7 @@
 @c -*-texinfo-*-
 @c This is part of the GNU Guile Reference Manual.
-@c Copyright (C)  1996, 1997, 2000, 2001, 2002, 2003, 2004, 2009, 2010
-@c   Free Software Foundation, Inc.
+@c Copyright (C)  1996, 1997, 2000, 2001, 2002, 2003, 2004, 2009, 2010,
+@c   2011, 2012, 2013  Free Software Foundation, Inc.
 @c See the file guile.texi for copying conditions.
 
 @node Procedures
@@ -16,6 +16,7 @@
 * Higher-Order Functions::      Function that take or return functions.
 * Procedure Properties::        Procedure properties and meta-information.
 * Procedures with Setters::     Procedures with setters.
+* Inlinable Procedures::        Procedures that can be inlined.
 @end menu
 
 
@@ -102,7 +103,7 @@ useful mechanism, combining the process of registration
 (@code{scm_c_make_gsubr}) and definition (@code{scm_define}).
 
 @deftypefun SCM scm_c_make_gsubr (const char *name, int req, int opt, int rst, fcn)
-Register a C procedure @var{FCN} as a ``subr'' --- a primitive
+Register a C procedure @var{fcn} as a ``subr'' --- a primitive
 subroutine that can be called from Scheme.  It will be associated with
 the given @var{name} but no environment binding will be created.  The
 arguments @var{req}, @var{opt} and @var{rst} specify the number of
@@ -114,7 +115,7 @@ to @var{fcn}, but may not exceed 10.  The number of rest arguments should be 0 o
 @end deftypefun
 
 @deftypefun SCM scm_c_define_gsubr (const char *name, int req, int opt, int rst, fcn)
-Register a C procedure @var{FCN}, as for @code{scm_c_make_gsubr}
+Register a C procedure @var{fcn}, as for @code{scm_c_make_gsubr}
 above, and additionally create a top-level Scheme binding for the
 procedure in the ``current environment'' using @code{scm_define}.
 @code{scm_c_define_gsubr} returns a handle for the procedure in the
@@ -156,51 +157,34 @@ appropriate module first, though:
 
 @deffn {Scheme Procedure} program? obj
 @deffnx {C Function} scm_program_p (obj)
-Returns @code{#t} iff @var{obj} is a compiled procedure.
+Returns @code{#t} if @var{obj} is a compiled procedure, or @code{#f}
+otherwise.
 @end deffn
 
-@deffn {Scheme Procedure} program-objcode program
-@deffnx {C Function} scm_program_objcode (program)
-Returns the object code associated with this program. @xref{Bytecode
-and Objcode}, for more information.
+@deffn {Scheme Procedure} program-code program
+@deffnx {C Function} scm_program_code (program)
+Returns the address of the program's entry, as an integer.  This address
+is mostly useful to procedures in @code{(system vm debug)}.
 @end deffn
 
-@deffn {Scheme Procedure} program-objects program
-@deffnx {C Function} scm_program_objects (program)
-Returns the ``object table'' associated with this program, as a
-vector. @xref{VM Programs}, for more information.
+@deffn {Scheme Procedure} program-num-free-variable program
+@deffnx {C Function} scm_program_num_free_variables (program)
+Return the number of free variables captured by this program.
 @end deffn
 
-@deffn {Scheme Procedure} program-module program
-@deffnx {C Function} scm_program_module (program)
-Returns the module that was current when this program was created. Can
-return @code{#f} if the compiler could determine that this information
-was unnecessary.
-@end deffn
-
-@deffn {Scheme Procedure} program-free-variables program
-@deffnx {C Function} scm_program_free_variables (program)
-Returns the set of free variables that this program captures in its
-closure, as a vector. If a closure is code with data, you can get the
-code from @code{program-objcode}, and the data via
-@code{program-free-variables}.
-
-Some of the values captured are actually in variable ``boxes''.
-@xref{Variables and the VM}, for more information.
+@deffn {Scheme Procedure} program-free-variable-ref program n
+@deffnx {C Function} scm_program_free_variable-ref (program, n)
+@deffnx {Scheme Procedure} program-free-variable-set! program n val
+@deffnx {C Function} scm_program_free_variable_set_x (program, n, val)
+Accessors for a program's free variables.  Some of the values captured
+are actually in variable ``boxes''.  @xref{Variables and the VM}, for
+more information.
 
 Users must not modify the returned value unless they think they're
 really clever.
 @end deffn
 
-@deffn {Scheme Procedure} program-meta program
-@deffnx {C Function} scm_program_meta (program)
-Return the metadata thunk of @var{program}, or @code{#f} if it has no
-metadata.
-
-When called, a metadata thunk returns a list of the following form:
-@code{(@var{bindings} @var{sources} @var{arities} . @var{properties})}. The format
-of each of these elements is discussed below.
-@end deffn
+@c FIXME
 
 @deffn {Scheme Procedure} program-bindings program
 @deffnx {Scheme Procedure} make-binding name boxed? index start end
@@ -269,6 +253,37 @@ sense at certain points in the program, delimited by these
 @code{arity:start} and @code{arity:end} values.
 @end deffn
 
+@deffn {Scheme Procedure} program-arguments-alist program [ip]
+Return an association list describing the arguments that @var{program} accepts, or
+@code{#f} if the information cannot be obtained.
+
+The alist keys that are currently defined are `required', `optional',
+`keyword', `allow-other-keys?', and `rest'.  For example:
+
+@example
+(program-arguments-alist
+ (lambda* (a b #:optional c #:key (d 1) #:rest e)
+   #t)) @result{}
+((required . (a b))
+ (optional . (c))
+ (keyword . ((#:d . 4)))
+ (allow-other-keys? . #f)
+ (rest . d))
+@end example
+@end deffn
+
+@deffn {Scheme Procedure} program-lambda-list program [ip]
+Return a representation of the arguments of @var{program} as a lambda
+list, or @code{#f} if this information is not available.
+
+For example:
+
+@example
+(program-lambda-list
+ (lambda* (a b #:optional c #:key (d 1) #:rest e)
+   #t)) @result{}
+@end example
+@end deffn
 
 @node Optional Arguments
 @subsection Optional Arguments
@@ -301,7 +316,11 @@ cheaply, without allocating a rest list.
 @code{lambda*} is like @code{lambda}, except with some extensions to
 allow optional and keyword arguments.
 
-@deffn {library syntax} lambda* ([var@dots{}] @* [#:optional vardef@dots{}] @* [#:key  vardef@dots{} [#:allow-other-keys]] @* [#:rest var | . var]) @* body
+@deffn {library syntax} lambda* ([var@dots{}] @* @
+                        [#:optional vardef@dots{}] @* @
+                        [#:key  vardef@dots{} [#:allow-other-keys]] @* @
+                        [#:rest var | . var]) @* @
+                        body1 body2 @dots{}
 @sp 1
 Create a procedure which takes optional and/or keyword arguments
 specified with @code{#:optional} and @code{#:key}.  For example,
@@ -417,8 +436,8 @@ elements.  @code{let-optional} binds all variables simultaneously, while
 @code{let-optional*} binds them sequentially, consistent with @code{let}
 and @code{let*} (@pxref{Local Bindings}).
 
-@deffn {library syntax} let-optional rest-arg (binding @dots{}) expr @dots{}
-@deffnx {library syntax} let-optional* rest-arg (binding @dots{}) expr @dots{}
+@deffn {library syntax} let-optional rest-arg (binding @dots{}) body1 body2 @dots{}
+@deffnx {library syntax} let-optional* rest-arg (binding @dots{}) body1 body2 @dots{}
 These two macros give you an optional argument interface that is very
 @dfn{Schemey} and introduces no fancy syntax. They are compatible with
 the scsh macros of the same name, but are slightly extended. Each of
@@ -430,22 +449,22 @@ runs out, the remaining vars are bound either to the default values or
 @code{#f} if no default value was specified. @var{rest-arg} remains
 bound to whatever may have been left of @var{rest-arg}.
 
-After binding the variables, the expressions @var{expr} @dots{} are
-evaluated in order.
+After binding the variables, the expressions @var{body1} @var{body2} @dots{}
+are evaluated in order.
 @end deffn
 
 Similarly, @code{let-keywords} and @code{let-keywords*} extract values
 from keyword style argument lists, binding local variables to those
 values or to defaults.
 
-@deffn {library syntax} let-keywords args allow-other-keys? (binding @dots{})  body @dots{}
-@deffnx {library syntax} let-keywords* args allow-other-keys? (binding @dots{})  body @dots{}
+@deffn {library syntax} let-keywords args allow-other-keys? (binding @dots{}) body1 body2 @dots{}
+@deffnx {library syntax} let-keywords* args allow-other-keys? (binding @dots{}) body1 body2 @dots{}
 @var{args} is evaluated and should give a list of the form
 @code{(#:keyword1 value1 #:keyword2 value2 @dots{})}.  The
-@var{binding}s are variables and default expressions, with the
-variables to be set (by name) from the keyword values.  The @var{body}
-forms are then evaluated and the last is the result.  An example will
-make the syntax clearest,
+@var{binding}s are variables and default expressions, with the variables
+to be set (by name) from the keyword values.  The @var{body1}
+@var{body2} @dots{}  forms are then evaluated and the last is the
+result.  An example will make the syntax clearest,
 
 @example
 (define args '(#:xyzzy "hello" #:foo "world"))
@@ -477,19 +496,19 @@ exist for defining macros with the improved argument list handling
 possibilities. The @code{-public} versions not only define the
 procedures/macros, but also export them from the current module.
 
-@deffn {library syntax} define*-public formals body
+@deffn {library syntax} define*-public formals body1 body2 @dots{}
 Like a mix of @code{define*} and @code{define-public}.
 @end deffn
 
-@deffn {library syntax} defmacro* name formals body
-@deffnx {library syntax} defmacro*-public name formals body
+@deffn {library syntax} defmacro* name formals body1 body2 @dots{}
+@deffnx {library syntax} defmacro*-public name formals body1 body2 @dots{}
 These are just like @code{defmacro} and @code{defmacro-public} except that they
 take @code{lambda*}-style extended parameter lists, where @code{#:optional},
 @code{#:key}, @code{#:allow-other-keys} and @code{#:rest} are allowed with the usual
 semantics. Here is an example of a macro with an optional argument:
 
 @lisp
-(defmacro* transmorgify (a #:optional b)
+(defmacro* transmogrify (a #:optional b)
   (a 1))
 @end lisp
 @end deffn
@@ -538,7 +557,8 @@ with @code{lambda} (@pxref{Lambda}).
 @example
 @group
 <case-lambda>
-   --> (case-lambda <case-lambda-clause>)
+   --> (case-lambda <case-lambda-clause>*)
+   --> (case-lambda <docstring> <case-lambda-clause>*)
 <case-lambda-clause>
    --> (<formals> <definition-or-command>*)
 <formals>
@@ -553,6 +573,7 @@ Rest lists can be useful with @code{case-lambda}:
 @lisp
 (define plus
   (case-lambda
+    "Return the sum of all arguments."
     (() 0)
     ((a) a)
     ((a b) (+ a b))
@@ -567,12 +588,61 @@ A @code{case-lambda*} clause matches if the arguments fill the
 required arguments, but are not too many for the optional and/or rest
 arguments.
 
-Keyword arguments are possible with @code{case-lambda*}, but they do
-not contribute to the ``matching'' behavior. That is to say,
-@code{case-lambda*} matches only on required, optional, and rest
-arguments, and on the predicate; keyword arguments may be present but
-do not contribute to the ``success'' of a match. In fact a bad keyword
-argument list may cause an error to be raised.
+Keyword arguments are possible with @code{case-lambda*} as well, but
+they do not contribute to the ``matching'' behavior, and their
+interactions with required, optional, and rest arguments can be
+surprising.
+
+For the purposes of @code{case-lambda*} (and of @code{case-lambda}, as a
+special case), a clause @dfn{matches} if it has enough required
+arguments, and not too many positional arguments.  The required
+arguments are any arguments before the @code{#:optional}, @code{#:key},
+and @code{#:rest} arguments.  @dfn{Positional} arguments are the
+required arguments, together with the optional arguments.
+
+In the absence of @code{#:key} or @code{#:rest} arguments, it's easy to
+see how there could be too many positional arguments: you pass 5
+arguments to a function that only takes 4 arguments, including optional
+arguments.  If there is a @code{#:rest} argument, there can never be too
+many positional arguments: any application with enough required
+arguments for a clause will match that clause, even if there are also
+@code{#:key} arguments.
+
+Otherwise, for applications to a clause with @code{#:key} arguments (and
+without a @code{#:rest} argument), a clause will match there only if
+there are enough required arguments and if the next argument after
+binding required and optional arguments, if any, is a keyword.  For
+efficiency reasons, Guile is currently unable to include keyword
+arguments in the matching algorithm.  Clauses match on positional
+arguments only, not by comparing a given keyword to the available set of
+keyword arguments that a function has.
+
+Some examples follow.
+
+@example
+(define f
+  (case-lambda*
+    ((a #:optional b) 'clause-1)
+    ((a #:optional b #:key c) 'clause-2)
+    ((a #:key d) 'clause-3)
+    ((#:key e #:rest f) 'clause-4)))
+
+(f) @result{} clause-4
+(f 1) @result{} clause-1
+(f) @result{} clause-4
+(f #:e 10) clause-1
+(f 1 #:foo) clause-1
+(f 1 #:c 2) clause-2
+(f #:a #:b #:c #:d #:e) clause-4
+
+;; clause-2 will match anything that clause-3 would match.
+(f 1 #:d 2) @result{} error: bad keyword args in clause 2
+@end example
+
+Don't forget that the clauses are matched in order, and the first
+matching clause will be taken.  This can result in a keyword being bound
+to a required argument, as in the case of @code{f #:e 10}.
+
 
 @node Higher-Order Functions
 @subsection Higher-Order Functions
@@ -610,10 +680,11 @@ Return a procedure with the same arity as @var{proc} that returns the
 @end lisp
 @end deffn
 
-@deffn {Scheme Procedure} compose proc rest ...
-Compose @var{proc} with the procedures in @var{rest}, such that the last
-one in @var{rest} is applied first and @var{proc} last, and return the
-resulting procedure.  The given procedures must have compatible arity.
+@deffn {Scheme Procedure} compose proc1 proc2 @dots{}
+Compose @var{proc1} with the procedures @var{proc2} @dots{}  such that
+the last @var{proc} argument is applied first and @var{proc1} last, and
+return the resulting procedure.  The given procedures must have
+compatible arity.
 
 @lisp
 (procedure? (compose 1+ 1-)) @result{} #t
@@ -630,6 +701,11 @@ resulting procedure.  The given procedures must have compatible arity.
 Return X.
 @end deffn
 
+@deffn {Scheme Procedure} and=> value proc
+When @var{value} is @code{#f}, return @code{#f}.  Otherwise, return
+@code{(@var{proc} @var{value})}.
+@end deffn
+
 @node Procedure Properties
 @subsection Procedure Properties and Meta-information
 
@@ -641,10 +717,8 @@ properties interface.
 
 The first group of procedures in this meta-interface are predicates to
 test whether a Scheme object is a procedure, or a special procedure,
-respectively. @code{procedure?} is the most general predicates, it
-returns @code{#t} for any kind of procedure. @code{closure?} does not
-return @code{#t} for primitive procedures, and @code{thunk?} only
-returns @code{#t} for procedures which do not accept any arguments.
+respectively.  @code{procedure?} is the most general predicates, it
+returns @code{#t} for any kind of procedure.
 
 @rnindex procedure?
 @deffn {Scheme Procedure} procedure? obj
@@ -654,7 +728,8 @@ Return @code{#t} if @var{obj} is a procedure.
 
 @deffn {Scheme Procedure} thunk? obj
 @deffnx {C Function} scm_thunk_p (obj)
-Return @code{#t} if @var{obj} is a thunk.
+Return @code{#t} if @var{obj} is a thunk---a procedure that does
+not accept arguments.
 @end deffn
 
 @cindex procedure properties
@@ -673,11 +748,6 @@ Return the source of the procedure @var{proc}. Returns @code{#f} if
 the source code is not available.
 @end deffn
 
-@deffn {Scheme Procedure} procedure-environment proc
-@deffnx {C Function} scm_procedure_environment (proc)
-Return the environment of the procedure @var{proc}. Very deprecated.
-@end deffn
-
 @deffn {Scheme Procedure} procedure-properties proc
 @deffnx {C Function} scm_procedure_properties (proc)
 Return the properties associated with @var{proc}, as an association
@@ -797,6 +867,52 @@ Return the setter of @var{proc}, which must be either a procedure with
 setter or an operator struct.
 @end deffn
 
+@node Inlinable Procedures
+@subsection Inlinable Procedures
+
+@cindex inlining
+@cindex procedure inlining
+You can define an @dfn{inlinable procedure} by using
+@code{define-inlinable} instead of @code{define}.  An inlinable
+procedure behaves the same as a regular procedure, but direct calls will
+result in the procedure body being inlined into the caller.
+
+@cindex partial evaluator
+Bear in mind that starting from version 2.0.3, Guile has a partial
+evaluator that can inline the body of inner procedures when deemed
+appropriate:
+
+@example
+scheme@@(guile-user)> ,optimize (define (foo x)
+                                 (define (bar) (+ x 3))
+                                 (* (bar) 2))
+$1 = (define foo
+       (lambda (#@{x 94@}#) (* (+ #@{x 94@}# 3) 2)))
+@end example
+
+@noindent
+The partial evaluator does not inline top-level bindings, though, so
+this is a situation where you may find it interesting to use
+@code{define-inlinable}.
+
+Procedures defined with @code{define-inlinable} are @emph{always}
+inlined, at all direct call sites.  This eliminates function call
+overhead at the expense of an increase in code size.  Additionally, the
+caller will not transparently use the new definition if the inline
+procedure is redefined.  It is not possible to trace an inlined
+procedures or install a breakpoint in it (@pxref{Traps}).  For these
+reasons, you should not make a procedure inlinable unless it
+demonstrably improves performance in a crucial way.
+
+In general, only small procedures should be considered for inlining, as
+making large procedures inlinable will probably result in an increase in
+code size.  Additionally, the elimination of the call overhead rarely
+matters for large procedures.
+
+@deffn {Scheme Syntax} define-inlinable (name parameter @dots{}) body1 body2 @dots{}
+Define @var{name} as a procedure with parameters @var{parameter}s and
+bodies @var{body1}, @var{body2}, @enddots{}.
+@end deffn
 
 @c Local Variables:
 @c TeX-master: "guile.texi"