* Removed deprecated stuff.
[bpt/guile.git] / ice-9 / boot-9.scm
... / ...
CommitLineData
1;;; installed-scm-file
2
3;;;; Copyright (C) 1995, 1996, 1997, 1998, 1999, 2000, 2001 Free Software Foundation, Inc.
4;;;;
5;;;; This program is free software; you can redistribute it and/or modify
6;;;; it under the terms of the GNU General Public License as published by
7;;;; the Free Software Foundation; either version 2, or (at your option)
8;;;; any later version.
9;;;;
10;;;; This program is distributed in the hope that it will be useful,
11;;;; but WITHOUT ANY WARRANTY; without even the implied warranty of
12;;;; MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
13;;;; GNU General Public License for more details.
14;;;;
15;;;; You should have received a copy of the GNU General Public License
16;;;; along with this software; see the file COPYING. If not, write to
17;;;; the Free Software Foundation, Inc., 59 Temple Place, Suite 330,
18;;;; Boston, MA 02111-1307 USA
19;;;;
20;;;; As a special exception, the Free Software Foundation gives permission
21;;;; for additional uses of the text contained in its release of GUILE.
22;;;;
23;;;; The exception is that, if you link the GUILE library with other files
24;;;; to produce an executable, this does not by itself cause the
25;;;; resulting executable to be covered by the GNU General Public License.
26;;;; Your use of that executable is in no way restricted on account of
27;;;; linking the GUILE library code into it.
28;;;;
29;;;; This exception does not however invalidate any other reasons why
30;;;; the executable file might be covered by the GNU General Public License.
31;;;;
32;;;; This exception applies only to the code released by the
33;;;; Free Software Foundation under the name GUILE. If you copy
34;;;; code from other Free Software Foundation releases into a copy of
35;;;; GUILE, as the General Public License permits, the exception does
36;;;; not apply to the code that you add in this way. To avoid misleading
37;;;; anyone as to the status of such modified files, you must delete
38;;;; this exception notice from them.
39;;;;
40;;;; If you write modifications of your own for GUILE, it is your choice
41;;;; whether to permit this exception to apply to your modifications.
42;;;; If you do not wish that, delete this exception notice.
43;;;;
44\f
45
46;;; Commentary:
47
48;;; This file is the first thing loaded into Guile. It adds many mundane
49;;; definitions and a few that are interesting.
50;;;
51;;; The module system (hence the hierarchical namespace) are defined in this
52;;; file.
53;;;
54
55;;; Code:
56
57\f
58;;; {Deprecation}
59;;;
60
61;; We don't have macros here, but we do want to define
62;; `begin-deprecated' early.
63
64(define begin-deprecated
65 (procedure->memoizing-macro
66 (lambda (exp env)
67 (if (include-deprecated-features)
68 `(begin ,@(cdr exp))
69 `#f))))
70
71\f
72;;; {Features}
73;;
74
75(define (provide sym)
76 (if (not (memq sym *features*))
77 (set! *features* (cons sym *features*))))
78
79;;; Return #t iff FEATURE is available to this Guile interpreter.
80;;; In SLIB, provided? also checks to see if the module is available.
81;;; We should do that too, but don't.
82(define (provided? feature)
83 (and (memq feature *features*) #t))
84
85;;; presumably deprecated.
86(define feature? provided?)
87
88;;; let format alias simple-format until the more complete version is loaded
89(define format simple-format)
90
91\f
92;;; {R4RS compliance}
93
94(primitive-load-path "ice-9/r4rs.scm")
95
96\f
97;;; {Simple Debugging Tools}
98;;
99
100
101;; peek takes any number of arguments, writes them to the
102;; current ouput port, and returns the last argument.
103;; It is handy to wrap around an expression to look at
104;; a value each time is evaluated, e.g.:
105;;
106;; (+ 10 (troublesome-fn))
107;; => (+ 10 (pk 'troublesome-fn-returned (troublesome-fn)))
108;;
109
110(define (peek . stuff)
111 (newline)
112 (display ";;; ")
113 (write stuff)
114 (newline)
115 (car (last-pair stuff)))
116
117(define pk peek)
118
119(define (warn . stuff)
120 (with-output-to-port (current-error-port)
121 (lambda ()
122 (newline)
123 (display ";;; WARNING ")
124 (display stuff)
125 (newline)
126 (car (last-pair stuff)))))
127
128\f
129;;; {Trivial Functions}
130;;;
131
132(define (identity x) x)
133(define (1+ n) (+ n 1))
134(define (1- n) (+ n -1))
135(define (and=> value procedure) (and value (procedure value)))
136(define (make-hash-table k) (make-vector k '()))
137
138(begin-deprecated
139 (define (id x)
140 (issue-deprecation-warning "`id' is deprecated. Use `identity' instead.")
141 (identity x))
142 (define (-1+ n)
143 (issue-deprecation-warning "`-1+' is deprecated. Use `1-' instead.")
144 (1- n))
145 (define (return-it . args)
146 (issue-deprecation-warning "`return-it' is deprecated. Use `noop' instead.")
147 (apply noop args)))
148
149;;; apply-to-args is functionally redundant with apply and, worse,
150;;; is less general than apply since it only takes two arguments.
151;;;
152;;; On the other hand, apply-to-args is a syntacticly convenient way to
153;;; perform binding in many circumstances when the "let" family of
154;;; of forms don't cut it. E.g.:
155;;;
156;;; (apply-to-args (return-3d-mouse-coords)
157;;; (lambda (x y z)
158;;; ...))
159;;;
160
161(define (apply-to-args args fn) (apply fn args))
162
163\f
164
165;;; {Integer Math}
166;;;
167
168(define (ipow-by-squaring x k acc proc)
169 (cond ((zero? k) acc)
170 ((= 1 k) (proc acc x))
171 (else (ipow-by-squaring (proc x x)
172 (quotient k 2)
173 (if (even? k) acc (proc acc x))
174 proc))))
175
176(begin-deprecated
177 (define (string-character-length s)
178 (issue-deprecation-warning "`string-character-length' is deprecated. Use `string-length' instead.")
179 (string-length s))
180 (define (flags . args)
181 (issue-deprecation-warning "`flags' is deprecated. Use `logior' instead.")
182 (apply logior args)))
183
184\f
185;;; {Symbol Properties}
186;;;
187
188(define (symbol-property sym prop)
189 (let ((pair (assoc prop (symbol-pref sym))))
190 (and pair (cdr pair))))
191
192(define (set-symbol-property! sym prop val)
193 (let ((pair (assoc prop (symbol-pref sym))))
194 (if pair
195 (set-cdr! pair val)
196 (symbol-pset! sym (acons prop val (symbol-pref sym))))))
197
198(define (symbol-property-remove! sym prop)
199 (let ((pair (assoc prop (symbol-pref sym))))
200 (if pair
201 (symbol-pset! sym (delq! pair (symbol-pref sym))))))
202
203;;; {General Properties}
204;;;
205
206;; This is a more modern interface to properties. It will replace all
207;; other property-like things eventually.
208
209(define (make-object-property)
210 (let ((prop (primitive-make-property #f)))
211 (make-procedure-with-setter
212 (lambda (obj) (primitive-property-ref prop obj))
213 (lambda (obj val) (primitive-property-set! prop obj val)))))
214
215\f
216
217;;; {Arrays}
218;;;
219
220(if (provided? 'array)
221 (primitive-load-path "ice-9/arrays.scm"))
222
223\f
224;;; {Keywords}
225;;;
226
227(define (symbol->keyword symbol)
228 (make-keyword-from-dash-symbol (symbol-append '- symbol)))
229
230(define (keyword->symbol kw)
231 (let ((sym (symbol->string (keyword-dash-symbol kw))))
232 (string->symbol (substring sym 1 (string-length sym)))))
233
234(define (kw-arg-ref args kw)
235 (let ((rem (member kw args)))
236 (and rem (pair? (cdr rem)) (cadr rem))))
237
238\f
239
240;;; {Structs}
241
242(define (struct-layout s)
243 (struct-ref (struct-vtable s) vtable-index-layout))
244
245\f
246
247;;; Environments
248
249(define the-environment
250 (procedure->syntax
251 (lambda (x e)
252 e)))
253
254(define the-root-environment (the-environment))
255
256(define (environment-module env)
257 (let ((closure (and (pair? env) (car (last-pair env)))))
258 (and closure (procedure-property closure 'module))))
259
260\f
261;;; {Records}
262;;;
263
264;; Printing records: by default, records are printed as
265;;
266;; #<type-name field1: val1 field2: val2 ...>
267;;
268;; You can change that by giving a custom printing function to
269;; MAKE-RECORD-TYPE (after the list of field symbols). This function
270;; will be called like
271;;
272;; (<printer> object port)
273;;
274;; It should print OBJECT to PORT.
275
276(define (inherit-print-state old-port new-port)
277 (if (get-print-state old-port)
278 (port-with-print-state new-port (get-print-state old-port))
279 new-port))
280
281;; 0: type-name, 1: fields
282(define record-type-vtable
283 (make-vtable-vtable "prpr" 0
284 (lambda (s p)
285 (cond ((eq? s record-type-vtable)
286 (display "#<record-type-vtable>" p))
287 (else
288 (display "#<record-type " p)
289 (display (record-type-name s) p)
290 (display ">" p))))))
291
292(define (record-type? obj)
293 (and (struct? obj) (eq? record-type-vtable (struct-vtable obj))))
294
295(define (make-record-type type-name fields . opt)
296 (let ((printer-fn (and (pair? opt) (car opt))))
297 (let ((struct (make-struct record-type-vtable 0
298 (make-struct-layout
299 (apply string-append
300 (map (lambda (f) "pw") fields)))
301 (or printer-fn
302 (lambda (s p)
303 (display "#<" p)
304 (display type-name p)
305 (let loop ((fields fields)
306 (off 0))
307 (cond
308 ((not (null? fields))
309 (display " " p)
310 (display (car fields) p)
311 (display ": " p)
312 (display (struct-ref s off) p)
313 (loop (cdr fields) (+ 1 off)))))
314 (display ">" p)))
315 type-name
316 (copy-tree fields))))
317 ;; Temporary solution: Associate a name to the record type descriptor
318 ;; so that the object system can create a wrapper class for it.
319 (set-struct-vtable-name! struct (if (symbol? type-name)
320 type-name
321 (string->symbol type-name)))
322 struct)))
323
324(define (record-type-name obj)
325 (if (record-type? obj)
326 (struct-ref obj vtable-offset-user)
327 (error 'not-a-record-type obj)))
328
329(define (record-type-fields obj)
330 (if (record-type? obj)
331 (struct-ref obj (+ 1 vtable-offset-user))
332 (error 'not-a-record-type obj)))
333
334(define (record-constructor rtd . opt)
335 (let ((field-names (if (pair? opt) (car opt) (record-type-fields rtd))))
336 (local-eval `(lambda ,field-names
337 (make-struct ',rtd 0 ,@(map (lambda (f)
338 (if (memq f field-names)
339 f
340 #f))
341 (record-type-fields rtd))))
342 the-root-environment)))
343
344(define (record-predicate rtd)
345 (lambda (obj) (and (struct? obj) (eq? rtd (struct-vtable obj)))))
346
347(define (record-accessor rtd field-name)
348 (let* ((pos (list-index (record-type-fields rtd) field-name)))
349 (if (not pos)
350 (error 'no-such-field field-name))
351 (local-eval `(lambda (obj)
352 (and (eq? ',rtd (record-type-descriptor obj))
353 (struct-ref obj ,pos)))
354 the-root-environment)))
355
356(define (record-modifier rtd field-name)
357 (let* ((pos (list-index (record-type-fields rtd) field-name)))
358 (if (not pos)
359 (error 'no-such-field field-name))
360 (local-eval `(lambda (obj val)
361 (and (eq? ',rtd (record-type-descriptor obj))
362 (struct-set! obj ,pos val)))
363 the-root-environment)))
364
365
366(define (record? obj)
367 (and (struct? obj) (record-type? (struct-vtable obj))))
368
369(define (record-type-descriptor obj)
370 (if (struct? obj)
371 (struct-vtable obj)
372 (error 'not-a-record obj)))
373
374(provide 'record)
375
376\f
377;;; {Booleans}
378;;;
379
380(define (->bool x) (not (not x)))
381
382\f
383;;; {Symbols}
384;;;
385
386(define (symbol-append . args)
387 (string->symbol (apply string-append (map symbol->string args))))
388
389(define (list->symbol . args)
390 (string->symbol (apply list->string args)))
391
392(define (symbol . args)
393 (string->symbol (apply string args)))
394
395\f
396;;; {Lists}
397;;;
398
399(define (list-index l k)
400 (let loop ((n 0)
401 (l l))
402 (and (not (null? l))
403 (if (eq? (car l) k)
404 n
405 (loop (+ n 1) (cdr l))))))
406
407(define (make-list n . init)
408 (if (pair? init) (set! init (car init)))
409 (let loop ((answer '())
410 (n n))
411 (if (<= n 0)
412 answer
413 (loop (cons init answer) (- n 1)))))
414
415\f
416;;; {and-map and or-map}
417;;;
418;;; (and-map fn lst) is like (and (fn (car lst)) (fn (cadr lst)) (fn...) ...)
419;;; (or-map fn lst) is like (or (fn (car lst)) (fn (cadr lst)) (fn...) ...)
420;;;
421
422;; and-map f l
423;;
424;; Apply f to successive elements of l until exhaustion or f returns #f.
425;; If returning early, return #f. Otherwise, return the last value returned
426;; by f. If f has never been called because l is empty, return #t.
427;;
428(define (and-map f lst)
429 (let loop ((result #t)
430 (l lst))
431 (and result
432 (or (and (null? l)
433 result)
434 (loop (f (car l)) (cdr l))))))
435
436;; or-map f l
437;;
438;; Apply f to successive elements of l until exhaustion or while f returns #f.
439;; If returning early, return the return value of f.
440;;
441(define (or-map f lst)
442 (let loop ((result #f)
443 (l lst))
444 (or result
445 (and (not (null? l))
446 (loop (f (car l)) (cdr l))))))
447
448\f
449
450(if (provided? 'posix)
451 (primitive-load-path "ice-9/posix.scm"))
452
453(if (provided? 'socket)
454 (primitive-load-path "ice-9/networking.scm"))
455
456(define file-exists?
457 (if (provided? 'posix)
458 (lambda (str)
459 (access? str F_OK))
460 (lambda (str)
461 (let ((port (catch 'system-error (lambda () (open-file str OPEN_READ))
462 (lambda args #f))))
463 (if port (begin (close-port port) #t)
464 #f)))))
465
466(define file-is-directory?
467 (if (provided? 'posix)
468 (lambda (str)
469 (eq? (stat:type (stat str)) 'directory))
470 (lambda (str)
471 (let ((port (catch 'system-error
472 (lambda () (open-file (string-append str "/.")
473 OPEN_READ))
474 (lambda args #f))))
475 (if port (begin (close-port port) #t)
476 #f)))))
477
478(define (has-suffix? str suffix)
479 (let ((sufl (string-length suffix))
480 (sl (string-length str)))
481 (and (> sl sufl)
482 (string=? (substring str (- sl sufl) sl) suffix))))
483
484(define (system-error-errno args)
485 (if (eq? (car args) 'system-error)
486 (car (list-ref args 4))
487 #f))
488
489\f
490;;; {Error Handling}
491;;;
492
493(define (error . args)
494 (save-stack)
495 (if (null? args)
496 (scm-error 'misc-error #f "?" #f #f)
497 (let loop ((msg "~A")
498 (rest (cdr args)))
499 (if (not (null? rest))
500 (loop (string-append msg " ~S")
501 (cdr rest))
502 (scm-error 'misc-error #f msg args #f)))))
503
504;; bad-throw is the hook that is called upon a throw to a an unhandled
505;; key (unless the throw has four arguments, in which case
506;; it's usually interpreted as an error throw.)
507;; If the key has a default handler (a throw-handler-default property),
508;; it is applied to the throw.
509;;
510(define (bad-throw key . args)
511 (let ((default (symbol-property key 'throw-handler-default)))
512 (or (and default (apply default key args))
513 (apply error "unhandled-exception:" key args))))
514
515\f
516
517(define (tm:sec obj) (vector-ref obj 0))
518(define (tm:min obj) (vector-ref obj 1))
519(define (tm:hour obj) (vector-ref obj 2))
520(define (tm:mday obj) (vector-ref obj 3))
521(define (tm:mon obj) (vector-ref obj 4))
522(define (tm:year obj) (vector-ref obj 5))
523(define (tm:wday obj) (vector-ref obj 6))
524(define (tm:yday obj) (vector-ref obj 7))
525(define (tm:isdst obj) (vector-ref obj 8))
526(define (tm:gmtoff obj) (vector-ref obj 9))
527(define (tm:zone obj) (vector-ref obj 10))
528
529(define (set-tm:sec obj val) (vector-set! obj 0 val))
530(define (set-tm:min obj val) (vector-set! obj 1 val))
531(define (set-tm:hour obj val) (vector-set! obj 2 val))
532(define (set-tm:mday obj val) (vector-set! obj 3 val))
533(define (set-tm:mon obj val) (vector-set! obj 4 val))
534(define (set-tm:year obj val) (vector-set! obj 5 val))
535(define (set-tm:wday obj val) (vector-set! obj 6 val))
536(define (set-tm:yday obj val) (vector-set! obj 7 val))
537(define (set-tm:isdst obj val) (vector-set! obj 8 val))
538(define (set-tm:gmtoff obj val) (vector-set! obj 9 val))
539(define (set-tm:zone obj val) (vector-set! obj 10 val))
540
541(define (tms:clock obj) (vector-ref obj 0))
542(define (tms:utime obj) (vector-ref obj 1))
543(define (tms:stime obj) (vector-ref obj 2))
544(define (tms:cutime obj) (vector-ref obj 3))
545(define (tms:cstime obj) (vector-ref obj 4))
546
547(define (file-position . args) (apply ftell args))
548(define (file-set-position . args) (apply fseek args))
549
550(define (move->fdes fd/port fd)
551 (cond ((integer? fd/port)
552 (dup->fdes fd/port fd)
553 (close fd/port)
554 fd)
555 (else
556 (primitive-move->fdes fd/port fd)
557 (set-port-revealed! fd/port 1)
558 fd/port)))
559
560(define (release-port-handle port)
561 (let ((revealed (port-revealed port)))
562 (if (> revealed 0)
563 (set-port-revealed! port (- revealed 1)))))
564
565(define (dup->port port/fd mode . maybe-fd)
566 (let ((port (fdopen (apply dup->fdes port/fd maybe-fd)
567 mode)))
568 (if (pair? maybe-fd)
569 (set-port-revealed! port 1))
570 port))
571
572(define (dup->inport port/fd . maybe-fd)
573 (apply dup->port port/fd "r" maybe-fd))
574
575(define (dup->outport port/fd . maybe-fd)
576 (apply dup->port port/fd "w" maybe-fd))
577
578(define (dup port/fd . maybe-fd)
579 (if (integer? port/fd)
580 (apply dup->fdes port/fd maybe-fd)
581 (apply dup->port port/fd (port-mode port/fd) maybe-fd)))
582
583(define (duplicate-port port modes)
584 (dup->port port modes))
585
586(define (fdes->inport fdes)
587 (let loop ((rest-ports (fdes->ports fdes)))
588 (cond ((null? rest-ports)
589 (let ((result (fdopen fdes "r")))
590 (set-port-revealed! result 1)
591 result))
592 ((input-port? (car rest-ports))
593 (set-port-revealed! (car rest-ports)
594 (+ (port-revealed (car rest-ports)) 1))
595 (car rest-ports))
596 (else
597 (loop (cdr rest-ports))))))
598
599(define (fdes->outport fdes)
600 (let loop ((rest-ports (fdes->ports fdes)))
601 (cond ((null? rest-ports)
602 (let ((result (fdopen fdes "w")))
603 (set-port-revealed! result 1)
604 result))
605 ((output-port? (car rest-ports))
606 (set-port-revealed! (car rest-ports)
607 (+ (port-revealed (car rest-ports)) 1))
608 (car rest-ports))
609 (else
610 (loop (cdr rest-ports))))))
611
612(define (port->fdes port)
613 (set-port-revealed! port (+ (port-revealed port) 1))
614 (fileno port))
615
616(define (setenv name value)
617 (if value
618 (putenv (string-append name "=" value))
619 (putenv name)))
620
621\f
622;;; {Load Paths}
623;;;
624
625;;; Here for backward compatability
626;;
627(define scheme-file-suffix (lambda () ".scm"))
628
629(define (in-vicinity vicinity file)
630 (let ((tail (let ((len (string-length vicinity)))
631 (if (zero? len)
632 #f
633 (string-ref vicinity (- len 1))))))
634 (string-append vicinity
635 (if (or (not tail)
636 (eq? tail #\/))
637 ""
638 "/")
639 file)))
640
641\f
642;;; {Help for scm_shell}
643;;; The argument-processing code used by Guile-based shells generates
644;;; Scheme code based on the argument list. This page contains help
645;;; functions for the code it generates.
646
647(define (command-line) (program-arguments))
648
649;; This is mostly for the internal use of the code generated by
650;; scm_compile_shell_switches.
651(define (load-user-init)
652 (let* ((home (or (getenv "HOME")
653 (false-if-exception (passwd:dir (getpwuid (getuid))))
654 "/")) ;; fallback for cygwin etc.
655 (init-file (in-vicinity home ".guile")))
656 (if (file-exists? init-file)
657 (primitive-load init-file))))
658
659\f
660;;; {Loading by paths}
661
662;;; Load a Scheme source file named NAME, searching for it in the
663;;; directories listed in %load-path, and applying each of the file
664;;; name extensions listed in %load-extensions.
665(define (load-from-path name)
666 (start-stack 'load-stack
667 (primitive-load-path name)))
668
669
670\f
671;;; {Transcendental Functions}
672;;;
673;;; Derived from "Transcen.scm", Complex trancendental functions for SCM.
674;;; Written by Jerry D. Hedden, (C) FSF.
675;;; See the file `COPYING' for terms applying to this program.
676;;;
677
678(define (exp z)
679 (if (real? z) ($exp z)
680 (make-polar ($exp (real-part z)) (imag-part z))))
681
682(define (log z)
683 (if (and (real? z) (>= z 0))
684 ($log z)
685 (make-rectangular ($log (magnitude z)) (angle z))))
686
687(define (sqrt z)
688 (if (real? z)
689 (if (negative? z) (make-rectangular 0 ($sqrt (- z)))
690 ($sqrt z))
691 (make-polar ($sqrt (magnitude z)) (/ (angle z) 2))))
692
693(define expt
694 (let ((integer-expt integer-expt))
695 (lambda (z1 z2)
696 (cond ((integer? z2)
697 (if (>= z2 0)
698 (integer-expt z1 z2)
699 (/ 1 (integer-expt z1 (- z2)))))
700 ((and (real? z2) (real? z1) (>= z1 0))
701 ($expt z1 z2))
702 (else
703 (exp (* z2 (log z1))))))))
704
705(define (sinh z)
706 (if (real? z) ($sinh z)
707 (let ((x (real-part z)) (y (imag-part z)))
708 (make-rectangular (* ($sinh x) ($cos y))
709 (* ($cosh x) ($sin y))))))
710(define (cosh z)
711 (if (real? z) ($cosh z)
712 (let ((x (real-part z)) (y (imag-part z)))
713 (make-rectangular (* ($cosh x) ($cos y))
714 (* ($sinh x) ($sin y))))))
715(define (tanh z)
716 (if (real? z) ($tanh z)
717 (let* ((x (* 2 (real-part z)))
718 (y (* 2 (imag-part z)))
719 (w (+ ($cosh x) ($cos y))))
720 (make-rectangular (/ ($sinh x) w) (/ ($sin y) w)))))
721
722(define (asinh z)
723 (if (real? z) ($asinh z)
724 (log (+ z (sqrt (+ (* z z) 1))))))
725
726(define (acosh z)
727 (if (and (real? z) (>= z 1))
728 ($acosh z)
729 (log (+ z (sqrt (- (* z z) 1))))))
730
731(define (atanh z)
732 (if (and (real? z) (> z -1) (< z 1))
733 ($atanh z)
734 (/ (log (/ (+ 1 z) (- 1 z))) 2)))
735
736(define (sin z)
737 (if (real? z) ($sin z)
738 (let ((x (real-part z)) (y (imag-part z)))
739 (make-rectangular (* ($sin x) ($cosh y))
740 (* ($cos x) ($sinh y))))))
741(define (cos z)
742 (if (real? z) ($cos z)
743 (let ((x (real-part z)) (y (imag-part z)))
744 (make-rectangular (* ($cos x) ($cosh y))
745 (- (* ($sin x) ($sinh y)))))))
746(define (tan z)
747 (if (real? z) ($tan z)
748 (let* ((x (* 2 (real-part z)))
749 (y (* 2 (imag-part z)))
750 (w (+ ($cos x) ($cosh y))))
751 (make-rectangular (/ ($sin x) w) (/ ($sinh y) w)))))
752
753(define (asin z)
754 (if (and (real? z) (>= z -1) (<= z 1))
755 ($asin z)
756 (* -i (asinh (* +i z)))))
757
758(define (acos z)
759 (if (and (real? z) (>= z -1) (<= z 1))
760 ($acos z)
761 (+ (/ (angle -1) 2) (* +i (asinh (* +i z))))))
762
763(define (atan z . y)
764 (if (null? y)
765 (if (real? z) ($atan z)
766 (/ (log (/ (- +i z) (+ +i z))) +2i))
767 ($atan2 z (car y))))
768
769(define (log10 arg)
770 (/ (log arg) (log 10)))
771
772\f
773
774;;; {Reader Extensions}
775;;;
776
777;;; Reader code for various "#c" forms.
778;;;
779
780(read-hash-extend #\' (lambda (c port)
781 (read port)))
782
783(define read-eval? (make-fluid))
784(fluid-set! read-eval? #f)
785(read-hash-extend #\.
786 (lambda (c port)
787 (if (fluid-ref read-eval?)
788 (eval (read port) (interaction-environment))
789 (error
790 "#. read expansion found and read-eval? is #f."))))
791
792\f
793;;; {Command Line Options}
794;;;
795
796(define (get-option argv kw-opts kw-args return)
797 (cond
798 ((null? argv)
799 (return #f #f argv))
800
801 ((or (not (eq? #\- (string-ref (car argv) 0)))
802 (eq? (string-length (car argv)) 1))
803 (return 'normal-arg (car argv) (cdr argv)))
804
805 ((eq? #\- (string-ref (car argv) 1))
806 (let* ((kw-arg-pos (or (string-index (car argv) #\=)
807 (string-length (car argv))))
808 (kw (symbol->keyword (substring (car argv) 2 kw-arg-pos)))
809 (kw-opt? (member kw kw-opts))
810 (kw-arg? (member kw kw-args))
811 (arg (or (and (not (eq? kw-arg-pos (string-length (car argv))))
812 (substring (car argv)
813 (+ kw-arg-pos 1)
814 (string-length (car argv))))
815 (and kw-arg?
816 (begin (set! argv (cdr argv)) (car argv))))))
817 (if (or kw-opt? kw-arg?)
818 (return kw arg (cdr argv))
819 (return 'usage-error kw (cdr argv)))))
820
821 (else
822 (let* ((char (substring (car argv) 1 2))
823 (kw (symbol->keyword char)))
824 (cond
825
826 ((member kw kw-opts)
827 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
828 (new-argv (if (= 0 (string-length rest-car))
829 (cdr argv)
830 (cons (string-append "-" rest-car) (cdr argv)))))
831 (return kw #f new-argv)))
832
833 ((member kw kw-args)
834 (let* ((rest-car (substring (car argv) 2 (string-length (car argv))))
835 (arg (if (= 0 (string-length rest-car))
836 (cadr argv)
837 rest-car))
838 (new-argv (if (= 0 (string-length rest-car))
839 (cddr argv)
840 (cdr argv))))
841 (return kw arg new-argv)))
842
843 (else (return 'usage-error kw argv)))))))
844
845(define (for-next-option proc argv kw-opts kw-args)
846 (let loop ((argv argv))
847 (get-option argv kw-opts kw-args
848 (lambda (opt opt-arg argv)
849 (and opt (proc opt opt-arg argv loop))))))
850
851(define (display-usage-report kw-desc)
852 (for-each
853 (lambda (kw)
854 (or (eq? (car kw) #t)
855 (eq? (car kw) 'else)
856 (let* ((opt-desc kw)
857 (help (cadr opt-desc))
858 (opts (car opt-desc))
859 (opts-proper (if (string? (car opts)) (cdr opts) opts))
860 (arg-name (if (string? (car opts))
861 (string-append "<" (car opts) ">")
862 ""))
863 (left-part (string-append
864 (with-output-to-string
865 (lambda ()
866 (map (lambda (x) (display (keyword-symbol x)) (display " "))
867 opts-proper)))
868 arg-name))
869 (middle-part (if (and (< (string-length left-part) 30)
870 (< (string-length help) 40))
871 (make-string (- 30 (string-length left-part)) #\ )
872 "\n\t")))
873 (display left-part)
874 (display middle-part)
875 (display help)
876 (newline))))
877 kw-desc))
878
879
880
881(define (transform-usage-lambda cases)
882 (let* ((raw-usage (delq! 'else (map car cases)))
883 (usage-sans-specials (map (lambda (x)
884 (or (and (not (list? x)) x)
885 (and (symbol? (car x)) #t)
886 (and (boolean? (car x)) #t)
887 x))
888 raw-usage))
889 (usage-desc (delq! #t usage-sans-specials))
890 (kw-desc (map car usage-desc))
891 (kw-opts (apply append (map (lambda (x) (and (not (string? (car x))) x)) kw-desc)))
892 (kw-args (apply append (map (lambda (x) (and (string? (car x)) (cdr x))) kw-desc)))
893 (transmogrified-cases (map (lambda (case)
894 (cons (let ((opts (car case)))
895 (if (or (boolean? opts) (eq? 'else opts))
896 opts
897 (cond
898 ((symbol? (car opts)) opts)
899 ((boolean? (car opts)) opts)
900 ((string? (caar opts)) (cdar opts))
901 (else (car opts)))))
902 (cdr case)))
903 cases)))
904 `(let ((%display-usage (lambda () (display-usage-report ',usage-desc))))
905 (lambda (%argv)
906 (let %next-arg ((%argv %argv))
907 (get-option %argv
908 ',kw-opts
909 ',kw-args
910 (lambda (%opt %arg %new-argv)
911 (case %opt
912 ,@ transmogrified-cases))))))))
913
914
915\f
916
917;;; {Low Level Modules}
918;;;
919;;; These are the low level data structures for modules.
920;;;
921;;; !!! warning: The interface to lazy binder procedures is going
922;;; to be changed in an incompatible way to permit all the basic
923;;; module ops to be virtualized.
924;;;
925;;; (make-module size use-list lazy-binding-proc) => module
926;;; module-{obarray,uses,binder}[|-set!]
927;;; (module? obj) => [#t|#f]
928;;; (module-locally-bound? module symbol) => [#t|#f]
929;;; (module-bound? module symbol) => [#t|#f]
930;;; (module-symbol-locally-interned? module symbol) => [#t|#f]
931;;; (module-symbol-interned? module symbol) => [#t|#f]
932;;; (module-local-variable module symbol) => [#<variable ...> | #f]
933;;; (module-variable module symbol) => [#<variable ...> | #f]
934;;; (module-symbol-binding module symbol opt-value)
935;;; => [ <obj> | opt-value | an error occurs ]
936;;; (module-make-local-var! module symbol) => #<variable...>
937;;; (module-add! module symbol var) => unspecified
938;;; (module-remove! module symbol) => unspecified
939;;; (module-for-each proc module) => unspecified
940;;; (make-scm-module) => module ; a lazy copy of the symhash module
941;;; (set-current-module module) => unspecified
942;;; (current-module) => #<module...>
943;;;
944;;;
945
946\f
947;;; {Printing Modules}
948;; This is how modules are printed. You can re-define it.
949;; (Redefining is actually more complicated than simply redefining
950;; %print-module because that would only change the binding and not
951;; the value stored in the vtable that determines how record are
952;; printed. Sigh.)
953
954(define (%print-module mod port) ; unused args: depth length style table)
955 (display "#<" port)
956 (display (or (module-kind mod) "module") port)
957 (let ((name (module-name mod)))
958 (if name
959 (begin
960 (display " " port)
961 (display name port))))
962 (display " " port)
963 (display (number->string (object-address mod) 16) port)
964 (display ">" port))
965
966;; module-type
967;;
968;; A module is characterized by an obarray in which local symbols
969;; are interned, a list of modules, "uses", from which non-local
970;; bindings can be inherited, and an optional lazy-binder which
971;; is a (CLOSURE module symbol) which, as a last resort, can provide
972;; bindings that would otherwise not be found locally in the module.
973;;
974;; NOTE: If you change here, you also need to change libguile/modules.h.
975;;
976(define module-type
977 (make-record-type 'module
978 '(obarray uses binder eval-closure transformer name kind
979 observers weak-observers observer-id)
980 %print-module))
981
982;; make-module &opt size uses binder
983;;
984;; Create a new module, perhaps with a particular size of obarray,
985;; initial uses list, or binding procedure.
986;;
987(define make-module
988 (lambda args
989
990 (define (parse-arg index default)
991 (if (> (length args) index)
992 (list-ref args index)
993 default))
994
995 (if (> (length args) 3)
996 (error "Too many args to make-module." args))
997
998 (let ((size (parse-arg 0 1021))
999 (uses (parse-arg 1 '()))
1000 (binder (parse-arg 2 #f)))
1001
1002 (if (not (integer? size))
1003 (error "Illegal size to make-module." size))
1004 (if (not (and (list? uses)
1005 (and-map module? uses)))
1006 (error "Incorrect use list." uses))
1007 (if (and binder (not (procedure? binder)))
1008 (error
1009 "Lazy-binder expected to be a procedure or #f." binder))
1010
1011 (let ((module (module-constructor (make-vector size '())
1012 uses binder #f #f #f #f
1013 '()
1014 (make-weak-value-hash-table 31)
1015 0)))
1016
1017 ;; We can't pass this as an argument to module-constructor,
1018 ;; because we need it to close over a pointer to the module
1019 ;; itself.
1020 (set-module-eval-closure! module (standard-eval-closure module))
1021
1022 module))))
1023
1024(define module-constructor (record-constructor module-type))
1025(define module-obarray (record-accessor module-type 'obarray))
1026(define set-module-obarray! (record-modifier module-type 'obarray))
1027(define module-uses (record-accessor module-type 'uses))
1028(define set-module-uses! (record-modifier module-type 'uses))
1029(define module-binder (record-accessor module-type 'binder))
1030(define set-module-binder! (record-modifier module-type 'binder))
1031
1032;; NOTE: This binding is used in libguile/modules.c.
1033(define module-eval-closure (record-accessor module-type 'eval-closure))
1034
1035(define module-transformer (record-accessor module-type 'transformer))
1036(define set-module-transformer! (record-modifier module-type 'transformer))
1037(define module-name (record-accessor module-type 'name))
1038(define set-module-name! (record-modifier module-type 'name))
1039(define module-kind (record-accessor module-type 'kind))
1040(define set-module-kind! (record-modifier module-type 'kind))
1041(define module-observers (record-accessor module-type 'observers))
1042(define set-module-observers! (record-modifier module-type 'observers))
1043(define module-weak-observers (record-accessor module-type 'weak-observers))
1044(define module-observer-id (record-accessor module-type 'observer-id))
1045(define set-module-observer-id! (record-modifier module-type 'observer-id))
1046(define module? (record-predicate module-type))
1047
1048(define set-module-eval-closure!
1049 (let ((setter (record-modifier module-type 'eval-closure)))
1050 (lambda (module closure)
1051 (setter module closure)
1052 ;; Make it possible to lookup the module from the environment.
1053 ;; This implementation is correct since an eval closure can belong
1054 ;; to maximally one module.
1055 (set-procedure-property! closure 'module module))))
1056
1057(begin-deprecated
1058 (define (eval-in-module exp mod)
1059 (issue-deprecation-warning
1060 "`eval-in-module' is deprecated. Use `eval' instead.")
1061 (eval exp mod)))
1062
1063\f
1064;;; {Observer protocol}
1065;;;
1066
1067(define (module-observe module proc)
1068 (set-module-observers! module (cons proc (module-observers module)))
1069 (cons module proc))
1070
1071(define (module-observe-weak module proc)
1072 (let ((id (module-observer-id module)))
1073 (hash-set! (module-weak-observers module) id proc)
1074 (set-module-observer-id! module (+ 1 id))
1075 (cons module id)))
1076
1077(define (module-unobserve token)
1078 (let ((module (car token))
1079 (id (cdr token)))
1080 (if (integer? id)
1081 (hash-remove! (module-weak-observers module) id)
1082 (set-module-observers! module (delq1! id (module-observers module)))))
1083 *unspecified*)
1084
1085(define (module-modified m)
1086 (for-each (lambda (proc) (proc m)) (module-observers m))
1087 (hash-fold (lambda (id proc res) (proc m)) #f (module-weak-observers m)))
1088
1089\f
1090;;; {Module Searching in General}
1091;;;
1092;;; We sometimes want to look for properties of a symbol
1093;;; just within the obarray of one module. If the property
1094;;; holds, then it is said to hold ``locally'' as in, ``The symbol
1095;;; DISPLAY is locally rebound in the module `safe-guile'.''
1096;;;
1097;;;
1098;;; Other times, we want to test for a symbol property in the obarray
1099;;; of M and, if it is not found there, try each of the modules in the
1100;;; uses list of M. This is the normal way of testing for some
1101;;; property, so we state these properties without qualification as
1102;;; in: ``The symbol 'fnord is interned in module M because it is
1103;;; interned locally in module M2 which is a member of the uses list
1104;;; of M.''
1105;;;
1106
1107;; module-search fn m
1108;;
1109;; return the first non-#f result of FN applied to M and then to
1110;; the modules in the uses of m, and so on recursively. If all applications
1111;; return #f, then so does this function.
1112;;
1113(define (module-search fn m v)
1114 (define (loop pos)
1115 (and (pair? pos)
1116 (or (module-search fn (car pos) v)
1117 (loop (cdr pos)))))
1118 (or (fn m v)
1119 (loop (module-uses m))))
1120
1121
1122;;; {Is a symbol bound in a module?}
1123;;;
1124;;; Symbol S in Module M is bound if S is interned in M and if the binding
1125;;; of S in M has been set to some well-defined value.
1126;;;
1127
1128;; module-locally-bound? module symbol
1129;;
1130;; Is a symbol bound (interned and defined) locally in a given module?
1131;;
1132(define (module-locally-bound? m v)
1133 (let ((var (module-local-variable m v)))
1134 (and var
1135 (variable-bound? var))))
1136
1137;; module-bound? module symbol
1138;;
1139;; Is a symbol bound (interned and defined) anywhere in a given module
1140;; or its uses?
1141;;
1142(define (module-bound? m v)
1143 (module-search module-locally-bound? m v))
1144
1145;;; {Is a symbol interned in a module?}
1146;;;
1147;;; Symbol S in Module M is interned if S occurs in
1148;;; of S in M has been set to some well-defined value.
1149;;;
1150;;; It is possible to intern a symbol in a module without providing
1151;;; an initial binding for the corresponding variable. This is done
1152;;; with:
1153;;; (module-add! module symbol (make-undefined-variable))
1154;;;
1155;;; In that case, the symbol is interned in the module, but not
1156;;; bound there. The unbound symbol shadows any binding for that
1157;;; symbol that might otherwise be inherited from a member of the uses list.
1158;;;
1159
1160(define (module-obarray-get-handle ob key)
1161 ((if (symbol? key) hashq-get-handle hash-get-handle) ob key))
1162
1163(define (module-obarray-ref ob key)
1164 ((if (symbol? key) hashq-ref hash-ref) ob key))
1165
1166(define (module-obarray-set! ob key val)
1167 ((if (symbol? key) hashq-set! hash-set!) ob key val))
1168
1169(define (module-obarray-remove! ob key)
1170 ((if (symbol? key) hashq-remove! hash-remove!) ob key))
1171
1172;; module-symbol-locally-interned? module symbol
1173;;
1174;; is a symbol interned (not neccessarily defined) locally in a given module
1175;; or its uses? Interned symbols shadow inherited bindings even if
1176;; they are not themselves bound to a defined value.
1177;;
1178(define (module-symbol-locally-interned? m v)
1179 (not (not (module-obarray-get-handle (module-obarray m) v))))
1180
1181;; module-symbol-interned? module symbol
1182;;
1183;; is a symbol interned (not neccessarily defined) anywhere in a given module
1184;; or its uses? Interned symbols shadow inherited bindings even if
1185;; they are not themselves bound to a defined value.
1186;;
1187(define (module-symbol-interned? m v)
1188 (module-search module-symbol-locally-interned? m v))
1189
1190
1191;;; {Mapping modules x symbols --> variables}
1192;;;
1193
1194;; module-local-variable module symbol
1195;; return the local variable associated with a MODULE and SYMBOL.
1196;;
1197;;; This function is very important. It is the only function that can
1198;;; return a variable from a module other than the mutators that store
1199;;; new variables in modules. Therefore, this function is the location
1200;;; of the "lazy binder" hack.
1201;;;
1202;;; If symbol is defined in MODULE, and if the definition binds symbol
1203;;; to a variable, return that variable object.
1204;;;
1205;;; If the symbols is not found at first, but the module has a lazy binder,
1206;;; then try the binder.
1207;;;
1208;;; If the symbol is not found at all, return #f.
1209;;;
1210(define (module-local-variable m v)
1211; (caddr
1212; (list m v
1213 (let ((b (module-obarray-ref (module-obarray m) v)))
1214 (or (and (variable? b) b)
1215 (and (module-binder m)
1216 ((module-binder m) m v #f)))))
1217;))
1218
1219;; module-variable module symbol
1220;;
1221;; like module-local-variable, except search the uses in the
1222;; case V is not found in M.
1223;;
1224;; NOTE: This function is superseded with C code (see modules.c)
1225;;; when using the standard eval closure.
1226;;
1227(define (module-variable m v)
1228 (module-search module-local-variable m v))
1229
1230
1231;;; {Mapping modules x symbols --> bindings}
1232;;;
1233;;; These are similar to the mapping to variables, except that the
1234;;; variable is dereferenced.
1235;;;
1236
1237;; module-symbol-binding module symbol opt-value
1238;;
1239;; return the binding of a variable specified by name within
1240;; a given module, signalling an error if the variable is unbound.
1241;; If the OPT-VALUE is passed, then instead of signalling an error,
1242;; return OPT-VALUE.
1243;;
1244(define (module-symbol-local-binding m v . opt-val)
1245 (let ((var (module-local-variable m v)))
1246 (if var
1247 (variable-ref var)
1248 (if (not (null? opt-val))
1249 (car opt-val)
1250 (error "Locally unbound variable." v)))))
1251
1252;; module-symbol-binding module symbol opt-value
1253;;
1254;; return the binding of a variable specified by name within
1255;; a given module, signalling an error if the variable is unbound.
1256;; If the OPT-VALUE is passed, then instead of signalling an error,
1257;; return OPT-VALUE.
1258;;
1259(define (module-symbol-binding m v . opt-val)
1260 (let ((var (module-variable m v)))
1261 (if var
1262 (variable-ref var)
1263 (if (not (null? opt-val))
1264 (car opt-val)
1265 (error "Unbound variable." v)))))
1266
1267
1268\f
1269;;; {Adding Variables to Modules}
1270;;;
1271;;;
1272
1273
1274;; module-make-local-var! module symbol
1275;;
1276;; ensure a variable for V in the local namespace of M.
1277;; If no variable was already there, then create a new and uninitialzied
1278;; variable.
1279;;
1280(define (module-make-local-var! m v)
1281 (or (let ((b (module-obarray-ref (module-obarray m) v)))
1282 (and (variable? b)
1283 (begin
1284 (module-modified m)
1285 b)))
1286 (and (module-binder m)
1287 ((module-binder m) m v #t))
1288 (begin
1289 (let ((answer (make-undefined-variable)))
1290 (variable-set-name-hint! answer v)
1291 (module-obarray-set! (module-obarray m) v answer)
1292 (module-modified m)
1293 answer))))
1294
1295;; module-ensure-local-variable! module symbol
1296;;
1297;; Ensure that there is a local variable in MODULE for SYMBOL. If
1298;; there is no binding for SYMBOL, create a new uninitialized
1299;; variable. Return the local variable.
1300;;
1301(define (module-ensure-local-variable! module symbol)
1302 (or (module-local-variable module symbol)
1303 (let ((var (make-undefined-variable)))
1304 (variable-set-name-hint! var symbol)
1305 (module-add! module symbol var)
1306 var)))
1307
1308;; module-add! module symbol var
1309;;
1310;; ensure a particular variable for V in the local namespace of M.
1311;;
1312(define (module-add! m v var)
1313 (if (not (variable? var))
1314 (error "Bad variable to module-add!" var))
1315 (module-obarray-set! (module-obarray m) v var)
1316 (module-modified m))
1317
1318;; module-remove!
1319;;
1320;; make sure that a symbol is undefined in the local namespace of M.
1321;;
1322(define (module-remove! m v)
1323 (module-obarray-remove! (module-obarray m) v)
1324 (module-modified m))
1325
1326(define (module-clear! m)
1327 (vector-fill! (module-obarray m) '())
1328 (module-modified m))
1329
1330;; MODULE-FOR-EACH -- exported
1331;;
1332;; Call PROC on each symbol in MODULE, with arguments of (SYMBOL VARIABLE).
1333;;
1334(define (module-for-each proc module)
1335 (let ((obarray (module-obarray module)))
1336 (do ((index 0 (+ index 1))
1337 (end (vector-length obarray)))
1338 ((= index end))
1339 (for-each
1340 (lambda (bucket)
1341 (proc (car bucket) (cdr bucket)))
1342 (vector-ref obarray index)))))
1343
1344
1345(define (module-map proc module)
1346 (let* ((obarray (module-obarray module))
1347 (end (vector-length obarray)))
1348
1349 (let loop ((i 0)
1350 (answer '()))
1351 (if (= i end)
1352 answer
1353 (loop (+ 1 i)
1354 (append!
1355 (map (lambda (bucket)
1356 (proc (car bucket) (cdr bucket)))
1357 (vector-ref obarray i))
1358 answer))))))
1359\f
1360
1361;;; {Low Level Bootstrapping}
1362;;;
1363
1364;; make-root-module
1365
1366;; A root module uses the pre-modules-obarray as its obarray. This
1367;; special obarray accumulates all bindings that have been established
1368;; before the module system is fully booted.
1369;;
1370;; (The obarray continues to be used by code that has been closed over
1371;; before the module system has been booted.)
1372
1373(define (make-root-module)
1374 (let ((m (make-module 0)))
1375 (set-module-obarray! m (%get-pre-modules-obarray))
1376 m))
1377
1378;; make-scm-module
1379
1380;; The root interface is a module that uses the same obarray as the
1381;; root module. It does not allow new definitions, tho.
1382
1383(define (make-scm-module)
1384 (let ((m (make-module 0)))
1385 (set-module-obarray! m (%get-pre-modules-obarray))
1386 (set-module-eval-closure! m (standard-interface-eval-closure m))
1387 m))
1388
1389
1390\f
1391;;; {Module-based Loading}
1392;;;
1393
1394(define (save-module-excursion thunk)
1395 (let ((inner-module (current-module))
1396 (outer-module #f))
1397 (dynamic-wind (lambda ()
1398 (set! outer-module (current-module))
1399 (set-current-module inner-module)
1400 (set! inner-module #f))
1401 thunk
1402 (lambda ()
1403 (set! inner-module (current-module))
1404 (set-current-module outer-module)
1405 (set! outer-module #f)))))
1406
1407(define basic-load load)
1408
1409(define (load-module filename)
1410 (save-module-excursion
1411 (lambda ()
1412 (let ((oldname (and (current-load-port)
1413 (port-filename (current-load-port)))))
1414 (basic-load (if (and oldname
1415 (> (string-length filename) 0)
1416 (not (char=? (string-ref filename 0) #\/))
1417 (not (string=? (dirname oldname) ".")))
1418 (string-append (dirname oldname) "/" filename)
1419 filename))))))
1420
1421
1422\f
1423;;; {MODULE-REF -- exported}
1424;;
1425;; Returns the value of a variable called NAME in MODULE or any of its
1426;; used modules. If there is no such variable, then if the optional third
1427;; argument DEFAULT is present, it is returned; otherwise an error is signaled.
1428;;
1429(define (module-ref module name . rest)
1430 (let ((variable (module-variable module name)))
1431 (if (and variable (variable-bound? variable))
1432 (variable-ref variable)
1433 (if (null? rest)
1434 (error "No variable named" name 'in module)
1435 (car rest) ; default value
1436 ))))
1437
1438;; MODULE-SET! -- exported
1439;;
1440;; Sets the variable called NAME in MODULE (or in a module that MODULE uses)
1441;; to VALUE; if there is no such variable, an error is signaled.
1442;;
1443(define (module-set! module name value)
1444 (let ((variable (module-variable module name)))
1445 (if variable
1446 (variable-set! variable value)
1447 (error "No variable named" name 'in module))))
1448
1449;; MODULE-DEFINE! -- exported
1450;;
1451;; Sets the variable called NAME in MODULE to VALUE; if there is no such
1452;; variable, it is added first.
1453;;
1454(define (module-define! module name value)
1455 (let ((variable (module-local-variable module name)))
1456 (if variable
1457 (begin
1458 (variable-set! variable value)
1459 (module-modified module))
1460 (let ((variable (make-variable value)))
1461 (variable-set-name-hint! variable name)
1462 (module-add! module name variable)))))
1463
1464;; MODULE-DEFINED? -- exported
1465;;
1466;; Return #t iff NAME is defined in MODULE (or in a module that MODULE
1467;; uses)
1468;;
1469(define (module-defined? module name)
1470 (let ((variable (module-variable module name)))
1471 (and variable (variable-bound? variable))))
1472
1473;; MODULE-USE! module interface
1474;;
1475;; Add INTERFACE to the list of interfaces used by MODULE.
1476;;
1477(define (module-use! module interface)
1478 (set-module-uses! module
1479 (cons interface (delq! interface (module-uses module))))
1480 (module-modified module))
1481
1482\f
1483;;; {Recursive Namespaces}
1484;;;
1485;;;
1486;;; A hierarchical namespace emerges if we consider some module to be
1487;;; root, and variables bound to modules as nested namespaces.
1488;;;
1489;;; The routines in this file manage variable names in hierarchical namespace.
1490;;; Each variable name is a list of elements, looked up in successively nested
1491;;; modules.
1492;;;
1493;;; (nested-ref some-root-module '(foo bar baz))
1494;;; => <value of a variable named baz in the module bound to bar in
1495;;; the module bound to foo in some-root-module>
1496;;;
1497;;;
1498;;; There are:
1499;;;
1500;;; ;; a-root is a module
1501;;; ;; name is a list of symbols
1502;;;
1503;;; nested-ref a-root name
1504;;; nested-set! a-root name val
1505;;; nested-define! a-root name val
1506;;; nested-remove! a-root name
1507;;;
1508;;;
1509;;; (current-module) is a natural choice for a-root so for convenience there are
1510;;; also:
1511;;;
1512;;; local-ref name == nested-ref (current-module) name
1513;;; local-set! name val == nested-set! (current-module) name val
1514;;; local-define! name val == nested-define! (current-module) name val
1515;;; local-remove! name == nested-remove! (current-module) name
1516;;;
1517
1518
1519(define (nested-ref root names)
1520 (let loop ((cur root)
1521 (elts names))
1522 (cond
1523 ((null? elts) cur)
1524 ((not (module? cur)) #f)
1525 (else (loop (module-ref cur (car elts) #f) (cdr elts))))))
1526
1527(define (nested-set! root names val)
1528 (let loop ((cur root)
1529 (elts names))
1530 (if (null? (cdr elts))
1531 (module-set! cur (car elts) val)
1532 (loop (module-ref cur (car elts)) (cdr elts)))))
1533
1534(define (nested-define! root names val)
1535 (let loop ((cur root)
1536 (elts names))
1537 (if (null? (cdr elts))
1538 (module-define! cur (car elts) val)
1539 (loop (module-ref cur (car elts)) (cdr elts)))))
1540
1541(define (nested-remove! root names)
1542 (let loop ((cur root)
1543 (elts names))
1544 (if (null? (cdr elts))
1545 (module-remove! cur (car elts))
1546 (loop (module-ref cur (car elts)) (cdr elts)))))
1547
1548(define (local-ref names) (nested-ref (current-module) names))
1549(define (local-set! names val) (nested-set! (current-module) names val))
1550(define (local-define names val) (nested-define! (current-module) names val))
1551(define (local-remove names) (nested-remove! (current-module) names))
1552
1553
1554\f
1555;;; {The (app) module}
1556;;;
1557;;; The root of conventionally named objects not directly in the top level.
1558;;;
1559;;; (app modules)
1560;;; (app modules guile)
1561;;;
1562;;; The directory of all modules and the standard root module.
1563;;;
1564
1565(define (module-public-interface m)
1566 (module-ref m '%module-public-interface #f))
1567(define (set-module-public-interface! m i)
1568 (module-define! m '%module-public-interface i))
1569(define (set-system-module! m s)
1570 (set-procedure-property! (module-eval-closure m) 'system-module s))
1571(define the-root-module (make-root-module))
1572(define the-scm-module (make-scm-module))
1573(set-module-public-interface! the-root-module the-scm-module)
1574(set-module-name! the-root-module '(guile))
1575(set-module-name! the-scm-module '(guile))
1576(set-module-kind! the-scm-module 'interface)
1577(for-each set-system-module! (list the-root-module the-scm-module) '(#t #t))
1578
1579;; NOTE: This binding is used in libguile/modules.c.
1580;;
1581(define (make-modules-in module name)
1582 (if (null? name)
1583 module
1584 (cond
1585 ((module-ref module (car name) #f)
1586 => (lambda (m) (make-modules-in m (cdr name))))
1587 (else (let ((m (make-module 31)))
1588 (set-module-kind! m 'directory)
1589 (set-module-name! m (append (or (module-name module)
1590 '())
1591 (list (car name))))
1592 (module-define! module (car name) m)
1593 (make-modules-in m (cdr name)))))))
1594
1595(define (beautify-user-module! module)
1596 (let ((interface (module-public-interface module)))
1597 (if (or (not interface)
1598 (eq? interface module))
1599 (let ((interface (make-module 31)))
1600 (set-module-name! interface (module-name module))
1601 (set-module-kind! interface 'interface)
1602 (set-module-public-interface! module interface))))
1603 (if (and (not (memq the-scm-module (module-uses module)))
1604 (not (eq? module the-root-module)))
1605 (set-module-uses! module (append (module-uses module) (list the-scm-module)))))
1606
1607;; NOTE: This binding is used in libguile/modules.c.
1608;;
1609(define (resolve-module name . maybe-autoload)
1610 (let ((full-name (append '(app modules) name)))
1611 (let ((already (local-ref full-name)))
1612 (if already
1613 ;; The module already exists...
1614 (if (and (or (null? maybe-autoload) (car maybe-autoload))
1615 (not (module-public-interface already)))
1616 ;; ...but we are told to load and it doesn't contain source, so
1617 (begin
1618 (try-load-module name)
1619 already)
1620 ;; simply return it.
1621 already)
1622 (begin
1623 ;; Try to autoload it if we are told so
1624 (if (or (null? maybe-autoload) (car maybe-autoload))
1625 (try-load-module name))
1626 ;; Get/create it.
1627 (make-modules-in (current-module) full-name))))))
1628
1629;; Cheat. These bindings are needed by modules.c, but we don't want
1630;; to move their real definition here because that would be unnatural.
1631;;
1632(define try-module-autoload #f)
1633(define process-define-module #f)
1634(define process-use-modules #f)
1635(define module-export! #f)
1636
1637;; This boots the module system. All bindings needed by modules.c
1638;; must have been defined by now.
1639;;
1640(set-current-module the-root-module)
1641
1642(define app (make-module 31))
1643(local-define '(app modules) (make-module 31))
1644(local-define '(app modules guile) the-root-module)
1645
1646;; (define-special-value '(app modules new-ws) (lambda () (make-scm-module)))
1647
1648(define (try-load-module name)
1649 (or (begin-deprecated (try-module-linked name))
1650 (try-module-autoload name)
1651 (begin-deprecated (try-module-dynamic-link name))))
1652
1653(define (purify-module! module)
1654 "Removes bindings in MODULE which are inherited from the (guile) module."
1655 (let ((use-list (module-uses module)))
1656 (if (and (pair? use-list)
1657 (eq? (car (last-pair use-list)) the-scm-module))
1658 (set-module-uses! module (reverse (cdr (reverse use-list)))))))
1659
1660;; Return a module that is a interface to the module designated by
1661;; NAME.
1662;;
1663;; `resolve-interface' takes two keyword arguments:
1664;;
1665;; #:select SELECTION
1666;;
1667;; SELECTION is a list of binding-specs to be imported; A binding-spec
1668;; is either a symbol or a pair of symbols (ORIG . SEEN), where ORIG
1669;; is the name in the used module and SEEN is the name in the using
1670;; module. Note that SEEN is also passed through RENAMER, below. The
1671;; default is to select all bindings. If you specify no selection but
1672;; a renamer, only the bindings that already exists in the used module
1673;; are made available in the interface. Bindings that are added later
1674;; are not picked up.
1675;;
1676;; #:renamer RENAMER
1677;;
1678;; RENAMER is a procedure that takes a symbol and returns its new
1679;; name. The default is to not perform any renaming.
1680;;
1681;; Signal "no code for module" error if module name is not resolvable
1682;; or its public interface is not available. Signal "no binding"
1683;; error if selected binding does not exist in the used module.
1684;;
1685(define (resolve-interface name . args)
1686
1687 (define (get-keyword-arg args kw def)
1688 (cond ((memq kw args)
1689 => (lambda (kw-arg)
1690 (if (null? (cdr kw-arg))
1691 (error "keyword without value: " kw))
1692 (cadr kw-arg)))
1693 (else
1694 def)))
1695
1696 (let* ((select (get-keyword-arg args #:select #f))
1697 (renamer (get-keyword-arg args #:renamer identity))
1698 (module (resolve-module name))
1699 (public-i (and module (module-public-interface module))))
1700 (and (or (not module) (not public-i))
1701 (error "no code for module" name))
1702 (if (and (not select) (eq? renamer identity))
1703 public-i
1704 (let ((selection (or select (module-map (lambda (sym var) sym)
1705 public-i)))
1706 (custom-i (make-module 31)))
1707 (set-module-kind! custom-i 'interface)
1708 ;; XXX - should use a lazy binder so that changes to the
1709 ;; used module are picked up automatically.
1710 (for-each (lambda (bspec)
1711 (let* ((direct? (symbol? bspec))
1712 (orig (if direct? bspec (car bspec)))
1713 (seen (if direct? bspec (cdr bspec))))
1714 (module-add! custom-i (renamer seen)
1715 (or (module-local-variable public-i orig)
1716 (module-local-variable module orig)
1717 (error
1718 ;; fixme: format manually for now
1719 (simple-format
1720 #f "no binding `~A' in module ~A"
1721 orig name))))))
1722 selection)
1723 custom-i))))
1724
1725(define (symbol-prefix-proc prefix)
1726 (lambda (symbol)
1727 (symbol-append prefix symbol)))
1728
1729(define (process-define-module args)
1730 (let* ((module-id (car args))
1731 (module (resolve-module module-id #f))
1732 (kws (cdr args))
1733 (unrecognized (lambda (arg)
1734 (error "unrecognized define-module argument" arg))))
1735 (beautify-user-module! module)
1736 (let loop ((kws kws)
1737 (reversed-interfaces '())
1738 (exports '()))
1739 (if (null? kws)
1740 (begin
1741 (for-each (lambda (interface)
1742 (module-use! module interface))
1743 (reverse reversed-interfaces))
1744 (module-export! module exports))
1745 (case (car kws)
1746 ((#:use-module #:use-syntax)
1747 (or (pair? (cdr kws))
1748 (unrecognized kws))
1749 (let* ((interface-args (cadr kws))
1750 (interface (apply resolve-interface interface-args)))
1751 (and (eq? (car kws) #:use-syntax)
1752 (or (symbol? (caar interface-args))
1753 (error "invalid module name for use-syntax"
1754 (car interface-args)))
1755 (set-module-transformer!
1756 module
1757 (module-ref interface
1758 (car (last-pair (car interface-args)))
1759 #f)))
1760 (loop (cddr kws)
1761 (cons interface reversed-interfaces)
1762 exports)))
1763 ((#:autoload)
1764 (or (and (pair? (cdr kws)) (pair? (cddr kws)))
1765 (unrecognized kws))
1766 (loop (cdddr kws)
1767 (cons (make-autoload-interface module
1768 (cadr kws)
1769 (caddr kws))
1770 reversed-interfaces)
1771 exports))
1772 ((#:no-backtrace)
1773 (set-system-module! module #t)
1774 (loop (cdr kws) reversed-interfaces exports))
1775 ((#:pure)
1776 (purify-module! module)
1777 (loop (cdr kws) reversed-interfaces exports))
1778 ((#:export)
1779 (or (pair? (cdr kws))
1780 (unrecognized kws))
1781 (loop (cddr kws)
1782 reversed-interfaces
1783 (append (cadr kws) exports)))
1784 (else
1785 (unrecognized kws)))))
1786 module))
1787
1788;;; {Autoload}
1789
1790(define (make-autoload-interface module name bindings)
1791 (let ((b (lambda (a sym definep)
1792 (and (memq sym bindings)
1793 (let ((i (module-public-interface (resolve-module name))))
1794 (if (not i)
1795 (error "missing interface for module" name))
1796 ;; Replace autoload-interface with interface
1797 (set-car! (memq a (module-uses module)) i)
1798 (module-local-variable i sym))))))
1799 (module-constructor #() '() b #f #f name 'autoload
1800 '() (make-weak-value-hash-table 31) 0)))
1801
1802;;; {Compiled module}
1803
1804(define load-compiled #f)
1805
1806\f
1807;;; {Autoloading modules}
1808
1809(define autoloads-in-progress '())
1810
1811(define (try-module-autoload module-name)
1812 (let* ((reverse-name (reverse module-name))
1813 (name (symbol->string (car reverse-name)))
1814 (dir-hint-module-name (reverse (cdr reverse-name)))
1815 (dir-hint (apply string-append
1816 (map (lambda (elt)
1817 (string-append (symbol->string elt) "/"))
1818 dir-hint-module-name))))
1819 (resolve-module dir-hint-module-name #f)
1820 (and (not (autoload-done-or-in-progress? dir-hint name))
1821 (let ((didit #f))
1822 (define (load-file proc file)
1823 (save-module-excursion (lambda () (proc file)))
1824 (set! didit #t))
1825 (dynamic-wind
1826 (lambda () (autoload-in-progress! dir-hint name))
1827 (lambda ()
1828 (let ((file (in-vicinity dir-hint name)))
1829 (cond ((and load-compiled
1830 (%search-load-path (string-append file ".go")))
1831 => (lambda (full)
1832 (load-file load-compiled full)))
1833 ((%search-load-path file)
1834 => (lambda (full)
1835 (load-file primitive-load full))))))
1836 (lambda () (set-autoloaded! dir-hint name didit)))
1837 didit))))
1838
1839\f
1840;;; Dynamic linking of modules
1841
1842;; This method of dynamically linking Guile Extensions is deprecated.
1843;; Use `load-extension' explicitely from Scheme code instead.
1844
1845(begin-deprecated
1846
1847 (define (split-c-module-name str)
1848 (let loop ((rev '())
1849 (start 0)
1850 (pos 0)
1851 (end (string-length str)))
1852 (cond
1853 ((= pos end)
1854 (reverse (cons (string->symbol (substring str start pos)) rev)))
1855 ((eq? (string-ref str pos) #\space)
1856 (loop (cons (string->symbol (substring str start pos)) rev)
1857 (+ pos 1)
1858 (+ pos 1)
1859 end))
1860 (else
1861 (loop rev start (+ pos 1) end)))))
1862
1863 (define (convert-c-registered-modules dynobj)
1864 (let ((res (map (lambda (c)
1865 (list (split-c-module-name (car c)) (cdr c) dynobj))
1866 (c-registered-modules))))
1867 (c-clear-registered-modules)
1868 res))
1869
1870 (define registered-modules '())
1871
1872 (define (register-modules dynobj)
1873 (set! registered-modules
1874 (append! (convert-c-registered-modules dynobj)
1875 registered-modules)))
1876
1877 (define (warn-autoload-deprecation modname)
1878 (issue-deprecation-warning
1879 "Autoloading of compiled code modules is deprecated."
1880 "Write a Scheme file instead that uses `load-extension'.")
1881 (issue-deprecation-warning
1882 (simple-format #f "(You just autoloaded module ~S.)" modname)))
1883
1884 (define (init-dynamic-module modname)
1885 ;; Register any linked modules which have been registered on the C level
1886 (register-modules #f)
1887 (or-map (lambda (modinfo)
1888 (if (equal? (car modinfo) modname)
1889 (begin
1890 (warn-autoload-deprecation modname)
1891 (set! registered-modules (delq! modinfo registered-modules))
1892 (let ((mod (resolve-module modname #f)))
1893 (save-module-excursion
1894 (lambda ()
1895 (set-current-module mod)
1896 (set-module-public-interface! mod mod)
1897 (dynamic-call (cadr modinfo) (caddr modinfo))
1898 ))
1899 #t))
1900 #f))
1901 registered-modules))
1902
1903 (define (dynamic-maybe-call name dynobj)
1904 (catch #t ; could use false-if-exception here
1905 (lambda ()
1906 (dynamic-call name dynobj))
1907 (lambda args
1908 #f)))
1909
1910 (define (dynamic-maybe-link filename)
1911 (catch #t ; could use false-if-exception here
1912 (lambda ()
1913 (dynamic-link filename))
1914 (lambda args
1915 #f)))
1916
1917 (define (find-and-link-dynamic-module module-name)
1918 (define (make-init-name mod-name)
1919 (string-append "scm_init"
1920 (list->string (map (lambda (c)
1921 (if (or (char-alphabetic? c)
1922 (char-numeric? c))
1923 c
1924 #\_))
1925 (string->list mod-name)))
1926 "_module"))
1927
1928 ;; Put the subdirectory for this module in the car of SUBDIR-AND-LIBNAME,
1929 ;; and the `libname' (the name of the module prepended by `lib') in the cdr
1930 ;; field. For example, if MODULE-NAME is the list (inet tcp-ip udp), then
1931 ;; SUBDIR-AND-LIBNAME will be the pair ("inet/tcp-ip" . "libudp").
1932 (let ((subdir-and-libname
1933 (let loop ((dirs "")
1934 (syms module-name))
1935 (if (null? (cdr syms))
1936 (cons dirs (string-append "lib" (symbol->string (car syms))))
1937 (loop (string-append dirs (symbol->string (car syms)) "/")
1938 (cdr syms)))))
1939 (init (make-init-name (apply string-append
1940 (map (lambda (s)
1941 (string-append "_"
1942 (symbol->string s)))
1943 module-name)))))
1944 (let ((subdir (car subdir-and-libname))
1945 (libname (cdr subdir-and-libname)))
1946
1947 ;; Now look in each dir in %LOAD-PATH for `subdir/libfoo.la'. If that
1948 ;; file exists, fetch the dlname from that file and attempt to link
1949 ;; against it. If `subdir/libfoo.la' does not exist, or does not seem
1950 ;; to name any shared library, look for `subdir/libfoo.so' instead and
1951 ;; link against that.
1952 (let check-dirs ((dir-list %load-path))
1953 (if (null? dir-list)
1954 #f
1955 (let* ((dir (in-vicinity (car dir-list) subdir))
1956 (sharlib-full
1957 (or (try-using-libtool-name dir libname)
1958 (try-using-sharlib-name dir libname))))
1959 (if (and sharlib-full (file-exists? sharlib-full))
1960 (link-dynamic-module sharlib-full init)
1961 (check-dirs (cdr dir-list)))))))))
1962
1963 (define (try-using-libtool-name libdir libname)
1964 (let ((libtool-filename (in-vicinity libdir
1965 (string-append libname ".la"))))
1966 (and (file-exists? libtool-filename)
1967 libtool-filename)))
1968
1969 (define (try-using-sharlib-name libdir libname)
1970 (in-vicinity libdir (string-append libname ".so")))
1971
1972 (define (link-dynamic-module filename initname)
1973 ;; Register any linked modules which have been registered on the C level
1974 (register-modules #f)
1975 (let ((dynobj (dynamic-link filename)))
1976 (dynamic-call initname dynobj)
1977 (register-modules dynobj)))
1978
1979 (define (try-module-linked module-name)
1980 (init-dynamic-module module-name))
1981
1982 (define (try-module-dynamic-link module-name)
1983 (and (find-and-link-dynamic-module module-name)
1984 (init-dynamic-module module-name))))
1985;; end of deprecated section
1986
1987
1988(define autoloads-done '((guile . guile)))
1989
1990(define (autoload-done-or-in-progress? p m)
1991 (let ((n (cons p m)))
1992 (->bool (or (member n autoloads-done)
1993 (member n autoloads-in-progress)))))
1994
1995(define (autoload-done! p m)
1996 (let ((n (cons p m)))
1997 (set! autoloads-in-progress
1998 (delete! n autoloads-in-progress))
1999 (or (member n autoloads-done)
2000 (set! autoloads-done (cons n autoloads-done)))))
2001
2002(define (autoload-in-progress! p m)
2003 (let ((n (cons p m)))
2004 (set! autoloads-done
2005 (delete! n autoloads-done))
2006 (set! autoloads-in-progress (cons n autoloads-in-progress))))
2007
2008(define (set-autoloaded! p m done?)
2009 (if done?
2010 (autoload-done! p m)
2011 (let ((n (cons p m)))
2012 (set! autoloads-done (delete! n autoloads-done))
2013 (set! autoloads-in-progress (delete! n autoloads-in-progress)))))
2014
2015
2016
2017\f
2018;; {EVAL-CASE}
2019;;
2020;; (eval-case ((situation*) forms)* (else forms)?)
2021;;
2022;; Evaluate certain code based on the situation that eval-case is used
2023;; in. The only defined situation right now is `load-toplevel' which
2024;; triggers for code evaluated at the top-level, for example from the
2025;; REPL or when loading a file.
2026
2027(define eval-case
2028 (procedure->memoizing-macro
2029 (lambda (exp env)
2030 (define (toplevel-env? env)
2031 (or (not (pair? env)) (not (pair? (car env)))))
2032 (define (syntax)
2033 (error "syntax error in eval-case"))
2034 (let loop ((clauses (cdr exp)))
2035 (cond
2036 ((null? clauses)
2037 #f)
2038 ((not (list? (car clauses)))
2039 (syntax))
2040 ((eq? 'else (caar clauses))
2041 (or (null? (cdr clauses))
2042 (syntax))
2043 (cons 'begin (cdar clauses)))
2044 ((not (list? (caar clauses)))
2045 (syntax))
2046 ((and (toplevel-env? env)
2047 (memq 'load-toplevel (caar clauses)))
2048 (cons 'begin (cdar clauses)))
2049 (else
2050 (loop (cdr clauses))))))))
2051
2052\f
2053;;; {Macros}
2054;;;
2055
2056(define (primitive-macro? m)
2057 (and (macro? m)
2058 (not (macro-transformer m))))
2059
2060;;; {Defmacros}
2061;;;
2062(define macro-table (make-weak-key-hash-table 523))
2063(define xformer-table (make-weak-key-hash-table 523))
2064
2065(define (defmacro? m) (hashq-ref macro-table m))
2066(define (assert-defmacro?! m) (hashq-set! macro-table m #t))
2067(define (defmacro-transformer m) (hashq-ref xformer-table m))
2068(define (set-defmacro-transformer! m t) (hashq-set! xformer-table m t))
2069
2070(define defmacro:transformer
2071 (lambda (f)
2072 (let* ((xform (lambda (exp env)
2073 (copy-tree (apply f (cdr exp)))))
2074 (a (procedure->memoizing-macro xform)))
2075 (assert-defmacro?! a)
2076 (set-defmacro-transformer! a f)
2077 a)))
2078
2079
2080(define defmacro
2081 (let ((defmacro-transformer
2082 (lambda (name parms . body)
2083 (let ((transformer `(lambda ,parms ,@body)))
2084 `(eval-case
2085 ((load-toplevel)
2086 (define ,name (defmacro:transformer ,transformer)))
2087 (else
2088 (error "defmacro can only be used at the top level")))))))
2089 (defmacro:transformer defmacro-transformer)))
2090
2091(define defmacro:syntax-transformer
2092 (lambda (f)
2093 (procedure->syntax
2094 (lambda (exp env)
2095 (copy-tree (apply f (cdr exp)))))))
2096
2097
2098;; XXX - should the definition of the car really be looked up in the
2099;; current module?
2100
2101(define (macroexpand-1 e)
2102 (cond
2103 ((pair? e) (let* ((a (car e))
2104 (val (and (symbol? a) (local-ref (list a)))))
2105 (if (defmacro? val)
2106 (apply (defmacro-transformer val) (cdr e))
2107 e)))
2108 (#t e)))
2109
2110(define (macroexpand e)
2111 (cond
2112 ((pair? e) (let* ((a (car e))
2113 (val (and (symbol? a) (local-ref (list a)))))
2114 (if (defmacro? val)
2115 (macroexpand (apply (defmacro-transformer val) (cdr e)))
2116 e)))
2117 (#t e)))
2118
2119(provide 'defmacro)
2120
2121\f
2122
2123;;; {Run-time options}
2124
2125(define define-option-interface
2126 (let* ((option-name car)
2127 (option-value cadr)
2128 (option-documentation caddr)
2129
2130 (print-option (lambda (option)
2131 (display (option-name option))
2132 (if (< (string-length
2133 (symbol->string (option-name option)))
2134 8)
2135 (display #\tab))
2136 (display #\tab)
2137 (display (option-value option))
2138 (display #\tab)
2139 (display (option-documentation option))
2140 (newline)))
2141
2142 ;; Below follow the macros defining the run-time option interfaces.
2143
2144 (make-options (lambda (interface)
2145 `(lambda args
2146 (cond ((null? args) (,interface))
2147 ((list? (car args))
2148 (,interface (car args)) (,interface))
2149 (else (for-each ,print-option
2150 (,interface #t)))))))
2151
2152 (make-enable (lambda (interface)
2153 `(lambda flags
2154 (,interface (append flags (,interface)))
2155 (,interface))))
2156
2157 (make-disable (lambda (interface)
2158 `(lambda flags
2159 (let ((options (,interface)))
2160 (for-each (lambda (flag)
2161 (set! options (delq! flag options)))
2162 flags)
2163 (,interface options)
2164 (,interface)))))
2165
2166 (make-set! (lambda (interface)
2167 `((name exp)
2168 (,'quasiquote
2169 (begin (,interface (append (,interface)
2170 (list '(,'unquote name)
2171 (,'unquote exp))))
2172 (,interface)))))))
2173 (procedure->macro
2174 (lambda (exp env)
2175 (cons 'begin
2176 (let* ((option-group (cadr exp))
2177 (interface (car option-group)))
2178 (append (map (lambda (name constructor)
2179 `(define ,name
2180 ,(constructor interface)))
2181 (cadr option-group)
2182 (list make-options
2183 make-enable
2184 make-disable))
2185 (map (lambda (name constructor)
2186 `(defmacro ,name
2187 ,@(constructor interface)))
2188 (caddr option-group)
2189 (list make-set!)))))))))
2190
2191(define-option-interface
2192 (eval-options-interface
2193 (eval-options eval-enable eval-disable)
2194 (eval-set!)))
2195
2196(define-option-interface
2197 (debug-options-interface
2198 (debug-options debug-enable debug-disable)
2199 (debug-set!)))
2200
2201(define-option-interface
2202 (evaluator-traps-interface
2203 (traps trap-enable trap-disable)
2204 (trap-set!)))
2205
2206(define-option-interface
2207 (read-options-interface
2208 (read-options read-enable read-disable)
2209 (read-set!)))
2210
2211(define-option-interface
2212 (print-options-interface
2213 (print-options print-enable print-disable)
2214 (print-set!)))
2215
2216\f
2217
2218;;; {Running Repls}
2219;;;
2220
2221(define (repl read evaler print)
2222 (let loop ((source (read (current-input-port))))
2223 (print (evaler source))
2224 (loop (read (current-input-port)))))
2225
2226;; A provisional repl that acts like the SCM repl:
2227;;
2228(define scm-repl-silent #f)
2229(define (assert-repl-silence v) (set! scm-repl-silent v))
2230
2231(define *unspecified* (if #f #f))
2232(define (unspecified? v) (eq? v *unspecified*))
2233
2234(define scm-repl-print-unspecified #f)
2235(define (assert-repl-print-unspecified v) (set! scm-repl-print-unspecified v))
2236
2237(define scm-repl-verbose #f)
2238(define (assert-repl-verbosity v) (set! scm-repl-verbose v))
2239
2240(define scm-repl-prompt "guile> ")
2241
2242(define (set-repl-prompt! v) (set! scm-repl-prompt v))
2243
2244(define (default-lazy-handler key . args)
2245 (save-stack lazy-handler-dispatch)
2246 (apply throw key args))
2247
2248(define (lazy-handler-dispatch key . args)
2249 (apply default-lazy-handler key args))
2250
2251(define abort-hook (make-hook))
2252
2253;; these definitions are used if running a script.
2254;; otherwise redefined in error-catching-loop.
2255(define (set-batch-mode?! arg) #t)
2256(define (batch-mode?) #t)
2257
2258(define (error-catching-loop thunk)
2259 (let ((status #f)
2260 (interactive #t))
2261 (define (loop first)
2262 (let ((next
2263 (catch #t
2264
2265 (lambda ()
2266 (lazy-catch #t
2267 (lambda ()
2268 (dynamic-wind
2269 (lambda () (unmask-signals))
2270 (lambda ()
2271 (with-traps
2272 (lambda ()
2273 (first)
2274
2275 ;; This line is needed because mark
2276 ;; doesn't do closures quite right.
2277 ;; Unreferenced locals should be
2278 ;; collected.
2279 ;;
2280 (set! first #f)
2281 (let loop ((v (thunk)))
2282 (loop (thunk)))
2283 #f)))
2284 (lambda () (mask-signals))))
2285
2286 lazy-handler-dispatch))
2287
2288 (lambda (key . args)
2289 (case key
2290 ((quit)
2291 (set! status args)
2292 #f)
2293
2294 ((switch-repl)
2295 (apply throw 'switch-repl args))
2296
2297 ((abort)
2298 ;; This is one of the closures that require
2299 ;; (set! first #f) above
2300 ;;
2301 (lambda ()
2302 (run-hook abort-hook)
2303 (force-output (current-output-port))
2304 (display "ABORT: " (current-error-port))
2305 (write args (current-error-port))
2306 (newline (current-error-port))
2307 (if interactive
2308 (begin
2309 (if (and
2310 (not has-shown-debugger-hint?)
2311 (not (memq 'backtrace
2312 (debug-options-interface)))
2313 (stack? (fluid-ref the-last-stack)))
2314 (begin
2315 (newline (current-error-port))
2316 (display
2317 "Type \"(backtrace)\" to get more information or \"(debug)\" to enter the debugger.\n"
2318 (current-error-port))
2319 (set! has-shown-debugger-hint? #t)))
2320 (force-output (current-error-port)))
2321 (begin
2322 (primitive-exit 1)))
2323 (set! stack-saved? #f)))
2324
2325 (else
2326 ;; This is the other cons-leak closure...
2327 (lambda ()
2328 (cond ((= (length args) 4)
2329 (apply handle-system-error key args))
2330 (else
2331 (apply bad-throw key args))))))))))
2332 (if next (loop next) status)))
2333 (set! set-batch-mode?! (lambda (arg)
2334 (cond (arg
2335 (set! interactive #f)
2336 (restore-signals))
2337 (#t
2338 (error "sorry, not implemented")))))
2339 (set! batch-mode? (lambda () (not interactive)))
2340 (loop (lambda () #t))))
2341
2342;;(define the-last-stack (make-fluid)) Defined by scm_init_backtrace ()
2343(define before-signal-stack (make-fluid))
2344(define stack-saved? #f)
2345
2346(define (save-stack . narrowing)
2347 (or stack-saved?
2348 (cond ((not (memq 'debug (debug-options-interface)))
2349 (fluid-set! the-last-stack #f)
2350 (set! stack-saved? #t))
2351 (else
2352 (fluid-set!
2353 the-last-stack
2354 (case (stack-id #t)
2355 ((repl-stack)
2356 (apply make-stack #t save-stack primitive-eval #t 0 narrowing))
2357 ((load-stack)
2358 (apply make-stack #t save-stack 0 #t 0 narrowing))
2359 ((tk-stack)
2360 (apply make-stack #t save-stack tk-stack-mark #t 0 narrowing))
2361 ((#t)
2362 (apply make-stack #t save-stack 0 1 narrowing))
2363 (else
2364 (let ((id (stack-id #t)))
2365 (and (procedure? id)
2366 (apply make-stack #t save-stack id #t 0 narrowing))))))
2367 (set! stack-saved? #t)))))
2368
2369(define before-error-hook (make-hook))
2370(define after-error-hook (make-hook))
2371(define before-backtrace-hook (make-hook))
2372(define after-backtrace-hook (make-hook))
2373
2374(define has-shown-debugger-hint? #f)
2375
2376(define (handle-system-error key . args)
2377 (let ((cep (current-error-port)))
2378 (cond ((not (stack? (fluid-ref the-last-stack))))
2379 ((memq 'backtrace (debug-options-interface))
2380 (run-hook before-backtrace-hook)
2381 (newline cep)
2382 (display "Backtrace:\n")
2383 (display-backtrace (fluid-ref the-last-stack) cep)
2384 (newline cep)
2385 (run-hook after-backtrace-hook)))
2386 (run-hook before-error-hook)
2387 (apply display-error (fluid-ref the-last-stack) cep args)
2388 (run-hook after-error-hook)
2389 (force-output cep)
2390 (throw 'abort key)))
2391
2392(define (quit . args)
2393 (apply throw 'quit args))
2394
2395(define exit quit)
2396
2397;;(define has-shown-backtrace-hint? #f) Defined by scm_init_backtrace ()
2398
2399;; Replaced by C code:
2400;;(define (backtrace)
2401;; (if (fluid-ref the-last-stack)
2402;; (begin
2403;; (newline)
2404;; (display-backtrace (fluid-ref the-last-stack) (current-output-port))
2405;; (newline)
2406;; (if (and (not has-shown-backtrace-hint?)
2407;; (not (memq 'backtrace (debug-options-interface))))
2408;; (begin
2409;; (display
2410;;"Type \"(debug-enable 'backtrace)\" if you would like a backtrace
2411;;automatically if an error occurs in the future.\n")
2412;; (set! has-shown-backtrace-hint? #t))))
2413;; (display "No backtrace available.\n")))
2414
2415(define (error-catching-repl r e p)
2416 (error-catching-loop
2417 (lambda ()
2418 (call-with-values (lambda () (e (r)))
2419 (lambda the-values (for-each p the-values))))))
2420
2421(define (gc-run-time)
2422 (cdr (assq 'gc-time-taken (gc-stats))))
2423
2424(define before-read-hook (make-hook))
2425(define after-read-hook (make-hook))
2426(define before-eval-hook (make-hook 1))
2427(define after-eval-hook (make-hook 1))
2428(define before-print-hook (make-hook 1))
2429(define after-print-hook (make-hook 1))
2430
2431;;; The default repl-reader function. We may override this if we've
2432;;; the readline library.
2433(define repl-reader
2434 (lambda (prompt)
2435 (display prompt)
2436 (force-output)
2437 (run-hook before-read-hook)
2438 (read (current-input-port))))
2439
2440(define (scm-style-repl)
2441
2442 (letrec (
2443 (start-gc-rt #f)
2444 (start-rt #f)
2445 (repl-report-start-timing (lambda ()
2446 (set! start-gc-rt (gc-run-time))
2447 (set! start-rt (get-internal-run-time))))
2448 (repl-report (lambda ()
2449 (display ";;; ")
2450 (display (inexact->exact
2451 (* 1000 (/ (- (get-internal-run-time) start-rt)
2452 internal-time-units-per-second))))
2453 (display " msec (")
2454 (display (inexact->exact
2455 (* 1000 (/ (- (gc-run-time) start-gc-rt)
2456 internal-time-units-per-second))))
2457 (display " msec in gc)\n")))
2458
2459 (consume-trailing-whitespace
2460 (lambda ()
2461 (let ((ch (peek-char)))
2462 (cond
2463 ((eof-object? ch))
2464 ((or (char=? ch #\space) (char=? ch #\tab))
2465 (read-char)
2466 (consume-trailing-whitespace))
2467 ((char=? ch #\newline)
2468 (read-char))))))
2469 (-read (lambda ()
2470 (let ((val
2471 (let ((prompt (cond ((string? scm-repl-prompt)
2472 scm-repl-prompt)
2473 ((thunk? scm-repl-prompt)
2474 (scm-repl-prompt))
2475 (scm-repl-prompt "> ")
2476 (else ""))))
2477 (repl-reader prompt))))
2478
2479 ;; As described in R4RS, the READ procedure updates the
2480 ;; port to point to the first character past the end of
2481 ;; the external representation of the object. This
2482 ;; means that it doesn't consume the newline typically
2483 ;; found after an expression. This means that, when
2484 ;; debugging Guile with GDB, GDB gets the newline, which
2485 ;; it often interprets as a "continue" command, making
2486 ;; breakpoints kind of useless. So, consume any
2487 ;; trailing newline here, as well as any whitespace
2488 ;; before it.
2489 ;; But not if EOF, for control-D.
2490 (if (not (eof-object? val))
2491 (consume-trailing-whitespace))
2492 (run-hook after-read-hook)
2493 (if (eof-object? val)
2494 (begin
2495 (repl-report-start-timing)
2496 (if scm-repl-verbose
2497 (begin
2498 (newline)
2499 (display ";;; EOF -- quitting")
2500 (newline)))
2501 (quit 0)))
2502 val)))
2503
2504 (-eval (lambda (sourc)
2505 (repl-report-start-timing)
2506 (run-hook before-eval-hook sourc)
2507 (let ((val (start-stack 'repl-stack
2508 ;; If you change this procedure
2509 ;; (primitive-eval), please also
2510 ;; modify the repl-stack case in
2511 ;; save-stack so that stack cutting
2512 ;; continues to work.
2513 (primitive-eval sourc))))
2514 (run-hook after-eval-hook sourc)
2515 val)))
2516
2517
2518 (-print (let ((maybe-print (lambda (result)
2519 (if (or scm-repl-print-unspecified
2520 (not (unspecified? result)))
2521 (begin
2522 (write result)
2523 (newline))))))
2524 (lambda (result)
2525 (if (not scm-repl-silent)
2526 (begin
2527 (run-hook before-print-hook result)
2528 (maybe-print result)
2529 (run-hook after-print-hook result)
2530 (if scm-repl-verbose
2531 (repl-report))
2532 (force-output))))))
2533
2534 (-quit (lambda (args)
2535 (if scm-repl-verbose
2536 (begin
2537 (display ";;; QUIT executed, repl exitting")
2538 (newline)
2539 (repl-report)))
2540 args))
2541
2542 (-abort (lambda ()
2543 (if scm-repl-verbose
2544 (begin
2545 (display ";;; ABORT executed.")
2546 (newline)
2547 (repl-report)))
2548 (repl -read -eval -print))))
2549
2550 (let ((status (error-catching-repl -read
2551 -eval
2552 -print)))
2553 (-quit status))))
2554
2555
2556\f
2557;;; {IOTA functions: generating lists of numbers}
2558
2559(define (iota n)
2560 (let loop ((count (1- n)) (result '()))
2561 (if (< count 0) result
2562 (loop (1- count) (cons count result)))))
2563
2564\f
2565;;; {While}
2566;;;
2567;;; with `continue' and `break'.
2568;;;
2569
2570(defmacro while (cond . body)
2571 `(letrec ((continue (lambda () (or (not ,cond) (begin (begin ,@ body) (continue)))))
2572 (break (lambda val (apply throw 'break val))))
2573 (catch 'break
2574 (lambda () (continue))
2575 (lambda v (cadr v)))))
2576
2577;;; {collect}
2578;;;
2579;;; Similar to `begin' but returns a list of the results of all constituent
2580;;; forms instead of the result of the last form.
2581;;; (The definition relies on the current left-to-right
2582;;; order of evaluation of operands in applications.)
2583
2584(defmacro collect forms
2585 (cons 'list forms))
2586
2587;;; {with-fluids}
2588
2589;; with-fluids is a convenience wrapper for the builtin procedure
2590;; `with-fluids*'. The syntax is just like `let':
2591;;
2592;; (with-fluids ((fluid val)
2593;; ...)
2594;; body)
2595
2596(defmacro with-fluids (bindings . body)
2597 `(with-fluids* (list ,@(map car bindings)) (list ,@(map cadr bindings))
2598 (lambda () ,@body)))
2599
2600\f
2601
2602;;; {Macros}
2603;;;
2604
2605;; actually....hobbit might be able to hack these with a little
2606;; coaxing
2607;;
2608
2609(defmacro define-macro (first . rest)
2610 (let ((name (if (symbol? first) first (car first)))
2611 (transformer
2612 (if (symbol? first)
2613 (car rest)
2614 `(lambda ,(cdr first) ,@rest))))
2615 `(eval-case
2616 ((load-toplevel)
2617 (define ,name (defmacro:transformer ,transformer)))
2618 (else
2619 (error "define-macro can only be used at the top level")))))
2620
2621
2622(defmacro define-syntax-macro (first . rest)
2623 (let ((name (if (symbol? first) first (car first)))
2624 (transformer
2625 (if (symbol? first)
2626 (car rest)
2627 `(lambda ,(cdr first) ,@rest))))
2628 `(eval-case
2629 ((load-toplevel)
2630 (define ,name (defmacro:syntax-transformer ,transformer)))
2631 (else
2632 (error "define-syntax-macro can only be used at the top level")))))
2633
2634\f
2635;;; {Module System Macros}
2636;;;
2637
2638;; Return a list of expressions that evaluate to the appropriate
2639;; arguments for resolve-interface according to SPEC.
2640
2641(define (compile-interface-spec spec)
2642 (define (make-keyarg sym key quote?)
2643 (cond ((or (memq sym spec)
2644 (memq key spec))
2645 => (lambda (rest)
2646 (if quote?
2647 (list key (list 'quote (cadr rest)))
2648 (list key (cadr rest)))))
2649 (else
2650 '())))
2651 (define (map-apply func list)
2652 (map (lambda (args) (apply func args)) list))
2653 (define keys
2654 ;; sym key quote?
2655 '((:select #:select #t)
2656 (:renamer #:renamer #f)))
2657 (if (not (pair? (car spec)))
2658 `(',spec)
2659 `(',(car spec)
2660 ,@(apply append (map-apply make-keyarg keys)))))
2661
2662(define (keyword-like-symbol->keyword sym)
2663 (symbol->keyword (string->symbol (substring (symbol->string sym) 1))))
2664
2665(define (compile-define-module-args args)
2666 ;; Just quote everything except #:use-module and #:use-syntax. We
2667 ;; need to know about all arguments regardless since we want to turn
2668 ;; symbols that look like keywords into real keywords, and the
2669 ;; keyword args in a define-module form are not regular
2670 ;; (i.e. no-backtrace doesn't take a value).
2671 (let loop ((compiled-args `((quote ,(car args))))
2672 (args (cdr args)))
2673 (cond ((null? args)
2674 (reverse! compiled-args))
2675 ;; symbol in keyword position
2676 ((symbol? (car args))
2677 (loop compiled-args
2678 (cons (keyword-like-symbol->keyword (car args)) (cdr args))))
2679 ((memq (car args) '(#:no-backtrace #:pure))
2680 (loop (cons (car args) compiled-args)
2681 (cdr args)))
2682 ((null? (cdr args))
2683 (error "keyword without value:" (car args)))
2684 ((memq (car args) '(#:use-module #:use-syntax))
2685 (loop (cons* `(list ,@(compile-interface-spec (cadr args)))
2686 (car args)
2687 compiled-args)
2688 (cddr args)))
2689 ((eq? (car args) #:autoload)
2690 (loop (cons* `(quote ,(caddr args))
2691 `(quote ,(cadr args))
2692 (car args)
2693 compiled-args)
2694 (cdddr args)))
2695 (else
2696 (loop (cons* `(quote ,(cadr args))
2697 (car args)
2698 compiled-args)
2699 (cddr args))))))
2700
2701(defmacro define-module args
2702 `(eval-case
2703 ((load-toplevel)
2704 (let ((m (process-define-module
2705 (list ,@(compile-define-module-args args)))))
2706 (set-current-module m)
2707 m))
2708 (else
2709 (error "define-module can only be used at the top level"))))
2710
2711;; The guts of the use-modules macro. Add the interfaces of the named
2712;; modules to the use-list of the current module, in order.
2713
2714(define (process-use-modules module-interface-args)
2715 (for-each (lambda (mif-args)
2716 (let ((mod-iface (apply resolve-interface mif-args)))
2717 (or mod-iface
2718 (error "no such module" mif-spec))
2719 (module-use! (current-module) mod-iface)))
2720 module-interface-args))
2721
2722(defmacro use-modules modules
2723 `(eval-case
2724 ((load-toplevel)
2725 (process-use-modules
2726 (list ,@(map (lambda (m)
2727 `(list ,@(compile-interface-spec m)))
2728 modules))))
2729 (else
2730 (error "use-modules can only be used at the top level"))))
2731
2732(defmacro use-syntax (spec)
2733 `(eval-case
2734 ((load-toplevel)
2735 ,@(if (pair? spec)
2736 `((process-use-modules (list
2737 (list ,@(compile-interface-spec spec))))
2738 (set-module-transformer! (current-module)
2739 ,(car (last-pair spec))))
2740 `((set-module-transformer! (current-module) ,spec)))
2741 (begin-deprecated
2742 (fluid-set! scm:eval-transformer (module-transformer (current-module)))))
2743 (else
2744 (error "use-syntax can only be used at the top level"))))
2745
2746(define define-private define)
2747
2748(defmacro define-public args
2749 (define (syntax)
2750 (error "bad syntax" (list 'define-public args)))
2751 (define (defined-name n)
2752 (cond
2753 ((symbol? n) n)
2754 ((pair? n) (defined-name (car n)))
2755 (else (syntax))))
2756 (cond
2757 ((null? args)
2758 (syntax))
2759 (#t
2760 (let ((name (defined-name (car args))))
2761 `(begin
2762 (define-private ,@args)
2763 (eval-case ((load-toplevel) (export ,name))))))))
2764
2765(defmacro defmacro-public args
2766 (define (syntax)
2767 (error "bad syntax" (list 'defmacro-public args)))
2768 (define (defined-name n)
2769 (cond
2770 ((symbol? n) n)
2771 (else (syntax))))
2772 (cond
2773 ((null? args)
2774 (syntax))
2775 (#t
2776 (let ((name (defined-name (car args))))
2777 `(begin
2778 (eval-case ((load-toplevel) (export ,name)))
2779 (defmacro ,@args))))))
2780
2781;; Export a local variable
2782;;
2783(define (module-export! m names)
2784 (let ((public-i (module-public-interface m)))
2785 (for-each (lambda (name)
2786 (begin-deprecated
2787 (if (not (module-local-variable m name))
2788 (let ((v (module-variable m name)))
2789 (cond
2790 (v
2791 (issue-deprecation-warning
2792 "Using `export' to re-export imported bindings is deprecated. Use `re-export' instead.")
2793 (issue-deprecation-warning
2794 (simple-format #f "(You just re-exported `~a' from `~a'.)"
2795 name (module-name m)))
2796 (module-define! m name (variable-ref v)))))))
2797 (let ((var (module-ensure-local-variable! m name)))
2798 (module-add! public-i name var)))
2799 names)))
2800
2801;; Re-export a imported variable
2802;;
2803(define (module-re-export! m names)
2804 (let ((public-i (module-public-interface m)))
2805 (for-each (lambda (name)
2806 (let ((var (module-variable m name)))
2807 (cond ((not var)
2808 (error "Undefined variable:" name))
2809 ((eq? var (module-local-variable m name))
2810 (error "re-exporting local variable:" name))
2811 (else
2812 (module-add! public-i name var)))))
2813 names)))
2814
2815(defmacro export names
2816 `(eval-case
2817 ((load-toplevel)
2818 (module-export! (current-module) ',names))
2819 (else
2820 (error "export can only be used at the top level"))))
2821
2822(defmacro re-export names
2823 `(eval-case
2824 ((load-toplevel)
2825 (module-re-export! (current-module) ',names))
2826 (else
2827 (error "re-export can only be used at the top level"))))
2828
2829(define export-syntax export)
2830(define re-export-syntax re-export)
2831
2832
2833(define load load-module)
2834
2835\f
2836
2837;;; {`cond-expand' for SRFI-0 support.}
2838;;;
2839;;; This syntactic form expands into different commands or
2840;;; definitions, depending on the features provided by the Scheme
2841;;; implementation.
2842;;;
2843;;; Syntax:
2844;;;
2845;;; <cond-expand>
2846;;; --> (cond-expand <cond-expand-clause>+)
2847;;; | (cond-expand <cond-expand-clause>* (else <command-or-definition>))
2848;;; <cond-expand-clause>
2849;;; --> (<feature-requirement> <command-or-definition>*)
2850;;; <feature-requirement>
2851;;; --> <feature-identifier>
2852;;; | (and <feature-requirement>*)
2853;;; | (or <feature-requirement>*)
2854;;; | (not <feature-requirement>)
2855;;; <feature-identifier>
2856;;; --> <a symbol which is the name or alias of a SRFI>
2857;;;
2858;;; Additionally, this implementation provides the
2859;;; <feature-identifier>s `guile' and `r5rs', so that programs can
2860;;; determine the implementation type and the supported standard.
2861;;;
2862;;; Currently, the following feature identifiers are supported:
2863;;;
2864;;; guile r5rs srfi-0
2865;;;
2866;;; Remember to update the features list when adding more SRFIs.
2867
2868(define %cond-expand-features
2869 ;; Adjust the above comment when changing this.
2870 '(guile r5rs srfi-0))
2871
2872;; This table maps module public interfaces to the list of features.
2873;;
2874(define %cond-expand-table (make-hash-table 31))
2875
2876;; Add one or more features to the `cond-expand' feature list of the
2877;; module `module'.
2878;;
2879(define (cond-expand-provide module features)
2880 (let ((mod (module-public-interface module)))
2881 (and mod
2882 (hashq-set! %cond-expand-table mod
2883 (append (hashq-ref %cond-expand-table mod '())
2884 features)))))
2885
2886(define cond-expand
2887 (procedure->memoizing-macro
2888 (lambda (exp env)
2889 (let ((clauses (cdr exp))
2890 (syntax-error (lambda (cl)
2891 (error "invalid clause in `cond-expand'" cl))))
2892 (letrec
2893 ((test-clause
2894 (lambda (clause)
2895 (cond
2896 ((symbol? clause)
2897 (or (memq clause %cond-expand-features)
2898 (let lp ((uses (module-uses (env-module env))))
2899 (if (pair? uses)
2900 (or (memq clause
2901 (hashq-ref %cond-expand-table
2902 (car uses) '()))
2903 (lp (cdr uses)))
2904 #f))))
2905 ((pair? clause)
2906 (cond
2907 ((eq? 'and (car clause))
2908 (let lp ((l (cdr clause)))
2909 (cond ((null? l)
2910 #t)
2911 ((pair? l)
2912 (and (test-clause (car l)) (lp (cdr l))))
2913 (else
2914 (syntax-error clause)))))
2915 ((eq? 'or (car clause))
2916 (let lp ((l (cdr clause)))
2917 (cond ((null? l)
2918 #f)
2919 ((pair? l)
2920 (or (test-clause (car l)) (lp (cdr l))))
2921 (else
2922 (syntax-error clause)))))
2923 ((eq? 'not (car clause))
2924 (cond ((not (pair? (cdr clause)))
2925 (syntax-error clause))
2926 ((pair? (cddr clause))
2927 ((syntax-error clause))))
2928 (not (test-clause (cadr clause))))
2929 (else
2930 (syntax-error clause))))
2931 (else
2932 (syntax-error clause))))))
2933 (let lp ((c clauses))
2934 (cond
2935 ((null? c)
2936 (error "Unfulfilled `cond-expand'"))
2937 ((not (pair? c))
2938 (syntax-error c))
2939 ((not (pair? (car c)))
2940 (syntax-error (car c)))
2941 ((test-clause (caar c))
2942 `(begin ,@(cdar c)))
2943 ((eq? (caar c) 'else)
2944 (if (pair? (cdr c))
2945 (syntax-error c))
2946 `(begin ,@(cdar c)))
2947 (else
2948 (lp (cdr c))))))))))
2949
2950;; This procedure gets called from the startup code with a list of
2951;; numbers, which are the numbers of the SRFIs to be loaded on startup.
2952;;
2953(define (use-srfis srfis)
2954 (let lp ((s srfis))
2955 (if (pair? s)
2956 (let* ((srfi (string->symbol
2957 (string-append "srfi-" (number->string (car s)))))
2958 (mod-i (resolve-interface (list 'srfi srfi))))
2959 (module-use! (current-module) mod-i)
2960 (lp (cdr s))))))
2961
2962\f
2963
2964;;; {Load emacs interface support if emacs option is given.}
2965
2966(define (named-module-use! user usee)
2967 (module-use! (resolve-module user) (resolve-interface usee)))
2968
2969(define (load-emacs-interface)
2970 (and (provided? 'debug-extensions)
2971 (debug-enable 'backtrace))
2972 (named-module-use! '(guile-user) '(ice-9 emacs)))
2973
2974\f
2975
2976(define using-readline?
2977 (let ((using-readline? (make-fluid)))
2978 (make-procedure-with-setter
2979 (lambda () (fluid-ref using-readline?))
2980 (lambda (v) (fluid-set! using-readline? v)))))
2981
2982(define (top-repl)
2983 (let ((guile-user-module (resolve-module '(guile-user))))
2984
2985 ;; Load emacs interface support if emacs option is given.
2986 (if (and (module-defined? the-root-module 'use-emacs-interface)
2987 (module-ref the-root-module 'use-emacs-interface))
2988 (load-emacs-interface))
2989
2990 ;; Use some convenient modules (in reverse order)
2991
2992 (if (provided? 'regex)
2993 (module-use! guile-user-module (resolve-interface '(ice-9 regex))))
2994 (if (provided? 'threads)
2995 (module-use! guile-user-module (resolve-interface '(ice-9 threads))))
2996 ;; load debugger on demand
2997 (module-use! guile-user-module
2998 (make-autoload-interface guile-user-module
2999 '(ice-9 debugger) '(debug)))
3000 (module-use! guile-user-module (resolve-interface '(ice-9 session)))
3001 (module-use! guile-user-module (resolve-interface '(ice-9 debug)))
3002 ;; so that builtin bindings will be checked first
3003 (module-use! guile-user-module (resolve-interface '(guile)))
3004
3005 (set-current-module guile-user-module)
3006
3007 (let ((old-handlers #f)
3008 (signals (if (provided? 'posix)
3009 `((,SIGINT . "User interrupt")
3010 (,SIGFPE . "Arithmetic error")
3011 (,SIGBUS . "Bad memory access (bus error)")
3012 (,SIGSEGV
3013 . "Bad memory access (Segmentation violation)"))
3014 '())))
3015
3016 (dynamic-wind
3017
3018 ;; call at entry
3019 (lambda ()
3020 (let ((make-handler (lambda (msg)
3021 (lambda (sig)
3022 ;; Make a backup copy of the stack
3023 (fluid-set! before-signal-stack
3024 (fluid-ref the-last-stack))
3025 (save-stack %deliver-signals)
3026 (scm-error 'signal
3027 #f
3028 msg
3029 #f
3030 (list sig))))))
3031 (set! old-handlers
3032 (map (lambda (sig-msg)
3033 (sigaction (car sig-msg)
3034 (make-handler (cdr sig-msg))))
3035 signals))))
3036
3037 ;; the protected thunk.
3038 (lambda ()
3039 (let ((status (scm-style-repl)))
3040 (run-hook exit-hook)
3041 status))
3042
3043 ;; call at exit.
3044 (lambda ()
3045 (map (lambda (sig-msg old-handler)
3046 (if (not (car old-handler))
3047 ;; restore original C handler.
3048 (sigaction (car sig-msg) #f)
3049 ;; restore Scheme handler, SIG_IGN or SIG_DFL.
3050 (sigaction (car sig-msg)
3051 (car old-handler)
3052 (cdr old-handler))))
3053 signals old-handlers))))))
3054
3055(defmacro false-if-exception (expr)
3056 `(catch #t (lambda () ,expr)
3057 (lambda args #f)))
3058
3059;;; This hook is run at the very end of an interactive session.
3060;;;
3061(define exit-hook (make-hook))
3062
3063\f
3064(append! %load-path (list "."))
3065
3066;; Place the user in the guile-user module.
3067;;
3068
3069(define-module (guile-user))
3070
3071(begin-deprecated
3072 ;; automatic availability of this module is deprecated.
3073 (use-modules (ice-9 rdelim)))
3074
3075;;; boot-9.scm ends here