;;; Guile Emacs Lisp ;; Copyright (C) 2009, 2010, 2011 Free Software Foundation, Inc. ;; This program is free software; you can redistribute it and/or modify ;; it under the terms of the GNU General Public License as published by ;; the Free Software Foundation; either version 3, or (at your option) ;; any later version. ;; ;; This program is distributed in the hope that it will be useful, ;; but WITHOUT ANY WARRANTY; without even the implied warranty of ;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the ;; GNU General Public License for more details. ;; ;; You should have received a copy of the GNU General Public License ;; along with this program; see the file COPYING. If not, write to ;; the Free Software Foundation, Inc., 59 Temple Place - Suite 330, ;; Boston, MA 02111-1307, USA. ;;; Code: (define-module (language elisp compile-tree-il) #:use-module (language elisp bindings) #:use-module (language elisp runtime) #:use-module (language tree-il) #:use-module (system base pmatch) #:use-module (system base compile) #:use-module (srfi srfi-1) #:use-module (srfi srfi-8) #:use-module (srfi srfi-11) #:use-module (srfi srfi-26) #:export (compile-tree-il compile-progn compile-if compile-defconst compile-defvar compile-setq compile-let compile-lexical-let compile-flet compile-let* compile-lexical-let* compile-flet* compile-without-void-checks compile-with-always-lexical compile-guile-ref compile-guile-primitive compile-while compile-function compile-defmacro compile-defun #{compile-`}# compile-quote)) ;;; Certain common parameters (like the bindings data structure or ;;; compiler options) are not always passed around but accessed using ;;; fluids to simulate dynamic binding (hey, this is about elisp). ;;; The bindings data structure to keep track of symbol binding related ;;; data. (define bindings-data (make-fluid)) ;;; Store for which symbols (or all/none) void checks are disabled. (define disable-void-check (make-fluid)) ;;; Store which symbols (or all/none) should always be bound lexically, ;;; even with ordinary let and as lambda arguments. (define always-lexical (make-fluid)) ;;; Find the source properties of some parsed expression if there are ;;; any associated with it. (define (location x) (and (pair? x) (let ((props (source-properties x))) (and (not (null? props)) props)))) ;;; Values to use for Elisp's nil and t. (define (nil-value loc) (make-const loc (@ (language elisp runtime) nil-value))) (define (t-value loc) (make-const loc (@ (language elisp runtime) t-value))) ;;; Modules that contain the value and function slot bindings. (define runtime '(language elisp runtime)) (define value-slot (@ (language elisp runtime) value-slot-module)) (define function-slot (@ (language elisp runtime) function-slot-module)) ;;; The backquoting works the same as quasiquotes in Scheme, but the ;;; forms are named differently; to make easy adaptions, we define these ;;; predicates checking for a symbol being the car of an ;;; unquote/unquote-splicing/backquote form. (define (unquote? sym) (and (symbol? sym) (eq? sym '#{,}#))) (define (unquote-splicing? sym) (and (symbol? sym) (eq? sym '#{,@}#))) ;;; Build a call to a primitive procedure nicely. (define (call-primitive loc sym . args) (make-primcall loc sym args)) ;;; Error reporting routine for syntax/compilation problems or build ;;; code for a runtime-error output. (define (report-error loc . args) (apply error args)) (define (runtime-error loc msg . args) (make-primcall loc 'error (cons (make-const loc msg) args))) ;;; Generate code to ensure a global symbol is there for further use of ;;; a given symbol. In general during the compilation, those needed are ;;; only tracked with the bindings data structure. Afterwards, however, ;;; for all those needed symbols the globals are really generated with ;;; this routine. (define (generate-ensure-global loc sym module) (make-call loc (make-module-ref loc runtime 'ensure-fluid! #t) (list (make-const loc module) (make-const loc sym)))) (define (ensuring-globals loc bindings body) (list->seq loc `(,@(map-globals-needed (fluid-ref bindings) (lambda (mod sym) (generate-ensure-global loc sym mod))) ,body))) ;;; Build a construct that establishes dynamic bindings for certain ;;; variables. We may want to choose between binding with fluids and ;;; with-fluids* and using just ordinary module symbols and ;;; setting/reverting their values with a dynamic-wind. (define (let-dynamic loc syms module vals body) (call-primitive loc 'with-fluids* (make-primcall loc 'list (map (lambda (sym) (make-module-ref loc module sym #t)) syms)) (make-primcall loc 'list vals) (make-lambda loc '() (make-lambda-case #f '() #f #f #f '() '() body #f)))) ;;; Handle access to a variable (reference/setting) correctly depending ;;; on whether it is currently lexically or dynamically bound. lexical ;;; access is done only for references to the value-slot module! (define (access-variable loc sym module handle-global handle-lexical handle-dynamic) (let ((lexical (get-lexical-binding (fluid-ref bindings-data) sym))) (cond (lexical (handle-lexical lexical)) ((equal? module function-slot) (handle-global)) (else (handle-dynamic))))) ;;; Generate code to reference a variable. For references in the ;;; value-slot module, we may want to generate a lexical reference ;;; instead if the variable has a lexical binding. (define (reference-variable loc sym module) (access-variable loc sym module (lambda () (make-module-ref loc module sym #t)) (lambda (lexical) (make-lexical-ref loc lexical lexical)) (lambda () (mark-global-needed! (fluid-ref bindings-data) sym module) (call-primitive loc 'fluid-ref (make-module-ref loc module sym #t))))) ;;; Generate code to set a variable. Just as with reference-variable, in ;;; case of a reference to value-slot, we want to generate a lexical set ;;; when the variable has a lexical binding. (define (set-variable! loc sym module value) (access-variable loc sym module (lambda () (make-call loc (make-module-ref loc runtime 'set-variable! #t) (list (make-const loc module) (make-const loc sym) value))) (lambda (lexical) (make-lexical-set loc lexical lexical value)) (lambda () (mark-global-needed! (fluid-ref bindings-data) sym module) (call-primitive loc 'fluid-set! (make-module-ref loc module sym #t) value)))) ;;; Process the bindings part of a let or let* expression; that is, ;;; check for correctness and bring it to the form ((sym1 . val1) (sym2 ;;; . val2) ...). (define (process-let-bindings loc bindings) (map (lambda (b) (if (symbol? b) (cons b 'nil) (if (or (not (list? b)) (not (= (length b) 2))) (report-error loc "expected symbol or list of 2 elements in let") (if (not (symbol? (car b))) (report-error loc "expected symbol in let") (cons (car b) (cadr b)))))) bindings)) ;;; Split the let bindings into a list to be done lexically and one ;;; dynamically. A symbol will be bound lexically if and only if: We're ;;; processing a lexical-let (i.e. module is 'lexical), OR we're ;;; processing a value-slot binding AND the symbol is already lexically ;;; bound or is always lexical, OR we're processing a function-slot ;;; binding. (define (bind-lexically? sym module) (or (eq? module 'lexical) (eq? module function-slot) (and (equal? module value-slot) (let ((always (fluid-ref always-lexical))) (or (eq? always 'all) (memq sym always) (get-lexical-binding (fluid-ref bindings-data) sym)))))) (define (split-let-bindings bindings module) (let iterate ((tail bindings) (lexical '()) (dynamic '())) (if (null? tail) (values (reverse lexical) (reverse dynamic)) (if (bind-lexically? (caar tail) module) (iterate (cdr tail) (cons (car tail) lexical) dynamic) (iterate (cdr tail) lexical (cons (car tail) dynamic)))))) ;;; Compile let and let* expressions. The code here is used both for ;;; let/let* and flet/flet*, just with a different bindings module. ;;; ;;; A special module value 'lexical means that we're doing a lexical-let ;;; instead and the bindings should not be saved to globals at all but ;;; be done with the lexical framework instead. ;;; Let is done with a single call to let-dynamic binding them locally ;;; to new values all "at once". If there is at least one variable to ;;; bind lexically among the bindings, we first do a let for all of them ;;; to evaluate all values before any bindings take place, and then call ;;; let-dynamic for the variables to bind dynamically. (define (generate-let loc module bindings body) (let ((bind (process-let-bindings loc bindings))) (call-with-values (lambda () (split-let-bindings bind module)) (lambda (lexical dynamic) (for-each (lambda (sym) (mark-global-needed! (fluid-ref bindings-data) sym module)) (map car dynamic)) (let ((make-values (lambda (for) (map (lambda (el) (compile-expr (cdr el))) for))) (make-body (lambda () (list->seq loc (map compile-expr body))))) (if (null? lexical) (let-dynamic loc (map car dynamic) module (make-values dynamic) (make-body)) (let* ((lexical-syms (map (lambda (el) (gensym)) lexical)) (dynamic-syms (map (lambda (el) (gensym)) dynamic)) (all-syms (append lexical-syms dynamic-syms)) (vals (append (make-values lexical) (make-values dynamic)))) (make-let loc all-syms all-syms vals (with-lexical-bindings (fluid-ref bindings-data) (map car lexical) lexical-syms (lambda () (if (null? dynamic) (make-body) (let-dynamic loc (map car dynamic) module (map (lambda (sym) (make-lexical-ref loc sym sym)) dynamic-syms) (make-body))))))))))))) ;;; Let* is compiled to a cascaded set of "small lets" for each binding ;;; in turn so that each one already sees the preceding bindings. (define (generate-let* loc module bindings body) (let ((bind (process-let-bindings loc bindings))) (begin (for-each (lambda (sym) (if (not (bind-lexically? sym module)) (mark-global-needed! (fluid-ref bindings-data) sym module))) (map car bind)) (let iterate ((tail bind)) (if (null? tail) (list->seq loc (map compile-expr body)) (let ((sym (caar tail)) (value (compile-expr (cdar tail)))) (if (bind-lexically? sym module) (let ((target (gensym))) (make-let loc `(,target) `(,target) `(,value) (with-lexical-bindings (fluid-ref bindings-data) `(,sym) `(,target) (lambda () (iterate (cdr tail)))))) (let-dynamic loc `(,(caar tail)) module `(,value) (iterate (cdr tail)))))))))) ;;; Split the argument list of a lambda expression into required, ;;; optional and rest arguments and also check it is actually valid. ;;; Additionally, we create a list of all "local variables" (that is, ;;; required, optional and rest arguments together) and also this one ;;; split into those to be bound lexically and dynamically. Returned is ;;; as multiple values: required optional rest lexical dynamic (define (bind-arg-lexical? arg) (let ((always (fluid-ref always-lexical))) (or (eq? always 'all) (memq arg always)))) (define (split-lambda-arguments loc args) (let iterate ((tail args) (mode 'required) (required '()) (optional '()) (lexical '()) (dynamic '())) (cond ((null? tail) (let ((final-required (reverse required)) (final-optional (reverse optional)) (final-lexical (reverse lexical)) (final-dynamic (reverse dynamic))) (values final-required final-optional #f final-lexical final-dynamic))) ((and (eq? mode 'required) (eq? (car tail) '&optional)) (iterate (cdr tail) 'optional required optional lexical dynamic)) ((eq? (car tail) '&rest) (if (or (null? (cdr tail)) (not (null? (cddr tail)))) (report-error loc "expected exactly one symbol after &rest") (let* ((rest (cadr tail)) (rest-lexical (bind-arg-lexical? rest)) (final-required (reverse required)) (final-optional (reverse optional)) (final-lexical (reverse (if rest-lexical (cons rest lexical) lexical))) (final-dynamic (reverse (if rest-lexical dynamic (cons rest dynamic))))) (values final-required final-optional rest final-lexical final-dynamic)))) (else (if (not (symbol? (car tail))) (report-error loc "expected symbol in argument list, got" (car tail)) (let* ((arg (car tail)) (bind-lexical (bind-arg-lexical? arg)) (new-lexical (if bind-lexical (cons arg lexical) lexical)) (new-dynamic (if bind-lexical dynamic (cons arg dynamic)))) (case mode ((required) (iterate (cdr tail) mode (cons arg required) optional new-lexical new-dynamic)) ((optional) (iterate (cdr tail) mode required (cons arg optional) new-lexical new-dynamic)) (else (error "invalid mode in split-lambda-arguments" mode))))))))) ;;; Compile a lambda expression. One thing we have to be aware of is ;;; that lambda arguments are usually dynamically bound, even when a ;;; lexical binding is intact for a symbol. For symbols that are marked ;;; as 'always lexical,' however, we lexically bind here as well, and ;;; thus we get them out of the let-dynamic call and register a lexical ;;; binding for them (the lexical target variable is already there, ;;; namely the real lambda argument from TreeIL). (define (compile-lambda loc args body) (if (not (list? args)) (report-error loc "expected list for argument-list" args)) (if (null? body) (report-error loc "function body must not be empty")) (receive (required optional rest lexical dynamic) (split-lambda-arguments loc args) (define (process-args args) (define (find-pairs pairs filter) (lset-intersection (lambda (name+sym x) (eq? (car name+sym) x)) pairs filter)) (let* ((syms (map (lambda (x) (gensym)) args)) (pairs (map cons args syms)) (lexical-pairs (find-pairs pairs lexical)) (dynamic-pairs (find-pairs pairs dynamic))) (values syms pairs lexical-pairs dynamic-pairs))) (let*-values (((required-syms required-pairs required-lex-pairs required-dyn-pairs) (process-args required)) ((optional-syms optional-pairs optional-lex-pairs optional-dyn-pairs) (process-args optional)) ((rest-syms rest-pairs rest-lex-pairs rest-dyn-pairs) (process-args (if rest (list rest) '()))) ((the-rest-sym) (if rest (car rest-syms) #f)) ((all-syms) (append required-syms optional-syms rest-syms)) ((all-lex-pairs) (append required-lex-pairs optional-lex-pairs rest-lex-pairs)) ((all-dyn-pairs) (append required-dyn-pairs optional-dyn-pairs rest-dyn-pairs))) (for-each (lambda (sym) (mark-global-needed! (fluid-ref bindings-data) sym value-slot)) dynamic) (with-dynamic-bindings (fluid-ref bindings-data) dynamic (lambda () (with-lexical-bindings (fluid-ref bindings-data) (map car all-lex-pairs) (map cdr all-lex-pairs) (lambda () (make-lambda loc '() (make-lambda-case #f required optional rest #f (map (lambda (x) (nil-value loc)) optional) all-syms (let ((compiled-body (list->seq loc (map compile-expr body)))) (make-seq loc (if rest (make-conditional loc (call-primitive loc 'null? (make-lexical-ref loc rest the-rest-sym)) (make-lexical-set loc rest the-rest-sym (nil-value loc)) (make-void loc)) (make-void loc)) (if (null? dynamic) compiled-body (let-dynamic loc dynamic value-slot (map (lambda (name-sym) (make-lexical-ref loc (car name-sym) (cdr name-sym))) all-dyn-pairs) compiled-body)))) #f))))))))) ;;; Handle the common part of defconst and defvar, that is, checking for ;;; a correct doc string and arguments as well as maybe in the future ;;; handling the docstring somehow. (define (handle-var-def loc sym doc) (cond ((not (symbol? sym)) (report-error loc "expected symbol, got" sym)) ((> (length doc) 1) (report-error loc "too many arguments to defvar")) ((and (not (null? doc)) (not (string? (car doc)))) (report-error loc "expected string as third argument of defvar, got" (car doc))) ;; TODO: Handle doc string if present. (else #t))) ;;; Handle macro and special operator bindings. (define (find-operator sym type) (and (symbol? sym) (module-defined? (resolve-interface function-slot) sym) (let* ((op (module-ref (resolve-module function-slot) sym)) (op (if (fluid? op) (fluid-ref op) op))) (if (and (pair? op) (eq? (car op) type)) (cdr op) #f)))) ;;; See if a (backquoted) expression contains any unquotes. (define (contains-unquotes? expr) (if (pair? expr) (if (or (unquote? (car expr)) (unquote-splicing? (car expr))) #t (or (contains-unquotes? (car expr)) (contains-unquotes? (cdr expr)))) #f)) ;;; Process a backquoted expression by building up the needed ;;; cons/append calls. For splicing, it is assumed that the expression ;;; spliced in evaluates to a list. The emacs manual does not really ;;; state either it has to or what to do if it does not, but Scheme ;;; explicitly forbids it and this seems reasonable also for elisp. (define (unquote-cell? expr) (and (list? expr) (= (length expr) 2) (unquote? (car expr)))) (define (unquote-splicing-cell? expr) (and (list? expr) (= (length expr) 2) (unquote-splicing? (car expr)))) (define (process-backquote loc expr) (if (contains-unquotes? expr) (if (pair? expr) (if (or (unquote-cell? expr) (unquote-splicing-cell? expr)) (compile-expr (cadr expr)) (let* ((head (car expr)) (processed-tail (process-backquote loc (cdr expr))) (head-is-list-2 (and (list? head) (= (length head) 2))) (head-unquote (and head-is-list-2 (unquote? (car head)))) (head-unquote-splicing (and head-is-list-2 (unquote-splicing? (car head))))) (if head-unquote-splicing (call-primitive loc 'append (compile-expr (cadr head)) processed-tail) (call-primitive loc 'cons (if head-unquote (compile-expr (cadr head)) (process-backquote loc head)) processed-tail)))) (report-error loc "non-pair expression contains unquotes" expr)) (make-const loc expr))) ;;; Temporarily update a list of symbols that are handled specially ;;; (disabled void check or always lexical) for compiling body. We need ;;; to handle special cases for already all / set to all and the like. (define (with-added-symbols loc fluid syms body) (if (null? body) (report-error loc "symbol-list construct has empty body")) (if (not (or (eq? syms 'all) (and (list? syms) (and-map symbol? syms)))) (report-error loc "invalid symbol list" syms)) (let ((old (fluid-ref fluid)) (make-body (lambda () (list->seq loc (map compile-expr body))))) (if (eq? old 'all) (make-body) (let ((new (if (eq? syms 'all) 'all (append syms old)))) (with-fluids ((fluid new)) (make-body)))))) ;;; Special operators (defspecial progn (loc args) (list->seq loc (map compile-expr args))) (defspecial if (loc args) (pmatch args ((,cond ,then . ,else) (make-conditional loc (compile-expr cond) (compile-expr then) (if (null? else) (nil-value loc) (list->seq loc (map compile-expr else))))))) (defspecial defconst (loc args) (pmatch args ((,sym ,value . ,doc) (if (handle-var-def loc sym doc) (make-seq loc (set-variable! loc sym value-slot (compile-expr value)) (make-const loc sym)))))) (defspecial defvar (loc args) (pmatch args ((,sym) (make-const loc sym)) ((,sym ,value . ,doc) (if (handle-var-def loc sym doc) (make-seq loc (make-conditional loc (make-conditional loc (call-primitive loc 'module-bound? (call-primitive loc 'resolve-interface (make-const loc value-slot)) (make-const loc sym)) (call-primitive loc 'fluid-bound? (make-module-ref loc value-slot sym #t)) (make-const loc #f)) (make-void loc) (set-variable! loc sym value-slot (compile-expr value))) (make-const loc sym)))))) (defspecial setq (loc args) (define (car* x) (if (null? x) '() (car x))) (define (cdr* x) (if (null? x) '() (cdr x))) (define (cadr* x) (car* (cdr* x))) (define (cddr* x) (cdr* (cdr* x))) (list->seq loc (let loop ((args args) (last (nil-value loc))) (if (null? args) (list last) (let ((sym (car args)) (val (compile-expr (cadr* args)))) (if (not (symbol? sym)) (report-error loc "expected symbol in setq") (cons (set-variable! loc sym value-slot val) (loop (cddr* args) (reference-variable loc sym value-slot))))))))) (defspecial let (loc args) (pmatch args ((,bindings . ,body) (generate-let loc value-slot bindings body)))) (defspecial lexical-let (loc args) (pmatch args ((,bindings . ,body) (generate-let loc 'lexical bindings body)))) (defspecial flet (loc args) (pmatch args ((,bindings . ,body) (generate-let loc function-slot bindings body)))) (defspecial let* (loc args) (pmatch args ((,bindings . ,body) (generate-let* loc value-slot bindings body)))) (defspecial lexical-let* (loc args) (pmatch args ((,bindings . ,body) (generate-let* loc 'lexical bindings body)))) (defspecial flet* (loc args) (pmatch args ((,bindings . ,body) (generate-let* loc function-slot bindings body)))) ;;; Temporarily set symbols as always lexical only for the lexical scope ;;; of a construct. (defspecial with-always-lexical (loc args) (pmatch args ((,syms . ,body) (with-added-symbols loc always-lexical syms body)))) ;;; guile-ref allows building TreeIL's module references from within ;;; elisp as a way to access data within the Guile universe. The module ;;; and symbol referenced are static values, just like (@ module symbol) ;;; does! (defspecial guile-ref (loc args) (pmatch args ((,module ,sym) (guard (and (list? module) (symbol? sym))) (make-module-ref loc module sym #t)))) ;;; guile-primitive allows to create primitive references, which are ;;; still a little faster. (defspecial guile-primitive (loc args) (pmatch args ((,sym) (make-primitive-ref loc sym)))) ;;; A while construct is transformed into a tail-recursive loop like ;;; this: ;;; ;;; (letrec ((iterate (lambda () ;;; (if condition ;;; (begin body ;;; (iterate)) ;;; #nil)))) ;;; (iterate)) ;;; ;;; As letrec is not directly accessible from elisp, while is ;;; implemented here instead of with a macro. (defspecial while (loc args) (pmatch args ((,condition . ,body) (let* ((itersym (gensym)) (compiled-body (map compile-expr body)) (iter-call (make-call loc (make-lexical-ref loc 'iterate itersym) (list))) (full-body (list->seq loc `(,@compiled-body ,iter-call))) (lambda-body (make-conditional loc (compile-expr condition) full-body (nil-value loc))) (iter-thunk (make-lambda loc '() (make-lambda-case #f '() #f #f #f '() '() lambda-body #f)))) (make-letrec loc #f '(iterate) (list itersym) (list iter-thunk) iter-call))))) (defspecial function (loc args) (pmatch args (((lambda ,args . ,body)) (compile-lambda loc args body)) ((,sym) (guard (symbol? sym)) (reference-variable loc sym function-slot)))) (defspecial defmacro (loc args) (pmatch args ((,name ,args . ,body) (if (not (symbol? name)) (report-error loc "expected symbol as macro name" name) (let* ((tree-il (make-seq loc (set-variable! loc name function-slot (make-primcall loc 'cons (list (make-const loc 'macro) (compile-lambda loc args body)))) (make-const loc name)))) (compile (ensuring-globals loc bindings-data tree-il) #:from 'tree-il #:to 'value) tree-il))))) (defspecial defun (loc args) (pmatch args ((,name ,args . ,body) (if (not (symbol? name)) (report-error loc "expected symbol as function name" name) (make-seq loc (set-variable! loc name function-slot (compile-lambda loc args body)) (make-const loc name)))))) (defspecial #{`}# (loc args) (pmatch args ((,val) (process-backquote loc val)))) (defspecial quote (loc args) (pmatch args ((,val) (make-const loc val)))) ;;; Compile a compound expression to Tree-IL. (define (compile-pair loc expr) (let ((operator (car expr)) (arguments (cdr expr))) (cond ((find-operator operator 'special-operator) => (lambda (special-operator-function) (special-operator-function loc arguments))) ((find-operator operator 'macro) => (lambda (macro-function) (compile-expr (apply macro-function arguments)))) (else (make-call loc (if (symbol? operator) (reference-variable loc operator function-slot) (compile-expr operator)) (map compile-expr arguments)))))) ;;; Compile a symbol expression. This is a variable reference or maybe ;;; some special value like nil. (define (compile-symbol loc sym) (case sym ((nil) (nil-value loc)) ((t) (t-value loc)) (else (reference-variable loc sym value-slot)))) ;;; Compile a single expression to TreeIL. (define (compile-expr expr) (let ((loc (location expr))) (cond ((symbol? expr) (compile-symbol loc expr)) ((pair? expr) (compile-pair loc expr)) (else (make-const loc expr))))) ;;; Process the compiler options. ;;; FIXME: Why is '(()) passed as options by the REPL? (define (valid-symbol-list-arg? value) (or (eq? value 'all) (and (list? value) (and-map symbol? value)))) (define (process-options! opt) (if (and (not (null? opt)) (not (equal? opt '(())))) (if (null? (cdr opt)) (report-error #f "Invalid compiler options" opt) (let ((key (car opt)) (value (cadr opt))) (case key ((#:warnings) ; ignore #f) ((#:always-lexical) (if (valid-symbol-list-arg? value) (fluid-set! always-lexical value) (report-error #f "Invalid value for #:always-lexical" value))) (else (report-error #f "Invalid compiler option" key))))))) ;;; Entry point for compilation to TreeIL. This creates the bindings ;;; data structure, and after compiling the main expression we need to ;;; make sure all globals for symbols used during the compilation are ;;; created using the generate-ensure-global function. (define (compile-tree-il expr env opts) (values (with-fluids ((bindings-data (make-bindings)) (disable-void-check '()) (always-lexical '())) (process-options! opts) (let ((compiled (compile-expr expr))) (ensuring-globals (location expr) bindings-data compiled))) env env))