fa647429677c121f3c1a0cee26ae443cb1dc8d5c
[bpt/guile.git] / libguile / gc.c
1 /* Copyright (C) 1995, 96, 97, 98, 99, 2000 Free Software Foundation, Inc.
2 *
3 * This program is free software; you can redistribute it and/or modify
4 * it under the terms of the GNU General Public License as published by
5 * the Free Software Foundation; either version 2, or (at your option)
6 * any later version.
7 *
8 * This program is distributed in the hope that it will be useful,
9 * but WITHOUT ANY WARRANTY; without even the implied warranty of
10 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
11 * GNU General Public License for more details.
12 *
13 * You should have received a copy of the GNU General Public License
14 * along with this software; see the file COPYING. If not, write to
15 * the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
16 * Boston, MA 02111-1307 USA
17 *
18 * As a special exception, the Free Software Foundation gives permission
19 * for additional uses of the text contained in its release of GUILE.
20 *
21 * The exception is that, if you link the GUILE library with other files
22 * to produce an executable, this does not by itself cause the
23 * resulting executable to be covered by the GNU General Public License.
24 * Your use of that executable is in no way restricted on account of
25 * linking the GUILE library code into it.
26 *
27 * This exception does not however invalidate any other reasons why
28 * the executable file might be covered by the GNU General Public License.
29 *
30 * This exception applies only to the code released by the
31 * Free Software Foundation under the name GUILE. If you copy
32 * code from other Free Software Foundation releases into a copy of
33 * GUILE, as the General Public License permits, the exception does
34 * not apply to the code that you add in this way. To avoid misleading
35 * anyone as to the status of such modified files, you must delete
36 * this exception notice from them.
37 *
38 * If you write modifications of your own for GUILE, it is your choice
39 * whether to permit this exception to apply to your modifications.
40 * If you do not wish that, delete this exception notice. */
41
42 /* Software engineering face-lift by Greg J. Badros, 11-Dec-1999,
43 gjb@cs.washington.edu, http://www.cs.washington.edu/homes/gjb */
44
45 /* #define DEBUGINFO */
46
47 \f
48 #include <stdio.h>
49 #include "libguile/_scm.h"
50 #include "libguile/eval.h"
51 #include "libguile/stime.h"
52 #include "libguile/stackchk.h"
53 #include "libguile/struct.h"
54 #include "libguile/smob.h"
55 #include "libguile/unif.h"
56 #include "libguile/async.h"
57 #include "libguile/ports.h"
58 #include "libguile/root.h"
59 #include "libguile/strings.h"
60 #include "libguile/vectors.h"
61 #include "libguile/weaks.h"
62 #include "libguile/hashtab.h"
63
64 #include "libguile/validate.h"
65 #include "libguile/gc.h"
66
67 #ifdef GUILE_DEBUG_MALLOC
68 #include "libguile/debug-malloc.h"
69 #endif
70
71 #ifdef HAVE_MALLOC_H
72 #include <malloc.h>
73 #endif
74
75 #ifdef HAVE_UNISTD_H
76 #include <unistd.h>
77 #endif
78
79 #ifdef __STDC__
80 #include <stdarg.h>
81 #define var_start(x, y) va_start(x, y)
82 #else
83 #include <varargs.h>
84 #define var_start(x, y) va_start(x)
85 #endif
86
87 \f
88
89 unsigned int scm_gc_running_p = 0;
90
91 \f
92
93 #if (SCM_DEBUG_CELL_ACCESSES == 1)
94
95 unsigned int scm_debug_cell_accesses_p = 0;
96
97
98 /* Assert that the given object is a valid reference to a valid cell. This
99 * test involves to determine whether the object is a cell pointer, whether
100 * this pointer actually points into a heap segment and whether the cell
101 * pointed to is not a free cell.
102 */
103 void
104 scm_assert_cell_valid (SCM cell)
105 {
106 if (scm_debug_cell_accesses_p)
107 {
108 scm_debug_cell_accesses_p = 0; /* disable to avoid recursion */
109
110 if (!scm_cellp (cell))
111 {
112 fprintf (stderr, "scm_assert_cell_valid: Not a cell object: %lx\n", SCM_UNPACK (cell));
113 abort ();
114 }
115 else if (!scm_gc_running_p)
116 {
117 /* Dirk::FIXME:: During garbage collection there occur references to
118 free cells. This is allright during conservative marking, but
119 should not happen otherwise (I think). The case of free cells
120 accessed during conservative marking is handled in function
121 scm_mark_locations. However, there still occur accesses to free
122 cells during gc. I don't understand why this happens. If it is
123 a bug and gets fixed, the following test should also work while
124 gc is running.
125 */
126 if (SCM_FREE_CELL_P (cell))
127 {
128 fprintf (stderr, "scm_assert_cell_valid: Accessing free cell: %lx\n", SCM_UNPACK (cell));
129 abort ();
130 }
131 }
132 scm_debug_cell_accesses_p = 1; /* re-enable */
133 }
134 }
135
136
137 SCM_DEFINE (scm_set_debug_cell_accesses_x, "set-debug-cell-accesses!", 1, 0, 0,
138 (SCM flag),
139 "If FLAG is #f, cell access checking is disabled.\n"
140 "If FLAG is #t, cell access checking is enabled.\n"
141 "This procedure only exists because the compile-time flag\n"
142 "SCM_DEBUG_CELL_ACCESSES was set to 1.\n")
143 #define FUNC_NAME s_scm_set_debug_cell_accesses_x
144 {
145 if (SCM_FALSEP (flag)) {
146 scm_debug_cell_accesses_p = 0;
147 } else if (SCM_EQ_P (flag, SCM_BOOL_T)) {
148 scm_debug_cell_accesses_p = 1;
149 } else {
150 SCM_WRONG_TYPE_ARG (1, flag);
151 }
152 return SCM_UNSPECIFIED;
153 }
154 #undef FUNC_NAME
155
156 #endif /* SCM_DEBUG_CELL_ACCESSES == 1 */
157
158 \f
159
160 /* {heap tuning parameters}
161 *
162 * These are parameters for controlling memory allocation. The heap
163 * is the area out of which scm_cons, and object headers are allocated.
164 *
165 * Each heap cell is 8 bytes on a 32 bit machine and 16 bytes on a
166 * 64 bit machine. The units of the _SIZE parameters are bytes.
167 * Cons pairs and object headers occupy one heap cell.
168 *
169 * SCM_INIT_HEAP_SIZE is the initial size of heap. If this much heap is
170 * allocated initially the heap will grow by half its current size
171 * each subsequent time more heap is needed.
172 *
173 * If SCM_INIT_HEAP_SIZE heap cannot be allocated initially, SCM_HEAP_SEG_SIZE
174 * will be used, and the heap will grow by SCM_HEAP_SEG_SIZE when more
175 * heap is needed. SCM_HEAP_SEG_SIZE must fit into type scm_sizet. This code
176 * is in scm_init_storage() and alloc_some_heap() in sys.c
177 *
178 * If SCM_INIT_HEAP_SIZE can be allocated initially, the heap will grow by
179 * SCM_EXPHEAP(scm_heap_size) when more heap is needed.
180 *
181 * SCM_MIN_HEAP_SEG_SIZE is minimum size of heap to accept when more heap
182 * is needed.
183 *
184 * INIT_MALLOC_LIMIT is the initial amount of malloc usage which will
185 * trigger a GC.
186 *
187 * SCM_MTRIGGER_HYSTERESIS is the amount of malloc storage that must be
188 * reclaimed by a GC triggered by must_malloc. If less than this is
189 * reclaimed, the trigger threshold is raised. [I don't know what a
190 * good value is. I arbitrarily chose 1/10 of the INIT_MALLOC_LIMIT to
191 * work around a oscillation that caused almost constant GC.]
192 */
193
194 /*
195 * Heap size 45000 and 40% min yield gives quick startup and no extra
196 * heap allocation. Having higher values on min yield may lead to
197 * large heaps, especially if code behaviour is varying its
198 * maximum consumption between different freelists.
199 */
200
201 #define SCM_DATA_CELLS2CARDS(n) (((n) + SCM_GC_CARD_N_DATA_CELLS - 1) / SCM_GC_CARD_N_DATA_CELLS)
202 #define SCM_CARDS_PER_CLUSTER SCM_DATA_CELLS2CARDS (2000L)
203 #define SCM_CLUSTER_SIZE_1 (SCM_CARDS_PER_CLUSTER * SCM_GC_CARD_N_DATA_CELLS)
204 int scm_default_init_heap_size_1 = (((SCM_DATA_CELLS2CARDS (45000L) + SCM_CARDS_PER_CLUSTER - 1)
205 / SCM_CARDS_PER_CLUSTER) * SCM_GC_CARD_SIZE);
206 int scm_default_min_yield_1 = 40;
207
208 #define SCM_CLUSTER_SIZE_2 (SCM_CARDS_PER_CLUSTER * (SCM_GC_CARD_N_DATA_CELLS / 2))
209 int scm_default_init_heap_size_2 = (((SCM_DATA_CELLS2CARDS (2500L * 2) + SCM_CARDS_PER_CLUSTER - 1)
210 / SCM_CARDS_PER_CLUSTER) * SCM_GC_CARD_SIZE);
211 /* The following value may seem large, but note that if we get to GC at
212 * all, this means that we have a numerically intensive application
213 */
214 int scm_default_min_yield_2 = 40;
215
216 int scm_default_max_segment_size = 2097000L;/* a little less (adm) than 2 Mb */
217
218 #define SCM_MIN_HEAP_SEG_SIZE (8 * SCM_GC_CARD_SIZE)
219 #ifdef _QC
220 # define SCM_HEAP_SEG_SIZE 32768L
221 #else
222 # ifdef sequent
223 # define SCM_HEAP_SEG_SIZE (7000L * sizeof (scm_cell))
224 # else
225 # define SCM_HEAP_SEG_SIZE (16384L * sizeof (scm_cell))
226 # endif
227 #endif
228 /* Make heap grow with factor 1.5 */
229 #define SCM_EXPHEAP(scm_heap_size) (scm_heap_size / 2)
230 #define SCM_INIT_MALLOC_LIMIT 100000
231 #define SCM_MTRIGGER_HYSTERESIS (SCM_INIT_MALLOC_LIMIT/10)
232
233 /* CELL_UP and CELL_DN are used by scm_init_heap_seg to find (scm_cell * span)
234 aligned inner bounds for allocated storage */
235
236 #ifdef PROT386
237 /*in 386 protected mode we must only adjust the offset */
238 # define CELL_UP(p, span) MK_FP(FP_SEG(p), ~(8*(span)-1)&(FP_OFF(p)+8*(span)-1))
239 # define CELL_DN(p, span) MK_FP(FP_SEG(p), ~(8*(span)-1)&FP_OFF(p))
240 #else
241 # ifdef _UNICOS
242 # define CELL_UP(p, span) (SCM_CELLPTR)(~(span) & ((long)(p)+(span)))
243 # define CELL_DN(p, span) (SCM_CELLPTR)(~(span) & (long)(p))
244 # else
245 # define CELL_UP(p, span) (SCM_CELLPTR)(~(sizeof(scm_cell)*(span)-1L) & ((long)(p)+sizeof(scm_cell)*(span)-1L))
246 # define CELL_DN(p, span) (SCM_CELLPTR)(~(sizeof(scm_cell)*(span)-1L) & (long)(p))
247 # endif /* UNICOS */
248 #endif /* PROT386 */
249
250 #define ALIGNMENT_SLACK(freelist) (SCM_GC_CARD_SIZE - 1)
251 #define CLUSTER_SIZE_IN_BYTES(freelist) \
252 (((freelist)->cluster_size / (SCM_GC_CARD_N_DATA_CELLS / (freelist)->span)) * SCM_GC_CARD_SIZE)
253
254 \f
255 /* scm_freelists
256 */
257
258 typedef struct scm_freelist_t {
259 /* collected cells */
260 SCM cells;
261 /* number of cells left to collect before cluster is full */
262 unsigned int left_to_collect;
263 /* number of clusters which have been allocated */
264 unsigned int clusters_allocated;
265 /* a list of freelists, each of size cluster_size,
266 * except the last one which may be shorter
267 */
268 SCM clusters;
269 SCM *clustertail;
270 /* this is the number of objects in each cluster, including the spine cell */
271 int cluster_size;
272 /* indicates that we should grow heap instead of GC:ing
273 */
274 int grow_heap_p;
275 /* minimum yield on this list in order not to grow the heap
276 */
277 long min_yield;
278 /* defines min_yield as percent of total heap size
279 */
280 int min_yield_fraction;
281 /* number of cells per object on this list */
282 int span;
283 /* number of collected cells during last GC */
284 long collected;
285 /* number of collected cells during penultimate GC */
286 long collected_1;
287 /* total number of cells in heap segments
288 * belonging to this list.
289 */
290 long heap_size;
291 } scm_freelist_t;
292
293 SCM scm_freelist = SCM_EOL;
294 scm_freelist_t scm_master_freelist = {
295 SCM_EOL, 0, 0, SCM_EOL, 0, SCM_CLUSTER_SIZE_1, 0, 0, 0, 1, 0, 0
296 };
297 SCM scm_freelist2 = SCM_EOL;
298 scm_freelist_t scm_master_freelist2 = {
299 SCM_EOL, 0, 0, SCM_EOL, 0, SCM_CLUSTER_SIZE_2, 0, 0, 0, 2, 0, 0
300 };
301
302 /* scm_mtrigger
303 * is the number of bytes of must_malloc allocation needed to trigger gc.
304 */
305 unsigned long scm_mtrigger;
306
307 /* scm_gc_heap_lock
308 * If set, don't expand the heap. Set only during gc, during which no allocation
309 * is supposed to take place anyway.
310 */
311 int scm_gc_heap_lock = 0;
312
313 /* GC Blocking
314 * Don't pause for collection if this is set -- just
315 * expand the heap.
316 */
317 int scm_block_gc = 1;
318
319 /* During collection, this accumulates objects holding
320 * weak references.
321 */
322 SCM scm_weak_vectors;
323
324 /* During collection, this accumulates structures which are to be freed.
325 */
326 SCM scm_structs_to_free;
327
328 /* GC Statistics Keeping
329 */
330 unsigned long scm_cells_allocated = 0;
331 long scm_mallocated = 0;
332 unsigned long scm_gc_cells_collected;
333 unsigned long scm_gc_yield;
334 static unsigned long scm_gc_yield_1 = 0; /* previous GC yield */
335 unsigned long scm_gc_malloc_collected;
336 unsigned long scm_gc_ports_collected;
337 unsigned long scm_gc_time_taken = 0;
338 static unsigned long t_before_gc;
339 static unsigned long t_before_sweep;
340 unsigned long scm_gc_mark_time_taken = 0;
341 unsigned long scm_gc_sweep_time_taken = 0;
342 unsigned long scm_gc_times = 0;
343 unsigned long scm_gc_cells_swept = 0;
344 double scm_gc_cells_marked_acc = 0.;
345 double scm_gc_cells_swept_acc = 0.;
346
347 SCM_SYMBOL (sym_cells_allocated, "cells-allocated");
348 SCM_SYMBOL (sym_heap_size, "cell-heap-size");
349 SCM_SYMBOL (sym_mallocated, "bytes-malloced");
350 SCM_SYMBOL (sym_mtrigger, "gc-malloc-threshold");
351 SCM_SYMBOL (sym_heap_segments, "cell-heap-segments");
352 SCM_SYMBOL (sym_gc_time_taken, "gc-time-taken");
353 SCM_SYMBOL (sym_gc_mark_time_taken, "gc-mark-time-taken");
354 SCM_SYMBOL (sym_gc_sweep_time_taken, "gc-sweep-time-taken");
355 SCM_SYMBOL (sym_times, "gc-times");
356 SCM_SYMBOL (sym_cells_marked, "cells-marked");
357 SCM_SYMBOL (sym_cells_swept, "cells-swept");
358
359 typedef struct scm_heap_seg_data_t
360 {
361 /* lower and upper bounds of the segment */
362 SCM_CELLPTR bounds[2];
363
364 /* address of the head-of-freelist pointer for this segment's cells.
365 All segments usually point to the same one, scm_freelist. */
366 scm_freelist_t *freelist;
367
368 /* number of cells per object in this segment */
369 int span;
370 } scm_heap_seg_data_t;
371
372
373
374 static scm_sizet init_heap_seg (SCM_CELLPTR, scm_sizet, scm_freelist_t *);
375
376 typedef enum { return_on_error, abort_on_error } policy_on_error;
377 static void alloc_some_heap (scm_freelist_t *, policy_on_error);
378
379
380 #define SCM_HEAP_SIZE \
381 (scm_master_freelist.heap_size + scm_master_freelist2.heap_size)
382 #define SCM_MAX(A, B) ((A) > (B) ? (A) : (B))
383
384 #define BVEC_GROW_SIZE 256
385 #define BVEC_GROW_SIZE_IN_LIMBS (SCM_GC_CARD_BVEC_SIZE_IN_LIMBS * BVEC_GROW_SIZE)
386 #define BVEC_GROW_SIZE_IN_BYTES (BVEC_GROW_SIZE_IN_LIMBS * sizeof (scm_c_bvec_limb_t))
387
388 /* mark space allocation */
389
390 typedef struct scm_mark_space_t
391 {
392 scm_c_bvec_limb_t *bvec_space;
393 struct scm_mark_space_t *next;
394 } scm_mark_space_t;
395
396 static scm_mark_space_t *current_mark_space;
397 static scm_mark_space_t **mark_space_ptr;
398 static int current_mark_space_offset;
399 static scm_mark_space_t *mark_space_head;
400
401 static scm_c_bvec_limb_t *
402 get_bvec ()
403 {
404 scm_c_bvec_limb_t *res;
405
406 if (!current_mark_space)
407 {
408 SCM_SYSCALL (current_mark_space = (scm_mark_space_t *) malloc (sizeof (scm_mark_space_t)));
409 if (!current_mark_space)
410 scm_wta (SCM_UNDEFINED, "could not grow", "heap");
411
412 current_mark_space->bvec_space = NULL;
413 current_mark_space->next = NULL;
414
415 *mark_space_ptr = current_mark_space;
416 mark_space_ptr = &(current_mark_space->next);
417
418 return get_bvec ();
419 }
420
421 if (!(current_mark_space->bvec_space))
422 {
423 SCM_SYSCALL (current_mark_space->bvec_space =
424 (scm_c_bvec_limb_t *) calloc (BVEC_GROW_SIZE_IN_BYTES, 1));
425 if (!(current_mark_space->bvec_space))
426 scm_wta (SCM_UNDEFINED, "could not grow", "heap");
427
428 current_mark_space_offset = 0;
429
430 return get_bvec ();
431 }
432
433 if (current_mark_space_offset == BVEC_GROW_SIZE_IN_LIMBS)
434 {
435 current_mark_space = NULL;
436
437 return get_bvec ();
438 }
439
440 res = current_mark_space->bvec_space + current_mark_space_offset;
441 current_mark_space_offset += SCM_GC_CARD_BVEC_SIZE_IN_LIMBS;
442
443 return res;
444 }
445
446 static void
447 clear_mark_space ()
448 {
449 scm_mark_space_t *ms;
450
451 for (ms = mark_space_head; ms; ms = ms->next)
452 memset (ms->bvec_space, 0, BVEC_GROW_SIZE_IN_BYTES);
453 }
454
455
456 \f
457 /* Debugging functions. */
458
459 #if defined (GUILE_DEBUG) || defined (GUILE_DEBUG_FREELIST)
460
461 /* Return the number of the heap segment containing CELL. */
462 static int
463 which_seg (SCM cell)
464 {
465 int i;
466
467 for (i = 0; i < scm_n_heap_segs; i++)
468 if (SCM_PTR_LE (scm_heap_table[i].bounds[0], SCM2PTR (cell))
469 && SCM_PTR_GT (scm_heap_table[i].bounds[1], SCM2PTR (cell)))
470 return i;
471 fprintf (stderr, "which_seg: can't find segment containing cell %lx\n",
472 SCM_UNPACK (cell));
473 abort ();
474 }
475
476
477 static void
478 map_free_list (scm_freelist_t *master, SCM freelist)
479 {
480 int last_seg = -1, count = 0;
481 SCM f;
482
483 for (f = freelist; !SCM_NULLP (f); f = SCM_FREE_CELL_CDR (f))
484 {
485 int this_seg = which_seg (f);
486
487 if (this_seg != last_seg)
488 {
489 if (last_seg != -1)
490 fprintf (stderr, " %5d %d-cells in segment %d\n",
491 count, master->span, last_seg);
492 last_seg = this_seg;
493 count = 0;
494 }
495 count++;
496 }
497 if (last_seg != -1)
498 fprintf (stderr, " %5d %d-cells in segment %d\n",
499 count, master->span, last_seg);
500 }
501
502 SCM_DEFINE (scm_map_free_list, "map-free-list", 0, 0, 0,
503 (),
504 "Print debugging information about the free-list.\n"
505 "`map-free-list' is only included in --enable-guile-debug builds of Guile.")
506 #define FUNC_NAME s_scm_map_free_list
507 {
508 int i;
509 fprintf (stderr, "%d segments total (%d:%d",
510 scm_n_heap_segs,
511 scm_heap_table[0].span,
512 scm_heap_table[0].bounds[1] - scm_heap_table[0].bounds[0]);
513 for (i = 1; i < scm_n_heap_segs; i++)
514 fprintf (stderr, ", %d:%d",
515 scm_heap_table[i].span,
516 scm_heap_table[i].bounds[1] - scm_heap_table[i].bounds[0]);
517 fprintf (stderr, ")\n");
518 map_free_list (&scm_master_freelist, scm_freelist);
519 map_free_list (&scm_master_freelist2, scm_freelist2);
520 fflush (stderr);
521
522 return SCM_UNSPECIFIED;
523 }
524 #undef FUNC_NAME
525
526 static int last_cluster;
527 static int last_size;
528
529 static int
530 free_list_length (char *title, int i, SCM freelist)
531 {
532 SCM ls;
533 int n = 0;
534 for (ls = freelist; !SCM_NULLP (ls); ls = SCM_FREE_CELL_CDR (ls))
535 if (SCM_FREE_CELL_P (ls))
536 ++n;
537 else
538 {
539 fprintf (stderr, "bad cell in %s at position %d\n", title, n);
540 abort ();
541 }
542 if (n != last_size)
543 {
544 if (i > 0)
545 {
546 if (last_cluster == i - 1)
547 fprintf (stderr, "\t%d\n", last_size);
548 else
549 fprintf (stderr, "-%d\t%d\n", i - 1, last_size);
550 }
551 if (i >= 0)
552 fprintf (stderr, "%s %d", title, i);
553 else
554 fprintf (stderr, "%s\t%d\n", title, n);
555 last_cluster = i;
556 last_size = n;
557 }
558 return n;
559 }
560
561 static void
562 free_list_lengths (char *title, scm_freelist_t *master, SCM freelist)
563 {
564 SCM clusters;
565 int i = 0, len, n = 0;
566 fprintf (stderr, "%s\n\n", title);
567 n += free_list_length ("free list", -1, freelist);
568 for (clusters = master->clusters;
569 SCM_NNULLP (clusters);
570 clusters = SCM_CDR (clusters))
571 {
572 len = free_list_length ("cluster", i++, SCM_CAR (clusters));
573 n += len;
574 }
575 if (last_cluster == i - 1)
576 fprintf (stderr, "\t%d\n", last_size);
577 else
578 fprintf (stderr, "-%d\t%d\n", i - 1, last_size);
579 fprintf (stderr, "\ntotal %d objects\n\n", n);
580 }
581
582 SCM_DEFINE (scm_free_list_length, "free-list-length", 0, 0, 0,
583 (),
584 "Print debugging information about the free-list.\n"
585 "`free-list-length' is only included in --enable-guile-debug builds of Guile.")
586 #define FUNC_NAME s_scm_free_list_length
587 {
588 free_list_lengths ("1-cells", &scm_master_freelist, scm_freelist);
589 free_list_lengths ("2-cells", &scm_master_freelist2, scm_freelist2);
590 return SCM_UNSPECIFIED;
591 }
592 #undef FUNC_NAME
593
594 #endif
595
596 #ifdef GUILE_DEBUG_FREELIST
597
598 /* Number of calls to SCM_NEWCELL since startup. */
599 static unsigned long scm_newcell_count;
600 static unsigned long scm_newcell2_count;
601
602 /* Search freelist for anything that isn't marked as a free cell.
603 Abort if we find something. */
604 static void
605 scm_check_freelist (SCM freelist)
606 {
607 SCM f;
608 int i = 0;
609
610 for (f = freelist; !SCM_NULLP (f); f = SCM_FREE_CELL_CDR (f), i++)
611 if (!SCM_FREE_CELL_P (f))
612 {
613 fprintf (stderr, "Bad cell in freelist on newcell %lu: %d'th elt\n",
614 scm_newcell_count, i);
615 abort ();
616 }
617 }
618
619 SCM_DEFINE (scm_gc_set_debug_check_freelist_x, "gc-set-debug-check-freelist!", 1, 0, 0,
620 (SCM flag),
621 "If FLAG is #t, check the freelist for consistency on each cell allocation.\n"
622 "This procedure only exists because the GUILE_DEBUG_FREELIST \n"
623 "compile-time flag was selected.\n")
624 #define FUNC_NAME s_scm_gc_set_debug_check_freelist_x
625 {
626 /* [cmm] I did a double-take when I read this code the first time.
627 well, FWIW. */
628 SCM_VALIDATE_BOOL_COPY (1, flag, scm_debug_check_freelist);
629 return SCM_UNSPECIFIED;
630 }
631 #undef FUNC_NAME
632
633
634 SCM
635 scm_debug_newcell (void)
636 {
637 SCM new;
638
639 scm_newcell_count++;
640 if (scm_debug_check_freelist)
641 {
642 scm_check_freelist (scm_freelist);
643 scm_gc();
644 }
645
646 /* The rest of this is supposed to be identical to the SCM_NEWCELL
647 macro. */
648 if (SCM_NULLP (scm_freelist))
649 new = scm_gc_for_newcell (&scm_master_freelist, &scm_freelist);
650 else
651 {
652 new = scm_freelist;
653 scm_freelist = SCM_FREE_CELL_CDR (scm_freelist);
654 }
655
656 return new;
657 }
658
659 SCM
660 scm_debug_newcell2 (void)
661 {
662 SCM new;
663
664 scm_newcell2_count++;
665 if (scm_debug_check_freelist)
666 {
667 scm_check_freelist (scm_freelist2);
668 scm_gc ();
669 }
670
671 /* The rest of this is supposed to be identical to the SCM_NEWCELL
672 macro. */
673 if (SCM_NULLP (scm_freelist2))
674 new = scm_gc_for_newcell (&scm_master_freelist2, &scm_freelist2);
675 else
676 {
677 new = scm_freelist2;
678 scm_freelist2 = SCM_FREE_CELL_CDR (scm_freelist2);
679 }
680
681 return new;
682 }
683
684 #endif /* GUILE_DEBUG_FREELIST */
685
686 \f
687
688 static unsigned long
689 master_cells_allocated (scm_freelist_t *master)
690 {
691 /* the '- 1' below is to ignore the cluster spine cells. */
692 int objects = master->clusters_allocated * (master->cluster_size - 1);
693 if (SCM_NULLP (master->clusters))
694 objects -= master->left_to_collect;
695 return master->span * objects;
696 }
697
698 static unsigned long
699 freelist_length (SCM freelist)
700 {
701 int n;
702 for (n = 0; !SCM_NULLP (freelist); freelist = SCM_FREE_CELL_CDR (freelist))
703 ++n;
704 return n;
705 }
706
707 static unsigned long
708 compute_cells_allocated ()
709 {
710 return (scm_cells_allocated
711 + master_cells_allocated (&scm_master_freelist)
712 + master_cells_allocated (&scm_master_freelist2)
713 - scm_master_freelist.span * freelist_length (scm_freelist)
714 - scm_master_freelist2.span * freelist_length (scm_freelist2));
715 }
716
717 /* {Scheme Interface to GC}
718 */
719
720 SCM_DEFINE (scm_gc_stats, "gc-stats", 0, 0, 0,
721 (),
722 "Returns an association list of statistics about Guile's current use of storage. ")
723 #define FUNC_NAME s_scm_gc_stats
724 {
725 int i;
726 int n;
727 SCM heap_segs;
728 long int local_scm_mtrigger;
729 long int local_scm_mallocated;
730 long int local_scm_heap_size;
731 long int local_scm_cells_allocated;
732 long int local_scm_gc_time_taken;
733 long int local_scm_gc_times;
734 long int local_scm_gc_mark_time_taken;
735 long int local_scm_gc_sweep_time_taken;
736 double local_scm_gc_cells_swept;
737 double local_scm_gc_cells_marked;
738 SCM answer;
739
740 SCM_DEFER_INTS;
741
742 ++scm_block_gc;
743
744 retry:
745 heap_segs = SCM_EOL;
746 n = scm_n_heap_segs;
747 for (i = scm_n_heap_segs; i--; )
748 heap_segs = scm_cons (scm_cons (scm_ulong2num ((unsigned long)scm_heap_table[i].bounds[1]),
749 scm_ulong2num ((unsigned long)scm_heap_table[i].bounds[0])),
750 heap_segs);
751 if (scm_n_heap_segs != n)
752 goto retry;
753
754 --scm_block_gc;
755
756 /* Below, we cons to produce the resulting list. We want a snapshot of
757 * the heap situation before consing.
758 */
759 local_scm_mtrigger = scm_mtrigger;
760 local_scm_mallocated = scm_mallocated;
761 local_scm_heap_size = SCM_HEAP_SIZE;
762 local_scm_cells_allocated = compute_cells_allocated ();
763 local_scm_gc_time_taken = scm_gc_time_taken;
764 local_scm_gc_mark_time_taken = scm_gc_mark_time_taken;
765 local_scm_gc_sweep_time_taken = scm_gc_sweep_time_taken;
766 local_scm_gc_times = scm_gc_times;
767 local_scm_gc_cells_swept = scm_gc_cells_swept_acc;
768 local_scm_gc_cells_marked = scm_gc_cells_marked_acc;
769
770 answer = scm_listify (scm_cons (sym_gc_time_taken, scm_ulong2num (local_scm_gc_time_taken)),
771 scm_cons (sym_cells_allocated, scm_ulong2num (local_scm_cells_allocated)),
772 scm_cons (sym_heap_size, scm_ulong2num (local_scm_heap_size)),
773 scm_cons (sym_mallocated, scm_ulong2num (local_scm_mallocated)),
774 scm_cons (sym_mtrigger, scm_ulong2num (local_scm_mtrigger)),
775 scm_cons (sym_times, scm_ulong2num (local_scm_gc_times)),
776 scm_cons (sym_gc_mark_time_taken, scm_ulong2num (local_scm_gc_mark_time_taken)),
777 scm_cons (sym_gc_sweep_time_taken, scm_ulong2num (local_scm_gc_sweep_time_taken)),
778 scm_cons (sym_cells_marked, scm_dbl2big (local_scm_gc_cells_marked)),
779 scm_cons (sym_cells_swept, scm_dbl2big (local_scm_gc_cells_swept)),
780 scm_cons (sym_heap_segments, heap_segs),
781 SCM_UNDEFINED);
782 SCM_ALLOW_INTS;
783 return answer;
784 }
785 #undef FUNC_NAME
786
787
788 static void
789 gc_start_stats (const char *what)
790 {
791 t_before_gc = scm_c_get_internal_run_time ();
792 scm_gc_cells_swept = 0;
793 scm_gc_cells_collected = 0;
794 scm_gc_yield_1 = scm_gc_yield;
795 scm_gc_yield = (scm_cells_allocated
796 + master_cells_allocated (&scm_master_freelist)
797 + master_cells_allocated (&scm_master_freelist2));
798 scm_gc_malloc_collected = 0;
799 scm_gc_ports_collected = 0;
800 }
801
802
803 static void
804 gc_end_stats ()
805 {
806 unsigned long t = scm_c_get_internal_run_time ();
807 scm_gc_time_taken += (t - t_before_gc);
808 scm_gc_sweep_time_taken += (t - t_before_sweep);
809 ++scm_gc_times;
810
811 scm_gc_cells_marked_acc += scm_gc_cells_swept - scm_gc_cells_collected;
812 scm_gc_cells_swept_acc += scm_gc_cells_swept;
813 }
814
815
816 SCM_DEFINE (scm_object_address, "object-address", 1, 0, 0,
817 (SCM obj),
818 "Return an integer that for the lifetime of @var{obj} is uniquely\n"
819 "returned by this function for @var{obj}")
820 #define FUNC_NAME s_scm_object_address
821 {
822 return scm_ulong2num ((unsigned long) SCM_UNPACK (obj));
823 }
824 #undef FUNC_NAME
825
826
827 SCM_DEFINE (scm_gc, "gc", 0, 0, 0,
828 (),
829 "Scans all of SCM objects and reclaims for further use those that are\n"
830 "no longer accessible.")
831 #define FUNC_NAME s_scm_gc
832 {
833 SCM_DEFER_INTS;
834 scm_igc ("call");
835 SCM_ALLOW_INTS;
836 return SCM_UNSPECIFIED;
837 }
838 #undef FUNC_NAME
839
840
841 \f
842 /* {C Interface For When GC is Triggered}
843 */
844
845 static void
846 adjust_min_yield (scm_freelist_t *freelist)
847 {
848 /* min yield is adjusted upwards so that next predicted total yield
849 * (allocated cells actually freed by GC) becomes
850 * `min_yield_fraction' of total heap size. Note, however, that
851 * the absolute value of min_yield will correspond to `collected'
852 * on one master (the one which currently is triggering GC).
853 *
854 * The reason why we look at total yield instead of cells collected
855 * on one list is that we want to take other freelists into account.
856 * On this freelist, we know that (local) yield = collected cells,
857 * but that's probably not the case on the other lists.
858 *
859 * (We might consider computing a better prediction, for example
860 * by computing an average over multiple GC:s.)
861 */
862 if (freelist->min_yield_fraction)
863 {
864 /* Pick largest of last two yields. */
865 int delta = ((SCM_HEAP_SIZE * freelist->min_yield_fraction / 100)
866 - (long) SCM_MAX (scm_gc_yield_1, scm_gc_yield));
867 #ifdef DEBUGINFO
868 fprintf (stderr, " after GC = %d, delta = %d\n",
869 scm_cells_allocated,
870 delta);
871 #endif
872 if (delta > 0)
873 freelist->min_yield += delta;
874 }
875 }
876
877
878 /* When we get POSIX threads support, the master will be global and
879 * common while the freelist will be individual for each thread.
880 */
881
882 SCM
883 scm_gc_for_newcell (scm_freelist_t *master, SCM *freelist)
884 {
885 SCM cell;
886 ++scm_ints_disabled;
887 do
888 {
889 if (SCM_NULLP (master->clusters))
890 {
891 if (master->grow_heap_p || scm_block_gc)
892 {
893 /* In order to reduce gc frequency, try to allocate a new heap
894 * segment first, even if gc might find some free cells. If we
895 * can't obtain a new heap segment, we will try gc later.
896 */
897 master->grow_heap_p = 0;
898 alloc_some_heap (master, return_on_error);
899 }
900 if (SCM_NULLP (master->clusters))
901 {
902 /* The heap was not grown, either because it wasn't scheduled to
903 * grow, or because there was not enough memory available. In
904 * both cases we have to try gc to get some free cells.
905 */
906 #ifdef DEBUGINFO
907 fprintf (stderr, "allocated = %d, ",
908 scm_cells_allocated
909 + master_cells_allocated (&scm_master_freelist)
910 + master_cells_allocated (&scm_master_freelist2));
911 #endif
912 scm_igc ("cells");
913 adjust_min_yield (master);
914 if (SCM_NULLP (master->clusters))
915 {
916 /* gc could not free any cells. Now, we _must_ allocate a
917 * new heap segment, because there is no other possibility
918 * to provide a new cell for the caller.
919 */
920 alloc_some_heap (master, abort_on_error);
921 }
922 }
923 }
924 cell = SCM_CAR (master->clusters);
925 master->clusters = SCM_CDR (master->clusters);
926 ++master->clusters_allocated;
927 }
928 while (SCM_NULLP (cell));
929
930 #ifdef GUILE_DEBUG_FREELIST
931 scm_check_freelist (cell);
932 #endif
933
934 --scm_ints_disabled;
935 *freelist = SCM_FREE_CELL_CDR (cell);
936 return cell;
937 }
938
939
940 #if 0
941 /* This is a support routine which can be used to reserve a cluster
942 * for some special use, such as debugging. It won't be useful until
943 * free cells are preserved between garbage collections.
944 */
945
946 void
947 scm_alloc_cluster (scm_freelist_t *master)
948 {
949 SCM freelist, cell;
950 cell = scm_gc_for_newcell (master, &freelist);
951 SCM_SETCDR (cell, freelist);
952 return cell;
953 }
954 #endif
955
956
957 scm_c_hook_t scm_before_gc_c_hook;
958 scm_c_hook_t scm_before_mark_c_hook;
959 scm_c_hook_t scm_before_sweep_c_hook;
960 scm_c_hook_t scm_after_sweep_c_hook;
961 scm_c_hook_t scm_after_gc_c_hook;
962
963
964 void
965 scm_igc (const char *what)
966 {
967 int j;
968
969 ++scm_gc_running_p;
970 scm_c_hook_run (&scm_before_gc_c_hook, 0);
971 #ifdef DEBUGINFO
972 fprintf (stderr,
973 SCM_NULLP (scm_freelist)
974 ? "*"
975 : (SCM_NULLP (scm_freelist2) ? "o" : "m"));
976 #endif
977 #ifdef USE_THREADS
978 /* During the critical section, only the current thread may run. */
979 SCM_THREAD_CRITICAL_SECTION_START;
980 #endif
981
982 /* fprintf (stderr, "gc: %s\n", what); */
983
984 if (!scm_stack_base || scm_block_gc)
985 {
986 --scm_gc_running_p;
987 return;
988 }
989
990 gc_start_stats (what);
991
992 if (scm_mallocated < 0)
993 /* The byte count of allocated objects has underflowed. This is
994 probably because you forgot to report the sizes of objects you
995 have allocated, by calling scm_done_malloc or some such. When
996 the GC freed them, it subtracted their size from
997 scm_mallocated, which underflowed. */
998 abort ();
999
1000 if (scm_gc_heap_lock)
1001 /* We've invoked the collector while a GC is already in progress.
1002 That should never happen. */
1003 abort ();
1004
1005 ++scm_gc_heap_lock;
1006
1007 /* flush dead entries from the continuation stack */
1008 {
1009 int x;
1010 int bound;
1011 SCM * elts;
1012 elts = SCM_VELTS (scm_continuation_stack);
1013 bound = SCM_VECTOR_LENGTH (scm_continuation_stack);
1014 x = SCM_INUM (scm_continuation_stack_ptr);
1015 while (x < bound)
1016 {
1017 elts[x] = SCM_BOOL_F;
1018 ++x;
1019 }
1020 }
1021
1022 scm_c_hook_run (&scm_before_mark_c_hook, 0);
1023
1024 clear_mark_space ();
1025
1026 #ifndef USE_THREADS
1027
1028 /* Mark objects on the C stack. */
1029 SCM_FLUSH_REGISTER_WINDOWS;
1030 /* This assumes that all registers are saved into the jmp_buf */
1031 setjmp (scm_save_regs_gc_mark);
1032 scm_mark_locations ((SCM_STACKITEM *) scm_save_regs_gc_mark,
1033 ( (scm_sizet) (sizeof (SCM_STACKITEM) - 1 +
1034 sizeof scm_save_regs_gc_mark)
1035 / sizeof (SCM_STACKITEM)));
1036
1037 {
1038 scm_sizet stack_len = scm_stack_size (scm_stack_base);
1039 #ifdef SCM_STACK_GROWS_UP
1040 scm_mark_locations (scm_stack_base, stack_len);
1041 #else
1042 scm_mark_locations (scm_stack_base - stack_len, stack_len);
1043 #endif
1044 }
1045
1046 #else /* USE_THREADS */
1047
1048 /* Mark every thread's stack and registers */
1049 scm_threads_mark_stacks ();
1050
1051 #endif /* USE_THREADS */
1052
1053 j = SCM_NUM_PROTECTS;
1054 while (j--)
1055 scm_gc_mark (scm_sys_protects[j]);
1056
1057 /* FIXME: we should have a means to register C functions to be run
1058 * in different phases of GC
1059 */
1060 scm_mark_subr_table ();
1061
1062 #ifndef USE_THREADS
1063 scm_gc_mark (scm_root->handle);
1064 #endif
1065
1066 t_before_sweep = scm_c_get_internal_run_time ();
1067 scm_gc_mark_time_taken += (t_before_sweep - t_before_gc);
1068
1069 scm_c_hook_run (&scm_before_sweep_c_hook, 0);
1070
1071 scm_gc_sweep ();
1072
1073 scm_c_hook_run (&scm_after_sweep_c_hook, 0);
1074
1075 --scm_gc_heap_lock;
1076 gc_end_stats ();
1077
1078 #ifdef USE_THREADS
1079 SCM_THREAD_CRITICAL_SECTION_END;
1080 #endif
1081 scm_c_hook_run (&scm_after_gc_c_hook, 0);
1082 --scm_gc_running_p;
1083 }
1084
1085 \f
1086
1087 /* {Mark/Sweep}
1088 */
1089
1090
1091
1092 /* Mark an object precisely.
1093 */
1094 void
1095 scm_gc_mark (SCM p)
1096 #define FUNC_NAME "scm_gc_mark"
1097 {
1098 register long i;
1099 register SCM ptr;
1100
1101 ptr = p;
1102
1103 gc_mark_loop:
1104 if (SCM_IMP (ptr))
1105 return;
1106
1107 gc_mark_nimp:
1108 if (!SCM_CELLP (ptr))
1109 SCM_MISC_ERROR ("rogue pointer in heap", SCM_EOL);
1110
1111 #if (defined (GUILE_DEBUG_FREELIST))
1112
1113 if (SCM_GC_IN_CARD_HEADERP (SCM2PTR (ptr)))
1114 scm_wta (ptr, "rogue pointer in heap", NULL);
1115
1116 #endif
1117
1118 if (SCM_GCMARKP (ptr))
1119 return;
1120
1121 SCM_SETGCMARK (ptr);
1122
1123 switch (SCM_TYP7 (ptr))
1124 {
1125 case scm_tcs_cons_nimcar:
1126 if (SCM_IMP (SCM_CDR (ptr)))
1127 {
1128 ptr = SCM_CAR (ptr);
1129 goto gc_mark_nimp;
1130 }
1131 scm_gc_mark (SCM_CAR (ptr));
1132 ptr = SCM_CDR (ptr);
1133 goto gc_mark_nimp;
1134 case scm_tcs_cons_imcar:
1135 ptr = SCM_CDR (ptr);
1136 goto gc_mark_loop;
1137 case scm_tc7_pws:
1138 scm_gc_mark (SCM_CELL_OBJECT_2 (ptr));
1139 ptr = SCM_CDR (ptr);
1140 goto gc_mark_loop;
1141 case scm_tcs_cons_gloc:
1142 {
1143 /* Dirk:FIXME:: The following code is super ugly: ptr may be a struct
1144 * or a gloc. If it is a gloc, the cell word #0 of ptr is a pointer
1145 * to a heap cell. If it is a struct, the cell word #0 of ptr is a
1146 * pointer to a struct vtable data region. The fact that these are
1147 * accessed in the same way restricts the possibilites to change the
1148 * data layout of structs or heap cells.
1149 */
1150 scm_bits_t word0 = SCM_CELL_WORD_0 (ptr) - scm_tc3_cons_gloc;
1151 scm_bits_t * vtable_data = (scm_bits_t *) word0; /* access as struct */
1152 if (vtable_data [scm_vtable_index_vcell] != 0)
1153 {
1154 /* ptr is a gloc */
1155 SCM gloc_car = SCM_PACK (word0);
1156 scm_gc_mark (gloc_car);
1157 ptr = SCM_CDR (ptr);
1158 goto gc_mark_loop;
1159 }
1160 else
1161 {
1162 /* ptr is a struct */
1163 SCM layout = SCM_PACK (vtable_data [scm_vtable_index_layout]);
1164 int len = SCM_SYMBOL_LENGTH (layout);
1165 char * fields_desc = SCM_SYMBOL_CHARS (layout);
1166 scm_bits_t * struct_data = (scm_bits_t *) SCM_STRUCT_DATA (ptr);
1167
1168 if (vtable_data[scm_struct_i_flags] & SCM_STRUCTF_ENTITY)
1169 {
1170 scm_gc_mark (SCM_PACK (struct_data[scm_struct_i_procedure]));
1171 scm_gc_mark (SCM_PACK (struct_data[scm_struct_i_setter]));
1172 }
1173 if (len)
1174 {
1175 int x;
1176
1177 for (x = 0; x < len - 2; x += 2, ++struct_data)
1178 if (fields_desc[x] == 'p')
1179 scm_gc_mark (SCM_PACK (*struct_data));
1180 if (fields_desc[x] == 'p')
1181 {
1182 if (SCM_LAYOUT_TAILP (fields_desc[x + 1]))
1183 for (x = *struct_data; x; --x)
1184 scm_gc_mark (SCM_PACK (*++struct_data));
1185 else
1186 scm_gc_mark (SCM_PACK (*struct_data));
1187 }
1188 }
1189 /* mark vtable */
1190 ptr = SCM_PACK (vtable_data [scm_vtable_index_vtable]);
1191 goto gc_mark_loop;
1192 }
1193 }
1194 break;
1195 case scm_tcs_closures:
1196 if (SCM_IMP (SCM_CDR (ptr)))
1197 {
1198 ptr = SCM_CLOSCAR (ptr);
1199 goto gc_mark_nimp;
1200 }
1201 scm_gc_mark (SCM_CLOSCAR (ptr));
1202 ptr = SCM_CDR (ptr);
1203 goto gc_mark_nimp;
1204 case scm_tc7_vector:
1205 i = SCM_VECTOR_LENGTH (ptr);
1206 if (i == 0)
1207 break;
1208 while (--i > 0)
1209 if (SCM_NIMP (SCM_VELTS (ptr)[i]))
1210 scm_gc_mark (SCM_VELTS (ptr)[i]);
1211 ptr = SCM_VELTS (ptr)[0];
1212 goto gc_mark_loop;
1213 #ifdef CCLO
1214 case scm_tc7_cclo:
1215 i = SCM_CCLO_LENGTH (ptr);
1216 if (i == 0)
1217 break;
1218 while (--i > 0)
1219 if (SCM_NIMP (SCM_VELTS (ptr)[i]))
1220 scm_gc_mark (SCM_VELTS (ptr)[i]);
1221 ptr = SCM_VELTS (ptr)[0];
1222 goto gc_mark_loop;
1223 #endif
1224 case scm_tc7_contin:
1225 if (SCM_VELTS (ptr))
1226 scm_mark_locations (SCM_VELTS_AS_STACKITEMS (ptr),
1227 (scm_sizet)
1228 (SCM_CONTINUATION_LENGTH (ptr) +
1229 (sizeof (SCM_STACKITEM) + -1 +
1230 sizeof (scm_contregs)) /
1231 sizeof (SCM_STACKITEM)));
1232 break;
1233 #ifdef HAVE_ARRAYS
1234 case scm_tc7_bvect:
1235 case scm_tc7_byvect:
1236 case scm_tc7_ivect:
1237 case scm_tc7_uvect:
1238 case scm_tc7_fvect:
1239 case scm_tc7_dvect:
1240 case scm_tc7_cvect:
1241 case scm_tc7_svect:
1242 #ifdef HAVE_LONG_LONGS
1243 case scm_tc7_llvect:
1244 #endif
1245 #endif
1246 case scm_tc7_string:
1247 break;
1248
1249 case scm_tc7_substring:
1250 ptr = SCM_CDR (ptr);
1251 goto gc_mark_loop;
1252
1253 case scm_tc7_wvect:
1254 SCM_WVECT_GC_CHAIN (ptr) = scm_weak_vectors;
1255 scm_weak_vectors = ptr;
1256 if (SCM_IS_WHVEC_ANY (ptr))
1257 {
1258 int x;
1259 int len;
1260 int weak_keys;
1261 int weak_values;
1262
1263 len = SCM_VECTOR_LENGTH (ptr);
1264 weak_keys = SCM_IS_WHVEC (ptr) || SCM_IS_WHVEC_B (ptr);
1265 weak_values = SCM_IS_WHVEC_V (ptr) || SCM_IS_WHVEC_B (ptr);
1266
1267 for (x = 0; x < len; ++x)
1268 {
1269 SCM alist;
1270 alist = SCM_VELTS (ptr)[x];
1271
1272 /* mark everything on the alist except the keys or
1273 * values, according to weak_values and weak_keys. */
1274 while ( SCM_CONSP (alist)
1275 && !SCM_GCMARKP (alist)
1276 && SCM_CONSP (SCM_CAR (alist)))
1277 {
1278 SCM kvpair;
1279 SCM next_alist;
1280
1281 kvpair = SCM_CAR (alist);
1282 next_alist = SCM_CDR (alist);
1283 /*
1284 * Do not do this:
1285 * SCM_SETGCMARK (alist);
1286 * SCM_SETGCMARK (kvpair);
1287 *
1288 * It may be that either the key or value is protected by
1289 * an escaped reference to part of the spine of this alist.
1290 * If we mark the spine here, and only mark one or neither of the
1291 * key and value, they may never be properly marked.
1292 * This leads to a horrible situation in which an alist containing
1293 * freelist cells is exported.
1294 *
1295 * So only mark the spines of these arrays last of all marking.
1296 * If somebody confuses us by constructing a weak vector
1297 * with a circular alist then we are hosed, but at least we
1298 * won't prematurely drop table entries.
1299 */
1300 if (!weak_keys)
1301 scm_gc_mark (SCM_CAR (kvpair));
1302 if (!weak_values)
1303 scm_gc_mark (SCM_CDR (kvpair));
1304 alist = next_alist;
1305 }
1306 if (SCM_NIMP (alist))
1307 scm_gc_mark (alist);
1308 }
1309 }
1310 break;
1311
1312 case scm_tc7_symbol:
1313 ptr = SCM_PROP_SLOTS (ptr);
1314 goto gc_mark_loop;
1315 case scm_tcs_subrs:
1316 break;
1317 case scm_tc7_port:
1318 i = SCM_PTOBNUM (ptr);
1319 if (!(i < scm_numptob))
1320 goto def;
1321 if (SCM_PTAB_ENTRY(ptr))
1322 scm_gc_mark (SCM_PTAB_ENTRY(ptr)->file_name);
1323 if (scm_ptobs[i].mark)
1324 {
1325 ptr = (scm_ptobs[i].mark) (ptr);
1326 goto gc_mark_loop;
1327 }
1328 else
1329 return;
1330 break;
1331 case scm_tc7_smob:
1332 switch (SCM_TYP16 (ptr))
1333 { /* should be faster than going through scm_smobs */
1334 case scm_tc_free_cell:
1335 /* printf("found free_cell %X ", ptr); fflush(stdout); */
1336 case scm_tc16_big:
1337 case scm_tc16_real:
1338 case scm_tc16_complex:
1339 break;
1340 default:
1341 i = SCM_SMOBNUM (ptr);
1342 if (!(i < scm_numsmob))
1343 goto def;
1344 if (scm_smobs[i].mark)
1345 {
1346 ptr = (scm_smobs[i].mark) (ptr);
1347 goto gc_mark_loop;
1348 }
1349 else
1350 return;
1351 }
1352 break;
1353 default:
1354 def:
1355 SCM_MISC_ERROR ("unknown type", SCM_EOL);
1356 }
1357 }
1358 #undef FUNC_NAME
1359
1360
1361 /* Mark a Region Conservatively
1362 */
1363
1364 void
1365 scm_mark_locations (SCM_STACKITEM x[], scm_sizet n)
1366 {
1367 unsigned long m;
1368
1369 for (m = 0; m < n; ++m)
1370 {
1371 SCM obj = * (SCM *) &x[m];
1372 if (SCM_CELLP (obj))
1373 {
1374 SCM_CELLPTR ptr = SCM2PTR (obj);
1375 int i = 0;
1376 int j = scm_n_heap_segs - 1;
1377 if (SCM_PTR_LE (scm_heap_table[i].bounds[0], ptr)
1378 && SCM_PTR_GT (scm_heap_table[j].bounds[1], ptr))
1379 {
1380 while (i <= j)
1381 {
1382 int seg_id;
1383 seg_id = -1;
1384 if ((i == j)
1385 || SCM_PTR_GT (scm_heap_table[i].bounds[1], ptr))
1386 seg_id = i;
1387 else if (SCM_PTR_LE (scm_heap_table[j].bounds[0], ptr))
1388 seg_id = j;
1389 else
1390 {
1391 int k;
1392 k = (i + j) / 2;
1393 if (k == i)
1394 break;
1395 if (SCM_PTR_GT (scm_heap_table[k].bounds[1], ptr))
1396 {
1397 j = k;
1398 ++i;
1399 if (SCM_PTR_LE (scm_heap_table[i].bounds[0], ptr))
1400 continue;
1401 else
1402 break;
1403 }
1404 else if (SCM_PTR_LE (scm_heap_table[k].bounds[0], ptr))
1405 {
1406 i = k;
1407 --j;
1408 if (SCM_PTR_GT (scm_heap_table[j].bounds[1], ptr))
1409 continue;
1410 else
1411 break;
1412 }
1413 }
1414
1415 if (SCM_GC_IN_CARD_HEADERP (ptr))
1416 break;
1417
1418 if (scm_heap_table[seg_id].span == 1
1419 || SCM_DOUBLE_CELLP (obj))
1420 scm_gc_mark (obj);
1421
1422 break;
1423 }
1424 }
1425 }
1426 }
1427 }
1428
1429
1430 /* The function scm_cellp determines whether an SCM value can be regarded as a
1431 * pointer to a cell on the heap. Binary search is used in order to determine
1432 * the heap segment that contains the cell.
1433 */
1434 int
1435 scm_cellp (SCM value)
1436 {
1437 if (SCM_CELLP (value)) {
1438 scm_cell * ptr = SCM2PTR (value);
1439 unsigned int i = 0;
1440 unsigned int j = scm_n_heap_segs - 1;
1441
1442 while (i < j) {
1443 int k = (i + j) / 2;
1444 if (SCM_PTR_GT (scm_heap_table[k].bounds[1], ptr)) {
1445 j = k;
1446 } else if (SCM_PTR_LE (scm_heap_table[k].bounds[0], ptr)) {
1447 i = k + 1;
1448 }
1449 }
1450
1451 if (SCM_PTR_LE (scm_heap_table[i].bounds[0], ptr)
1452 && SCM_PTR_GT (scm_heap_table[i].bounds[1], ptr)
1453 && (scm_heap_table[i].span == 1 || SCM_DOUBLE_CELLP (value))
1454 && !SCM_GC_IN_CARD_HEADERP (ptr)
1455 )
1456 return 1;
1457 else
1458 return 0;
1459 } else
1460 return 0;
1461 }
1462
1463
1464 static void
1465 gc_sweep_freelist_start (scm_freelist_t *freelist)
1466 {
1467 freelist->cells = SCM_EOL;
1468 freelist->left_to_collect = freelist->cluster_size;
1469 freelist->clusters_allocated = 0;
1470 freelist->clusters = SCM_EOL;
1471 freelist->clustertail = &freelist->clusters;
1472 freelist->collected_1 = freelist->collected;
1473 freelist->collected = 0;
1474 }
1475
1476 static void
1477 gc_sweep_freelist_finish (scm_freelist_t *freelist)
1478 {
1479 int collected;
1480 *freelist->clustertail = freelist->cells;
1481 if (!SCM_NULLP (freelist->cells))
1482 {
1483 SCM c = freelist->cells;
1484 SCM_SETCAR (c, SCM_CDR (c));
1485 SCM_SETCDR (c, SCM_EOL);
1486 freelist->collected +=
1487 freelist->span * (freelist->cluster_size - freelist->left_to_collect);
1488 }
1489 scm_gc_cells_collected += freelist->collected;
1490
1491 /* Although freelist->min_yield is used to test freelist->collected
1492 * (which is the local GC yield for freelist), it is adjusted so
1493 * that *total* yield is freelist->min_yield_fraction of total heap
1494 * size. This means that a too low yield is compensated by more
1495 * heap on the list which is currently doing most work, which is
1496 * just what we want.
1497 */
1498 collected = SCM_MAX (freelist->collected_1, freelist->collected);
1499 freelist->grow_heap_p = (collected < freelist->min_yield);
1500 }
1501
1502 #define NEXT_DATA_CELL(ptr, span) \
1503 do { \
1504 scm_cell *nxt__ = CELL_UP ((char *) (ptr) + 1, (span)); \
1505 (ptr) = (SCM_GC_IN_CARD_HEADERP (nxt__) ? \
1506 CELL_UP (SCM_GC_CELL_CARD (nxt__) + SCM_GC_CARD_N_HEADER_CELLS, span) \
1507 : nxt__); \
1508 } while (0)
1509
1510 void
1511 scm_gc_sweep ()
1512 #define FUNC_NAME "scm_gc_sweep"
1513 {
1514 register SCM_CELLPTR ptr;
1515 register SCM nfreelist;
1516 register scm_freelist_t *freelist;
1517 register long m;
1518 register int span;
1519 long i;
1520 scm_sizet seg_size;
1521
1522 m = 0;
1523
1524 gc_sweep_freelist_start (&scm_master_freelist);
1525 gc_sweep_freelist_start (&scm_master_freelist2);
1526
1527 for (i = 0; i < scm_n_heap_segs; i++)
1528 {
1529 register unsigned int left_to_collect;
1530 register scm_sizet j;
1531
1532 /* Unmarked cells go onto the front of the freelist this heap
1533 segment points to. Rather than updating the real freelist
1534 pointer as we go along, we accumulate the new head in
1535 nfreelist. Then, if it turns out that the entire segment is
1536 free, we free (i.e., malloc's free) the whole segment, and
1537 simply don't assign nfreelist back into the real freelist. */
1538 freelist = scm_heap_table[i].freelist;
1539 nfreelist = freelist->cells;
1540 left_to_collect = freelist->left_to_collect;
1541 span = scm_heap_table[i].span;
1542
1543 ptr = CELL_UP (scm_heap_table[i].bounds[0], span);
1544 seg_size = CELL_DN (scm_heap_table[i].bounds[1], span) - ptr;
1545
1546 /* use only data cells in seg_size */
1547 seg_size = (seg_size / SCM_GC_CARD_N_CELLS) * (SCM_GC_CARD_N_DATA_CELLS / span) * span;
1548
1549 scm_gc_cells_swept += seg_size;
1550
1551 for (j = seg_size + span; j -= span; ptr += span)
1552 {
1553 SCM scmptr;
1554
1555 if (SCM_GC_IN_CARD_HEADERP (ptr))
1556 {
1557 SCM_CELLPTR nxt;
1558
1559 /* cheat here */
1560 nxt = ptr;
1561 NEXT_DATA_CELL (nxt, span);
1562 j += span;
1563
1564 ptr = nxt - span;
1565 continue;
1566 }
1567
1568 scmptr = PTR2SCM (ptr);
1569
1570 if (SCM_GCMARKP (scmptr))
1571 continue;
1572
1573 switch SCM_TYP7 (scmptr)
1574 {
1575 case scm_tcs_cons_gloc:
1576 {
1577 /* Dirk:FIXME:: Again, super ugly code: scmptr may be a
1578 * struct or a gloc. See the corresponding comment in
1579 * scm_gc_mark.
1580 */
1581 scm_bits_t word0 = (SCM_CELL_WORD_0 (scmptr)
1582 - scm_tc3_cons_gloc);
1583 /* access as struct */
1584 scm_bits_t * vtable_data = (scm_bits_t *) word0;
1585 if (vtable_data[scm_vtable_index_vcell] == 0)
1586 {
1587 /* Structs need to be freed in a special order.
1588 * This is handled by GC C hooks in struct.c.
1589 */
1590 SCM_SET_STRUCT_GC_CHAIN (scmptr, scm_structs_to_free);
1591 scm_structs_to_free = scmptr;
1592 continue;
1593 }
1594 /* fall through so that scmptr gets collected */
1595 }
1596 break;
1597 case scm_tcs_cons_imcar:
1598 case scm_tcs_cons_nimcar:
1599 case scm_tcs_closures:
1600 case scm_tc7_pws:
1601 break;
1602 case scm_tc7_wvect:
1603 m += (2 + SCM_VECTOR_LENGTH (scmptr)) * sizeof (SCM);
1604 scm_must_free (SCM_VECTOR_BASE (scmptr) - 2);
1605 break;
1606 case scm_tc7_vector:
1607 {
1608 unsigned long int length = SCM_VECTOR_LENGTH (scmptr);
1609 if (length > 0)
1610 {
1611 m += length * sizeof (scm_bits_t);
1612 scm_must_free (SCM_VECTOR_BASE (scmptr));
1613 }
1614 break;
1615 }
1616 #ifdef CCLO
1617 case scm_tc7_cclo:
1618 m += (SCM_CCLO_LENGTH (scmptr) * sizeof (SCM));
1619 scm_must_free (SCM_CCLO_BASE (scmptr));
1620 break;
1621 #endif
1622 #ifdef HAVE_ARRAYS
1623 case scm_tc7_bvect:
1624 m += sizeof (long) * ((SCM_BITVECTOR_LENGTH (scmptr) + SCM_LONG_BIT - 1) / SCM_LONG_BIT);
1625 scm_must_free (SCM_BITVECTOR_BASE (scmptr));
1626 break;
1627 case scm_tc7_byvect:
1628 case scm_tc7_ivect:
1629 case scm_tc7_uvect:
1630 case scm_tc7_svect:
1631 #ifdef HAVE_LONG_LONGS
1632 case scm_tc7_llvect:
1633 #endif
1634 case scm_tc7_fvect:
1635 case scm_tc7_dvect:
1636 case scm_tc7_cvect:
1637 m += SCM_UVECTOR_LENGTH (scmptr) * scm_uniform_element_size (scmptr);
1638 scm_must_free (SCM_UVECTOR_BASE (scmptr));
1639 break;
1640 #endif
1641 case scm_tc7_substring:
1642 break;
1643 case scm_tc7_string:
1644 m += SCM_STRING_LENGTH (scmptr) + 1;
1645 scm_must_free (SCM_STRING_CHARS (scmptr));
1646 break;
1647 case scm_tc7_symbol:
1648 m += SCM_SYMBOL_LENGTH (scmptr) + 1;
1649 scm_must_free (SCM_SYMBOL_CHARS (scmptr));
1650 break;
1651 case scm_tc7_contin:
1652 m += SCM_CONTINUATION_LENGTH (scmptr) * sizeof (SCM_STACKITEM)
1653 + sizeof (scm_contregs);
1654 scm_must_free (SCM_CONTREGS (scmptr));
1655 break;
1656 case scm_tcs_subrs:
1657 /* the various "subrs" (primitives) are never freed */
1658 continue;
1659 case scm_tc7_port:
1660 if SCM_OPENP (scmptr)
1661 {
1662 int k = SCM_PTOBNUM (scmptr);
1663 if (!(k < scm_numptob))
1664 goto sweeperr;
1665 /* Keep "revealed" ports alive. */
1666 if (scm_revealed_count (scmptr) > 0)
1667 continue;
1668 /* Yes, I really do mean scm_ptobs[k].free */
1669 /* rather than ftobs[k].close. .close */
1670 /* is for explicit CLOSE-PORT by user */
1671 m += (scm_ptobs[k].free) (scmptr);
1672 SCM_SETSTREAM (scmptr, 0);
1673 scm_remove_from_port_table (scmptr);
1674 scm_gc_ports_collected++;
1675 SCM_SETAND_CAR (scmptr, ~SCM_OPN);
1676 }
1677 break;
1678 case scm_tc7_smob:
1679 switch SCM_TYP16 (scmptr)
1680 {
1681 case scm_tc_free_cell:
1682 case scm_tc16_real:
1683 break;
1684 #ifdef SCM_BIGDIG
1685 case scm_tc16_big:
1686 m += (SCM_NUMDIGS (scmptr) * SCM_BITSPERDIG / SCM_CHAR_BIT);
1687 scm_must_free (SCM_BDIGITS (scmptr));
1688 break;
1689 #endif /* def SCM_BIGDIG */
1690 case scm_tc16_complex:
1691 m += sizeof (scm_complex_t);
1692 scm_must_free (SCM_COMPLEX_MEM (scmptr));
1693 break;
1694 default:
1695 {
1696 int k;
1697 k = SCM_SMOBNUM (scmptr);
1698 if (!(k < scm_numsmob))
1699 goto sweeperr;
1700 m += (scm_smobs[k].free) (scmptr);
1701 break;
1702 }
1703 }
1704 break;
1705 default:
1706 sweeperr:
1707 SCM_MISC_ERROR ("unknown type", SCM_EOL);
1708 }
1709
1710 if (!--left_to_collect)
1711 {
1712 SCM_SETCAR (scmptr, nfreelist);
1713 *freelist->clustertail = scmptr;
1714 freelist->clustertail = SCM_CDRLOC (scmptr);
1715
1716 nfreelist = SCM_EOL;
1717 freelist->collected += span * freelist->cluster_size;
1718 left_to_collect = freelist->cluster_size;
1719 }
1720 else
1721 {
1722 /* Stick the new cell on the front of nfreelist. It's
1723 critical that we mark this cell as freed; otherwise, the
1724 conservative collector might trace it as some other type
1725 of object. */
1726 SCM_SET_CELL_TYPE (scmptr, scm_tc_free_cell);
1727 SCM_SET_FREE_CELL_CDR (scmptr, nfreelist);
1728 nfreelist = scmptr;
1729 }
1730 }
1731
1732 #ifdef GC_FREE_SEGMENTS
1733 if (n == seg_size)
1734 {
1735 register long j;
1736
1737 freelist->heap_size -= seg_size;
1738 free ((char *) scm_heap_table[i].bounds[0]);
1739 scm_heap_table[i].bounds[0] = 0;
1740 for (j = i + 1; j < scm_n_heap_segs; j++)
1741 scm_heap_table[j - 1] = scm_heap_table[j];
1742 scm_n_heap_segs -= 1;
1743 i--; /* We need to scan the segment just moved. */
1744 }
1745 else
1746 #endif /* ifdef GC_FREE_SEGMENTS */
1747 {
1748 /* Update the real freelist pointer to point to the head of
1749 the list of free cells we've built for this segment. */
1750 freelist->cells = nfreelist;
1751 freelist->left_to_collect = left_to_collect;
1752 }
1753
1754 #ifdef GUILE_DEBUG_FREELIST
1755 scm_map_free_list ();
1756 #endif
1757 }
1758
1759 gc_sweep_freelist_finish (&scm_master_freelist);
1760 gc_sweep_freelist_finish (&scm_master_freelist2);
1761
1762 /* When we move to POSIX threads private freelists should probably
1763 be GC-protected instead. */
1764 scm_freelist = SCM_EOL;
1765 scm_freelist2 = SCM_EOL;
1766
1767 scm_cells_allocated = (SCM_HEAP_SIZE - scm_gc_cells_collected);
1768 scm_gc_yield -= scm_cells_allocated;
1769 scm_mallocated -= m;
1770 scm_gc_malloc_collected = m;
1771 }
1772 #undef FUNC_NAME
1773
1774
1775 \f
1776 /* {Front end to malloc}
1777 *
1778 * scm_must_malloc, scm_must_realloc, scm_must_free, scm_done_malloc,
1779 * scm_done_free
1780 *
1781 * These functions provide services comperable to malloc, realloc, and
1782 * free. They are for allocating malloced parts of scheme objects.
1783 * The primary purpose of the front end is to impose calls to gc. */
1784
1785
1786 /* scm_must_malloc
1787 * Return newly malloced storage or throw an error.
1788 *
1789 * The parameter WHAT is a string for error reporting.
1790 * If the threshold scm_mtrigger will be passed by this
1791 * allocation, or if the first call to malloc fails,
1792 * garbage collect -- on the presumption that some objects
1793 * using malloced storage may be collected.
1794 *
1795 * The limit scm_mtrigger may be raised by this allocation.
1796 */
1797 void *
1798 scm_must_malloc (scm_sizet size, const char *what)
1799 {
1800 void *ptr;
1801 unsigned long nm = scm_mallocated + size;
1802
1803 if (nm <= scm_mtrigger)
1804 {
1805 SCM_SYSCALL (ptr = malloc (size));
1806 if (NULL != ptr)
1807 {
1808 scm_mallocated = nm;
1809 #ifdef GUILE_DEBUG_MALLOC
1810 scm_malloc_register (ptr, what);
1811 #endif
1812 return ptr;
1813 }
1814 }
1815
1816 scm_igc (what);
1817
1818 nm = scm_mallocated + size;
1819 SCM_SYSCALL (ptr = malloc (size));
1820 if (NULL != ptr)
1821 {
1822 scm_mallocated = nm;
1823 if (nm > scm_mtrigger - SCM_MTRIGGER_HYSTERESIS) {
1824 if (nm > scm_mtrigger)
1825 scm_mtrigger = nm + nm / 2;
1826 else
1827 scm_mtrigger += scm_mtrigger / 2;
1828 }
1829 #ifdef GUILE_DEBUG_MALLOC
1830 scm_malloc_register (ptr, what);
1831 #endif
1832
1833 return ptr;
1834 }
1835
1836 scm_memory_error (what);
1837 }
1838
1839
1840 /* scm_must_realloc
1841 * is similar to scm_must_malloc.
1842 */
1843 void *
1844 scm_must_realloc (void *where,
1845 scm_sizet old_size,
1846 scm_sizet size,
1847 const char *what)
1848 {
1849 void *ptr;
1850 scm_sizet nm = scm_mallocated + size - old_size;
1851
1852 if (nm <= scm_mtrigger)
1853 {
1854 SCM_SYSCALL (ptr = realloc (where, size));
1855 if (NULL != ptr)
1856 {
1857 scm_mallocated = nm;
1858 #ifdef GUILE_DEBUG_MALLOC
1859 scm_malloc_reregister (where, ptr, what);
1860 #endif
1861 return ptr;
1862 }
1863 }
1864
1865 scm_igc (what);
1866
1867 nm = scm_mallocated + size - old_size;
1868 SCM_SYSCALL (ptr = realloc (where, size));
1869 if (NULL != ptr)
1870 {
1871 scm_mallocated = nm;
1872 if (nm > scm_mtrigger - SCM_MTRIGGER_HYSTERESIS) {
1873 if (nm > scm_mtrigger)
1874 scm_mtrigger = nm + nm / 2;
1875 else
1876 scm_mtrigger += scm_mtrigger / 2;
1877 }
1878 #ifdef GUILE_DEBUG_MALLOC
1879 scm_malloc_reregister (where, ptr, what);
1880 #endif
1881 return ptr;
1882 }
1883
1884 scm_memory_error (what);
1885 }
1886
1887
1888 void
1889 scm_must_free (void *obj)
1890 #define FUNC_NAME "scm_must_free"
1891 {
1892 #ifdef GUILE_DEBUG_MALLOC
1893 scm_malloc_unregister (obj);
1894 #endif
1895 if (obj)
1896 free (obj);
1897 else
1898 SCM_MISC_ERROR ("freeing NULL pointer", SCM_EOL);
1899 }
1900 #undef FUNC_NAME
1901
1902
1903 /* Announce that there has been some malloc done that will be freed
1904 * during gc. A typical use is for a smob that uses some malloced
1905 * memory but can not get it from scm_must_malloc (for whatever
1906 * reason). When a new object of this smob is created you call
1907 * scm_done_malloc with the size of the object. When your smob free
1908 * function is called, be sure to include this size in the return
1909 * value.
1910 *
1911 * If you can't actually free the memory in the smob free function,
1912 * for whatever reason (like reference counting), you still can (and
1913 * should) report the amount of memory freed when you actually free it.
1914 * Do it by calling scm_done_malloc with the _negated_ size. Clever,
1915 * eh? Or even better, call scm_done_free. */
1916
1917 void
1918 scm_done_malloc (long size)
1919 {
1920 scm_mallocated += size;
1921
1922 if (scm_mallocated > scm_mtrigger)
1923 {
1924 scm_igc ("foreign mallocs");
1925 if (scm_mallocated > scm_mtrigger - SCM_MTRIGGER_HYSTERESIS)
1926 {
1927 if (scm_mallocated > scm_mtrigger)
1928 scm_mtrigger = scm_mallocated + scm_mallocated / 2;
1929 else
1930 scm_mtrigger += scm_mtrigger / 2;
1931 }
1932 }
1933 }
1934
1935 void
1936 scm_done_free (long size)
1937 {
1938 scm_mallocated -= size;
1939 }
1940
1941
1942 \f
1943 /* {Heap Segments}
1944 *
1945 * Each heap segment is an array of objects of a particular size.
1946 * Every segment has an associated (possibly shared) freelist.
1947 * A table of segment records is kept that records the upper and
1948 * lower extents of the segment; this is used during the conservative
1949 * phase of gc to identify probably gc roots (because they point
1950 * into valid segments at reasonable offsets). */
1951
1952 /* scm_expmem
1953 * is true if the first segment was smaller than INIT_HEAP_SEG.
1954 * If scm_expmem is set to one, subsequent segment allocations will
1955 * allocate segments of size SCM_EXPHEAP(scm_heap_size).
1956 */
1957 int scm_expmem = 0;
1958
1959 scm_sizet scm_max_segment_size;
1960
1961 /* scm_heap_org
1962 * is the lowest base address of any heap segment.
1963 */
1964 SCM_CELLPTR scm_heap_org;
1965
1966 scm_heap_seg_data_t * scm_heap_table = 0;
1967 static unsigned int heap_segment_table_size = 0;
1968 int scm_n_heap_segs = 0;
1969
1970 /* init_heap_seg
1971 * initializes a new heap segment and returns the number of objects it contains.
1972 *
1973 * The segment origin and segment size in bytes are input parameters.
1974 * The freelist is both input and output.
1975 *
1976 * This function presumes that the scm_heap_table has already been expanded
1977 * to accomodate a new segment record and that the markbit space was reserved
1978 * for all the cards in this segment.
1979 */
1980
1981 #define INIT_CARD(card, span) \
1982 do { \
1983 SCM_GC_CARD_BVEC (card) = get_bvec (); \
1984 if ((span) == 2) \
1985 SCM_GC_SET_CARD_DOUBLECELL (card); \
1986 } while (0)
1987
1988 static scm_sizet
1989 init_heap_seg (SCM_CELLPTR seg_org, scm_sizet size, scm_freelist_t *freelist)
1990 {
1991 register SCM_CELLPTR ptr;
1992 SCM_CELLPTR seg_end;
1993 int new_seg_index;
1994 int n_new_cells;
1995 int span = freelist->span;
1996
1997 if (seg_org == NULL)
1998 return 0;
1999
2000 /* Align the begin ptr up.
2001 */
2002 ptr = SCM_GC_CARD_UP (seg_org);
2003
2004 /* Compute the ceiling on valid object pointers w/in this segment.
2005 */
2006 seg_end = SCM_GC_CARD_DOWN ((char *)seg_org + size);
2007
2008 /* Find the right place and insert the segment record.
2009 *
2010 */
2011 for (new_seg_index = 0;
2012 ( (new_seg_index < scm_n_heap_segs)
2013 && SCM_PTR_LE (scm_heap_table[new_seg_index].bounds[0], seg_org));
2014 new_seg_index++)
2015 ;
2016
2017 {
2018 int i;
2019 for (i = scm_n_heap_segs; i > new_seg_index; --i)
2020 scm_heap_table[i] = scm_heap_table[i - 1];
2021 }
2022
2023 ++scm_n_heap_segs;
2024
2025 scm_heap_table[new_seg_index].span = span;
2026 scm_heap_table[new_seg_index].freelist = freelist;
2027 scm_heap_table[new_seg_index].bounds[0] = ptr;
2028 scm_heap_table[new_seg_index].bounds[1] = seg_end;
2029
2030 /*n_new_cells*/
2031 n_new_cells = seg_end - ptr;
2032
2033 freelist->heap_size += n_new_cells;
2034
2035 /* Partition objects in this segment into clusters */
2036 {
2037 SCM clusters;
2038 SCM *clusterp = &clusters;
2039
2040 NEXT_DATA_CELL (ptr, span);
2041 while (ptr < seg_end)
2042 {
2043 scm_cell *nxt = ptr;
2044 scm_cell *prv = NULL;
2045 scm_cell *last_card = NULL;
2046 int n_data_cells = (SCM_GC_CARD_N_DATA_CELLS / span) * SCM_CARDS_PER_CLUSTER - 1;
2047 NEXT_DATA_CELL(nxt, span);
2048
2049 /* Allocate cluster spine
2050 */
2051 *clusterp = PTR2SCM (ptr);
2052 SCM_SETCAR (*clusterp, PTR2SCM (nxt));
2053 clusterp = SCM_CDRLOC (*clusterp);
2054 ptr = nxt;
2055
2056 while (n_data_cells--)
2057 {
2058 scm_cell *card = SCM_GC_CELL_CARD (ptr);
2059 SCM scmptr = PTR2SCM (ptr);
2060 nxt = ptr;
2061 NEXT_DATA_CELL (nxt, span);
2062 prv = ptr;
2063
2064 if (card != last_card)
2065 {
2066 INIT_CARD (card, span);
2067 last_card = card;
2068 }
2069
2070 SCM_SET_CELL_TYPE (scmptr, scm_tc_free_cell);
2071 SCM_SETCDR (scmptr, PTR2SCM (nxt));
2072
2073 ptr = nxt;
2074 }
2075
2076 SCM_SET_FREE_CELL_CDR (PTR2SCM (prv), SCM_EOL);
2077 }
2078
2079 /* sanity check */
2080 {
2081 scm_cell *ref = seg_end;
2082 NEXT_DATA_CELL (ref, span);
2083 if (ref != ptr)
2084 /* [cmm] looks like the segment size doesn't divide cleanly by
2085 cluster size. bad cmm! */
2086 abort();
2087 }
2088
2089 /* Patch up the last cluster pointer in the segment
2090 * to join it to the input freelist.
2091 */
2092 *clusterp = freelist->clusters;
2093 freelist->clusters = clusters;
2094 }
2095
2096 #ifdef DEBUGINFO
2097 fprintf (stderr, "H");
2098 #endif
2099 return size;
2100 }
2101
2102 static scm_sizet
2103 round_to_cluster_size (scm_freelist_t *freelist, scm_sizet len)
2104 {
2105 scm_sizet cluster_size_in_bytes = CLUSTER_SIZE_IN_BYTES (freelist);
2106
2107 return
2108 (len + cluster_size_in_bytes - 1) / cluster_size_in_bytes * cluster_size_in_bytes
2109 + ALIGNMENT_SLACK (freelist);
2110 }
2111
2112 static void
2113 alloc_some_heap (scm_freelist_t *freelist, policy_on_error error_policy)
2114 #define FUNC_NAME "alloc_some_heap"
2115 {
2116 SCM_CELLPTR ptr;
2117 long len;
2118
2119 if (scm_gc_heap_lock)
2120 {
2121 /* Critical code sections (such as the garbage collector) aren't
2122 * supposed to add heap segments.
2123 */
2124 fprintf (stderr, "alloc_some_heap: Can not extend locked heap.\n");
2125 abort ();
2126 }
2127
2128 if (scm_n_heap_segs == heap_segment_table_size)
2129 {
2130 /* We have to expand the heap segment table to have room for the new
2131 * segment. Do not yet increment scm_n_heap_segs -- that is done by
2132 * init_heap_seg only if the allocation of the segment itself succeeds.
2133 */
2134 unsigned int new_table_size = scm_n_heap_segs + 1;
2135 size_t size = new_table_size * sizeof (scm_heap_seg_data_t);
2136 scm_heap_seg_data_t * new_heap_table;
2137
2138 SCM_SYSCALL (new_heap_table = ((scm_heap_seg_data_t *)
2139 realloc ((char *)scm_heap_table, size)));
2140 if (!new_heap_table)
2141 {
2142 if (error_policy == abort_on_error)
2143 {
2144 fprintf (stderr, "alloc_some_heap: Could not grow heap segment table.\n");
2145 abort ();
2146 }
2147 else
2148 {
2149 return;
2150 }
2151 }
2152 else
2153 {
2154 scm_heap_table = new_heap_table;
2155 heap_segment_table_size = new_table_size;
2156 }
2157 }
2158
2159 /* Pick a size for the new heap segment.
2160 * The rule for picking the size of a segment is explained in
2161 * gc.h
2162 */
2163 {
2164 /* Assure that the new segment is predicted to be large enough.
2165 *
2166 * New yield should at least equal GC fraction of new heap size, i.e.
2167 *
2168 * y + dh > f * (h + dh)
2169 *
2170 * y : yield
2171 * f : min yield fraction
2172 * h : heap size
2173 * dh : size of new heap segment
2174 *
2175 * This gives dh > (f * h - y) / (1 - f)
2176 */
2177 int f = freelist->min_yield_fraction;
2178 long h = SCM_HEAP_SIZE;
2179 long min_cells = (f * h - 100 * (long) scm_gc_yield) / (99 - f);
2180 len = SCM_EXPHEAP (freelist->heap_size);
2181 #ifdef DEBUGINFO
2182 fprintf (stderr, "(%d < %d)", len, min_cells);
2183 #endif
2184 if (len < min_cells)
2185 len = min_cells + freelist->cluster_size;
2186 len *= sizeof (scm_cell);
2187 /* force new sampling */
2188 freelist->collected = LONG_MAX;
2189 }
2190
2191 if (len > scm_max_segment_size)
2192 len = scm_max_segment_size;
2193
2194 {
2195 scm_sizet smallest;
2196
2197 smallest = CLUSTER_SIZE_IN_BYTES (freelist);
2198
2199 if (len < smallest)
2200 len = smallest;
2201
2202 /* Allocate with decaying ambition. */
2203 while ((len >= SCM_MIN_HEAP_SEG_SIZE)
2204 && (len >= smallest))
2205 {
2206 scm_sizet rounded_len = round_to_cluster_size (freelist, len);
2207 SCM_SYSCALL (ptr = (SCM_CELLPTR) malloc (rounded_len));
2208 if (ptr)
2209 {
2210 init_heap_seg (ptr, rounded_len, freelist);
2211 return;
2212 }
2213 len /= 2;
2214 }
2215 }
2216
2217 if (error_policy == abort_on_error)
2218 {
2219 fprintf (stderr, "alloc_some_heap: Could not grow heap.\n");
2220 abort ();
2221 }
2222 }
2223 #undef FUNC_NAME
2224
2225
2226 SCM_DEFINE (scm_unhash_name, "unhash-name", 1, 0, 0,
2227 (SCM name),
2228 "")
2229 #define FUNC_NAME s_scm_unhash_name
2230 {
2231 int x;
2232 int bound;
2233 SCM_VALIDATE_SYMBOL (1,name);
2234 SCM_DEFER_INTS;
2235 bound = scm_n_heap_segs;
2236 for (x = 0; x < bound; ++x)
2237 {
2238 SCM_CELLPTR p;
2239 SCM_CELLPTR pbound;
2240 p = scm_heap_table[x].bounds[0];
2241 pbound = scm_heap_table[x].bounds[1];
2242 while (p < pbound)
2243 {
2244 SCM cell = PTR2SCM (p);
2245 if (SCM_TYP3 (cell) == scm_tc3_cons_gloc)
2246 {
2247 /* Dirk:FIXME:: Again, super ugly code: cell may be a gloc or a
2248 * struct cell. See the corresponding comment in scm_gc_mark.
2249 */
2250 scm_bits_t word0 = SCM_CELL_WORD_0 (cell) - scm_tc3_cons_gloc;
2251 SCM gloc_car = SCM_PACK (word0); /* access as gloc */
2252 SCM vcell = SCM_CELL_OBJECT_1 (gloc_car);
2253 if ((SCM_EQ_P (name, SCM_BOOL_T) || SCM_EQ_P (SCM_CAR (gloc_car), name))
2254 && (SCM_UNPACK (vcell) != 0) && (SCM_UNPACK (vcell) != 1))
2255 {
2256 SCM_SET_CELL_OBJECT_0 (cell, name);
2257 }
2258 }
2259 ++p;
2260 }
2261 }
2262 SCM_ALLOW_INTS;
2263 return name;
2264 }
2265 #undef FUNC_NAME
2266
2267
2268 \f
2269 /* {GC Protection Helper Functions}
2270 */
2271
2272
2273 void
2274 scm_remember (SCM *ptr)
2275 { /* empty */ }
2276
2277
2278 /*
2279 These crazy functions prevent garbage collection
2280 of arguments after the first argument by
2281 ensuring they remain live throughout the
2282 function because they are used in the last
2283 line of the code block.
2284 It'd be better to have a nice compiler hint to
2285 aid the conservative stack-scanning GC. --03/09/00 gjb */
2286 SCM
2287 scm_return_first (SCM elt, ...)
2288 {
2289 return elt;
2290 }
2291
2292 int
2293 scm_return_first_int (int i, ...)
2294 {
2295 return i;
2296 }
2297
2298
2299 SCM
2300 scm_permanent_object (SCM obj)
2301 {
2302 SCM_REDEFER_INTS;
2303 scm_permobjs = scm_cons (obj, scm_permobjs);
2304 SCM_REALLOW_INTS;
2305 return obj;
2306 }
2307
2308
2309 /* Protect OBJ from the garbage collector. OBJ will not be freed, even if all
2310 other references are dropped, until the object is unprotected by calling
2311 scm_unprotect_object (OBJ). Calls to scm_protect/unprotect_object nest,
2312 i. e. it is possible to protect the same object several times, but it is
2313 necessary to unprotect the object the same number of times to actually get
2314 the object unprotected. It is an error to unprotect an object more often
2315 than it has been protected before. The function scm_protect_object returns
2316 OBJ.
2317 */
2318
2319 /* Implementation note: For every object X, there is a counter which
2320 scm_protect_object(X) increments and scm_unprotect_object(X) decrements.
2321 */
2322
2323 SCM
2324 scm_protect_object (SCM obj)
2325 {
2326 SCM handle;
2327
2328 /* This critical section barrier will be replaced by a mutex. */
2329 SCM_REDEFER_INTS;
2330
2331 handle = scm_hashq_create_handle_x (scm_protects, obj, SCM_MAKINUM (0));
2332 SCM_SETCDR (handle, SCM_MAKINUM (SCM_INUM (SCM_CDR (handle)) + 1));
2333
2334 SCM_REALLOW_INTS;
2335
2336 return obj;
2337 }
2338
2339
2340 /* Remove any protection for OBJ established by a prior call to
2341 scm_protect_object. This function returns OBJ.
2342
2343 See scm_protect_object for more information. */
2344 SCM
2345 scm_unprotect_object (SCM obj)
2346 {
2347 SCM handle;
2348
2349 /* This critical section barrier will be replaced by a mutex. */
2350 SCM_REDEFER_INTS;
2351
2352 handle = scm_hashq_get_handle (scm_protects, obj);
2353
2354 if (SCM_IMP (handle))
2355 {
2356 fprintf (stderr, "scm_unprotect_object called on unprotected object\n");
2357 abort ();
2358 }
2359 else
2360 {
2361 unsigned long int count = SCM_INUM (SCM_CDR (handle)) - 1;
2362 if (count == 0)
2363 scm_hashq_remove_x (scm_protects, obj);
2364 else
2365 SCM_SETCDR (handle, SCM_MAKINUM (count));
2366 }
2367
2368 SCM_REALLOW_INTS;
2369
2370 return obj;
2371 }
2372
2373 int terminating;
2374
2375 /* called on process termination. */
2376 #ifdef HAVE_ATEXIT
2377 static void
2378 cleanup (void)
2379 #else
2380 #ifdef HAVE_ON_EXIT
2381 extern int on_exit (void (*procp) (), int arg);
2382
2383 static void
2384 cleanup (int status, void *arg)
2385 #else
2386 #error Dont know how to setup a cleanup handler on your system.
2387 #endif
2388 #endif
2389 {
2390 terminating = 1;
2391 scm_flush_all_ports ();
2392 }
2393
2394 \f
2395 static int
2396 make_initial_segment (scm_sizet init_heap_size, scm_freelist_t *freelist)
2397 {
2398 scm_sizet rounded_size = round_to_cluster_size (freelist, init_heap_size);
2399
2400 if (!init_heap_seg ((SCM_CELLPTR) malloc (rounded_size),
2401 rounded_size,
2402 freelist))
2403 {
2404 rounded_size = round_to_cluster_size (freelist, SCM_HEAP_SEG_SIZE);
2405 if (!init_heap_seg ((SCM_CELLPTR) malloc (rounded_size),
2406 rounded_size,
2407 freelist))
2408 return 1;
2409 }
2410 else
2411 scm_expmem = 1;
2412
2413 if (freelist->min_yield_fraction)
2414 freelist->min_yield = (freelist->heap_size * freelist->min_yield_fraction
2415 / 100);
2416 freelist->grow_heap_p = (freelist->heap_size < freelist->min_yield);
2417
2418 return 0;
2419 }
2420
2421 \f
2422 static void
2423 init_freelist (scm_freelist_t *freelist,
2424 int span,
2425 int cluster_size,
2426 int min_yield)
2427 {
2428 freelist->clusters = SCM_EOL;
2429 freelist->cluster_size = cluster_size + 1;
2430 freelist->left_to_collect = 0;
2431 freelist->clusters_allocated = 0;
2432 freelist->min_yield = 0;
2433 freelist->min_yield_fraction = min_yield;
2434 freelist->span = span;
2435 freelist->collected = 0;
2436 freelist->collected_1 = 0;
2437 freelist->heap_size = 0;
2438 }
2439
2440 int
2441 scm_init_storage (scm_sizet init_heap_size_1, int gc_trigger_1,
2442 scm_sizet init_heap_size_2, int gc_trigger_2,
2443 scm_sizet max_segment_size)
2444 {
2445 scm_sizet j;
2446
2447 if (!init_heap_size_1)
2448 init_heap_size_1 = scm_default_init_heap_size_1;
2449 if (!init_heap_size_2)
2450 init_heap_size_2 = scm_default_init_heap_size_2;
2451
2452 j = SCM_NUM_PROTECTS;
2453 while (j)
2454 scm_sys_protects[--j] = SCM_BOOL_F;
2455 scm_block_gc = 1;
2456
2457 scm_freelist = SCM_EOL;
2458 scm_freelist2 = SCM_EOL;
2459 init_freelist (&scm_master_freelist,
2460 1, SCM_CLUSTER_SIZE_1,
2461 gc_trigger_1 ? gc_trigger_1 : scm_default_min_yield_1);
2462 init_freelist (&scm_master_freelist2,
2463 2, SCM_CLUSTER_SIZE_2,
2464 gc_trigger_2 ? gc_trigger_2 : scm_default_min_yield_2);
2465 scm_max_segment_size
2466 = max_segment_size ? max_segment_size : scm_default_max_segment_size;
2467
2468 scm_expmem = 0;
2469
2470 j = SCM_HEAP_SEG_SIZE;
2471 scm_mtrigger = SCM_INIT_MALLOC_LIMIT;
2472 scm_heap_table = ((scm_heap_seg_data_t *)
2473 scm_must_malloc (sizeof (scm_heap_seg_data_t) * 2, "hplims"));
2474 heap_segment_table_size = 2;
2475
2476 mark_space_ptr = &mark_space_head;
2477
2478 if (make_initial_segment (init_heap_size_1, &scm_master_freelist) ||
2479 make_initial_segment (init_heap_size_2, &scm_master_freelist2))
2480 return 1;
2481
2482 /* scm_hplims[0] can change. do not remove scm_heap_org */
2483 scm_heap_org = CELL_UP (scm_heap_table[0].bounds[0], 1);
2484
2485 scm_c_hook_init (&scm_before_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
2486 scm_c_hook_init (&scm_before_mark_c_hook, 0, SCM_C_HOOK_NORMAL);
2487 scm_c_hook_init (&scm_before_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
2488 scm_c_hook_init (&scm_after_sweep_c_hook, 0, SCM_C_HOOK_NORMAL);
2489 scm_c_hook_init (&scm_after_gc_c_hook, 0, SCM_C_HOOK_NORMAL);
2490
2491 /* Initialise the list of ports. */
2492 scm_port_table = (scm_port **)
2493 malloc (sizeof (scm_port *) * scm_port_table_room);
2494 if (!scm_port_table)
2495 return 1;
2496
2497 #ifdef HAVE_ATEXIT
2498 atexit (cleanup);
2499 #else
2500 #ifdef HAVE_ON_EXIT
2501 on_exit (cleanup, 0);
2502 #endif
2503 #endif
2504
2505 scm_undefineds = scm_cons (SCM_UNDEFINED, SCM_EOL);
2506 SCM_SETCDR (scm_undefineds, scm_undefineds);
2507
2508 scm_listofnull = scm_cons (SCM_EOL, SCM_EOL);
2509 scm_nullstr = scm_makstr (0L, 0);
2510 scm_nullvect = scm_make_vector (SCM_INUM0, SCM_UNDEFINED);
2511 scm_symhash = scm_make_vector (SCM_MAKINUM (scm_symhash_dim), SCM_EOL);
2512 scm_weak_symhash = scm_make_weak_key_hash_table (SCM_MAKINUM (scm_symhash_dim));
2513 scm_symhash_vars = scm_make_vector (SCM_MAKINUM (scm_symhash_dim), SCM_EOL);
2514 scm_stand_in_procs = SCM_EOL;
2515 scm_permobjs = SCM_EOL;
2516 scm_protects = scm_make_vector (SCM_MAKINUM (31), SCM_EOL);
2517 scm_sysintern ("most-positive-fixnum", SCM_MAKINUM (SCM_MOST_POSITIVE_FIXNUM));
2518 scm_sysintern ("most-negative-fixnum", SCM_MAKINUM (SCM_MOST_NEGATIVE_FIXNUM));
2519 #ifdef SCM_BIGDIG
2520 scm_sysintern ("bignum-radix", SCM_MAKINUM (SCM_BIGRAD));
2521 #endif
2522
2523 return 0;
2524 }
2525
2526 \f
2527
2528 SCM scm_after_gc_hook;
2529
2530 #if (SCM_DEBUG_DEPRECATED == 0)
2531 static SCM scm_gc_vcell; /* the vcell for gc-thunk. */
2532 #endif /* SCM_DEBUG_DEPRECATED == 0 */
2533 static SCM gc_async;
2534
2535
2536 /* The function gc_async_thunk causes the execution of the after-gc-hook. It
2537 * is run after the gc, as soon as the asynchronous events are handled by the
2538 * evaluator.
2539 */
2540 static SCM
2541 gc_async_thunk (void)
2542 {
2543 scm_c_run_hook (scm_after_gc_hook, SCM_EOL);
2544
2545 #if (SCM_DEBUG_DEPRECATED == 0)
2546
2547 /* The following code will be removed in Guile 1.5. */
2548 if (SCM_NFALSEP (scm_gc_vcell))
2549 {
2550 SCM proc = SCM_CDR (scm_gc_vcell);
2551
2552 if (SCM_NFALSEP (proc) && !SCM_UNBNDP (proc))
2553 scm_apply (proc, SCM_EOL, SCM_EOL);
2554 }
2555
2556 #endif /* SCM_DEBUG_DEPRECATED == 0 */
2557
2558 return SCM_UNSPECIFIED;
2559 }
2560
2561
2562 /* The function mark_gc_async is run by the scm_after_gc_c_hook at the end of
2563 * the garbage collection. The only purpose of this function is to mark the
2564 * gc_async (which will eventually lead to the execution of the
2565 * gc_async_thunk).
2566 */
2567 static void *
2568 mark_gc_async (void * hook_data, void *func_data, void *data)
2569 {
2570 scm_system_async_mark (gc_async);
2571 return NULL;
2572 }
2573
2574
2575 void
2576 scm_init_gc ()
2577 {
2578 SCM after_gc_thunk;
2579
2580 scm_after_gc_hook = scm_create_hook ("after-gc-hook", 0);
2581
2582 #if (SCM_DEBUG_DEPRECATED == 0)
2583 scm_gc_vcell = scm_sysintern ("gc-thunk", SCM_BOOL_F);
2584 #endif /* SCM_DEBUG_DEPRECATED == 0 */
2585 /* Dirk:FIXME:: We don't really want a binding here. */
2586 after_gc_thunk = scm_make_gsubr ("%gc-thunk", 0, 0, 0, gc_async_thunk);
2587 gc_async = scm_system_async (after_gc_thunk);
2588
2589 scm_c_hook_add (&scm_after_gc_c_hook, mark_gc_async, NULL, 0);
2590
2591 #include "libguile/gc.x"
2592 }
2593
2594 /*
2595 Local Variables:
2596 c-file-style: "gnu"
2597 End:
2598 */