1a9fd59acb2f76a01241db90a0ba8e976caf9934
[bpt/guile.git] / libguile / random.c
1 /* Copyright (C) 1999,2000,2001, 2003, 2005, 2006, 2009 Free Software Foundation, Inc.
2 * This library is free software; you can redistribute it and/or
3 * modify it under the terms of the GNU Lesser General Public License
4 * as published by the Free Software Foundation; either version 3 of
5 * the License, or (at your option) any later version.
6 *
7 * This library is distributed in the hope that it will be useful, but
8 * WITHOUT ANY WARRANTY; without even the implied warranty of
9 * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the GNU
10 * Lesser General Public License for more details.
11 *
12 * You should have received a copy of the GNU Lesser General Public
13 * License along with this library; if not, write to the Free Software
14 * Foundation, Inc., 51 Franklin Street, Fifth Floor, Boston, MA
15 * 02110-1301 USA
16 */
17
18
19
20 /* Author: Mikael Djurfeldt <djurfeldt@nada.kth.se> */
21
22 #ifdef HAVE_CONFIG_H
23 # include <config.h>
24 #endif
25
26 #include "libguile/_scm.h"
27
28 #include <gmp.h>
29 #include <stdio.h>
30 #include <math.h>
31 #include <string.h>
32 #include "libguile/smob.h"
33 #include "libguile/numbers.h"
34 #include "libguile/feature.h"
35 #include "libguile/strings.h"
36 #include "libguile/arrays.h"
37 #include "libguile/srfi-4.h"
38 #include "libguile/vectors.h"
39 #include "libguile/generalized-vectors.h"
40
41 #include "libguile/validate.h"
42 #include "libguile/random.h"
43
44 \f
45 /*
46 * A plugin interface for RNGs
47 *
48 * Using this interface, it is possible for the application to tell
49 * libguile to use a different RNG. This is desirable if it is
50 * necessary to use the same RNG everywhere in the application in
51 * order to prevent interference, if the application uses RNG
52 * hardware, or if the application has special demands on the RNG.
53 *
54 * Look in random.h and how the default generator is "plugged in" in
55 * scm_init_random().
56 */
57
58 scm_t_rng scm_the_rng;
59
60 \f
61 /*
62 * The prepackaged RNG
63 *
64 * This is the MWC (Multiply With Carry) random number generator
65 * described by George Marsaglia at the Department of Statistics and
66 * Supercomputer Computations Research Institute, The Florida State
67 * University (http://stat.fsu.edu/~geo).
68 *
69 * It uses 64 bits, has a period of 4578426017172946943 (4.6e18), and
70 * passes all tests in the DIEHARD test suite
71 * (http://stat.fsu.edu/~geo/diehard.html)
72 */
73
74 #define A 2131995753UL
75
76 #ifndef M_PI
77 #define M_PI 3.14159265359
78 #endif
79
80 #if SCM_HAVE_T_UINT64
81
82 unsigned long
83 scm_i_uniform32 (scm_t_i_rstate *state)
84 {
85 scm_t_uint64 x = (scm_t_uint64) A * state->w + state->c;
86 scm_t_uint32 w = x & 0xffffffffUL;
87 state->w = w;
88 state->c = x >> 32L;
89 return w;
90 }
91
92 #else
93
94 /* ww This is a portable version of the same RNG without 64 bit
95 * * aa arithmetic.
96 * ----
97 * xx It is only intended to provide identical behaviour on
98 * xx platforms without 8 byte longs or long longs until
99 * xx someone has implemented the routine in assembler code.
100 * xxcc
101 * ----
102 * ccww
103 */
104
105 #define L(x) ((x) & 0xffff)
106 #define H(x) ((x) >> 16)
107
108 unsigned long
109 scm_i_uniform32 (scm_t_i_rstate *state)
110 {
111 scm_t_uint32 x1 = L (A) * L (state->w);
112 scm_t_uint32 x2 = L (A) * H (state->w);
113 scm_t_uint32 x3 = H (A) * L (state->w);
114 scm_t_uint32 w = L (x1) + L (state->c);
115 scm_t_uint32 m = H (x1) + L (x2) + L (x3) + H (state->c) + H (w);
116 scm_t_uint32 x4 = H (A) * H (state->w);
117 state->w = w = (L (m) << 16) + L (w);
118 state->c = H (x2) + H (x3) + x4 + H (m);
119 return w;
120 }
121
122 #endif
123
124 void
125 scm_i_init_rstate (scm_t_i_rstate *state, const char *seed, int n)
126 {
127 scm_t_uint32 w = 0L;
128 scm_t_uint32 c = 0L;
129 int i, m;
130 for (i = 0; i < n; ++i)
131 {
132 m = i % 8;
133 if (m < 4)
134 w += seed[i] << (8 * m);
135 else
136 c += seed[i] << (8 * (m - 4));
137 }
138 if ((w == 0 && c == 0) || (w == -1 && c == A - 1))
139 ++c;
140 state->w = w;
141 state->c = c;
142 }
143
144 scm_t_i_rstate *
145 scm_i_copy_rstate (scm_t_i_rstate *state)
146 {
147 scm_t_rstate *new_state;
148
149 new_state = scm_gc_malloc_pointerless (scm_the_rng.rstate_size,
150 "random-state");
151 return memcpy (new_state, state, scm_the_rng.rstate_size);
152 }
153
154 \f
155 /*
156 * Random number library functions
157 */
158
159 scm_t_rstate *
160 scm_c_make_rstate (const char *seed, int n)
161 {
162 scm_t_rstate *state;
163
164 state = scm_gc_malloc_pointerless (scm_the_rng.rstate_size,
165 "random-state");
166 state->reserved0 = 0;
167 scm_the_rng.init_rstate (state, seed, n);
168 return state;
169 }
170
171
172 scm_t_rstate *
173 scm_c_default_rstate ()
174 #define FUNC_NAME "scm_c_default_rstate"
175 {
176 SCM state = SCM_VARIABLE_REF (scm_var_random_state);
177 if (!SCM_RSTATEP (state))
178 SCM_MISC_ERROR ("*random-state* contains bogus random state", SCM_EOL);
179 return SCM_RSTATE (state);
180 }
181 #undef FUNC_NAME
182
183
184 inline double
185 scm_c_uniform01 (scm_t_rstate *state)
186 {
187 double x = (double) scm_the_rng.random_bits (state) / (double) 0xffffffffUL;
188 return ((x + (double) scm_the_rng.random_bits (state))
189 / (double) 0xffffffffUL);
190 }
191
192 double
193 scm_c_normal01 (scm_t_rstate *state)
194 {
195 if (state->reserved0)
196 {
197 state->reserved0 = 0;
198 return state->reserved1;
199 }
200 else
201 {
202 double r, a, n;
203
204 r = sqrt (-2.0 * log (scm_c_uniform01 (state)));
205 a = 2.0 * M_PI * scm_c_uniform01 (state);
206
207 n = r * sin (a);
208 state->reserved1 = r * cos (a);
209 state->reserved0 = 1;
210
211 return n;
212 }
213 }
214
215 double
216 scm_c_exp1 (scm_t_rstate *state)
217 {
218 return - log (scm_c_uniform01 (state));
219 }
220
221 unsigned char scm_masktab[256];
222
223 unsigned long
224 scm_c_random (scm_t_rstate *state, unsigned long m)
225 {
226 unsigned long r, mask;
227 #if SCM_SIZEOF_UNSIGNED_LONG == 4
228 mask = (m < 0x100
229 ? scm_masktab[m]
230 : (m < 0x10000
231 ? scm_masktab[m >> 8] << 8 | 0xff
232 : (m < 0x1000000
233 ? scm_masktab[m >> 16] << 16 | 0xffff
234 : scm_masktab[m >> 24] << 24 | 0xffffff)));
235 while ((r = scm_the_rng.random_bits (state) & mask) >= m);
236 #elif SCM_SIZEOF_UNSIGNED_LONG == 8
237 mask = (m < 0x100
238 ? scm_masktab[m]
239 : (m < 0x10000
240 ? scm_masktab[m >> 8] << 8 | 0xff
241 : (m < 0x1000000
242 ? scm_masktab[m >> 16] << 16 | 0xffff
243 : (m < (1UL << 32)
244 ? scm_masktab[m >> 24] << 24 | 0xffffff
245 : (m < (1UL << 40)
246 ? ((unsigned long) scm_masktab[m >> 32] << 32
247 | 0xffffffffUL)
248 : (m < (1UL << 48)
249 ? ((unsigned long) scm_masktab[m >> 40] << 40
250 | 0xffffffffffUL)
251 : (m < (1UL << 56)
252 ? ((unsigned long) scm_masktab[m >> 48] << 48
253 | 0xffffffffffffUL)
254 : ((unsigned long) scm_masktab[m >> 56] << 56
255 | 0xffffffffffffffUL))))))));
256 while ((r = ((scm_the_rng.random_bits (state) << 32
257 | scm_the_rng.random_bits (state))) & mask) >= m);
258 #else
259 #error "Cannot deal with this platform's unsigned long size"
260 #endif
261 return r;
262 }
263
264 /*
265 SCM scm_c_random_bignum (scm_t_rstate *state, SCM m)
266
267 Takes a random state (source of random bits) and a bignum m.
268 Returns a bignum b, 0 <= b < m.
269
270 It does this by allocating a bignum b with as many base 65536 digits
271 as m, filling b with random bits (in 32 bit chunks) up to the most
272 significant 1 in m, and, finally checking if the resultant b is too
273 large (>= m). If too large, we simply repeat the process again. (It
274 is important to throw away all generated random bits if b >= m,
275 otherwise we'll end up with a distorted distribution.)
276
277 */
278
279 SCM
280 scm_c_random_bignum (scm_t_rstate *state, SCM m)
281 {
282 SCM result = scm_i_mkbig ();
283 const size_t m_bits = mpz_sizeinbase (SCM_I_BIG_MPZ (m), 2);
284 /* how many bits would only partially fill the last unsigned long? */
285 const size_t end_bits = m_bits % (sizeof (unsigned long) * SCM_CHAR_BIT);
286 unsigned long *random_chunks = NULL;
287 const unsigned long num_full_chunks =
288 m_bits / (sizeof (unsigned long) * SCM_CHAR_BIT);
289 const unsigned long num_chunks = num_full_chunks + ((end_bits) ? 1 : 0);
290
291 /* we know the result will be this big */
292 mpz_realloc2 (SCM_I_BIG_MPZ (result), m_bits);
293
294 random_chunks =
295 (unsigned long *) scm_gc_calloc (num_chunks * sizeof (unsigned long),
296 "random bignum chunks");
297
298 do
299 {
300 unsigned long *current_chunk = random_chunks + (num_chunks - 1);
301 unsigned long chunks_left = num_chunks;
302
303 mpz_set_ui (SCM_I_BIG_MPZ (result), 0);
304
305 if (end_bits)
306 {
307 /* generate a mask with ones in the end_bits position, i.e. if
308 end_bits is 3, then we'd have a mask of ...0000000111 */
309 const unsigned long rndbits = scm_the_rng.random_bits (state);
310 int rshift = (sizeof (unsigned long) * SCM_CHAR_BIT) - end_bits;
311 unsigned long mask = ((unsigned long) ULONG_MAX) >> rshift;
312 unsigned long highest_bits = rndbits & mask;
313 *current_chunk-- = highest_bits;
314 chunks_left--;
315 }
316
317 while (chunks_left)
318 {
319 /* now fill in the remaining unsigned long sized chunks */
320 *current_chunk-- = scm_the_rng.random_bits (state);
321 chunks_left--;
322 }
323 mpz_import (SCM_I_BIG_MPZ (result),
324 num_chunks,
325 -1,
326 sizeof (unsigned long),
327 0,
328 0,
329 random_chunks);
330 /* if result >= m, regenerate it (it is important to regenerate
331 all bits in order not to get a distorted distribution) */
332 } while (mpz_cmp (SCM_I_BIG_MPZ (result), SCM_I_BIG_MPZ (m)) >= 0);
333 scm_gc_free (random_chunks,
334 num_chunks * sizeof (unsigned long),
335 "random bignum chunks");
336 return scm_i_normbig (result);
337 }
338
339 /*
340 * Scheme level representation of random states.
341 */
342
343 scm_t_bits scm_tc16_rstate;
344
345 static SCM
346 make_rstate (scm_t_rstate *state)
347 {
348 SCM_RETURN_NEWSMOB (scm_tc16_rstate, state);
349 }
350
351
352 /*
353 * Scheme level interface.
354 */
355
356 SCM_GLOBAL_VARIABLE_INIT (scm_var_random_state, "*random-state*", scm_seed_to_random_state (scm_from_locale_string ("URL:http://stat.fsu.edu/~geo/diehard.html")));
357
358 SCM_DEFINE (scm_random, "random", 1, 1, 0,
359 (SCM n, SCM state),
360 "Return a number in [0, N).\n"
361 "\n"
362 "Accepts a positive integer or real n and returns a\n"
363 "number of the same type between zero (inclusive) and\n"
364 "N (exclusive). The values returned have a uniform\n"
365 "distribution.\n"
366 "\n"
367 "The optional argument @var{state} must be of the type produced\n"
368 "by @code{seed->random-state}. It defaults to the value of the\n"
369 "variable @var{*random-state*}. This object is used to maintain\n"
370 "the state of the pseudo-random-number generator and is altered\n"
371 "as a side effect of the random operation.")
372 #define FUNC_NAME s_scm_random
373 {
374 if (SCM_UNBNDP (state))
375 state = SCM_VARIABLE_REF (scm_var_random_state);
376 SCM_VALIDATE_RSTATE (2, state);
377 if (SCM_I_INUMP (n))
378 {
379 unsigned long m = SCM_I_INUM (n);
380 SCM_ASSERT_RANGE (1, n, m > 0);
381 return scm_from_ulong (scm_c_random (SCM_RSTATE (state), m));
382 }
383 SCM_VALIDATE_NIM (1, n);
384 if (SCM_REALP (n))
385 return scm_from_double (SCM_REAL_VALUE (n)
386 * scm_c_uniform01 (SCM_RSTATE (state)));
387
388 if (!SCM_BIGP (n))
389 SCM_WRONG_TYPE_ARG (1, n);
390 return scm_c_random_bignum (SCM_RSTATE (state), n);
391 }
392 #undef FUNC_NAME
393
394 SCM_DEFINE (scm_copy_random_state, "copy-random-state", 0, 1, 0,
395 (SCM state),
396 "Return a copy of the random state @var{state}.")
397 #define FUNC_NAME s_scm_copy_random_state
398 {
399 if (SCM_UNBNDP (state))
400 state = SCM_VARIABLE_REF (scm_var_random_state);
401 SCM_VALIDATE_RSTATE (1, state);
402 return make_rstate (scm_the_rng.copy_rstate (SCM_RSTATE (state)));
403 }
404 #undef FUNC_NAME
405
406 SCM_DEFINE (scm_seed_to_random_state, "seed->random-state", 1, 0, 0,
407 (SCM seed),
408 "Return a new random state using @var{seed}.")
409 #define FUNC_NAME s_scm_seed_to_random_state
410 {
411 SCM res;
412 if (SCM_NUMBERP (seed))
413 seed = scm_number_to_string (seed, SCM_UNDEFINED);
414 SCM_VALIDATE_STRING (1, seed);
415 res = make_rstate (scm_c_make_rstate (scm_i_string_chars (seed),
416 scm_i_string_length (seed)));
417 scm_remember_upto_here_1 (seed);
418 return res;
419
420 }
421 #undef FUNC_NAME
422
423 SCM_DEFINE (scm_random_uniform, "random:uniform", 0, 1, 0,
424 (SCM state),
425 "Return a uniformly distributed inexact real random number in\n"
426 "[0,1).")
427 #define FUNC_NAME s_scm_random_uniform
428 {
429 if (SCM_UNBNDP (state))
430 state = SCM_VARIABLE_REF (scm_var_random_state);
431 SCM_VALIDATE_RSTATE (1, state);
432 return scm_from_double (scm_c_uniform01 (SCM_RSTATE (state)));
433 }
434 #undef FUNC_NAME
435
436 SCM_DEFINE (scm_random_normal, "random:normal", 0, 1, 0,
437 (SCM state),
438 "Return an inexact real in a normal distribution. The\n"
439 "distribution used has mean 0 and standard deviation 1. For a\n"
440 "normal distribution with mean m and standard deviation d use\n"
441 "@code{(+ m (* d (random:normal)))}.")
442 #define FUNC_NAME s_scm_random_normal
443 {
444 if (SCM_UNBNDP (state))
445 state = SCM_VARIABLE_REF (scm_var_random_state);
446 SCM_VALIDATE_RSTATE (1, state);
447 return scm_from_double (scm_c_normal01 (SCM_RSTATE (state)));
448 }
449 #undef FUNC_NAME
450
451 static void
452 vector_scale_x (SCM v, double c)
453 {
454 size_t n;
455 if (scm_is_simple_vector (v))
456 {
457 n = SCM_SIMPLE_VECTOR_LENGTH (v);
458 while (n-- > 0)
459 SCM_REAL_VALUE (SCM_SIMPLE_VECTOR_REF (v, n)) *= c;
460 }
461 else
462 {
463 /* must be a f64vector. */
464 scm_t_array_handle handle;
465 size_t i, len;
466 ssize_t inc;
467 double *elts;
468
469 elts = scm_f64vector_writable_elements (v, &handle, &len, &inc);
470
471 for (i = 0; i < len; i++, elts += inc)
472 *elts *= c;
473
474 scm_array_handle_release (&handle);
475 }
476 }
477
478 static double
479 vector_sum_squares (SCM v)
480 {
481 double x, sum = 0.0;
482 size_t n;
483 if (scm_is_simple_vector (v))
484 {
485 n = SCM_SIMPLE_VECTOR_LENGTH (v);
486 while (n-- > 0)
487 {
488 x = SCM_REAL_VALUE (SCM_SIMPLE_VECTOR_REF (v, n));
489 sum += x * x;
490 }
491 }
492 else
493 {
494 /* must be a f64vector. */
495 scm_t_array_handle handle;
496 size_t i, len;
497 ssize_t inc;
498 const double *elts;
499
500 elts = scm_f64vector_elements (v, &handle, &len, &inc);
501
502 for (i = 0; i < len; i++, elts += inc)
503 {
504 x = *elts;
505 sum += x * x;
506 }
507
508 scm_array_handle_release (&handle);
509 }
510 return sum;
511 }
512
513 /* For the uniform distribution on the solid sphere, note that in
514 * this distribution the length r of the vector has cumulative
515 * distribution r^n; i.e., u=r^n is uniform [0,1], so r can be
516 * generated as r=u^(1/n).
517 */
518 SCM_DEFINE (scm_random_solid_sphere_x, "random:solid-sphere!", 1, 1, 0,
519 (SCM v, SCM state),
520 "Fills @var{vect} with inexact real random numbers the sum of\n"
521 "whose squares is less than 1.0. Thinking of @var{vect} as\n"
522 "coordinates in space of dimension @var{n} @math{=}\n"
523 "@code{(vector-length @var{vect})}, the coordinates are\n"
524 "uniformly distributed within the unit @var{n}-sphere.")
525 #define FUNC_NAME s_scm_random_solid_sphere_x
526 {
527 if (SCM_UNBNDP (state))
528 state = SCM_VARIABLE_REF (scm_var_random_state);
529 SCM_VALIDATE_RSTATE (2, state);
530 scm_random_normal_vector_x (v, state);
531 vector_scale_x (v,
532 pow (scm_c_uniform01 (SCM_RSTATE (state)),
533 1.0 / scm_c_generalized_vector_length (v))
534 / sqrt (vector_sum_squares (v)));
535 return SCM_UNSPECIFIED;
536 }
537 #undef FUNC_NAME
538
539 SCM_DEFINE (scm_random_hollow_sphere_x, "random:hollow-sphere!", 1, 1, 0,
540 (SCM v, SCM state),
541 "Fills vect with inexact real random numbers\n"
542 "the sum of whose squares is equal to 1.0.\n"
543 "Thinking of vect as coordinates in space of\n"
544 "dimension n = (vector-length vect), the coordinates\n"
545 "are uniformly distributed over the surface of the\n"
546 "unit n-sphere.")
547 #define FUNC_NAME s_scm_random_hollow_sphere_x
548 {
549 if (SCM_UNBNDP (state))
550 state = SCM_VARIABLE_REF (scm_var_random_state);
551 SCM_VALIDATE_RSTATE (2, state);
552 scm_random_normal_vector_x (v, state);
553 vector_scale_x (v, 1 / sqrt (vector_sum_squares (v)));
554 return SCM_UNSPECIFIED;
555 }
556 #undef FUNC_NAME
557
558
559 SCM_DEFINE (scm_random_normal_vector_x, "random:normal-vector!", 1, 1, 0,
560 (SCM v, SCM state),
561 "Fills vect with inexact real random numbers that are\n"
562 "independent and standard normally distributed\n"
563 "(i.e., with mean 0 and variance 1).")
564 #define FUNC_NAME s_scm_random_normal_vector_x
565 {
566 long i;
567 scm_t_array_handle handle;
568 scm_t_array_dim *dim;
569
570 if (SCM_UNBNDP (state))
571 state = SCM_VARIABLE_REF (scm_var_random_state);
572 SCM_VALIDATE_RSTATE (2, state);
573
574 scm_generalized_vector_get_handle (v, &handle);
575 dim = scm_array_handle_dims (&handle);
576
577 if (scm_is_vector (v))
578 {
579 SCM *elts = scm_array_handle_writable_elements (&handle);
580 for (i = dim->lbnd; i <= dim->ubnd; i++, elts += dim->inc)
581 *elts = scm_from_double (scm_c_normal01 (SCM_RSTATE (state)));
582 }
583 else
584 {
585 /* must be a f64vector. */
586 double *elts = scm_array_handle_f64_writable_elements (&handle);
587 for (i = dim->lbnd; i <= dim->ubnd; i++, elts += dim->inc)
588 *elts = scm_c_normal01 (SCM_RSTATE (state));
589 }
590
591 scm_array_handle_release (&handle);
592
593 return SCM_UNSPECIFIED;
594 }
595 #undef FUNC_NAME
596
597 SCM_DEFINE (scm_random_exp, "random:exp", 0, 1, 0,
598 (SCM state),
599 "Return an inexact real in an exponential distribution with mean\n"
600 "1. For an exponential distribution with mean u use (* u\n"
601 "(random:exp)).")
602 #define FUNC_NAME s_scm_random_exp
603 {
604 if (SCM_UNBNDP (state))
605 state = SCM_VARIABLE_REF (scm_var_random_state);
606 SCM_VALIDATE_RSTATE (1, state);
607 return scm_from_double (scm_c_exp1 (SCM_RSTATE (state)));
608 }
609 #undef FUNC_NAME
610
611 void
612 scm_init_random ()
613 {
614 int i, m;
615 /* plug in default RNG */
616 scm_t_rng rng =
617 {
618 sizeof (scm_t_i_rstate),
619 (unsigned long (*)()) scm_i_uniform32,
620 (void (*)()) scm_i_init_rstate,
621 (scm_t_rstate *(*)()) scm_i_copy_rstate
622 };
623 scm_the_rng = rng;
624
625 scm_tc16_rstate = scm_make_smob_type ("random-state", 0);
626
627 for (m = 1; m <= 0x100; m <<= 1)
628 for (i = m >> 1; i < m; ++i)
629 scm_masktab[i] = m - 1;
630
631 #include "libguile/random.x"
632
633 scm_add_feature ("random");
634 }
635
636 /*
637 Local Variables:
638 c-file-style: "gnu"
639 End:
640 */